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Chapter 1 

Introduction 

 

Pattern recognition techniques are often an important component of intelligent systems 

and are used for both data pre-processing and decision making. Broadly speaking, pattern 

recognition is the science that concerns the description or classification (recognition) of 

measurements. The following enumerates a few of the areas where pattern recognition 

finds its application [2]: 

• Image preprocessing, segmentation, and analysis 

• Computer vision 

• Artificial intelligence 

• Seismic analysis 

• Radar signal classification/analysis 

• Speech recognition/understanding 

• Fingerprint identification 

• Character (letter or number) recognition 

• Handwriting analysis 

• Electro-cardiographic signal analysis/understanding 

• Medical diagnosis 

• Socioeconomic 

• Archaeology 
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• Data mining/reduction 

There are three inter-related pattern recognition approaches: 

• Statistical Pattern Recognition 

• Syntactic Pattern Recognition 

• Neural Pattern Recognition 

 

1.1 Statistical pattern recognition approach 

Statistical pattern recognition attempts to classify patterns based on a set of extracted 

features and an underling statistical model for the generation of these patterns. It assumes 

a statistical basis for classification of algorithms. A set of features is extracted from the 

input data and is used to assign each feature vector to one of the classes. We concentrate 

on developing decision or classification strategies, which form classifiers. The classifier 

design attempts to integrate all available information and decision rules are formulated. 

In the use of statistical pattern recognition approach, the structure of the pattern is 

insignificant, so if the structural information is unavailable or irrelevant, it makes sense to 

use statistical pattern recognition approach. Some existing statistical approaches are 

discussed in Chapter 2 of this thesis [3]. 

 

 

Probabilistic Models 
(e.g., pdfs & a priori prob.) 

Estimation Theory input pattern decision/ 
classification 

Fig. 1.1: Statistical PR approach. 
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1.2 Syntactic pattern recognition approach 

The principle behind this approach is that many times the interrelationships or 

interconnections of features yield important structural information, which facilitates 

structural description or classification. Therefore, in these approaches we must be able to 

quantify and extract structural information and to assess structural similarity of patterns. 

In general, these approaches formulate hierarchical description of complex patterns built 

up from simpler sub-patterns. For e.g. musical patterns. There are 6 octaves and each 

octave is subdivided into distinct tones, giving a total of about 72 distinct tones, which 

are common to all musical classes. The premise of syntactic pattern recognition is that the 

structure of an entity is paramount, and that it may be used for classification and 

description. It is used for both classification and description. Classification may be based 

on measures of pattern structural similarity. When explicit structural information about 

the patterns is available, it makes sense to use syntactical pattern recognition approach 

[3]. 

 

Structural Models 
(e.g., sets of grammars) 

Unification w/One 
or More Structural 

Models 

input string decision/ 
classification 

Fig. 1.2: Syntactic PR approach. 
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1.3 Neural pattern recognition approach 

This approach makes use of the knowledge of how biological neural systems store and 

manipulate information. They are particularly well suited for pattern association 

applications. Artificial neural networks (ANNs) provide an emerging paradigm for 

pattern recognition implementation that involves large interconnected networks of 

relatively simple and typically nonlinear units so called neural-nets. Basically, three 

entities characterize an ANN [3]: 

1. The network topology, or interconnection of neural units, 

2. The characteristics of individual units or artificial neurons, and 

3. The strategy for pattern learning or training. 

 

The myriad of potential neural network applications for pattern recognition includes: 

• Feature extraction from complex data sets (e.g., images and speech); 

• Character recognition and image processing applications, and 

• Direct and parallel implementation of matching and search algorithms. 

 

The problems are characterized by following qualities 

• A high-dimensional problem space, 

• Complex interactions between problem variables, and 

• A solution space that may be empty, contain a unique solution, or contain a 

number of almost equally useful solutions. 
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The objective of the thesis is to present the approach used for feature extraction of the 

HRR signals. It was demonstrated in this work that by selecting features based on 

evolutionary use of Haar wavelets, new features with better classification properties 

could be obtained. The convergence is very fast and produces results close to the 

Bayesian classification limits. The quality of the obtained transformation is measured 

using the entropy based information index. This index was developed for data sets with 

estimated probability density functions of different classes. Any mutual dependence of 

the extracted features is automatically accounted for by performing a Monte Carlo 

integration in multi-dimensional space. The confidence interval of the predicted 

performance is related to standard deviation of the information index and depends on the 

information level and the number of training points used. Chapter 3 discusses the 

algorithms used and the simulation results and graphs for some sample signals are shown 

in Chapter 4. Chapter 5 shows an architecture in which the discussed algorithm could be 

implemented on VLSI chips. The detailed implementation techniques and methods are 

discussed in the thesis, “Reconfigurable Wavelet-Based Architecture for Pattern 

Network Parameters 
(e.g., weights from Training) 

Neural Network input pattern output pattern 

Fig. 1.3: Neural network approach 
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Recognition Applications Using a Field Programmable Gate Array” by Mr. Abdulqadir 

Alaqeeli. Chapter 6 lists the conclusions based on the work done and future work. 

1.1 Tools used for the work: 

Matlab was used to develop the algorithms and produce various results and graphs. The 

VHDL code was targeted to the Xilinx 4000 series FPGA, and the Xilinx Foundation 

tools were used for that. 
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Chapter 2 

Statistical approaches to pattern recognition 

 

There are two aspects to pattern recognition - developing a decision rule and using it. The 

actual recognition occurs in the use of the rule, the pattern is defined in the learning 

process by the labeled samples. Since ‘O’ could be seen as a ‘circle’ or as a character ‘O’, 

the pattern recognition problem thus begins with class definition and labeled samples of 

those classes in some workable representation. The problem is solved when a decision 

rule is derived which assigns a unique label to new patterns. Pattern recognition is 

concerned primarily with the description and analysis of measurements taken from 

processes [1]. For this preprocessing is often required to remove noise and measurement 

redundancy. An important step for any classification algorithm is feature selection and 

extraction from the training data. 

 

2.1 Feature selection (or preprocessing): 

Feature selection is the process by which a sample in the measurement space is described 

by a finite and usually smaller set of numbers called frames, which become components 

of the pattern space. Its based on the hypothesis that the training data follow some natural 

rules, which makes presence or absence of data from a given class in a specific location 

of the input space predictable. The role of feature extraction is to transform the input 

space in possibly a nonlinear fashion establishing separation boundaries between classes. 
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Extraction of features depends on selection of a transformation operator which can be 

linear (e.g. projection, wavelets, Fourier transform) or nonlinear [4]. 

 

2.2 Histograms: 

This approach is one of the oldest to estimate probability density functions. The line in 

which the samples occur is divided into several intervals. The probability of a sample 

occurring in each interval is defined by the number of sample points in that interval 

divided by the total number of sample points. The probability density is the probability 

divided by the length of the interval. As the dimensionality increases the number of 

sample points needed to estimate the density functions increases enormously and so the 

histogram approach is seldom used for estimation of probability density functions. 

 

2.3 Parametric Methods: 

This approach defines the descriminant function by a class of probability densities 

defined by a relatively small number of parameters. Its generally assumed that each 

pattern class arises from a multivariate Gaussian (normal) distribution, where parameters 

are the mean and covariance.  
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Two approaches are used for parametric estimation. They are: 

• Maximum Likelihood Estimation:  parameters are fixed but unknown i.e. it seeks 

for parameters which maximizes the probability of obtaining the given training set. 

 

 

 

 

• Bayesian approach: models the to-be-estimated parameters as random variables with 

some assumed known distribution. It uses training set to update density function of 

known parameters. 

Fig 2.1: Determination of parameters for Gaussian distribution. 

Fig. 2.2: Illustration of the maximum likelihood approach. 

x x x x x x x x x xx x xx 
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Problem with parametric learning is 

• It might be difficult to determine a specific form (e.g. Gaussian, Uniform) for the 

distribution. 

Fig. 2.3: Classification of Gaussian data sets using Bayes classifier 

Fig. 2.4: Illustration of Bayes classification error. 
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• The chosen form does not fit one of the estimable formulations. 

 

2.4 Non-parametric methods: 

They use parameterized discriminant functions, like the coefficients of a multivariate 

polynomial of some degree. No conventional form of probability distribution is assumed. 

The following section describes in detail one of the non-parametric approach. 

 

2.4.1 k-NN approach: 

The rule is – classify a point as a member of the class to which majority of its k-nearest 

neighbors belong [2]. It assumes that distance between points is a legitimate measure of 

the similarity of the patterns they represent. The algorithm weights equally all k-nearest 

neighbors, no matter what their relative distance from the point in question. In 

implementation, nearest neighbor pattern classification requires storage of the entire 

sample points and computation of the distance from all to a point in question. Use of this 

method requires careful normalization of pattern space and choice of distance and is best 

for small number of samples of reasonably low dimension. Figure 2.5 illustrates the kNN 

approach. 
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Fig. 2.5: Illustration of the kNN approach. 

 

2.4.2 Parzen window approach: 

The Parzen-window approach is a well-know technology for estimating probability 

density functions. A density function (the kernel) Ö(x) is used for which: Ö(x) > 0,

V  )( =Φ∫ dxx . Having samples xi, then the estimated pdf )(ˆ xp is obtained from [6]: 

∑
=

−Φ=
n

i
in xxxp

1n

)(
nV

1
  )(ˆ  

where n is the total number of data and Vn is the kernel volume: 

∫Φ= dxxVn )(  n  
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The kernel is usually a function of 
)(

1

n
i.e. the larger the number of data the smaller the 

kernel. In practice, the number of data is limited and therefore the kernel can not be taken 

too small (otherwise, holes and spikes appear in the estimated pdf. In practice Gaussian 

kernel is often used and a width is chosen which optimizes the classification 

performance. Another practical problem is the computational time and storage for 

estimating a pdf value. 

 

Fig. 2.6 Illustration of the Parzen window approach. 
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Chapter 3 

Entropy based selection of optimum transformation of input data  

 

In the classification task, a favorable occurrence is when an object (or signal) is correctly 

classified.  If classification is based on given probability distribution functions, one 

possible approach to classify an observed signal is to evaluate pdf functions for different 

classes of this observed signal.  The signal is classified as an object of the class with the 

maximum pdf value. Let us consider a two-class classification problem with pdf 

functions as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

Probability that a signal from class 1 will be correctly classified under this scenario 

equals to the integral under pdf1 for all random variables X for which pdf1 > pdf2.  Let 

us define S1 as a subspace of the input space for which pdf1 > pdf2. In order to obtain the 

value of integral ∫
1

dx (pdf1)
S

, a number of schemes were used and are discussed further. 

pdf1 pdf2 

X 

Y 

Fig. 3.1: Probability distribution function of two classes. 
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3.1 Cartesian Grid Method: The motivation for this approach arose from the simple 

way of integral approximation.   The input space is divided into equally sized segments 

and integral over each segment is approximated by multiplying the volume of the each 

segment by the average value of the integrated function over this volume.  Total integral 

is approximated by the sum of the segment integrals.  Initially a unit grid centered at the 

origin is made.  Each dimension is divided into equal number of parts given by 

‘numPoints’.  In order to map the unit grid to the actual points we multiply the original 

grid points by maximum standard deviation of the original points and a constant named 

‘varstd’.  The value of this constant is chosen so that statistically almost 98% of the 

points are covered.  Having obtained the grid of points in cartesian coordinates we now 

perform QR factorization of the actual signal shifted to the origin of the coordinate 

system. The resulting two matrices Q and R will be used to obtain a linear transformation 

of the input space, where Q is the orthogonal matrix and R is the upper triangular matrix. 

Having Q and R we can easily obtain an N-dimensional ellipsoid which encloses the 

original points in the input space and can be used to describe n-dimensional probability 

density function (pdf) of the data points in the original input space. The original data 

points can be transformed to the orthogonal space by using multiplication of the input 

signals by R-1.  In the orthogonal space, all data points are equally spread around the 

origin.  Their distribution is approximately Gaussian with the mean value equal to zero 

and standard deviation equal to 1/sqrt(m-1), where m is the number of data points (also 

equal to standard deviation of the matrix Q). To include most of the data points in an 
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enclosing n-dimensional sphere we multiply the standard deviation by 2.3 (includes close 

to 98% of all normally distributed samples).    

 

 

 

The enclosing sphere (and the Gaussian probability density function) can be transformed 

back to the original input space by taking product of vectors in the orthogonal space with 

matrix R.  Therefore, the enclosing sphere will be transformed to enclosing ellipsoid in 

the input space.  Subsequently, all the grid points are transformed to the orthogonal space 

spanned by column vectors of matrix Q and points lying outside the enclosing n-

dimensional sphere are discarded.   Now, we have reduced the earlier generated grid to a 

selected set of points over which we are going to calculate the pdf.  The program that 

generates the Cartesian grid is called cartplot.m.  Figure 3.3 illustrates the 2-dimensional 

grid.  It shows the original points in ‘o’ and the original grid points with '+'.  The ellipse 

Fig 3.2: Illustration of uniform and non-uniform grid for direct integration in 1D. 



17 

Fig. 3.3: 2-dimensional grid. 
red  (.): ellipse bounding the signal 
green  (+): original set of points 
magenta (o): original signal 
blue  (*): selected set of points 

which bounds the original set of points is shown in red with '-' and the grid points which 

are selected and lie within the ellipse are shown with '*'. 
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Figures 3.4 and 3.5 illustrate the 3-dimensional process.  The original set of points and 

the selected grid points are shown in Figure 3.4, while the original grid points and the 

ellipse which bounds the original set of data points are shown in Figure 3.5. 

Fig. 3.4: 3-dimensional grid: Original points and the selected grid points. 
magenta (o): original set of points 
blue  (*): selected set of points 
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Fig. 3.5: 3-dimensional grid. 
yellow (.): ellipse bounding the signal 
blue (.): original set of points 
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3.2 Spherical Grid Method: Cartesian grid approach is simple to use, however it is 

not the most numerically efficient way of finding n-dimensional integrals.  Considering 

specificity of Gaussian functions (exponentially declining values) significant savings in 

computations can be obtained.  The same accuracy can be obtained with non-uniform 

distribution of the grid points and total number of grid points reduced.  First, a regular n-

dimensional grid is obtained using polar coordinates.  Polar coordinates are described by 

specifying the radius and angles in all directions.  The increment in radius ∆r1 is obtained 

from the function intstep.  This function evaluates the steps for integration of normal 1-

dimensional pdf under the assumption that discrete integration using selected points 

introduces equal increments of the integral values.  Once the increments in radius are 

known we make the grid in polar form.   The angles vary from 0 to π and radius varies 

from 0 to maximum value obtained from intstep function. Starting from the 2-

dimensional case the projection of the radius vector is used to determine the radius of 

next higher dimension such that the resulting grid points are equally distributed on the 

surface of n-dimensional sphere with radius r1. 

To illustrate this process let us assume that we want to obtain a radius and a number of 

grid points on a single circle around a 3-dimensional sphere. We assume that the sphere 

radius is r1 and the projection angle α1 is used.  The radius r2 is obtained from projection 

of r2 using  

r2 = r1 *cosα1  

as shown in Figure 3.6. 
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Radius r2 is needed to determine values of α2, where α2 has the increment  

∆α2 = ∆r1/r2 

α2 starts from 0 and is incremented by ∆α2 until it reaches π. The number of grid points 

on this circle is less than or equal to 2πr2/∆r1. Subsequently r3, which is a radius of a 

circle around 4-dimensional sphere, is obtained using: 

r3 = r2 *cosα2 

Values of α3 are also computed from increment in α3 which is given by: 

∆α3 = ∆r1/r3 

This continues until the highest dimension is reached.  Then with the radius r1 and 

varying angles from 0 to π in each dimension we obtain a set of grid points equally 

Fig. 3.6: Figure indicating how to obtain radius projection into other dimension. 

α2=α1 

∆α2 r2 

∆α1 

α1 

r2 = r1*cosα1 
 

∆α1 = ∆r1/r1 
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distributed on the surface of n-dimensional sphere with radius r1. A function Ndsph was 

written which generates the entire grid points on this sphere by calling itself recursively.  

The procedure Ndsph is repeated for each r1 value which was determined by intstep.  The 

result is a polar grid of points that fill the upper half of n-dimensional volume.  Examples 

of generated polar grids for 2 and 3-dimensional volumes are as shown on Figure 3.7 and 

Figure 3.8. 

Fig. 3.7: 2-dimensional Spherical Grid in rectangular coordinates. 
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Fig. 3.8: 3-dimensional Spherical Grid in rectangular coordinates. 
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These spherical points are then converted to the Cartesian set of points. The formulas 

used to convert the spherical coordinates to the Cartesian form are as follows: 

Xn = r * sinαn-1 

Xn-1 = r * cosαn-1 * sinαn-2 

Xn-2 = r * cosαn-1 * cosαn-2 * sinαn-3 

 . 

 . 

X2  = r * cosαn-1 * cosαn-2 * cosαn-3 *.........* cosα2 * sinα1 

X1  = r * cosαn-1 * cosαn-2 * cosαn-3 *.........* cosα2 * cosα1 

For instance, the Cartesian form of the 2-dimensional grid shown in Figure 3.7 is 

illustrated in Figure 3.9. This grid needs to be complemented to fill full n-dimensional 

volume by symmetrical projection around the coordinate center, as well as adding the 

center point.  The resulting grid for 2-dimensional case is shown in Figure 3.10. 
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Fig. 3.9: 2-dimensional Spherical Grid in polar form. 
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Fig. 3.10: 2-dimensional Spherical Grid in Cartesian from, shown in 
cartesian coordinates. 
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Once the grid is converted from polar coordinates to Cartesian form, transformation 

based on QR factorization is applied and the grid points lying outside the unit circle are 

discarded.  This method of QR factorization and discarding the points outside the unit 

circle is the same as described in Cartesian grid described previously. The program that 

makes the spherical grid is called sphnd.m and it calls two routines intstep and Ndsph.  

These programs are attached in Appendix. Figure 3.11 illustrates the grid selection 

process in which the ‘+’ sign shows the original grid points and ‘o’ shows the original 

signal points, ‘*’ indicate the selected grid points and ‘-‘ in red shows the ellipse which 

bounds the original set of points and bounds the selected grid points. 
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Fig. 3.11: 2-dimensional Spherical grid. 
red  (-): ellipse bounding the signal 
green  (+): original set of points 
magenta (o): original signal 
blue  (*): selected set of points 
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Figures 3.12 and 3.13 show the 3-dimensional case. Figure 3.12 shows the ellipse and the 

original set of points, while Figure 3.13 shows the original grid and selected grid points 

Fig. 3.12: Ellipse enclosing the original set of points. 
Magenta (o): Original Points 
Red  (.): Ellipse enclosing the original points 
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Fig. 3.13: Original and Selected Grid Points. 
Blue (+): Original Grid Points 
Green (*): Selected Grid Points 
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3.3 Monte Carlo Method: One of the major drawbacks of Cartesian and Spherical 

approach was that with increase in dimension, the number of grid points generated grew 

exponentially.  Monte Carlo method eliminates this problem by generating a fixed known 

number of random points to approximate the integral.  In Monte Carlo integration the 

estimate of integral ∫
1

dx (pdf1)
S

, is obtained by counting how many random points 

generated by pdf1 have pdf1 > pdf2.  Then the probability of correct classification for 

class 1 is approximated from: 

 

As shown in figure 3.14 all points to the left of point Z have pdf value greater for pdf1 

than for pdf2. 

 

 

 

 

 

 

 

A slight modification of the above scheme is to use weighted pdfs. Now a point is 

classified as a point of class 1 with the believe level determined by: 

Probability =  
Total number of random points for which pdf1 >  pdf2

Total number of random points generated

pdf1 pdf2 

X 

Y 

Z

Fig. 3.14: Probability based on pdf1 > pdf2. 

pdf (x)

pdf (x) +  pdf (x)

1

1 2
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and as a point of class 2 with the believe level determined by: 

 

As a result of weighted pdf functions we need to estimate their integrals with weighted 

probabilities. Figure 3.15 shows the region of each weighted probability. 

 

 

 

 

 

 

 

 

 

Figure 3.16 illustrates the generation of points in the Monte Carlo method. 

pdf (x)

pdf (x) +  pdf (x)

2

1 2

Fig. 3.15: Region of each weighted probability. 

X 

Y 

P22w P11w 

P12w P21w 
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Fig 3.16 Illustration for Monte-Carlo integration approach – generation of points. 

 

Fig. 3.17 Illustration for Monte-Carlo integration approach – probability 

calculation. 



34 

 

Fig. 3.18 Relationship between information index and probability of 

misclassification. 

 
As is clear from figure 3.18, in order to achieve a high information index, we need to 

correctly classify the points i.e. probability of misclassification should be minimum. 

 
The information is determined as 

(3.1) 

 

where 

(3.2) 

info 1
entr

maxentr
= −

entr = -(P1.*log(P1) + P2.*log(P2)) + P1w.*log(P1w) + P2w.*log(P2w) +

                                                     P12w.*log(P12w) + P21w.*log(P21w)
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and 

(3.3) 

where 

 

newalgma.m was the main program written for this and it calls two routines infopdfV.m  

for one dimensional analysis and infoND.m for higher dimension analysis. 

maxentr = -(P1.*log(P1) + P2.*log(P2)) + P11.*log(P11) +

                                   P22.*log(P22) + 2 * P12.*log(P12)

P11 =
2P1

P1+ P2
             P22 =

2P2
P1+ P2

               P12 =
P1* P2

P1+ P2
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Chapter 4 

Wavelet based transformation 

 

Wavelets are a class of linear transformations of the input data for the purpose of data 

compression or representation. Wavelets cut up data into different frequency components, 

and then analyze each component with a resolution matched to its scale. The scale that 

we use to look at data plays a special role [8]. Wavelet algorithms process data at 

different scales or resolutions. They have advantages over traditional Fourier methods in 

analyzing physical situations where the signal contains discontinuities and sharp spikes. 

Fourier basis functions are localized in frequency but not in time.  Small frequency 

changes in the Fourier transform will produce changes everywhere in time domain. 

Wavelets are local in both frequency and time domain. With wavelet analysis, we can use 

approximating functions that are contained neatly in finite domains. This makes wavelets 

useful in signal processing, data transmission and pattern recognition. Because the 

original signal or function can be represented in terms of a wavelet expansion (using 

coefficients in a linear combination of the wavelet functions), data operations can be 

performed using just the corresponding wavelet coefficients.  Moreover, if we choose the 

best wavelet coefficients adapted to our data, (or truncate the wavelet coefficients below 

a specified threshold), the data is sparsely represented and require fewer resources for 

storage, transmission and processing.  Due to this sparse coding, FBI has standardized the 

use of wavelets in digital fingerprint image compression. 
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4.1 The Haar Wavelet: The Haar wavelet is the simplest and oldest of all wavelets.  

It is generated by the step function taking values 1 and –1, on [0,) and [,1), 

respectively. Figure 4.1 shows the graph of Haar wavelet. 

 

 

 

 

 

 

 

 

One property of the Haar wavelet is that it has compact support, which means that it 

vanishes outside of a finite interval.  Its discrete value makes it easy to represent and 

manipulate on a digital computer.  It is also very easy to build a dedicated processing 

hardware that implements Haar wavelet.  Unfortunately, Haar wavelets are not 

continuously differentiable which somewhat limits their applications. 

In order to see how Harr transform works, we first consider two numbers a and b. The 

average and difference is given as 

Now in order for these numbers (avg and diff) to be useful, we must be able to 

reconstruct the original numbers from them. In the Haar transform the above two 

equations are the basic equations used. Let us assume an input signal of length N which 

Fig. 4.1: Haar Wavelet. 

avg =
(a + b)

2
                diff = (a - b)



38 

we assume to be a power of 2 for simplicity, a0 a1 a2 a3 .... aN-1. The Haar transform is 

defined as 

 

)components e(differenc   1 - 2) / (N ... 0  i   where          )a - (a  H

)components (average   1 - 2) / (N ... 0 i ere        wh          
2

)a  (a
  H

1i*2i*2i  2) / (N

1i*2i*2
i

==

=+=

++

+

 

 

The following table shows an example of a signal represented by 8 discrete values and 

results on the first level transformation obtained by the presented equations. 

 

(a) Haar Transform Example 

a0 a1 a2 a3 a4 a5 a6 a7 Input Signal 

0.0 0.5 1.0 0.5 0 -0.5 -1 -0.5 

0.25 0.75 -0.25 -0.75 -0.5 0.5 0.5 -0.5 Haar 

Coefficients average components 

Hi=(a2*i+a2*i+1)/2 

where i = 0 ... 3 

difference components 

H4+i= a2*i - a2*i+1 

where i = 0 ... 3 

 

Table 4.1: Haar Transform example. 

  

In the preceding example, the Haar transform was run once (or one level) over the input 

signal. The difference component of the first level tells us where dramatic local changes 

in the input signal occur.  Large differences indicate large change between adjacent input 
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signal values.  Differences near zero tell us that adjacent input signal values are somehow 

similar.  By running the Haar transform again on the first level average and difference 

components we can generate information about a larger part of the input signal since each 

new coefficient contains information about 4 adjacent input signal values.  We repeat the 

process until we obtain single average and difference components (which are defined on 

the all input signal values).   Stated succinctly, each successive transform level reveals 

courser frequency (change) information about a larger part of the input signal.  If the 

signal has N coefficients, then the Haar transform can be run log2 (N) times producing N 

coefficients in each run. Table 2 shows the value of Haar wavelet coefficients at each 

level and Fig. 4.2 show waveforms that represent the obtained coefficients after each loop 

of the Haar transform algorithm.  Notice that in this waveform interpretation coefficients 

represent the inner product of the input signal and the corresponding waveform. 

Input Signal  0 0.5 1 0.5 0 -0.5 -1 -0.5 

Level 1  0.25 0.75 -0.25 -0.75 -0.5 0.5 0.5 -0.5 

Level 2  0.5 -0.5 -0.5 0.5 0 0 -1 1 

Level 3  0 1 0 -1 0 0 0 -2 

 

Table 4.2: Haar wavelet coefficients at each level. 
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Fig. 4.2: Waveform interpretation of Haar coefficients. 



41 

The following section explains how the Haar transform was used to determine the input 

space transformation which maximized information in 1-dimension. 

 

4.2 1 Dimensional Analysis: We start with two classes of signals and perform Haar 

transform on them. Once the Haar transform has been performed, the next step is to 

evaluate the entropy measure.  The entropy measure and its evaluation will be discussed 

in the following section. The information thus obtained shows which coefficient if used 

in signal preprocessing, will most differentiate the input signals for classification. The 

coefficients are reordered in descending order of information content and we select N 

coefficients with the maximum information content.  Now we are ready for the next 

iteration.  The program iterates until the change in the maximum information in 

successive iterations is less than some epsilon value.  At the end of all iterations, we have 

used Haar wavelet to determine the best coefficients needed to obtain maximum 

information for the classification problem.  The obtained transformation of the input 

signals is now much more complex than the original Haar wavelets and in fact represents 

a dedicated transformation of the input data optimum for a given classification problem.  

It was automatically generated by repetitive use of the Haar wavelet.   The main program 

for the 1-dimensional analysis is onedim.m and it calls two routines, constant.m, which 

declares all the constants and, infopdfV.m which determines the entropy. 

 

4.3 Entropy Determination: First the input signals are divided into classes and each 

class probability density function is estimated using its mean and standard deviation by:  



42 

 

(4.1) 

 

 

The weighted probability density functions pdfxy are determined based on the probability 

density functions of signals from different classes. The information index is determined 

as 

(4.2) 

where 

(4.3) 

and 

(4.4) 
 
The following figures show some examples. Figure 4.3 shows the original signal, figure 

4.4 the signal after noise is added, figure 4.5 the measure of information during each 

iteration, and figure 4.6 the way the coefficients were mixed to obtain the maximum 

information. 

pdf
P

x x

x

=
− −

* exp( . * ( ) )0 5

2

2

σ
πσ

σ   :  mean  ,   :  standard deviation

info 1
entr

maxentr
= −

maxentr = -(P1.*log(P1) + P2.*log(P2)) + P11.*log(P11) +

                                   P22.*log(P22) + 2 * P12.*log(P12)

entr = -(P1.*log(P1) + P2.*log(P2)) + P1w.*log(P1w) + P2w.*log(P2w) +

                                                     P12w.*log(P12w) + P21w.*log(P21w)
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Fig. 4.3: Original signals. 
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Fig. 4.4: Original signals with noise. 
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Fig. 4.5: Information measure after each iteration. 
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Fig. 4.6: Waveform interpretation of the selected coefficients. 
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In the next two examples, the two signals contain 128 coefficients each. A class of input 

signals was then generated from the two input signals by adding random noise. Then 

Haar wavelet transformation and the selection of coefficients was performed and repeated 

iteratively until there was no further improvement in the information index. Figure 4.7 

and 4.11 shows the original signals and the waveform interpretation of the obtained 

transformation of the input signals that best differentiates the two signals. As we can see, 

the optimized transformation correctly learned where the two signals are different and it 

applies different weight to different areas of the input signals to stress the varying 

importance of the signals difference. Figure 4.8 and 4.12 shows the information index 

after each iteration for only 8 best coefficients, figure 4.9 and 4.13 shows the information 

after each iteration for all 128 coefficients, and figure 4.10 and 4.14 shows the way first 

four coefficients were composed. 
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Fig. 4.7: Original signals and the evolved waveform that best separates
the two signals. 

Signal 1 

Signal 2 

Coefficient indicating 
the difference in signals 
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Fig. 4.8: Entropy measure for best 8 coefficients after each iteration. 
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Fig. 4.9: Entropy measure for all the coefficients after each iteration. 
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Fig. 4.10: Waveform interpretation of the selected coefficients. 

Coefficient 1 Coefficient 2 

Coefficient 3 

Coefficient 4 

Composition of each coefficient wrt other coefficients 

x-axis: coefficient number, y-axis: strength of each coefficient 
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Fig. 4.11: Original signals and the evolved waveform that best separates
the two signals. 

Signal 1 
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Fig. 4.12: Entropy measure for best 8 coefficients after each iteration. 
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Fig. 4.13: Entropy measure for all the coefficients after each iteration. 
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Fig. 4.14: Waveform interpretation of the selected coefficients. 

Composition of each coefficient wrt other coefficients 

Coefficient 1 Coefficient 2 

Coefficient 3 

Coefficient 4 

x-axis: coefficient number, y-axis: strength of each coefficient 
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Chapter 5 

FPGA realization of Haar Wavelet 

 

Field-Programmable Gate Arrays (FPGAs) are flexible and reusable high-density circuits 

that can be (re)configured by the designer, enabling the VLSI 

design/validation/simulation cycle to be performed more quickly and cheaply. FPGAs 

can implement thousands of logic gates in a single IC and it can be programmed by users 

at their site in a few seconds or less depending on the device type used.  The design risk 

is low and the development time is short. These advantages have made FPGAs very 

popular for prototype development, custom computing, digital signal processing, and 

logic emulation [9]. 

 

XC4000 Series devices are implemented with a regular, flexible, programmable 

architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful 

hierarchy of versatile routing resources, and surrounded by a perimeter of programmable 

Input/Output Blocks (IOBs).  They have generous routing resources to accommodate the 

most complex interconnect patterns.  Because Xilinx FPGAs can be reprogrammed an 

unlimited number of times, they can be used in innovative designs where hardware is 

changed dynamically, or where hardware must be adapted to different user applications.  

FPGA devices can be reconfigured to change logic function while resident in the system.  

This capability gives the system designer a new degree of freedom not available with any 

other type of logic.  Hardware can be changed as easily as software.  Design updates or 
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modifications are easy, and can be made to products already in the field.  An FPGA can 

even be reconfigured dynamically to perform different functions at different times.  

Reconfigurable logic can be used to implement system self-diagnostics, create systems 

capable of being reconfigured for different environments or operations, or implement 

multi-purpose hardware for a given application. As an added benefit, using 

reconfigurable FPGA devices simplifies hardware design and debugging and shortens 

product time-to-market. 

 

5.1 Basic Functional Blocks: The basic architecture of the XC4000 series is shown 

in Figure 5.1. The Xilinx XC4000 series contain three major building blocks [12]: 

• Configurable Logic Block (CLB) 

• Input/Output Block (IOB) 

• Programmable Interconnect 
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Fig. 5.1: General architecture of the Xilinx XC4000 FPGA. 
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5.1.1 Configurable Logic Block: This is the main, logic building block in a FPGA. It 

consists of two 4-input function generators (F and G) and one 3-input function generator 

(H).  Together they are capable of implementing a 9-variable function.  Each CLB consist 

of two storage elements that can either store the output of function generators or can be 

independently configured as flip-flops or latches.  Figure 5.2 shows the block diagram of 

a CLB [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.2 Input/Output Block: User configurable input/output blocks (IOBs) provide the 

interface between external package pins and the internal logic.  Each IOB controls one 

Fig. 5.2: Block diagram of a Configurable Logic Block (CLB). 



59 

package pin and can be configured for input, output, or bi-directional signals. Figure 5.3 

shows the block diagram of an IOB [12]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.3 Programmable Interconnect: A high level diagram of the routing resources 

associated with one CLB is shown in Figure 5.4.  Five interconnect types are 

distinguished by the relative length of their segments: single-length lines, double-length 

lines, quad lines, octal lines and long lines. In the XC4000 FPGAs, direct connects allow 

fast data flow between adjacent CLBs, and between IOBs and CLBs.  The horizontal and 

vertical single- and double-length lines intersect at a box called a programmable switch 

Fig. 5.3: Block diagram of an Input/Output Block (IOB). 
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matrix (PSM).  Each switch matrix consists of programmable pass transistors used to 

establish connections between the lines (Figure 5.5). 

 

 

 

5.2 

Fig. 5.4: High level routing diagram of the XC4000 FPGA 

Fig. 5.5: Programmable switch matrix 



61 

5.2 FPGA Implementation of Haar Wavelet: The speed of a neural network can be 

significantly increased if data is fed in parallel.  For parallel implementation of data, 

FPGAs can serve as an ideal source.  Hence, a simple parallel architecture was thought 

of. Figure 5.6 shows the block diagram for this architecture for an 8-coefficient Haar 

wavelet. The registers, adders and difference blocks are triggered at the rising edge of the 

clock. At the first clock edge the data is loaded and on the 2nd edge gets out of the 

registers to the adder and the difference blocks. At the 3rd clock edge the adder and the 

difference blocks perform their respective operations which are described in equations as: 

)components e(differenc   1 - 2) / (N ... 0  i   where          )a - (a  H

)components (average   1 - 2) / (N ... 0 i ere        wh          
2
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=+=

++
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The 4th clock edge performs the Haar transform on the data out of the stage 1 of the Haar 

transform. This data output is known as stage 2 data and is fed to stage 3, which at the 5th 

clock edge produces the final transformed data. The top level description of the 

architecture was done in structural flow in VHDL and each block of the register, adder 

and difference block were mapped to their respective entities. The code is shown in 

Appendix B at page B-1. As is seen, the register block output the input data on clock 

edge, the adddiv block computes the average of the two input data and outputs it on the 

clock edge. The difference block computes the difference between the two input data and 

outputs the difference on the clock edge. The haar entity then stitches together all the 

blocks in figure 5.6. Xilinx foundation tools and Synopsis FPGA Express were used to 

simulate and synthesize the code and map it to the FPGA. The simulation results are 

shown in figure 5.7 and Fig 5.8. Fig 5.7 shows a set of input data and output of each stage 
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at the rising edge of clock. Figure 5.8 shows the parallel nature of the architecture. The 

data is continuously fed in parallel and each block performs its operation on the rising 

edge and the data appears at the output in parallel. Note that at any clock edge each block 

is processing data that was processed by the previous stage at the pervious clock edge, 

hence the parallel architecture. 

R R R R RRRR

A A A A DDDD

A A D D DDAA

A D A D DADA

D= DIFFERENCE
     With registerd Out

A= AVERAGE
     With registerd Out

R= REGISTER

8 Input
Samples

8 Output
Samples

Fig. 5.6: Parallel architecture of Haar Wavelet (8-inputs). 
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Clock 2 
Data gets out of register 

Clock 1 
Data gets loaded 

Clock 3 
Output of Level 1 

Clock 4 
Output of Level 2 

Clock 5 
Output of Level 3 

Fig. 5.7: Simulation Result showing data at various stages at each clock edge. 
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Data input in 
parallel 

Data out of 
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Parallel 
data out of 
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Parallel 
data out of 
level 3 

Parallel 
data out of 
level 1 

Fig. 5.8: Simulation Result showing the parallel nature of the architecture. 
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This thesis was focused on design methodology for automatic learning of the optimum 

transformation of the input space based on Haar wavelet structure. Although the 

described architecture implements only the Haar wavelet, it can be used as a core 

subsystem in a preprocessing system which iteratively uses Harr wavelet, selects 

corresponding coefficients and reapply the Haar wavelet transform. Full realization of the 

presented concept in FPGA architecture was a subject of another MS thesis [10].
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5.3 Facts and figures of the implementation: Figure 5.7 shows the layout on the 

XC4010XLPQ160 FPGA and Table 5.1 shows the facts about various resources in the 

FPGA used. 

 

Number of CLBs 120/400 (30%) 

Number of bonded IOBs 129/129 (100%) 

Number of global buffers 1/12 (8%) 

Total equivalent gate count 3948 

Minimum period 25.405 ns 

Maximum frequency 39.362 MHz 

Maximum net delay 10.365 ns 

Average Connection Delay 3.494 ns 

Average Connection Delay on critical nets 0.000 ns 

Average Clock Skew 0.248 ns 

The Maximum Pin Delay  10.365 ns 

Average Connection Delay on the 10 Worst Nets 9.184 ns 

Table 5.1: Facts about the resources of the FPGA used. 
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Fig. 5.9: Layout of the Haar Wavelet Parallel Architecture on the
XC4010XLPQ160 FPGA. 
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5.4 Advantages and limitations of the parallel architecture: This architecture takes 

advantage of the fact that FPGAs can process parallel data very fast. Because of this, 

large amount of data can be processed at the same time and this increases the speed of 

computation. In addition, the architecture is very simple so it could be easily extended for 

128 inputs. However, the number of input/output pins is limited on a given chip. This 

puts a limitation on the number of inputs the architecture can have. 
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Chapter 6 

Summary and Future Work 

 

Pattern recognition techniques are often an important component of intelligent systems. 

With the increase in size and complexity of the feature selection undertaken in pattern 

recognition and other areas, people pay more attention to the application of evolutionary 

and adaptive learning techniques in this field. It was demonstrated in this work that by 

selecting features based on evolutionary use of Haar wavelets, new features with better 

classification properties could be obtained. The convergence is very fast. The quality of 

the obtained transformation is measured using the entropy based information index. This 

index was developed for data sets with estimated probability density functions of 

different classes. Any mutual dependence of extracted features is automatically 

accounted for by performing Monte Carlo integration in 2 and 3 dimensional space. The 

confidence interval of the predicted performance is related to standard deviation of the 

information index and depends on the information level and the number of training points 

used. 

Future work will include extension of the proposed information measure to k-class 

problem, training and testing using some real data. In the FPGA implementation, 8-signal 

approach could easily be extended to 128 signals. To make a real time reconfigurable 

architecture the XC6200 can be the best choice. Besides the parallel architecture 

discussed in this thesis, other architectures could be explored and implemented. 
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Appendix 
 
 

Appendix A 
 
A.1 Program: haarintp.m 
 
%plotting the interpretation of haar transform 
numCoeff=8; 
% determine levels???? 
levls=round(log10(numCoeff)/log10(2)); 
x=1:numCoeff; 
 
rows=numCoeff; 
coeffMatrix=diag(ones(1,numCoeff)); 
coeffD=coeffMatrix; 
for i=1:levls 
  coeffC=[]; 
  begn=1; 
  while begn<numCoeff 
    oddr=(begn:2:begn+rows-1); 
    evnr=(begn+1:2:begn+rows-1); 
    coeffA=[]; 
    coeffB=[]; 
    for j=1:length(oddr) 
      coeffA(j,:)=( coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:) )/2; 
      coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:); 
    end; 
    coeffC=[coeffC;coeffA;coeffB]; 
    begn=begn+rows; 
  end; % while 
  coeffMatrix=coeffC; 
  coeffD=[coeffD;coeffC]; 
  rows=round(rows/2); 
end; %for i 
 
coeffMatrix=coeffD; 
 
%plotting the interpretation of haar transform 
range=[0,9,-1.5,1.5]; 
subplot(10,4,1); 
text(0,1,'Variation of one coefficient with other coefficients'); 
axis('off'); 
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for i=1:numCoeff 
  subplot(10,4,4*(i-1)+4+1); 
  bar(x,coeffMatrix(numCoeff*0+i,:),'r');axis(range); 
  subplot(10,4,4*(i-1)+4+2); 
  bar(x,coeffMatrix(numCoeff*1+i,:),'m');axis(range); 
  subplot(10,4,4*(i-1)+4+3); 
  bar(x,coeffMatrix(numCoeff*2+i,:),'g');axis(range); 
  subplot(10,4,4*(i-1)+4+4); 
  bar(x,coeffMatrix(numCoeff*3+i,:),'b');axis(range); 
end; 
 
subplot(10,4,4*(numCoeff+1)+1); 
text(0,0,'Original');axis('off'); 
 
subplot(10,4,4*(numCoeff+1)+2); 
text(0,0,'After 1st loop');axis('off'); 
 
subplot(10,4,4*(numCoeff+1)+3); 
text(0,0,'After 2nd loop');axis('off'); 
 
subplot(10,4,4*(numCoeff+1)+4); 
text(0,0,'After 3rd loop');axis('off'); 
 
 
 
A.2 Program: onedim.m 
 
clear all; % clears all variables and functions from the workspace 
pack; % Consolidate workspace memory 
 
 
constant; 
 
%================================== 
%     Add noise to each signal 
%================================== 
for i=1:50 
  Matrix(:,i)=signal1+sig1noiselevel*(2*rand(numCoeff,1)-1); 
end; 
for i=51:100 
  Matrix(:,i)=signal2+sig2noiselevel*(2*rand(numCoeff,1)-1); 
end; 
 
x=1:numCoeff; 
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% plot original signal. 
if plotOriginal==1 
  figure; 
  plot(x,signal1,'r'); 
  hold on; 
  plot(x,signal2,'b'); 
  xlabel('Signal coordinate'); 
  ylabel('Signal value'); 
  title('Original signals'); 
end; 
 
% plot noisy signal. 
if plotNoisy==1 
  figure; 
  plot(x,Matrix(:,1:50),'r'); 
  hold on; 
  plot(x,Matrix(:,51:100),'b'); 
  xlabel('Signal coordinate'); 
  ylabel('Signal value'); 
  title('Two signals with a random noise'); 
end; 
 
figure; 
 
%================================== 
% Main loop starts from here 
%================================== 
 
% start the main loop and continue till the desired accuracy is achieved. 
while abs(currentInfo - previousInfo) > absinfoincr 
 
  IterationNumber=IterationNumber+1; 
  fprintf(fid,'Iteration Number = %i\n',IterationNumber); 
 
  % check the iteration being done. if more than 8 then reset it to 1. 
  % the reason is that we have only 8 ways of plotting the wave form. 
  strindex=mod(IterationNumber,8); 
  if strindex==0 
    strindex=8; 
  end; 
 
%================================== 
%  Perform Haar Transform 
%================================== 
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  rows=numCoeff; 
  D=Matrix; 
  for i=1:levls 
    C=[]; 
    begn=1; 
    while begn<numCoeff 
      oddr=(begn:2:begn+rows-1); 
      evnr=(begn+1:2:begn+rows-1); 
      % this normalization is used to balance Walsh coefficients 
      % of a raw signal 
      %A=(Matrix(oddr,:)+Matrix(evnr,:))/2; 
      A=(Matrix(oddr,:)+Matrix(evnr,:))/2; 
      % subtract pairwise 
      B=Matrix(oddr,:)-Matrix(evnr,:); 
      C=[C;A;B]; 
      begn=begn+rows; 
    end; % while 
    Matrix=C; 
    D=[D;C]; 
    rows=round(rows/2); 
  end; %for i 
 
  Matrix=D; 
  [rowsMatrix colsMatrix] = size(Matrix); 
 
  % make other matrices to easy out some other computations. 
  tMatrix = Matrix'; 
  sig1Matrix = Matrix(:,1:50); 
  sig2Matrix = Matrix(:,51:100); 
 
  % determine the minimum and maximum value of the signal. 
  rmin = min(tMatrix); 
  rmax = max(tMatrix); 
 
  % determine the standard deviation of each signal. 
  D1=std (sig1Matrix'); 
  D2=std (sig2Matrix'); 
 
  % determine mean of each signal. 
  E1=mean(sig1Matrix'); 
  E2=mean(sig2Matrix'); 
 
% set probability of each signal to be 1. 
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  P1=1; 
  P2=1; 
  spread=5; 
  resolve=200; 
  numSteps = 300; 
% calculate the information 
 
  info1=infopdfV(P1,P2,E1,E2,D1,D2,spread,numSteps); 
 
% sort the information matrix to extract the best "numCoeff" number of elements. 
  [info1 index] = sort(info1); 
  orderedinf=fliplr(info1); 
  index=fliplr(index); 
   
  plotarray1D = [plotarray1D;orderedinf(1:numCoeff)]; 
  infoarray=[infoarray;orderedinf(1:numCoeff)]; 
 
  if plotInfo1D==1 
    axis([1,max(x),0,1]); 
    plot(x,orderedinf(1:numCoeff),stringmat(strindex,:)); 
    xlabel('Most selective coefficients in decreasing order'); 
    ylabel('Information value'); 
    title('Selection of coefficients in various iterations'); 
    hold on; 
  end; 
 
% update the values of the information matrix 
  previousInfo=currentInfo; 
  currentInfo=orderedinf(1); 
 
% reset the Matrix before going into the other loop. 
  rownum = index(1:numCoeff); 
  Matrix=Matrix(rownum,:); 
  selectedcoeffMatrix=[selectedcoeffMatrix;coeffMatrix(rownum,:)]; 
  fprintf(fid,'Iteration %i complete. Hit any key...\n',IterationNumber); 
  keyboard; 
end; %while iterations 
 
printVec(infoarray,'infoarray',fidInfo); 
 
%================================== 
%  Plot the Haar Interpretation 
%================================== 
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if plotHarr==1 
  M=selectedcoeffMatrix(1:numCoeff,:); 
  for i=2:IterationNumber 
    M=selectedcoeffMatrix(numCoeff*(i-1)+1:numCoeff*i,:)*M; 
  end; 
 
  printVec(M,'Haar Interpretaion',fidHarr); 
  %plotting the interpretation of haar transform as bar graph 
  figure; 
  for i=1:4 
    subplot(2,2,i); 
    bar(x,M(i,:),'r'); 
  end; 
   
  %plotting the interpretation of haar transform as signals 
  figure; 
  plot(signal1,'b') 
  hold on 
  plot(signal2,'r') 
  e=M(1,:); 
  en=e/norm(e)*((norm(signal1)+norm(signal2))/2); 
  plot(en(1,:),'g') 
 
end; % if plotHarr 
 
if fidHarr ~= 1 
  fclose(fidHarr); 
  fclose(fidInfo); 
end; 
 
 
 
A.3 Program: constant.m 
 
numCoeff=128; 
i=1:numCoeff; 
signal1=sin(2*pi/(numCoeff-1)*i); 
 
signal2=0.75*ones(1,20); 
i=21:numCoeff; 
signal2=[signal2 sin(2*pi/(numCoeff-1)*i)]; 
clear('i'); 
% setup the way each plot of information matrix is to be plotted. 
stringmat=['r-';'b-';'g-';'r:';'m:';'y:';'b:';'g:';'r:';'m-']; 
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% noise level to be added to the signal. 
sig1noiselevel=1; 
sig2noiselevel=1; 
 
% Some epsilons 
epsil=0.01; 
epsil2=-0.02; 
 
% choice of which plots to plot. 
plotOriginal=1; 
plotNoisy=1; 
plotInfo1D=1; 
plotHarr=1; 
 
% initialise the variables 
absinfoincr=.005; 
previousInfo=0; 
currentInfo=1; 
IterationNumber=0; 
plotarray1D=[]; 
infoarray=[]; 
 
%================================== 
% Some file identifier definitions to indicate where to dump data 
%================================== 
fid=1; % file identifier, used for printing results on the screen. 
fidInfo  = fopen('c:\users\aman\matlab\work\plotinfo.txt','w'); 
fidHarr  = fopen('c:\users\aman\matlab\work\harrinfo.txt','w'); 
 
%================================== 
%  Make Haar Coefficient Lookup Table 
%================================== 
 
levls=round(log10(numCoeff)/log10(2));   % determine levels ???? 
rows=numCoeff; 
coeffMatrix=diag(ones(1,numCoeff)); 
coeffD=coeffMatrix; 
for i=1:levls 
  coeffC=[]; 
  begn=1; 
  while begn<numCoeff 
    oddr=(begn:2:begn+rows-1); 
    evnr=(begn+1:2:begn+rows-1); 
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    coeffA=[]; 
    coeffB=[]; 
    for j=1:length(oddr) 
      coeffA(j,:)=( coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:) )/2; 
      coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:); 
    end; 
    coeffC=[coeffC;coeffA;coeffB]; 
    begn=begn+rows; 
  end; % while 
  coeffMatrix=coeffC; 
  coeffD=[coeffD;coeffC]; 
  rows=round(rows/2); 
end; %for i 
coeffMatrix=coeffD; 
selectedcoeffMatrix=[]; 
 
 
A.4 Program: infopdfV.m 
 
function info=infopdfV(P1,P2,E1,E2,D1,D2,spread,numSteps) 
 
 
 
%  This function finds the entropy measure between two pdf functions 
%  The sum of probabilities is constant and each probability  
%  obtained from its pdf is known a priori  
%  each random variable is described by normal pdf 
%  pdf=P/(sqrt(2*pi)*D)*exp(-0.5*(x-E)^2./D^2) 
%  cdf specifies the normal cumulative distribution function  
 
 
plotPdf1=0; 
plotPdf2=0; 
entries=length(E1); 
case1=[]; 
case2=[]; 
case3=[]; 
for i=1:entries 
  if D1(i)~=0 | D2(i)~=0 
    case1=[case1,i]; 
  end; 
  if D1(i)==0 & D2(i)==0 & E1(i)==E2(i) 
    case2=[case2,i]; 
  end; 
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  if D1(i)==0 & D2(i)==0 & E1(i)~=E2(i) 
    case3=[case3,i]; 
  end; 
end; 
 
xmin=min(E1(case1)-spread*D1(case1) , E2(case1)-spread*D2(case1)); 
xmax=max(E1(case1)+spread*D1(case1) , E2(case1)+spread*D2(case1)); 
 
x=[]; 
step=(xmax-xmin)/numSteps; 
for i=1:length(case1) 
  temp=[]; 
  tempx=xmin(i):step(i):xmax(i); 
  if length(tempx) > numSteps 
    x(i,:)=tempx(1:numSteps); 
  else 
    x(i,:)=tempx; 
  end; 
end; 
 
% now calculate the numerator of pdf1 and pdf2. 
 
numD1=(x - E1(case1)'*ones(1,size(x,2))) ./ (D1(case1)'*ones(1,size(x,2))); 
numD2=(x - E2(case1)'*ones(1,size(x,2))) ./ (D2(case1)'*ones(1,size(x,2))); 
 
% calculate pdf1 and pdf2 
 
pdf1=P1*exp(-0.5*numD1.*numD1)./(sqrt(2*pi)*D1(case1)'*ones(1,size(x,2))); 
pdf2=P2*exp(-0.5*numD2.*numD2)./(sqrt(2*pi)*D2(case1)'*ones(1,size(x,2))); 
 
if plotPdf1==1 
  for i=1:size(pdf1,1) 
    plot(x,pdf1(i,:)); 
    hold on; 
  end; 
end; 
 
if plotPdf2==1 
  for i=1:size(pdf2,1) 
    plot(x,pdf2(i,:)); 
    hold on; 
  end; 
end; 
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P1=sum(pdf1').*(step); 
P2=sum(pdf2').*(step); 
 
%  find weight functions p1xx+p2xx=1 
 
p1xx=pdf1./(pdf1+pdf2); 
p2xx=1-p1xx; 
 
%  find weighted pdfs 
 
pdf1x=pdf1.*p1xx; 
pdf2x=pdf2.*p2xx; 
pdf12x=pdf1.*p2xx; 
pdf21x=pdf2.*p1xx; 
 
%  evaluate weighted probabilities 
 
P1w=sum(pdf1x').*step; 
P2w=sum(pdf2x').*step; 
P12w=sum(pdf12x').*step; 
P21w=sum(pdf21x').*step; 
 
%  find the entropy measure 
 
entr = -(P1.*log(P1)+P2.*log(P2)) + P1w.*log(P1w)+P2w.*log(P2w)+ 
P12w.*log(P12w)+ P21w.*log(P21w); 
 
%  find information 
 
P11=P1.^2./(P1+P2); 
P22=P2.^2./(P1+P2); 
P12=P1.*P2./(P1+P2); 
 
maxentr=-(P1.*log(P1)+P2.*log(P2))+P11.*log(P11)+P22.*log(P22)+2*P12.*log(P12); 
info(1,case1)=1-entr./maxentr; 
 
% now we find the indeces where D1==D2==0 and E1==E2 
 
case2=[]; 
for i=1:entries 
  if D1(i)==0 & D2(i)==0 & E1(i)==E2(i) 
    case2=[case2,i]; 
  end; 
end; 
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info(case2)=zeros(1,length(case2)); 
info(case3)=ones(1,length(case3)); 
return; 
 
 
 
A.5 Program: cartplot.m 
 
clear; 
 
innumPoints=25; 
 
% any two dimensional matrix 
X=[8 6;8 7;8 8;8 9;9 7;9 10;10 8;10 9;10 11;11 8;11 11; ... 
   12 9;12 10; 12 12;13 9;13 11;13 13;14 12;15 13;15 14]; 
%X=[X 10*rand(size(X,1),1)]; 
 
%  find center 
X0=mean(X); 
n=size(X,2); 
X=X-ones(size(X,1),1)*X0;  % X shifted to the origin 
numPoints=2*ceil((innumPoints+n^2)^(1/n))+1; 
 
%================================== 
% Make Grid of Cartesian points 
%================================== 
 
% a unit grid centered at origin 
delta=(2)/(numPoints-1); 
Gridf=[-1:delta:1]'; 
temp=-1:delta:1; 
for dim=2:n 
  x_=[]; 
  for i=1:length(temp) 
    x_=[x_; Gridf ones(size(Gridf,1),1)*temp(i)]; 
  end; 
  Gridf=x_; 
end; 
 
varstd=2.3; 
[Q,R]=qr(X); 
R=R(1:n,:); 
TX=Gridf*varstd*max(std(X)); 



83 

 
TX=TX*R^(-1);    
 
%  set a circle with the radius 
ellradius=varstd*std(Q(1,:)); 
 
 
TX=TX;        % Transforming unit grid into the actual coordinates 
Gridf=Gridf*varstd*max(std(X));  % Transforming unit grid into the actual coordinates 
 
%  relative distances of the test points 
TX1=TX.^2; 
distances=sqrt(sum(TX1')); 
 
select=find(distances<ellradius); 
Gridell=Gridf(select,:); 
 
%================================== 
% Make an ellipse which will enclose the original points 
%================================== 
Z=[ellradius]; 
t=2*pi*(0:50)/51; 
for dim=2:n 
  tempZ=[]; 
  for rows=1:size(Z,1) 
    z_=[]; 
    for cols=1:length(t) 
      z_=[z_;Z(rows,:)]; 
    end; 
    tempZ=[tempZ;z_ t']; 
  end; 
  Z=tempZ; 
end; 
 
% convert cartesian points of ellipse to spherical coordinates 
Angle=Z(:,2:n); 
if n==2 
  cosVector=[cos(Angle) ones(size(Angle,1),1)]; 
else 
  cosVector=[fliplr( cumprod(cos(Angle'))' ) ones(size(Angle,1),1)]; 
end; 
sinVector=[ones(length(Angle),1) fliplr(sin(Angle))]; 
for i=1:size(Z,1) 
  Z(i,:)=Z(i,1)*(cosVector(i,:).*sinVector(i,:)); 
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end; 
Z=Z*R; 
Z=Z+ones(size(Z,1),1)*X0; 
 
X=X+ones(size(X,1),1)*X0; 
Gridf=Gridf+ones(size(Gridf,1),1)*X0; 
Gridell=Gridell+ones(size(Gridell,1),1)*X0; 
hold off; 
if n==2 
  plot(Gridf(:,1),Gridf(:,2),'g+'); 
  hold on; 
  plot(Gridell(:,1),Gridell(:,2),'b*'); 
  plot(Z(:,1),Z(:,2),'r-'); 
  plot(X(:,1),X(:,2),'mo'); 
  title('2-dimensional grid'); 
  xlabel('x-axis') 
  ylabel('y-axis') 
elseif n==3 
  plot3(Gridf(:,1),Gridf(:,2),Gridf(:,3),'g.'); 
  hold on; 
  plot3(Z(:,1),Z(:,2),Z(:,3),'y.'); 
  figure; 
  plot3(Gridell(:,1),Gridell(:,2),Gridell(:,3),'b*'); 
  hold on; 
  plot3(X(:,1),X(:,2),X(:,3),'mo'); 
  title('3-dimensional grid'); 
  xlabel('x-axis') 
  ylabel('y-axis') 
  zlabel('z-axis') 
end; 
 
 
 
A.6 Program: sphnd.m 
 
%function [Gridf, stepinfo, legntvar]=sphnd(X,fid); 
 
%if (nargin<1)|(nargin>2) 
%  error('Error using sphnd..[Gridf, stepinfo, legntvar]=sphnd(X<,fid>'); 
%end; 
 
%if nargin==1 
  fid=1; 
%end; 



85 

 
X=[8 6;8 7;8 8;8 9;9 7;9 10;10 8;10 9;10 11;11 8;11 11; ... 
12 9;12 10; 12 12;13 9;13 11;13 13;14 12;15 13;15 14]; 
X=[X 10*rand(size(X,1),1)]; 
 
%  find center 
X0=mean(X); 
n=size(X,2); 
X=X-ones(size(X,1),1)*X0; 
 
%plotting variables.. 
plotRadiusAngle=1; 
plotGrid=0; 
plot_confined_ellipse=1; 
 
%  del specifies step size wrt to the standard deviation 
del=0.1; 
variable=intstep(del); 
legntvar=length(variable); 
spread=max(std(X)); 
variable=variable*spread; 
radius=variable(2:length(variable)); 
deltaAlpha=((radius-variable(1:size(variable,2)-1))./radius); 
deltaAlpha=pi./(round(pi./deltaAlpha));         % here deltaAlpha is in radians.. 
 
%===================================================% 
% Start making the Grid 
%===================================================% 
Gridf=[]; 
stepinfo=[]; 
for k=1:length(radius) 
  if k==1 
    dr=radius(k); 
  else 
    dr=radius(k)-radius(k-1); 
  end; 
  Angle=[0 :deltaAlpha(k): pi-deltaAlpha(k)]; 
  prev_rows=size(Gridf,1); 
  if n==2 
    Gridf=[Gridf;radius(k)*ones(length(Angle),1) Angle']; 
  else 
    Gridf=[Gridf; Ndsph(radius(k),Angle,dr,n,radius(k))]; 
  end; 
  curr_rows=size(Gridf,1); 
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  stepinfo=[stepinfo;dr*ones(curr_rows-prev_rows,1)]; 
end;  % for k 
 
if plotRadiusAngle==1 
  figure; 
  if n==2 
    polar(Gridf(:,2),Gridf(:,1),'ro'); 
    title('Two dimensional Polar grid'); 
    xlabel('angle'); 
    ylabel('radius'); 
  elseif n>=3 
    plot3(Gridf(:,1),Gridf(:,3),Gridf(:,2),'ro'); 
    title('Three dimensional Spherical Grid in rectangular co-ordinates'); 
    view(-10,20); 
    xlabel('radius'); 
    ylabel('alpha'); 
    zlabel('beta'); 
  end; 
end; 
 
% convert cartesian grid points to spherical coordinates system. 
Angle=Gridf(:,2:n); 
if n==2 
  cosVector=[cos(Angle) ones(size(Angle,1),1)]; 
else 
  cosVector=[fliplr( cumprod(cos(Angle'))' ) ones(size(Angle,1),1)]; 
end; 
sinVector=[ones(length(Angle),1) fliplr(sin(Angle))]; 
for i=1:size(Gridf,1) 
  Gridf(i,:)=Gridf(i,1)*(cosVector(i,:).*sinVector(i,:)); 
end; 
 
Gridf=[-flipud(Gridf);zeros(1,n);Gridf]; 
stepinfo=[flipud(stepinfo);stepinfo(1);stepinfo]; 
 
if plotGrid==1 
  figure; 
  if n==2 
    plot(Gridf(:,2),Gridf(:,1),'ro'); 
    title('two dimensional polar grid'); 
    xlabel('x-coordinate'); 
    ylabel('y-coordinate'); 
  elseif n>=3 
    onlyOneSphere=0; 
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    if onlyOneSphere==1 
      eps=.01; 
      Gridpl=[]; 
      radius1=norm(Gridf(1,:)); 
      for j=1:size(Gridf,1) 
        if radius1-eps<norm(Gridf(j,:)) & norm(Gridf(j,:))<radius1+eps 
          Gridpl=[Gridpl; Gridf(j,:)]; 
        end; % if 
      end; % for j 
      plot3(Gridpl(:,3),Gridpl(:,2),Gridpl(:,1),'ro'); 
      title('three dimensional sphere'); 
    else 
      plot3(Gridf(:,3),Gridf(:,2),Gridf(:,1),'ro'); 
      title('three dimensional polar grid'); 
    end; 
    view(-10,20); 
    xlabel('beta'); 
    ylabel('alpha'); 
    zlabel('radius'); 
  end; 
end; 
 
 
[Q,R]=qr(X); 
R=R(1:n,:); 
X=X+ones(size(X,1),1)*X0; 
%  make an enclosing ellipsoid 
t=2*pi*(0:50)/51; 
TX=Gridf; 
TX=TX*R^(-1); 
%  set a circle with the radius of two std 
ellradius=2.3*std(Q(1,:)); 
%  relative distances of the test points 
TX=TX.^2; 
distances=sqrt(sum(TX'))/ellradius; 
 
%===================================================% 
% Make an ellipse enclosing the original signal and selected grid points. 
%===================================================% 
Z=[ellradius]; 
for dim=2:n 
  tempZ=[]; 
  for rows=1:size(Z,1) 
    z_=[]; 
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    for cols=1:length(t) 
      z_=[z_;Z(rows,:)]; 
    end; 
    tempZ=[tempZ;z_ t']; 
  end; 
  Z=tempZ; 
end; 
 
% convert cartesian ellipse points to spherical coordinates 
Angle=Z(:,2:n); 
if n==2 
  cosVector=[cos(Angle) ones(size(Angle,1),1)]; 
else 
  cosVector=[fliplr( cumprod(cos(Angle'))' ) ones(size(Angle,1),1)]; 
end; 
sinVector=[ones(length(Angle),1) fliplr(sin(Angle))]; 
for i=1:size(Z,1) 
  Z(i,:)=Z(i,1)*(cosVector(i,:).*sinVector(i,:)); 
end; 
 
Z=Z*R; 
Z=Z+ones(size(Z,1),1)*X0; 
 
select=find(distances<1); 
Gridell=Gridf(select,:); 
stepinfo=stepinfo(select); 
Gridell=Gridell+ones(size(Gridell,1),1)*X0; 
if plot_confined_ellipse == 1 
  currFigNO=gcf+1; 
  figure(currFigNO); 
  hold off; 
  if n==2 
    Gridf=Gridf+ones(size(Gridf,1),1)*X0; 
    plot(Gridf(:,1),Gridf(:,2),'g+'); 
    hold on; 
    plot(Gridell(:,1),Gridell(:,2),'b*'); 
    plot(Z(:,1),Z(:,2),'r-'); 
    plot(X(:,1),X(:,2),'mo'); 
    xlabel('Radius:->'); 
    ylabel('Angle:->'); 
    title('Ellipse showing the selected grid points only'); 
  else 
    plot3(Z(:,1),Z(:,2),Z(:,3),'r.'); 
    hold on; 
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    plot3(X(:,1),X(:,2),X(:,3),'mo'); 
    xlabel('Radius:->'); 
    ylabel('Alpha:->'); 
    zlabel('Beta:->'); 
    title('Ellipse enclosing the original points'); 
    figure; 
    Gridf=Gridf+ones(size(Gridf,1),1)*X0; 
    plot3(Gridf(:,1),Gridf(:,2),Gridf(:,3),'b+'); 
    hold on; 
    plot3(Gridell(:,1),Gridell(:,2),Gridell(:,3),'g*'); 
    xlabel('Radius:->'); 
    ylabel('Alpha:->'); 
    zlabel('Beta:->'); 
    title('Original grid points and selected grid points'); 
   end; 
end; % if plot_confined_ellipse==1 
%Gridf=Gridell; 
%return; 
 
 
 
A.7 Program: intstep.m 
 
function x=intstep(del) 
% 
%  This function evaluates steps for integration of normal pdf 
%  under the assumption that discrete integration using 
%  selected points introduces equal integral values. 
%  intgrl=pdf(x1)*del 
%  where x2=x1+del is the next selection point, and x1=0, eps<<1 
%  In order to solve this equation an error function is calcultaed 
%  del is obtained using an iterative process 
%  intgrl=cpdf(x2)-cpdf(x1) 
%  del=x2-x1 
%   
 
ddel=1; 
x1=0; 
x=x1; 
incr=[]; 
 
%  evaluate the epsilon value 
 
eps=normcdf(x1+del,0,1)-normcdf(x1,0,1); 



90 

 
%  set the min % increment for del 
 
epsdel=.01; 
 
%  find sequence of x variable values  
while abs(x1)<=5 
 while ddel>abs(epsdel*del) 
  ferr=normcdf(x1+del,0,1)-normcdf(x1,0,1)-eps; 
     derferr=normpdf(x1+del,0,1); 
     if derferr==0  
   break;  
  end; 
     deldel=(-ferr/derferr); 
  del=del+deldel; 
  ddel=abs(deldel);  
 end; % while ddel 
 x1=x1+del; 
 ddel=1; 
 incr=[incr del]; 
 x=[x x1]; 
end; % while x1 
 
if derferr==0 
 incr=incr(1:size(incr,2)-1); 
 x=x(1:size(x,2)-1); 
end; 
 
 
 
A.8 Program: Ndsph.m 
 
function Gridf=Ndsph(radius,alpha,dr,iter,inGrid) 
 
inGrid; 
 
if iter==2 
 Gridf=inGrid; 
else 
 Gridf=[]; 
 for i=1:length(alpha) 
  tempGrid=[inGrid alpha(i)]; 
  r1=radius*abs(cos(alpha(i))); 
  dAlpha1=dr/r1; 
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  Angle1=[0 :dAlpha1: pi-dAlpha1]; 
  if iter-1==2 
   for j=1:size(tempGrid,1) 
    outGrid=[ones(length(Angle1),1)*tempGrid(j,:) Angle1']; 
   end; 
   Gridf=[Gridf;outGrid]; 
  else 
   Gridf=[Gridf;Ndsph(radius,Angle1,dr,iter-1,tempGrid)]; 
  end; 
 end; % for i 
end; 
return; 
 
 
A.9 Program: newalgma.m 
 
% this program generates noisy signals out of two 
% prototypes and applies pdf based information measure 
% to identify the best disciminants for the generated 
% signals using repeated Haar transform 
 
% some environment setups.. 
clear all; % clears all variables and functions from the workspace 
pack; % Consolidate workspace memory 
clf; % clears the figure 
clc; 
 
start=cputime; 
hold off; 
absinfoincr=.005; 
rreddesinfo=.1; 
 
 
computer=4; 
fid=1; 
if computer==1 
  %fid      = fopen('/home/homer/1/c/asareen/matlab/dumpdata.txt','w'); 
  fiddata  = fopen('/home/homer/1/c/asareen/matlab/plotdata.txt','w'); 
  fiderror = fopen('/home/homer/1/c/asareen/matlab/error.txt'   ,'w'); 
  fidPs    = fopen('/home/homer/1/c/asareen/matlab/p1p2.txt'    ,'w'); 
  fidinfo  = fopen('/home/homer/1/c/asareen/matlab/plotinfo.txt','w'); 
elseif computer==2 
  %fid      = fopen('d:\users\aman\matlab\work\dumpdata.txt','w'); 
  fiddata  = fopen('d:\users\aman\matlab\work\plotdata.txt','w'); 
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  fiderror = fopen('d:\users\aman\matlab\work\error.txt'   ,'w'); 
  fidPs    = fopen('d:\users\aman\matlab\work\p1p2.txt'    ,'w'); 
  fidinfo  = fopen('d:\users\aman\matlab\work\plotinfo.txt','w'); 
elseif computer==3 
  %fid      = fopen('c:\users\aman\matlab\work\dumpdata.txt','w'); 
  fiddata  = fopen('c:\users\aman\matlab\work\plotdata.txt','w'); 
  fiderror = fopen('c:\users\aman\matlab\work\error.txt'   ,'w'); 
  fidPs    = fopen('c:\users\aman\matlab\work\p1p2.txt'    ,'w'); 
  fidinfo  = fopen('c:\users\aman\matlab\work\plotinfo.txt','w'); 
else 
fiddata=1; 
fiderror=1; 
fidPs=1; 
fidinfo=1; 
end; 
 
% setup the way each plot of information matrix is to be plotted. 
 
%stringmat=['kx-';'b*-';'g+-';'ro:';'m*:';'kv:';'bd:';'gs:';'rh:';'mp-']; 
stringmat=['r-';'b-';'g-';'r:';'m:';'b:';'g:';'r:';'m-']; 
 
 
load c:\users\aman\matlab\work\sigFile 
 
numCoeff=size(N,1); 
Matrix=N/max(max(N)); 
cols=size(Matrix,2); 
signal1=Matrix(:,1); 
signal2=Matrix(:,cols/2+1); 
 
% determine levels ???? 
levls=round(log10(numCoeff)/log10(2)); 
x=1:numCoeff; 
 
rows=numCoeff; 
coeffMatrix=diag(ones(1,numCoeff)); 
coeffD=coeffMatrix; 
for i=1:levls 
  coeffC=[]; 
  begn=1; 
  while begn<numCoeff 
    oddr=(begn:2:begn+rows-1); 
    evnr=(begn+1:2:begn+rows-1); 
    coeffA=[]; 
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    coeffB=[]; 
    for j=1:length(oddr) 
      coeffA(j,:)=( coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:) )/2; 
      coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:); 
    end; 
    coeffC=[coeffC;coeffA;coeffB]; 
    begn=begn+rows; 
  end; % while 
  coeffMatrix=coeffC; 
  coeffD=[coeffD;coeffC]; 
  rows=round(rows/2); 
end; %for i 
 
coeffMatrix=coeffD; 
selectedcoeffMatrix=[]; 
 
% choice of which plots to plot. 
plotOriginal=1; 
plotNoisy=1; 
plotInfo1D=1; 
plotInfo2D=1; 
 
getsigs=0; 
if getsigs==1 
  % define signals here. 
  signal1=[0.05, 0.53, 1.01, 0.56, 0.07, -0.501, -1.03, -0.52]'; 
  signal2=[0.0033, 1.04, 0.002, -1.09, 0.03, 0.504, 2.2, 0.006]'; 
 
  %signal2=[1, .5 -.5 .5 1 -.5 0 .5]'; 
  epsil=0.01; 
  epsil2=-0.02; 
  %signal1=epsil+[0. 0.25, 0.5, 0.75, 1, 0.75, 0.5, 0.25, 0, -0.25, -0.5, -0.75, -1, -0.75, -
0.25, 0]'; 
  %signal2=epsil2+[0, 0, -0.2, -0.5, -1, -0.85, -0.75, -0.1, 0.1, 0.5, 1, 0.1, -0.4, -0.85, -
0.75, 0]'; 
  %signal1=epsil+[0, 0, -0.1, 0, 0, 0.05, 0, -0.1, 0.1, 0.5, 1, 0.1, -0.05, 0.05, 0.05, 0]'; 
 
  % Number of coefficients of the Signal. 
  numCoeff=length(signal1); 
 
  % add noise to each signal 
 
  sig1noiselevel=6; 
  sig2noiselevel=6; 
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  Matrix=[]; 
  for i=1:50 
    Matrix(:,i)=signal1+sig1noiselevel*rand(numCoeff,1); 
  end; 
  for i=51:100 
    Matrix(:,i)=signal2+sig2noiselevel*rand(numCoeff,1); 
  end; 
end; 
 
% plot original signal. 
if plotOriginal==1 
  figure; 
  plot(signal1,'r'); 
  hold on; 
  plot(signal2,'b'); 
  xlabel('Signal coordinate'); 
  ylabel('Signal value'); 
  title('Original signals'); 
end; 
 
% plot noisy signal. 
if plotNoisy==1 
  figure; 
  plot(Matrix(:,1:cols/2),'r'); 
  hold on; 
  plot(Matrix(:,cols/2+1:cols),'b'); 
  xlabel('Signal coordinate'); 
  ylabel('Signal value'); 
  title('Two signals with a random noise'); 
end; 
 
% initialise the variables 
previousInfo=0; 
currentInfo=1; 
iterations=1; 
numOfLoops=0; 
plotarray1D=[]; 
plotarray2D=[]; 
infoarray=[]; 
figure; 
 
% start the main loop and continue till the desired accuracy is achieved. 
%while abs(currentInfo - previousInfo) > absinfoincr & abs(currentInfo-previousInfo)/(1-
previousInfo)>rreddesinfo 
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while abs(currentInfo - previousInfo) > absinfoincr 
   IterationNumber=iterations+8*numOfLoops; 
  fprintf(fid,'Iteration Number = %i\n',IterationNumber); 
  iterations=iterations+1; 
  % check the iteration being done. if more than 8 then reset it to 1. 
  % the reason is that we have only 8 ways of ploting the wave form. 
  if iterations>8 
    numOfLoops=numOfLoops+1; 
    iterations=1; 
  end; 
 
  rows=numCoeff; 
  D=Matrix; 
  for i=1:levls 
    C=[]; 
    begn=1; 
    while begn<numCoeff 
      oddr=(begn:2:begn+rows-1); 
      evnr=(begn+1:2:begn+rows-1); 
      % this normalization is used to balance Walsh coefficients 
      % of a raw signal 
      %A=(Matrix(oddr,:)+Matrix(evnr,:))/2; 
      A=(Matrix(oddr,:)+Matrix(evnr,:))/2; 
      % subtract pairwise 
      B=Matrix(oddr,:)-Matrix(evnr,:); 
      C=[C;A;B]; 
      begn=begn+rows; 
    end; % while 
    Matrix=C; 
    D=[D;C]; 
    rows=round(rows/2); 
  end; %for i 
 
  Matrix=D; 
  [rowsMatrix colsMatrix] = size(Matrix); 
 
  % make other matrices to easy out some other computations. 
  tMatrix = Matrix'; 
  sig1Matrix = Matrix(:,1:cols/2); 
  sig2Matrix = Matrix(:,cols/2+1:cols); 
 
  % determine the minimum and maximum value of the signal. 
  rmin = min(tMatrix); 
  rmax = max(tMatrix); 
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  % determine the standard deviation of each signal. 
  D1=std (sig1Matrix'); 
  D2=std (sig2Matrix'); 
 
  % determine mean of each signal. 
  E1=mean(sig1Matrix'); 
  E2=mean(sig2Matrix'); 
 
% set probability of each signal to be 1. 
  P1=1; 
  P2=1; 
 
  spread=5; 
  resolve=200; 
  numSteps = 300; 
% calculate the information 
 
  info1=infopdfV(P1,P2,E1,E2,D1,D2,spread,numSteps); 
 
% sort the information matrix to extract the best "numCoeff" number of elements. 
  [info1 index] = sort(info1); 
  orderedinf=fliplr(info1); 
  previnfo = orderedinf(1); 
  index=fliplr(index); 
  plotarray1D = [plotarray1D;orderedinf(1:numCoeff)]; 
  infoarray=[infoarray;orderedinf(1:numCoeff)]; 
  if plotInfo1D==1 
    subplot(1,2,1); 
    axis([1,max(x),0,1]); 
    plot(x,orderedinf(1:numCoeff),stringmat(iterations,:)); 
    xlabel('Most selective coefficients in decreasing order'); 
    ylabel('Information value'); 
    title('Selection of coefficients in various iterations'); 
    hold on; 
  end; 
  maxinfo=orderedinf(1); 
 
  numPoints=200; 
  dimension=3; 
  for i=2:dimension 
    fprintf(fid,'Working on %i dimensions\n',i); 
    selectMatrix=Matrix(index(1:i-1),:); 
    selectedIndex=index(1:i-1); 
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    for j=1:size(Matrix,1) 
      if length(find(selectedIndex==j)) > 0 
        info_ = previnfo; 
        tempinfo(j) = info_; 
      else 
        tempMatrix=[selectMatrix;Matrix(j,:)]; 
        sig1Matrix = tempMatrix(:,1:cols/2); 
        sig2Matrix = tempMatrix(:,cols/2+1:cols); 
        Mean1=mean(sig1Matrix'); 
        Mean2=mean(sig2Matrix'); 
        Cov1=cov(sig1Matrix'); 
        Cov2=cov(sig2Matrix'); 
        P1=1;P2=1; 
        eps=10^(-12); 
        if abs(det(Cov1))<eps & abs(det(Cov2))<eps 
          tempinfo(j)=maxinfo; 
        else 
          %keyboard; 
          %info_1=newalgof(sig1Matrix',sig2Matrix') 
          info_=infoND(sig1Matrix',sig2Matrix',Mean1,Mean2,Cov1,Cov2,P1,P2); 
          tempinfo(j) = info_; 
        end; 
      end; % if length(find(selectedIndex==j)) > 0 
    end; % for j 
    [info1 index] = sort(tempinfo); 
    orderinf=fliplr(info1); 
    index=fliplr(index); 
    infoarray=[infoarray;orderinf(1:numCoeff)]; 
    maxinfo=orderinf(1); 
  end; % for i=2:dimension 
  plotarray2D=[plotarray2D;orderinf(1:numCoeff)]; 
%  printVec(plotarray1D,'plotarray1D',fiddata); 
%  printVec(plotarray2D,'plotarray2D',fiddata); 
%  printVec(infoarray,'infoarray',fidinfo); 
 
% update the values of the information matrix 
  previousInfo=currentInfo; 
  currentInfo=orderinf(1); 
% plot the information matrix. 
  if plotInfo2D==1 
    subplot(1,2,2); 
    axis([1,max(x),0,1]); 
    plot(x,orderinf(1:numCoeff),stringmat(iterations,:)); 
    xlabel('Most selective coefficients in decreasing order'); 
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    ylabel('Information value'); 
    title('Selection of coefficients in various iterations'); 
    hold on; 
  end; 
% reset the Matrix before going into the other loop. 
  rownum = [selectedIndex index(1:numCoeff-1)]; 
  Matrix=Matrix(rownum,:); 
  selectedcoeffMatrix=[selectedcoeffMatrix;coeffMatrix(rownum,:)]; 
fprintf(fid,'Iteration %i complete. Hit any key...\n',IterationNumber); 
%pause; 
%if IterationNumber==2 dbstop; end; 
end; %while iterations 
 
if fiddata==1 
else 
  fclose(fiddata); 
  fclose(fiderror); 
  fclose(fidPs); 
  fclose(fidinfo); 
end; 
 
 
TimeTaken=cputime-start 
 
 
plotharr=1; 
if plotharr==1 
  M=selectedcoeffMatrix(1:numCoeff,:); 
  for i=2:IterationNumber 
    M=selectedcoeffMatrix(numCoeff*(i-1)+1:numCoeff*i,:)*M; 
  end; 
 
  figure; 
  %plotting the interpretation of haar transform 
 
  for i=1:4 
    subplot(2,2,i); 
    bar(x,M(i,:),'r'); 
  end; 
end; % if plotHarr 
 
figure; 
plot(signal1,'b') 
hold on 
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plot(signal2,'r') 
e=M(1,:); 
en=e/norm(e)*((norm(signal1)+norm(signal2))/2); 
plot(en(1,:),'g') 
 
 
 
A.10 Program: infoND.m 
 
function info=infoND(signal1,signal2,Mean1,Mean2,Cov1,Cov2,P1,P2) 
 
%  this function evaluates the information index for two n-dimensional 
% distributions 
% signal1, and signal2 represent two sets of random signals with  
% normal distribution and mean values Mean1 and Mean2 
% as well as covariance matrices Cov1 and Cov2 
% P1 and P2 are apriori probabilities of the two signals 
 
%  generate points by gausian(normal)distribution 
% points=randn(m,n);  
%   generate two signals 
% signal1=points*R1+ones(m,1)*V1; 
% signal2=points*R2+ones(m,1)*V2; 
 
m=size(signal1,1); 
n=size(signal1,2); 
 
% this function finds information for n-dimensional pds functions 
%  described by Mean1, Mean2, vectors and Cov1 and Cov2 matrices 
% signal1 are random points generated by pdf1 distribution 
% and signal2 are points generated by pdf2 
 
x1_mean1=signal1-ones(m,1)*Mean1; 
x2_mean2=signal2-ones(m,1)*Mean2; 
x2_mean1=signal2-ones(m,1)*Mean1; 
x1_mean2=signal1-ones(m,1)*Mean2; 
 
x_ic_xt=inv(Cov1) * x1_mean1'; 
nexp=zeros(size(x1_mean1,1),1); 
for jj=1:size(Cov1,1) 
   nexp=nexp+x1_mean1(:,jj).*x_ic_xt(jj,:)'; 
end; 
 
pdf11=P1*exp(-0.5 * nexp) / sqrt( (2*pi)^n*abs(det(Cov1))); 
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x_ic_xt=inv(Cov2) * x2_mean2'; 
nexp=zeros(size(x1_mean1,1),1); 
for jj=1:size(Cov1,1) 
  nexp=nexp+x2_mean2(:,jj).*x_ic_xt(jj,:)'; 
end; 
 
pdf22=P2*exp(-0.5 * nexp) / sqrt( (2*pi)^n*abs(det(Cov2))); 
 
x_ic_xt=inv(Cov1) * x2_mean1'; 
nexp=zeros(size(x1_mean1,1),1); 
for jj=1:size(Cov1,1) 
  nexp=nexp+x2_mean1(:,jj).*x_ic_xt(jj,:)'; 
end; 
pdf21=P1*exp(-0.5 * nexp) / sqrt( (2*pi)^n*abs(det(Cov1))); 
 
x_ic_xt=inv(Cov2) * x1_mean2'; 
nexp=zeros(size(x1_mean1,1),1); 
for jj=1:size(Cov1,1) 
  nexp=nexp+x1_mean2(:,jj).*x_ic_xt(jj,:)'; 
end; 
 
pdf12=P2*exp(-0.5 * nexp) / sqrt( (2*pi)^n*abs(det(Cov2))); 
 
P1w=P1/m*sum(pdf11./(pdf11+pdf12)); 
P2w=P2/m*sum(pdf22./(pdf21+pdf22)); 
P12w=P1/m*sum(pdf12./(pdf11+pdf12)); 
P21w=P2/m*sum(pdf21./(pdf21+pdf22)); 
 
if P1w==0 P1w=1; end; 
if P2w==0 P2w=1; end; 
if P12w==0 P12w=1; end; 
 
%  find the entropy measure 
 
entr=P1w*log(P1w)+P2w*log(P2w)+P12w*log(P12w)+P21w*log(P21w) -
(P1*log(P1)+P2*log(P2)); 
 
%  find the information 
 
P11=P1^2/(P1+P2); 
P22=P2^2/(P1+P2); 
P12=P1*P2/(P1+P2); 
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maxentr=P11*log(P11)+P22*log(P22)+2*P12*log(P12) -(P1*log(P1)+P2*log(P2)); 
info=1-entr/maxentr; 
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Appendix B 
 

B.1 Program: Haar.vhd 
 
LIBRARY ieee; 
USE ieee.ALL; 
 
ENTITY haar IS 
    PORT ( 
        clock : IN  bit; 
 
        -- Inputs 
        in1   : IN  integer RANGE -127 TO 127; 
        in2   : IN  integer RANGE -127 TO 127; 
        in3   : IN  integer RANGE -127 TO 127; 
        in4   : IN  integer RANGE -127 TO 127; 
        in5   : IN  integer RANGE -127 TO 127; 
        in6   : IN  integer RANGE -127 TO 127; 
        in7   : IN  integer RANGE -127 TO 127; 
        in8   : IN  integer RANGE -127 TO 127; 
 
        --Outputs 
        out1  : OUT integer RANGE -127 TO 127; 
        out2  : OUT integer RANGE -127 TO 127; 
        out3  : OUT integer RANGE -127 TO 127; 
        out4  : OUT integer RANGE -127 TO 127; 
        out5  : OUT integer RANGE -127 TO 127; 
        out6  : OUT integer RANGE -127 TO 127; 
        out7  : OUT integer RANGE -127 TO 127; 
        out8  : OUT integer RANGE -127 TO 127 
    ); 
END haar; 
 
ARCHITECTURE haar OF haar IS 
 
    COMPONENT bufgs 
        PORT ( 
            i : IN  bit; 
            o : OUT bit 
        ); 
    END COMPONENT; 
 
    COMPONENT reg 
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        PORT ( 
            input  : IN  integer RANGE -127 TO 127; 
            clk    : IN  bit; 
            output : OUT integer RANGE -127 TO 127 
        ); 
    END COMPONENT; 
 
    COMPONENT adddiv 
        PORT ( 
            a   : IN  integer RANGE -127 TO 127; 
            b   : IN  integer RANGE -127 TO 127; 
            clk : IN  bit; 
            c   : OUT integer RANGE -127 TO 127 
        ); 
    END COMPONENT; 
 
    COMPONENT difference 
        PORT ( 
            a   : IN  integer RANGE -127 TO 127; 
            b   : IN  integer RANGE -127 TO 127; 
            clk : IN  bit; 
            c   : OUT integer RANGE -127 TO 127 
        ); 
    END COMPONENT; 
 
 
    SIGNAL   out_r1, out_r2, out_r3, out_r4, out_r5, out_r6, out_r7, 
        out_r8 : integer RANGE -127 TO 127; 
    SIGNAL   out_a1, out_a2, out_a3, out_a4, out_a5, out_a6, out_a7, 
        out_a8 : integer RANGE -127 TO 127; 
    SIGNAL   out_s1, out_s2, out_s3, out_s4, out_s5, out_s6, out_s7, 
        out_s8 : integer RANGE -127 TO 127; 
    SIGNAL   clk : bit; 
 
BEGIN 
    xbufgs: bufgs 
        PORT MAP ( 
            clock, 
            clk 
        ); 
    --  Input to Register here 
    r1: reg 
        PORT MAP ( in1, clk, out_r1 ); 
    r2: reg 



104 

        PORT MAP ( in2, clk, out_r2 ); 
    r3: reg 
        PORT MAP ( in3, clk, out_r3 ); 
    r4: reg 
        PORT MAP ( in4, clk, out_r4 ); 
    r5: reg 
        PORT MAP ( in5, clk, out_r5 ); 
    r6: reg 
        PORT MAP ( in6, clk, out_r6 ); 
    r7: reg 
        PORT MAP ( in7, clk, out_r7 ); 
    r8: reg 
        PORT MAP ( in8, clk, out_r8 ); 
 
    --  Input to Add_Divide and Difference for stage 1 
    a1: adddiv 
        PORT MAP ( out_r1, out_r2, clk, out_a1 ); 
    a2: adddiv 
        PORT MAP ( out_r3, out_r4, clk, out_a2 ); 
    a3: adddiv 
        PORT MAP ( out_r5, out_r6, clk, out_a3 ); 
    a4: adddiv 
        PORT MAP ( out_r7, out_r8, clk, out_a4 ); 
    s1: difference 
        PORT MAP ( out_r1, out_r2, clk, out_s1 ); 
    s2: difference 
        PORT MAP ( out_r3, out_r4, clk, out_s2 ); 
    s3: difference 
        PORT MAP ( out_r5, out_r6, clk, out_s3 ); 
    s4: difference 
        PORT MAP ( out_r7, out_r8, clk, out_s4 ); 
 
    --  Input to AddDiv and Difference for stage 2 
    a5: adddiv 
        PORT MAP ( out_a1, out_a2, clk, out_a5 ); 
    a6: adddiv 
        PORT MAP ( out_a3, out_a4, clk, out_a6 ); 
    s5: difference 
        PORT MAP ( out_a1, out_a2, clk, out_s5 ); 
    s6: difference 
        PORT MAP ( out_a3, out_a4, clk, out_s6 ); 
 
    a7: adddiv 
        PORT MAP ( out_s1, out_s2, clk, out_a7 ); 
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    a8: adddiv 
        PORT MAP ( out_s3, out_s4, clk, out_a8 ); 
    s7: difference 
        PORT MAP ( out_s1, out_s2, clk, out_s7 ); 
    s8: difference 
        PORT MAP ( out_s3, out_s4, clk, out_s8 ); 
 
    --  Input to AddDiv and Difference for stage 3 
    a9: adddiv 
        PORT MAP ( out_a5, out_a6, clk, out1 ); 
    s9: difference 
        PORT MAP ( out_a5, out_a6, clk, out2 ); 
 
    a10: adddiv 
        PORT MAP ( out_s5, out_s6, clk, out3 ); 
    s10: difference 
        PORT MAP ( out_s5, out_s6, clk, out4 ); 
 
    a11: adddiv 
        PORT MAP ( out_a7, out_a8, clk, out5 ); 
    s11: difference 
        PORT MAP ( out_a7, out_a8, clk, out6 ); 
 
    a12: adddiv 
        PORT MAP ( out_s7, out_s8, clk, out7 ); 
    s12: difference 
        PORT MAP ( out_s7, out_s8, clk, out8 ); 
 
END haar; 
 
 
 
B.2 Program: Reg.vhd 
 
LIBRARY ieee; 
USE ieee.ALL; 
 
ENTITY reg IS 
    PORT ( 
        input  : IN  integer RANGE -127 TO 127; 
        clk    : IN  bit; 
        output : OUT integer RANGE -127 TO 127 
    ); 
END reg; 
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ARCHITECTURE reg OF reg IS 
BEGIN 
    PROCESS(clk) 
    BEGIN 
        IF clk'EVENT AND clk = '1' THEN 
            output <= input; 
        END IF; 
    END PROCESS; 
END reg; 
 
 
 
B.3 Program: Add_Divide.vhd 
 
LIBRARY ieee; 
USE ieee.ALL; 
 
ENTITY adddiv IS 
    PORT ( 
        a   : IN  integer RANGE -127 TO 127; 
        b   : IN  integer RANGE -127 TO 127; 
        clk : IN  bit; 
        c   : OUT integer RANGE -127 TO 127 
    ); 
END adddiv; 
 
ARCHITECTURE adddiv OF adddiv IS 
BEGIN 
    PROCESS (clk) 
    BEGIN 
        IF clk'EVENT AND clk = '1' THEN 
            c <= (a + b)/2; 
        END IF; 
    END PROCESS; 
END adddiv; 
 
 
 
B.4 Program: Subractor.vhd 
 
LIBRARY ieee; 
USE ieee.ALL; 
 



107 

ENTITY difference IS 
    PORT ( 
        a   : IN  integer RANGE -127 TO 127; 
        b   : IN  integer RANGE -127 TO 127; 
        clk : IN  bit; 
        c   : OUT integer RANGE -127 TO 127 
    ); 
END difference; 
 
ARCHITECTURE difference OF difference IS 
BEGIN 
    PROCESS (clk) 
    BEGIN 
        IF clk'EVENT AND clk = '1' THEN 
            c <= a - b; 
        END IF; 
    END PROCESS; 
END difference; 


