

FEASIBILITY STUDY FOR THE IMPLEMENTATION OF GLOBAL POSITIONING

SYSTEM BLOCK PROCESSING TECHNIQUES IN FIELD PROGRAMMABLE

GATE ARRAYS

A Thesis Presented to

The Faculty of the

Fritz J. and Dolores H. Russ

College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sanjeev Gunawardena

November, 2000

THIS THESIS ENTITLED

“FEASIBILITY STUDY FOR THE IMPLEMENTATION OF GLOBAL POSITIONING

SYSTEM BLOCK PROCESSING TECHNIQUES IN FIELD PROGRAMMABLE

GATE ARRAYS”

by Sanjeev Gunawardena

has been approved

for the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology

Janusz A. Starzyk
Professor of Electrical Engineering

Jerrel R. Mitchell, Dean
Fritz J. and Dolores H. Russ

College of Engineering and Technology

iii

ACKNOWLEDGMENTS

First and foremost, I must thank God for giving me the wisdom and strength to
complete this work. I firmly believe that my faith in Him has brought me through this
and many trials in life. I continue to give Him all the glory and honor He so rightly
deserves.

Special thanks to my wife, Amali, for standing by my side, believing in me and
encouraging me through this project. Without her prayers and undying support, this work
would not have been completed. Thanks also to my daughter, Serendipity (7 months)
who probably did not appreciate those times when Thathi (Daddy) had to go work on his
thesis rather than play with her. Thanks to my parents for their prayers, support, and
encouragement; my mother, who at times gave most of her paycheck to fund my
electronics projects as a child, and my father who showed me the value of education and
was instrumental in giving me the opportunity to study in the US.

A special thanks to my advisor, Dr. Starzyk, whom I have known and respected
since my days as a sophomore at Ohio University. Not only is Dr. Starzyk responsible for
teaching me most of what I know about hardware design during those six years, but he
has been there for me numerous times; from understanding why an assignment was late,
to making sure I had the opportunity to go to graduate school by nominating me to
receive teaching assistantships. I appreciate the patience Dr. Starzyk had with me
especially during the final days of completing this thesis. I also thank him for having
faith in me to teach his VLSI design sequence while he was on sabbatical. That
experience boosted my self esteem, and helped me discover talents I didn’t know I had.

Special thanks to Dr. Frank van Graas for giving me the opportunity to work on
this project. Without that summer internship, this work would not have been possible. I
appreciate all those insightful discussions we had and thank him for letting me sit-in on
his classes where I learned much more than GPS. Frank has been an invaluable resource
and a great motivator.

Thanks to my graduate committee: Dr. Celenk, Dr. Curtis and Dr. Hunt for their
time and helpful comments and suggestions. Dr. Hunt has given me many opportunities
to shine while I worked for him in the Physics Department. Special thanks to Dr.
Maarten Uijt de Haag for his suggestions, advice, and support; and for attending the
defense of this thesis.

I must thank Ms. Gang Feng for providing the GPS dataset used in this work, and
some of the results presented in Table 4.1. Thanks also to Dr. Chris Bartone for his
helpful comments. Thanks to Jonathon Sayre for the many insightful discussions we had
about block processing, and for showing me how to cool the Triple7 computer in order to
run my simulations. Finally, thanks to all my friends and colleagues of the Avionics
Engineering Center at Ohio University for their help and support in so many ways that are
too numerous to mention.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS... iv

LIST OF TABLES ..vii

LIST OF FIGURES ...viii

SYMBOLS AND ABBREVIATIONS...xii

1 INTRODUCTION... 1

2 THE GLOBAL POSITIONING SYSTEM... 7

2.1 Positioning With GPS ... 8

2.2 GPS Link Budget... 12

2.3 GPS Signal Structure... 13

2.4 SV-to-User Dynamics ... 15

3 GPS RECEIVER ARCHITECTURE ... 16

3.1 Overview of Generic GPS-SPS Receiver.. 16

3.2 Tracking Loops.. 20

3.2.1 Carrier Tracking .. 21

3.2.2 Code Tracking ... 22

3.3 Signal Acquisition ... 23

4 BLOCK PROCESSING GPS RECEIVER... 29

4.1 GPS Data Collection System... 30

v

4.2 GPS Fast Correlator .. 36

4.3 Block Processing Hardware Performance Measures... 40

4.3.1 Acquisition Margin and Implementation Loss .. 40

4.3.2 Code Phase Detection and Range Error .. 43

4.4 Applications of Block Processing ... 47

4.5 Real Time Block Processing GPS Receiver.. 51

5 FIELD PROGRAMMABLE GATE ARRAYS .. 54

5.1 Introduction to FPGAs .. 54

5.2 Architecture of Xilinx XC4000 Series FPGAs ... 55

5.3 FPGA Based Design Flow .. 60

6 DESIGN OF 5000 POINT FFT/IFFT.. 65

6.1 The Fast Fourier Transform Algorithm... 65

6.2 The Inverse FFT .. 67

6.3 Radix-2 FFT Building Block... 68

6.4 Radix-4 FFT Building Block... 70

6.5 Winograd Radix-5 FFT Building Block.. 73

6.6 Mixed-Radix Approach to FFT Algorithm Construction 74

6.7 The 5000-Point FFT/IFFT Algorithm ... 78

7 DESIGN OF GPS BLOCK PROCESSING DATAPATH IN FPGA 81

7.1 Numerically Controlled Oscillator .. 85

7.2 Complex Multiplier... 89

vi

7.3 FFT/IFFT Datapath ... 92

8 BLOCK PROCESSING HARDWARE SIMULATIONS................................... 96

8.1 Effect of Truncation .. 99

8.2 Effect of ADC Quantization.. 102

8.3 Effect of Carrier NCO Amplitude Quantization ... 110

8.4 Effect of Finite-Precision Hardware Processing ... 115

8.5 The Optimum Block Processing Hardware Architecture................................ 120

9 SUMMARY AND CONCLUSIONS.. 127

REFERENCES.. 130

ABSTRACT

vii

LIST OF TABLES

Table 4.1 GPS Data Set Parameters ... 33

viii

LIST OF FIGURES

Figure 2.1 Graphical Illustration of Tri-Lateration .. 8

Figure 2.2 GPS Satellite Constellation (Not to Scale) ... 9

Figure 2.3 GPS Satellite Global Visibility Profile ... 10

Figure 2.4 GPS Link Budget .. 12

Figure 3.1 Block Diagram of a Generic GPS Receiver.. 17

Figure 3.2 Block Diagram of a GPS Receiver Channel ... 21

Figure 3.3 GPS Acquisition Configuration within a Receiver Channel......................... 24

Figure 3.4 Illustration of PMD, PFA, and MDB using Gaussian PDFs............................. 25

Figure 3.5 GPS Acquisition Search Space ... 26

Figure 4.1 Illustration of Block Processing for a Block of Five Samples 30

Figure 4.2 GPS-SPS Data Collection System .. 31

Figure 4.3 Correlation Energy Amplitudes for Each Block in Data Set 35

Figure 4.4 Correlation Energy Amplitudes with Databit-Transitioning Blocks Removed

... 36

Figure 4.5 Fast Correlation Based GPS Signal Acquisition... 38

Figure 4.6 Block Diagram of GPS Fast Correlator .. 39

Figure 4.7 Correlation Peak for a 50 dB-Hz Signal ... 41

Figure 4.8 Correlation Peak for a 45 dB-Hz Signal ... 42

Figure 4.9 Illustration of Code Phase Measurement Parameters 44

Figure 4.10 Envelope Detector Peak Location Showing Relative Motion of SV 45

ix

Figure 4.11 Estimated Code Phase Measurements for a Period of One Second............ 46

Figure 4.12 Acquisition of a weak GPS signal .. 48

Figure 4.13 Fast Correlator Output for Weak GPS signal ... 49

Figure 4.14 Result of Block Addition Technique Applied to Weak GPS Signal 50

Figure 4.15 System Diagram of Real-Time Block Processing GPS Receiver 52

Figure 5.1 Anatomy of an FPGA [Xilinx99] ... 56

Figure 5.2 XC4000 Configurable Logic Block [Xilinx99] .. 58

Figure 5.3 XC4000X IOB (Shaded Areas Indicate Differences from XC4000E)

[Xilinx99].. 59

Figure 5.4 XC4000 Interconnect Scheme [Xilinx99] .. 60

Figure 5.5 Typical FPGA Design Flow.. 61

Figure 6.1 Radix-2 FFT Signal Flow Graph .. 68

Figure 6.2 Radix-2 FFT Computation in Hardware ... 70

Figure 6.3 Radix-4 FFT Signal Flow Graph .. 71

Figure 6.4 Radix-4 FFT Computation in Hardware ... 72

Figure 6.5 Winograd Radix-5 FFT Signal Flow Graph ... 73

Figure 6.6 Winograd Radix-5 FFT Computation in Hardware 74

Figure 6.7 Two-Factor and Three-Factor Mixed-Radix FFT Construction 75

Figure 6.8 nth P-point Building-Block Output’s Complex Multipliers 76

Figure 6.9 kth Q-point building block input’s connections... 77

Figure 6.10 20-Point Mixed-Radix FFT Constructed from 4-Point and 5-Point Building

Blocks.. 78

x

Figure 6.11 5000-Point FFT Block Diagram ... 79

Figure 6.12 5000-Point FFT Algorithm after Vertical Projection.................................. 80

Figure 7.1 Block Diagram of FPGA Fast Correlator Processor 82

Figure 7.2 Block Diagram of Carrier NCO.. 86

Figure 7.3 Complex Multiplier Structure Using Three Real Multipliers 90

Figure 7.4 Block Diagram of Hardware Complex Multiplier .. 91

Figure 7.5 5000-Point FFT/IFFT Structure Showing Scaling Distribution 93

Figure 7.6 Processing-Cycle optimized 5000-Point FFT/IFFT Datapath 95

Figure 8.1 Plots Showing the Effect of Truncation on the Datapath from W=8 to

W=15... 100

Figure 8.2 Difference Between Rounded and Truncated Processing Schemes............ 101

Figure 8.3 c(ttr) for SV10 With 12-bit ADC .. 103

Figure 8.4 c(ttr) for SV10 With 2-bit ADC .. 104

Figure 8.5 Effect of ADC Quantization on c(ttr) Standard Deviation 105

Figure 8.6 Inflation of c(ttr) Standard Deviation With Respect to the Truth................ 106

Figure 8.7 Ranging Bias Due to ADC Quantization (I=1000)..................................... 107

Figure 8.8 Ranging Bias Due to ADC Quantization (I=100)....................................... 108

Figure 8.9 Effect of ADC Quantization on the Signal Acquisition Margin................. 109

Figure 8.10 Loss of Acquisition Margin due to ADC Quantization 110

Figure 8.11 Effect of Carrier NCO Amplitude Quantization on c(ttr) Standard

Deviation ... 111

Figure 8.12 Inflation of c(ttr) Standard Deviation With Respect to the Truth.............. 112

xi

Figure 8.13 Ranging Bias Due to Carrier NCO Amplitude Quantization (I=1000)..... 113

Figure 8.14 Effect of Carrier NCO Amplitude Quantization on the Signal Acquisition

Margin ... 114

Figure 8.15 Implementation Loss due to Carrier NCO Amplitude Quantization 115

Figure 8.16 Effect of Hardware Pipeline Width on c(ttr) Standard Deviation 116

Figure 8.17 Inflation of c(ttr) Standard Deviation With Respect to the Truth.............. 117

Figure 8.18 Ranging Bias Due to Finite Precision Processing..................................... 118

Figure 8.19 Effect of Pipeline Width on the Signal Acquisition Margin..................... 119

Figure 8.20 Implementation Loss due to Finite Precision.. 120

Figure 8.21 Range Deviation of Target Hardware Architecture 122

Figure 8.22 Range Deviation Inflation for Target Hardware Architecture 123

Figure 8.23 Ranging Bias for Target Hardware Architecture 124

Figure 8.24 Acquisition Margin for Target Hardware Architecture 125

Figure 8.25 Implementation Loss for Target Hardware Architecture 126

xii

SYMBOLS AND ABBREVIATIONS

σ Standard Deviation

2D two-Dimensional

3D three-Dimensional

A&D Accumulate-and-Dump (signal processing operation)

AD Accumulated Doppler

ADC Analog-to-Digital Converter

AGC Automatic Gain Control

AM Amplitude Modulation

ASIC Application Specific Integrated Circuit

ASSP Application Specific Standard Products

BPF Bandpass Filter

bps bits per second

BPSK Binary Phase Shift Keying

BW Bandwidth

C/A Coarse/Acquisition (GPS ranging PRN code)

C/N0 Carrier to Noise Ratio in dB-Hz

CDMA Code Division Multiple Access

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

COTS Commercial off the Shelf

xiii

CPLD Complex Programmable Logic Device

CW Continuous Wave

DDS Direct Digital Synthesis

DFF D-type Flip-Flop

DFT Discrete Fourier Transform

DLL Delay Locked Loop

DoD Department of Defense (United States)

DPRAM Dual-Port Random Access Memory

DRAM Dynamic Random Access Memory

DSP Digital Signal Processing

FFT Fast Fourier Transform

FLL Frequency Locked Loop

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSM Finite State Machine

GAEM GPS Anomalous Event Monitor

GLONASS Global Orbiting Navigation Satellite System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPS-PPS Global Positioning System – Precise Positioning Service

GPS-SPS Global Positioning System – Standard Positioning Service

GUI Graphical User Interface

xiv

HOW Hand-Over Word

I/O Input/Output

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers Inc.

IF Intermediate Frequency

IFFT Inverse Fast Fourier Transform

IMU Inertial Measurement Unit

IOB Input/Output Block

IP Intellectual Property

kHz kilohertz

km kilometers

LAAS Local Area Augmentation System

LGF LAAS Ground Facility

LNA Low Noise Amplifier

LUT Lookup Table

MAC Multiply-and-Accumulate (signal processing operation)

MDB Minimum Detectable Bias

MHz Megahertz

mHz millihertz

ms milliseconds

N/A Not Applicable

NCO Numerically Controlled Oscillator

xv

NF Noise Figure

NRE Non-recoverable Expenditure

OCXO Oven Compensated Crystal Oscillator

PAL Programmable Array Logic

PC Personal Computer

PCI Peripheral Component Interconnect (computer bus standard)

PDF Probability Density Function

PE Processing Element

PLA Programmable Logic Array

PLD Programmable Logic Device

PLL Phase Locked Loop

PR Pseudorange

PRN Pseudo-Random Noise

PSOC Programmable System on a Chip

RAM Random-Access Memory

RF Radio Frequency

ROM Read-Only Memory

RTL Register Transfer Level

RTOS Real Time Operating System

SA Selective Availability

SDF Standard Delay Format

SOC System on a chip

xvi

SRAM Static Random Access Memory

SS Spread Spectrum

SV Space Vehicle (satellite)

TOA Time of Arrival

TOW Time of Week

UI User Interface

UTC Coordinated Universal Time

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

w.r.t. with respect to

µs microseconds

1

1 INTRODUCTION

Satellite based navigation systems represents the pinnacle of navigation

technology for the 21st century. Presently, there are two such global navigation satellite

systems (GNSSs) in operation: the US developed Navstar Global Positioning System

(GPS) and the Russian Global Orbiting Navigation Satellite System (GLONASS).

Initially developed by the US department of Defense (DoD), the popularity of GPS has

soared over the past decade due to new and ingenious commercial and consumer

applications that include surveying, civil aviation, rescue operations, recreational uses,

and emergency 911 location services to name but a few. As these applications become

more widespread, users demand increased reliability, accuracy and availability that is not

always possible with the current capabilities of GPS. This is particularly true when the

system is used in urban environments, canyons, and inside buildings where the GPS

signal is too weak to detect, or its performance is severely hampered by multipath

reflections. These issues have driven the development of new receiver architectures that

strive to improve the accuracy and reliability of GPS under these severe operating

environments.

Modern GPS receivers use sequential digital signal processing (DSP) techniques.

That is, the signal is processed sample by sample. These types of sequential receivers use

traditional phase-locked loops (PLLs), frequency-locked loops (FLLs), delay-locked

loops (DLLs), and correlators to process the received signal. The front ends of these

receivers require high-precision analog components that are expensive and difficult to

2

manufacture. In addition, the component values used deviate from one to another, which

means that the receivers need to be individually calibrated. Furthermore, the component

values drift over time and reduce reliability and accuracy as the receivers age. Even

though modern GPS receivers are built using dedicated hardware due to their application

specific nature and the need for tight integration, the sequential processing scheme has

limited the performance of these receivers when used in severe operating environments.

A novel receiver architecture known as a software radio has emerged in the last

decade. Due to its radically new architecture, the software radio has been referred to as

the most significant development in receiver technology since the superheterodyne

concept. The goal of the software radio is to sample the received signal as close as

possible to the antenna using an analog to digital converter (ADC) and perform all

processing in software. By sampling the signal close to the antenna, most of the analog

processing components such as mixers, oscillators, filters, and their associated non-

linearities can be removed since the signal is processed entirely in the digital domain

using relatively cheap general-purpose microprocessors or DSP processors. Thus, the

software radio offers increased reliability and repeatability (i.e. manufacturability)

compared to traditional receivers. In practice, sampling at the antenna requires an ADC

capable of operating at the Nyquist rate of the incoming signal, while having

exceptionally low sampling noise and good stability. Such components are either not

available today, or are too expensive for mass production. Processing the huge amounts

of data generated through such a scheme presents another more severe problem. Due to

3

these technology limitations, a compromise is reached by having at least one stage of

analog downconversion before sampling.

The software radio is the ultimate receiver architecture since it offers infinite

flexibility for implementing the processing algorithms. In other words, a software radio

is a universal receiver that is programmable for virtually any application imaginable

(within spectrum limitations). This receiver architecture is ideal for today’s fast paced

world, where product life cycles are measured in months and telecommunication

standards and user requirements keep changing regularly.

The software radio has also unleashed a new breed of DSP techniques available

for processing GPS signals. Instead of the DSP equivalents of the various sequential

processing techniques used in the past, blocks of incoming data may be processed at once,

similar to the techniques used for image processing. When applied to GPS, these block-

processing techniques have been successful in pushing the envelope of its capability. For

example, a GPS signal with a carrier-to-noise ratio lower than 44 dB-Hz is too weak and

difficult for a standard receiver to detect. However, block-processing techniques have

been used to successfully acquire signals as low as 20 dB-Hz [UijtdeHaag99]. This

capability enables GPS positioning to work inside buildings and terrain with thick

vegetation where GPS would otherwise be unusable.

The drawback of block processing techniques is their huge computational

requirement. Currently developed block processing techniques require the computation

of large discrete Fourier transforms (DFTs) using the fast Fourier transform (FFT)

algorithm, and takes on the order of several seconds to process a single millisecond of

4

data in a fast (~500 MHz) computer. This means even dedicated DSP processors would

fail to handle the task in real time, because they do not offer such a leap in performance

compared to general-purpose microprocessors. A custom hardware solution, such as an

application specific integrated circuit (ASIC) could handle the computational

requirement, but would defeat the philosophy of the software radio since it would then

lack the desired flexibility. The ideal implementation platform for the GPS software

radio is one that possesses the processing power of ASICs with the programming

flexibility of general-purpose microprocessors.

Field Programmable Gate Arrays (FPGAs) are the latest addition to the family of

programmable logic devices (PLDs) that includes programmable logic arrays (PLAs),

programmable array logic (PALs) and complex programmable logic devices (CPLDs).

The Xilinx™ Corporation invented the FPGA in 1987 [Roelandts99]. FPGAs are

manufactured using Static Random Access Memory (SRAM) technologies, and can

therefore be considered as specialized memory circuits. The functionality of the FPGA is

determined by programming SRAM cells that work as look up tables (LUTs) to

determine the logic function, or drive CMOS pass transistors that act as switches to make

connections between the various logic functions. Present day FPGAs have relatively

large equivalent gate counts (between 100,000 and 10 million gates), operate at high

system clock rates (~300 MHz for the Virtex-E™ device), and are capable of supporting

large system-on-chip (SOC) applications. The rapid evolution of the FPGA to an above-

million-gate device has made it a viable contender in applications that were once

dominated by the ASIC. By far the most advantageous feature of the FPGA is that it can

5

be programmed quickly and easily with any design an infinite number of times, whereas

ASICs take several months to develop and manufacture. FPGAs are widely used today as

prototyping tools to test and validate large designs before they are manufactured in ASIC

technologies. They have also found a niche in the data communications industry, where

FPGAs are used for complex data switching and routing applications. Another new area

of research that involves FPGAs is called dynamic reconfiguration. Here, a section of the

processor can be made to change its architecture on the fly based on intelligence about the

application that is currently being processed in real time. The FPGA is the only

technology available today that simultaneously fulfils the processing power and flexibility

requirements needed for a real-time block-processing GPS software radio.

This thesis studies the feasibility of implementing a real-time block-processing

GPS receiver using FPGAs. This is the first time an effort has been made to migrate the

novel algorithms developed in software to custom designed digital hardware to ultimately

realize such a receiver. The actual hardware implementation of the block processing

algorithms is an immense task that would require years to develop a working prototype,

and is beyond the scope of this work. The goal of this work was as follows: 1)

Determine how the block processing algorithms can be implemented in FPGA hardware.

2) Develop a high-level hardware architecture that is optimized as much as possible for

implementation in an FPGA, which can also be easily broken down to lower levels of

abstraction within a hardware design flow. 3) Determine what type of throughput could

be obtained from this architecture based on a high level machine-cycle based evaluation.

4) Determine the optimum datapath precision needed for acceptable performance based

6

on a behavioral simulation of the developed architecture using real GPS data. 5)

Determine if it is feasible to implement this architecture with currently existing FPGA

technology. Since the architecture developed in this work is modeled at a high level of

abstraction and not largely implementation platform specific, it is possible to take the

results presented in this thesis to target a technology other than FPGAs (such as ASICs).

However, the overall architecture described was meant for a FPGA implementation

because of its obvious advantages.

This thesis is organized as follows: Chapters 2 covers the necessary GPS

background. Chapter 3 describes the sequential GPS receiver architecture that is used in

all modern receivers. Chapter 4 describes the GPS block-processing algorithms,

examines some of their potential applications, and presents a concept model for a real-

time block processing GPS receiver. Chapter 5 introduces FPGAs and presents their

internal architecture. Chapter 6 covers FFT theory and describes the development of the

5000-point mixed-radix FFT/IFFT algorithm that is the basis for the GPS block

processing techniques. Chapter 7 covers the hardware architectures of the individual

block-processing subsystems developed in this work and evaluates the feasibility of the

real time requirement based on a machine-cycle based analysis. Chapters 8 presents

simulation results based on real GPS data that was used to test and validate the hardware

architecture and determine its optimal parameters. Finally, Chapter 9 gives a summary of

the work done for this thesis and discusses future work for realizing the long-term goals

of this project.

7

2 THE GLOBAL POSITIONING SYSTEM

Global navigation satellite systems (GNSSs) are the latest and most advanced

class of navigation systems based on the simple time-of-arrival (TOA) ranging concept.

GNSSs use satellites in space to implement TOA raging using a principal known as tri-

lateration. Presently, two such systems exist: the United States’ Global Positioning

System (GPS) and the Russian Global Orbiting Navigation Satellite System (GLONASS).

Both systems were developed in parallel during the latter years of the Cold War. The

scope of this thesis is limited to GPS.

GPS was developed by the DoD primarily for military use. However, since an

initial positioning capability needed to be incorporated to acquire the precise positioning

component of GPS, that initial positioning service was made available to civilian users.

This lower-precision component is known as the standard positioning service (GPS-SPS),

whereas the military component is known as the precise positioning service (GPS-PPS).

GPS-SPS has found a tremendous wealth of applications ranging from recreational uses

such as hiking to commercial and civil aviation, and today is the basis for a rapidly

growing industry that is expected to double in the next three years to $16 Billion annually

[AP00]. This is even truer after May 2, 2000 when the US government turned off

Selective Availability (SA), which intentionally limited positioning accuracy to 150

Meters (2σ) for civilian users [WH00].

8

The following sections describe how the system is used to obtain a position

solution; along with the GPS link budget, its signal structure and dynamics, as applicable

to this thesis.

2.1 Positioning With GPS

As described above, GPS is based on TOA ranging. TOA ranging involves

measuring the time taken for a signal transmitted by an emitter (foghorn, radiobeacon, or

satellite) in a known location to reach an observer (receiver) at an unknown location (i.e.

propagation time).

r2

r3

r1

A

B

Emitter 1

Emitter 2

Emitter 3

Figure 2.1 Graphical Illustration of Tri-Lateration

For the two dimensional (2D) case depicted in Figure 2.1, for one emitter, the

position of the observer can be placed anywhere on a circle with radius r given by the

measured range from the emitter. The difference between the time of reception, tre, and

9

the time of transmission, ttr, times the propagation speed of the signal gives the range

from the emitter to the observer. If the range from two emitters with known locations can

be measured, the position of the observer is one of two solutions, A or B. Three range

measurements results in a unique solution, B, for the position of the observer. Hence, this

type of positioning is referred to as tri-lateration. For the three-dimensional (3D) case,

the circles in Figure 2.1 are replaced with spheres. For satellite navigation, three range

measurements alone would give rise to an ambiguity for the observer’s position. This is

resolved without the use of a fourth measurement by realizing that one solution is close to

the surface of the earth whereas the other is not.

The GPS constellation (GPS space segment) consists of 24 satellites, called space

vehicles (SVs), in six orbital planes, as illustrated in Figure 2.2.

Figure 2.2 GPS Satellite Constellation (Not to Scale)

10

The orbits are configured in such a manner as to have at least four satellites visible to a

user near the surface of the earth at any given location and time. Practically, it is common

to receive between seven to nine SVs. Figure 2.3 shows the GPS SV global visibility

profile for a 24-hour period [USDOT95].

Figure 2.3 GPS Satellite Global Visibility Profile

For the ith satellite, the true SV-to-user range, Ri is given by:

()RcvrSVtrrei ttttcR
ii

∆+∆+−= (2.1)

Where:
itrt : time of transmission of SVi

ret : time of reception relative to the receiver clock

iSVt∆ : clock offset of SVi w.r.t. transmitted timing signals

Rcvrt∆ : offset in the receiver’s internal clock w.r.t. received timing signals
c : GPS propagation constant (2.99792458 × 108 m/s)

A pseudorandom noise (PRN) code embedded within the GPS broadcast is used to

perform timing measurements. When the code-tracking loop of the GPS receiver is time

11

aligned to the incoming PRN code, the delay between the receiver’s replica code epoch

and the incoming code epoch (hence known as the code phase) gives the time of

transmission, ttr, of the signal. Since the range measurement for SVi obtained from ttr still

contains the clock biases of the receiver and satellite, it is known as the pseudorange (PR)

to SVi and is given by:

())()(ntntcPR
itrrei −= (2.2)

Where:
)(ntre : receiver time corresponding to epoch n of the GPS receiver’s clock
)(nt

itr : transmit time based on the SVi clock

Hence, when the receiver picks any replica code epoch to make range measurements for

all SVs,)(nt
itr is the natural measurement (obtained from the code tracking loop) that is

used to calculate the pseudorange. The receiver and satellite clock biases are

subsequently corrected when the receiver solves for the navigation position solution. The

data stream embedded within the GPS broadcast contains the SV clock offset, ∆tSV. Once

the receiver obtains the pseudoranges of at least four SVs, it can solve for position,

(x,y,z), and the clock bias, B, from:

() () () cBzzyyxxPR iiii +−+−+−= 222 (2.3)

Where:
(xi,yi,zi) : position of SVi (from SVi ephemeris data)

When the receiver clock bias is corrected, the local reference clock is accurately

synchronized to GPS time. Thus, GPS provides an accurate timing capability in addition

to positioning. The absolute time (GPS time) is obtained from the time-of-week (TOW)

12

contained in the data broadcast. The TOW count has a resolution of 1.5 seconds and is

reset every Sunday at 00.00 hrs, GPS time. The offset between GPS time and UTC is

also contained within the data broadcast.

2.2 GPS Link Budget

Figure 2.4 shows the link budget for GPS. A block IIR GPS SV transmits an

equivalent power of 480 Watts towards the earth. Most of this power is lost according to

the inverse-square law when the signal travels approximately 20,000 km to the earth’s

surface. By the time the GPS signal is received at the antenna, it is about 20 dB below

the receiver’s thermal noise floor.

Transmit
478.63 W
= 26.8 dBW

Received Signal:
10-16 W
= -160 dBW
[ICDGPS97]

Free Space Loss:
-182.4 dB
Atmospheric Loss:
-4.4 dB

Thermal Noise
(2 MHz Bandwidth):
10-14 W = -140 dBW

Received Signal

Noise Floor

Figure 2.4 GPS Link Budget

Hence, traditional signal demodulation schemes such as those used for FM or AM cannot

be used for spread-spectrum (SS) signals such as GPS because the signal is buried within

the noise. Instead, the signal must be observed (integrated) over time so that the noise is

13

averaged out, thereby raising the signal above the noise floor. To detect a GPS signal,

integration is initially performed using estimates for the signal’s code phase and carrier

frequency using local synthesizers. This signal detection process is known as acquisition.

The received signal strength is guaranteed to be a minimum of –160 dBW

[ICDGPS97]. The noise floor is approximated by N = kTBW, where k is Boltzmann’s

constant (KJ /103807.1 23−×), T is the Kelvin temperature, and BW is the input bandwidth

of the receiver in Hertz. Because the signal-to-noise ratio, S/N, is dependent on the input

bandwidth, it is not a good measure of the true received signal strength. Hence, the

carrier-to-noise ratio, given by C/N0 = S/kT [Braash91] is used instead. C/N0 is expressed

in dB-Hz. Given the minimum GPS received signal strength of −160 dBW, and a

temperature of 300K, the minimum received C/N0 is 44 dB-Hz.

2.3 GPS Signal Structure

The scope of this thesis is limited to the GPS-SPS broadcast. The signal structure

for the GPS-SPS signal, S(t), can be modeled as:

() () () ()()002sin)(φπ +∆+= SVfftDtGtAtS (2.4)

Where:
A(t) : time dependant amplitude of the transmitted signal
G(t) : C/A code for the satellite (1.023 Mbps)
D(t) : navigation data stream (50 bps)
f0 : carrier frequency of broadcast (1575.42 MHz)
∆fSV : satellite frequency offset
φ0 : carrier phase offset

Each SV transmits at the same L1 carrier frequency of 1575.42 MHz. Spread-

spectrum code division multiple access (CDMA) technology is used to demodulate the

14

signal of each SV received at the antenna. The PRN code used for GPS-SPS is called the

coarse acquisition (C/A) code. The 1023-chip long C/A code has a chipping rate of 1.023

Mbps, and hence a period, Tc, of 1 ms. The C/A code belongs to the family of Gold

codes, possessing good multiple access properties for its period [Spilker78], an important

factor for CDMA systems. However, unlike communications systems that use CDMA

technology mainly for its inherent security and multiple-access capabilities, GPS uses its

PRN code for ranging as well [Equation 2.2]. C/A code generation details are described

in [ICDGPS97].

Modulo-2 added onto the C/A code is the 50 bps data stream, D(t). The databits

are generated in synchronous to the C/A code. The data message structure consists of a

1,500-bit long frame that is made up of five subframes, 1 through 5. Each subframe is

300 bits long, and consists of ten 30-bit words. The full data message consists of 25 full

frames (12.5 minutes) since subframes 4 and 5 are subcommutated 25 times. However,

decoding a full frame (30 seconds) is sufficient for a position calculation since it contains

the necessary clock and ephemeris data in subframes 1 through 3. The second word of

each subframe is the hand-over-word (HOW), which gives the precise GPS time-of-week

(TOW) that will be valid at the starting edge of the next subframe. Thus, TOW updates

are available every 6 seconds.

The bitstream containing the SV PRN code and the embedded data message is

Binary Phase Shift Keying (BPSK) modulated onto the L1 carrier.

15

2.4 SV-to-User Dynamics

Even though a GPS SV transmits at a constant L1 carrier frequency, f0, of 1575.42

MHz, SV-to-user dynamics causes the carrier frequency to vary depending on the relative

line-of-sight velocity, vr, causing a Doppler frequency shift, ∆fD, given by:

0f
vc

v
f

r

r
D

�
��
�

�

−
±=∆ (2.5)

For a stationary user, vr is typically less than 1,500 m/s, which corresponds to a Doppler

frequency offset of ±8 kHz.

The goal of this chapter was to explain the basic principals of GPS operation. In

practice, many parameters such as geometry, atmospheric and ionospheric group delays,

and multipath reflections affect the performance of GPS. The analysis of these effects

and the errors they introduce to the final position calculation are beyond the scope of this

work. The next chapter describes the architecture of a GPS receiver.

16

3 GPS RECEIVER ARCHITECTURE

In order to apply new signal processing techniques to GPS receivers, it is

important to understand the architecture and functionality of traditional GPS receivers.

Almost all modern GPS receivers sample the downconverted RF signal and perform all

signal processing algorithms in the digital domain [Parkinson96]. The DSP techniques

process the incoming data one sample at a time; that is, the processing technique is

sequential. In order to differentiate this type of receiver from block processing receivers

described in Chapter 4, the term sequential receiver is used in this thesis. This chapter

describes the architecture and operation of a generic GPS-SPS sequential receiver.

3.1 Overview of Generic GPS-SPS Receiver

Figure 3.1 shows the block diagram of a generic GPS receiver. This diagram

represents the minimum system required to receive the GPS-SPS broadcast of Equation

2.4 and calculate a navigation solution.

17

RF Front End

Reference Clock

Nav data Pseudoranges /
delta-pseudoranges

Accumulated
Doppler
measurements

Receiver Processor

To Navigation Processor

Digital Receiver Channel

1

N

3

2

AGC

ADC

Analog IF Digital IF

Navigation/User Interface
ProcessorUser Interface

Regulated
Power Supply

Antenna

Figure 3.1 Block Diagram of a Generic GPS Receiver

The receiver can be sectioned into three main parts: 1) the RF front end,

digitizing and automatic gain control (AGC), 2) the individual receiver channels and

controlling processor, hereafter referred to as the receiver processor, and 3) the

navigation/user interface processor and peripheral components such as power supply, user

interface (UI), etc.

The RF front end amplifies the weak signals received at the antenna while

rejecting unwanted out-of-band noise and downconverts the L1 signal to the intermediate

frequency (IF). All signal Doppler offsets and code phase information is preserved after

downconversion (only the carrier frequency is lowered). An analog-to-digital converter

18

(ADC) samples the downconverted signal. The signal may also be digitally

downconverted by the sampling process by using bandpass sampling techniques [Chapter

4]. Assuming the signal parameters do not change over the integration time of the

receiver channel, the resulting digital IF signal, rk, where k is the sample point (k =

1,2,3…), can be represented as follows:

()() kSIFkk nkTffDAGr ++∆+= φπττ)(2sin, (3.1)

Where:
τ : time delay due to signal transmission
A : signal amplitude
Gk,τ : sampled, time-delayed C/A code
Dτ : time delayed navigation data stream
fIF : digital IF frequency
∆f : frequency offset
TS : sampling period (1/fS)
φ : phase offset
nk : sampled noise term

The received noise, n, is commonly modeled as additive white Gaussian noise

[Parkinson96]. The frequency offset of the received signal, ∆f, is the sum of four

components:

SLODSV fffff ∆+∆+∆+∆=∆ (3.2)

Where:
∆fSV : satellite frequency offset [Equation 2.4]
∆fD : Doppler frequency offset [Equation 2.5]
∆fLO : frequency offset due to the local oscillator
∆fS : frequency offset due to sample clock error

The receiver has no means of distinguishing between ∆fD, ∆fLO, and ∆fS. Hence, it

is important to minimize local oscillator and sample clock errors in the RF front end and

sampling process respectively, so that they do not degrade the Doppler measurement. For

19

this reason, the stable clock reference shown in Figure 3.1 is a critical component of any

GPS receiver and influences the accuracy of the overall navigation solution.

The AGC circuit sets the amplitude of the sampled signal such that the dynamic

range of the ADC is optimally utilized. Parallel processing is performed on the digital IF

by the individual receiver channels. Each channel performs acquisition and tracking of

individual satellites under the control of the receiver processor.

The natural measurements of a GPS receiver are the replica code phase, and the

replica carrier Doppler frequency (if the receiver is in frequency lock with the incoming

carrier signal) or the replica carrier Doppler phase (if the receiver is in phase lock with the

incoming carrier signal). The receiver processor takes these measurements and calculates

pseudoranges and delta-pseudoranges. In addition, if the receiver is in phase lock, it

calculates the accumulated Doppler (AD) phase, which is used for millimeter-level

positioning in surveying applications [Kaplan96]. The pseudorange and delta-

pseudorange measurements are considered the GPS observables. The navigation

processor uses the GPS observables, along with the navigation data to find a position

solution. The navigation processor is also the intelligence component of the receiver that

contains various algorithms to handle the complex decision making processes involved in

a GPS receiver.

The most computation intensive process in the receiver (excluding the graphics

processing for the UI) is the correlation operation that is performed within each receiver

channel. For the correlation, the channel must perform multiply-and-accumulate (MAC)

operations in real time at the digital IF data rate, fS. In most modern receivers however,

20

this is no longer considered an issue owing to the availability of ASICs that integrate all

the math-intensive operations of the receiver channel. Such chips are available at

relatively low cost due to volume production.

The following sections will describe tracking and acquisition of the GPS signal

respectively.

3.2 Tracking Loops

As described in Section 2.2, the GPS signal must be integrated over time to raise

it above the noise floor. The initial process of locating the GPS signal in terms of its code

phase and carrier frequency is known as acquisition. Following acquisition, the code

phase and carrier frequency estimates are fed into code and carrier tracking loops

respectively. Provided the initial estimates are within their lock-in range, the tracking

loops will keep the signal in lock, i.e. the loops will follow subsequent changes in code

and carrier frequency (or phase). This is known as tracking. During tracking, if the code

phase or carrier frequency suddenly changes value (i.e. steps), or they drift beyond the

range of the tracking loops, the tracking operation will fail. This condition is known as

loss-of-lock. When the receiver loses lock, it must reacquire the signal.

Figure 3.2 shows the simplified architecture within a single receiver channel. As

shown in the figure, the carrier and code tracking loops operate together to lock code

phase and carrier frequency simultaneously. The following subsections will describe the

operation of the carrier and code tracking loops respectively.

21

Code
loop

discriminator

Code Synthesizer

E P L

Digital
IF

Code
wipeoff

Carrier
loop

discriminator

Carrier
filter

Nav data

Carrier phase lock

Carrier
aiding

External
aiding

Code phase
lock

A&D

A&D

A&D

A&D

A&D

A&D

IE

IP

IL

QE

QP

QL

Carrier
Synthesizer

Sine Cosine

Carrier
wipeoff

I

Q

Reference
Clock

Replica code phase

Replica carrier phase / frequency

To
Receiver
Processor

Scale
factor

Code
filter

 Figure 3.2 Block Diagram of a GPS Receiver Channel

3.2.1 Carrier Tracking

The digital IF is first mixed in quadrature with the replica carrier to convert it to

baseband. A baseband signal is one that has been stripped of its carrier except for the

residual, ∆f. The purpose of the carrier tracking loop is to keep the carrier synthesizer

(local oscillator) locked to the incoming carrier frequency (fIF + ∆f) so that the mixer

output has no carrier component. Hence, this operation is known as carrier wipeoff. The

signal is then correlated with the aligned replica C/A code (code wipeoff) and integrated

using accumulate-and-dump (A&D) circuits. Since the A&D circuits have a low-pass

characteristic, the double frequency term generated in the quadrature mixer is filtered out,

22

leaving only the correlation value. The carrier loop discriminator outputs the frequency

(or phase) offset magnitude and direction determined from the in-phase and quadrature

components of the signal. After low-pass filtering, this error is fed back to the carrier

synthesizer. GPS receivers use two types of carrier tracking loops: phase locked loops

(PLL) and frequency locked loops (FLL). Both have their own advantages and

disadvantages in terms of carrier tracking performance. The loop bandwidth is

determined by the integration time (known as the pre-detection integration time, or dwell

time, TDW) and the characteristics of the filter. The filtered error value used to control the

carrier synthesizer gives the replica carrier frequency offset, ∆f. The carrier frequency

offset is the basis for the delta-pseudorange measurement.

3.2.2 Code Tracking

The operation of the code-tracking loop is similar to the carrier-tracking loop in

that the local replica code is compared to that of the incoming signal to produce a code

offset that is filtered and used to control the code synthesizer. However, in the case of the

code loop the replica code must be accurate to within one chip of the incoming code,

since an offset greater than one chip produces zero correlation. By using the early and

late correlation envelopes (and optionally the prompt correlation envelope, depending on

the discriminator function), the code phase discriminator determines the magnitude and

direction of the code phase error relative to that of the incoming signal. The early and

late code streams are offset ½ chip relative to the prompt code stream. The noisy code

phase error output of the discriminator is smoothed by the code loop filter.

23

Using the filtered code phase offset, the code synthesizer must advance or retard

the replica code to align it with the incoming code. Hence, this type of tracking loop is

called a delay locked loop (DLL). The code phase offset is the basis for the pseudorange

measurement [Equation 2.2].

The difference in the pseudorange over a measurement time interval gives the

SV’s relative line-of-sight velocity. However obtaining this information from the code

loop gives rise to noisy measurements. Instead, a 1000 times or 100 times less noisy

delta-pseudorange measurement can be obtained from the carrier PLL or FLL

respectively. Hence, the filtered replica carrier frequency (or phase) offset is used to

smooth the error in the code loop. This is known as carrier smoothing (or carrier aiding,

shown in Figure 3.2). The carrier smoothing technique is mathematically equivalent to

including the second order term of an expansion series. In addition, for high accuracy and

reliability, the tracking loops can be externally aided by a positioning system who’s

principal of operation is not related to GPS, such as an Inertial Measurement Unit (IMU).

The design of tracking loops is a complex subject and only a brief outline was

given here. Detailed descriptions of the tracking loops used in GPS can be found in

[Parkinson96].

3.3 Signal Acquisition

Figure 3.3 shows a block diagram of the acquisition architecture within the

receiver channel. Much of the same hardware is used for acquisition, as apparent when

comparing Figure 3.2 with Figure 3.3.

24

Code Synthesizer

E P L

Digital
IF

Code
phase
search

A&D

A&D

A&D

A&D

A&D

A&D

IE

IP

IL

QE

QP

QL

Carrier
Synthesizer

Sine Cosine

Carrier
frequency

search
I

Q

Reference
Clock

(·)2

(·)2

Comparator

Acquisition
Algorithm

>= 0 Signal present
< 0 Signal not present

Receiver Processor

A&D

Threshold

Figure 3.3 GPS Acquisition Configuration within a Receiver Channel

During acquisition, the channel operates in an open loop configuration where the

acquisition algorithm tests successive code phase and carrier frequency combinations for

a correlation peak, given by 22 QI + (i.e. the correlation energy). A second integration

stage is used to sum correlations over multiple code periods to detect signals with low

C/N0. The preset threshold for determining the presence of a signal is calculated based on

the application’s required probabilities of false acquisition, PFA, and missed detection,

PMD.

The receiver detects a correlation peak by comparing the correlation energy

amplitude against a preset threshold, TD. If this threshold is set too high, the receiver will

25

not detect weak signals, thus increasing the probability of a missed detection. If the

threshold is too low, an increase in the probability of false acquisitions due to noise will

result. Figure 3.4 uses Gaussian probability density functions (PDFs) to illustrate the

relationship between PFA, PMD and the minimum detectable bias, MDB. Based on the

statistical distribution of the signal and noise parameters, and the required PFA, the

detection threshold can be calculated [Feng99].

PDF of noise

PDF of signal and noise

½ PFA½ PFA

MDB

TD>TD

PMD

Figure 3.4 Illustration of PMD, PFA, and MDB using Gaussian PDFs

Acquisition is a three-dimensional search process, where the search dimensions

are: 1) The CDMA PRN code of the SV, 2) The incoming signal’s carrier frequency,

and 3) The incoming signal’s PRN code phase. If the receiver has knowledge of the

26

approximate satellite orbits (almanac data), it can start searching for a probable SV based

on the current time and the receiver’s last known position. If this is not possible, the

receiver must start by searching for any one of the 24 possible PRN codes. This is known

as a “cold start”. Assuming the receiver is searching for a given SV, the acquisition

search space is shown in Figure 3.5.

Code Phase Dimension

C
ar

ri
er

 F
re

qu
en

cy
 D

im
en

si
on

Code-Phase
Resolution

Frequency
Resolution

Acquisition
Cell

Figure 3.5 GPS Acquisition Search Space

Section 2.4 showed that the Doppler frequency offset is approximately ±8 kHz for

a stationary observer. Indeed, for most typical applications ∆fD is less than ±10 kHz. If

the receiver cannot estimate the Doppler, it must perform the entire search between L1-10

kHz and L1+10 kHz in steps of the Doppler frequency search resolution.

27

Since the replica code needs to align within one chip to obtain a correlation peak,

the maximum code phase resolution is ½ chip. Because the GPS C/A code is 1023 chips

long, there exists a minimum of 2046 search bins in the code phase dimension. If the

receiver cannot estimate the pseudorange to the SV due to lack of a-priory information, it

must check all 2046 bins.

Since the receiver must integrate to at least an entire C/A code period, the

minimum dwell time for a correlation is 1 ms, which is adequate for high C/N0 signals.

However, during non-coherent acquisition (when the receiver code epoch is not

synchronized to the SV code epoch), if a databit transition occurs within the dwell time,

the correlation sign changes, effectively nulling the correlation result. Hence, a longer

dwell time must be used during a cold start acquisition. Weak signals need longer dwell

times per cell. This is accomplished by the second A&D operation in Figure 3.4.

The Doppler search resolution must be fine enough to land within the main lobe

of the Sinc2 correlation function (whose width is a function of the dwell time). The

Doppler bin resolution can be estimated by 2/3TDW, where TDW is the dwell time per cell.

The minimum dwell time of 1 ms gives a Doppler bin resolution of 667-Hz. To acquire

weak signals, TDW can be as much as 20 ms, needing a Doppler bin resolution of 33-Hz

[Kaplan96]. For example, during a cold start, if a typical sequential receiver searches the

L1-10 kHz to L1+10 kHz carrier frequency interval in 1 kHz steps, it needs to search

through 21 combinations in the carrier frequency dimension. Since the minimum code-

phase dimension is 2046 ½-chip intervals, the total cold start acquisition search space for

the receiver is:

28

() ()() cellsnacquisitio
KHz
KHz 000,402120461

1
10210232 ≈=���

�

� +���
�

�×

Since the minimum dwell time is 1 ms (assuming no databit transitions), this operation

will take about 40 seconds to complete in the worst case. Because every acquisition is

not done in cold start mode, and the acquisition is performed in parallel in each of the

receiver channels for candidate SVs, and because of the efficiency of the acquisition

algorithms themselves, the mean time to acquire a signal is considerably smaller than this

worst case estimate in a practical receiver. However, due to the inherent processing

scheme in a sequential receiver, the mean time to acquisition is still in the order of a few

seconds.

When GPS receivers are used in environments where the signal suffers severe

attenuation (such as in dense foliage, inside buildings, or urban environments), or in high-

dynamic environments (such as in fast aircraft or rockets), sequential receivers spend a

significant amount of time in the acquisition phase, because under these conditions the

receiver will often lose lock. Hence, the long acquisition time of a sequential receiver

and its inability to cope with sudden signal steps in its tracking loops is a serious

drawback for such applications. In these situations, a block processing architecture

becomes a viable alternative to the sequential processing used in current GPS receivers.

The next chapter describes the architecture of a block processing GPS receiver.

29

4 BLOCK PROCESSING GPS RECEIVER

In the GPS receiver of Chapter 3, the processing was performed sequentially.

This method of processing, known as stream processing [Ackenhusen99], has inherent

disadvantages such as relatively long acquisition times and the receiver constantly having

to reacquire the signal following a loss-of-lock condition. Because of these

shortcomings, it may not be the optimal architecture for positioning under challenging

conditions when the GPS signal is severely attenuated (inside buildings, under dense

foliage, etc.), is subject to high dynamics (in fast aircraft or rockets), multipath reflections

(in urban environments, canyons, etc.), or interference conditions (during intentional and

unintentional jamming). An alternate processing technique, known as block processing,

has been shown to provide better performance under these conditions as described in

[Moeglein98] and [UijtdeHaag99].

A block-processing scheme stores incoming samples in groups as they arrive.

After the arrival of a sufficient number of samples (as set by the nature of the

implementation), processing on the group begins. Because all input samples of the group,

or block, are available simultaneously, processing can access the samples in a random

manner rather than being restricted to sequential access. Figure 4.1 shows blocks of five

samples being stored as they arrive. When the final sample of block i arrives, processing

begins. At this point, two activities proceed together: the processing of block i, and the

input and storage of block i+1. Block processing can be used when the input sample rate

is much greater than the output sample rate [Ackenhusen99]. For a GPS receiver,

30

processing is performed on a block of digital IF data to obtain code phase and Doppler

offset values for each of the SVs being received. Since the block must cover at least a

whole PRN code period (i.e. several thousand samples), and the output is only two values

per SV, the conditions for block processing are satisfied.

Input

Input/store block i Input/store block i + 1 Input/store block i + 2

Output

Process block i Process block i + 1

i -1 i i + 1

Figure 4.1 Illustration of Block Processing for a Block of Five Samples

4.1 GPS Data Collection System

As a precursor towards developing a block-processing GPS/GLONASS receiver, a

relatively novel receiver architecture known as a software radio was designed by Akos

[Akos97]. Based on this work, and subsequent revisions, a standard GPS data collection

31

system for developing and testing block-processing algorithms designed by the Ohio

University Avionics Engineering Center was used for this work. Figure 4.2 shows the

block diagram of this setup.

Antenna

Local Oscillator Sample
frequency

All Amplifiers: gain=25dB; NF = 2dB.
BPF1 : fc1 = 1575.42 MHz; BW = 86 MHz.
BPF2 : fc2 = 1575.42 MHz; BW = 4 MHz
BPF3: fc3 = 21.4MHz, BW = 2.2 MHz.
BPF4 : fc4 = 21.4MHz, BW = 4.4 MHz

Amp
BPF1

ADC

Amp

AmpAmp Amp

BPF2

BPF3 BPF4BPF4 BPF3

Mixer

MHzfLO 17.1554=
MHzfs 5=

Figure 4.2 GPS-SPS Data Collection System

Satellite data is collected through a roof-mounted antenna with an integrated 25

dB low noise amplifier (LNA). The first filter has a center frequency of 1575.42 MHz

and a 3dB bandwidth of 86 MHz. The signal is amplified and filtered again before being

mixed with the local oscillator frequency, fLO, of 1554.17 MHz, resulting in a first

standardized IF of 21.25 MHz. The IF is filtered to remove the double-frequency term

followed by three more amplification and bandpass filtering stages to boost the signal to

the sampling range of the ADC, while keeping out-of-band noise and spurious responses

to a minimum. The signal is then sub-sampled at fS = 5 MHz, which results in the 21.25

MHz IF aliasing to 1.25 MHz, whilst preserving the 2.2 MHz information bandwidth of

the original signal. This intentional undersampling of a bandpass filtered signal is known

32

as bandpass sampling, and results in a digital downconversion to the 1.25 MHz IF.

Further details of bandpass sampling can be found in [Vaughan91]. The resulting digital

IF data stream is currently stored in the hard disc of the PC housing the ADC card for

post-processing [Snyder99]. The ADC has a quantization of 12 bits. Phase-noise due to

sampling is kept to a minimum by using a Rubidium-referenced oven compensated

crystal oscillator (OCXO).

The GPS-SPS sampled signal model presented in Equation 3.1 for the sequential

case is modified for block processing as follows:

()[] kiiiSiIFikiki nkmTffDGAr
ii ,,,,)(2sin +++∆+= φπττ (4.1)

Where:
i : ith block (i = 1,2,3,...)
k : kth sample point starting at the ith block(k = 1,2,...,M)
mi : total number of samples before the ith block () Mimi ×−= 1
M : number of samples per block, M=5000
τi : time delay due to signal transmission for block i
Ai : signal amplitude for block i

ikG τ, : sampled, time delayed C/A code

iiD τ, : navigation databit sign for block i
fIF : center frequency of the digital IF, fIF = 1.25 MHz
∆fi : frequency offset for block i
TS : sampling period (1/fS), TS = 0.2 µs
φi : phase offset for block i
ni,k : sampled noise term

33

Then, the frequency offset for block i, ∆fi, becomes:

iSiLOiDiSVi fffff ,,,, ∆+∆+∆+∆=∆ (4.2)

Where:
∆fSV,i : satellite frequency offset for block i
∆fD,i : Doppler frequency offset for block i
∆fLO,i : local oscillator frequency offset for block i
∆fS,i : sample clock error for block I

Since the sampled data must contain at least an entire C/A code period of 1 ms

and the sample frequency is 5 MHz, the block size is chosen to be 5000 samples (i.e.

M=5000).

A dataset of 1-second duration (i=1,2,3,…I; where I=1000) acquired from the

above setup was used throughout this work. A NovAtel™ Millennium™ GPS Receiver

was connected in parallel with the data acquisition system to monitor GPS parameters

independently. Table 4.1 shows detectable SVs in the data along with their C/N0 and

Doppler frequencies [Feng99].

Table 4.1 GPS Data Set Parameters
C/N0 (dB-Hz) Doppler frequency (Hz)

SV#
NovAtel
Receiver

Block
Processing

NovAtel
Receiver

Block
Processing

Ad-hoc
method

10 50.377 51.0603 939.9 1259 1261
24 48.209 47.1914 -650.5 -330 -329.6
30 46.497 46.3453 -428.3 -109 -108.4
13 46.011 45.649 1928.3 2258 2256
4 44.544 44.5948 -2274.5 -1954 -1951
5 N/A N/A N/A N/A -1931

The block processing techniques used to calculate these parameters is described in

[Feng99]. For the Doppler frequency case, the results were independently verified using

34

an ad-hoc method where the carrier frequency was spanned at 10 Hz intervals to find the

frequency with the highest correlation energy. This was done for all blocks in the data

excluding the blocks where possible databit transitions occurred. Since no prior

knowledge of the SV data was available, the databit transitions were assumed to be at

modulo 20 ms intervals of the block having the lowest correlation energy. Representative

plots of this process are shown in Figures 4.3 and 4.4. The figures show the correlation

energy for each block, and the result with the databit transitions removed, respectively.

Table 4.1 shows that the results obtained by Feng and the results obtained from the ad-

hoc method above agree to within 1% and verifies the accuracy of the formal block

processing calculations applied to this data set. However, the values reported by the

NovAtel™ receiver differ significantly. This discrepancy is attributed to the local clock

offset that was not corrected in the block processing case. For simulations in this thesis,

the Doppler frequencies were fixed to the values obtained by the ad-hoc method.

35

Figure 4.3 Correlation Energy Amplitudes for Each Block in Data Set

36

Figure 4.4 Correlation Energy Amplitudes with Databit-Transitioning Blocks Removed

4.2 GPS Fast Correlator

This section describes the GPS fast correlator that is the main signal processing

component used within the GPS block-processing receiver.

As shown in Equation 4.1, since the data block ri,k and the replica C/A code, Gi,k

are both finite length sequences, their correlation can be performed by a slight

modification of the circular convolution operation. The circular convolution of two

finite-length sequences x1[n] and x2[n] can be obtained by taking the product of their

discrete Fourier transforms (DFTs), X1[k] and X2[k], as given in Equation 4.3

[Oppenheim89]:

37

[] [] [] []kXkXnxnx DFT
2121 →←∗ (4.3)

Where circular convolution is symbolized by *. By realizing that correlation is equivalent

to convolution when one sequence is time reversed, that is:

[] [] [] [] ∗ →←−∗ kXkXnxnx DFT
2121 (4.4)

The correlation operation can be performed in the frequency domain as:

[] [] []{ } []{ }{ }nxDFTnxDFTIDFTnxnx 2121
∗⋅≡−∗ (4.5)

Where IDFT is the inverse DFT, and []∗kX 2 represents the complex conjugate of []kX 2 .

Therefore, the correlation, Ri, of the ith input signal block, ri,k, with the upsampled replica

C/A code, Gi,k can be performed in the frequency domain as:

{ } { }{ }kii,ki GDFTrDFTIDFTR ,
∗⋅≡ (4.6)

In practice, the fast Fourier transform (FFT) is used to compute the DFT.

[vanNee91] was one of the first publications that documented this fast correlation

technique applied to the GPS signal.

Figure 4.5 shows the result of a fast correlation based acquisition performed on

SV10 by spanning the carrier frequency ±10 kHz about the 1.25 MHz IF center frequency

in steps of 1 kHz.

38

Figure 4.5 Fast Correlation Based GPS Signal Acquisition

The figure shows the triangular correlation peak in the code-offset direction when the

carrier frequency approximately matches that of the incoming signal. Since only the

carrier frequency dimension of the acquisition space [Figure 3.5] needs to be searched,

and the code phase is immediately apparent from the location of the triangular correlation

peak, the acquisition time is theoretically reduced by a factor of 2046. A block diagram

of the fast correlator is shown in Figure 4.6.

39

FFT

ri,0

ri,1

ri,M-1

ri,M

FFT

G0

G1

GM-1

GM

Conj(·)

X IFFT

Ri,0

Ri,1

Ri,M-1

Ri,M

Figure 4.6 Block Diagram of GPS Fast Correlator

It should be noted here that any suitable transform that operates on an entire block of

samples could be used to implement the fast correlation operation. The FFT is used in

this work since it is the most well understood and straightforward technique.

The primary goal of this work was to study the feasibility of implementing the

FFT based GPS fast correlator in FPGA hardware for real time processing. A minimal

real time processing solution can be achieved only if the FFT/IFFT pair and

multiplication operations can be performed within the dwell time (block update time) of

the receiver.

40

4.3 Block Processing Hardware Performance Measures

As mentioned before, the goal of this work was to study the feasibility of

implementing block-processing techniques in FPGA hardware. Since all of these

algorithms had been developed, tested, and proven in the Matlab™ programming

environment as documented in [UijtdeHaag99] and [Feng99], the double-precision

processed results of Matlab™ are considered the ‘truth’ in this work. When these

algorithms are migrated to finite-precision hardware such as that implemented in an

FPGA, dynamic range limitations and rounding effects cause significant errors that result

in deviations from the truth. In order to characterize these deviations and determine if

these are still within acceptable limits for a given application, hardware processing

performance measures were defined for this research. These performance measures

evaluate how well a given hardware architecture can acquire the GPS signal and track its

code phase. The ability to track carrier phase and carrier frequency were not studied since

these were beyond the scope of this work. The following subsections describe the

acquisition and code tracking performance measures, respectively.

4.3.1 Acquisition Margin and Implementation Loss

In order to characterize the relative amplitude of the signal correlation peak with

respect to false correlations due to signal noise and finite precision round off noise, the

Acquisition Margin, MAq, is defined. Figure 4.7 shows the correlation peak verses code

phase for a 50 dB-Hz signal. Figure 4.8 shows the correlation of a 44 dB-Hz signal in the

same data set (plotted in the same scale).

41

Figure 4.7 Correlation Peak for a 50 dB-Hz Signal

42

Figure 4.8 Correlation Peak for a 45 dB-Hz Signal

In order to detect the acquisition of both signals, the detection threshold [Section 3.3]

must be set below the peak value of the weak signal, but above the highest noise peak.

The acquisition margin is a measure of the amount of ‘headroom’ available in order to set

the detection threshold, TD, such that an acquisition with reasonable PFA and PMD values is

attainable. The acquisition margin is defined as:

)(log10 dB
R
RM

N

P
Aq

�
��
�

�
⋅= (4.7)

Where:
 RP : amplitude of the correlation peak
 RN : amplitude of the largest noise peak in the correlated block

43

Therefore, the acquisition margin for the 50 dB-Hz signal of Figure 4.7 is 10.62 dB. For

the 45 dB-Hz signal of Figure 4.8, it is 5.42 dB.

When the correlation is performed with finite-precision arithmetic (i.e. in

hardware), processing “noise” due to roundoff errors is added to the signal being

processed. It is assumed that the processing noise is uncorrelated to the thermal and

sampling noise components. This is a reasonable assumption since the noise sources are

due to completely different physical processes. Hence, when the signal is correlated

using finite precision arithmetic, the noise peaks increase in amplitude and the actual

correlation peak decreases, hence lowering MAq. The difference between mean

acquisition margins for the truth, MAq,truth (which contains only the thermal and sampling

noise components), and hardware processing, MAq,HW (which contains the processing

noise in addition to the noise present in the truth), gives the implementation loss, LHW, for

the hardware architecture under consideration, as given below.

() ()HWAqTruthAqHW MEMEL ,, −= (4.8)

A significantly large sample size is needed to calculate the mean value. Since a databit

transition within a block drastically reduces the correlation energy and hence affects the

statistical results, blocks with databit transitions are removed, as described in Section 4.1.

4.3.2 Code Phase Detection and Range Error

As described in Section 2.1, the replica code phase gives the time of transmission,

ttr, of the signal relative to the receiver code epoch. For non-coherent detection (where

the receiver clock is not synchronized to the incoming code epoch), the location, τP,i (i.e.

44

the code phase offset corresponding to the prompt C/A code for block i), which is the

maximum output of the envelope detector provides the approximate C/A code phase in

samples, as shown in Figure 4.9. The envelope value is given by 22 QIY += .

Figure 4.9 Illustration of Code Phase Measurement Parameters

45

Figure 4.10 shows the quantity c(τP), over a duration of one second for SV4 in the

dataset.

Figure 4.10 Envelope Detector Peak Location Showing Relative Motion of SV

The code phase changes over time due to the relative line-of-sight velocity, vr, as given by

Equation 2.5. Due to sampling quantization, range uncertainties, and noise, the code

phase does not change smoothly from one sample point to the next. Therefore, ttr is

estimated from Equation 4.8 which is derived from [Tsui97] and [Feng99].

()Pcτ

46

�
�
�

�
�
�
�

�
��
�

�
��
�

� −⋅
+
−−=

d
d

YY
YYMTt

LE

LE
PStr

2
1023

τ (4.9)

Where:
d : correlator spacing in chips (d=0.4 chips for M=5000)
YE : envelope value when the reference C/A code is d/2 chip early
YL : envelope value when the reference C/A code is d/2 chip late

Figure 4.11 shows the quantity c(ttr) (i.e. the time of transmission expressed as a range)

estimated from Equation 4.9 for the ith ms, in meters, along with a (least squares)

quadratic fit of the data points. The standard deviation of c(ttr) relative to the fit is 17.84

meters.

Figure 4.11 Estimated Code Phase Measurements for a Period of One Second

47

The standard deviation of the c(ttr) values with respect to the quadratic fit gives

the amount of error in the pseudorange measurement, and is hence used as a performance

measure to evaluate the amount of pseudorange error that will result when the block

processing techniques are implemented with finite precision hardware.

4.4 Applications of Block Processing

Block processing has been shown to improve the performance of GPS under

severe conditions such as when the received signal is too weak to be detected, the signal

is received in high-dynamic environments, and in the presence of various types of

interference. In addition, block processing can be used for the sophisticated receivers that

are used in LAAS ground facilities (LGFs) to monitor the GPS signals and detect

anomalies, in order to increase the reliability of a GPS based landing system [Snyder99

and Feng99]. An overview of one of these applications, acquiring low C/N0 GPS signals,

is presented below.

As shown in Table 4.1, SV5 is present in the dataset used for this work, but is too

weak to be acquired by the NovAtel™ Millennium™ GPS receiver. Hence, it is assumed

that SV5 has a C/N0 lower than 44 dB-Hz. Figure 4.12 shows the block processing

acquisition performed for SV5.

48

Figure 4.12 Acquisition of a weak GPS signal

When compared to the 50 dB-Hz signal acquisition of Figure 4.5, it can be seen that the

correlation peak is too weak to detect reliably. Figure 4.13 shows the peak at the Doppler

frequency offset of –1351 Hz (the average Doppler offset for the SV, as shown in Table

4.1). The acquisition margin for this case is only 3.9 dB.

49

Figure 4.13 Fast Correlator Output for Weak GPS signal

Figure 4.14 shows the correlation result when five concurrent fast correlated

blocks are coherently summed. The block addition process averages out the noise and

increases the magnitude of the correlation peak. This technique increases the acquisition

margin to 8.2 dB, roughly double that of the previous case, and greatly improves the

detectability of the signal.

50

Figure 4.14 Result of Block Addition Technique Applied to Weak GPS Signal

Techniques such as this can be used to acquire GPS signals with very low C/N0,

and has been proven to acquire signals as low as 20 dB-Hz [UijtdeHaag99]. However,

this technique can be used for positioning only if the receiver has a-priory information

such as carrier Doppler offset and the GPS data message. The SnapTrack™ server aided

positioning system [Moeglein98] uses a datalink to send these parameters to the receiver

so that the receiver only needs to find the time of transmission based on the block added

correlation peak. Since block addition techniques effectively increase the dwell time of

the correlation, a receiver optimized for receiving weak signals will lack the ability to

51

operate well under high-dynamic conditions. Further details of block addition techniques

for receiving weak GPS signals can be found in [UijtdeHaag99].

4.5 Real Time Block Processing GPS Receiver

The previous section mentioned the various applications of a block processing

GPS receiver. The algorithms for these applications have already been developed and

tested in software, as described in [Feng99] and [UijtdeHaag99]. However, the immense

computational burden of these algorithms has kept them from being implemented in real

time. The main obstacle for real-time processing has been the computation of the 5000-

point FFTs and IFFTs needed for the fast correlator. Even with the latest generation of

multiprocessor-based computers, the best achievable processing throughput has been

roughly two orders of magnitude lower than what is required for a real time solution.

Even if general-purpose microprocessors eventually become fast enough to block-process

GPS at a useful rate, such a solution would not be able to complete with current GPS

receivers in terms of size, power consumption and portability. The reason is that the

general-purpose microprocessor performs operations on an instruction-by-instruction

basis, and is therefore not optimized for any given application. On the other hand, ASICs

are ‘hardwired’ for a given application and hence offer the most optimal solution in terms

of speed, power and size. However, once fabricated, the ASIC cannot be changed even to

accommodate a small change in the algorithm. Furthermore, the non-recoverable

expenditure (NRE) associated with ASICs is too restrictive for research purposes.

52

FPGAs combine the best features of microprocessors and ASICs and are hence the

implementation platform of choice for a block processing GPS receiver.

Figure 4.15 shows a proposed system-level diagram of a real-time block

processing GPS receiver that targets airborne applications.

User Interface

GPS Antenna

Power
Supplies

GPS Data Processor SW

Host Processor (QNX, Flight hardened)

GUI Software

FPGA Configuration/Ctrl SW

ADC Card Controller SW

PCI Bus

Stable
Reference
Oscillator

Dedicated Bus
FPGA ProcessorRF Front End

Frequency
Synthesizer

High-Speed ADC

Figure 4.15 System Diagram of Real-Time Block Processing GPS Receiver

The entire system is housed within a flight hardened airborne computer that runs a flight

certified real time operating system (RTOS) for high reliability. The RF front-end

module (a miniaturized version of the scheme in Figure 4.2) amplifies and downconverts

the GPS signal. A high speed ADC card attached to the host system bus (PCI) samples

the downconverted signal at a quantization that is high enough (i.e. ~ 12-bits), so that

AGC is not needed due to the high input dynamic range. Because of the high input

quantization and the sampling rate (5 MHz), the data throughput of the ADC will be too

53

high to send reliably via the system bus. For example, if 12-bit data is packed into a 16-

bit integer, the throughput will be 10 Mbytes/sec. Hence, a dedicated bus is used to route

the data directly to the FPGA processor. This ensures a sustained data transfer and helps

minimize latency in the system. The host processor controls the operating parameters of

the ADC card via the system bus.

The FPGA hardware processes the incoming data in a block-by-block basis, as

illustrated in Figure 4.1. The main task of the FPGA processor is to perform the GPS fast

correlation presented in Section 4.2. The output of this stage is the pseudorange, delta-

pseudorange, and accumulated Doppler measurements, similar to the sequential receiver

shown in Figure 3.1. The configuration and control of the FPGA processor is performed

by the host processor via the system bus.

The host computer runs a multitasking RTOS that handles the following tasks: 1)

setup of the ADC during startup and active monitoring of ADC card for intelligent AGC

and fault monitoring. 2) FPGA configuration and embedded processor software uploads

at power up and runtime based on the given application (i.e. dynamic reconfiguration). 3)

Intelligent navigation processing based on decoded navigation data stream, pseudorange,

delta-pseudorange, and accumulated Doppler values obtained from the FPGA processor,

and supplemental positioning systems (such as an IMU). 4) Graphical user interface

(GUI) software execution. 5) Overall system integrity monitoring.

The ultimate goal of this work was to implement the FPGA processor component

of the real-time block-processing GPS receiver. The design of the FPGA processor is

described in Chapter 7. The following chapter is an introduction to FPGAs.

54

5 FIELD PROGRAMMABLE GATE ARRAYS

Chapter 4 stated that FPGAs were the only platform currently available that was

ideally suited for implementing a real time GPS block-processing receiver. This chapter

introduces FPGAs and describes the Xilinx XC4000 series device as a representative

architecture. In addition, it highlights some of the unique features FPGAs possess that

make them ideal for DSP applications.

5.1 Introduction to FPGAs

FPGAs are the newest addition to the programmable logic device (PLD) family.

In addition to FPGAs, PLDs comprise of simple programmable logic devices (SPLDs)

and complex programmable logic devices (CPLDs). Of these, FPGAs are the most

complex devices in terms of density, architecture, and functionality. They are suitable for

implementing designs of varying complexities, ranging anywhere from a thousand up to

several million system gates. In terms of density and speed, FPGAs have come of age in

recent years, and are beginning to replace conventional ASIC technologies in select

applications such as networking hardware. Perhaps the most important reasons FPGAs

have become a popular platform for digital design are its rapid and infinite re-

programmability, high gate density and speed-to-power ratio and low cost. Re-

programmability has also made it a popular device for research where FPGAs are used for

rapid prototyping.

Because FPGAs approach the performance of ASICs while incorporating the

flexibility of software reconfiguration, it is the ideal architecture for implementing a

55

software radio. This is why FPGAs were the focus in this work. That said, it should be

noted that the architectures presented in this thesis could also be implemented in an ASIC

technology since the architectures are described at a high-level of abstraction and are not

technology specific.

During the course of this work, an FPGA based commercial off-the-shelf (COTS)

design platform known as the PCI Pamette™ was used for implementing digital designs

[Compaq97]. The Pamette board consists of four Xilinx XC4010E-HQ208 FPGAs, each

containing 10,000 maximum usable gates available for reconfiguration. Even though new

and better architectures such as the Virtex™, Virtex-E™ and Virtex-EM™ families of

FPGAs have emerged, they are still largely based on the XC4000 series architecture,

which Xilinx™ introduced in 1991 [Roelandts99]. As such, this thesis focuses on the

XC4000 device as a possible implementation candidate. The following section presents a

brief introduction to the XC4000 architecture.

5.2 Architecture of Xilinx XC4000 Series FPGAs

As shown in Figure 5.1, an FPGA consists of an array of programmable logic

structures known as configurable logic blocks (CLBs). Along the periphery of the device

are structures that control the input and output to the device. These input/output logic

structures are called I/O blocks (IOBs). All blocks are enveloped by a rich combination

of routing resources known as the programmable interconnect. The CLBs implement the

logic functions of the hardware. The IOBs provide connectivity to and from the outside

world. The programmable interconnect routes the connections between the blocks to

56

make up the digital circuit. The CLBs, IOBs, and interconnect are configurable via

SRAM based memory cells in the device. The interconnections are made using pass-

transistor switches with repeaters (amplifiers) placed at suitable intervals to restore logic

levels and minimize delay for long signal paths.

CLB

CLB

CLB

CLB

Switch
Matrix

Programmable
Interconnect I/O Blocks (IOBs)

Configurable
Logic Blocks (CLBs)

D Q

Slew
Rate

Control

Passive
Pull-Up,

Pull-Down

Delay

Vcc

Output
Buffer

Input
Buffer

Q D

Pad

D Q
SD

RD
EC

S/R
Control

D Q
SD

RD
EC

S/R
Control

1

1

F'
G'

H'

DIN

F'
G'

H'

DIN

F'

G'
H'

H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G4
G3
G2
G1

F4
F3
F2
F1

C4C1 C2 C3

 K

Y

X

 H1 DIN S/R EC

Figure 5.1 Anatomy of an FPGA [Xilinx99]

Digital systems are implemented by mapping the design into the framework of the

FPGA architecture. During the design phase, many solutions to this mapping problem

can result due to the generic architecture of the FPGA. The challenging task of FPGA

design lies in the efficient structuring of the design logic such that the device and its

architectural features are best utilized to yield an optimal implementation solution. This

57

philosophy sets FPGA design and ASIC design distinctively apart from each other. For

an ASIC, the goal is to implement the given logic using the lowest transistor count,

physical area, and effective switched capacitance as possible (to reduce propagation delay

and power consumption). When an FPGA is the target device, the designer must

thoroughly study the architecture of the device and picture the logic in terms of the

resources available in the FPGA. For example, a commutator switch in a pipeline is best

implemented with pass transistor logic in an ASIC technology. For an FPGA, the same

function is efficiently implemented using dual port RAM (DPRAM), which is abundant

in the device.

Figure 5.2 shows the architecture of a CLB. The CLB is comprised of two 16×1-

bit and one 8×1-bit SRAM based look-up-tables (LUTs), called function generators, that

can be combined to form universal logic functions of up to nine inputs. In addition, the

outputs of the F and G function generators can be registered within the CLB’s two

register elements, which, depending on device, can be configured to be either edge-

triggered D-type flip-flops (DFFs), or level-triggered latches. This logic-register structure

is the basis for implementing bit-sliced pipelined datapaths necessary for most DSP

functions.

Apart from the ability to implement fixed logic functions through the use of look-

up-tables, special architectural features of the XC4000 enable the function generators to

be configured as RAM, DPRAM, or high-speed adders (through the use of fast carry logic

structures that traverse vertically through CLB boundaries). Since such higher order

functions can be implemented in a single CLB, this type of architecture is referred to as

58

one that is ‘coarse-grained’. This coarse-grained architecture made the XC4000 family

one of the first and popular devices for implementing DSP hardware.

D Q

SD

RD

EC

S/R

Control

D Q

SD

RD

EC

S/R

Control

1

1

F'

G'

H'

DIN

F'

G'

H'

DIN

F'

G'

H'

H'

H
Func.
Gen.

G
Func.
Gen.

F
Func.
Gen.

G4
G3
G2
G1

F4
F3
F2
F1

C4C1 C2 C3

K

YQ

Y

XQ

X

H1 DIN S/R EC

Figure 5.2 XC4000 Configurable Logic Block [Xilinx99]

Figure 5.3 shows the internal structure of the XC4000 IOB. Each IOB controls

one package pin. The pin can be an input, output, or bi-directional depending on how the

IOB is configured. In addition, the inputs and outputs can be registered. This enables the

device to meet fast I/O throughput requirements when mated with external pipelined

hardware. Each signal pin can also be tri-stated. This feature is invaluable when the

device needs to be connected to bi-directional data busses.

59

Figure 5.3 XC4000X IOB (Shaded Areas Indicate Differences from XC4000E)

[Xilinx99]

Figure 5.4 illustrates how programmable routing is achieved through switching

matrices within the FPGA. Each interconnecting node within the switch matrix has six

pass transistors to route connections to and from any direction. Several types of routing

resources comprise the FPGA’s complex routing structure. These include short (and fast)

CLB-to-CLB routing, general purpose interconnect that use the switch matrices, and low-

capacitance long lines spanning vertically and horizontally across the chip to establish

longer connections. The horizontal long lines can be configured as tri-stated busses for

sending data to and from their adjacent rows of CLBs to IOBs. In addition, dedicated

metal layers driven by powerful buffers (BUFGs, [Xilinx99]) are used to route low-skew

clock signals to the individual registers within the CLBs and IOBs.

60

CLBCLB

CLBCLB

CLBCLB

CLBCLB

Switch
Matrix

Switch
Matrix

Figure 5.4 XC4000 Interconnect Scheme [Xilinx99]

5.3 FPGA Based Design Flow

As with any digital design process, FPGA based design involves a set of

procedures that needs to be followed for optimum results. Figure 5.5 shows a typical

FPGA design flow.

61

Design SpecificationSW Model Design
Constraints

Behavioral
Model

RTL
Model

Unmapped
Logic

Validation
cycle

Verification
cycle

Mapped
Logic

FPGA
Implementation

FPGA
Hardware Design

Synthesis

Mapping

Place & Route

Bitstream Generation

Verification
cycle

Verification
cycle

Verification
cycle

SDF
File

Delay
Extraction

Back
annotation/

Timing
Verification

Hardware
Verification

Machine
cycle/latency

reqs.

Timing
Constraints

Target Device
Libraries

Floorplanning/
Manual
placing

IP
Cores

C/C++
MatlabTM

C/C++
Behavioral VHDL
MatlabTM

Dataflow VHDL

Dataflow/behavioral
VHDL w/ timing

Behavioral VHDL
/w component models
and SDF files

Aldec Active-VHDLTM

Mentor Graphics ModelSimTM

Synopsys FPGA ExpressTM

Mentor Graphics Leonardo SpectrumTM

Xilinx Foundation Series SoftwareTM

MathWorks MatlabTM

Figure 5.5 Typical FPGA Design Flow

The input to the process is a design specification that usually includes a software model

of the system that needs to be implemented in hardware. The specification includes

design constraints such as overall system error bounds, size, power consumption, cost,

etc. The hardware designer starts by developing a model that simulates the behavior of

the hardware (hence called the behavioral model) and validates it against the design

specification. Once the behavioral model is fully validated to meet the constraints of the

design specification, subsystems within the behavioral model are replaced with register

transfer level (RTL) models. RTL models describe the system in terms of its dataflow

and the operations to be performed with respect to machine (clock) cycles. In order to

62

simplify the design process, pre-designed intellectual property (IP) cores can be integrated

into the design at this stage. Examples of IP cores include PCI bus interfaces, Dynamic

RAM (DRAM) controllers, and various DSP functional blocks. The RTL models are

then verified for correct functionality with respect to the behavioral model. Following the

verification process, the RTL description of the system is synthesized into a circuit

comprising generic hardware elements such as NAND/NOR gates and DFFs. This is

normally performed with a synthesis tool. At this stage, the logic elements do not

necessarily have a correspondence to components in the actual target hardware. The gate-

level design is then verified against the RTL model for proper functionality. The

synthesis tool, in its effort to minimize the speed-area product, can sometimes incorrectly

merge or “optimize-away” necessary functionality. Verification with the RTL model

reveals these errors.

Following synthesis, the generic elements are mapped to the given FPGA device.

The mapping tool has access to a database of the target device’s components, their

configuration rules, fan-in and fan-out limits, delay properties, hardware cost, etc. The

mapped result is then verified against the unmapped or RTL models for proper

functionality. The mapped design is then inputted to the FPGA development tools for

placement and routing.

The place-and-route tools repeatedly try different placement and routing schemes

until it finds a solution that meets the given timing constraints. The tool then generates a

file containing information about the FPGA’s internal interconnect delays. This file is

63

generated in an industry standard called the standard delay format (SDF). The SDF file is

back-annotated to the mapped hardware description and simulated for timing compliance.

Left to its own devices, the place and route tool can fail to find a configuration

that meets the given timing constraints. In this case, the designer can manually place

components in critical paths, or arrange all components so that the tool has only to route

the design. This latter procedure is called floorplanning, and is an important step for

harnessing peak performance from an FPGA design. Depending on how seriously the

place-and-route step failed, the designer may have to go all the way back to the synthesis

phase, or even the RTL design phase and iterate many times in order to get an optimal

design that passes timing constraints. If timing compliance is impossible to achieve,

some timing constraints may need to be relaxed for slower performance, or the target

device may need to be changed to one with a higher speed grade.

Once the design passes timing verification, it is ready to be programmed into the

FPGA. The design tools output a configuration bitstream to program the FPGA. A

design completed in this way usually works first time in the target hardware. This is due

in part to the thorough cross-verification between successive stages in the design, and the

conservative unit delay values used for the SDF files. However, final hardware

verification using digital test and measurement equipment in a variety of operational

extremes (such as temperature, vibration, radiation, etc.) is essential to insure that the

hardware will function as per the original design specification. Figure 5.5 shows typical

languages and software tools used for the various stages of the design process.

64

In this work, the complete high-level behavioral model for the GPS fast correlator

was developed and validated against the design specifications obtained from [Feng99]

and [UijtdeHaag99]. The behavioral simulation was performed in Matlab™ by

effectively ‘crippling’ its floating-point capabilities to mimic the functionality of the

hardware. Matlab™ rather than a hardware description language such as VHDL was

chosen for behavioral simulation because initial VHDL simulations took too much time

to run, even for a relatively small subset of the entire design. The design validation

process was performed for several hardware parameters as documented in Chapter 8.

Due to time limitations, a complete translation to the RTL level was not performed.

Instead, design partitioning schemes for eventual RTL conversion was studied, and is

documented in Chapter 6 and Chapter 7.

65

6 DESIGN OF 5000 POINT FFT/IFFT

As described in Section 4.1, at the heart of the GPS fast correlator is the

computation of 5,000-point FFTs and IFFTs. This chapter describes the development of

the 5000-point FFT/IFFT algorithm used for this work.

6.1 The Fast Fourier Transform Algorithm

The DFT for an N-point finite duration sequence {x(n)}, where 0 ≤ n ≤ N-1 is

given by:

1,...,1,0)()(
1

0

)/2(−==
−

=

− NkenxkX
N

n

nkNj π (6.1)

This can be tersely written as:

−

=

=
1

0
)()(

N

n

nkWnxkX (6.2)

Where W=e-j(2π/N). When x(n) is a complex sequence, the direct evaluation of the DFT

requires (N-1)2 complex multiplications and N(N-1) complex additions.

In 1964, J.W. Cooley and J.W. Tukey rediscovered an optimization to the DFT

that revolutionized its use in signal processing applications [Cooley65]. In short, the

optimization involves breaking up the original N-point sequence into two N/2 sequences

and evaluating the DFT for each and combining the result to obtain the original N-point

transform. The shorter sequences now require on the order of () 2/22/ 22 NN =×

complex multiplications, a factor of two savings over the direct evaluation. This splitting

process can be iterated to end up with N/2 2-point transforms. A 2-point transform

66

requires only two complex additions and no complex multiplications. This procedure

requires log2N splits and N/2 complex multiplications to combine the results of the

individual stages. Hence, the total multiplications needed is approximately (N/2)log2N.

This is an approximation because some of the multiplications are trivial and do not

actually require multiplication operations. However, as N becomes large, the number of

non-trivial multiplications approaches this value.

The method described above can be performed only if N is a radix-2 number.

This is by far the most popular and optimal FFT algorithm. To apply the radix-2 FFT for

non radix-2 sequences, various techniques such as zero padding is often used. This

results in artifacts that may or may not be acceptable depending on the application

[Madisetti98]. Such techniques are unacceptable for the circular convolution based fast

correlator described in this work because the artifacts generated would interfere with the

precise ranging measurements that need to be made with the correlation peak.

The same split-and-combine technique used for the radix-2 FFT can be applied to

non-radix-2 sequences. However, this requires the calculation of non radix-2 transforms

and the combination of mixed-radix transforms to obtain the final transform. To

implement the 5,000-point FFT, radix-2, radix-4 and radix-5 transforms were used.

Sections 6.2, 6.3, and 6.4 describe these building block FFTs respectively, and Section

6.5 describes how they are combined to realize the 5000-point mixed-radix FFT.

67

6.2 The Inverse FFT

Consistent with the notation of Equation 6.2, the inverse discrete Fourier

transform is given by:

−

=

−=
1

0
)(1)(

N

k

nkWkX
N

nx (6.3)

The IDFT can be computed using the same algorithm steps by replacing the original

twiddle factors (i.e. Wnk coefficients) with their complex conjugates.

In the case of the fast correlator used in this work, the FFT hardware

implementation introduces a scaling factor, 1/S to the result. The IFFT is implemented by

the same hardware structure used for the FFT merely by conjugating the twiddle factors

as described above. Hence, the IFFT is also scaled by the 1/S factor. For the purposes of

hardware implementation, the 1/N scaling of the IFFT is not performed. The result of the

correlation can be scaled to give the correct absolute value since the hardware scaling

factors are known. However, this is not done for the GPS fast correlator since only the

relative magnitudes of the peaks are of interest.

The following sections describe the design of the 5000-point FFT/IFFT mixed-

radix algorithm that was used for the fast correlator. The mixed radix algorithm is

constructed from radix-2, radix-4, and radix-5 FFT building blocks. As such, these will

be described first, followed by the 5000-point algorithm and how it is folded for

implementation in FPGA hardware. For simplicity, only the FFT is considered in the

following description.

68

6.3 Radix-2 FFT Building Block

The radix-2 FFT represents the most fundamental element used for the

computation of larger FFTs. This algorithm is known as the butterfly because of its

distinctive structure. The signal flow graph for a radix-2 complex FFT is shown in Figure

6.1, where a(n) represents the nth time domain component and A(k) represents the kth

frequency domain component, and the subscripts R and I represent the real and imaginary

components respectively.

aR(0)

aI(0)

aR(1)

aI(1)

AR(0)

AI(0)

AR(1)

AI(1)

-

-

Figure 6.1 Radix-2 FFT Signal Flow Graph

The nodes in Figure 6.1 represent additions, and the – sign represents a subtraction. For a

subtraction operation, the horizontal arrow always represents the subtrahend.

69

Figure 6.2 shows the signal flow graph for the radix-2 butterfly when it is

implemented in finite precision hardware of width W, where W represents W-bit signed

binary numbers in 2’s complement form. In order to preserve a W-bit hardware pipeline

and ensure that the computed values do not overflow the W-bit range, scaling is

performed prior to sending the result of the computation to the subsequent stage. The

scaling is a divide-by-two operation that is performed by shifting the W+1 bit word one

place to the right and rounding the result (the scheme for rounding in hardware is

described in Section 7.2). However, depending on the final architecture, the scaling may

or may not be required for a given stage. Hence, it is shown here as a switchable

operation. In the final hardware implementation, the scaling operation will be hard-wired

into the architecture.

70

aR(0)

aI(0)

aR(1)

aI(1)

AR(0)

AI(0)

AR(1)

AI(1)

-

-

rnd(>>1)
W+1 WW

W

W

W

Scale

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

Figure 6.2 Radix-2 FFT Computation in Hardware

6.4 Radix-4 FFT Building Block

The 4-point FFT computed with Equation 6.2 requires no complex multiplies and

12 complex additions for a total of 24 complex additions. The circular convolution,

complex conjugate symmetry, and 90° and 180° symmetry optimization approaches to

algorithm construction all lead to the same algorithm whose signal flow graph is

presented in Figure 6.3 [Smith95]. The radix-4 FFT algorithm requires a single

multiplication by j, which is performed without a multiplication operation by crossing

bi(3) and br(3), as shown in the figure. Because of its distinctive structure, the radix-4

FFT element is also known as the dragonfly.

71

aR(0)

aI(0)

aR(2)

aR(1)

aI(1)

aR(3)

aI(3)

aI(2)

bR(0)

bI(0)

bR(1)

bI(1)

bR(2)

bI(2)

bR(3)

bI(3)

-

-

-

-
bR(3)

bI(3)

AR(0)

AI(0)

AR(1)

AI(1)

AR(2)

AI(2)

AR(3)

AI(3)

-

-

-

-

Figure 6.3 Radix-4 FFT Signal Flow Graph

72

The finite precision hardware mapping for the radix-4 algorithm is shown in Figure 6.4.

aR(0)

aI(0)

aR(2)

aR(1)

aI(1)

aR(3)

aI(3)

aI(2)

bR(0)

bI(0)

bR(1)

bI(1)

bR(2)

bI(2)

bR(3)

bI(3)

-

-

-

-
bR(3)

bI(3)

AR(0)

AI(0)

AR(1)

AI(1)

AR(2)

AI(2)

AR(3)

AI(3)

-

-

-

-

W+1

W+1

W+1

W+1

W+1

W+1

W+1

W+1W

W

W

W

W

W

W

W

W+1

W+1

W+1

W+1

W+1

W+1

W+1

W+1
rnd(>>1)

rnd(>>1)

rnd(>>1)

rnd(>>1)

rnd(>>1)

rnd(>>1)

rnd(>>1)

rnd(>>1)

Scale

W

W

W

W

W

W

W

W

Figure 6.4 Radix-4 FFT Computation in Hardware

As for the radix-2 FFT, scaling was performed according to the final algorithm.

When used for building higher order FFTs, the dragonfly structure is more efficient for

hardware implementation than the butterfly structure since it eliminates an intermediate

multiplication stage that would otherwise be needed to combine two butterfly operations.

This comes at the expense of a slightly more complex data switching scheme that is

needed for interchanging bI(3) and bR(3) before passing to the next stage of computation.

73

6.5 Winograd Radix-5 FFT Building Block

Several algorithms for implementing the 5-point FFT were considered. These

included the Singleton, Rader and Winograd algorithms. The Winograd algorithm was

chosen because it had the least number of constant coefficient multiplies (ten) and

multiplier constants (five) as compared to the other algorithms [Smith95]. Unlike the

radix-2 and radix-4 structures, the Winograd radix-5 FFT shown in Figure 6.5 has a

complicated structure that does not easily lend itself to segmenting. That is, it cannot be

broken down into a smaller structure (computational element) that can be used to

compute the larger algorithm using multiple passes.

aR(0)

aI(0)

aR(4)

aR(1)

aI(1)

aR(3)

aI(3)

aI(4)

bR(1)

bR(4)

bI(1)

bR(2)

bI(2)

bR(3)

bI(3)

-

-

-

-

AR(0)

AI(0)

AR(1)

AI(4)

AR(2)

AI(2)

AR(3)

AI(3)

-

-aI(2)

aR(2)

AI(1)

AR(4)

bI(4)

X

-

-

cR(1)

cI(1)
X

A

X

D

X

cR(3)

cI(3)

X

X

B

X

E

cR(5)
X

C

X

X

cI(5)

dR(0)

dI(0)

dR(1) eR(1)

dI(1) eI(1)

dI(2)

dR(2)

eR(5)

eI(5)

dI(4)

dR(4)

eR(3)

eI(3)

fR(1)

fI(1)

fI(2)

fR(2)
-

fR(3)
-

fI(3)

-

fI(4)

fR(4)

-

-

A = ½ cos (2p/5) + ½ cos (4p /5) - 1
B = ½ cos (2p/5) - ½ cos (4p/5)
C = sin (4p/5)
D = sin (2p/5) + sin (4p/5)
E = sin (2p /5) - sin (4p/5)

-

-

Figure 6.5 Winograd Radix-5 FFT Signal Flow Graph

74

The W-bit finite precision mapping for the Winograd radix-5 FFT is shown in

Figure 6.6.

aR(0)

aI(0)

aR(4)

aR(1)

aI(1)

aR(3)

aI(3)

aI(4)

aI(2)

aR(2)

bR(1)

bR(4)

bI(1)

bR(2)

bI(2)

bR(3)

bI(3)

-

-

-

-

AR(0)

AI(0)

AR(1)

AI(4)

AR(2)

AI(2)

AR(3)

AI(3)

AI(1)

AR(4)

-

-
bI(4)

X

-

-

cR(1)

cI(1)
X

A

X

D

X

cR(3)

cI(3)

X

X

B

X

E

cR(5)
X

C

X

X

cI(5)

dR(0)

dI(0)

dR(1) eR(1)

dI(1) eI(1)

dI(2)

dR(2)

eR(5)

eI(5)

dI(4)

dR(4)

eR(3)

eI(3)

fR(1)

fI(1)

fI(2)

fR(2)
-

fR(3)
-

fI(3)

-

fI(4)

fR(4)

-

-

A = ½ cos (2p/5) + ½ cos (4p/5) - 1
B = ½ cos (2p/5) - ½ cos (4p/5)
C = sin (4p/5)
D = sin (2p/5) + sin (4p/5)
E = sin (2p/5) - sin (4p/5)

-

-

rnd(>>1)
W+1 W

Scale

W

W

W

W

W

W

W

W

W

W

W+1

W+1

W+1

W+1

W+1

W+1

W+1

W+1

W+2

W+2

W+2

W+2

W+2

W+2 W+3

W+3

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

W+2

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

rnd(>>1)
W+1 W

W+1

W+1

Figure 6.6 Winograd Radix-5 FFT Computation in Hardware

6.6 Mixed-Radix Approach to FFT Algorithm Construction

This section describes how multiple-radix FFT building blocks can be combined

to form larger FFTs. Three approaches exist for combining smaller FFT building blocks:

convolution, prime factor, and mixed-radix [Smith95]. Of these, the mixed-radix

approach is the most straightforward and universal (it can be used for all transform

lengths), and hence was the technique used for this work.

75

The mixed-radix approach to FFT algorithm construction exploits the complex

conjugate symmetry properties of the DFT. The algorithms are characterized by a

sequence of small-point building blocks with complex multipliers between them. The

sequence is developed by factoring the transform of length, N, into two numbers,

QPN ∗= , and computing the N-point transform from the P-point and Q-point

transforms. This is illustrated in Figure 6.7a.

Data
Reorder

P-Point
FFT

Data
Reorder

Complex
Multipliers

Q-Point
FFT

Data
Reorder

P-Point
FFT

Data
Reorder

Complex
Multipliers

R-Point
FFT

Data
Reorder

Complex
Multipliers

S-Point
FFT

(a)

(b)

Figure 6.7 Two-Factor and Three-Factor Mixed-Radix FFT Construction

Similarly, if Q can be further factorized such that SRQ ∗= , then the Q-point transform

can be constructed from R-point and S-point building blocks, as shown in Figure 6.7b.

This process can be extended to an N-point transform made up of N’s prime factors. The

76

order of the individual transforms determines the multiplier constants used between the

stages, but does not change the number of multiplies and additions needed to perform the

operation.

The complex multiplies needed between two building blocks have a predictable

pattern. This is illustrated in Figure 6.8 for the nth P-point building block.

B(n) D(n)

1nth

P-Point

Building

Block

a((P-1)*Q+n)

a(n)

a(Q+n)
B(Q+n)

D(Q+n)

cos(2____n/N)-jsin(2____n/N)

B((P-1)*Q+n)
D((P-1)*Q+n)

cos(2____(P-1)n/N)-jsin(2____(P-1)n/N)

Figure 6.8 nth P-point Building-Block Output’s Complex Multipliers

If the multipliers are viewed as connected to the output of the P-point building block of

Figure 6.7a then the following four rules apply:

1. The complex multiplier of the kth output, B(k * Q + n), of the nth P-point building

block is given by Nknje /2π− .

77

2. The 0th P-Point block has all 1’s as the output multipliers since n=0 for the

coefficient expression given in Rule 1.

3. The 0th outputs, D(n), of the remaining (Q−1) P-point building blocks also have 1

as the multiplier since k=0 for the coefficient expression given in Rule 1. This

gives (P−1) complex multiplies per building block, for a total of (Q−1)*(P−1)

multiplications needed to connect the Q P-point blocks to the P Q-point blocks.

4. After multiplication, the kth output, D(k * Q + n), of the nth P-point building block

is connected to the nth input of the kth Q-point building block as shown in Figure

6.9.

A(0*P+k)

kth

Q-Point

Building

Block

D(k*Q+0)

A(1*P+k)

A(2*P+k)

A((Q-1)*P+k)

D(k*Q+1)

D(k*Q+2)

D(k*Q+Q-1)

Figure 6.9 kth Q-point building block input’s connections

78

Figure 6.10 illustrates the mixed-radix combination technique for a 20-point FFT

made from five 4-point, and four 5-point building blocks. The constant multipliers are

shown next to the 4-point transform outputs (Wnk = Nnkje /2π−).

0

1

2

3

0

1

2

3

0

a(0)
a(5)
a(10)
a(15)

1
1
1
1

0

1

2

3

0

1

2

3

1

1
W
W2

W3

a(1)
a(6)
a(11)
a(16)

0

1

2

3

0

1

2

3

2

a(2)
a(7)
a(12)
a(17)

1
W2

W4

W6

0

1

2

3

0

1

2

3

3

a(3)
a(8)
a(13)
a(18)

1
W3

W6

W9

0

1

2

3

0

1

2

3

4

a(4)
a(9)
a(14)
a(19)

1
W4

W8

W12

0

1

2

3

4

0

1

2

3

4

1

A(1)
A(5)
A(9)
A(13)
A(17)

0

1

2

3

4

0

1

2

3

4

2

A(2)
A(6)
A(10)
A(14)
A(18)

0

1

2

3

4

0

1

2

3

4

3

A(3)
A(7)
A(11)
A(15)
A(19)

0

1

2

3

4

0

1

2

3

4

0

A(0)
A(4)
A(8)
A(12)
A(16)

Figure 6.10 20-Point Mixed-Radix FFT Constructed from 4-Point and 5-Point Building

Blocks

6.7 The 5000-Point FFT/IFFT Algorithm

The mixed-radix approach was used to construct the 5000-point FFT using the

radix-2, radix-4, and radix-5 building blocks described in Sections 6.2, 6.3 and 6.4

respectively. This was based on a [5000 = 2 * 4 * 5 * 5 * 5 * 5] factoring scheme. It is

79

evident why the radix-4 was used here since it saves an extra complex multiplication step

and related data ordering when compared to a [5000 = 2 * 2 * 2 * 5 * 5 * 5 * 5] scheme.

The block diagram of the 5000-point mixed-radix algorithm is shown in Figure 6.11.

0

1

0

1
2498

a(2498)
a(4998)

0

1

0

1
2499

a(2499)
a(4999)

0

1

0

1
0

a(0)
a(2500)

0

1

0

1
1

a(1)
a(2501)

0

1

2

3

0

1

2

3

0

0

1

2

3

0

1

2

3

1249

0

1

2

3

4

0

1

2

3

4

0

0

1

2

3

4

0

1

2

3

4

999

0

1

2

3

4

0

1

2

3

4

0

0

1

2

3

4

0

1

2

3

4

999

0

1

2

3

4

0

1

2

3

4

0

0

1

2

3

4

0

1

2

3

4

999

0

1

2

3

4

0

1

2

3

4

0

A(0)
A(1)
A(2)
A(3)
A(4)

0

1

2

3

4

0

1

2

3

4

999

A(4995)
A(4996)
A(4997)
A(4998)
A(4999)

Figure 6.11 5000-Point FFT Block Diagram

The algorithm, as shown in Figure 6.11 is unsuitable for hardware implementation

since it contains too many building-block elements (2500 + 1250 + 1000 + 1000 + 1000

+ 1000 = 7750). Such an implementation would take a restrictive amount of area, and

would not exploit the processing speed of the FPGA, which is able to run at core clock

frequencies in the order of several hundred MHz (for the Xilinx™ Virtex™ device).

Therefore, the structure is projected vertically [Pirsch98], as shown in Figure 6.12.

80

FFT-5

C625

FFT-5

C125

FFT-5

C 25

FFT-5 FFT-2

C 5000

FFT-4

C2500

L Data Reorder / RAM

L Complex Multiplier

LX-point FFT Building Block FFT-X

Figure 6.12 5000-Point FFT Algorithm after Vertical Projection

In Figure 6.12, the complex coefficients given by c25, c125, etc. represent the coefficients

needed for constructing that FFT stage (for example, the c25 coefficients combine to make

a 25-point FFT). The vertical projection reduces the number of processing elements to

six and reduces the throughput approximately by a factor of 2500 since the radix-2 FFT

must cycle the input data 2500 times. However, even this structure can be further

optimized. The details of this optimization process are described in Section 7.3.

81

7 DESIGN OF GPS BLOCK PROCESSING DATAPATH IN FPGA

Chapter 4 described the novel GPS block processing receiver algorithms. So far,

it has been impossible to achieve real time implementation of these algorithms owing to

the huge computational requirement. This work studied the feasibility of implementing

GPS block processing algorithms in FPGA hardware. Transforming an algorithm into a

hardware implementation is a very challenging task. In comparison, it is relatively easy

to develop an algorithm in software, and modern tools such as Matlab™ have taken the

task of writing low-level code away from the user so that he or she can concentrate on

developing the algorithm. In recent times, these tools have incorporated efficient

compilers that make them comparable to hand-optimized software implementations

[Matlab99]. When moving to the custom designed hardware domain however, it is not

possible to directly convert the software algorithm into hardware. This is because custom

hardware resources are limited and increased complexity results in slower processing

speeds and higher cost.

This chapter describes the hardware design of the FPGA processor module of the

real-time block processing GPS receiver described in Section 4.5. The overall system

will be described first, followed by the design of the major individual subsystems. The

design phase described here corresponds to the first steps in converting the design

specification into an RTL description, as shown in the FPGA design flow of Figure 5.5.

It must be explicitly noted that the system was not implemented in FPGA hardware due to

the immense complexity of the task and the time restraints for this work. However,

82

software simulations with real GPS data that models the exact functionality of the

hardware architecture described in Chapter 6 and this chapter were used to verify the

validity of the architecture. These simulation results are described in Chapter 8.

A system level block diagram of the FPGA processor from Section 4.5’s Figure

4.15 is shown in Figure 7.1.

<<
FFT / IFFT

Pipeline

Local Processor

pseudorange/delta-pseudorange/
accumulated Doppler calculation

Channel logic
Datapath / DDS control

FPGA Configuration

C/A code
ROM

Datapath Controller FSM

PLL

clock generator

Rubidium
reference

Digital IF

Pseudorange
Delta-pseudorange

Receiver control
FPGA Configuration

DDS
SIN COS

<<

Scaling
I

Q

Quad Mixer

Wx

Wx W

WWx

W W

WWW

W

Wdds Wdds

Wx

Wx

Input Buffers Data Ordering Data Ordering

Figure 7.1 Block Diagram of FPGA Fast Correlator Processor

The FPGA processor consists of two major components: the FPGA hardware datapath,

and an embedded microprocessor (hereafter referred to as the local processor). The

datapath handles the high throughput math intensive processing while the local processor

handles the low throughput software calculations. This type of partitioning is called

NCO

NCO

83

hardware-software co-design. The co-design procedure must effectively partition the

hardware verses software processing tasks for optimum efficiency in terms of speed and

cost (area). For this application, the partitioning scheme is obvious, as shown in Figure

7.1.

The local processor manages the configuration of the FPGA during startup, and

controls the hardware via the datapath controller finite state machine (FSM). In addition,

it performs the double-precision floating-point calculations required for processing the

fast correlated I and Q outputs of the hardware datapath. Hence, the microprocessor

needs to be an adequately fast low-power device that supports floating-point arithmetic.

A mobile Intel™ 486 or Motorola™ PowerPC™ processor is a suitable candidate.

Alternatively, if enough resources exist, the microprocessor could be integrated into the

FPGA. This is unlikely since floating-point hardware is too costly for FPGA

implementation. The ideal for this application would be a programmable system-on-a-

chip (PSOC) which incorporates programmable logic (FPGA) and an embedded

microprocessor in a single device. PSOCs are currently under development by FPGA

vendors and represent the next revolution in programmable logic technology.

The hardware datapath performs the quadrature mixing and fast correlation

operations on the stored digital IF block. The carrier NCO, quadrature mixer, FFT/IFFT

pipeline, complex multipliers and datapath FSM are all implemented in FPGA hardware.

Consistent with Figure 4.1, the incoming digital IF is stored in two DPRAM

buffers such that when one buffer is busy storing the next block, the current block stored

in the other buffer is being processed. The pipeline can perform many correlations by

84

cycling through the current block of data. The number of processing cycles performed

during the block time will depend on how fast the pipelined datapath can process a single

correlation. On each processing pass, the correlation will be performed with different

parameters. For example, the carrier NCO can produce a different carrier frequency,

and/or a different C/A code transform may be used. The local processor managers these

parameters according to tracking and acquisition algorithms in software, and from higher

level commands received by the host processor. For example, the local processor may

consecutively track several SVs and perform acquisition to find other SVs. Hence, the

separate functionality of the receiver channels shown in Figure 3.1 is absorbed into a

single FPGA processor. If the FPGA datapath cannot perform enough block processing

cycles to meet the requirement of the GPS receiver, many such FPGA processors may

need to be implemented in parallel.

The NCO generates the given carrier frequency and this is multiplied with the

current block as it is been addressed out of the buffer. The result is stored in another

DPRAM buffer to perform data ordering for the FFT/IFFT pipeline.

The FFT and IFFT are both processed by the same hardware pipeline. On the first

pass, the FFT is computed, and this result is complex multiplied with the C/A code

transform. The C/A code ROM contains the fast Fourier transformed, conjugated,

upsampled, ordered, and appropriately scaled C/A codes for all 24 SVs. The appropriate

C/A code can be selected by changing the page address of the ROM. On the second pass,

the IFFT of the multiplied result is calculated and stored in a DPRAM buffer/sorter,

which provides the result of the correlation to the local processor.

85

Since this is a large design, the DPRAM buffers may have to be external to the

FPGA. The design will have many clocks operating at different rates. A PLL can be

used to generate all the necessary clocks for the system using the master Rubidium

reference clock. The new Xilinx™ Virtex™ devices have built-in DLLs for clocking the

FPGA, and it may be possible to use these instead of an external PLL.

The following sections describe the design of the carrier NCO, complex

multipliers, and the FFT/IFFT pipeline, respectively. Since the following is a high-level

description, datapath controller details are not considered.

7.1 Numerically Controlled Oscillator

As shown in Figure 7.1, the buffered digital IF signal is quadrature multiplied by a

locally generated carrier frequency to perform the carrier wipeoff operation [Section

3.2.1]. A numerically controlled oscillator (NCO) is used to generate the in-phase and

quadrature carrier signals with a 1.25 MHz center frequency. The carrier NCO must be

capable of spanning the ±10 kHz Doppler offset as described in Section 3.3, and have a

frequency resolution much smaller than the residual phase error being outputted by the

carrier phase discriminator. In addition, the carrier NCO must have low phase noise (i.e.

carrier phase jitter) since otherwise it would distort the carrier phase and frequency

measurements. Figure 7.2 shows a block diagram of the NCO. NCO-based frequency

synthesizers, known as direct digital synthesizers (DDS) are quickly replacing their PLL

counterparts because they are cheap and simple to implement in digital hardware.

86

sine LUT

cosine LUT

N

N

N

Clock

M
Frequency

Select

SIN Output

COS Output

Wdds

Wdds << N

Figure 7.2 Block Diagram of Carrier NCO

The NCO is made up of two components: the phase accumulator and the output

function look-up tables (LUTs). The phase accumulator (adder + register) of width N is

continuously clocked by a stable reference oscillator with frequency fclk. The digital

frequency selection value, M, is fed to the accumulator. At each clock cycle, M is added

to the previous sum of the accumulator resulting in a periodic numerical stair-step

function at the output of the NCO. When the maximum value of the accumulator is

reached, it overflows, completing one NCO cycle. The output frequency, fout, of the NCO

is limited by the Nyquist criterion (½ fclk), and is given by:

WNCO

WNCO

87

N
clk

out
fM

f
2
⋅

= (7.1)

The stair-step waveform can be interpreted as phase information if the range of N is

mapped from 0 to 2π radians. Hence, a phase-to-amplitude converter can be used to

generate any desired periodic waveform whose frequency is variable depending on the

value M. Frequency modulation can be performed if M is a function of time.

For a desired output frequency, fdesired, the value of M is calculated as:

�
�
�

� ×=
clk

N
desired

f
froundM 2 (7.2)

The maximum frequency attainable from the NCO, that is, by setting M to its maximum

value is dependent on the desired phase resolution. Hence, Mmax is given by:

)(
max 2 NCOWNM −= (7.3)

Where WNCO is such that, for K phase points, NCOWK 2= . Hence the maximum obtainable

frequency is:

N

WN
clk

out

NCOff
2
2)(

max,

−⋅= (7.4)

The frequency resolution, ∆fout, of the NCO is given by:

N
clk

out
ff
2

= (7.5)

From Equation 6.5, it can be seen that the phase noise of the NCO is directly

dependant on that of the reference clock. Since fout < fclk, and the desired center

frequency of the carrier NCO is 1.25 MHz, the highly stable 5 MHz reference frequency

used for the ADC can be used for the carrier NCO. This clock is derived from a highly

88

stable OCXO for short-term stability and is referenced to a Rubidium source for long-

term stability.

Since the block processing algorithms for carrier phase measurements require a

very fine frequency resolution [Feng99], a 32-bit (N=32) NCO was chosen for the design.

This gives a frequency resolution of 1 mHz. To generate a mean frequency of 1.25 MHz,

M = 230.

The amplitude resolution of the carrier NCO is determined by the amount of most

significant bits, WNCO, taken from the N-bit register for the phase to amplitude converter.

For example, if only the first two most significant bits are used (WNCO=2), only four

discrete values are available for representing the amplitude of the sine function. Hence

the sine function with a 2-bit LUT will have values: 0, 1, 0, –1, which is a triangular wave

approximation to a sinusoid.

The phase resolution, ∆φout, of the carrier NCO is also given by WNCO where:

NCOWout 2
2πφ =∆ (7.6)

Hence, for the WNCO=2 case described above, the phase resolution is π/2 radians. Phase

resolution of the NCO should not be confused with its frequency resolution. Phase and

amplitude resolution refer to the quantization that results from taking less than N bits to

represent the entire 0 to 2π phase range generated by the NCO, whereas the frequency

resolution determines how accurately the NCO can generate a given frequency.

As shown in Figure 7.2, two LUTs are used to map the stair-step functions to

sinusoids. For a hardware implementation, this can be performed with only one ROM

89

that is time-shared. Furthermore, only one quadrant of the cycle needs to be stored in the

ROM since the remaining three quadrants can be generated from reverse addressing and

inverting the stored values. However, these optimizing techniques would not save much

hardware resources for the given application since WNCO is not significantly large.

Section 8.2 shows the amount of acquisition margin lost and code ranging noise

introduced due to the carrier NCO amplitude quantization. NCO design is a complex

subject and only a description within the scope of this thesis was presented here.

7.2 Complex Multiplier

The complex multiplier is a vital component used in the GPS fast correlator

hardware implementation. It is used in the quadrature mixer and in the intermediate

processing stages of the FFT/IFFT datapath for the twiddle factor multiplications.

The multiplication of two complex terms x and a is given by:

x ⋅ a = u ====

()() () ()irriiirririr axaxjaxaxjaajxx ++−=++ (7.7)

In this form, the multiplication requires four real-valued multiplications and two real-

valued additions. A modification can be used to reduce the overhead to three real-valued

multiplications the five real valued additions, as shown in Figure 7.3 [Pirsch98].

90

+

>>>>

+

ar+ai

ar>ai

ai

ui

urxr

xi

Figure 7.3 Complex Multiplier Structure Using Three Real Multipliers

This technique is attractive for FPGAs since addition can be performed efficiently and

with fewer resources compared to multiplication. As described in Section 5.2, an adder

requires only one CLB for two bits and uses the fast carry logic of the FPGA.

Furthermore, in the case of the complex multiplications needed for the mixed-radix FFT

structure, since the coefficients are stored in memory, the ar+ai and ar-ai values can be

pre-calculated, thus avoiding more additions.

Figure 7.4 shows the hardware design of the complex multiplier.

91

+

-

ar

ai

W+1

W+1

X

X

xr

xi

W+1

W+1

+

X
W+1

-

+

W

W

W

W ui

ur

W

W

rnd(>>1)

rnd(>>1)

W+1

W+1

Scale

W+1

Figure 7.4 Block Diagram of Hardware Complex Multiplier

For W-bit a and x inputs, the first stage adders need W+1 bits to represent the output.

After multiplication with the ar+ai, ar−ai, and ai values, the result does not exceed W+1

bits for the worst case. Furthermore, the post-multiply additions also result in a W+1 bit

range. Since the datapath is W bits wide, the W+1 bit outputs of the final adders are

scaled by shifting 1-bit to the right and rounded to maintain W-bit precision throughout

the hardware datapath. The scaling is done only at certain points in the datapath to avoid

overflows. Hence, this is shown as a switchable operation in Figure 7.4.

The rounding operation is important since truncation leads to large error buildups

in the FFT processing. Rounding can be achieved by examining the first binary point and

92

the sign bit of the W-bit word to determine if the result needs to be incremented by 1. If

so, the carry input of the next processing stage is set, effectively adding 1 to the result.

If at least three cycles are available for performing the multiplication operation,

the structure shown in Figure 7.4 can be folded to a structure of two adders and a

multiplier.

The multipliers required for the operation must be (W+1)×W bits wide. However,

only the upper W+1 bits of the resulting 2W-bit output is used. Hence, a significant

amount of FPGA hardware can be saved if an optimal multiplier can be custom designed

for W+1 output bits. An attempt to design a Booth recorded multiplier [Wolf94] was

made, however only slight area improvements were realized compared to Xilinx™’s

parameterizable N×N multiplier core which contains the logic for all 2N−1 outputs. This

is because the Xilinx™ core is highly optimized and floorplanned for the FPGA

architecture. Nevertheless, it should be possible to design a smaller multiplier. An

optimally designed multiplier would save a considerable amount of FPGA resources since

the design needs a large number of multipliers, and hence warrants further study.

7.3 FFT/IFFT Datapath

Section 6.6 described the vertical projection of the 5000-point FFT to give an

architecture suitable for hardware implementation. Simulations were performed for this

structure in Matlab™, and it was found that the structure needed to be scaled by 1/26 =

1/64 for both the FFT and IFFT, in order to prevent overflows during processing. Several

attempts were made to optimally distribute the 1/64 scaling factor in the hardware

93

datapath. The scaling scheme shown in Figure 7.5 yielded the best results, and is the

scheme used for simulations in this thesis. The scaling is applied to the individual FFT

building blocks shown in the hardware structure figures in Sections 6.2, 6.3, and 6.4.

FFT-5

C625

FFT-5

C125

FFT-5

C 25

FFT-5FFT-2

C 5000

FFT-4

C2500

Scale Scale Scale Scale Scale Scale

L Data Reorder / RAM

L Complex Multiplier

L X-point FFT Building Block FFT-X

L Scaling (/2) Operation Performed

Scale

Figure 7.5 5000-Point FFT/IFFT Structure Showing Scaling Distribution

Each building block of the structure of Figure 7.5 takes a different number of

clock cycles to complete its operations. Hence, the faster building blocks would sit idle

while the slow ones complete their processing. Hence, the structure of Figure 7.5 needs

to be further optimized to equalize the number clock cycles needed for each stage.

From Figure 6.6, it can be seen that the complicated structure of the 5-point FFT

is such that it cannot be broken down into smaller components. Furthermore, this is the

main operation that comprises the 5000-point FFT, needing 4000 radix-5 computations

per FFT. Hence, a single 5-point FFT processing element (PE) can be implemented just

94

as it is given in Figure 6.6. The extra area this requires is justified since only one PE is

required. Of course, the PE is pipelined to achieve maximum throughput possible. When

the 5-point FFT PE is implemented in this way, it will perform a complete FFT/IFFT

operation in one clock cycle with a latency given by the number of pipelined stages

(latency issues are neglected in this work since no attempt was made to implement the

architecture in an FPGA). Since four complex multiplication operations follow the 5-

point FFT computation, the multipliers will also need to perform their operations in one

clock cycle. Hence, the multipliers can be implemented as shown in Figure 7.4 with

pipelining.

Since the 5-point FFT PE will take at least 4000 cycles to perform the 4000 5-

point FFTs (not counting any memory access or data reorder cycles), the remaining 2-

point and 4-point FFTs can be folded to equalize the number of clocks cycles needed for

performing all FFT operations to about 4000 cycles. The radix-4 FFT of Figure 6.4 can

be easily folded to perform only one butterfly operation per clock cycle. When the radix-

4 FFT is folded in this manner, it takes four cycles to perform a single FFT and hence

would take 5000 cycles to perform all 1250 4-point FFTs.

For the radix-2 algorithm of Figure 6.2, the operation is broken down into two

sweeps through two adders, thus taking 2 cycles per FFT. Hence, the 2-point FFT PE

takes 5000 cycles to perform its 2500 FFTs. Since all the folded PEs takes approximately

the same number of cycles to perform a complete 5000-point FFT (except for the 5-point

PE which takes 4000 cycles, however an extra cycle per FFT could be needed for the

95

complex data ordering), the datapath is now cycle optimized. This optimized structure is

shown in Figure 7.6.

FFT-5

RAM RAM

C 5000
+

+

RAM

C2500 C 25,125,625

trans cycles / Cycles
forms transform
2500 X 2 = 5000

trans cycles / Cycles
forms transform

1250 X 4 = 5000

trans cycles / Cycles
forms transform
4000 X 1 = 4000

Figure 7.6 Processing-Cycle optimized 5000-Point FFT/IFFT Datapath

Assuming this structure can be implemented in FPGA hardware and the hardware

is operating at a core clock frequency of 30 MHz (typical for a slow XC4000E device),

the datapath would process 30,000,000/5000 = 6,000 FFTs per second, which means the

pipeline will process 3 complete correlations per 1 ms block of data. If this structure is

implemented in a fast Xilinx™ Virtex-E™ device, approximately an order of magnitude

increase in processing throughput can be realized. Hence, given the datapath of Figure

7.6 can be implemented in an FPGA and can be made to execute in approximately the

same number of clock cycles as derived above (i.e. 5000 cycles per FFT); then, given the

clock speeds of current FPGAs (~300 MHz), it is entirely feasible to realize a GPS real-

time block processing receiver.

In order to implement the derived FFT/IFFT architecture given above, it is

necessary to study the amount of precision needed in the datapath (i.e. the number of bits

needed to represent the data). This analysis is described in the following chapter.

96

8 BLOCK PROCESSING HARDWARE SIMULATIONS

Chapters 6 and 7 described the underlying algorithms and the hardware

architecture required for implementing a GPS block-processing receiver. As mentioned

earlier, the block processing algorithms described in [UijtdeHaag99] and [Feng99] were

developed in software, where double-precision floating-point arithmetic was used (i.e.

Matlab™). In order to migrate these techniques into hardware, it is important to study

their performance degradation due to finite precision arithmetic. The purpose of this is

two fold: 1) To find the optimum hardware architectural parameters, and 2) Determine

the maximum error bound for a given architecture. The main concern is the

computational errors of the FFT/IFFT datapath, since it is the largest component to be

implemented in hardware. Even though the analytical error bound for finite-precision

FFTs is well documented in literature such as [Rabiner75] and [Knight79], its direct

application to the circular convolution based correlator becomes too complex. Instead,

this work studies error statistics from simulations using real GPS data. By running

simulations for different satellites with varying signal strengths, the hardware complexity

verses performance tradeoff can be analyzed statistically. At the end of the analysis,

questions such as: “how wide does the hardware pipeline have to be in order to reliably

acquire the GPS signal?” or “how much performance does one sacrifice if the carrier

NCO amplitude quantization is reduced to 2 bits?” can be answered based on the results

of the simulations. Indeed, one goal of this work was to determine such architectural

parameters once and for all, since earlier attempts to approach this problem from the

bottom up (i.e. develop some kind of hardware first and determine if it could be used for

97

GPS block processing) proved to be a nonproductive task since it was impossible to get a

handle on the problem. Furthermore, with this approach, it was difficult to estimate

hardware resource requirements so that a suitable FPGA COTS product could be

purchased. Nor was it possible to judge how much performance degradation could be

expected for a particular architecture.

The hardware simulations were performed in Matlab™. This is done by scaling

and rounding values such that the operations matched those of the hardware architecture

described in Chapter 7. After each stage of processing, the results are checked carefully

for their validity based on the results that would have been obtained from an actual

hardware stage. The effect of overflow error was not simulated. Instead, the architecture

is defined such that overflows do not occur. Matlab™ was used because of its simplicity

and efficiency. VHDL simulations were attempted, but proved too slow because VHDL

models too many parameters (such as each signal’s transaction history), which was not

needed at this level of abstraction. To illustrate the complexity and computational

intensity of the hardware simulation modeled in Matlab™, a single simulation run

consisting of one second of collected data evaluated for three SVs and a datapath width

ranging from 8-bits to 22-bits took approximately 90 hours to complete on a PC with dual

Pentium™ II 300 MHz processors. This was after all sequential loops were eliminated

and the code was optimized to use only matrix operations.

Three main simulations were performed to study hardware processing accuracies.

The first simulation studied the effects of ADC quantization on code tracking accuracy

and acquisition margin. Since the ADC quantization sets the dynamic range of the input

98

samples, this study was done to find the minimum range needed to represent the raw GPS

data (i.e. digital IF). Furthermore, this simulation gave insight into the robustness of the

GPS signal and the correctness of the processing algorithms.

The second simulation studied the effects of the carrier NCO amplitude

quantization. That is, the number of bits representing the in-phase and quadrature carrier

components in the carrier NCO Sine and Cosine LUTs, as described in Section 7.1. This

simulation was mainly performed to determine if the digital quadrature mixer could be

implemented without multipliers by using only a multiplexer and a two’s complementor,

and, if so, how much performance degradation would be caused by such a scheme.

The third simulation studies effects of the FFT/IFFT hardware pipeline width on

system performance. Since the 5000-point FFT/IFFT pipeline involves many operations

and takes the most amount of FPGA resources (Chapter 7), and each bit of extra precision

results in an exponential growth in area and complexity of the digital hardware, it is

important to determine the least possible pipeline width necessary that will get the job

done for a given application.

The simulations are compared to the results obtained from Matlab’s double

precision processed results. For the latter two simulations, the ADC quantization is fixed

at 8-bits (i.e. Wx=8). This was done so that the effect of only the quantity being evaluated

(i.e. the hardware structure under test) could be studied. The setup and results for each of

the simulations are described in the following sections.

For each simulation, two main quantities are studied. These are the GPS

acquisition margin and its associated implementation loss, and the code phase based

99

ranging error. These quantities were defined in Section 4.3. Whenever the term ‘range’

is used in this chapter, it refers to the quantity c(ttr), which cannot be called range nor

pseudorange according to the definitions of Chapter 3. The following section describes

the effect of truncation verses rounding in the hardware datapath.

8.1 Effect of Truncation

This simulation studies the effect of truncation in the fast correlator hardware

datapath. The justification for truncation is the fact that rounding is more complex than

merely truncating the results. Hence, if rounding can be avoided, the design can be made

simpler.

The behavioral model for each processing stage was written to include a

rounding/truncation switch. When truncation is enabled, the results of each stage is

truncated rather than rounded when any scaling is performed, or less precision than that

of a processed result is sent to the next processing stage. Figure 8.1 shows the single-

block simulation results of correlations for SV4 from W=8 through W=15 bits when

truncation is enabled.

100

Figure 8.1 Plots Showing the Effect of Truncation on the Datapath from W=8 to W=15

101

As seen from the plots, when the datapath precision is low, the truncation error

produces a large DC peak that seriously interferes with the correlation peak. However, as

the datapath precision is increased gradually, the truncation error is offset to the point

where the DC peak becomes lower than the noise peaks, essentially having no effect on

the processing. However, this happens only when W≥14. Figure 8.2 shows the truncation

error relative to the result obtained from rounding for SV4 when W=15, which illustrates

a significant error even at this high precision.

Figure 8.2 Difference Between Rounded and Truncated Processing Schemes

Since better accuracy can be achieved with rounding for a smaller datapath

precision, and the cost of rounding is much cheaper than a wider datapath, the conclusion

102

is: it is better to round than to truncate. For all subsequent simulations, the datapath

simulation is set for rounding.

8.2 Effect of ADC Quantization

This simulation studies the effect of ADC sampling quantization on the resulting

correlation. As mentioned before, the GPS data acquisition system uses a 12-bit ADC.

To simulate lower quantization values, the least significant bits of the input data are

ignored (i.e. truncated). Block processing simulations for ADC quantization values from

2-bits to 12-bits was performed. The results of these simulations are presented in this

section.

For this simulation, the truth is the result obtained from processing the full

precision data set (Wx = 12). Figure 8.3 shows the estimated range measurements for

SV10 (from Equation 4.8) along with a quadratic fit of the data. Figure 8.4 shows the

range data when the ADC quantization is two bits wide (i.e. Wx = 2). The deviation of

the range estimates about the mean is clearly visible. Hence, observing the standard

deviation of the range estimates shows the degradation in the measured values as a

function of the hardware parameter (ADC quantization in this case). Therefore, only the

standard deviation of the range measurements relative to the curve fit will be presented

henceforth.

103

Figure 8.3 c(ttr) for SV10 With 12-bit ADC

104

Figure 8.4 c(ttr) for SV10 With 2-bit ADC

Figure 8.5 shows the effect of ADC quantization on the standard deviation of the

range estimates. At Wx = 5, the deviations begin to approach the truth. This is evident in

Figure 8.6 where the inflation of the deviations with respect to the truth is shown as a

percentage. The deviations settle to within 10% of the truth for WX = 5.

105

Figure 8.5 Effect of ADC Quantization on c(ttr) Standard Deviation

106

Figure 8.6 Inflation of c(ttr) Standard Deviation With Respect to the Truth

The standard deviations are calculated with respect to the 2nd order fit to the data,

in a least-squared sense. A second order fit is used because the user-SV dynamics

consists of speed and acceleration components. Any higher order components are

ignored because this tends to model the noise as well. The difference between the curve

fits indicates any range measurement biases introduced by the ADC quantization. Figure

8.7 plots these biases. It can be seen that the bias is largely zero from Wx=2 to Wx=12

bits for SV30 and a few meters for the other two SVs when Wx is less than 4 bits. This

can be attributed to the statistical sample size (1000 measurements) and the fact that SV4

gives more noisy measurements because it is the weakest signal. This can be justified

107

through Figure 8.8, which plots the biases based on a 100-block sample size. Here, the

range biases appear to be more severe when in fact the biases are due to the small sample

size. Therefore, judging by the results shown in Figure 8.7 and 8.8 alone, it can be

deduced that the system has little or no biases.

Figure 8.7 Ranging Bias Due to ADC Quantization (I=1000)

108

Figure 8.8 Ranging Bias Due to ADC Quantization (I=100)

Figures 8.9 and 8.10 show how the acquisition margin is degraded across all SVs

as the ADC quantization is reduced. The acquisition margin suffers a loss of only 2 dB

when a 2-bit quantizing ADC is used. These figures clearly show how inexpensive

consumer GPS receivers are able to use a 1-bit ADC to sample the RF signal and still

successfully acquire GPS satellites despite a 3 dB loss in gain. The results give a feel for

the robustness of the GPS signal and its ability to provide service even under reasonably

severe conditions (hardware limitations in this case). However, it should be noted that a

2-bit quantizing ADC seriously degrades the interference rejection performance of the

109

receiver since any type of sufficiently strong interference, such as a continuous wave

(CW) signal can saturate the ADC and completely blank out the signal of interest.

Figure 8.9 Effect of ADC Quantization on the Signal Acquisition Margin

110

Figure 8.10 Loss of Acquisition Margin due to ADC Quantization

8.3 Effect of Carrier NCO Amplitude Quantization

For this and the subsequent simulation in Section 8.4, the ADC quantization, Wx,

is fixed at eight bits. This was done because only the effect of the carrier NCO amplitude

quantization was of interest. After the incoming signal is mixed with the NCO generated

carrier, it was processed exactly as the truth in Matlab™. Hence, only the effect of the

carrier NCO quantization can be seen in these simulations.

Figures 8.11 and 8.12 show the standard deviation of the range in absolute values

and as an inflation percentage, respectively.

111

Figure 8.11 Effect of Carrier NCO Amplitude Quantization on c(ttr) Standard Deviation

112

Figure 8.12 Inflation of c(ttr) Standard Deviation With Respect to the Truth

A 2-bit NCO quantization gives only a 12% deviation in range deviation

compared to the truth. Since this is acceptable for most applications, the quadrature

mixer can be implemented without multipliers using only a multiplexer (to switch the

Digital IF signal between the I and Q components) and a Wx-bit adder, which is

configured as a two’s complementor (to negate the data value).

Figure 8.13 shows the bias in the range deviation compared to the truth. The

figure shows some bias in the processing, however it is small enough to be safely

neglected.

113

Figure 8.13 Ranging Bias Due to Carrier NCO Amplitude Quantization (I=1000)

114

Figure 8.14 Effect of Carrier NCO Amplitude Quantization on the Signal Acquisition

Margin

Figures 8.14 and 8.15 show the mean acquisition margin, and the associated

implementation loss due to NCO quantization. It can be seen that the effect due to NCO

quantization can be safely neglected for relatively strong signals (above 46 dB-Hz), but

does pose a problem for weak signals such as the 44 dB-Hz SV4 signal in the dataset.

However, the 0.9 dB loss can be recovered through block addition techniques [Section

4.4] to detect weak signals even with a 2-bit NCO quantization.

115

Figure 8.15 Implementation Loss due to Carrier NCO Amplitude Quantization

8.4 Effect of Finite-Precision Hardware Processing

To study the effect of finite precision processing for the GPS fast correlator, the

hardware datapath section shown in Figure 7.1 was simulated. For this simulation, both

the ADC quantization and the carrier NCO amplitude quantization are set to 8 bits (i.e.

Wx=WNCO=8). The hardware datapath width was varied from 8 to 22 bits. As the

hardware datapath is increased, the I and Q components from the quadrature mixer are

scaled such that the optimum dynamic range of the hardware datapath is utilized as

shown in Figure 7.1. Scaling is also performed for the C/A code transform values.

Figures 8.16 and 8.17 show the standard deviation absolute values and the inflation

116

percentages compared to the truth, respectively. The figures show that the range

deviation is approximately 10% when the datapath is 10 bits wide.

Figure 8.16 Effect of Hardware Pipeline Width on c(ttr) Standard Deviation

117

Figure 8.17 Inflation of c(ttr) Standard Deviation With Respect to the Truth

118

Figure 8.18 Ranging Bias Due to Finite Precision Processing

Figure 8.18 shows the bias in the range deviation measurements compared to the

truth. It can be seen that for datapath widths less than 13 bits, the bias is around 1.5

meters for the weakest signal. Since the bias has not increased significantly compared to

the NCO quantization simulation, and since this processing was subject to much more

finite precision processing steps than the NCO quantization case, the bias can be safely

neglected.

Figures 8.19 and 8.20 show how the finite precision processing has affected the

acquisition margin of the signal and added implementation loss, respectively. An 8-bit

hardware datapath adds approximately 3 dB of implementation loss. However, the loss

119

drastically reduces to 0.5 dB for a 10-bit datapath. Since not much performance is gained

beyond 10 bits of precision for either range deviation (<5%) or implementation loss (<0.5

dB), 10 bits seems to be the ‘magic number’ for the width of the hardware datapath.

Figure 8.19 Effect of Pipeline Width on the Signal Acquisition Margin

120

Figure 8.20 Implementation Loss due to Finite Precision

8.5 The Optimum Block Processing Hardware Architecture

From all of the preceding simulations, the following deductions can be made:

1) The hardware datapath must implement rounding rather than merely truncating the

partial results. The cost associated with rounding is negligible compared to the

accuracy gained.

2) The ADC quantization can be as low as 2-bits without affecting performance.

However there is a definite need to have more bits for the sake of interference

rejection. If W<Wx, W sets the upper bound for the ADC quantization.

121

3) The carrier NCO amplitude quantization can be limited to 2-bits without sacrificing

much performance. The biggest advantage to this is the fact that the quadrature mixer

can be implemented without multipliers, hence saving hardware resources.

4) Using a hardware datapath greater than 10 bits does not improve performance

compared to the cost of implementation since the hardware area, interconnections and

overall complexity grows exponentially with every bit of precision. The simulations

show that W=10 is optimal for the hardware datapath.

Based on these deductions, the optimum hardware architecture that minimizes processing

error and hardware resources simultaneously is one that has:

• = 8-bit ADC quantization (Wx = 8)

• = 2-bit carrier NCO amplitude quantization (WNCO = 2)

• = 10-bit FFT/IFFT datapath (W = 10)

Figures 8.21 through 8.25 show the simulation results for range deviation, range

deviation inflation, ranging bias, acquisition margin, and implementation loss for this

optimum hardware architecture, respectively.

122

Figure 8.21 Range Deviation of Target Hardware Architecture

123

Figure 8.22 Range Deviation Inflation for Target Hardware Architecture

124

Figure 8.23 Ranging Bias for Target Hardware Architecture

125

Figure 8.24 Acquisition Margin for Target Hardware Architecture

126

Figure 8.25 Implementation Loss for Target Hardware Architecture

127

9 SUMMARY AND CONCLUSIONS

This work studied the feasibility of implementing GPS block processing

techniques in FPGA hardware, for the ultimate goal of realizing a fully functional real-

time block-processing GPS receiver. This is the first time a study to migrate the block

processing algorithms previously developed in software, to custom designed FPGA

hardware has been carried out. The FPGA was chosen as the implementation platform

due to its ASIC-like performance, software-like programmability, and because it is the

ideal platform for research. The rapid development of FPGA technology has replaced

ASICs in many areas. It is believed that it is only a matter of time before the hardware

architectures presented in this thesis can be made to run in real-time using FPGAs.

This thesis presented the architecture of traditional GPS receivers and described

the novel block processing approach. The architecture of a real-time block-processing

GPS receiver as applied to an airborne application was presented. The high-level system

architecture of the module of interest in this receiver, namely the FPGA processor, was

described. Subsystems that make up the FPGA processor, such as the carrier NCO and

complex multipliers and their internal architectures were described. Implementing the

5000-point FFT in hardware represents the biggest challenge for achieving the real-time

processing goal. The design of a 5000-point FFT/IFFT algorithm based on the mixed

radix approach was described. The hardware design of each FFT building block that

comprised the 5000-point FFT was presented. Methods for optimizing the 5000-point

FFT for FPGA implementation such as vertical projection, PE partitioning, datapath cycle

128

optimization, and speed/performance estimation were presented. Lastly, results of

behavioral simulations based on the developed hardware architecture using real GPS data

were presented. From these results, the optimum hardware pipeline parameters were

deduced.

This work is considered a feasibility study since only the high level architecture of

the block processing techniques were developed and simulated. Only acquisition margin

loss and pseudorange error deviations (from code tracking) were considered as

performance measures in this work. Other performance characteristics, such as carrier

phase and frequency tracking ability, accumulated Doppler measurement accuracy, and

navigation data extraction reliability remains to be tested for the hardware simulation

models developed in this research. If the presented architecture passes these tests, then

the work started in this thesis can be continued towards the development of an RTL

description of the hardware. Once this is completed, the presented FPGA design flow can

be continued. Furthermore, when the RTL descriptions are complete, accurate insight

into the hardware resources needed and knowledge of other architectural features such as

memory size and throughput requirements, board and bus architecture requirements, and

embedded processor requirements will be gained. Armed with this knowledge, a suitable

FPGA COTS product for implementing the hardware can be acquired.

Through high-level architecture design and simulations, this research has laid the

groundwork for achieving the goal of an FPGA-based real time block processing GPS

receiver. Ultimate realization of this new GPS receiver will elevate the performance and

129

capabilities of GPS to a hitherto unattained dimension in terms of novel applications and

integration into existing and future technologies.

130

REFERENCES

[Ackenhusen99] J. G. Ackenhusen, Real-Time Signal Processing: Design and
Implementation of Signal Processing Systems, Prentice Hall PTR, 1999.

[Akos97] D. A. Akos, A Software Radio Approach to Global Navigation Satellite
System Receiver Design, Ph.D. Dissertation, Ohio University, August 1997.

[AP00] Associated Press, “U.S. to Offer More Accurate Satellite Navigation To
Everyone,” Press Release, May 2, 2000.

[Braash91] M. S. Braasch and F. van Graas, “Guidance Accuracy Considerations for
Real-Time GPS Interferometry,” Proc. ION GPS-91, Albuquerque, September 1991.

[Compaq97] Compaq Corporation, “PCI Pamette V1,” webpage,
www.research.digital.com/SRC/pamette/, 1997.

[Cooley65] J.W. Cooley and J.W. Tukey, “An Algorithm for the Machine Calculation of
Complex Fourier Series,” Mathematics of Computation, vol. 19, pp. 297-301, April 1965.

[Feng99] G. Feng and F. van Graas, “GPS Receiver Block Processing”, Proc. ION GPS-
99, pp. 307-316, Nashville, September 1999.

[ICDGPS97] GPS Joint Program Office, “Navstar GPS Space Segment / Navigation
User Interfaces ICD” Rev. IRN-200C-002,” September 25, 1997.

[Kaplan96] E. D. Kaplan, ed., Understanding GPS: Principals and Applications, pp 193-
198, Artech House Publishers, 1996.

[Knight79] W. R. Knight and R. Kaiser, “A Simple Fixed-Point Error Bound for the Fast
Fourier Transform,” IEEE Trans. on ASSP, vol. ASSP-27, no. 6, December 1979.

[Madisetti98] V. K. Madisetti and D. B. Williams, eds., The Digital Signal Processing
Handbook, IEEE Press, 1998.

[Matlab99] “Matlab® Compiler 2.0 & Matlab C/C++ Math Library 2.0,” Datasheet, The
Math Works Inc., www.mathworks.com, 1999.

[Moeglein98] M. Moeglein and N. Krasner, “An Introduction to SnapTrack™ Server-
Aided GPS Technology,” Proc. ION GPS-98, pp. 333-342, Nashville, September 1998.

http://www.research.digital.com/SRC/pamette/
http://www.mathworks.com/

131

[Oppenheim89] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
Prentice Hall, 1989.

[Parkinson96] B. W. Parkinson and J. J. Spilker, eds., Global Positioning System:
Theory and Applications, vol. 1, pp. 329-407, American Institute of Aeronautics and
Astronautics, 1996.

[Pirsch98] P. Pirsch, Architectures for Digital Signal Processing, John Wiley and Sons,
1998.

[Rabiner75] L. R. Rabiner and B. Gold, Theory and Application of Digital Signal
Processing, pp. 587-594, Prentice Hall Publishers, 1975.

[Roelandts99] W. Roelandts, “15 Years of Innovation,” Xcell Magazine, Iss. 32, Second
Quarter, Xilinx Publication, 1999.

[Smith95] W. W. Smith and J. M. Smith, Handbook of Real-Time Fast Fourier
Transforms, IEEE Press, 1995.

[Snyder99] C. A. Snyder, G. Feng, and F. van Graas, “GPS Anomalous Event Monitor
(GAEM),” Proc. ION 55th Annual Meeting, pp. 185-189, Cambridge, June 99.

[Spilker78] J. J. Spilker, “GPS Signal Structure and Performance Characteristics,”
Navigation, vol. 25, no. 2, pp. 121-130, Summer 1978.

[Tsui97] J.B.Y. Tsui, M. Stockmaster, and D. Akos, “Block Adjustment of
Synchronizing Signal for GPS Receiver Signal Processing,” Proc. ION GPS-97, pp. 637-
644, Kansas City, September 1997.

[UijtdeHaag99] M. Uijt de Haag, An Investigation into the Application of Block
Processing Techniques for the Global Positioning System, Ph.D. Dissertation, Ohio
University, August 1999.

[USDOT95] U.S. Department of Transportation, Global Positioning System Standard
Positioning Service Signal Specification, ed. 2, June 2 1995.

[vanNee91] D.J.R. van Nee and A. J. R. M. Coenen, “New Fast GPS Code-Acquisition
Technique Using FFT,” Electronic Letters, vol. 27, no. 2, January 1991.

[Vaughan91] R. G. Vaughan, “The Theory of Bandpass Sampling,” IEEE Trans. on
Signal Processing, vol. 39, no. 9, September 1991.

132

[WH00] The White House, “Statement by the President Regarding the United States’
Decision to Stop Degrading Global Positioning System Accuracy,” Press Release, May 1,
2000.

[Wolf94] W. Wolf, Modern VLSI Design: A Systems Approach, pp. 231-239, Prentice
Hall, 1994.

[Xilinx99] The Programmable Logic Data Book 1999, Xilinx Publication, 1999.

ABSTRACT

Gunawardena, Sanjeev M.S. November 2000
Electrical Engineering

FEASIBILITY STUDY FOR THE IMPLEMENTATION OF GLOBAL POSITIONING
SYSTEM BLOCK PROCESSING TECHNIQUES IN FIELD PROGRAMMABLE
GATE ARRAYS (132 pp.)

Director of Thesis: Dr. Janusz A. Starzyk

The Global Positioning System represents the pinnacle of navigation technology
for the 21st century. As new technologies integrate GPS services, the limited availability
of GPS in environments where the signal is severely attenuated, subject to strong
multipath or high dynamics becomes an obstacle to a rapidly growing industry. A novel
scheme for processing the GPS signal, namely a software radio employing block-
processing techniques similar to those used for image processing has proven to enhance
the usability of GPS in such environments. However, these techniques have huge
computational requirements that are impossible to meet with a microprocessor. Custom
designed hardware, such as an application specific integrated circuit (ASIC) would
handle the processing requirement, but defeats the philosophy of a software radio since
the algorithms cannot be changed. Field programmable gate arrays (FPGAs) are
beginning to replace ASICs in certain applications since they feature software-like re-
programmability while approaching ASIC-like performance. FPGAs are excellent
candidates for research since they lack the NRE costs associated with ASICs. Hence,
FPGAs are the most attractive implementation platform for developing a real-time block-
processing GPS receiver.

This work lays the groundwork for the implementation of a real-time block-
processing GPS receiver in FPGA hardware. It is a feasibility study since the problem is
approached at a high-level of abstraction. The original block-processing approach is re-
analyzed for implementation in FPGA hardware. Implementing the 5000-point FFTs in
finite-precision hardware represents one of the biggest challenges in this work. This
requires analysis of the FFT error bound to determine the minimum precision required
that would yield acceptable results while minimizing hardware cost. Even though the
analytical error bound for finite-precision FFTs is well documented in past literature, its
direct application to the block-processing problem becomes too complex. This work
employs statistical results of simulations to deduce the optimum hardware architecture
and concludes that real-time capability can be achieved with currently available
technology.

Approved: ___________________________________

 Signature of Director

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS AND ABBREVIATIONS
	I
	INTRODUCTION
	THE GLOBAL POSITIONING SYSTEM
	Positioning With GPS
	GPS Link Budget
	GPS Signal Structure
	SV-to-User Dynamics

	GPS RECEIVER ARCHITECTURE
	Overview of Generic GPS-SPS Receiver
	Tracking Loops
	Carrier Tracking
	Code Tracking

	Signal Acquisition

	BLOCK PROCESSING GPS RECEIVER
	GPS Data Collection System
	GPS Fast Correlator
	Block Processing Hardware Performance Measures
	Acquisition Margin and Implementation Loss
	Code Phase Detection and Range Error

	Applications of Block Processing
	Real Time Block Processing GPS Receiver

	FIELD PROGRAMMABLE GATE ARRAYS
	Introduction to FPGAs
	Architecture of Xilinx XC4000 Series FPGAs
	FPGA Based Design Flow

	DESIGN OF 5000 POINT FFT/IFFT
	The Fast Fourier Transform Algorithm
	The Inverse FFT
	Radix-2 FFT Building Block
	Radix-4 FFT Building Block
	Winograd Radix-5 FFT Building Block
	Mixed-Radix Approach to FFT Algorithm Construction
	The 5000-Point FFT/IFFT Algorithm

	DESIGN OF GPS BLOCK PROCESSING DATAPATH IN FPGA
	Numerically Controlled Oscillator
	Complex Multiplier
	FFT/IFFT Datapath

	BLOCK PROCESSING HARDWARE SIMULATIONS
	Effect of Truncation
	Effect of ADC Quantization
	Effect of Carrier NCO Amplitude Quantization
	Effect of Finite-Precision Hardware Processing
	The Optimum Block Processing Hardware Architecture

	SUMMARY AND CONCLUSIONS
	REFERENCES
	ABSTRACT

