

Reconfigurable Design For Pattern Recognition Using Field Programmable Gate Arrays

A thesis presented to

the faculty of

Fritz J. and Dolores H. Russ
College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirement for the Degree

Master of Science

By

Aman Sareen

August, 1999

This Thesis Entitled

Reconfigurable Design For Pattern Recognition Using Field Programmable Gate Arrays

by Aman Sareen

has been approved

for the school of Electrical Engineering and Computer Science and the Russ College of
Engineering and Technology

__
Janusz Starzyk, Professor

School of Electrical Engineering and Computer Science

__
Warren K. Wray, Dean

Fritz J. and Dolores H. Russ
College of Engineering and Technology

i

Acknowledgment

I am highly thankful to my thesis advisor, Dr. Janusz Starzyk, for his sincere advice and

persistent support. Dr. Starzyk recommended many useful references and attributed his

insights in many theoretical issues. He changed my life as a normal student into one as a

hard worker, researcher and knowledge-seeker. I am especially grateful for the time he

dedicated by driving from Dayton to Athens each week to help me.

I thank also Dr. Curtis and Dr. Giesey for their precious time, valuable help and support

with their guidance and ideas.

Special thanks go to my parents, and my brother, for their support and encouragement

that gave me spiritual strength and endurance in pursuing my ambition.

I am also very thankful to Abdulqadir Al-aqeeli with whom I had many brainstorming

sessions that helped to decide the architecture on the FPGA. Finally, thanks to all my

friends who assisted me upon request and were very helpful in their suggestions.

ii

Table of Contents

 Page

Approval Page

Acknowledgement .. i

Table of Contents.. ii

List of Tables ..v

List of Figures...vi

1.0 Introduction ..1

1.1 Statistical pattern recognition approach..2

1.2 Syntactic pattern recognition approach...3

1.3 Neural pattern recognition approach...4

1.4 Tools used for the work ...6

2.0 Statistical approaches to pattern recognition ..7

2.1 Feature selection (or preprocessing) ...7

2.2 Histograms ..8

2.3 Parametric Methods ...8

2.4 Non-parametric methods..11

2.4.1 k-NN approach...11

2.4.2 Parzen window approach..12

3.0 Entropy based selection of optimum transformation of input data...................14

3.1 Cartesian Grid Method...15

iii

3.2 Spherical Grid Method...20

3.3 Monte Carlo Method ...31

4.0 Wavelet based transformation..36

4.1 The Haar Wavelet ..37

4.2 1 Dimensional Analysis ..41

4.3 Entropy Determination...41

5.0 FPGA realization of Haar Wavelet ...56

5.1 Basic Functional Blocks ...57

5.1.1 Configurable Logic Block...58

5.1.2 Input/Output Block ..58

5.1.3 Programmable Interconnect ..59

5.2 FPGA Implementation of Haar Wavelet ...61

5.3 Facts and figures of the implementation..66

5.4 Advantages and limitations of the parallel architecture........................68

6.0 Summary and Future Work..69

References ..70

Appendix ..72

Appendix A Matlab Code...72

A.1 haarintp.m ..72

A.2 onedim.m ...73

A.3 constant.m..77

A.4 infopdfV.m...79

iv

A.5 cartplot.m...82

A.6 sphnd.m..83

A.7 intstep.m ..89

A.8 Ndsph.m...90

A.9 newalgma.m ...91

A.10 infoND.m...99

Appendix B VHDL Code...102

B.1 Haar.vhd ..102

B.2 Reg.vhd..105

B.3 Add_Divide.vhd ...106

B.4 Subtractor.vhd..107

v

List of Tables

Table Page

4.1 Haar Transform example ...38

4.2 Haar Wavelet co-efficients at each level...39

5.1 Facts about the resources of the FPGA used ..66

vi

List of Figures

Figure Page

1.1 Statistical PR Approach...2

1.2 Syntactic PR Approach..3

1.3 Neural network Approach ...5

2.1 Determination of parameters for Gaussian distribution9

2.2 Illustration of maximum likelihood approach..9

2.3 Classification of Gaussian data sets using Bayes classifier...............................10

2.4 Illustration of Bayes classification error ...10

2.5 Illustration of k-NN approach..12

2.6 Illustration of Parzen window approach...13

3.1 Probability distribution function of two classes...14

3.2 Illustration of uniform and non-uniform grid for direct integration in 1D16

3.3 2-dimensional grid ...17

3.4 3-dimensional grid: Original points and the selected grid points......................18

3.5 3-dimensional grid ...19

3.6 Figure indicating how to obtain radius projection into other dimension...........21

3.7 2-dimensional Spherical Grid in rectangular coordinates.................................22

3.8 3-dimensional Spherical Grid in rectangular coordinates.................................23

3.9 2-dimensional Spherical Grid in polar form ..25

3.10 2-dimensional Spherical Grid in Cartesian from, shown in cartesian

 coordinates..26

vii

3.11 2-dimensional Spherical grid ..28

3.12 Ellipse enclosing the original set of points..29

3.13 Original and Selected Grid Points ..30

3.14 Probability based on pdf1 > pdf2..31

3.15 Region of each weighted probability ..32

3.16 Illustration for Monte Carlo integration approach – generation of points........33

3.17 Illustration for Monte Carlo integration approach – probability calculation.....33

3.18 Relationship between information index and probability of misclassification ...34

4.1 Haar Wavelet...37

4.2 Waveform interpretation of Haar coefficients...40

4.3 Original Signals ...43

4.4 Original Signals with Noise..44

4.5 Information measure after each iteration..45

4.6 Waveform interpretation of the selected coefficients46

4.7 Original Signals and best selected coefficients showing the separation

between two signals...48

4.8 Entropy measure for best 8 coefficients after each iteration............................49

4.9 Entropy measure for all the coefficients after each iteration............................50

4.10 Composition of each coefficient wrt other coefficients...................................51

4.11 Original Signals and best selected coefficients showing the separation

between two signals...52

4.12 Entropy measure for best 8 coefficients after each iteration............................53

viii

4.13 Entropy measure for all the coefficients after each iteration............................54

4.14 Composition of each coefficient wrt other coefficients...................................55

5.1 General architecture of the Xilinx XC4000 FPGA..57

5.2 Block diagram of a Configurable Logic Block (CLB).....................................58

5.3 Block diagram of an Input/Output Block (IOB) ...59

5.4 High level routing diagram of the XC4000 FPGA..60

5.5 Programmable switch matrix..60

5.6 Parallel architecture of Haar Wavelet (8-inputs) ...62

5.7 Simulation Results showing data at various stages at each clock edge............63

5.8 Simulation Result showing the parallel nature of the architecture64

5.9 Layout of the Haar Wavelet Parallel Architecture on the

 XC4010XLPQ160 FPGA..67

1

Chapter 1

Introduction

Pattern recognition techniques are often an important component of intelligent systems

and are used for both data pre-processing and decision making. Broadly speaking, pattern

recognition is the science that concerns the description or classification (recognition) of

measurements. The following enumerates a few of the areas where pattern recognition

finds its application [2]:

• Image preprocessing, segmentation, and analysis

• Computer vision

• Artificial intelligence

• Seismic analysis

• Radar signal classification/analysis

• Speech recognition/understanding

• Fingerprint identification

• Character (letter or number) recognition

• Handwriting analysis

• Electro-cardiographic signal analysis/understanding

• Medical diagnosis

• Socioeconomic

• Archaeology

2

• Data mining/reduction

There are three inter-related pattern recognition approaches:

• Statistical Pattern Recognition

• Syntactic Pattern Recognition

• Neural Pattern Recognition

1.1 Statistical pattern recognition approach

Statistical pattern recognition attempts to classify patterns based on a set of extracted

features and an underling statistical model for the generation of these patterns. It assumes

a statistical basis for classification of algorithms. A set of features is extracted from the

input data and is used to assign each feature vector to one of the classes. We concentrate

on developing decision or classification strategies, which form classifiers. The classifier

design attempts to integrate all available information and decision rules are formulated.

In the use of statistical pattern recognition approach, the structure of the pattern is

insignificant, so if the structural information is unavailable or irrelevant, it makes sense to

use statistical pattern recognition approach. Some existing statistical approaches are

discussed in Chapter 2 of this thesis [3].

Probabilistic Models
(e.g., pdfs & a priori prob.)

Estimation Theory input pattern decision/
classification

Fig. 1.1: Statistical PR approach.

3

1.2 Syntactic pattern recognition approach

The principle behind this approach is that many times the interrelationships or

interconnections of features yield important structural information, which facilitates

structural description or classification. Therefore, in these approaches we must be able to

quantify and extract structural information and to assess structural similarity of patterns.

In general, these approaches formulate hierarchical description of complex patterns built

up from simpler sub-patterns. For e.g. musical patterns. There are 6 octaves and each

octave is subdivided into distinct tones, giving a total of about 72 distinct tones, which

are common to all musical classes. The premise of syntactic pattern recognition is that the

structure of an entity is paramount, and that it may be used for classification and

description. It is used for both classification and description. Classification may be based

on measures of pattern structural similarity. When explicit structural information about

the patterns is available, it makes sense to use syntactical pattern recognition approach

[3].

Structural Models
(e.g., sets of grammars)

Unification w/One
or More Structural

Models

input string decision/
classification

Fig. 1.2: Syntactic PR approach.

4

1.3 Neural pattern recognition approach

This approach makes use of the knowledge of how biological neural systems store and

manipulate information. They are particularly well suited for pattern association

applications. Artificial neural networks (ANNs) provide an emerging paradigm for

pattern recognition implementation that involves large interconnected networks of

relatively simple and typically nonlinear units so called neural-nets. Basically, three

entities characterize an ANN [3]:

1. The network topology, or interconnection of neural units,

2. The characteristics of individual units or artificial neurons, and

3. The strategy for pattern learning or training.

The myriad of potential neural network applications for pattern recognition includes:

• Feature extraction from complex data sets (e.g., images and speech);

• Character recognition and image processing applications, and

• Direct and parallel implementation of matching and search algorithms.

The problems are characterized by following qualities

• A high-dimensional problem space,

• Complex interactions between problem variables, and

• A solution space that may be empty, contain a unique solution, or contain a

number of almost equally useful solutions.

5

The objective of the thesis is to present the approach used for feature extraction of the

HRR signals. It was demonstrated in this work that by selecting features based on

evolutionary use of Haar wavelets, new features with better classification properties

could be obtained. The convergence is very fast and produces results close to the

Bayesian classification limits. The quality of the obtained transformation is measured

using the entropy based information index. This index was developed for data sets with

estimated probability density functions of different classes. Any mutual dependence of

the extracted features is automatically accounted for by performing a Monte Carlo

integration in multi-dimensional space. The confidence interval of the predicted

performance is related to standard deviation of the information index and depends on the

information level and the number of training points used. Chapter 3 discusses the

algorithms used and the simulation results and graphs for some sample signals are shown

in Chapter 4. Chapter 5 shows an architecture in which the discussed algorithm could be

implemented on VLSI chips. The detailed implementation techniques and methods are

discussed in the thesis, “Reconfigurable Wavelet-Based Architecture for Pattern

Network Parameters
(e.g., weights from Training)

Neural Network input pattern output pattern

Fig. 1.3: Neural network approach

6

Recognition Applications Using a Field Programmable Gate Array” by Mr. Abdulqadir

Alaqeeli. Chapter 6 lists the conclusions based on the work done and future work.

1.1 Tools used for the work:

Matlab was used to develop the algorithms and produce various results and graphs. The

VHDL code was targeted to the Xilinx 4000 series FPGA, and the Xilinx Foundation

tools were used for that.

7

Chapter 2

Statistical approaches to pattern recognition

There are two aspects to pattern recognition - developing a decision rule and using it. The

actual recognition occurs in the use of the rule, the pattern is defined in the learning

process by the labeled samples. Since ‘O’ could be seen as a ‘circle’ or as a character ‘O’,

the pattern recognition problem thus begins with class definition and labeled samples of

those classes in some workable representation. The problem is solved when a decision

rule is derived which assigns a unique label to new patterns. Pattern recognition is

concerned primarily with the description and analysis of measurements taken from

processes [1]. For this preprocessing is often required to remove noise and measurement

redundancy. An important step for any classification algorithm is feature selection and

extraction from the training data.

2.1 Feature selection (or preprocessing):

Feature selection is the process by which a sample in the measurement space is described

by a finite and usually smaller set of numbers called frames, which become components

of the pattern space. Its based on the hypothesis that the training data follow some natural

rules, which makes presence or absence of data from a given class in a specific location

of the input space predictable. The role of feature extraction is to transform the input

space in possibly a nonlinear fashion establishing separation boundaries between classes.

8

Extraction of features depends on selection of a transformation operator which can be

linear (e.g. projection, wavelets, Fourier transform) or nonlinear [4].

2.2 Histograms:

This approach is one of the oldest to estimate probability density functions. The line in

which the samples occur is divided into several intervals. The probability of a sample

occurring in each interval is defined by the number of sample points in that interval

divided by the total number of sample points. The probability density is the probability

divided by the length of the interval. As the dimensionality increases the number of

sample points needed to estimate the density functions increases enormously and so the

histogram approach is seldom used for estimation of probability density functions.

2.3 Parametric Methods:

This approach defines the descriminant function by a class of probability densities

defined by a relatively small number of parameters. Its generally assumed that each

pattern class arises from a multivariate Gaussian (normal) distribution, where parameters

are the mean and covariance.

9

Two approaches are used for parametric estimation. They are:

• Maximum Likelihood Estimation: parameters are fixed but unknown i.e. it seeks

for parameters which maximizes the probability of obtaining the given training set.

• Bayesian approach: models the to-be-estimated parameters as random variables with

some assumed known distribution. It uses training set to update density function of

known parameters.

Fig 2.1: Determination of parameters for Gaussian distribution.

Fig. 2.2: Illustration of the maximum likelihood approach.

x x x x x x x x x xx x xx

10

Problem with parametric learning is

• It might be difficult to determine a specific form (e.g. Gaussian, Uniform) for the

distribution.

Fig. 2.3: Classification of Gaussian data sets using Bayes classifier

Fig. 2.4: Illustration of Bayes classification error.

11

• The chosen form does not fit one of the estimable formulations.

2.4 Non-parametric methods:

They use parameterized discriminant functions, like the coefficients of a multivariate

polynomial of some degree. No conventional form of probability distribution is assumed.

The following section describes in detail one of the non-parametric approach.

2.4.1 k-NN approach:

The rule is – classify a point as a member of the class to which majority of its k-nearest

neighbors belong [2]. It assumes that distance between points is a legitimate measure of

the similarity of the patterns they represent. The algorithm weights equally all k-nearest

neighbors, no matter what their relative distance from the point in question. In

implementation, nearest neighbor pattern classification requires storage of the entire

sample points and computation of the distance from all to a point in question. Use of this

method requires careful normalization of pattern space and choice of distance and is best

for small number of samples of reasonably low dimension. Figure 2.5 illustrates the kNN

approach.

12

Fig. 2.5: Illustration of the kNN approach.

2.4.2 Parzen window approach:

The Parzen-window approach is a well-know technology for estimating probability

density functions. A density function (the kernel) Ö(x) is used for which: Ö(x) > 0,

V)(=Φ∫ dxx . Having samples xi, then the estimated pdf)(ˆ xp is obtained from [6]:

∑
=

−Φ=
n

i
in xxxp

1n

)(
nV

1
)(ˆ

where n is the total number of data and Vn is the kernel volume:

∫Φ= dxxVn)(n

13

The kernel is usually a function of
)(

1

n
i.e. the larger the number of data the smaller the

kernel. In practice, the number of data is limited and therefore the kernel can not be taken

too small (otherwise, holes and spikes appear in the estimated pdf. In practice Gaussian

kernel is often used and a width is chosen which optimizes the classification

performance. Another practical problem is the computational time and storage for

estimating a pdf value.

Fig. 2.6 Illustration of the Parzen window approach.

14

Chapter 3

Entropy based selection of optimum transformation of input data

In the classification task, a favorable occurrence is when an object (or signal) is correctly

classified. If classification is based on given probability distribution functions, one

possible approach to classify an observed signal is to evaluate pdf functions for different

classes of this observed signal. The signal is classified as an object of the class with the

maximum pdf value. Let us consider a two-class classification problem with pdf

functions as shown in Figure 3.1.

Probability that a signal from class 1 will be correctly classified under this scenario

equals to the integral under pdf1 for all random variables X for which pdf1 > pdf2. Let

us define S1 as a subspace of the input space for which pdf1 > pdf2. In order to obtain the

value of integral ∫
1

dx (pdf1)
S

, a number of schemes were used and are discussed further.

pdf1 pdf2

X

Y

Fig. 3.1: Probability distribution function of two classes.

15

3.1 Cartesian Grid Method: The motivation for this approach arose from the simple

way of integral approximation. The input space is divided into equally sized segments

and integral over each segment is approximated by multiplying the volume of the each

segment by the average value of the integrated function over this volume. Total integral

is approximated by the sum of the segment integrals. Initially a unit grid centered at the

origin is made. Each dimension is divided into equal number of parts given by

‘numPoints’. In order to map the unit grid to the actual points we multiply the original

grid points by maximum standard deviation of the original points and a constant named

‘varstd’. The value of this constant is chosen so that statistically almost 98% of the

points are covered. Having obtained the grid of points in cartesian coordinates we now

perform QR factorization of the actual signal shifted to the origin of the coordinate

system. The resulting two matrices Q and R will be used to obtain a linear transformation

of the input space, where Q is the orthogonal matrix and R is the upper triangular matrix.

Having Q and R we can easily obtain an N-dimensional ellipsoid which encloses the

original points in the input space and can be used to describe n-dimensional probability

density function (pdf) of the data points in the original input space. The original data

points can be transformed to the orthogonal space by using multiplication of the input

signals by R-1. In the orthogonal space, all data points are equally spread around the

origin. Their distribution is approximately Gaussian with the mean value equal to zero

and standard deviation equal to 1/sqrt(m-1), where m is the number of data points (also

equal to standard deviation of the matrix Q). To include most of the data points in an

16

enclosing n-dimensional sphere we multiply the standard deviation by 2.3 (includes close

to 98% of all normally distributed samples).

The enclosing sphere (and the Gaussian probability density function) can be transformed

back to the original input space by taking product of vectors in the orthogonal space with

matrix R. Therefore, the enclosing sphere will be transformed to enclosing ellipsoid in

the input space. Subsequently, all the grid points are transformed to the orthogonal space

spanned by column vectors of matrix Q and points lying outside the enclosing n-

dimensional sphere are discarded. Now, we have reduced the earlier generated grid to a

selected set of points over which we are going to calculate the pdf. The program that

generates the Cartesian grid is called cartplot.m. Figure 3.3 illustrates the 2-dimensional

grid. It shows the original points in ‘o’ and the original grid points with '+'. The ellipse

Fig 3.2: Illustration of uniform and non-uniform grid for direct integration in 1D.

17

Fig. 3.3: 2-dimensional grid.
red (.): ellipse bounding the signal
green (+): original set of points
magenta (o): original signal
blue (*): selected set of points

which bounds the original set of points is shown in red with '-' and the grid points which

are selected and lie within the ellipse are shown with '*'.

18

Figures 3.4 and 3.5 illustrate the 3-dimensional process. The original set of points and

the selected grid points are shown in Figure 3.4, while the original grid points and the

ellipse which bounds the original set of data points are shown in Figure 3.5.

Fig. 3.4: 3-dimensional grid: Original points and the selected grid points.
magenta (o): original set of points
blue (*): selected set of points

19

Fig. 3.5: 3-dimensional grid.
yellow (.): ellipse bounding the signal
blue (.): original set of points

20

3.2 Spherical Grid Method: Cartesian grid approach is simple to use, however it is

not the most numerically efficient way of finding n-dimensional integrals. Considering

specificity of Gaussian functions (exponentially declining values) significant savings in

computations can be obtained. The same accuracy can be obtained with non-uniform

distribution of the grid points and total number of grid points reduced. First, a regular n-

dimensional grid is obtained using polar coordinates. Polar coordinates are described by

specifying the radius and angles in all directions. The increment in radius ∆r1 is obtained

from the function intstep. This function evaluates the steps for integration of normal 1-

dimensional pdf under the assumption that discrete integration using selected points

introduces equal increments of the integral values. Once the increments in radius are

known we make the grid in polar form. The angles vary from 0 to π and radius varies

from 0 to maximum value obtained from intstep function. Starting from the 2-

dimensional case the projection of the radius vector is used to determine the radius of

next higher dimension such that the resulting grid points are equally distributed on the

surface of n-dimensional sphere with radius r1.

To illustrate this process let us assume that we want to obtain a radius and a number of

grid points on a single circle around a 3-dimensional sphere. We assume that the sphere

radius is r1 and the projection angle α1 is used. The radius r2 is obtained from projection

of r2 using

r2 = r1 *cosα1

as shown in Figure 3.6.

21

Radius r2 is needed to determine values of α2, where α2 has the increment

∆α2 = ∆r1/r2

α2 starts from 0 and is incremented by ∆α2 until it reaches π. The number of grid points

on this circle is less than or equal to 2πr2/∆r1. Subsequently r3, which is a radius of a

circle around 4-dimensional sphere, is obtained using:

r3 = r2 *cosα2

Values of α3 are also computed from increment in α3 which is given by:

∆α3 = ∆r1/r3

This continues until the highest dimension is reached. Then with the radius r1 and

varying angles from 0 to π in each dimension we obtain a set of grid points equally

Fig. 3.6: Figure indicating how to obtain radius projection into other dimension.

α2=α1

∆α2 r2

∆α1

α1

r2 = r1*cosα1

∆α1 = ∆r1/r1

22

distributed on the surface of n-dimensional sphere with radius r1. A function Ndsph was

written which generates the entire grid points on this sphere by calling itself recursively.

The procedure Ndsph is repeated for each r1 value which was determined by intstep. The

result is a polar grid of points that fill the upper half of n-dimensional volume. Examples

of generated polar grids for 2 and 3-dimensional volumes are as shown on Figure 3.7 and

Figure 3.8.

Fig. 3.7: 2-dimensional Spherical Grid in rectangular coordinates.

23

Fig. 3.8: 3-dimensional Spherical Grid in rectangular coordinates.

24

These spherical points are then converted to the Cartesian set of points. The formulas

used to convert the spherical coordinates to the Cartesian form are as follows:

Xn = r * sinαn-1

Xn-1 = r * cosαn-1 * sinαn-2

Xn-2 = r * cosαn-1 * cosαn-2 * sinαn-3

 .

 .

X2 = r * cosαn-1 * cosαn-2 * cosαn-3 *.........* cosα2 * sinα1

X1 = r * cosαn-1 * cosαn-2 * cosαn-3 *.........* cosα2 * cosα1

For instance, the Cartesian form of the 2-dimensional grid shown in Figure 3.7 is

illustrated in Figure 3.9. This grid needs to be complemented to fill full n-dimensional

volume by symmetrical projection around the coordinate center, as well as adding the

center point. The resulting grid for 2-dimensional case is shown in Figure 3.10.

25

Fig. 3.9: 2-dimensional Spherical Grid in polar form.

26

Fig. 3.10: 2-dimensional Spherical Grid in Cartesian from, shown in
cartesian coordinates.

27

Once the grid is converted from polar coordinates to Cartesian form, transformation

based on QR factorization is applied and the grid points lying outside the unit circle are

discarded. This method of QR factorization and discarding the points outside the unit

circle is the same as described in Cartesian grid described previously. The program that

makes the spherical grid is called sphnd.m and it calls two routines intstep and Ndsph.

These programs are attached in Appendix. Figure 3.11 illustrates the grid selection

process in which the ‘+’ sign shows the original grid points and ‘o’ shows the original

signal points, ‘*’ indicate the selected grid points and ‘-‘ in red shows the ellipse which

bounds the original set of points and bounds the selected grid points.

28

Fig. 3.11: 2-dimensional Spherical grid.
red (-): ellipse bounding the signal
green (+): original set of points
magenta (o): original signal
blue (*): selected set of points

29

Figures 3.12 and 3.13 show the 3-dimensional case. Figure 3.12 shows the ellipse and the

original set of points, while Figure 3.13 shows the original grid and selected grid points

Fig. 3.12: Ellipse enclosing the original set of points.
Magenta (o): Original Points
Red (.): Ellipse enclosing the original points

30

Fig. 3.13: Original and Selected Grid Points.
Blue (+): Original Grid Points
Green (*): Selected Grid Points

31

3.3 Monte Carlo Method: One of the major drawbacks of Cartesian and Spherical

approach was that with increase in dimension, the number of grid points generated grew

exponentially. Monte Carlo method eliminates this problem by generating a fixed known

number of random points to approximate the integral. In Monte Carlo integration the

estimate of integral ∫
1

dx (pdf1)
S

, is obtained by counting how many random points

generated by pdf1 have pdf1 > pdf2. Then the probability of correct classification for

class 1 is approximated from:

As shown in figure 3.14 all points to the left of point Z have pdf value greater for pdf1

than for pdf2.

A slight modification of the above scheme is to use weighted pdfs. Now a point is

classified as a point of class 1 with the believe level determined by:

Probability =
Total number of random points for which pdf1 > pdf2

Total number of random points generated

pdf1 pdf2

X

Y

Z

Fig. 3.14: Probability based on pdf1 > pdf2.

pdf (x)

pdf (x) + pdf (x)

1

1 2

32

and as a point of class 2 with the believe level determined by:

As a result of weighted pdf functions we need to estimate their integrals with weighted

probabilities. Figure 3.15 shows the region of each weighted probability.

Figure 3.16 illustrates the generation of points in the Monte Carlo method.

pdf (x)

pdf (x) + pdf (x)

2

1 2

Fig. 3.15: Region of each weighted probability.

X

Y

P22w P11w

P12w P21w

33

Fig 3.16 Illustration for Monte-Carlo integration approach – generation of points.

Fig. 3.17 Illustration for Monte-Carlo integration approach – probability

calculation.

34

Fig. 3.18 Relationship between information index and probability of

misclassification.

As is clear from figure 3.18, in order to achieve a high information index, we need to

correctly classify the points i.e. probability of misclassification should be minimum.

The information is determined as

(3.1)

where

(3.2)

info 1
entr

maxentr
= −

entr = -(P1.*log(P1) + P2.*log(P2)) + P1w.*log(P1w) + P2w.*log(P2w) +

 P12w.*log(P12w) + P21w.*log(P21w)

35

and

(3.3)

where

newalgma.m was the main program written for this and it calls two routines infopdfV.m

for one dimensional analysis and infoND.m for higher dimension analysis.

maxentr = -(P1.*log(P1) + P2.*log(P2)) + P11.*log(P11) +

 P22.*log(P22) + 2 * P12.*log(P12)

P11 =
2P1

P1+ P2
 P22 =

2P2
P1+ P2

 P12 =
P1* P2

P1+ P2

36

Chapter 4

Wavelet based transformation

Wavelets are a class of linear transformations of the input data for the purpose of data

compression or representation. Wavelets cut up data into different frequency components,

and then analyze each component with a resolution matched to its scale. The scale that

we use to look at data plays a special role [8]. Wavelet algorithms process data at

different scales or resolutions. They have advantages over traditional Fourier methods in

analyzing physical situations where the signal contains discontinuities and sharp spikes.

Fourier basis functions are localized in frequency but not in time. Small frequency

changes in the Fourier transform will produce changes everywhere in time domain.

Wavelets are local in both frequency and time domain. With wavelet analysis, we can use

approximating functions that are contained neatly in finite domains. This makes wavelets

useful in signal processing, data transmission and pattern recognition. Because the

original signal or function can be represented in terms of a wavelet expansion (using

coefficients in a linear combination of the wavelet functions), data operations can be

performed using just the corresponding wavelet coefficients. Moreover, if we choose the

best wavelet coefficients adapted to our data, (or truncate the wavelet coefficients below

a specified threshold), the data is sparsely represented and require fewer resources for

storage, transmission and processing. Due to this sparse coding, FBI has standardized the

use of wavelets in digital fingerprint image compression.

37

4.1 The Haar Wavelet: The Haar wavelet is the simplest and oldest of all wavelets.

It is generated by the step function taking values 1 and –1, on [0,) and [,1),

respectively. Figure 4.1 shows the graph of Haar wavelet.

One property of the Haar wavelet is that it has compact support, which means that it

vanishes outside of a finite interval. Its discrete value makes it easy to represent and

manipulate on a digital computer. It is also very easy to build a dedicated processing

hardware that implements Haar wavelet. Unfortunately, Haar wavelets are not

continuously differentiable which somewhat limits their applications.

In order to see how Harr transform works, we first consider two numbers a and b. The

average and difference is given as

Now in order for these numbers (avg and diff) to be useful, we must be able to

reconstruct the original numbers from them. In the Haar transform the above two

equations are the basic equations used. Let us assume an input signal of length N which

Fig. 4.1: Haar Wavelet.

avg =
(a + b)

2
 diff = (a - b)

38

we assume to be a power of 2 for simplicity, a0 a1 a2 a3 aN-1. The Haar transform is

defined as

)components e(differenc 1 - 2) / (N ... 0 i where)a - (a H

)components (average 1 - 2) / (N ... 0 i ere wh
2

)a (a
 H

1i*2i*2i 2) / (N

1i*2i*2
i

==

=+=

++

+

The following table shows an example of a signal represented by 8 discrete values and

results on the first level transformation obtained by the presented equations.

(a) Haar Transform Example

a0 a1 a2 a3 a4 a5 a6 a7 Input Signal

0.0 0.5 1.0 0.5 0 -0.5 -1 -0.5

0.25 0.75 -0.25 -0.75 -0.5 0.5 0.5 -0.5 Haar

Coefficients average components

Hi=(a2*i+a2*i+1)/2

where i = 0 ... 3

difference components

H4+i= a2*i - a2*i+1

where i = 0 ... 3

Table 4.1: Haar Transform example.

In the preceding example, the Haar transform was run once (or one level) over the input

signal. The difference component of the first level tells us where dramatic local changes

in the input signal occur. Large differences indicate large change between adjacent input

39

signal values. Differences near zero tell us that adjacent input signal values are somehow

similar. By running the Haar transform again on the first level average and difference

components we can generate information about a larger part of the input signal since each

new coefficient contains information about 4 adjacent input signal values. We repeat the

process until we obtain single average and difference components (which are defined on

the all input signal values). Stated succinctly, each successive transform level reveals

courser frequency (change) information about a larger part of the input signal. If the

signal has N coefficients, then the Haar transform can be run log2 (N) times producing N

coefficients in each run. Table 2 shows the value of Haar wavelet coefficients at each

level and Fig. 4.2 show waveforms that represent the obtained coefficients after each loop

of the Haar transform algorithm. Notice that in this waveform interpretation coefficients

represent the inner product of the input signal and the corresponding waveform.

Input Signal 0 0.5 1 0.5 0 -0.5 -1 -0.5

Level 1 0.25 0.75 -0.25 -0.75 -0.5 0.5 0.5 -0.5

Level 2 0.5 -0.5 -0.5 0.5 0 0 -1 1

Level 3 0 1 0 -1 0 0 0 -2

Table 4.2: Haar wavelet coefficients at each level.

40

Fig. 4.2: Waveform interpretation of Haar coefficients.

41

The following section explains how the Haar transform was used to determine the input

space transformation which maximized information in 1-dimension.

4.2 1 Dimensional Analysis: We start with two classes of signals and perform Haar

transform on them. Once the Haar transform has been performed, the next step is to

evaluate the entropy measure. The entropy measure and its evaluation will be discussed

in the following section. The information thus obtained shows which coefficient if used

in signal preprocessing, will most differentiate the input signals for classification. The

coefficients are reordered in descending order of information content and we select N

coefficients with the maximum information content. Now we are ready for the next

iteration. The program iterates until the change in the maximum information in

successive iterations is less than some epsilon value. At the end of all iterations, we have

used Haar wavelet to determine the best coefficients needed to obtain maximum

information for the classification problem. The obtained transformation of the input

signals is now much more complex than the original Haar wavelets and in fact represents

a dedicated transformation of the input data optimum for a given classification problem.

It was automatically generated by repetitive use of the Haar wavelet. The main program

for the 1-dimensional analysis is onedim.m and it calls two routines, constant.m, which

declares all the constants and, infopdfV.m which determines the entropy.

4.3 Entropy Determination: First the input signals are divided into classes and each

class probability density function is estimated using its mean and standard deviation by:

42

(4.1)

The weighted probability density functions pdfxy are determined based on the probability

density functions of signals from different classes. The information index is determined

as

(4.2)

where

(4.3)

and

(4.4)

The following figures show some examples. Figure 4.3 shows the original signal, figure

4.4 the signal after noise is added, figure 4.5 the measure of information during each

iteration, and figure 4.6 the way the coefficients were mixed to obtain the maximum

information.

pdf
P

x x

x

=
− −

* exp(. * ())0 5

2

2

σ
πσ

σ : mean , : standard deviation

info 1
entr

maxentr
= −

maxentr = -(P1.*log(P1) + P2.*log(P2)) + P11.*log(P11) +

 P22.*log(P22) + 2 * P12.*log(P12)

entr = -(P1.*log(P1) + P2.*log(P2)) + P1w.*log(P1w) + P2w.*log(P2w) +

 P12w.*log(P12w) + P21w.*log(P21w)

43

Fig. 4.3: Original signals.

44

Fig. 4.4: Original signals with noise.

45

Fig. 4.5: Information measure after each iteration.

46

Fig. 4.6: Waveform interpretation of the selected coefficients.

47

In the next two examples, the two signals contain 128 coefficients each. A class of input

signals was then generated from the two input signals by adding random noise. Then

Haar wavelet transformation and the selection of coefficients was performed and repeated

iteratively until there was no further improvement in the information index. Figure 4.7

and 4.11 shows the original signals and the waveform interpretation of the obtained

transformation of the input signals that best differentiates the two signals. As we can see,

the optimized transformation correctly learned where the two signals are different and it

applies different weight to different areas of the input signals to stress the varying

importance of the signals difference. Figure 4.8 and 4.12 shows the information index

after each iteration for only 8 best coefficients, figure 4.9 and 4.13 shows the information

after each iteration for all 128 coefficients, and figure 4.10 and 4.14 shows the way first

four coefficients were composed.

48

Fig. 4.7: Original signals and the evolved waveform that best separates
the two signals.

Signal 1

Signal 2

Coefficient indicating
the difference in signals

49

Fig. 4.8: Entropy measure for best 8 coefficients after each iteration.

50

Fig. 4.9: Entropy measure for all the coefficients after each iteration.

51

Fig. 4.10: Waveform interpretation of the selected coefficients.

Coefficient 1 Coefficient 2

Coefficient 3

Coefficient 4

Composition of each coefficient wrt other coefficients

x-axis: coefficient number, y-axis: strength of each coefficient

52

Fig. 4.11: Original signals and the evolved waveform that best separates
the two signals.

Signal 1

Signal 2

Coefficient indicating the
difference in signals

53

Fig. 4.12: Entropy measure for best 8 coefficients after each iteration.

54

Fig. 4.13: Entropy measure for all the coefficients after each iteration.

55

Fig. 4.14: Waveform interpretation of the selected coefficients.

Composition of each coefficient wrt other coefficients

Coefficient 1 Coefficient 2

Coefficient 3

Coefficient 4

x-axis: coefficient number, y-axis: strength of each coefficient

56

Chapter 5

FPGA realization of Haar Wavelet

Field-Programmable Gate Arrays (FPGAs) are flexible and reusable high-density circuits

that can be (re)configured by the designer, enabling the VLSI

design/validation/simulation cycle to be performed more quickly and cheaply. FPGAs

can implement thousands of logic gates in a single IC and it can be programmed by users

at their site in a few seconds or less depending on the device type used. The design risk

is low and the development time is short. These advantages have made FPGAs very

popular for prototype development, custom computing, digital signal processing, and

logic emulation [9].

XC4000 Series devices are implemented with a regular, flexible, programmable

architecture of Configurable Logic Blocks (CLBs), interconnected by a powerful

hierarchy of versatile routing resources, and surrounded by a perimeter of programmable

Input/Output Blocks (IOBs). They have generous routing resources to accommodate the

most complex interconnect patterns. Because Xilinx FPGAs can be reprogrammed an

unlimited number of times, they can be used in innovative designs where hardware is

changed dynamically, or where hardware must be adapted to different user applications.

FPGA devices can be reconfigured to change logic function while resident in the system.

This capability gives the system designer a new degree of freedom not available with any

other type of logic. Hardware can be changed as easily as software. Design updates or

57

modifications are easy, and can be made to products already in the field. An FPGA can

even be reconfigured dynamically to perform different functions at different times.

Reconfigurable logic can be used to implement system self-diagnostics, create systems

capable of being reconfigured for different environments or operations, or implement

multi-purpose hardware for a given application. As an added benefit, using

reconfigurable FPGA devices simplifies hardware design and debugging and shortens

product time-to-market.

5.1 Basic Functional Blocks: The basic architecture of the XC4000 series is shown

in Figure 5.1. The Xilinx XC4000 series contain three major building blocks [12]:

• Configurable Logic Block (CLB)

• Input/Output Block (IOB)

• Programmable Interconnect

CLB

CLB

CLB

CLB

Switch
Matrix

Programmabl e
Interconnect I/O Blocks (IOBs)

Configurable
Logic Blocks (CLBs)

D Q

Slew
Rate

Control

Passive
Pull-Up,

Pull-Down

Delay

Vcc

Output
Buffer

Input
Buffer

Q D

Pad

D Q
SD

RD
EC

S/R
Control

D Q
SD

RD
EC

S/R
Control

1

1

F'

G'

H'

DIN

F'

G'

H'

DIN

F'

G'
H'

H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G4
G3
G2
G1

F4
F3
F2
F1

C4C1 C2 C3

 K

Y

X

 H1 DIN S/R EC

Fig. 5.1: General architecture of the Xilinx XC4000 FPGA.

58

5.1.1 Configurable Logic Block: This is the main, logic building block in a FPGA. It

consists of two 4-input function generators (F and G) and one 3-input function generator

(H). Together they are capable of implementing a 9-variable function. Each CLB consist

of two storage elements that can either store the output of function generators or can be

independently configured as flip-flops or latches. Figure 5.2 shows the block diagram of

a CLB [12].

5.1.2 Input/Output Block: User configurable input/output blocks (IOBs) provide the

interface between external package pins and the internal logic. Each IOB controls one

Fig. 5.2: Block diagram of a Configurable Logic Block (CLB).

59

package pin and can be configured for input, output, or bi-directional signals. Figure 5.3

shows the block diagram of an IOB [12].

5.1.3 Programmable Interconnect: A high level diagram of the routing resources

associated with one CLB is shown in Figure 5.4. Five interconnect types are

distinguished by the relative length of their segments: single-length lines, double-length

lines, quad lines, octal lines and long lines. In the XC4000 FPGAs, direct connects allow

fast data flow between adjacent CLBs, and between IOBs and CLBs. The horizontal and

vertical single- and double-length lines intersect at a box called a programmable switch

Fig. 5.3: Block diagram of an Input/Output Block (IOB).

60

matrix (PSM). Each switch matrix consists of programmable pass transistors used to

establish connections between the lines (Figure 5.5).

5.2

Fig. 5.4: High level routing diagram of the XC4000 FPGA

Fig. 5.5: Programmable switch matrix

61

5.2 FPGA Implementation of Haar Wavelet: The speed of a neural network can be

significantly increased if data is fed in parallel. For parallel implementation of data,

FPGAs can serve as an ideal source. Hence, a simple parallel architecture was thought

of. Figure 5.6 shows the block diagram for this architecture for an 8-coefficient Haar

wavelet. The registers, adders and difference blocks are triggered at the rising edge of the

clock. At the first clock edge the data is loaded and on the 2nd edge gets out of the

registers to the adder and the difference blocks. At the 3rd clock edge the adder and the

difference blocks perform their respective operations which are described in equations as:

)components e(differenc 1 - 2) / (N ... 0 i where)a - (a H

)components (average 1 - 2) / (N ... 0 i ere wh
2

)a (a
 H

1i*2i*2i 2) / (N

1i*2i*2
i

==

=+=

++

+

The 4th clock edge performs the Haar transform on the data out of the stage 1 of the Haar

transform. This data output is known as stage 2 data and is fed to stage 3, which at the 5th

clock edge produces the final transformed data. The top level description of the

architecture was done in structural flow in VHDL and each block of the register, adder

and difference block were mapped to their respective entities. The code is shown in

Appendix B at page B-1. As is seen, the register block output the input data on clock

edge, the adddiv block computes the average of the two input data and outputs it on the

clock edge. The difference block computes the difference between the two input data and

outputs the difference on the clock edge. The haar entity then stitches together all the

blocks in figure 5.6. Xilinx foundation tools and Synopsis FPGA Express were used to

simulate and synthesize the code and map it to the FPGA. The simulation results are

shown in figure 5.7 and Fig 5.8. Fig 5.7 shows a set of input data and output of each stage

62

at the rising edge of clock. Figure 5.8 shows the parallel nature of the architecture. The

data is continuously fed in parallel and each block performs its operation on the rising

edge and the data appears at the output in parallel. Note that at any clock edge each block

is processing data that was processed by the previous stage at the pervious clock edge,

hence the parallel architecture.

R R R R RRRR

A A A A DDDD

A A D D DDAA

A D A D DADA

D= DIFFERENCE
 With registerd Out

A= AVERAGE
 With registerd Out

R= REGISTER

8 Input
Samples

8 Output
Samples

Fig. 5.6: Parallel architecture of Haar Wavelet (8-inputs).

63

Clock 2
Data gets out of register

Clock 1
Data gets loaded

Clock 3
Output of Level 1

Clock 4
Output of Level 2

Clock 5
Output of Level 3

Fig. 5.7: Simulation Result showing data at various stages at each clock edge.

64

Data input in
parallel

Data out of
registers

Parallel
data out of
level 2

Parallel
data out of
level 3

Parallel
data out of
level 1

Fig. 5.8: Simulation Result showing the parallel nature of the architecture.

65

This thesis was focused on design methodology for automatic learning of the optimum

transformation of the input space based on Haar wavelet structure. Although the

described architecture implements only the Haar wavelet, it can be used as a core

subsystem in a preprocessing system which iteratively uses Harr wavelet, selects

corresponding coefficients and reapply the Haar wavelet transform. Full realization of the

presented concept in FPGA architecture was a subject of another MS thesis [10].

66

5.3 Facts and figures of the implementation: Figure 5.7 shows the layout on the

XC4010XLPQ160 FPGA and Table 5.1 shows the facts about various resources in the

FPGA used.

Number of CLBs 120/400 (30%)

Number of bonded IOBs 129/129 (100%)

Number of global buffers 1/12 (8%)

Total equivalent gate count 3948

Minimum period 25.405 ns

Maximum frequency 39.362 MHz

Maximum net delay 10.365 ns

Average Connection Delay 3.494 ns

Average Connection Delay on critical nets 0.000 ns

Average Clock Skew 0.248 ns

The Maximum Pin Delay 10.365 ns

Average Connection Delay on the 10 Worst Nets 9.184 ns

Table 5.1: Facts about the resources of the FPGA used.

67

Fig. 5.9: Layout of the Haar Wavelet Parallel Architecture on the
XC4010XLPQ160 FPGA.

68

5.4 Advantages and limitations of the parallel architecture: This architecture takes

advantage of the fact that FPGAs can process parallel data very fast. Because of this,

large amount of data can be processed at the same time and this increases the speed of

computation. In addition, the architecture is very simple so it could be easily extended for

128 inputs. However, the number of input/output pins is limited on a given chip. This

puts a limitation on the number of inputs the architecture can have.

69

Chapter 6

Summary and Future Work

Pattern recognition techniques are often an important component of intelligent systems.

With the increase in size and complexity of the feature selection undertaken in pattern

recognition and other areas, people pay more attention to the application of evolutionary

and adaptive learning techniques in this field. It was demonstrated in this work that by

selecting features based on evolutionary use of Haar wavelets, new features with better

classification properties could be obtained. The convergence is very fast. The quality of

the obtained transformation is measured using the entropy based information index. This

index was developed for data sets with estimated probability density functions of

different classes. Any mutual dependence of extracted features is automatically

accounted for by performing Monte Carlo integration in 2 and 3 dimensional space. The

confidence interval of the predicted performance is related to standard deviation of the

information index and depends on the information level and the number of training points

used.

Future work will include extension of the proposed information measure to k-class

problem, training and testing using some real data. In the FPGA implementation, 8-signal

approach could easily be extended to 128 signals. To make a real time reconfigurable

architecture the XC6200 can be the best choice. Besides the parallel architecture

discussed in this thesis, other architectures could be explored and implemented.

70

References

[1] Tzay Y. Young, King-Sun Fu, Handbook of Pattern Recognition and Image

Processing, Academic Press Inc., 1986.

[2] William S. Meisel, Computer Oriented Approaches to Pattern Recognition,

Academic Press Inc., 1972.

[3] Robert Schalkoff, Pattern Recognition: Statistical, Structural and Neural

Approaches, John Wiley & Sons, Inc. 1992.

[4] Dr. Janusz Starzyk, Evolutionary Feature Extraction for SAR Air to Ground

Moving Target Recognition – Statistical Approach, August 1998.

[5] Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition, Academic

Press, 1972.

[6] Xiaohui Liu Cohen, Michael Berthold, Advances in Intelligent Data Analysis,

Reasoning about Data, Second International Symposium, IDA-97, London, UK,

August, 1997

[7] Chi-hau Chen, Statistical Pattern Recognition, Hayden Book Company, Inc.

1978.

[8] Graps Amara, An Introduction to Wavelets, IEEE Computational Science and

Engineering, Vol. 2, No. 2, Summer 1995.

[9] Xilinx, The Programmable Logic Data Book, Xilinx, 1998.

[10] Abdulqadir Al-aqeeli, Reconfigurable Wavelet-Based Architecture for Pattern

Recognition Applications using A Field Programmable Gate Array, MS Thesis,

71

School of Electrical Engineering and Computer Science, Ohio University, Athens,

Ohio, 1998.

[11] XC4000 Data Sheet, at http://www.xilinx.com.

[12] Presentation Materials, at http://www.xilinx.com/univ.htm.

72

Appendix

Appendix A

A.1 Program: haarintp.m

%plotting the interpretation of haar transform
numCoeff=8;
% determine levels????
levls=round(log10(numCoeff)/log10(2));
x=1:numCoeff;

rows=numCoeff;
coeffMatrix=diag(ones(1,numCoeff));
coeffD=coeffMatrix;
for i=1:levls
 coeffC=[];
 begn=1;
 while begn<numCoeff
 oddr=(begn:2:begn+rows-1);
 evnr=(begn+1:2:begn+rows-1);
 coeffA=[];
 coeffB=[];
 for j=1:length(oddr)
 coeffA(j,:)=(coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:))/2;
 coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:);
 end;
 coeffC=[coeffC;coeffA;coeffB];
 begn=begn+rows;
 end; % while
 coeffMatrix=coeffC;
 coeffD=[coeffD;coeffC];
 rows=round(rows/2);
end; %for i

coeffMatrix=coeffD;

%plotting the interpretation of haar transform
range=[0,9,-1.5,1.5];
subplot(10,4,1);
text(0,1,'Variation of one coefficient with other coefficients');
axis('off');

73

for i=1:numCoeff
 subplot(10,4,4*(i-1)+4+1);
 bar(x,coeffMatrix(numCoeff*0+i,:),'r');axis(range);
 subplot(10,4,4*(i-1)+4+2);
 bar(x,coeffMatrix(numCoeff*1+i,:),'m');axis(range);
 subplot(10,4,4*(i-1)+4+3);
 bar(x,coeffMatrix(numCoeff*2+i,:),'g');axis(range);
 subplot(10,4,4*(i-1)+4+4);
 bar(x,coeffMatrix(numCoeff*3+i,:),'b');axis(range);
end;

subplot(10,4,4*(numCoeff+1)+1);
text(0,0,'Original');axis('off');

subplot(10,4,4*(numCoeff+1)+2);
text(0,0,'After 1st loop');axis('off');

subplot(10,4,4*(numCoeff+1)+3);
text(0,0,'After 2nd loop');axis('off');

subplot(10,4,4*(numCoeff+1)+4);
text(0,0,'After 3rd loop');axis('off');

A.2 Program: onedim.m

clear all; % clears all variables and functions from the workspace
pack; % Consolidate workspace memory

constant;

%==================================
% Add noise to each signal
%==================================
for i=1:50
 Matrix(:,i)=signal1+sig1noiselevel*(2*rand(numCoeff,1)-1);
end;
for i=51:100
 Matrix(:,i)=signal2+sig2noiselevel*(2*rand(numCoeff,1)-1);
end;

x=1:numCoeff;

74

% plot original signal.
if plotOriginal==1
 figure;
 plot(x,signal1,'r');
 hold on;
 plot(x,signal2,'b');
 xlabel('Signal coordinate');
 ylabel('Signal value');
 title('Original signals');
end;

% plot noisy signal.
if plotNoisy==1
 figure;
 plot(x,Matrix(:,1:50),'r');
 hold on;
 plot(x,Matrix(:,51:100),'b');
 xlabel('Signal coordinate');
 ylabel('Signal value');
 title('Two signals with a random noise');
end;

figure;

%==================================
% Main loop starts from here
%==================================

% start the main loop and continue till the desired accuracy is achieved.
while abs(currentInfo - previousInfo) > absinfoincr

 IterationNumber=IterationNumber+1;
 fprintf(fid,'Iteration Number = %i\n',IterationNumber);

 % check the iteration being done. if more than 8 then reset it to 1.
 % the reason is that we have only 8 ways of plotting the wave form.
 strindex=mod(IterationNumber,8);
 if strindex==0
 strindex=8;
 end;

%==================================
% Perform Haar Transform
%==================================

75

 rows=numCoeff;
 D=Matrix;
 for i=1:levls
 C=[];
 begn=1;
 while begn<numCoeff
 oddr=(begn:2:begn+rows-1);
 evnr=(begn+1:2:begn+rows-1);
 % this normalization is used to balance Walsh coefficients
 % of a raw signal
 %A=(Matrix(oddr,:)+Matrix(evnr,:))/2;
 A=(Matrix(oddr,:)+Matrix(evnr,:))/2;
 % subtract pairwise
 B=Matrix(oddr,:)-Matrix(evnr,:);
 C=[C;A;B];
 begn=begn+rows;
 end; % while
 Matrix=C;
 D=[D;C];
 rows=round(rows/2);
 end; %for i

 Matrix=D;
 [rowsMatrix colsMatrix] = size(Matrix);

 % make other matrices to easy out some other computations.
 tMatrix = Matrix';
 sig1Matrix = Matrix(:,1:50);
 sig2Matrix = Matrix(:,51:100);

 % determine the minimum and maximum value of the signal.
 rmin = min(tMatrix);
 rmax = max(tMatrix);

 % determine the standard deviation of each signal.
 D1=std (sig1Matrix');
 D2=std (sig2Matrix');

 % determine mean of each signal.
 E1=mean(sig1Matrix');
 E2=mean(sig2Matrix');

% set probability of each signal to be 1.

76

 P1=1;
 P2=1;
 spread=5;
 resolve=200;
 numSteps = 300;
% calculate the information

 info1=infopdfV(P1,P2,E1,E2,D1,D2,spread,numSteps);

% sort the information matrix to extract the best "numCoeff" number of elements.
 [info1 index] = sort(info1);
 orderedinf=fliplr(info1);
 index=fliplr(index);

 plotarray1D = [plotarray1D;orderedinf(1:numCoeff)];
 infoarray=[infoarray;orderedinf(1:numCoeff)];

 if plotInfo1D==1
 axis([1,max(x),0,1]);
 plot(x,orderedinf(1:numCoeff),stringmat(strindex,:));
 xlabel('Most selective coefficients in decreasing order');
 ylabel('Information value');
 title('Selection of coefficients in various iterations');
 hold on;
 end;

% update the values of the information matrix
 previousInfo=currentInfo;
 currentInfo=orderedinf(1);

% reset the Matrix before going into the other loop.
 rownum = index(1:numCoeff);
 Matrix=Matrix(rownum,:);
 selectedcoeffMatrix=[selectedcoeffMatrix;coeffMatrix(rownum,:)];
 fprintf(fid,'Iteration %i complete. Hit any key...\n',IterationNumber);
 keyboard;
end; %while iterations

printVec(infoarray,'infoarray',fidInfo);

%==================================
% Plot the Haar Interpretation
%==================================

77

if plotHarr==1
 M=selectedcoeffMatrix(1:numCoeff,:);
 for i=2:IterationNumber
 M=selectedcoeffMatrix(numCoeff*(i-1)+1:numCoeff*i,:)*M;
 end;

 printVec(M,'Haar Interpretaion',fidHarr);
 %plotting the interpretation of haar transform as bar graph
 figure;
 for i=1:4
 subplot(2,2,i);
 bar(x,M(i,:),'r');
 end;

 %plotting the interpretation of haar transform as signals
 figure;
 plot(signal1,'b')
 hold on
 plot(signal2,'r')
 e=M(1,:);
 en=e/norm(e)*((norm(signal1)+norm(signal2))/2);
 plot(en(1,:),'g')

end; % if plotHarr

if fidHarr ~= 1
 fclose(fidHarr);
 fclose(fidInfo);
end;

A.3 Program: constant.m

numCoeff=128;
i=1:numCoeff;
signal1=sin(2*pi/(numCoeff-1)*i);

signal2=0.75*ones(1,20);
i=21:numCoeff;
signal2=[signal2 sin(2*pi/(numCoeff-1)*i)];
clear('i');
% setup the way each plot of information matrix is to be plotted.
stringmat=['r-';'b-';'g-';'r:';'m:';'y:';'b:';'g:';'r:';'m-'];

78

% noise level to be added to the signal.
sig1noiselevel=1;
sig2noiselevel=1;

% Some epsilons
epsil=0.01;
epsil2=-0.02;

% choice of which plots to plot.
plotOriginal=1;
plotNoisy=1;
plotInfo1D=1;
plotHarr=1;

% initialise the variables
absinfoincr=.005;
previousInfo=0;
currentInfo=1;
IterationNumber=0;
plotarray1D=[];
infoarray=[];

%==================================
% Some file identifier definitions to indicate where to dump data
%==================================
fid=1; % file identifier, used for printing results on the screen.
fidInfo = fopen('c:\users\aman\matlab\work\plotinfo.txt','w');
fidHarr = fopen('c:\users\aman\matlab\work\harrinfo.txt','w');

%==================================
% Make Haar Coefficient Lookup Table
%==================================

levls=round(log10(numCoeff)/log10(2)); % determine levels ????
rows=numCoeff;
coeffMatrix=diag(ones(1,numCoeff));
coeffD=coeffMatrix;
for i=1:levls
 coeffC=[];
 begn=1;
 while begn<numCoeff
 oddr=(begn:2:begn+rows-1);
 evnr=(begn+1:2:begn+rows-1);

79

 coeffA=[];
 coeffB=[];
 for j=1:length(oddr)
 coeffA(j,:)=(coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:))/2;
 coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:);
 end;
 coeffC=[coeffC;coeffA;coeffB];
 begn=begn+rows;
 end; % while
 coeffMatrix=coeffC;
 coeffD=[coeffD;coeffC];
 rows=round(rows/2);
end; %for i
coeffMatrix=coeffD;
selectedcoeffMatrix=[];

A.4 Program: infopdfV.m

function info=infopdfV(P1,P2,E1,E2,D1,D2,spread,numSteps)

% This function finds the entropy measure between two pdf functions
% The sum of probabilities is constant and each probability
% obtained from its pdf is known a priori
% each random variable is described by normal pdf
% pdf=P/(sqrt(2*pi)*D)*exp(-0.5*(x-E)^2./D^2)
% cdf specifies the normal cumulative distribution function

plotPdf1=0;
plotPdf2=0;
entries=length(E1);
case1=[];
case2=[];
case3=[];
for i=1:entries
 if D1(i)~=0 | D2(i)~=0
 case1=[case1,i];
 end;
 if D1(i)==0 & D2(i)==0 & E1(i)==E2(i)
 case2=[case2,i];
 end;

80

 if D1(i)==0 & D2(i)==0 & E1(i)~=E2(i)
 case3=[case3,i];
 end;
end;

xmin=min(E1(case1)-spread*D1(case1) , E2(case1)-spread*D2(case1));
xmax=max(E1(case1)+spread*D1(case1) , E2(case1)+spread*D2(case1));

x=[];
step=(xmax-xmin)/numSteps;
for i=1:length(case1)
 temp=[];
 tempx=xmin(i):step(i):xmax(i);
 if length(tempx) > numSteps
 x(i,:)=tempx(1:numSteps);
 else
 x(i,:)=tempx;
 end;
end;

% now calculate the numerator of pdf1 and pdf2.

numD1=(x - E1(case1)'*ones(1,size(x,2))) ./ (D1(case1)'*ones(1,size(x,2)));
numD2=(x - E2(case1)'*ones(1,size(x,2))) ./ (D2(case1)'*ones(1,size(x,2)));

% calculate pdf1 and pdf2

pdf1=P1*exp(-0.5*numD1.*numD1)./(sqrt(2*pi)*D1(case1)'*ones(1,size(x,2)));
pdf2=P2*exp(-0.5*numD2.*numD2)./(sqrt(2*pi)*D2(case1)'*ones(1,size(x,2)));

if plotPdf1==1
 for i=1:size(pdf1,1)
 plot(x,pdf1(i,:));
 hold on;
 end;
end;

if plotPdf2==1
 for i=1:size(pdf2,1)
 plot(x,pdf2(i,:));
 hold on;
 end;
end;

81

P1=sum(pdf1').*(step);
P2=sum(pdf2').*(step);

% find weight functions p1xx+p2xx=1

p1xx=pdf1./(pdf1+pdf2);
p2xx=1-p1xx;

% find weighted pdfs

pdf1x=pdf1.*p1xx;
pdf2x=pdf2.*p2xx;
pdf12x=pdf1.*p2xx;
pdf21x=pdf2.*p1xx;

% evaluate weighted probabilities

P1w=sum(pdf1x').*step;
P2w=sum(pdf2x').*step;
P12w=sum(pdf12x').*step;
P21w=sum(pdf21x').*step;

% find the entropy measure

entr = -(P1.*log(P1)+P2.*log(P2)) + P1w.*log(P1w)+P2w.*log(P2w)+
P12w.*log(P12w)+ P21w.*log(P21w);

% find information

P11=P1.^2./(P1+P2);
P22=P2.^2./(P1+P2);
P12=P1.*P2./(P1+P2);

maxentr=-(P1.*log(P1)+P2.*log(P2))+P11.*log(P11)+P22.*log(P22)+2*P12.*log(P12);
info(1,case1)=1-entr./maxentr;

% now we find the indeces where D1==D2==0 and E1==E2

case2=[];
for i=1:entries
 if D1(i)==0 & D2(i)==0 & E1(i)==E2(i)
 case2=[case2,i];
 end;
end;

82

info(case2)=zeros(1,length(case2));
info(case3)=ones(1,length(case3));
return;

A.5 Program: cartplot.m

clear;

innumPoints=25;

% any two dimensional matrix
X=[8 6;8 7;8 8;8 9;9 7;9 10;10 8;10 9;10 11;11 8;11 11; ...
 12 9;12 10; 12 12;13 9;13 11;13 13;14 12;15 13;15 14];
%X=[X 10*rand(size(X,1),1)];

% find center
X0=mean(X);
n=size(X,2);
X=X-ones(size(X,1),1)*X0; % X shifted to the origin
numPoints=2*ceil((innumPoints+n^2)^(1/n))+1;

%==================================
% Make Grid of Cartesian points
%==================================

% a unit grid centered at origin
delta=(2)/(numPoints-1);
Gridf=[-1:delta:1]';
temp=-1:delta:1;
for dim=2:n
 x_=[];
 for i=1:length(temp)
 x_=[x_; Gridf ones(size(Gridf,1),1)*temp(i)];
 end;
 Gridf=x_;
end;

varstd=2.3;
[Q,R]=qr(X);
R=R(1:n,:);
TX=Gridf*varstd*max(std(X));

83

TX=TX*R^(-1);

% set a circle with the radius
ellradius=varstd*std(Q(1,:));

TX=TX; % Transforming unit grid into the actual coordinates
Gridf=Gridf*varstd*max(std(X)); % Transforming unit grid into the actual coordinates

% relative distances of the test points
TX1=TX.^2;
distances=sqrt(sum(TX1'));

select=find(distances<ellradius);
Gridell=Gridf(select,:);

%==================================
% Make an ellipse which will enclose the original points
%==================================
Z=[ellradius];
t=2*pi*(0:50)/51;
for dim=2:n
 tempZ=[];
 for rows=1:size(Z,1)
 z_=[];
 for cols=1:length(t)
 z_=[z_;Z(rows,:)];
 end;
 tempZ=[tempZ;z_ t'];
 end;
 Z=tempZ;
end;

% convert cartesian points of ellipse to spherical coordinates
Angle=Z(:,2:n);
if n==2
 cosVector=[cos(Angle) ones(size(Angle,1),1)];
else
 cosVector=[fliplr(cumprod(cos(Angle'))') ones(size(Angle,1),1)];
end;
sinVector=[ones(length(Angle),1) fliplr(sin(Angle))];
for i=1:size(Z,1)
 Z(i,:)=Z(i,1)*(cosVector(i,:).*sinVector(i,:));

84

end;
Z=Z*R;
Z=Z+ones(size(Z,1),1)*X0;

X=X+ones(size(X,1),1)*X0;
Gridf=Gridf+ones(size(Gridf,1),1)*X0;
Gridell=Gridell+ones(size(Gridell,1),1)*X0;
hold off;
if n==2
 plot(Gridf(:,1),Gridf(:,2),'g+');
 hold on;
 plot(Gridell(:,1),Gridell(:,2),'b*');
 plot(Z(:,1),Z(:,2),'r-');
 plot(X(:,1),X(:,2),'mo');
 title('2-dimensional grid');
 xlabel('x-axis')
 ylabel('y-axis')
elseif n==3
 plot3(Gridf(:,1),Gridf(:,2),Gridf(:,3),'g.');
 hold on;
 plot3(Z(:,1),Z(:,2),Z(:,3),'y.');
 figure;
 plot3(Gridell(:,1),Gridell(:,2),Gridell(:,3),'b*');
 hold on;
 plot3(X(:,1),X(:,2),X(:,3),'mo');
 title('3-dimensional grid');
 xlabel('x-axis')
 ylabel('y-axis')
 zlabel('z-axis')
end;

A.6 Program: sphnd.m

%function [Gridf, stepinfo, legntvar]=sphnd(X,fid);

%if (nargin<1)|(nargin>2)
% error('Error using sphnd..[Gridf, stepinfo, legntvar]=sphnd(X<,fid>');
%end;

%if nargin==1
 fid=1;
%end;

85

X=[8 6;8 7;8 8;8 9;9 7;9 10;10 8;10 9;10 11;11 8;11 11; ...
12 9;12 10; 12 12;13 9;13 11;13 13;14 12;15 13;15 14];
X=[X 10*rand(size(X,1),1)];

% find center
X0=mean(X);
n=size(X,2);
X=X-ones(size(X,1),1)*X0;

%plotting variables..
plotRadiusAngle=1;
plotGrid=0;
plot_confined_ellipse=1;

% del specifies step size wrt to the standard deviation
del=0.1;
variable=intstep(del);
legntvar=length(variable);
spread=max(std(X));
variable=variable*spread;
radius=variable(2:length(variable));
deltaAlpha=((radius-variable(1:size(variable,2)-1))./radius);
deltaAlpha=pi./(round(pi./deltaAlpha)); % here deltaAlpha is in radians..

%===%
% Start making the Grid
%===%
Gridf=[];
stepinfo=[];
for k=1:length(radius)
 if k==1
 dr=radius(k);
 else
 dr=radius(k)-radius(k-1);
 end;
 Angle=[0 :deltaAlpha(k): pi-deltaAlpha(k)];
 prev_rows=size(Gridf,1);
 if n==2
 Gridf=[Gridf;radius(k)*ones(length(Angle),1) Angle'];
 else
 Gridf=[Gridf; Ndsph(radius(k),Angle,dr,n,radius(k))];
 end;
 curr_rows=size(Gridf,1);

86

 stepinfo=[stepinfo;dr*ones(curr_rows-prev_rows,1)];
end; % for k

if plotRadiusAngle==1
 figure;
 if n==2
 polar(Gridf(:,2),Gridf(:,1),'ro');
 title('Two dimensional Polar grid');
 xlabel('angle');
 ylabel('radius');
 elseif n>=3
 plot3(Gridf(:,1),Gridf(:,3),Gridf(:,2),'ro');
 title('Three dimensional Spherical Grid in rectangular co-ordinates');
 view(-10,20);
 xlabel('radius');
 ylabel('alpha');
 zlabel('beta');
 end;
end;

% convert cartesian grid points to spherical coordinates system.
Angle=Gridf(:,2:n);
if n==2
 cosVector=[cos(Angle) ones(size(Angle,1),1)];
else
 cosVector=[fliplr(cumprod(cos(Angle'))') ones(size(Angle,1),1)];
end;
sinVector=[ones(length(Angle),1) fliplr(sin(Angle))];
for i=1:size(Gridf,1)
 Gridf(i,:)=Gridf(i,1)*(cosVector(i,:).*sinVector(i,:));
end;

Gridf=[-flipud(Gridf);zeros(1,n);Gridf];
stepinfo=[flipud(stepinfo);stepinfo(1);stepinfo];

if plotGrid==1
 figure;
 if n==2
 plot(Gridf(:,2),Gridf(:,1),'ro');
 title('two dimensional polar grid');
 xlabel('x-coordinate');
 ylabel('y-coordinate');
 elseif n>=3
 onlyOneSphere=0;

87

 if onlyOneSphere==1
 eps=.01;
 Gridpl=[];
 radius1=norm(Gridf(1,:));
 for j=1:size(Gridf,1)
 if radius1-eps<norm(Gridf(j,:)) & norm(Gridf(j,:))<radius1+eps
 Gridpl=[Gridpl; Gridf(j,:)];
 end; % if
 end; % for j
 plot3(Gridpl(:,3),Gridpl(:,2),Gridpl(:,1),'ro');
 title('three dimensional sphere');
 else
 plot3(Gridf(:,3),Gridf(:,2),Gridf(:,1),'ro');
 title('three dimensional polar grid');
 end;
 view(-10,20);
 xlabel('beta');
 ylabel('alpha');
 zlabel('radius');
 end;
end;

[Q,R]=qr(X);
R=R(1:n,:);
X=X+ones(size(X,1),1)*X0;
% make an enclosing ellipsoid
t=2*pi*(0:50)/51;
TX=Gridf;
TX=TX*R^(-1);
% set a circle with the radius of two std
ellradius=2.3*std(Q(1,:));
% relative distances of the test points
TX=TX.^2;
distances=sqrt(sum(TX'))/ellradius;

%===%
% Make an ellipse enclosing the original signal and selected grid points.
%===%
Z=[ellradius];
for dim=2:n
 tempZ=[];
 for rows=1:size(Z,1)
 z_=[];

88

 for cols=1:length(t)
 z_=[z_;Z(rows,:)];
 end;
 tempZ=[tempZ;z_ t'];
 end;
 Z=tempZ;
end;

% convert cartesian ellipse points to spherical coordinates
Angle=Z(:,2:n);
if n==2
 cosVector=[cos(Angle) ones(size(Angle,1),1)];
else
 cosVector=[fliplr(cumprod(cos(Angle'))') ones(size(Angle,1),1)];
end;
sinVector=[ones(length(Angle),1) fliplr(sin(Angle))];
for i=1:size(Z,1)
 Z(i,:)=Z(i,1)*(cosVector(i,:).*sinVector(i,:));
end;

Z=Z*R;
Z=Z+ones(size(Z,1),1)*X0;

select=find(distances<1);
Gridell=Gridf(select,:);
stepinfo=stepinfo(select);
Gridell=Gridell+ones(size(Gridell,1),1)*X0;
if plot_confined_ellipse == 1
 currFigNO=gcf+1;
 figure(currFigNO);
 hold off;
 if n==2
 Gridf=Gridf+ones(size(Gridf,1),1)*X0;
 plot(Gridf(:,1),Gridf(:,2),'g+');
 hold on;
 plot(Gridell(:,1),Gridell(:,2),'b*');
 plot(Z(:,1),Z(:,2),'r-');
 plot(X(:,1),X(:,2),'mo');
 xlabel('Radius:->');
 ylabel('Angle:->');
 title('Ellipse showing the selected grid points only');
 else
 plot3(Z(:,1),Z(:,2),Z(:,3),'r.');
 hold on;

89

 plot3(X(:,1),X(:,2),X(:,3),'mo');
 xlabel('Radius:->');
 ylabel('Alpha:->');
 zlabel('Beta:->');
 title('Ellipse enclosing the original points');
 figure;
 Gridf=Gridf+ones(size(Gridf,1),1)*X0;
 plot3(Gridf(:,1),Gridf(:,2),Gridf(:,3),'b+');
 hold on;
 plot3(Gridell(:,1),Gridell(:,2),Gridell(:,3),'g*');
 xlabel('Radius:->');
 ylabel('Alpha:->');
 zlabel('Beta:->');
 title('Original grid points and selected grid points');
 end;
end; % if plot_confined_ellipse==1
%Gridf=Gridell;
%return;

A.7 Program: intstep.m

function x=intstep(del)
%
% This function evaluates steps for integration of normal pdf
% under the assumption that discrete integration using
% selected points introduces equal integral values.
% intgrl=pdf(x1)*del
% where x2=x1+del is the next selection point, and x1=0, eps<<1
% In order to solve this equation an error function is calcultaed
% del is obtained using an iterative process
% intgrl=cpdf(x2)-cpdf(x1)
% del=x2-x1
%

ddel=1;
x1=0;
x=x1;
incr=[];

% evaluate the epsilon value

eps=normcdf(x1+del,0,1)-normcdf(x1,0,1);

90

% set the min % increment for del

epsdel=.01;

% find sequence of x variable values
while abs(x1)<=5
 while ddel>abs(epsdel*del)
 ferr=normcdf(x1+del,0,1)-normcdf(x1,0,1)-eps;
 derferr=normpdf(x1+del,0,1);
 if derferr==0
 break;
 end;
 deldel=(-ferr/derferr);
 del=del+deldel;
 ddel=abs(deldel);
 end; % while ddel
 x1=x1+del;
 ddel=1;
 incr=[incr del];
 x=[x x1];
end; % while x1

if derferr==0
 incr=incr(1:size(incr,2)-1);
 x=x(1:size(x,2)-1);
end;

A.8 Program: Ndsph.m

function Gridf=Ndsph(radius,alpha,dr,iter,inGrid)

inGrid;

if iter==2
 Gridf=inGrid;
else
 Gridf=[];
 for i=1:length(alpha)
 tempGrid=[inGrid alpha(i)];
 r1=radius*abs(cos(alpha(i)));
 dAlpha1=dr/r1;

91

 Angle1=[0 :dAlpha1: pi-dAlpha1];
 if iter-1==2
 for j=1:size(tempGrid,1)
 outGrid=[ones(length(Angle1),1)*tempGrid(j,:) Angle1'];
 end;
 Gridf=[Gridf;outGrid];
 else
 Gridf=[Gridf;Ndsph(radius,Angle1,dr,iter-1,tempGrid)];
 end;
 end; % for i
end;
return;

A.9 Program: newalgma.m

% this program generates noisy signals out of two
% prototypes and applies pdf based information measure
% to identify the best disciminants for the generated
% signals using repeated Haar transform

% some environment setups..
clear all; % clears all variables and functions from the workspace
pack; % Consolidate workspace memory
clf; % clears the figure
clc;

start=cputime;
hold off;
absinfoincr=.005;
rreddesinfo=.1;

computer=4;
fid=1;
if computer==1
 %fid = fopen('/home/homer/1/c/asareen/matlab/dumpdata.txt','w');
 fiddata = fopen('/home/homer/1/c/asareen/matlab/plotdata.txt','w');
 fiderror = fopen('/home/homer/1/c/asareen/matlab/error.txt' ,'w');
 fidPs = fopen('/home/homer/1/c/asareen/matlab/p1p2.txt' ,'w');
 fidinfo = fopen('/home/homer/1/c/asareen/matlab/plotinfo.txt','w');
elseif computer==2
 %fid = fopen('d:\users\aman\matlab\work\dumpdata.txt','w');
 fiddata = fopen('d:\users\aman\matlab\work\plotdata.txt','w');

92

 fiderror = fopen('d:\users\aman\matlab\work\error.txt' ,'w');
 fidPs = fopen('d:\users\aman\matlab\work\p1p2.txt' ,'w');
 fidinfo = fopen('d:\users\aman\matlab\work\plotinfo.txt','w');
elseif computer==3
 %fid = fopen('c:\users\aman\matlab\work\dumpdata.txt','w');
 fiddata = fopen('c:\users\aman\matlab\work\plotdata.txt','w');
 fiderror = fopen('c:\users\aman\matlab\work\error.txt' ,'w');
 fidPs = fopen('c:\users\aman\matlab\work\p1p2.txt' ,'w');
 fidinfo = fopen('c:\users\aman\matlab\work\plotinfo.txt','w');
else
fiddata=1;
fiderror=1;
fidPs=1;
fidinfo=1;
end;

% setup the way each plot of information matrix is to be plotted.

%stringmat=['kx-';'b*-';'g+-';'ro:';'m*:';'kv:';'bd:';'gs:';'rh:';'mp-'];
stringmat=['r-';'b-';'g-';'r:';'m:';'b:';'g:';'r:';'m-'];

load c:\users\aman\matlab\work\sigFile

numCoeff=size(N,1);
Matrix=N/max(max(N));
cols=size(Matrix,2);
signal1=Matrix(:,1);
signal2=Matrix(:,cols/2+1);

% determine levels ????
levls=round(log10(numCoeff)/log10(2));
x=1:numCoeff;

rows=numCoeff;
coeffMatrix=diag(ones(1,numCoeff));
coeffD=coeffMatrix;
for i=1:levls
 coeffC=[];
 begn=1;
 while begn<numCoeff
 oddr=(begn:2:begn+rows-1);
 evnr=(begn+1:2:begn+rows-1);
 coeffA=[];

93

 coeffB=[];
 for j=1:length(oddr)
 coeffA(j,:)=(coeffMatrix(oddr(j),:) + coeffMatrix(evnr(j),:))/2;
 coeffB(j,:)=coeffMatrix(oddr(j),:) - coeffMatrix(evnr(j),:);
 end;
 coeffC=[coeffC;coeffA;coeffB];
 begn=begn+rows;
 end; % while
 coeffMatrix=coeffC;
 coeffD=[coeffD;coeffC];
 rows=round(rows/2);
end; %for i

coeffMatrix=coeffD;
selectedcoeffMatrix=[];

% choice of which plots to plot.
plotOriginal=1;
plotNoisy=1;
plotInfo1D=1;
plotInfo2D=1;

getsigs=0;
if getsigs==1
 % define signals here.
 signal1=[0.05, 0.53, 1.01, 0.56, 0.07, -0.501, -1.03, -0.52]';
 signal2=[0.0033, 1.04, 0.002, -1.09, 0.03, 0.504, 2.2, 0.006]';

 %signal2=[1, .5 -.5 .5 1 -.5 0 .5]';
 epsil=0.01;
 epsil2=-0.02;
 %signal1=epsil+[0. 0.25, 0.5, 0.75, 1, 0.75, 0.5, 0.25, 0, -0.25, -0.5, -0.75, -1, -0.75, -
0.25, 0]';
 %signal2=epsil2+[0, 0, -0.2, -0.5, -1, -0.85, -0.75, -0.1, 0.1, 0.5, 1, 0.1, -0.4, -0.85, -
0.75, 0]';
 %signal1=epsil+[0, 0, -0.1, 0, 0, 0.05, 0, -0.1, 0.1, 0.5, 1, 0.1, -0.05, 0.05, 0.05, 0]';

 % Number of coefficients of the Signal.
 numCoeff=length(signal1);

 % add noise to each signal

 sig1noiselevel=6;
 sig2noiselevel=6;

94

 Matrix=[];
 for i=1:50
 Matrix(:,i)=signal1+sig1noiselevel*rand(numCoeff,1);
 end;
 for i=51:100
 Matrix(:,i)=signal2+sig2noiselevel*rand(numCoeff,1);
 end;
end;

% plot original signal.
if plotOriginal==1
 figure;
 plot(signal1,'r');
 hold on;
 plot(signal2,'b');
 xlabel('Signal coordinate');
 ylabel('Signal value');
 title('Original signals');
end;

% plot noisy signal.
if plotNoisy==1
 figure;
 plot(Matrix(:,1:cols/2),'r');
 hold on;
 plot(Matrix(:,cols/2+1:cols),'b');
 xlabel('Signal coordinate');
 ylabel('Signal value');
 title('Two signals with a random noise');
end;

% initialise the variables
previousInfo=0;
currentInfo=1;
iterations=1;
numOfLoops=0;
plotarray1D=[];
plotarray2D=[];
infoarray=[];
figure;

% start the main loop and continue till the desired accuracy is achieved.
%while abs(currentInfo - previousInfo) > absinfoincr & abs(currentInfo-previousInfo)/(1-
previousInfo)>rreddesinfo

95

while abs(currentInfo - previousInfo) > absinfoincr
 IterationNumber=iterations+8*numOfLoops;
 fprintf(fid,'Iteration Number = %i\n',IterationNumber);
 iterations=iterations+1;
 % check the iteration being done. if more than 8 then reset it to 1.
 % the reason is that we have only 8 ways of ploting the wave form.
 if iterations>8
 numOfLoops=numOfLoops+1;
 iterations=1;
 end;

 rows=numCoeff;
 D=Matrix;
 for i=1:levls
 C=[];
 begn=1;
 while begn<numCoeff
 oddr=(begn:2:begn+rows-1);
 evnr=(begn+1:2:begn+rows-1);
 % this normalization is used to balance Walsh coefficients
 % of a raw signal
 %A=(Matrix(oddr,:)+Matrix(evnr,:))/2;
 A=(Matrix(oddr,:)+Matrix(evnr,:))/2;
 % subtract pairwise
 B=Matrix(oddr,:)-Matrix(evnr,:);
 C=[C;A;B];
 begn=begn+rows;
 end; % while
 Matrix=C;
 D=[D;C];
 rows=round(rows/2);
 end; %for i

 Matrix=D;
 [rowsMatrix colsMatrix] = size(Matrix);

 % make other matrices to easy out some other computations.
 tMatrix = Matrix';
 sig1Matrix = Matrix(:,1:cols/2);
 sig2Matrix = Matrix(:,cols/2+1:cols);

 % determine the minimum and maximum value of the signal.
 rmin = min(tMatrix);
 rmax = max(tMatrix);

96

 % determine the standard deviation of each signal.
 D1=std (sig1Matrix');
 D2=std (sig2Matrix');

 % determine mean of each signal.
 E1=mean(sig1Matrix');
 E2=mean(sig2Matrix');

% set probability of each signal to be 1.
 P1=1;
 P2=1;

 spread=5;
 resolve=200;
 numSteps = 300;
% calculate the information

 info1=infopdfV(P1,P2,E1,E2,D1,D2,spread,numSteps);

% sort the information matrix to extract the best "numCoeff" number of elements.
 [info1 index] = sort(info1);
 orderedinf=fliplr(info1);
 previnfo = orderedinf(1);
 index=fliplr(index);
 plotarray1D = [plotarray1D;orderedinf(1:numCoeff)];
 infoarray=[infoarray;orderedinf(1:numCoeff)];
 if plotInfo1D==1
 subplot(1,2,1);
 axis([1,max(x),0,1]);
 plot(x,orderedinf(1:numCoeff),stringmat(iterations,:));
 xlabel('Most selective coefficients in decreasing order');
 ylabel('Information value');
 title('Selection of coefficients in various iterations');
 hold on;
 end;
 maxinfo=orderedinf(1);

 numPoints=200;
 dimension=3;
 for i=2:dimension
 fprintf(fid,'Working on %i dimensions\n',i);
 selectMatrix=Matrix(index(1:i-1),:);
 selectedIndex=index(1:i-1);

97

 for j=1:size(Matrix,1)
 if length(find(selectedIndex==j)) > 0
 info_ = previnfo;
 tempinfo(j) = info_;
 else
 tempMatrix=[selectMatrix;Matrix(j,:)];
 sig1Matrix = tempMatrix(:,1:cols/2);
 sig2Matrix = tempMatrix(:,cols/2+1:cols);
 Mean1=mean(sig1Matrix');
 Mean2=mean(sig2Matrix');
 Cov1=cov(sig1Matrix');
 Cov2=cov(sig2Matrix');
 P1=1;P2=1;
 eps=10^(-12);
 if abs(det(Cov1))<eps & abs(det(Cov2))<eps
 tempinfo(j)=maxinfo;
 else
 %keyboard;
 %info_1=newalgof(sig1Matrix',sig2Matrix')
 info_=infoND(sig1Matrix',sig2Matrix',Mean1,Mean2,Cov1,Cov2,P1,P2);
 tempinfo(j) = info_;
 end;
 end; % if length(find(selectedIndex==j)) > 0
 end; % for j
 [info1 index] = sort(tempinfo);
 orderinf=fliplr(info1);
 index=fliplr(index);
 infoarray=[infoarray;orderinf(1:numCoeff)];
 maxinfo=orderinf(1);
 end; % for i=2:dimension
 plotarray2D=[plotarray2D;orderinf(1:numCoeff)];
% printVec(plotarray1D,'plotarray1D',fiddata);
% printVec(plotarray2D,'plotarray2D',fiddata);
% printVec(infoarray,'infoarray',fidinfo);

% update the values of the information matrix
 previousInfo=currentInfo;
 currentInfo=orderinf(1);
% plot the information matrix.
 if plotInfo2D==1
 subplot(1,2,2);
 axis([1,max(x),0,1]);
 plot(x,orderinf(1:numCoeff),stringmat(iterations,:));
 xlabel('Most selective coefficients in decreasing order');

98

 ylabel('Information value');
 title('Selection of coefficients in various iterations');
 hold on;
 end;
% reset the Matrix before going into the other loop.
 rownum = [selectedIndex index(1:numCoeff-1)];
 Matrix=Matrix(rownum,:);
 selectedcoeffMatrix=[selectedcoeffMatrix;coeffMatrix(rownum,:)];
fprintf(fid,'Iteration %i complete. Hit any key...\n',IterationNumber);
%pause;
%if IterationNumber==2 dbstop; end;
end; %while iterations

if fiddata==1
else
 fclose(fiddata);
 fclose(fiderror);
 fclose(fidPs);
 fclose(fidinfo);
end;

TimeTaken=cputime-start

plotharr=1;
if plotharr==1
 M=selectedcoeffMatrix(1:numCoeff,:);
 for i=2:IterationNumber
 M=selectedcoeffMatrix(numCoeff*(i-1)+1:numCoeff*i,:)*M;
 end;

 figure;
 %plotting the interpretation of haar transform

 for i=1:4
 subplot(2,2,i);
 bar(x,M(i,:),'r');
 end;
end; % if plotHarr

figure;
plot(signal1,'b')
hold on

99

plot(signal2,'r')
e=M(1,:);
en=e/norm(e)*((norm(signal1)+norm(signal2))/2);
plot(en(1,:),'g')

A.10 Program: infoND.m

function info=infoND(signal1,signal2,Mean1,Mean2,Cov1,Cov2,P1,P2)

% this function evaluates the information index for two n-dimensional
% distributions
% signal1, and signal2 represent two sets of random signals with
% normal distribution and mean values Mean1 and Mean2
% as well as covariance matrices Cov1 and Cov2
% P1 and P2 are apriori probabilities of the two signals

% generate points by gausian(normal)distribution
% points=randn(m,n);
% generate two signals
% signal1=points*R1+ones(m,1)*V1;
% signal2=points*R2+ones(m,1)*V2;

m=size(signal1,1);
n=size(signal1,2);

% this function finds information for n-dimensional pds functions
% described by Mean1, Mean2, vectors and Cov1 and Cov2 matrices
% signal1 are random points generated by pdf1 distribution
% and signal2 are points generated by pdf2

x1_mean1=signal1-ones(m,1)*Mean1;
x2_mean2=signal2-ones(m,1)*Mean2;
x2_mean1=signal2-ones(m,1)*Mean1;
x1_mean2=signal1-ones(m,1)*Mean2;

x_ic_xt=inv(Cov1) * x1_mean1';
nexp=zeros(size(x1_mean1,1),1);
for jj=1:size(Cov1,1)
 nexp=nexp+x1_mean1(:,jj).*x_ic_xt(jj,:)';
end;

pdf11=P1*exp(-0.5 * nexp) / sqrt((2*pi)^n*abs(det(Cov1)));

100

x_ic_xt=inv(Cov2) * x2_mean2';
nexp=zeros(size(x1_mean1,1),1);
for jj=1:size(Cov1,1)
 nexp=nexp+x2_mean2(:,jj).*x_ic_xt(jj,:)';
end;

pdf22=P2*exp(-0.5 * nexp) / sqrt((2*pi)^n*abs(det(Cov2)));

x_ic_xt=inv(Cov1) * x2_mean1';
nexp=zeros(size(x1_mean1,1),1);
for jj=1:size(Cov1,1)
 nexp=nexp+x2_mean1(:,jj).*x_ic_xt(jj,:)';
end;
pdf21=P1*exp(-0.5 * nexp) / sqrt((2*pi)^n*abs(det(Cov1)));

x_ic_xt=inv(Cov2) * x1_mean2';
nexp=zeros(size(x1_mean1,1),1);
for jj=1:size(Cov1,1)
 nexp=nexp+x1_mean2(:,jj).*x_ic_xt(jj,:)';
end;

pdf12=P2*exp(-0.5 * nexp) / sqrt((2*pi)^n*abs(det(Cov2)));

P1w=P1/m*sum(pdf11./(pdf11+pdf12));
P2w=P2/m*sum(pdf22./(pdf21+pdf22));
P12w=P1/m*sum(pdf12./(pdf11+pdf12));
P21w=P2/m*sum(pdf21./(pdf21+pdf22));

if P1w==0 P1w=1; end;
if P2w==0 P2w=1; end;
if P12w==0 P12w=1; end;

% find the entropy measure

entr=P1w*log(P1w)+P2w*log(P2w)+P12w*log(P12w)+P21w*log(P21w) -
(P1*log(P1)+P2*log(P2));

% find the information

P11=P1^2/(P1+P2);
P22=P2^2/(P1+P2);
P12=P1*P2/(P1+P2);

101

maxentr=P11*log(P11)+P22*log(P22)+2*P12*log(P12) -(P1*log(P1)+P2*log(P2));
info=1-entr/maxentr;

102

Appendix B

B.1 Program: Haar.vhd

LIBRARY ieee;
USE ieee.ALL;

ENTITY haar IS
 PORT (
 clock : IN bit;

 -- Inputs
 in1 : IN integer RANGE -127 TO 127;
 in2 : IN integer RANGE -127 TO 127;
 in3 : IN integer RANGE -127 TO 127;
 in4 : IN integer RANGE -127 TO 127;
 in5 : IN integer RANGE -127 TO 127;
 in6 : IN integer RANGE -127 TO 127;
 in7 : IN integer RANGE -127 TO 127;
 in8 : IN integer RANGE -127 TO 127;

 --Outputs
 out1 : OUT integer RANGE -127 TO 127;
 out2 : OUT integer RANGE -127 TO 127;
 out3 : OUT integer RANGE -127 TO 127;
 out4 : OUT integer RANGE -127 TO 127;
 out5 : OUT integer RANGE -127 TO 127;
 out6 : OUT integer RANGE -127 TO 127;
 out7 : OUT integer RANGE -127 TO 127;
 out8 : OUT integer RANGE -127 TO 127
);
END haar;

ARCHITECTURE haar OF haar IS

 COMPONENT bufgs
 PORT (
 i : IN bit;
 o : OUT bit
);
 END COMPONENT;

 COMPONENT reg

103

 PORT (
 input : IN integer RANGE -127 TO 127;
 clk : IN bit;
 output : OUT integer RANGE -127 TO 127
);
 END COMPONENT;

 COMPONENT adddiv
 PORT (
 a : IN integer RANGE -127 TO 127;
 b : IN integer RANGE -127 TO 127;
 clk : IN bit;
 c : OUT integer RANGE -127 TO 127
);
 END COMPONENT;

 COMPONENT difference
 PORT (
 a : IN integer RANGE -127 TO 127;
 b : IN integer RANGE -127 TO 127;
 clk : IN bit;
 c : OUT integer RANGE -127 TO 127
);
 END COMPONENT;

 SIGNAL out_r1, out_r2, out_r3, out_r4, out_r5, out_r6, out_r7,
 out_r8 : integer RANGE -127 TO 127;
 SIGNAL out_a1, out_a2, out_a3, out_a4, out_a5, out_a6, out_a7,
 out_a8 : integer RANGE -127 TO 127;
 SIGNAL out_s1, out_s2, out_s3, out_s4, out_s5, out_s6, out_s7,
 out_s8 : integer RANGE -127 TO 127;
 SIGNAL clk : bit;

BEGIN
 xbufgs: bufgs
 PORT MAP (
 clock,
 clk
);
 -- Input to Register here
 r1: reg
 PORT MAP (in1, clk, out_r1);
 r2: reg

104

 PORT MAP (in2, clk, out_r2);
 r3: reg
 PORT MAP (in3, clk, out_r3);
 r4: reg
 PORT MAP (in4, clk, out_r4);
 r5: reg
 PORT MAP (in5, clk, out_r5);
 r6: reg
 PORT MAP (in6, clk, out_r6);
 r7: reg
 PORT MAP (in7, clk, out_r7);
 r8: reg
 PORT MAP (in8, clk, out_r8);

 -- Input to Add_Divide and Difference for stage 1
 a1: adddiv
 PORT MAP (out_r1, out_r2, clk, out_a1);
 a2: adddiv
 PORT MAP (out_r3, out_r4, clk, out_a2);
 a3: adddiv
 PORT MAP (out_r5, out_r6, clk, out_a3);
 a4: adddiv
 PORT MAP (out_r7, out_r8, clk, out_a4);
 s1: difference
 PORT MAP (out_r1, out_r2, clk, out_s1);
 s2: difference
 PORT MAP (out_r3, out_r4, clk, out_s2);
 s3: difference
 PORT MAP (out_r5, out_r6, clk, out_s3);
 s4: difference
 PORT MAP (out_r7, out_r8, clk, out_s4);

 -- Input to AddDiv and Difference for stage 2
 a5: adddiv
 PORT MAP (out_a1, out_a2, clk, out_a5);
 a6: adddiv
 PORT MAP (out_a3, out_a4, clk, out_a6);
 s5: difference
 PORT MAP (out_a1, out_a2, clk, out_s5);
 s6: difference
 PORT MAP (out_a3, out_a4, clk, out_s6);

 a7: adddiv
 PORT MAP (out_s1, out_s2, clk, out_a7);

105

 a8: adddiv
 PORT MAP (out_s3, out_s4, clk, out_a8);
 s7: difference
 PORT MAP (out_s1, out_s2, clk, out_s7);
 s8: difference
 PORT MAP (out_s3, out_s4, clk, out_s8);

 -- Input to AddDiv and Difference for stage 3
 a9: adddiv
 PORT MAP (out_a5, out_a6, clk, out1);
 s9: difference
 PORT MAP (out_a5, out_a6, clk, out2);

 a10: adddiv
 PORT MAP (out_s5, out_s6, clk, out3);
 s10: difference
 PORT MAP (out_s5, out_s6, clk, out4);

 a11: adddiv
 PORT MAP (out_a7, out_a8, clk, out5);
 s11: difference
 PORT MAP (out_a7, out_a8, clk, out6);

 a12: adddiv
 PORT MAP (out_s7, out_s8, clk, out7);
 s12: difference
 PORT MAP (out_s7, out_s8, clk, out8);

END haar;

B.2 Program: Reg.vhd

LIBRARY ieee;
USE ieee.ALL;

ENTITY reg IS
 PORT (
 input : IN integer RANGE -127 TO 127;
 clk : IN bit;
 output : OUT integer RANGE -127 TO 127
);
END reg;

106

ARCHITECTURE reg OF reg IS
BEGIN
 PROCESS(clk)
 BEGIN
 IF clk'EVENT AND clk = '1' THEN
 output <= input;
 END IF;
 END PROCESS;
END reg;

B.3 Program: Add_Divide.vhd

LIBRARY ieee;
USE ieee.ALL;

ENTITY adddiv IS
 PORT (
 a : IN integer RANGE -127 TO 127;
 b : IN integer RANGE -127 TO 127;
 clk : IN bit;
 c : OUT integer RANGE -127 TO 127
);
END adddiv;

ARCHITECTURE adddiv OF adddiv IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF clk'EVENT AND clk = '1' THEN
 c <= (a + b)/2;
 END IF;
 END PROCESS;
END adddiv;

B.4 Program: Subractor.vhd

LIBRARY ieee;
USE ieee.ALL;

107

ENTITY difference IS
 PORT (
 a : IN integer RANGE -127 TO 127;
 b : IN integer RANGE -127 TO 127;
 clk : IN bit;
 c : OUT integer RANGE -127 TO 127
);
END difference;

ARCHITECTURE difference OF difference IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF clk'EVENT AND clk = '1' THEN
 c <= a - b;
 END IF;
 END PROCESS;
END difference;

