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Chapter 1 

Introduction

1.1   Motivations

The evolving of broadband access techniques into the wireless domain intro-

duces difficult and interesting challenges to the system architecture design. The

system designers are faced with a challenging set of problems that stem from

access mechanisms, energy conservation, a required low error rate, transmission

speed characteristics of the wireless links, and mobility aspects such as small size,

light weight, long battery life, and low cost. Currently, most of the hardware solu-

tions for mobile terminal implementation are a combination of application-specific

integrated circuits (ASICs) and digital signal processor (DSP) devices. 

Future generations of mobile terminals will necessitate integrating recon-

figurable architectures with the so-called System-on-a-Chip (SoC) solution. This

requirement stems from the increasing variety and Quality of Services (QoS) that

must be supported by the mobile terminal with high reliability and strict limita-

tions for power consumption and size.

Reconfigurable architectures, e.g., those based on the Field Programmable

Gate Arrays (FPGAs) are being recognized as an alternative solution for DSP pro-
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cessing. “Wireless is in many cases the driver for DSP processing on reconfigurable

logic.” said Will Strauss, who is the president of Forward Concepts and one of the

leading analysts on the DSP marketplace and technology. “The processing power

needed for the wireless infrastructure has been increasing, and in many instances

is greater than past and most current DSPs could supply. Thus, designers have

turned to FPGAs to do the on-the-fly, front-end processing” [1]. The current method

of handling complex processing problems is to use more and faster logic gates.

Today's leading FPGAs have already passed the 1M logic gates count barrier with

internal system clock rates of 200 MHz. The most powerful FPGA architecture at

this time is Xilinx Virtex II, which provides up to 10M gates. By exploring trade-

offs between design flexibility, power, and performance, functions can be migrated

from ASIC or DSP to the reconfigurable architecture, eliminating a need for the

ASIC or releasing the DSP for other tasks [2].

Flexibility of the mobile terminal can be defined on two levels. First at the

level of systems operation, flexibility can be defined as the ability of the mobile ter-

minal to support many modes of operation, e. g., voice, audio, video, web browsing,

GPS, data transmission, etc. while using the same limited set of hardware. Second,

at the communication link level, flexibility can be defined as the ability of the

mobile device to operate in two or more different wireless communication stan-

dards, e.g., GSM and IS-95. 

Another important requirement for a mobile terminal is its adaptability.

Adaptability is defined as the ability of the mobile terminal to easily and quickly

accommodate changes in the standards or the introduction of new services. Flexi-

bility can thus be viewed as a subset of adaptability. An adaptable and flexible
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hardware/software system-on-a-chip target architecture for digital baseband pro-

cessing will consist of a mixture of DSP and micro-controller cores, and reconfig-

urable hardware parts. The system-on-a-chip also includes some glue logic and

ASIC parts, as shown in Figure 1-1. 

1.2   Related Work

During recent years, a number of research efforts focused on the design of

new reconfigurable systems for general purpose and for particular areas of appli-

cation. The driving force behind such growth in the number of research activities

is the potential of reconfigurable computing to greatly accelerate a wide variety of

Figure 1-1: SoC-Architecture components of a Baseband single chip mobile receiver

Storage Unit

General Purpose Micro-Processor

Reconfigurable
Module

Special
Processing

Unit

I/O Module

Digital Signal Processor

Peripherals

Configurable System-on-a-Chip (CSoC)
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applications. The work in this area flows in two major directions. The first hard-

ware oriented direction is geared toward designing new hardware architectures or

optimizing the current architectures. The second software oriented sub-area of

research is focused on the investigation of new placement, routing, and mapping

methods that tackle the dynamic reconfiguration challenges.

The work in the area of developing new reconfigurable architectures covers

the research on coarse-grained and fine-grained reconfigurable architectures.

Additionally, some of these architectures are created of more than one reconfig-

urable chips (see for example [3], [4], and [5]). These architectures (or rather sys-

tems) are called a Custom Computing Machines (CCM). In this section of the

dissertation I will focus only on coarse-grained-single-chip architectures, since

they are related to this work. 

Fine-grain reconfigurable architectures are built around one-bit processing

elements, called logic blocks. Commercial FPGAs like Xilinx 4000 FPGA family [6],

and Altera Flex 8000 FPGA family [7] are good examples of fine-grain configurable

architectures. Fine-grain architectures are useful for bit-level manipulation of

data which can be found in data encryption and image processing applications.

This type of architecture is not optimized for word-width data manipulation since

a large area of the chip will be lost for routing signals. Coarse-grained architec-

tures such as PADDI-2 [8], PipeRench [9], Morphosys [10], Grap [11], and Colt [12]

are designed to implement word-width (or larger) data paths. Because the process-

ing elements are optimized for large computations, they perform such operations

efficiently in terms of time and area. 
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The authors of [5], [13], [14], [15], and [16] presented a comprehensive

survey of available reconfigurable computing platforms in the academic and com-

mercial. In [13] and [15] reconfigurable platforms were presented in more detail.

The best references for each platform were given. However, some of the informa-

tion on these architectures is either incomplete or not disclosed. The most known

architectures are presented here.

Most of the architectures reported in the literature are mesh-based archi-

tectures. Figure 1-2 shows a general-block model of the mesh-based reconfigurable

architectures. As their name implies, mesh-based architectures are a two dimen-

sional arrangement of processing elements. Local connections are placed between

the nearest four or eight neighbors. Additionally, vertical and horizontal commu-

nication paths are placed between the processing elements. Such an arrangement

is suitable for stream-based applications or any application that requires simple

...

...

...

...

...... .........

Processing Element

Vertical and horizontal 

global communication 

paths

Local connections

Figure 1-2: A block model of the mesh-based reconfigurable architectures with local 

connection to the nearest four neighbors
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and regular computations. Examples of mesh-based reconfigurable architectures

are KressArray [17], Colt [12], and Morphosys [10] and [18].

KressArray is a generalization of systolic array. It is a two dimensional

array of 32-bit processing elements called reconfigurable Data Processing Units

(rDPUs). The rDPU is designed to support all arithmetic operations of the C lan-

guage. The rDPU is data triggered, i.e. rDPU performs the configured operation

once the data is received [17]. Additionally, the rDPU includes a register file that

can be used to store the input or output data. This register file enables the Kres-

sArray to perform deep pipelined execution of an application. 

In KressArray the local connection of the rDPUs at the border of the chip

are connected to I/O pins. This type of connections enables KressArry to be extend-

able, i.e. it can be connected to other KressArry chips to create even larger arrays

of rDPUs. As shown in Figure 1-3[17] routing in KressArray is hierarchically

divided into three levels. On the lowest level, a local connection to the nearest

north, west, east, and south neighbor is implemented. On the second level, full

length inner global buses that connect any two rDPU on the same row or same

column is implemented. These buses can be segmented to form more than one bus.

The third level of routing is provided by a serial system bus. The system bus is also

used to transfer configuration bits to the rDPUs.

KressArray is designed for general use and was not designed for specific

application. This is the reason that the rDPU is designed to be able to execute all

C language operators. However, a specific application may not require all of the C

language operations, resulting in a waste of area. KressArray supports partial
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dynamic reconfiguration. However, no applications have yet been found to take

advantage of such features [13]. 

The use of buses in the system and the use of one bus per row to transport

the configuration data may be a limiting factor of the reconfiguration speed. As the

number of rDPUs increases, the number of rDPUs per bus increases making the

reconfiguration time even longer.

The Colt architecture is a product of work done by the Mobile and Portable

Radio Research Group at Virginia Tech. The Colt integrated circuit is designed as

Switch

Local Interconnections

Bus A Bus B

Inner global buses. Only one vertical and one horizontal are shown.

reconfigurable Data path

Processing Unit (rDPU)

Serial system bus

Figure 1-3: 3x3 segment of KressArray architectural structure
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a prototype: the so called Wormhole Run Time Reconfiguration, and it is optimized

for DSP-type operations [12]. 

Morphosys is a parallel reconfigurable SoC designed to speed up general

purpose intensive applications. Usually these applications inherent parallelism

and are highly regular. It is a combination of a RISC processor with an array of

coarse-grain reconfigurable cells [10]. As shown in Figure 1-4 [10], the Morphosys

architecture consists of a two dimensional array of reconfigurable cells, called a

Reconfigurable Cell Array (RC Array); combined with a RISC control processor

called TinyRISC; Context Memory; Frame Buffer; a DMA Controller, and a

memory interface.

The TinyRISC processor is a MIPS-like processor. It has a 32-bit ALU, reg-

ister file and an on-chip data cache memory. The processor is included in the

system for controlling the execution of the operations and to control the main

RC Array (8x8)

Context Memory

TinyRISC

Frame Buffer

DMA Controller

M
ai

n 
M

em
or

y

Figure 1-4: Morphosys architecture components



9

memory interface. For this purpose additional instructions which are specific to

Morphosys have been added to the standard RISC instruction set.

The reconfigurable component is an array of 64 processing elements. The

number of the processing elements in the array and the way they are arranged is

influenced by one of the target applications: the image processing. Image process-

ing applications tend to process the data in 8x8 segments [18]. Thus an RC array

is arranged in a two dimensional array of 8x8 elements. 

The reconfigurable cell of the Morphosys system is shown in Figure 1-5 [10].

The RC incorporates an ALU-multiplier unit, a shifter unit, input multiplexers

ALU-Multiplier

Shifter

R0

MUX B

R1

R2

R3

Output Regester

32

32

32

16

MUX A

32
Operand Bus

Context register 1616
12

To result bus , express lanes,
and other RC

Register file

16

Figure 1-5: The structure of the Reconfigurable Cell (RC) of the Morphosys system
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and a register file. The multiplier is included since many target applications

require integer multiplication. The multiplier unit can perform integer multiplica-

tion and accumulation in one cycle. The multiplexers can select inputs from other

RCs, from the operand bus, or from the internal register file.

The processing elements of the array are grouped either row-wise or

column-wise for configuration. This reduces the number of configuration context of

the array from sixty four to eight. In addition, this grouping of RC implies a SIMD

computation model. The routing of the RC array consists of three layers, four near-

est neighbor local connections, segments of the distance of two connections, and

long global connections.

Morphosys is an efficient implementation system for specific applications,

such as image processing or data encryption [10] and [18]. However, the SIMD

computation model of the RC array limits the Morphosys from being able to effi-

ciently implement other applications that do not inhabit block size data input or

do not require regular execution styles. Additionally, the RC units of the array are

very-coarse-grained (32-bit). This leads to few RC units in the array, and a waste

of the resources (area) when implementing smaller data paths of 16-bit or less.

Examples of other reconfigurable computing engines that do not follow the

two dimensional array topology are: The Pleiades (Ultra-Low-Power Hybrid and

Configurable Computing) project at the University of California, Berkeley. This

engine is designed to provide low power consumption coupled with high-perfor-

mance for multimedia computing applications [19] and [20]. Pleiades is a crossbar-

based architecture. The PipeRench architecture (Carnegie Mellon University) [9]

is a reconfigurable fabric of processing elements for general purpose applications.
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The PipeRench is specifically designed to speed up the reconfiguration process

through a new technique called pipeline reconfiguration. Pipeline reconfiguration

allows one stage of the pipeline path to be configured in every cycle, while concur-

rently executing all other stages. 

Finally, the Grap architecture (University of California, Berkeley) [11] is

tailored toward accelerating loops for general purpose computations. 

All of the above mentioned architectures are being developed in the aca-

demia. Commercial solutions for tele-communication and wireless applications are

being developed by Chameleon Systems [21], and MorphICs [22]. Chameleon Sys-

tems [23] announced the CS2000 family of multi-protocol multi-application recon-

figurable platforms for tele-communication and data communication. Figure 1-6

[21] shows a block diagram of the SC2000 family. The CS2000 family incorporates

a 32-bit RISC core, full memory controller, PCI controller, and a reconfigurable

array. The reconfigurable array sizes come in 6, 9, and 12 tiles. The tile consists of

seven 32-bit processing elements, four local memories of 128x32 bits, and two

16x24-bit multipliers. Every three tiles are grouped as a slice. Dynamic configura-

tion is supported and can be accomplished in one cycle.

Although MorphICs announced its own version of reconfigurable chips tar-

geting the next generation of wireless application, it never disclosed any informa-

tion about the inner design of its solution.

Chameleon CS2000 can be considered as a general solution for the wireless

application. However, it was not meant to be an implementation solution for the
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baseband processing of the handheld terminals. The CS2000 family’s very sophis-

ticated and in-homogenous array makes an IP-based mapping difficult. 

Based upon all of the published work, no architecture was designed specifi-

cally for the wireless application. Additionally, general architecture that could per-

form well for all applications is very hard (if not impossible) to be designed [24].

Therefore, tailored architectures for different areas of application are a must. Pres-

ently, no formal methods or guidelines have been devised for a reconfigurable

architecture design and specifically no methods exist for mobile communication.

Figure 1-6: Chameleon CS2000 Reconfigurable Communications Processor and 

Reconfigurable Processing Fabric (RPF)
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Today mobile communication applications are of critical importance. Therefore, it

is important to develop models and rules to design the reconfigurable architectures

for these applications. 

1.3   Project Goals and Objectives

The goal of this dissertation is to develop an array of coarse-grained Dynam-

ically Reconfigurable Processing Units (DRPUs), which are internally connected

with optimized and reconfigurable communication structures. The architecture

provides efficient and fast dynamic reconfiguration possibilities (e.g., only partial

and during run-time) while other parts of the reconfigurable architecture are

active [25] and [26]. 

The choice of implementing algorithms depends upon the design of the

hardware flexibility, speed, and power consumption requirements. Traditionally,

algorithms that handle chip-rate signal processing (3.84M chip-per-second over

sampled 4 or 8 times) are implemented on an ASIC. Whereas algorithms that

handle symbol-rate signal processing (maximum of 2M samples-per-second) are

implemented on a DSP. An ASIC generally runs faster and consumes less power

when compared with the general purpose Digital Signal Processor DSP [27]. The

developed architecture is to be able to handle both signal rates with performance

and power consumption equivalent to or better than dedicated ASIC or DSP

devices. 

Modern communication systems operate with fixed, detailed execution for-

mats that impose frequent deadlines. As a result, it is essential to know the execu-



14

tion times of various signal-processing algorithms. This is difficult with general-

purpose processors, because they manipulate the flow of data and the instruction

sequence to balance loading. Therefore, the reconfigurable computing architecture

must provide hard timing limits for well-known execution times of intended func-

tions [28].

The primary objective of this work is to design and simulate a new architec-

ture for the mobile station for third generation (3G) systems. The design and sim-

ulation will be based on the principles and methods of Dynamically Reconfigurable

Computing. The design of such architecture will cover broad disciplines. A low

power design, hardware/software codesign, reconfigurable computing simulation,

and computer programming are a few examples of these disciplines. 

The design processes incorporate new design algorithms specially developed

for third generation mobile systems. Such algorithms will be adaptable to channel

changes, will be efficient, and will take advantage of the dynamic and parallel

nature of the architecture. The final system will provide a better solution for

mobile stations. The system will reflect the low cost requirement of the future sys-

tems and at the same time it will combine low power consumption with a powerful

performance. Another important goal of this work is to develop the bases of a set

of methods and rules for designing reconfigurable architectures for a specific area

of applications. 
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1.4   Dissertation Outline

This dissertation is organized as follows: Chapter 2 introduces the up

coming third and future generation mobile systems in general. Chapter 3 examines

some of the most demanding applications at the receiver baseband processing of

the mobile terminal. Chapter 4 discusses different platforms available for the tar-

geted application and compares their pros and cons. A more detailed discussion

about the dynamically reconfigurable architectures is presented in depth in this

chapter. Chapter 5 introduces the Dynamically Reconfigurable Architecture for

future generation Wireless mobile systems (DRAW). An abstract planar model of

the architecture and a detailed description of the new features and aspects of the

architecture are also presented in Chapter 5. Chapter 6 presents the design flow

of the DRAW architecture. Many new concepts that emerge from the design of

DRAW are also introduced and discussed. The architecture is composed of an array

of processing elements dubbed DRPUs and dynamically reconfigurable communi-

cation resources. In order to demonstrate the new concepts introduced through

DRAW, two applications an FIR filter and a Gold code generator were mapped into

DRAW. Along with a discussion of the mapping process, simulation results are pre-

sented in Chapter 7. Chapter 8 provides a general conclusion and recommenda-

tions for future research in this area.
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Chapter 2

Third and Future Generations 

Mobile Systems

2.1   Introduction

This chapter briefly presents the new evolving Wideband Code Division

Multiple Accesses (WCDMA). Presently this is a standard of the third generation

mobile systems developed by the third-generation partnership project (3GPP).

3GPP was established to harmonize and standardize many similar proposals from

different parts of the world [29]. In addition, a brief look at the future wireless com-

munication systems will be provided.

2.2   Overview of the Third Generation Systems

The first generation mobile systems in the 1970s were based on analog

transmission schemes. They supported only the voice service. The second genera-

tion mobile systems in the 1980s were based on digital transmission scheme. The

second generation was designed for circuit switched services. In addition to voice

service, the second generation mobile systems supported low to medium packet
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based services. Third generation systems are designed for both circuit switched

and packet based services. They will provide very high data rates that enable many

new and interesting services [30], [31], [32], and [33]. Table 2-1 [34] lists the dif-

ferent mobile cellular radio systems, the services they offer, and their maximum

data rates [34]. 

The International Mobile Tele-communication 2000 (IMT-2000) is a family

of systems for the third generation mobile telecommunications. This family of sys-

tems will provide wireless access any time and any where. IMT-2000 is one of the

most exciting developments in mobile communication since the introduction of dig-

ital mobile systems in the early 1990s. IMT-2000 is developed by the International

Telecommunication Union (ITU) [30].

Table 2-1. A list of different wireless mobile generations

Mobile Generation Services Data rate

Old (1G) Voice 13.3 kbps

Current systems (2G) Voice, Text, Static 
Images, Data

9.6 - 41.4 Kbps

Emerging (2.5G) Web based connection 
and Blue tooth

115 Kbps, 
Blue tooth 721 Kbps.

3G

Entertainment
Education
MP3
MPEG4
Games
Videos

Up to 2 Mbps
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The third generation systems are required to fulfill many objectives, the

most important goals are high speed data services, flexibility, compatibility, and

low cost. High data rate services are also known as broadband services. Current

examples of an application that utilizes such services are high speed internet

access and multimedia type applications. A flexible wireless mobile system is one

that can easily support new services after the system has been deployed. As would

be expected, once the system is full and running, new services that are presently

beyond one’s imagination will be demanded by the end user. A successful system

must be able to accommodate these future services. Backward compatibility with

second generation systems is a vital requirement for the success of the system. In

addition to all the new high data rates services that are provided by the third gen-

eration system, the cost for the end user must be kept as it is today if not reduced

[30], [31], and [35].

Third-generation mobile radio systems have been under intense research

and discussion and will emerge around the end of 2002. The system is called the

International Mobile Telecommunications-2000 in the International Telecommu-

nications Union. Whereas in Europe, the system is called the Universal Mobile

Telecommunications System (UMTS) [32]. The standardization process was long

and went through many disputes, discussions, and harmonization. Toward the end

of 1998 two new organizations were established: the 3rd Generation Partnership

Project (3GPP) and 3GPP2. The goal of 3GPP and also 3GPP2 was to harmonize

the large number of the WCDMA based proposals submitted by different bodies

into one system [29], and [36]. Table 2-1 lists some of the proposed standards for

the third generation mobile system to the ITU. 
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Both the UTRA developed by 3GPP and cdma2000 developed by 3GPP2 are

based on WCDMA technology. Since the UTRA was developed earlier than the

cdma2000, this dissertation was developed around the WCDMA specification pub-

lished by 3GPP [29], [37], [38], [39], [40], [41], and [42]. Table 2-2 [45] lists the

main parameters of WCDMA [46], and [66].  

2.2.1 Characteristics of UTRA (WCDMA)

The WCDMA standard has two modes for the duplex method. A Frequency

Division Duplex (FDD) and Time Division Duplex (TDD). The frequency bands

allocated for UTRA are shown in Figure 2-1 [35]. In UTRA there is one paired fre-

Table 2-2. Radio transmission technology proposals for IMT-2000

Proposal Description Source

DECT Digital Enhanced Cordless 
Telecommunications ETSI Project DECT

UWC-136 Universal Wireless Communications USA TIA TR45.3

WIMS W-CDMA Wireless Multimedia and Messaging 
Services Wideband CDMA USA TIA TR46.1

TD-SCDMA Time-division synchronous CDMA China CATT

W-CDMA Wideband CDMA Japan ARIB

CDMA II Asynchronous DS-CDMA S. Korea TTA

UTRA UMTS Terrestrial Radio Access ETSI SMG2

NA: W-CDMA North American: Wideband CDMA USA T1P1-ATIS

cdma2000 Wideband CDMA (IS-95) USA TIA TR45.5

CDMA I Multi band synchronous DS-CDMA S. Korea TTA
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quency band in the range 1920 –1980 MHz and 2110 –2170 MHz to be used for

UTRA FDD. There are two unpaired bands from 1900 –1920 MHz and 2010 – 2025

MHz intended for the operation of UTRA TDD [31].

At the time when this work was developed, only the standard of the FDD

mode developed by ITU were at an advanced stage of standardization. The TDD

mode standard started later. For this reason this work assumes the FDD mode of

operation for the receiver. Table 2-3 [45] lists the most important parameters of the

UTRA FDD. 

As can be seen in Table 2-3, the chip rate for the WCDMA standard is 3.84

Mcps [37], and [38]. Spreading consists of two operations. The first operation is the

channelization operation where the spreading code is applied to every symbol in

the transmitted data. Thus the bandwidth of the data signal is increased. In this
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Table 2-3. Standardized Parameters of WCDMA

Channel bandwidth 5 MHz

Duplex mode FDD and TDD

Downlink RF channel Direct Spread

Chip rate 3.84 Mcps

Frame length 10 ms

Spreading modulation Balanced QPSK (downlink) Dual-channel 
QPSK (uplink) Complex spreading circuit

Data modulation QPSK (downlink) BPSK (uplink)

Channel coding Convolutional and turbo codes

Coherent detection
User dedicated time multiplexed pilot 
(downlink and uplink), common pilot in the 
downlink 

Channel multiplexing in 
downlink Data and control channels time multiplexed

Channel multiplexing in uplink
Control and pilot channel time multiplexed 
I&Q multiplexing for data and control 
channel

Multirate Variable spreading and multi-code

Spreading factors 4–256 (uplink), 4–512 (downlink)

Power control Open and fast closed loop (1.6 KHz)

Spreading (downlink)
OVSF sequences for channel separation 
Gold sequences 218-1 for cell and user 
separation (truncated cycle 10 ms)

Spreading (uplink)
OVSF sequences, Gold sequence 241 for user 
separation (different time shifts in I and Q 
channel, truncated cycle 10 ms)

Handover Soft handover 
Interfrequency handover
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channelization operation, the number of chips per data symbol is called the

Spreading Factor (SF). The second spreading operation is the scrambling opera-

tion, where a scrambling code is applied to the already spreaded signal. Both of the

spreading operations are applied to the so called In-phase (I) and Quadrature-

phase (Q) branches of the data signal. In the channelization operation, the Orthog-

onal Variable Spreading Factor (OVSF) codes are independently applied to the I

and Q branches [37], and [39]. The resultant signals on the I and Q branches are

then multiplied by a complex-valued scrambling code, where I and Q correspond to

the real and imaginary parts respectively.

For the channel coding, the standard suggests three options of coding for

different Quality-of-Services (QoS) requirements [40]. The three coding options

are: Convolutional coding, Turbo coding, or no coding. The selection of one of the

three options is done by the upper layers. In addition, bit interleaving is used to

improve the Bit Error Rate (BER). The modulation scheme selected in 3GPP

WCDMA standard is QPSK [37].

An important characteristic of the WCDMA system is that it is an asynchro-

nous system, i. e. there is no global synchronization between base stations in the

system. This means that each user can transmit independently of other users or

base stations transmissions [35]. This eliminates the need for global clock similar

to the IS-95 system proposed by the USA. IS-95 uses the Global Positioning System

(GPS) clock as a global clock for synchronization between base stations.

Since this dissertation deals with the baseband of the mobile terminal’s

receiver, I will only explain the structure of the downlink. The downlink is the com-

munication path from the base station to the mobile terminal. The physical chan-
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nels of the WCDMA systems are structured in layers of radio frames and time

slots. There is only one type of downlink dedicated physical channel, the downlink

Dedicated Physical CHannel (downlink-DPCH) [39]. The structure layout of the

downlink dedicated physical channel (DPCH) of the WCDMA signal can be seen in

Figure 2-2 [39]. As shown in the Figure, the time line of the signal is divided into

frames of 10 ms each. Each frame is then divided into 15 slots, i.e. 2560 chips/slot

at the chip rate of 3.84 Mcps. In addition, every 72 frames constitute one super

frame. The frame is a time multiplexed data and control bits from the Dedicated

Physical Data Channel (DPDCH) and Dedicated Physical Control Channel

Figure 2-2: The radio frame structure downlink DPCH of the WCDMA 

Data 1 TPC TFCI Data 2 Pilot

284 8 8 1000 16

Number of
bits

Tslot = 2560 Chips, 10*2K bits (K = 0 to 7). Shown is the maximum number
of data bits.

Transmission  Power Control Transmitted Format Control
Indicator

Slot #1 Slot #2 Slot #3 ... Slot #15

Frame #1 Frame #2 Frame #3 ... Frame
#72

1 Radio Frame, 10 ms, 38400 chips (3.84 Mcps)

Time

Time

72 Radio Frame, Super Frame
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(DPCCH)1. The DATA 1 and DATA 2 are data bits that belong to DPDCH, while

bits of Transmit Power Control (TPC), Transport Format Combination Indicator

(TFCI), and Pilot belongs to the DPCCH. The number of bits in each field vary with

the channel bit rate. The exact number of bits in each field is shown in [40]. The

TPC bits are used by the base station to command the mobile transceiver to

increase or decrease the transmission power. TFCI bits are the indicators of slot

format. 

The bit count shown in Figure 2-2 is the maximum possible number of data

bits that can be transmitted in one slot. In a frame 15×10×2k bits can be transmit-

ted in every slot, where k is an integer in the range from 0 to 7. The parameter k

is related to the Spreading Factor (SF):

Thus the spreading factor SF may range from 512 down to 4 see [41], and

[42]. 

2.3   Characteristics of cdma2000 system

The cdma2000 is a wideband spread spectrum radio interface standard

developed by the Telecommunications Industry Association (TIA) of the USA. The

cdma2000 meets all the requirements set by the ITU for the IMT-2000. The second

generation CDMA standard developed by the TIA is called IS-95. The latest ver-

sion of this standard is IS-95B. Since IS-95 based systems are deployed mainly in

1.  Abbreviations used here are the standard abbreviations used by 3GPP in the 3G-TS technical documents.

 2-1. SF
512

2
k

---------=
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USA and in some countries around the world, the cdma2000 system is designed to

be back compatible with IS-95. The backward compatibility feature of the

cdma2000 (with the second generation system IS-95) reduces the cost of deploying

cdma2000 by reusing the infrastructure of the IS-95. This will also insure a smooth

and successful migration from 2G to 3G system [43] and [44].

The cdma2000 radio access is based on narrowband DS-CDMA with a chip

rate of 3.6864 Mcps. This chip rate is three times the chip rate of the IS-95 system

which is 1.2288 Mcps. The cdma2000 standard also supports higher data rates of

N*1.2288 Mcps, where N is 1,3,6,9, and 12. Similar to UTRA, cdma2000 also sup-

ports FDD and TDD mode of operations.[35]

Table 2-4 lists some of the main parameters of the cdma2000 standard. The

most noticeable departure from UTRA standard is the base station synchroniza-

tion and the frame length. In cdma2000, the base station uses the GPS time as a

reference timing for the shift in the cell scrambling code. This feature simplifies

the cell search since only one code with different shifts are used to identify all cells

in the system. The frame length is two times the frame length of the UTRA/

WCDMA system. 

2.4   Future Generation Mobile Systems 

The introduction of the third generation mobile system next year will revo-

lutionize the world as we know it. The impact of the system on our lives is every

thing but predictable. Despite this fact, forth and fifth generations are already
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being discussed. Figure 2-3 [34] outlines some of the current, emerging, and future

mobile systems along with their supported data rates [34]. 

The term fourth generation is used to include several systems not only cel-

lular systems, as well as many wireless communication systems [47], and [34]. It

is well expected that the future systems will provide very high data rates in the

Table 2-4. Standardized Parameters of cdma2000

Channel bandwidth 5 MHz

Base station synchronization Asynchronous, GPS time reference

Duplex mode FDD and TDD

Downlink RF channel Multicarrier Spreading and Direct Spread

Chip rate 3.6864 Mcps

Frame length 20 ms

Modulation QPSK (downlink), and Hybrid Phase Shift 
Keying HPSK (uplink)

Channel coding Convolutional and turbo codes

Coherent detection
Pilot time multiplexed PC (uplink), Common 
continues pilot channel and auxiliary pilot 
(downlink)

Multirate Variable spreading and multi-code

Spreading factors 4–256 (uplink)

Spreading codes Walsh code
Pseudo noise code

Power control Open and closed loop 

Handover Soft handover 
Interfrequency handover
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tens and even hundreds of MB/S. It is even expected that these extremely high

data rates will be provided with full mobility support. However, it is very hard to

envision these systems beyond these two expectations. It is very difficult to imple-

ment such systems with such high data rate and mobility [34]. 

Figure 2-3: Current and future generations of wireless mobile systems vs. their 

transmission rates
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Chapter 3

WCDMA Baseband Signal 

Processing

3.1   Introduction

This chapter examines the most demanding functions in the 3G baseband

processing unit. The computation requirements which are the basis for the design

of the reconfigurable architecture are determined. To design a good reconfigurable

architecture for a specific application, some understanding of the most demanding

functions of the baseband receiver are required. The target application must be

well understood in terms of its:

• Performance requirements

• Routing behavior

• Input/Output requirements

• Memory requirements

The performance requirements of the target application are the first gen-

eral characteristics that must be known and understood for the designer prior to
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designing the architecture. This requires determining rough answers to the follow-

ing questions: 1) Is this a real time application or not? 2) What is the required exe-

cution time? 3) What are the required operations? 4) What are the data path width

requirements? 5) What is the required throughput? 6) Is this a regular or irregular

execution flow?

For routing we would like to know how different blocks of the applications

are connected, i.e. is the algorithm locally or globally connected? How frequently

the target application do use the routing channels? We also need to know the

appropriate path-width for the routing channels of this application. 

I/O requirements are usually the bottleneck of most applications. Therefore,

it is very important to know in detail the required number of inputs and outputs.

Simultaneously, we also need to know what are the surrounding interfaces that

need to be addressed. 

As important as the performance requirement is, the memory requirements

also play an important role in directing the final design of the architecture. The

knowledge necessary regarding memory requirements includes the type of memory

that is required, and is it a one-port, dual-ports, or FIFO type of storage system?

We also need to ascertain how large the required memory must be.

3.2   WCDMA Baseband Mobile Receiver

The work in this dissertation considers the Frequency Division Duplex

(FDD) of the 3GPP WCDMA as a standard. In this section, I will examine the

mobile baseband processing unit of the receiver. The reason behind selecting the
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receiver’s baseband processing unit to perform the analysis rather than selecting

the transmitter, is that the receiver is usually more complex and requires more

processing power than the transmitter baseband unit. This is due to the fact that

the receiver deals with signals that contain high levels of noise because of the

nature of the channel. The mobile channel is a dynamic one, this behavior gets

aggravated for communication at higher data rates and worsens when communi-

cating with a moving mobile terminal at higher speeds. [48], [49], and [50]

Figure 3-1 outlines the block diagram of the complete receiver [51]. As can

be seen in the figure, after the signal has been received by the radio frequency unit

with a frequency in the range of 2110-2170 MHz, the signal is then down converted

to an Intermediate Frequency (IF) level of 270 MHz. The desired 5MHz channel is

filtered by an IF band-pass filter. The IF signal is fed to the demodulator circuit

where it is mixed with the fixed local oscillator frequency to produce the zero IF

baseband in-phase and quadrature (I and Q) signals, these are then fed to the

Figure 3-1: A block diagram of 3G receiver
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analog-to-digital converter. The output of the A/D converter is then fed to the base-

band unit for processing [30], and [33]. 

Figure 3-2 shows the block model of the receiver’s baseband processing unit.

The Figure shows more detail of the inner signal path in the front end of the base-

band receiver. The analog signal is converted into a digital signal using wideband

analogue to digital converter typically running at 8 times the chip rate and produc-

ing 8 bit resolution [35]. The signal is then filtered using a Root Raised Cosine

(RRC) filter with a roll-off factor of 0.22. The purpose of the root raised cosine filter

is to reduce the inter-symbol interference. Subsequently the signal is fed to the

RAKE receiver and to the searcher.

Figure 3-3, shows a block diagram of the additional processing steps at the

baseband of the WCDMA receiver. As shown in the figure, the incoming chips from

the A/D converter are introduced to the RAKE receiver and to the searcher. The

Figure 3-2: The baseband receiver front-end
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searcher provides an estimation of the multipaths delays which are used by the

RAKE receiver to resolve different paths signals. The maximal ratio combiner then

weights the signals and sums them together [52]. In addition, the searcher pro-

vides signals for the Automatic Gain Controller (AGC), Automatic Frequency Con-

troller (AFC), and Power Control Loop (PCL) (not shown in figure). Depending

upon which signal quality is chosen, the signal is then routed to a Turbo coder,

Convolutional decoder, or pass-over the decoding unit completely as in the case of

un-coded channels. The selection of the type of decoding depends upon the quality

of service required. Additional processing is then performed by the channel pro-

cessing unit. Such additional operations may include viterbi decoding, de-inter-

leaving, reed Solomon decoding etc. [40]. 

RAKE

Searcher

Maximal Ratio
Combining

Channel
Estimation

... Turbo Decoder

Convolution
Decoder

Un-encoded
Channels

Channel Decoding

Other Functions:
Power control, Finger allocation, Tracking, Rate

matching, ..etc

To upper
layers

Figure 3-3: Complete block diagram of the receiver front end
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3.3   Baseband Signal Processing Requirements

Baseband signal processing in a system based on WCDMA is so complex due

to the fact that a wide variety of services are offered. Services such as high-quality

voice and high-quality videos are provided through high data-rate wireless chan-

nels [53]. At the same time the hand-held mobile terminal is expected to be similar

to the 2nd generation mobile terminals in terms of cost, power consumption and

size. In addition, the mobile terminal solution must accommodate the changes in

the standard as the standard solidifies, and also accommodate other 3rd genera-

tion systems such as cdma2000. The mobile terminal solution must also be flexible

and have the capacity to implement any new services envisioned in the future

many of which are not fully yet understood [51]. When 3G systems come to market,

first and second generation systems will be still widely used. Thus 3G mobile ter-

minals must have a backward compatibility with previous wireless mobile sys-

tems. 

Currently, there are two primary hardware realizations for the baseband

processing in the 3G mobile terminal, ASIC, and Digital Signal Processor. A com-

parison of the two solutions’ strengths and weaknesses will be fully explored.

According to J. Rabay [64] high signal processing demands of the baseband

processing unit in the 3G mobile terminal are mostly concentrated in five sub-func-

tions of the baseband. As seen in Table 3-1 the five functions are: 

• Digital FIR filtering

• Searchers (frame, slot, delay path, etc.)

• RAKE reception
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• Maximal Ratio Combining

• Turbo Decoding  

By speeding up the execution of these functions, an overall speed-up of the

baseband processing will be obtained. Each one of these functions will be discussed

in detail.

The implementation of the baseband unit on a reconfigurable hardware can

benefit from the fact that each part of the baseband unit performs a set of fixed

operations on a block of data. The block of data can be one frame data or one slot

data. As a result, if the hardware can perform all the required operations before a

new block of data arrives then, one can configure the different parts of the base-

band unit on the reconfigurable hardware sequentially. In addition, if the hard-

ware is capable of executing all the operations fast enough, then it can be turned

off to save power until the new block of data arrives [50], and [55]. 

Table 3-1. Estimation of signal processing load for 3G baseband @ 384 kbps

Function Number of Million Instructions per Second 

(MIPS) @ 384 Kbps

Digital Filters (RRC, Channelization) ~3600 MIPS

Searcher (Frame, slot, delay path, etc.) ~1500

RAKE Receiver ~650

Turbo coding ~52

Maximal Ratio Combiner (MRC) ~24

Channel estimation ~12

AGC, AFC ~10

De-interleaving, rate matching ~14

TOTAL ~5860
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The selection of the size of the data block affects the final performance in

different ways. For example, setting the block size to a small size like the data in

one Slot (0.66 ms), will reduce the area for storing the incoming data and reduce

the area of the executing hardware of each part of the baseband unit. 

The reduction in the required area comes from the assumption that the pro-

cessing of data is performed in parallel. This means a smaller block of data will

require smaller hardware for execution. But selecting a smaller block of data may

reduce the performance of some algorithms. It may even result in a data block that

is smaller than the amount of data required by the algorithm to operate correctly.

3.3.1 Digital Filters

One of the tasks for the implementation of the 3rd generation wireless

mobile baseband unit is the design of the digital filters for the receiver. In order to

transmit larger amounts of data through a limited frequency bandwidth, the

receiver filter must follow very strict specifications. These specifications result in

a larger number of taps and increase the storage requirements for the coefficients.

This increases the required processing power of the filter [33], and [56].

For a 3G standard, a Root Raised Cosine (RRC) filter is proposed for pulse

shaping with a roll-off-factor  [42]. The root raised cosine filter is imple-

mented to reduce the inter-symbol interference. Typically, Finite Impulse

Response (FIR) filters are used in baseband signal processing since they are stable.

However, for a given frequency response, FIR filters are a higher order filters (com-

pared to Infinite Impulse Response (IIR) filters). Hence they are more computa-

α 0.22=
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tionally expensive. The structure of a FIR filter is a weighted-tapped delay line as

shown in Figure 3-4.

The Filter design process involves calculating the coefficients that match

the frequency response required for the system. The values of the coefficients

determine the response of the filter. By changing the values and/or the number of

the coefficients we can change which signal frequency passes through the filter. As

can be observed from the filter model shown in Figure 3-4, the hardware imple-

mentation of the filter involves an N number of Multiply and Accumulate (MAC)

operations [51], where N is the number of filter taps. 

Figure 3-4: A tapped delay line model of an FIR filter

Z-1 Z-1Z-1Z-1Z-1
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The traditional hardware implementation of the FIR filters is a difficult

one. The designer is forced to compromise between the flexibility of the implemen-

tation and the performance. The reason for the compromise is that if the filter is to

be implemented on a Digital Signal Processor (DSP), the performance will be com-

promised since DSP usually have a limited number of MAC units. Implementing

the filter on Application Specific Integrated Circuit (ASIC) will almost eliminate

the flexibility unless a large area is used by the design.

The top of the line DSP has four MAC units [48]. This will require the DSP

to either run at very high clock rates, which is not desirable in a mobile terminal,

or it will take many clock cycles to compute each output value. However, an ASIC

could be used to implement the filter. This solution would provide the highest per-

formance and the lowest power consumption, but it would heavily compromise the

flexibility. Since the hardware implementation of the filter is frozen in silicon, it is

impossible to change the width of the data path or the length of the filter. 

It is not feasible to design an ASIC solution with some changing variables

in the FIR filter. This design would result in a large silicon area, which would be

underutilized most of the time. Cost considerations, long design time, and the

effectiveness of the final solution deem this unacceptable.

The implementation of digital filters on a reconfigurable hardware is a

straightforward affair. The implementation is a matter of allocating a MAC unit to

each tap of the filter. However, in a 3G receiver the matter is complicated by the

tight bandwidth (5MHz), high dynamic range, and the steep requirement of the

filter roll-off factor . When a filter with such requirement is implemented in dig-

ital, it leads to a large filter architecture. Typically the length of the filter must be

α
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truncated in order to minimize complexity. The use of windowing alleviates the

effects on the spectral shape. 

If implemented in a reconfigurable computing hardware, the filter can be

implemented in more than one shape. For example, if a sufficient hardware is

available, then the filter can be implemented without truncating some taps, or else

the filter can be implemented with fewer taps.

3.3.2 Searcher

The fundamental concept behind the Direct Sequence-Spread Spectrum

(DS-SS) communication system is that channels are broadcasted on the same fre-

quency using orthogonal spreading codes [57]. Due to the orthogonal nature of

these codes, when a pattern is received and correlated with a reference code it will

result in a value of 0 for all of the other signals that do not match the code. For the

desired transmitted signal, the result will be non-zero, where the sign of the corre-

lation value will indicate wether the transmitted bit is 0 or 1. 

WCDMA standard [39], and [42] mandates the use of two levels of spread-

ing. The first is the channelization spreading which uses Orthogonal Variable

Spreading Factor (OVSF) codes to preserve the orthogonality between the users.

However, implementing the orthogonal spreading codes is not sufficient. A long

run of ones can hinder the clock recovery and transmitted power level. Also, if an

adjacent cell uses the same code for spreading, then this will result in the wrong

data being recovered. For these reasons the standard adds a second level of spread-

ing. A pseudo-random scrambling code is used to scramble the channels that are

transmitted from one cell. By using different scrambling codes for different cells
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these problems are avoided. Additionally, the standard states the use of spreading

codes for cell search. For this purpose, 512 different downlink spreading codes of a

length of 38400 chips are identified. It would be very complex for the mobile termi-

nal to search all 512 codes and all of their different shifts. Therefore, the 3GPP

standard proposes the use of unscrambled synchronization channels (SCH) in the

downlink. Thus, the mobile terminal can use the SCHs to find the Broadcast Con-

trol Channel (BCCH) of the cell [30]. 

The North American 3G system proposal called Cdma2000 uses the Global

Positioning System (GPS) time mark to synchronize all cells. In contrast to

cdma2000, the WCDMA system is an asynchronous system, i.e. the base stations

are not synchronized in time. This adds more emphasis on the searchers.Thus the

synchronization is done by searching the incoming signal for the beginning of a slot

and the beginning of a frame. For synchronization, the SCH has two sub-channels;

Primary Synchronization Channel (PSCH) and Secondary Synchronization Chan-

nel (SSCH). Figure 3-5 shows the structure of the synchronization channel SCH

[30][33].

As shown in Figure 3-5, the PSCH is a 256 chip long symbol at the beginning

of the slot, it is repeated continuously for every slot and it is identical for every cell.

Finding one of these 256 codes corresponds to finding the beginning of one of the

slots. The SSCH is different from the PSCH. It uses 512 different scrambling codes.

Figure 3-6 shows these codes. The codes are divided into 32 groups and each

group contains 16 scrambling codes. The SSCH transmits a word which points to

one of the 32 scrambling groups. The word consists of 16 symbols, one for each slot.
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Figure 3-5: Structure of the synchronization channel (SCH)
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The 16 symbol words are distinct under symbol-wise cyclic shift. This allows the

mobile terminal to find the beginning of a frame through locating the beginning of

the word. Searcher is also used for the RAKE receiver to provide channel estima-

tion [30], and [33].

As an example of the synchronization process, the Matlab code simulating

the synchronization channel is shown in Figure 3-7. The PN code is generated by

the down link scrambling code generator “dl_sc_code” (see Appendix A). The PN

code is then inserted in a one slot long (2560 chip long) random data. The location

of the beginning is randomly set by the Shift variable. At the receiver the slot long

data is correlated with the PN code. The peak resulting from the correlation is the

location of the beginning of the PSCH, which also corresponds to the beginning of

a slot. A simulation result of an example of the PSCH search is shown in Figure 3-

8. In the simulation the PN code of the PSCH was inserted at chip number 413. As

seen in the figure, the peak is located at chip number 413 which points to the start

of the slot. 

The PSCH data is a random data of 1s and -1s. Figure 3-8 shows the PSCH

as a bold line between 1 and -1. The resulting correlation is shown as the light line

in the figure. 

The location of the beginning of the slot is then passed to the SSCH search

hardware. The SSCH search process is accomplished by 16 parallel correlators.

Each correlator searchers the data of the SSCH for one of the 16 prior known PN

codes. Since the beginning of the SSCH data is known from the PSCH search step,

all correlators start the correlation operation at the same time. Only one of the cor-
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relators will recover the 16 bit binary data in the SSCH which points to the group

of the cell’s scrambling code. 

The Channel estimation unit estimates the multipaths delays and complex

tap coefficients (phase and amplitude) [33]. The channel estimation performance

Figure 3-7: A Matlab code fragment to simulate the Primary Synchronization 

Channel (PSCH)

function [LOC]=PSCH

PN=dl_sc_code(300);

PN=PN(1:256).*-2+1;

X1=round(rand(1,2304)).*-2+1;

X2=[PN, X1];

Shift= round(rand^2*1000)

X=[X2(Shift+1:2560), X2(1:Shift)];

XD=[X,X]; 

PEAK=[];

LN=length(PN); 

LOC=0;

thr=100/100*LN;  %if 90% of the PN matches X then it is a peak.

for i=1:length(X)

Peak=sum(XD(i:LN+i-1).*PN) ;

    PEAK=[PEAK, Peak];

    if Peak == thr

         

        LOC=i

        

    end;

end;

LOC=2560-LOC+1  %+1 since index starts at 1.

 plot(1:length(X),XD(1:length(X)))

 hold on

 PEAK=PEAK(length(X):-1:1);

 plot(1:length(X),PEAK,'r')

 hold off;



43

is heavily affected by the channel quality. The implementation of the searcher is

typically based on sliding correlators. The greater the number of parallel sliding

correlators the faster the channel estimation can be done. 

3.3.3 RAKE Receiver and Maximal Ratio Combining

The WCDMA communications system is based on the DS-SS baseband data

modulation. This implies that the signal’s spectrum is expanded, i. e. the signal

energy is distributed over a much larger bandwidth than the minimum required

for transmission. In direct sequence spread spectrum (DS-SS), the signal is spread

360 370 380 390 400 410 420 430 440 450 460

0

50

100

150

200

250
Peak at chip number 413 

PSCH 

Figure 3-8: Matlab simulation of the PSCH search
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by multiplying it with a PN sequence with a much higher chip rate. In the trans-

mitter, the signal is multiplied by the spreading sequence which causes a spectral

spreading of the original narrow band signal. At the receiver the signal is multi-

plied by the spreading sequence again. If the reference sequence of the receiver is

synchronized to the data modulated PN sequence in the received signal, the origi-

nal signal can be recovered [33], and [56]. 

The RAKE is a special type of receiver that takes advantage of the multi-

paths propagation. If the time spread of the channel is greater than the time reso-

lution of the system then different propagation paths can be separated, and the

information extracted from each path can be used to increase the signal to noise

ratio (SNR). The time spread of the channel is given by the maximum delay

between the arrivals of a transmitted signal on different propagation paths. The

time resolution of the system is given by the inverse of the bandwidth of the radio

frequency signal, or is equivalent to the chip period of the PN sequence [58], and

[59].

Figure 3-9 is a block diagram of L-arm RAKE receiver. The RAKE receiver

is composed of two or more correlation arms, which extract the signals, arrived on

different propagation paths. This is possible because the correlation between two

versions of the PN sequence delayed by one or more chips is almost zero. Therefore

the propagation paths are separable [60]. 

As shown in Figure 3-9, once the different paths are resolved, they are com-

bined based upon their relative weights. Various techniques are known to combine

the signals from multiple diversity branches. In Maximum Ratio combining each
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signal branch is multiplied by a weight factor that is proportional to the signal

amplitude. Therefore, branches with strong signals are further amplified, while

weak signals are attenuated.

A communication-link level simulation in Matlab was carried out (it is also

reported in [61] and [62]). The communication-link level model is shown in Figure

3-10. A random binary (+1, -1) data is generated by the Data Generator. The data

is generated at a rate of Rd. The random data is then up-sampled to a chip rate Rc

Figure 3-9: A block diagram of L-arms RAKE receiver
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for spreading. Subsequently a complex spreading operation is carried out on the

binary data. The PN sequence used is a complex PN code:

Where .

The spreading gain N is:

To reduce the inter symbol interference a Root Raise Cosine filter is imple-

mented. Next, the signal is modulated and sent through the channel. 

Data Generator Pulse shaping g[n] DAC
Quadrature
modulation

Channel

Quadrature
demodulation

Digital Baseband
Receiver

N

ADC

fo

C[n]

d[n]

f '
o

Transmitter

Receiver

Figure 3-10: Communication-link level model for the RAKE receiver simulation

 (3-1) c n[ ] c1 n[ ] j∗ c2 n[ ]+=

c1 n[ ] c2 n[ ] 1– 1,{ }∈,

 (3-2) N Rc Rd⁄=
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The channel was modeled by a Tapped delay model shown in Figure 3-11.

The channel model represents a Rayleigh fading channel, with L separable paths:

where BW is the bandwidth of the transmitted signal and Td is the time

spread of the channel. The coefficients h0(t), h1(t),... hL-1(t) in Figure 3-11 are the

complex impulse response of the channel. Noise generated by different parts of the

1/BW1/BW1/BW

h0(t)

X(t)

Path # 0

h1(t) h2(t) hL-1(t)

Path # 1 Path # 2 Path # L-1

….

….

AWGN

Y(t)

Figure 3-11: Tapped-Delay channel model

 (3-3) L int BwTd( )=
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front-end of the receiver has a relatively flat power spectral density and a Gauss-

ian probability density. This noise is modeled as additive white Gaussian noise

(AWGN).

The signal is demodulated in the receiver then it is sampled and converted

from analogue to digital by the ADC block. It finally enters the digital baseband

receiver, as presented in Figure 3-9. The chip matched filter shown in Figure 3-9

has the same impulse response as the pulse shaping in the transmitter, resulting

in a raised cosine filter effect which gives a zero inter symbol interference.

The correlation arms perform the correlation with the synchronized copy of

the PN sequence used in the transmitter. A one correlation arm of one RAKE finger

is shown in Figure 3-12.

Output of correlator arm

C2[n]

_

I branch

Q branch

C1[n]

C1[n]

1

N

1

N

Figure 3-12: One Rake finger correlation arm
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Two simulation results (other simulation results reported by a collaborative

work in [61] and [62]) are relevant here. The BER dependence on the number of

quantization bits and BER dependence on the number of correlation arms.

For the BER versus the number of quantization bits, two simulations were

performed, one for SNR = 5dB, another for SNR = 10dB (see Figure 3-13). As

expected, the increase in the quantization bits decreases the BER. Interestingly,

for more than 6 bits/sample the improvement in the performance is not linear. If

higher signal to noise ratios values are received then the number of quantization

bits can be decreased to 4 or less.

Figure 3-13: The BER as a function of the number of bits used for the quantization 
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To characterize the BER versus number of RAKE fingers two simulations

were performed, one for SNR = 15dB, another for SNR = 10dB. The simulation

result is shown in Figure 3-14. 

As expected from Figure 3-14 one can see that as the number of fingers

increases the BER decreases. For a receiver that uses less than 3 fingers, a severe

amount of error bits will be present. This simulation did not consider the use of

Forward Error correction techniques or interleaving.

3.3.4 Turbo Coding

Turbo coding is an advanced forward error-correction algorithm. It is a stan-

dard component in third generation wireless communication systems [39]. Basi-

Figure 3-14: BER as a function of number of RAKE fingers
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cally, turbo coding involves two operations. The turbo encoder generates a data

stream that consists of two independently encoded data streams and a single un-

encoded data stream. Due to the interleaving, the two parity streams are weakly

correlated. In the turbo decoder, the two parity streams are separately decoded

with soft decision outputs, which are referred to as “extrinsic” information. The

strength of the turbo decoding lies in its sharing of the extrinsic information (as

the information is passed over parity decoding steps) over a number of iterations

[63], and [56]. 

The 3GPP standard channel coding schemes which can be applied to the

incoming data are either turbo coding, convolutional coding, or no coding. The

scheme of the turbo coder is a Parallel Concatenated Convolutional Code (PCCC)

with two 8-state Recursive Systematic Convolutional (RSC1 and RSC2) encoders

and one turbo code internal interleaver, as shown in Figure 3-15. 

The three output signals generated by the encoder are called: systematic

(original signal S), and redundant signals (Parity bits P1, and P2). The input to the

second encoder RSC2 is first interleaved using a random-like interleaving process.

The encoder operates on a block of bits, which is between 40 to 5114 bits long [71]. 

General Turbo decoder structure is shown in Figure 3-16. The turbo decoder

consists of two Soft-Input Soft-Output (SISO) decoders. An SISO decoder is capa-

ble of computing a posteriori likelihood of the constituent codes. 

As can be seen in Figure 3-16, the first decoder is provided with inputs that

correspond to the information bits (S1
’) and the parity check bits (P1

’). The second

decoder is provided with inputs that correspond to the information bits (S1
’) and
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the parity check bits (P2
’). Each decoder then attempts to decode the incoming bits

stream by computing the posteriori probability for each information bit and then

passing the soft-output information to the other decoder which uses this soft

output as a priori informations to improve its probability of correct detection [56].

A matlab simulation of the turbo encoder and the turbo decoder using Max-

Log-MAP algorithm was carried out. Random binary data (+1,-1) was generated

and encoded. The simulation parameters are shown in Table 3-2. 

Figure 3-15: 3GPP proposed structure of the turbo coder for WCDMA
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Figure 3-17 shows the input and output of the turbo encoder. As shown in

the figure, the output data of the encoder is 3 times the rate of the input data.

The output data of the encoder is then sent through the communication link

channel were a white Gaussian noise is added to the signal. The decoder at the

receiver uses a Max_Log_MAP algorithm. The output of the decoder is shown in

Table 3-2. Matlab simulation parameters of the turbo encoder/decoder.

Parameter Name Parameter value

Frame size 512 bits

Punctured/Unpunctured Unpunctured

Encoder Rate  1/3

Number of Decoding Iterations 3

Eb / N0 (dB) 2 dB

SISO
Decoder 1

Interleaver

Interleaver

SISO
Decoder 2

De-Interleaver

P1i

‘

P2i

‘

Si

‘

uK

Figure 3-16: Turbo Decoder structure
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Figure 3-18 . For the Max_Log_MAP decoder, three iterations were sufficient to

reduce the BER to zero using the given parameters. 

According to the BCJR algorithm [1], the calculation of a posteriori proba-

bility can be decomposed to the calculations of ,and  parameters, as follows:

 (3-4) 

Where s and s’ are the encoder states at time k, and k-1 respectively, and:

 (3-5) 

 (3-6) 

B
it 

va
lu

e

Bit index

0 10 20 30 40 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3-18: Turbo decoder output data after three iterations

α β, γ

p s' s y, ,( ) α k 1– s'( )γk s s',( )βk s( )=

α k s( ) α k 1– s'( )γk s s',( )∑=

βk 1– s( ) βk s'( )γk s s',( )∑=
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In an Max-Log-MAP algorithm, the calculations of ,and  are simplified

to performing a sequence of addition, subtraction and maximum operations as

reported in [63].

α β, γ
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Chapter 4

Computing Architecture Models

In this chapter I will investigate different architecture models available as

computing platforms for the current and future generations of handheld wireless

mobile terminals. An in-depth discussion will reveal the differences between the

classical computing platforms and new emerging reconfigurable computing plat-

forms. I will then concentrate on discussing different reconfigurable computing

platforms that are available on the market and in the research organizations.

4.1   Introduction

Most of the computing platforms used for the wireless mobile terminal

application today are a modified version of a general purpose Digital Signal Pro-

cessor (DSP) [8]. These specially designed DSP are an improvement over general

purpose DSPs in terms of performance and power consumption. They are widely

used in mobile terminals since they provide a very fast time to market. They can

be easily upgraded by updating the program code written in high level languages.
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The code enables the terminals to perform any new functional requirements that

may arise from changes in the standards. 

Other operational functions with higher performance requirements than

those provided by DSP are implemented using dedicated hardware VLSI chips.

These chips provide the highest performance and lowest power consumption for a

selected application. However, they are the most expensive and time consuming in

terms of design, fabrication, and validation. Presently, a DSP-ASIC combination,

in addition to other supporting blocks such as memories and I/O interfaces, have

always been the choice of all previous and current wireless mobile terminals [64].

However, as the number of functions provided by the mobile terminal increases,

additional area and power are required. Reconfigurable computing architectures

are able to efficiently use the scarce area and save the power on the mobile termi-

nal.

4.2   Current Computer Architectures

The typical implementation process of a given function starts with defining

the function with a natural description, i.e. in terms of the spoken words. The

designer will translate the natural description into an algorithm written in a stan-

dard sequence of tasks (instructions) that will perform the intended function. In

the final step, the designer will look for physical hardware to implement and exe-

cute the set of instructions. In the current hardware implementation, there are

only three options to implement an algorithm. They are: ASIC, General-Purpose
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Microprocessors (including DSP), and Field Programmable Gate Array (FPGA).

See Figure 4-1. 

Once one of the above approaches has been selected, we lose the chance to

take advantage of the natural functionality of the algorithm. These characteristics

include the required resolution (i.e. number of bits) for the operations and the par-

allelism available in the original description.

The dynamically reconfigurable architecture developed in this dissertation

provides a deep pipelined and system level parallelism implementation hardware.

The architecture uses a 16-bit grain datapath. Although, a smaller data-path

width may be sufficient for some of the applications in hand, as new functionality

arises from the available high data rates, wider datapath widths will be needed. 

Designing an architecture that can adopt to any number of bits require that

the design of processing elements operate on a one-bit level. Such architecture is a

fine-grain architecture. A major drawback of such architectures is the problem of

routing the signals inside the architecture. By looking at the target application we

see that all the functions require a minimum of an 8-bit data width. The bit width

of the output of the analog-to-digital converter also plays a role on determining the

number of available bits for the processing elements. Current ADC can provide 12-

bits and more sampling resolution. Some of the functions of the baseband unit can

take advantage of a wider data width. For example, increasing the number of bits

representing the coefficients of the FIR filter reduces the required number of taps.
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Figure 4-1: Design process flow of different hardware implementations
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4.3   ASIC implementation

ASIC is one of the most common methods of the target algorithm implemen-

tation today. ASIC uses a direct mapping of the natural algorithm into hardware.

This approach yields the highest performance and the lowest levels of power con-

sumption. As the name implies, each ASIC chip is designed for one specific purpose

or function. Once the design is committed to silicon no changes to the implementa-

tion are possible. Additionally, since an ASIC needs to be designed for each func-

tion, systems tend to incur a huge final cost. Therefore, ASICs are best suited for

applications that are produced in huge quantities. 

Other limitations to ASIC’s implementation approach comes from the way

ASICs are designed. Typically, the target algorithm needs to be coded in Hardware

Description Language (HDL). This procedure is necessary in order to feed a HDL

code to a synthesis tool which will then translate the HDL code into boolean equa-

tions that are suitable for mapping into logic gates and other logic units. A problem

that is created by this procedure stems from the fact that HDL languages and par-

ticularly VHDL are designed to describe hardware functionality (implementation)

and are not meant to describe the algorithms in its mathematical nature. There-

fore, whenever we describe an algorithm in VHDL we indicate how the implemen-

tation of the hardware is going to be designed.

There is a major obstacle related to using ASIC in a system. Using ASICs

imposes an extensive real state requirement on the mobile terminal. We need an

ASIC chip for every function we have in the system, whether it is required at a
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given time or not. Implementing such a system with ASIC chips would result in a

bulky final product that would be impractical to use [51].

Another limitation of ASICs pertains to their time-to-market cycle. It takes

three months (or more) for an ASIC to be designed, verified, and fabricated before

hitting the market. For dynamic systems, like the wireless mobile system, the

standards are continuously evolving. Even when the standards become mature and

freezes new services will emerge. New algorithms for already known services may

be developed. Therefore, the ASIC would become obsolete while they are in the pro-

cess of being designed.

4.4   DSP Implementation

Digital signal processors are widely available and are used in many systems

including current mobile terminals. They are available in a variety of sizes and

capabilities. Each DSP is a modified version of a general purpose micro processor.

Thus, they all experience the sequential architectural model, i.e. fetch-process-

save. To implement an algorithm in DSP, one needs to code the algorithm either

directly in assembly or in a higher level language such as C which is then converted

by the compiler into a sequence of machine instructions. 

In contrast to the ASIC implementation, the DSP implementation is the

most flexible. It provides the designer with the ability within a few minutes to

modify the code and accommodate any changes that may occur in the algorithm.

This implies that this approach enjoys the shortest time to market cycle. The speed
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of modifying the DSP code explains the reason why it is widely spread use in sys-

tems that have fast dynamic changing behavior such as the mobile system.

The coding of the algorithm into a sequence in a high level language implies

that the algorithms intrinsic parallelism is lost. Additionally, the required process-

ing may not be compatible with that of the processor. Therefore, the designer is

required to modify the algorithm even more in order to match the algorithm pro-

cessing with that of the processor.

A significant silicon time-area overhead is incurred in DSPs. The reason for

this is that for any given instruction only a small portion of the time (allocated for

that instruction) and a small number of logic cells (available for the instruction)

are utilized to do anything related to the original operation [64]. For example,

when a DSP is instructed to add two values, most of the clock time is wasted in

fetching the instruction, incrementing the counter and setting the appropriate con-

trol signals. Only a small portion of the time and hardware are consumed by the

addition operation. 

4.5   FPGA Implementation

Selecting an FPGA implementation approach would provide a better hard-

ware utilization than a DSP approach and be more flexible than the ASIC

approach. The FPGA can be programmed to reflect the appropriate processing

width and also at the same time, be reprogrammable in a short time. Field pro-

grammable devices are an advanced class of traditional programmable logic

devices. Unlike ASIC, a programmable device is a general-purpose device capable
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of implementing any logic function. It is programmed by downloading a finite

number of hardware controlling bits into the device. 

FPGAs are composed of two main components. The Processing Elements

(PE) and the routing resources. They can be classified into two main categories

depending upon their programming methods. The two FPGA types are anti-fuse

FPGAs and Static RAM FPGAs. These two types come in two different architec-

tural-granularities variations, which are mostly fine-grain or coarse-grin FPGA

architectures. Anti-fuse FPGAs consist of a number of PEs where the configuration

is done by burning fuses inside the PE and in the routing paths (see Figure 4-2).

Figure 4-2: An Anti-fuse switch for non-volatile FPGAs
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This method of programming restricts the chip to only being able to be programed

once. But the advantage of such a method is the elimination of switches from the

path of the signal inside the chip, which results in higher levels of performance.

SRAM FPGAs are composed of a sea of PEs which can be configured by set-

ting SRAM bits inside the PEs and in the routing paths. These stored bits are used

to drive routing switches. Figure 4-3 shows three types of programmable switches:

pass transistors, multiplexers, and tri-state buffers. This method provides the abil-

ity to reprogram the chip an unlimited number of times [22].

Due to the fact that FPGAs were originally designed for general purpose

usage such as glue logic, they are designed to perform processing at the one-bit

Figure 4-3: SRAM cell for SRAM based FPGAs
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level. This greatly limits the ability to use them for processing wide data-paths

such as 8 or 16-bit widths. Implementing a data-path processing engine of such

widths would consume a huge portion of the FPGA chip area, since each bit pro-

cessing needs to be set separately. It will require a large number of configuration

bits to configure the processing elements and the routing paths. Whereas it could

be configured using only one bit if the FPGA routing lines were 8-bit in width. For

example, if the data path were 8-bit, then one needs to configure eight similar pro-

cessing data paths. One also needs 8-bits to switch this 8-bit bus at the switch box,

which route the line in different directions. Instead with coarse grain FPGAs, this

can be done by using only one set of configuration bits for the entire eight bits pro-

cessing data path. 

FPGAs, in general, suffer from the slow programming mechanisms. Typi-

cally, the programming time of an FPGA is in the millisecond range and varies

depending upon the FPGA type, the chip size, and the number of gates in the

design. Additionally, configuring the FPGA is known to draw a great amount of

power [22].

Dynamic reconfiguration means that an FPGA can be reconfigured while it

is running. The ability to reconfigure part of the chip on the fly is a very compli-

cated issue. Most of today's FPGAs either do not support dynamic reconfiguration

at all or they would support it in a very restricted way. The result is the loss of the

desirable features of dynamic reconfiguration.

In the dynamic reconfigurable architecture developed in this dissertation, a

full dynamic reconfigureability is supported. The configuration/reconfiguration

process is accomplished in a one clock cycle. This is done by designing the configu-



67

ration hardware to have its own routing lines and not sharing the system routing

lines as it is done commercial FPGAs [6][7]. In addition, the configuration contexts

bits are pre-cashed and stored in the configuration memory unit located very close

to the processing element. A detailed description of the configuration mechanism

is given in section 5.3.7.

FPGAs are designed to be a general prototyping target. However, they

suffer from two routing problems. On one hand, routing usually results in un-pre-

dicted delays in the signal path. On the other hand, the inefficiency of the routing

tools used in FPGAs typically results in wasting almost 50% of the computing

resources on the chip [22].

Like ASICs, FPGA design tools and programming environments are built to

use hardware description languages such as VHDL as the main formal description.

What was said about using HDL in ASIC can be applied to FPGAs. Using HDLs to

describe the function on the algorithmic level will result in losing many of the

inherent characteristics of that algorithm. For example, assume that a function F

can be described by two algorithms A1 and A2. Also assume that algorithm A1

requires the least power-consumption of the two algorithms, while A2 algorithm

provides a faster operation. Suppose that the function F is a dynamic function that

is related to external parameters, such as the communication link channel. Now,

if we selected A1 or A2 algorithm for the implementation of the function F on ASIC

or FPGA then we either lose flexibility or performance. F may sometimes need a

high speed execution, while at other times it may not need that speed and we could

save power. If a reconfigurable hardware is fast enough to switch between A1 and

A2, then we can save power whenever a high speed execution is not required.
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4.6   Dynamically Reconfigurable Computing 

The introduction of the third generation wireless mobile system coupled

with a huge growth of wireless subscribers and the large number of new applica-

tions and services, creates a great challenge to the current implementation plat-

forms. The designer must come up with a mobile terminal that is small, has a low

power consumption, and low cost. It has been observed in [64] that the complexity

of wireless systems is outgrowing the available silicon implementation predicted

by Moor's Law as shown in Figure 4-4.

Moore's Law states that the number of transistors that can be fabricated on

one unit area will double every 18 months. Moore further stated that the cost of

doubling the number of transistors would remain the same. I.e. we will have double

the number of transistors every 18 months without an increase in price. This abun-

dant amount of processing power will enable the concept of System-on-a-Chip

(SoC) to become a reality. A SoC would integrate different computation models on

one die. It would merge DSP, micro processor, memory, reconfigurable array, spe-

cial modules, the needed interfaces and I/O modules.

J. Rabaey in [64] pointed out that even though the SoC will be the obvious

implementation methodology for future mobile systems, the SoC solution still

needs to be constructed with a specific target domain of applications in mind. e.g.

the SoC solution must balance the flexibility with performance within a specific

application domain. Since the reconfigurable computing array is going to be part



69

of the SoC solution, then it also must be designed for a specific target application.

A platform-based design concept has been proposed by Kurt Keutzer et.al. in [65]. 

A general dynamically reconfigurable architecture that would provide a

high level of performance for any application is a “myth” and cannot be obtained.

In [13] Reiner Hartenstein states that “universal RA (Reconfigurable Architecture)

obviously is an illusion. The way to go is toward sufficiently flexible RAs, optimized

for a particular application domain like wireless communication”.

Figure 4-4: Algorithmic complexity of wireless mobile systems is increasing faster 

than the increase in the available processing power. Source: Jan Rabaey, 
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Dynamically reconfigurable architectures which are designed and opti-

mized for one specific domain of application can provide the required balance

between flexibility and performance, which are not available from an ASIC or DSP

alone. Reconfigurable computing will play an intermediate role by complementing

ASIC in terms of flexibility and complementing DSP in terms of performance and

power dissipation. Figure 4-5 depicts where one would locate the reconfigurable

computing in the performance versus flexibility axis.

As mentioned above, third and potentially future generations of mobile com-

puting are being developed at a very fast pace. Trying to develop an implementa-

tion solution for such an application would be very difficult due to the short

development time required. For example, if after an ASIC chip was developed, a

new algorithm was developed which would improve the Bit Error Rate (BER) of

some service by approximately 20%, then it would be impossible to conceive of

Figure 4-5: Performance and flexibility for different implementation methods
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updating the algorithm without having to redesign the whole ASIC. If the new

algorithm required 20-bit words instead of 16-bit words and a DSP with a data

path of less than 20-bits was the implementation solution, then DSP would stop

short of being able to implement such a change to the algorithm. A reconfigurable

computing architecture would be able to accommodate any changes in the algorith-

mic level as fast as the DSP would do, and provide an equivalent performance as

that of ASICs.

In a typical system operation, not all of the functions implemented in the

system will be running simultaneously or as frequently as the others. For example,

according to the standard, a RAKE receiver would be an essential part of the

receiver. Therefore it will run frequently. On the other hand, turbo coding will only

be used when a high quality of service is needed. Implementing these functions in

a reconfigurable architecture will give the ability to run the required function only

when it is needed. In addition, the same function can be modified based upon the

environment real-time conditions. For example, a RAKE receiver is typically

designed to have four arms [60]. When implemented in a reconfigurable architec-

ture, the number of arms can be increased as the mobile terminal moves to a loca-

tion of many multipaths channel. Likewise the number of fingers can be reduced

under different conditions.

Although current FPGAs in the market today enjoy similar architectural

model as the reconfigurable architectures, they cannot meet the demands of the

third generation or future mobile systems. As mentioned above, FPGA cannot sup-

port full dynamic and fast reconfiguration in the nano-second range. In addition,
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FPGAs are not efficient in utilizing the available logic due to the routing limitation

and the fine-grain processing elements.

The dynamically reconfigurable coarse-grain architecture developed in this

dissertation, presents a balance between flexibility and performance that will be

required in the third and future generations of a wireless mobile system. As more

SoC solutions are developed for different domains of applications following the

platform-design concept presented in chapter 1, the dynamic reconfigurable archi-

tectures will be an essential part of the complete SoC solution. 

4.7   IP-based Mapping

The architecture developed in this work is designed to fully support Intel-

lectual Propriety (IP) based mapping techniques. IP mapping is the method in

which a developed core is automatically mapped onto the target architecture to

perform one or more functions. The IP-core concept can save thousands of hours of

design work. The concept is spreading rapidly. Such cores can be mapped effi-

ciently and rapidly onto free array parts of the underlying architecture. The cores

include necessary communication interfaces between different IP-components and

objects. Figure 4-6 shows the dynamically reconfigurable architecture mapping

technique. 

Based on functional and physical complexity levels, IPs currently available

fall into three categories:
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Hard Cores: Hard cores are black boxes that have been fully implemented

down to the mask-level data required to fabricate the block in silicon. They have

technology-specific timing information and a fixed physical layout that allows

Figure 4-6: IP-based mapping method
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maximum optimization in terms of performance and density. Typically, they are

targeted to perform dedicated functions, such as an Ethernet interface or an MPEG

decoder. However, hard cores have the most limited vendor portability and great-

est difficulty of reuse when moving to a new process technology.

Firm Cores: Firm cores are technology-dependent synthesized gate-level

netlists that are ready for placement and routing. They provide flexibility in the

chip layout process because the core form is not fixed. A firm core's size, aspect

ratio, and pin location can be changed to meet a customer's chip layout needs, and

floor planning guidelines assist the chip designer in making trade-offs. The tech-

nology-specific nature of a firm core makes it highly predictable in performance

and area.

Soft Cores: Soft cores consist of technology-independent synthesizeable

HDL (Hardware Description Language) descriptions. They do not have any physi-

cal information.

4.8   Modeling a Reconfigurable Architecture 

As with any other design problem, when designing a specific reconfigurable

system it is necessary to perform two general steps. First, a deep understanding of

the target application or set of applications is required. This would include analyz-

ing algorithms of the target application(s), and simulation. Second, after designing

the platform architecture, a faithful model of the architecture is required to per-

form a prototyping and functional as well as timing simulation.
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In DSP designs the first step is usually done with MATLAB. This works

great since the underlying execution behavior of the DSP and the MATLAB (gen-

eral purpose processor) are identical, i.e. both execute a set of instructions sequen-

tially. But when designing a parallel and reconfigurable architecture, MATLAB

will not provide correct information about the behavior of the overall system.

When modeling a static system, VHDL is a very rich language that can

easily describe the functional and (with some additional steps) the timing charac-

teristics of virtually any system. However, modeling dynamically changing sys-

tems in VHDL can become a burden to the designer. In modeling static systems,

different components are designed to do a specific task and to interact with other

system components in a specific way. When the full description of such a static

system is completed, any functionality of a component can be modified without

affecting the other parts. Eventually it will not require modification of the overall

system. 

The choice of whether to model the system in a structural or behavioral

modeling will not affect the final system description. Unlike the static design,

dynamic designs require one to consider reusing the same hardware to do different

tasks based on the configuration bits. A configurable circuit would be modeled in a

structural style. However, this would require previously decided designs and hard

compromises need to be taken prior to the modeling process. As a result, the final

system description will result in a rigid design. A rigid design means that changes

to the design require a modification of most of the design components.
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This style of modeling would be more suitable at the final stage of designing

a dynamically reconfigurable system when all modifications have been thought-out

and a final design functionality is well established.

In the design of the reconfigurable architecture developed in this disserta-

tion, a VHDL design model was developed. A number of compromises were taken

during the design. For example, in the design of the processing element (Dynami-

cally Reconfigurable Processing Unit DRPU), the routing of the input signal to the

inside of the unit was limited to three signals selected from eight possible input

signals. The decision of routing only three signals instead of routing all eight is

imposed by components inside the DRPUs, i.e. by the maximum fan-in of all com-

ponents. The selection of only three signals is also imposed by the number of con-

figuration bits that will be needed by each component inside the DRPU.
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Chapter 5

Dynamically Reconfigurable 

Architecture

5.1   Introduction 

The Dynamically Reconfigurable Architecture for Wireless Mobile Systems

(DRAW) combines many new concepts and features. This chapter will present a

planar model suitable for analyzing DRAW architecture. Concepts such as run-

time reconfiguration and run-time reconfigurable communication resources, will

be discussed in detail in this chapter. Features such as dedicated spreading unit,

and configurable linear feedback shift register are also presented here.

5.2   The Dynamically Reconfigurable Architecture 
(DRAW) Model

The DRAW architecture is designed to be a part of a System-on-a-Chip

(SoC) solution for the third and future generations of wireless mobile terminals.

However, the enormous size of such a project and the time restrictions imposed on
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this dissertation compelled us to modify the design of DRAW to a stand alone plat-

form. It can be modified at later date to be part of a SoC platform. The completion

of the design and simulation of DRAW as a stand alone platform will prove the

applicability to implement reconfigurable computing platforms for the wireless

mobile application. It will also enable us to experiment with architecture without

the need for the complete SoC system. Additionally, DRAW can be used as a proto-

typing platform for the development of algorithms for the mobile baseband process-

ing.

The set of all possible designs for a particular architecture is the design

space of that architecture. When designing a reconfigurable architecture there is

an unlimited number of designs to build a reconfigurable computing engine. The

reason for such a wide space is the large number of design variables that need to

be set (selected) prior to and during the design process. 

For example, bus width, word length, and floating/non-floating point pro-

cessing are major variables which need to be decided in advance. Setting some

design variables at the beginning reduces the available design space. This reduces

the design problem and makes the situation easier to comprehend. However, this

will also reduce the chances of reaching the optimal design of the reconfigurable

engine to match the desired application requirements.

The reconfigurable computing architecture organization structure is a combi-

nation of a software-programmable processor and the spatial computational style

used in ASIC hardware designs. By providing such a combination, the reconfig-

urable computing structure falls at the borders between pure “hardware” and “soft-

ware” structures. In order to ease the design of such architectures a new plane
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architecture model has been developed. It is presented and illustrated in Figure 5-1.

This model includes processing, communication, and configuration planes interact-

ing with the I/O plane and is controlled by the global control plane. 

The processing plane is an array of Processing Elements (PEs) that can be

configured from the configuration plane to define discrete logic, registers, mathe-

matical functions, and memory. For any process to be mapped to the processing

Figure 5-1: An abstract planar model for the dynamically reconfigurable 

architecture
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plane it has to be translated first to the lower level functions. The process is then

mapped to the communication network resources between functions, other pro-

cesses, and/or to the I/O plane. These functions are then translated to primitive

tasks. Tasks are defined as:

• Mathematical tasks such as multiplication, spreading, and addition.

• Logical tasks, such as comparison, shifting, logical functions (AND, OR, etc.)

• Data transfer tasks, such as RAM, FIFO, data in, data out.

• Control tasks, such as the start and end of a process, signaling and machine states.

The processing elements are able to perform any one or more of the first

three tasks. The PEs are designed to execute all these tasks (and therefore all of

the functions) in a very efficient manner.

The performance of any application mapped to the processing plane depends

strongly upon the efficiency and speed of the communication plane. The communi-

cation plane contains the routing resources needed by the processing plane ele-

ments. Commercial FPGAs use static communication resources. Thus the routing

resources are allocated at the time of mapping the process to the processing plane.

These communication lines are then tied to the process and cannot be used even

when the process is idle. Since computation time differs from one process to

another and since the data rate (bits/s) also differ from one process to another, it

is more efficient to use the routing resources for more than one process. If the com-

munication behavior of a process is known prior to the mapping step, then it is pos-

sible to allocate the communication resources only at the required time(s) and then

assign the same routing resources to other processes for the remaining time. Since
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this will result in configuration time overhead, a compromise between less routing

resources and communication plane performance must be made.

The configuration plane's main task is to store the configuration bits and

load them into the appropriate processing plane location in accordance with the

specification of the control plane. This can be achieved rapidly by locating the con-

figuration memory which holds the configuration codes near the targeted PE of the

processing plane. Through the global view of the control plane, a new configuration

is downloaded to the vacant PE whenever the PE sends a vacant signal to the con-

trol plane. 

The data flow of the processing plane needs to be interfaced to the outside

world. The configuration codes of the configuration plane must be downloaded from

outside of the architecture. The I/O plane performs these tasks. Fast I/O units are

required in order to overcome the fact that there is only a limited number of I/Os.

Since the I/Os are used to input/output data bits and also to input configuration

bits, then they must be fast enough to reduce the configuration-time overhead.

This requirement of a fast I/O will be elevated when the architecture is integrated

in a SoC. In this case the configuration bits are saved in the internal RAM and

loaded directly into the architecture.

When designing the PEs, the number of concurrent tasks that can be exe-

cuted on one PE at the same time has to be weighted against the amount of com-

munication network resources required for those tasks. The number of inputs/

outputs of a PE is another major factor affecting the number of tasks per PE. These

factors were carefully analyzed in this dissertation.
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A well designed dynamically reconfigurable architecture must take advan-

tage of the data flow nature of the mobile processing. Compared with control-dom-

inated systems, data-flow systems are characterized by the flow of data that passes

through one or more processing stages. These stages process the data and move the

results on to the next stage. This is similar to vector processing, where a vector of

data is processed concurrently in a bit-wise fashion. While DSPs are sequentially

processing elements, reconfigurable architectures can perform such vector process-

ing in parallel. The results are large gains in performance while operating at much

lower clock frequencies and less power dissipation.

For instance, to reach the same performance levels on a DSP compared to

reconfigurable computing processors, DSPs are required to run at clock rates in

excess of 400 MHz. Based on the clock rates and assuming the same power supply

and fabrication technology, the savings in power consumption is more than 50% of

the DSP's total power consumption. In addition, since these architectures are only

programmed (configured) when needed, even more power will be saved. 

Flexibility is well supported by DSPs. However, this type of flexibility is

more than what is really needed for one selected area of application. The reconfig-

urable computing architecture is designed to only support the required flexibility

within the target application. The ease of programming is still preserved through

the proposed IP design and mapping methods. The redundant flexibility of DSP is

traded for better performance in the DRAW architecture. The IP design methods

would be very similar to programming a DSP. Therefore, a new set of algorithms

(IP) can be designed and compiled for the target architecture.
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5.3   Dynamically Reconfigurable and Parallel Array 
Architecture 

DRAW consists of an array of parallel operating coarse-grained Dynami-

cally Reconfigurable Processing Units (DRPUs). Each DRPU is designed to execute

all of the required arithmetic data manipulations for data-flow oriented mobile

applications, as well as support necessary control-flow oriented operations. The

complete DRAW array architecture connects all DRPUs with reconfigurable local

and global communication structures; see Figure 5-2. The architecture provides an

efficient and fast dynamic reconfiguration of DRPUs and interconnection struc-

tures, reconfiguring parts of architecture during run-time, while other parts are

active. 

The decisions during the design of the architecture are based mainly on

careful reviewing of the tailored application area requirements. We began the

bottom-up design approach of DRAW by focusing on a list of the most complex and

flexibility-demanding application parts of future mobile receivers, e.g., RAKE-

receiving parts, filtering, searcher algorithms, turbo coding, and maximal ratio

combining techniques. Based upon the set of required arithmetic and control-flow

operations, the performance/power optimized structure of the DRPUs and local

communication units called Communication Switching Units (CSUs) was devised.

As shown in Figure 5-2 the DRAW architecture consists of a scalable array

of DRPUs that have 16-bit fast direct local connections between neighboring
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DRPUs. Every four DRPU sub-array shares one Configuration Memory Unit

(CMU). The CMU holds configuration data for performing fast dynamic reconfigu-

ration for every four DRPUs and is controlled by the nearest CSU. Each CSU con-

trols two CMUs and four global interconnecting Switching Boxes (SWB). 

Figure 5-2: A block diagram of the DRAW architecture
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Dedicated I/O Units (DIOs) for fast and parallel transfers of the input/output

data of DRAW are placed around the DRPU array. Each DIO can be connected either

to one DRPU at the border of the DRAW architecture, and/or to DRPUs inside the

array through the global interconnect lines. Every DIO is able to perform the inter-

nal local and global DRAW communication protocols, as well as the interfacing func-

tionality to the other components of the SoC, e.g., the DSP, the micro controller, and

the on-chip memories. 

All CSUs communicate with one Global Communication Unit (GCU), which

coordinates all dynamic reconfiguration steps of the DRPUs and the global inter-

connection structure. Moreover, the GCU controls the external communication

with other hardware components of the SoC. The GCU triggers the responsible

CSUs to initiate the controllers of the corresponding CMUs for loading a new con-

figuration to the selected DRPUs. This fast transfer process of reconfiguration code

is then completed by an efficient burst-mode protocol between the CMU- and the

DRPU-controllers. The dynamic reconfiguration algorithm for various scenarios in

future mobile communication systems is performed by the GCU. This algorithm

decides which parts of the array have to be reconfigured with which particular con-

figuration data which are stored either in the CMUs or in an external memory.

5.3.1   Regular and Simple Array Structure

The DRAW architecture is designed to be a target implementation for a

higher level IP-based mapping tool. Making the processing elements and the rout-

ing resources of the architecture simple, reduces the efforts of the IP-mapper to

reach an optimal mapping structure. To be able to integrate the reconfigurable
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architecture in a SoC, the architecture must be sizable, since different SoC solu-

tions require different sizes of the architecture. Additionally, as new fabrication

technology with smaller feature sizes become available, the architecture can be

scaled down. Scaling the architecture will only require the scaling of one unit of

the design, which is then repeated for the whole architecture.

5.3.2   Special Processing Units

Different wireless mobile receiver functions mandate different processing

data-path widths. Although, most of the functions will require 8-bit or more data-

path widths, some functions require only one-bit data-path processing. Implement-

ing such a function on a data-path that is wider than a one-bit width is a waste of

resources. 

Three particular functions that don’t require more than one-bit processing

are spreading/despreading, code generation, and one-bit data coding. The spread-

ing of a data stream involves multiplying data by the PN code. Despreading is done

in a similar manner. Implementing this function in the 16-bit DRAP is not useful,

since it will waste the DRAP resources. 

For this reason, two special processing units are built in the DRPU to

handle these special processing requirements. These units are a Configurable

Linear Feedback Shift Register (CLFSR) and a Configurable Spreading Data Path

(CSDP).
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5.3.2.1  Configurable Linear Feedback Shift Register (CLFSR)

Code generation is one bit function in the receiver. In the third generation

wireless mobile system receiver standard, PN and gold codes are used for cell and

user scrambling. The PN and gold codes are generated by a linear feedback shift

register. The linear feedback shift register is an N stage shift register, where the

feedback bit is the result of XOR operation on selected bits from the register. The

selection is based on the equivalent prime polynomial of the shift register. The

Turbo coder consists of two three-stage linear feedback shift registers with an

internal interleaving before the second register. The coding is done on the bit level

of the incoming data.

A dedicated unit is available in the DRPU that can handle the code genera-

tion and can be used for turbo coding when combined with an interleaver. The

CLFSR is shown in Figure 5-3. As shown in the figure, the CLFSR can be config-

ured to be either a two or three stage shift register. The unit can be connected to

the neighboring units to create longer shift registers. Additionally, the unit can be

configured to either generate code or to encode a stream of bits. The polynomial of

the shift register sets the configuration bits.

5.3.2.2  Configurable Spreading Data Path (CSDP)

One CSDP for execution of spread spectrum-based spreading tasks is

designed and implemented in each DRPU. This CSDP unit can be used together

with the add operation of a DRAP to efficiently implement a fast complex PN-code

correlation. Such spreading and de-spreading operations are often required in the
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Quadrature Phase Shift Keying (QPSK) modulated systems commonly found in

mobile systems.

The CSDP can be configured into many different useful configurations. In

addition, it can be configured with other components in the DRPU to implement

de-spreading. Some possible configuration structures are shown in Figure 5-4.

Figure 5-3: Different possible configurations of the configurable linear feedback 
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5.3.3   RAM and FIFO Storage

Many functions in the receiver need to store intermediate data during pro-

cessing. The RAM unit in the RPU can be configured to act as either RAM or as a

FIFO. When configured to act as a RAM, the data input, Read and Write addresses

are all supplied through the input interface. The RAM writes the incoming data to

the provided address whenever there is a new value on the data line. Additionally,

the RAM sends the appropriate data selected by the read address whenever the

address value changes. This style of implementing RAM eliminates the need to

control the RAM to write or read.

When the RAM/FIFO is configured as a FIFO, it requires some control. The

FIFO provides two flags to the control unit. The flags are FIFO-full and FIFO-

empty. The control unit in the DRPU sends a hold signal to the sending DRPU

when the FIFO is full and disables reading whenever the FIFO is empty. 

5.3.4   Scale and Delay

Scaling is a very important operation for keeping the intermediate results

values under the available maximum data path width. In the DRAW architecture,

a scaling feature is built in the DRPU output interface. Scaling is accomplished by

shifting the data to the right by a variable or fixed number of bits. The scaling

factor is provided either through the configuration bits or through the input inter-

face. When the scaling value is static, it is easier to set it up through the configu-

ration bits, and when the scaling value depends on some variables, it is generated

by another DRPU and then passed to the scaling DRPU.
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5.3.5   Communication Network

For fast data processing, fast connection between the DRPUs is necessary.

The communication between different DRPUs has two hierarchy levels. At the

lower level, local communication between neighboring DRPUs provide a fast con-

nection channel, and at the upper level, global communication channels can be uti-

lized by the communicating DRPUs. 

The communication between two DRPUs can be either deterministic or

indeterministic. If the communication between two DRPUs is deterministic, then

the knowledge of this communication pattern can be utilized at the design compi-

lation level. The designer can implement the sequence of the SWB’s configuration

bits to follow the communication behavior. This type of communication should be

utilized whenever available in the implemented process. Many processes of the 3G

receiver can be deterministic, thus this feature would benefit the architecture.

For an example of the deterministic communication, assume two RAKE fin-

gers implemented on four DRPUs and two DRPUs for each finger. Assume also a

spreading gain of 64, which means that the dumping period of each finger is every

64 chips long. The example is illustrated in Figure 5-5. Since one RAKE finger is

delayed by at least one chip then the two fingers will not use the communication

channel at the same time. By configuring the connection points to switch on and

off at the required time, the two fingers can share the communication channel

without any conflicts. 
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Unfortunately, not all communication between DRPUs is deterministic.

When the communication between DRPUs is not deterministic, a start-hold mech-

anism is used to synchronize the communication between the communicating

Figure 5-5: An example of a deterministic communication between four DRPUs
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DRPUs. Every DRPU communicating with its four neighbors uses the start-hold

signal to indicate when it is ready to receive data.

The output of a VHDL simulation for the start-hold mechanism is shown in

Figure 5-6. The figure shows an DRPU that is first configured as a FIFO, then

while the DRPU is running, the FIFO becomes full and a FIFO full signal is

asserted. Once the FIFO full signal is asserted, the DRPU controller asserts the

start-hold signal. Since the start-hold signal is routed to the sending DRPU, the

sender will go into hold. As the FIFO becomes empty the FIFO full signal is de-

asserted and the DRPU controller de-asserts the start-hold signal. 

5.3.6   Dedicated I/O

The input/output pins can be the limiting factor for some applications. We

designed the core of the architecture to run at lower levels of clock signal, then,

whenever an application requires a high throughput rate, the I/O pads must cope

Figure 5-6: A VHDL simulation of the start-hold mechanism of the DRPU
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with this rate by distributing (or collecting) data to (from) one or more destinations

(sources).

The DIO unit of the DRAW architecture is designed to provide either regis-

tered or un-registered input/output functionality. Additionally, the input/output

unit drives up to four destinations/sources global lines as shown in Figure 5-7. The

selection of the destination/source global lines is either done by the configuration

bits or by another DRPU. The DRPU that is the nearest to the DIO can be used to

select which global line is connected to the DIO.

5.3.7   Fast Dynamic Reconfiguration

To enable the DRPUs and SWBs to be quickly reconfigured, the configura-

tion bits are loaded in the configuration memory unit prior to the reconfiguration

process. This concept is similar to cashing the configuration bits before loading

them into the DRPU or the SWB. A closer look at configuration parts from Figure

5-2 is shown in Figure 5-8. The CMU holds up to four configuration sets. The CMU

is connected to four DRPUs. Each DRPU can read any one of the four configuration

bits available in the CMU.

The communication switching unit (CSU) collects eight (8-bit words) config-

uration bits stream and then loads this 64-bit configuration into the lower 64 bit

configuration register of the CMU. This process may be repeated until four config-

uration sets are loaded in the CMU. The CSU then receives control signals from

the Global Communication Unit (GCU) which selects one of the four configurations

residing in the CMU and also selects which DRPU is to be configured. The CSU
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complete the configuration process by loading the specified configuration set into

the targeted DRPU.

Figure 5-7: A block diagram of the dedicated I/O unit
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Figure 5-8: The configuration level structure for fast reconfiguration mechanism
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Chapter 6

Dynamically Reconfigurable 

Architecture Design

6.1   Introduction

The goal of this chapter is to describe the design and the development of the

DRAW architecture. The design of the DRAW architecture started by profiling the

five most demanding operations of the baseband unit of the wireless mobile termi-

nal. A description of the profiling steps will be presented. The hardware compo-

nents of the architecture are described in detail in this chapter.

6.2   Design Goals

Flexibility is the primary design goal for the architecture. Flexibility is the

ability of the architecture to execute a large number of functions from the wireless

applications. Designing for flexibility is a complicated task. A simplification of the

tasks is introduced by applying some limitations and assumptions. These assump-

tions will be declared when each unit design is described.
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A high computation rate is the second design goal. The wireless mobile

receiver requires a real time implementation. The design of the DRAW architec-

ture is considered together with the timing of the data received in the 3G system

standard.

Enabling the architecture to work with an IP-based mapping tool requires

the architecture to be regular. Regularity is exploited in the processing plane and

in the communication plane. 

Having a fast dynamic reconfiguration is expected to produce the success of

the architecture as an efficient implementation platform. The fast reconfiguration

mechanism must be implemented on the upper two levels of the architecture that

is on the processing and the communication planes.

6.3   Design Process Flow

Figure 6-1 shows the flow of the design process of the DRAW architecture.

The design process began by simulating in MATLAB the most demanding func-

tions the third generation receiver. This step involves reviewing in detail the 3GPP

standard. Based on the standard, I wrote a set of MATLAB functions to implement

the complete front-end receiver (see Appendix A). 

The 3GPP standards have been published in over 3,000 documents which

cover all aspects of the WCDMA system. The first step in reviewing the standard

is to locate only the documents that are related to the implementation of the

receiver. For the sake of simulating a complete communication system, the trans-
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mitter specifications are also needed, which requires locating the documents

related to the transmitter. The 3GPP standard documentation can be obtained

from the 3GPP web site www.3gpp.org.

MATLAB
simulation of the
receiver functions

Matlab code

Desin of the Dynamically
Reconfigurable Architecture

DRAW

VHDL funtional and timing
simulation

Final VHDL description of
DRAW

VHDL code

Synthesis
LeonardoSpec

 (Fujtisu CS71 0.25 Micron )

Mapping application onto
DRAW

Figure 6-1: Design flow process of the DRAW architecture
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The transmitter architecture that supports the 3GPP standard is shown in

Figure 6-2. According to the standard, the incoming user data bits are first aug-

mented with Cyclic Redundancy Check (CRC) bits. The CRC bits are added for the

purpose of error detection. The standard specifies four different polynomials for

the CRC checking:

 (6-1) 
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Figure 6-2: Block diagram of a transmitter which supports 3GPP standard
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 (6-2) 

 (6-3) 

 (6-4) 

Forward Error Correction (FEC) bits are then added. The FEC bits are

either generated by a convolutional or turbo encoder. Determining wether to use a

convolutional or turbo encoder depends upon the type of service that is required.

For example, for a high quality service with a BER of 10-6 a turbo coding is used

for the FEC. If a service requires a BER of 10-3 then a convolutional coding is used.

For the turbo encoder the standard specification are:

• A block length of 40 to 5114 bits long.

• A Parallel Concatenated Convolutional Code (PCCC) with an 8-state constitute 

encoder and an internal interleaver. 

• An unpunctured rate of 1/3 or a punctured rate of 1/2.

Whereas for a convolutional encoder the standard specifications are:

• The downlink’s convolutional encoder constraint length is K= 9 with rates of 1/2 or 1/3. 

• For the uplink K= 9 and rate = 1/3.

A block interleaver is then applied to the data to spread the burst errors

incurred in the communication channel. Orthogonal Variable Spreading Factor

(OVSF) codes specific to every channel are then used to spread the data. The OVSF

codes are a Walsh code that is generated from the Hadmard structure:
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 (6-5) 

 (6-6) 

The spreaded data is then scrambled with a Gold code that is specific to the

communication cell. The main advantage of using the scrambling code is that it

gives the receiver the ability to recover all the different paths of the same signal.

This is because the scrambling codes reduce the auto-correlation between the dif-

ferent time delayed versions of the transmitted signal. The scrambling codes are

specified in the 3GPP standard as follows:

• A Gold code segment of 38,400 chips long from a 218-1 chip long Gold code. The Gold 

code generator is shown in Figure 6-3

• 512 different scrambling codes. The 512 codes are grouped into 32 groups of 16 codes 

each in order to conduct faster cell search.

The data is then modulated by first shaping the data with a Root Raised

Cosine (RRC) filter that has a roll off factor of 0.22. The data is then modulated to

the carrier frequency and filtered by the baseband filter before being converted to

analog and sent to the RF unit.

A receiver block diagram that supports a 3GPP standard is shown in Figure

6-4. The demodulation is performed in a fashion similar to the modulation in the

transmission process. A Multi-path diversity RAKE receiver or other suitable

receiver structure with maximum combining is specified in the 3GPP standard. 

H0 1=

Hn

Hn 1– Hn 1–

Hn 1– Hn 1––
where n 1≥( )=
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Despreading of the received signal can be implemented using the despread-

ing circuit shown in Figure 6-5 [33]. In the 3GPP standard, data modulation is

QPSK in the downlink as seen in Table 2-3 in Chapter 2 on page 21. 

The multipath estimation block estimates two variables for every path in

the channel. The two variables are the delay and the value of the amplitude atten-

uation. Traditionally, the implementation of the multipath estimation unit is done

in two steps. First the candidate paths are located, then a Delay-Locked Loop

(DLL) is used to track the path. The first step in the implementation utilizes a slid-

ing correlators that calculates one delay tap power per dumping period. The more

parallel correlators are available, the faster the incoming data can be scanned.

Since this implementation requires the use of a DLL, a control unit is needed to

control the DLL to keep track of the paths. This makes the implementing of the

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I

Q

Figure 6-3: 3GPP downlink scrambling code generator
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multipath estimation undesirable. A better approach is to use a matched filter. The

matched filter correlates the incoming data with the user code in different delay

phases. Thus the matched filter gives a new tap value every dumping period. The

advantage of the matched filter over the DLL approach is the elimination of the

control unit that was needed for the DLL.

The target of a multipath combining unit is to combine different RAKE fin-

gers outputs into one signal with the SNR higher than that of the individual sig-

nals from the RAKE fingers. The Maximal Ratio Combiner (MRC) method provides

the best performance for this purpose. The MRC combines the different signals

according to their SNR. 

Figure 6-4: Block diagram of a receiver baseband which supports 3GPP standard
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The MATLAB implementation and simulation of the complete baseband

receiver is reported in [27]. A simulation of the RAKE receiver and the turbo

decoder are reported in [61] and [71] respectively.

A statistical profile of the function is extracted from the MATLAB simula-

tion. This profile contains information about the operation type, number of opera-

tions, interconnections, and I/O requirements of the most demanding functions.

Based on the MATLAB profiling and guided by the design goals, the archi-

tecture components in VHDL were designed (see Appendix B). The VHDL codes

generated are synthesizeable behavioral descriptions. Once a complete set of

VHDL codes were written, I ran a functional simulation. The synthesis was done

on the Leonardo Spectrum synthesis tool targeting Fujitsu CS71 standard cell

ASIC library. The Fujitsu CS71 is a five-metal layer 0.25  CMOS fabrication

process which offers up to 10 million gates per chip. In case the functional or the

timing simulation were not correct, the design was refined and re-simulated. The

next step was to map the targeted function of the receiver. If the required perfor-

mance of these functions is reached, then this would be the final version of the

architecture. Otherwise more refinement must be necessary until all of the

requirements are met.

6.4   Operation Profile

A description of the MATLAB simulation results of the most demanding

functions of the third generation receiver will be given in this section. The five

most demanding functions of the wireless mobile receiver are:

µm
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• FIR Filter

• RAKE receiver

• Maximal Ratio combining

• Turbo coder

• Searcher

A MATLAB code was written for each function (see Appendix A). An orga-

nizational diagram of the MATLAB simulation functions is shown in Figure 6-6.

The MATLAB code of all the functions on the figure are given in Appendix A. Sta-

tistical information regarding the number and type of operations, and the intercon-

nection information were extracted. 

The simulation of the MATLAB code was performed on one RF slot data.

Figure 6-7 Shows the layout of one slot of the WCDMA standard. One slot data was

used as the processing data for the MATLAB simulations. Figure 6-7 shows the

spreading factor is set to the minimum. In the 3GPP standard, the spreading factor

ranges from 4 to 512. For the highest data rate in a channel (maximum bits per

slot) the lowest spreaded is applied. In the simulation process, the highest data

rate communication channel is assumed. The data rate of the channel shown in

Figure 6-7 can be calculated as follows: the 3gpp standard states that a maximum

of 1,280 bits can be packed in one slot. One frame lasts for 10 ms. One frame is con-

structed from 15 slots. The data (1,280 bits) are spreaded by a user specific code

with a spreading gain of 4, i.e. each bit is multiplied by four chips of the user code.
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This results in 1280*4 = 5120 Chips per slot. So the data rate of the channel is 5120

Chips/slot * 15 slots / 10 ms =1.920 Mchip/s.

Figure 6-8 shows a count of the number of operations versus the operation

type in the five different applications. The assumption made for the RAKE, maxi-

mal ratio combining, searcher, and FIR filter is that they operate on the chip rate.

While the turbo decoder operate on the symbol rate. Additionally, the RAKE

receiver was assumed to operate with four fingers. 

Based on the statistics the ADD/SUB operation is the dominant operation.

RAKE receiver, MRC, and FIR algorithms are the ones that contribute to the large

number of ADD/SUB operations. Further understanding of the result would be

gained by summing every operation for all applications.

Figure 6-7: Slot structure of 3GPP standard for WCDMA
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Table 6-9 shows the percentage of each operation to the total number of

operations. As shown, ADD/SUB operations are approximately 70% of all the total

operations. Therefore, a fast and efficient implementation of ADD/SUB operations

is necessary. The memory and shift operations makes nearly 17% of the total oper-

ations. The memory operation covers the RAM and FIFO storage type, and the

shift operation covers the arithmetic and logicl shift operations. As a result, a RAM

unit must be implemented that can also be configured to act as a FIFO and a fast

barrel shifter that can be configured for arithmetic or logicl shift operations.

The design of the routing structure depends on the communication behavior

of the applications. The number of connections between nodes of the algorithms for
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all five applications was counted. The notation of 1 to 1 to represent one node con-

nected to one node, 1 to 2 was used to represent one node connecting to two nodes

and so on. Figure 6-10 shows the total number of interconnections versus the inter-

connection type. Figure 6-11 shows a percentage of the total number of intercon-

nections versus interconnection type. The figures show that the local connections

dominate in all the applications. This locality is also related to the granularity of

the execution elements, i.e. it is related to the size of the node. In this study the

node was selected to perform the same operation that can be performed by the
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DRPU. Selecting the node to be primitive will result in a large number of long

interconnection fan out.

6.5   Hardware Structure of the DRAW Architecture

This section presents detailed description of the hardware parts of the

DRAW architecture. The DRPU and its internal hardware design is presented

first. The structure of all the internal DRPU components are illustrated. The con-

figuration bits of the DRPU (and subsequently its internal components) are

explained afterword.
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6.5.1   Dynamically Reconfigurable Processing Unit (DRPU)

The DRPUs are the major hardware components of the DRAW architecture

for executing the arithmetic data operations. The DRPUs perform the required

coarse-grained (16-bit) integer operations. This is in contrast to the Configurable

Logic Blocks (CLBs) of commercially available fine-grained and general purpose

FPGA-chips, which operate on the one-bit level [6]. As shown in Figure 6-12 each

DRPU consists of the following components:

• One 16-bit Dynamically Reconfigurable Arithmetic Processing unit (DRAP), 

• One Configurable Spreading Data Path (CSDP),
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• One Configurable linear Feedback Shift Register (CLFSR),

• One DRPU controller, 

• One dual port RAM/FIFO, and

• Two I/O interfaces. 

The DRPU communicates with its nearest four neighbors through fast con-

nection lines. A one-bit control signal START/HOLD is exchanged between neigh-

boring DRPUs for control purposes. Each DRPU sends a DONE signal to its CSU

whenever it completes its required task.

Figure 6-13 shows the top level block symbol and the signal connections of

the DRPU. The synthesizeable VHDL code is provided in  Appendix B.

6.5.1.1  Dynamically Reconfigurable Arithmetic Processing unit 
(DRAP)

Each DRAP can perform all arithmetic 16-bit operations identified in the

above mentioned application of mobile communication systems. Table 6-1 is a list of

the supported operations by the DRAP unit.

The block diagram of the DRAP is shown in Figure 6-14. The DRAP can per-

form the typical arithmetic operations. The DRAP is equipped with a fast barrel

shifter (the VHDL code of the barrel shifter is shown in Appendix B on page 204),

and a comparison unit. The barrel shifter can perform logical or arithmetic shifts

and it can also be used as a typical shift register. The output of the DRAP is a 32

bit line. The output can be scaled down by the output interface.
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An example of the barrel shifter operations and configurations is shown in

Table 6-2. The configuration string is ordered as follows [Direction Rotate/Shift

Logical/Arithmetic Number_of_Shifts]. In the logical shift operation, the shifted

bits location is filled with value ‘0’, while in arithmetic shift operation the location

of the shifted bits is filled with the left or right most value depending on the shift-

ing direction. The value x in the configuration string bits is a “don’t care” logic

value.

CLFSR_OUT_1_LFT
CLFSR_OUT_1_RGT

DRPU_DONE
IN_E_RPU(DATA_PATH_WIDTH-1:0)
IN_N_RPU(DATA_PATH_WIDTH-1:0)
IN_S_RPU(DATA_PATH_WIDTH-1:0)

IN_W_RPU(DATA_PATH_WIDTH-1:0)
RPU_OUT_1_GBUS(DATA_PATH_WIDTH-1:0)
RPU_OUT_2_GBUS(DATA_PATH_WIDTH-1:0)

RPU_START_HOLD_E
RPU_START_HOLD_N
RPU_START_HOLD_S

RPU_START_HOLD_W

CARRY_IN_FROM_E
CARRY_IN_FROM_N
CARRY_IN_FROM_S
CARRY_IN_FROM_W
CLFSR_IN_1_LFT
CLFSR_IN_1_RHT
CLK
CONFIGURATION_BITS(DRPU_CONFIG_BITS_WIDTH-1:0)
GO_CONFIG
GO_HOLD
GO_RUN
GO_SLEEP
IN_FROM_E_RPU(DATA_PATH_WIDTH-1:0)
IN_FROM_N_RPU(DATA_PATH_WIDTH-1:0)
IN_FROM_S_RPU(DATA_PATH_WIDTH-1:0)
IN_FROM_W_RPU(DATA_PATH_WIDTH-1:0)
IN_G_1_BUS(DATA_PATH_WIDTH-1:0)
IN_G_2_BUS(DATA_PATH_WIDTH-1:0)
SRART_HOLD_FROM_E
SRART_HOLD_FROM_N
SRART_HOLD_FROM_S
SRART_HOLD_FROM_W
T_ENABLE
T_RESET

DRPU top level

Figure 6-13: Dynamically Reconfigurable Processing Unit (DRPU) top level symbol
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6.5.1.2  The DRPU Controller

The DRPU-controller is responsible for guiding all data manipulations and

transfers inside the DRPU. Moreover, the DRPU-controller performs together with

the CMU and its controller the fast dynamic reconfiguration of the DRPU. The

finite state machine diagram of the DRPU controller is shown in Figure 6-15. The

DRPU defaults to the RESET state at the start of the DRPU. From the Reset state

Figure 6-14: Dynamically Reconfigurable Arithmetic Processing Unit (DRAP)

ALU

1
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11

MAX/MIN
12
13
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4

5
6

7
8

DRAP_X_IDRAP_Y_I

DRAP_OUT

0      1      22      1      0

0      1      2

Booth
Decoder

14 to 22

2 3 41

1 Shift direction of the right barrel-shifter

2 Number of shifts of the right barrel-shifter

3 Shift direction of the left barrel-shifter

4 Number of shifts of the left barrel-shifter
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the DRPU is either configured in the CONFIG state or sent to a sleeping mode in

the SLEEP state. The DRPU is loaded with new configuration bits when the FSM

is in the CONFIG state. After completing the loading of a new configuration bits,

the FSM starts the execution of the configured operation in the RUN state. If the

GO_HOLD signal is asserted by another DRPU through the Start-Hold mecha-

nism, then the FSM goes to the HOLD state until the GO_HOLD is de-asserted.

Since the DRAP is designed with its own controller, and since the other compo-

CRNT_STATE

RESET

HOLD

CONFIG

SLEEP

GO_CONFIG ='1'

RESET_CTROL ='1'

DRPU_FULL_CONFIG_BITS< =( others =>' 0' );

ENABLE_DRPU< ='0';
DISABLE_CLK< ='0'; -- Clock is ENABLED

CONFIGURED< ='0';

DRPU_FULL_CONFIG_BITS< =( others =>' 0' );

ENABLE_DRPU< ='0';
DISABLE_CLK< ='0'; -- Clock is ENABLED

CONFIGURED< ='0';

-- Add here any signal you want to keep it

-- active as long you are in this stste

RESET_DRPU< ='1';

DRPU_DONE< ='0';
RAM_RD< ='0';

RAM_WR< ='0';

DRPU_START_HOLD< ='0';

DRPU_DONE< ='0';

-- Add here any signal you want to keep it

-- active as long you are in this stste

RESET_DRPU< ='1';

DRPU_DONE< ='0';
RAM_RD< ='0';

RAM_WR< ='0';

DRPU_START_HOLD< ='0';

DRPU_DONE< ='0';

GO_SLEEP ='1'

GO_HOLD ='1' GO_HOLD ='1'

GO_HOLD ='0'

GO_SLEEP ='1'

GO_SLEEP ='0

-- Befor exit this state set configured to 1
CONFIGURED< ='1';

ENABLE_DRPU< ='1';

-- Befor exit this state set configured to 1
CONFIGURED< ='1';

ENABLE_DRPU< ='1';

CONFIGURED< ='0';CONFIGURED< ='0';

GO_RUN ='1'

GO_RUN ='0'

DRPU_FULL_CONFIG_BITS< = CONFIGURATION_BITS;DRPU_FULL_CONFIG_BITS< = CONFIGURATION_BITS;

ENABLE_DRPU< ='0';ENABLE_DRPU< ='0';

RESET_DRPU< ='1';RESET_DRPU< ='1';

DISABLE_CLK< ='0';DISABLE_CLK< ='0';

ENABLE_DRPU< ='1';ENABLE_DRPU< ='1';

ENABLE_DRPU < ='0';

DISABLE_CLK< ='1';

ENABLE_DRPU < ='0';

DISABLE_CLK< ='1';

RESET_DRPU< ='0';

DRPU_DONE< ='0';

DISABLE_CLK< ='0'; -- Clock is ENABLED

RESET_DRPU< ='0';

DRPU_DONE< ='0';

DISABLE_CLK< ='0'; -- Clock is ENABLED

RUN

Figure 6-15: FSM diagram of the DRPU controller
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nents in the DRPU requires minimal control, the RUN state task is to only control

the RAM/FIFO and implement the Start-Hold mechanism.

Table 6-1. A list of DRAP operations

# Operation Description

1 MUL 2’s complement multiplication

2 ADD 2’s complement addition

3 SUB 2’s complement subtraction

4 SHIFT Logic & arithmetic shift

5 AND Bit-wise AND

6 NAND Bit-wise NAND

7 OR Bit-wise OR

8 NOR Bit-wise NOR

9 XOR Bit-wise XOR

10 XNOR Bit-wise XNOR

11 NOT Bit-wise NOT

12 MAX Maximum

13 MIN Minimum

Table 6-2. An example of the barrel shifter operation.

Input vector Operation Configuration Output Vector

[1001101001001011] Rotate right by 7 bits [1 0 x 111] [1001011100110100]

[1001101001001011] Rotate left by 3 bits [0 0 x 011] [1101001001011100]

[1101101101100011] Shift Right Logical by 5 bits [1 1 0 101] [0000011011011011]

[1101101101100011] Shift left Logical by 4 bits [0 1 0 100] [1011011000110000]

[1001101001110100] Shift Right Arithmetic by 2 bits [1 1 1 010] [1110011010011101]

[1001101001110100] Shift left Arithmetic by 6 bits [1 1 1 110] [1001110100000000]
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6.5.1.3  The RAM/FIFO Unit

The 8 words by 16-bit dual port RAM within each DRPU can be used as a

look-up-table (LUT). The RAM/FIFO can be used as normal memory or if necessary

it can be used as a first-in/first-out (FIFO) memory, e.g., for buffering intermediate

results.

The block diagram of the RAM/FIFO unit along with its signal interface is

shown in Figure 6-16. When the RAM/FIFO unit is configured as a FIFO it follows

the FIFO behavior as shown in Figure 6-17.

6.5.1.4  The Configurable Spreading Data Path (CSDP)

The Configurable Spreading Data Path (CSDP) unit (refer to Figure 6-12) is

implemented in every DRPU. It performs fast executions of CDMA-based spread-

ing tasks. The unit can be either used with the two adders in the DRPU to perform

a complex correlation function found in QPSK modulation, or it can perform one-

or two-channel normal correlations, as found in the Binary Phase Shift Keying

Figure 6-16: A block diagram of the RAM/FIFO unit showing its signal interface

RAM/FIFO Unit

CLEAR
CLK

ENABLE
Configuration

ADRS A
ADRS B

RW
RD

DATA A
DATA B

OUT A

OUT B

FIFO_FULL
FIFO EMPTY
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(BPSK) modulation [70]. It is mainly designed to perform a complex correlation

operation for QPSK-schemes on 8-bit data words with serial codes (e.g. PN-codes)

for any number of iterations N. The CSDP can also be utilized in many other func-

tions, e.g., despreading, synchronization, etc. The inputs to the unit can come from

outside the DRPU or from the local memory.

ENABLE

Configure RAM/
FIFO to a FIFO

function

NO

New
DATA?

YES

NO

START

Write the data at
the bottom to

Port B

Hold From
Receiving DRPU?

YES

NO

Is FIFO
Full?

IS FIFO
Empty NO

YES

YES
Assert

Output Hold
signal to hold

sending
DRPU

De-assert  Output
Hold signal to hold

sending DRPU

Read new data
word through

port A and
store it at the

top of the FIFO

YES

NO

New
Configuration?

WRITE Cycle

READ Cycle

Figure 6-17: FIFO control flow diagram
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6.5.1.5  DRPU I/O interfaces. 

The routing of the signals in, out and inside the DRPU is organized by a set of

interfaces. At the input there is the DRPU input interface. Table 6-3 lists the input

possible configurations of the DRPU input interface for the data lines. While

Table 6-3. Configuration table of the DRPU input interface 

Configuration 
Number DRPU_IN_1 DRPU_IN_2 DRPU_IN_3 CARY_1 CARY_2

0 N S W N S

1 N S E N S

2 N S G1 N S

3 N S G2 N S

4 N W E N W

5 N W G1 N W

6 N W G2 N W

7 N E G1 N E

8 N E G2 N E

9 N G1 G2 N E

10 S W E S W

11 S W G1 S W

12 S W G2 S W

13 S E G1 S E

14 S E G2 S E

15 S G1 G2 S S

16 W E G1 W E

17 W E G2 W E

18 W G1 G2 W W

19 E G1 G2 E E
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Figure 6-18 illustrates the way by which an input data line are selected by the

interface. The selection of the data lines and carry signals for the DRAP is illus-

trated as an example. As shown in the figure, the process of selecting the data lines

to be fed to the DRAP is done at two levels. At the input interface the data lines

are reduced to three out of six and the carry signals are reduced to two lines out of

four. Then at the DRAP interface two data lines are selected out of the three lines

and one carry line is selected out of the two carry lines. 

6.5.2   Fast Inter-DRPU local and Global Communication 
Mechanism

Each DRPU is locally connected to its four neighbors (North, East, South,

and West) through an 8-bit fast direct connection line. It can be connected to the

global lines through a SRAM-based switching box, as shown in Figure 6-19. 

The global interconnect lines are implemented with two 16-bit lines, which

run to the neighboring SWBs. As shown in Figure 6-20 each global line coming

from one direction can be routed to any of the other directions. Each SWB consists

of 20 switching-points implemented by 20 SRAM-controlled pass transistors. All

combinations of these one-line connections are possible as long as there is no

resource conflict.

6.5.3   DRPU Configuration Bits

One complete DRPU configuration word consists of 64 bits. The organiza-

tion of such configuration bits is shown in Table 6-4.
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NOTE: All the data lines are of 16 bit
width while cary lines are 1 bit width

Local connection lines from
the neighboring DRPUs Global connection lines

G1
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Input interface data signal selection
Configuration Bits from
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R
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DRAP Unit

NORTH
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NORTH

SOUTH

WEST
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From
The
RAM

From
The
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From
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Figure 6-18: Input and DRAP interfaces selection diagram of the data lines
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The configuration bits are transmitted during configuration from the global

communication unit to the CSU in 8 bytes. This method is selected to reduce the

number of lines required to distribute the configuration throughout the architec-

ture.

Figure 6-19: DRPU Communication structure
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Figure 6-20: A connection topology for the SWB: (a) Complete connection lines. (b) 
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The configuration bits of the DRPU can be organized in many ways. A struc-

ture that groups the configuration bits into two minor groups was chosen for the

design. The configuration bit set of one DRPU is shown in Figure 6-21. Also shown

in the figure is the expansion of the configuration of the output interface. The first

part of the configuration bits contains the configuration bits for the routing paths

inside the DRPU, i.e. the configuration of the interfaces of the DRPUs internal

components. The second group contains the configuration bits for the operations of

the DRPU. This layout was selected since for any application mapped to the archi-

tecture, there is either more dynamics in routing over operation or vice versa. Such

scheme will reduce the amount of configuration bits to be moved between the

DRPU and the CSU. This reduction is accomplished by observing the behavior of

the application mapped to the architecture, and then updating either the routing

bits or the operation bits depending on the need to update.

Table 6-4. DRPU configuration bits structure

Unit Name Number of Bits Configuration Bits

Input Interface 5 0 to 4

Output Interface 12 5 to 16

DRAP Interface 5 17 to 21

RAM_FIFO Interface 6 22 to 27

CLFSR Interface 2 28 to 29

CSDP Interface 3 30 to 32

RAP Operations 22 33 to 54

RAM_FIFO Operations 1 55 

CLFSR Operations 8 56 to 63

TOTAL BITS 64 0 to 63
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Figure 6-21: The configuration bits structure of one DRPU (the configuration of the 

output interface is detailed as an example)
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6.6   Area and Performance Figures

The complete DRPU architecture was synthesized using a Fujitsu CS71

standard cell ASIC library. The Fujitsu CS71 is 0.25  CMOS technology with up

to 5 metal layers. The synthesis was done using Leonardo Spectrum synthesis tool.

Figure 6-22 shows the output of the synthesis tool for the DRPU. This schematic

can be converted into a physical VLSI layout diagram in the future for the purpose

of fabrication. The synthesis timing and area reports are summarized next.

µm

Figure 6-22: The schematic diagram of the synthesized DRPU using Leonardo 

Spectrum
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An area requirement of one DRPU of the design is shown in Table 6-5. Table

6-6 shows the area consumed by one unit design. One unit design is unit of the

architecture that when repeated a certain number of times can create the complete

architecture. The unit design consists of one DRPU, one fourth of the CMU, four

Table 6-5. Area consumed by each component of the DRPU

Unit Number of gates Area in Microns square

CLFSR 913 41,998

DRAP 2,767 127,282

DRAP Interface 401 18,446

RAM_FIFO Interface 296 13,616

RAM_FIFO 3,182 146,372

INPUT Interface 738 33,948

OUTPUT Interface 2,328 107,088

DRPU Controller 723 33,258

CSDP 1,121 51,566

TOTAL Area of DRPU 12,469 573,574

Table 6-6. Area consumed by one unit design

Unit Number of gates Area in Microns square

DRPU 12,469 573,574

CMU/4 4353/4 = 1089 50,094

DIO 109 5,014

CSU 1597 73,462

SWB 1239 56,994

TOTAL area of design unit 16,503 759,138
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and half SWB, and one DIO. Assuming a chip area of   based on MOSIS

0.25 available technologies for research, we can have up to 159 units of design.

With this estimation, a 10X10 array of DRPUs can be easily fabricated on the chip.

The preliminary performance numbers of the architecture are presented

based on the timing simulation after synthesis. The synthesis was done with the

maximum optimization for area and speed. The longest delay of all of the compo-

nents is 11.36 ns of the DRAP unit. This was expected since the DRAP is the arith-

metic engine of the DRPU. This time delay corresponds to a maximum clock of the

DRAP 88.0 MHz. As a result the system clock was set to 60 MHz to take in the par-

asitic effects.

Based on the system clock of 60 Mhz the performance of the different oper-

ations in the DRPU are listed in Table 6-7

Table 6-7. Performance of the different operations of the DRPU

# Operation Number of cycles Operation rate

1 Multiplication 3 20 Mops

2 Addition/Subtraction 1 60 Mops

3 Barrel Shifting 1 60 Mops

4 Logical (AND,OR,NOT) 1 60 Mops

5 MAC 3 20 Mops

6 Scaling 1 60 Mops

11 11× mm
2
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Chapter 7

Mapping Examples

7.1   Introduction

The mapping of an application into DRAW involves the complete under-

standing of the architecture’s built-in capabilities. It also requires the understand-

ing of the application to be mapped on the algorithmic level, and the ability to

modify the algorithm to take advantage of the architecture’s built-in features. The

architecture is designed to be simple to model for the sake of automating the map-

ping process. The simplicity comes from the regularity of the architecture in addi-

tion to its simple routing structure. This chapter will present some examples of the

mapping process for two applications: a gold code generator and a finite impulse

response (FIR) filter. These two applications dominate the hardware of the base-

band processing unit. 

A symbolic representation of the DRPU suitable for a mapping description

is shown inFigure 7-1. An example of the use of the DRPU symbolic representation

showing the DRPU configured into different operations and connections is shown

in Figure 7-2.
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7.2   Mapping Gold-Code Generator

Different types of codes are used in the baseband processing unit. Most of

the codes are forms of Pseudorandom Noise (PN) codes. PN codes can be generated

Figure 7-1: Symbolic representation of the DRPU to show the general configuration
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using one or more linear feedback shift registers. M-sequence codes are simple PN

codes. M-sequence codes of a length of 2N-1 can be generated using a linear feed-

back shift register of length N based on prime polynomial order N as shown in

Figure 7-3. Gold codes are generated by XOR-ing two M-sequences. This section

shows the mapping of a three-stage M-sequence generator onto a single DRPU. By

combining two 5-stages M-sequence generator while XOR-ing their outputs one

gets a Gold code generator. The codes are generated in a one-bit stream. The code

is then grouped in a 16-bit word and sent to the output of the code generation unit.

This example shows how generations of other codes can be easily done by altering

the configurations of the configurable linear feedback shift register units. 

3

S=2, D=0

3
Mul

N, W

OUTPUT Code

EXAMPLE: Configuration of a DRPU

The input interface is configured to select
the 1st Global line, the North DRPU output,
and the West DRPU output.

The CLFSR is utilized as 3 stages LFSR.
The output of the CLFSR is routed to the
next CLFSR in the right DRPU neighbor.

The DRAP is configured to do a
Multiplication operation.

The output Interface is configured to scale
the results by 2 right shifts and no delay.

The other components of the DRPU are not
used in this example.

Figure 7-2: An example of the use of the DRPU symbolic representation
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7.2.1   M-sequence Generator Using One DRPU

Figure 7-4 shows a MATLAB code fragment of a general M-sequence code

generator. It was used to generate a simple seven chips long M-sequence code of

the polynomial 1+X2 which is represented as [1 0 1] in MATLAB. The generated

code is shown in Figure 7-4.

Figure 7-3: N-stages linear feedback shift register

Figure 7-5: A symbolic representation of one DRPU configured as a three-stage 
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Figure 7-4: Matlab code fragment of M-sequence generator

%M-sequence spreading code generator

function [M_code, reg_state]=Mgen(poly_vector, num_chips, 
inti_loading)

%M_code is the generated M-sequence code of length num_chip

%reg_state returned the last loading of the reg.

%poly_vector is the characteristic polynomial. For example 
[1 0 1 1] represent the polynomial 1+x^2+x^3.

%inti_loading must not be all zeros.

reg_state=inti_loading;

for i=1:num_chips

   temp_reg=poly_vector.*reg_state; 

mul=mul+length(temp_reg);

   temp_xor=temp_reg(length(poly_vector)); 

for j=length(poly_vector)-1:-1:1

      temp_xor=xor(temp_reg(j),temp_xor); 

   end

         %temp_xor=rem(sum(temp_reg),2);

         fed_bit=temp_xor;  

         M_code(i)= not(reg_state(3));

         reg_state=[fed_bit, reg_state(1:length(poly_vector)-
1) ];

    

      end

MCODE= Mgen([1 0 1],10,[1 1 1])

MCODE = 0     0     0     1     0     1     1     0     0     0
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This simple code generator can be mapped onto one DRPU. The CLFSR can

be configured to map three stages LFSR as shown symbolically in Figure 7-5.

Figure 7-6 shows the output of the CLFSR when configured as a three-stage linear

feedback shift register. As seen in the figure, the code lasts for seven cycles and

then repeats again. As expected, the output code matches the Matlab generated

code.

7.2.2   M-sequence Generator Using Two DRPUs (5-Stage 
LFSR)

Based on three-stage code generator, five stage LFSR that spans over two

DRPUs is designed. The five stages are divided into two parts with two and three

stages respectively. The first part will be mapped onto the CLFSR of the first

DRPU. The CLFSR will be configured as two stages and at the same time as the

left segment of a LFSR. That means the CLFSR is connected to its neighboring

DRPU which is mapping the second three stages part. 

Figure 7-6: CLFSR output for a three-stage M-sequence with polynomial 1+X2 
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Figure 7-7 shows the symbolic representation of the final mapping of the

five-stage M-sequence code. Note that the output is driven through the output

interface without delay or scaling. 

Figure 7-8 shows the Matlab output of the M-gen function for the five-stage

LFSR implementing the polynomial 1+x+x2+x4+x5. When mapping this polynomial

into DRAW, the polynomial is first partitioned into two parts to fit into two

DRPUs. The first part that is mapped into DRPU1 is 1+x+x2 and the second part

is x4+x5. The second part is normalized to 1+x4. Figure 7-9 shows the output of the

five-stage LFSR mapped onto two DRPUs. As can be seen the generated code

matches the code generated from the Matlab simulation.

7.2.3   Gold code Generator

Gold codes are widely used in the WCDMA receiver as scrambling codes.

The M-sequence is generated by a LFSR as shown in the previous section. In this

section two M-sequence generators were concatenated by XOR-ing their outputs.

Figure 7-7: The symbolic representation of two DRPU configured as a five-stage 

LFSR

32

OUTPUT Code
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Figure 7-8: Matlab output of the M-gen function generated for the polynomial 

1+x+x2+x4+x5 

>> Mgen([1 1 0 1 1],31)

ans =

  Columns 1 through 22 

     0     0     0     0     0     1     0     0     1     1     
0     0     0     1     1     1     1     0     0     1     0     1

 Columns 23 through 31 

     0     1     1     0     1     1     1     0     1

Figure 7-9: The output of an M-sequence generator for the polynomial 

1+x+x2+x4+x5 mapped onto two DRPUs
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The hardware mapping of the gold code generator costs five DRPUs. Four DRPUs

are used to generate the two M-sequences, the fifth DRPU is performing the XOR

operation. The symbolic representation of such mapping is shown in Figure 7-10.

The Matlab code that simulates the Gold code generation is shown in Figure 7-11.

A simulation of the hardware mapping results is shown in Figure 7-12. These two

figures show that the generated codes are identical. 

Implementation of the Gold code generator onto a Xilinx Virtex chip is a

function of number of taps. Table 7-1 shows a comparison between DRAW and

Virtex implementation. Note that for Virtex as the number of taps increases more

Virtex slices are required. Although this is true for DRAW, the coarse datapath (16

bits) of DRAW and the fast local connections between DRPUs eliminate the need

Figure 7-10: Symbolic representation of Gold code generator mapped onto five 

DRPUs
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for global routing lines. More routing overhead is incurred in Virtex as the number

of taps increases due to the fine-grain PEs of the Virtex architecture. 

Figure 7-11: MATLAB Code of Gold code generator function and the output run 

for the two polynomials 1+x2+x5 and 1+x+x2+x4+x5 

MATLAB Code of Gold code gen

function [OUT_CODE]=GOLD_SEQ(LENGTH, POLY_1, POLY_2)

%We will use the mgen function

%function [M_code, reg_state]=Mgen(poly_vector, num_chips)

CODE1=Mgen(POLY_1,LENGTH)

CODE2=Mgen(POLY_2,LENGTH)

OUT_CODE=xor(CODE1,CODE2)

>> GOLD_SEQ(31,[0 1 0 0 1],[1 1 0 1 1])

ans =

 Columns 1 through 20 

     0     0     0     0     0     0     1     0     1     0     
0     1     1     1     0     0     0     1     0     0

 Columns 21 through 31 

     0     0     0     1     1     1     1     1     0     1     0
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7.3   Mapping an FIR filter

Finite Impulse Response filters are essential in the baseband processing.

FIR filters are implemented using multipliers, adders, and delay elements. Figure

7-13 shows a typical implementation of the FIR filter. In this structure, the incom-

ing data passes through a tapped delay line. The data symbols are multiplied by

the filter coefficients before adding the results in every cycle to generate the output

Table 7-1. Implementation cost of 8-stages 4 taps on DRAW and Virtex 

DRAW Virtex

Number of PEs 3 DRPUs 6.5 Slices (3.25 
CLBs)

Number of Global Routing 
lines Required 0 3 lines

Number of Clock cycles to 
Reconfigure 2 over 30

Figure 7-12: The output of the mapped Gold code generator onto five DRPUs
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filtered data. An alternative implementation structure is shown in Figure 7-14.

This structure is called the FIR transposed form. In this structure the input data

is applied to all the taps in parallel. The output of each tap is added to the previous

tap. A one delay unit is needed between one tap and the other.

This structure (Figure 7-14) is very compatible with the structure of the

DRAW. The parallel application of data to all taps can be easily done through the

use of global lines that extended through the chip length. The adder in every DRPU

passes the carry signal to the neighboring DRPU. This eliminates the need for

extra routing of the results.

Figure 7-13: Typical implementation of FIR filter

Z-1 Z-1Z-1Z-1Z-1

C0 C1 C2 C3 C4

Y output

X input

Tapped
Delay Line

Coefficient
Constant
Multipliers
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Figure 7-15 is a Matlab code for a transposed FIR filter structure. A four tap

example was simulated using the Matlab FIR function. The output for a stream of

data is shown at the bottom of Figure 7-15. 

The same FIR structure is mapped onto six DRPUs and symbolically shown

in Figure 7-16. The simulation waveform of the mapped FIR onto six DRPUs is

shown in Figure 7-17. 

Based on the above mapping examples, the mapping process requires a

detailed knowledge of the application algorithm and the DRAW resources. Since

DRAW is designed for 3G and future mobile wireless applications, the complexity

and size of the algorithms is expected to grow. Hence, the mapping process needs

to be automated. Automating the mapping step will speed up the implementation

and provide more than one implementation strategies for each algorithm. This is

left for future research.

Figure 7-14: Transposed FIR filter implementation
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Figure 7-15: A Matlab code of an FIR filter

fu n c t io n  [ Y] = F I R (X , L , H)

Y( 1 ) = 0;

TT _ A D D= [ 0  0 0  0 ] ;

X_ r e g =z e r o s( 1 , L ) ;

fo r  i =1 : l e ng t h ( X )

    f or  j = 1: l e n g th ( H ) ;

        X _ re g ( j ) =X ( i ) ;

    e nd ;

    T T= X _ r eg . * H ;

    T T_ S H I FT = [ 0  TT _ A D D( 1 : L -1 ) ] ;

    T T_ A D D =T T + T T _S H I F T;

    

    Y (i + 1 ) =T T _ A D D( 4 ) ;

   

en d ;

>>  F I R( [ 1  2 3  4  5 6  7  8  9  10  1 1  12  1 3  1 4 ] , 4, [ 4  3  2  1 ] )

an s  =

     0      1     4     1 0     20     3 0     4 0     5 0    60     7 0     
80     9 0    1 0 0    1 1 0    1 2 0
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Figure 7-16: Symbolic representation of the mapping of 4-taps FIR filter onto 
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Figure 7-17: Simulation waveform of a four-tap FIR filter mapped onto six DRPUs
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Chapter 8

Conclusion and Recommendations

8.1   Conclusion

The result of this work was the development of a dynamically reconfig-

urable architecture specially designed and tailored toward the third generation

wireless mobile systems. The architecture can be integrated with other compo-

nents to form a configurable block in a system on a chip solution. The dynamic and

fast reconfiguration of the architecture and it’s highly parallel execution makes the

dynamically reconfigurable architecture a promising solution for the future wire-

less mobile systems.

The dynamic configurable computing capability of the architecture has

many advantages. A smaller physical size is possible as is a longer battery life

since the needed applications are mapped to the architecture only when they are

required. 

The dynamic configuration process is extremely fast compared to the com-

mercial FPGAs. The processing element can be configured/reconfigured in one

clock cycle, i.e. 12 ns. This was accomplished by storing four configuration contexts

(configuration bit set) next to the processing element. The four configuration con-
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texts are cached while the processing element is running. This is accomplished by

dedicating a routing bus network and not relying on the data routing network to

transfer the configuration bits. One configuration set of the processing element is

64-bits long. It is partitioned into two sections of 32-bits each. The first part holds

the configuration for the internal routing of the signal in the processing element.

The second part holds the configuration of the operations of the internal compo-

nents of the processing element. The configuration bits are routed in 8-bit seg-

ments. The 8-bit routing lines reduce the area requirement of the configuration

routing network. The segmenting of the configuration set eliminates the need to

transmit a complete configuration set if the new configuration set is similar to the

previous configuration set.

The architecture is built around fast execution processing elements. The

processing elements are repeated in a regular fashion to create a regular array pro-

cessing structure. This regular structure is the ideal target for an IP-based method

that will be developed later. The processing element contains a special ALU/Mul-

tiplier, dictated processing units for wireless applications, and a configurable stor-

age component. The ALU is specifically designed to provide fast addition and

subtraction operations, since these two operations dominate 70% of the total oper-

ations the baseband processing unit of the wireless application. A fast modified

barrel shifter is available in the ALU. The modified barrel shifter is capable of

rotating, logical shifts, and arithmetic shifts. A Booth multiplication procedure is

then added to the ALU to provide the processing element with multiplication capa-

bility. The processing element contains special processing units. These special

units are a configurable linear feedback shift register, and a configurable spread-
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ing data path. Implementing spreading/de-spreading, and code generation on a 16-

bit ALU is a waste of resources. The two special components (CSDP and CLFSR)

can efficiently implement such operations.

The implementation of the wireless mobile baseband unit requires the use

of FIFO and RAM as storage elements. The processing unit has a configurable com-

ponent that can be utilized as an FIFO or RAM.

Scaling and delaying the output signal during the execution time is neces-

sary. The output of the processing element is a configurable scaling and delay unit.

The unit can be configured to delay and/or scale the output signal or pass the signal

without any delay. The amount of scale and delay are either provided by the con-

figuration bits or can come from other active processing elements. The calculation

of the delay and/or scale values by other running processing elements facilitate the

requirement of a dynamic delaying and/or scaling.

The architecture is completely designed and documented in synthesizeable

VHDL code. The architecture was synthesized using an 0.25  standard cell ASIC

library. The performance of the synthesized architecture is sufficient to run the

most demanding applications of the third generation mobile receiver. As an exam-

ple, a turbo decoder which is compliant to the 3GPP standard was designed and

mapped onto DRAW [71].

µm
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8.2   Recommendations for Future Work

Manual mapping is a limiting point to the ability to run many applications

on the architecture. The manual method is long, difficult, and not optimized. A

CAD tool that would automate the mapping process would be very useful. 

As the area of dynamic reconfigurable computing matures, a need to design

a dynamic reconfigurable architecture for each area of application will arise.

Thereby providing a strong motivation to automate the generation of the specifica-

tion of such architecture for each area. 

When designing the architecture for the wireless mobile systems, power is

of primary importance. Further optimization of the architecture is required to

reduce the power consumption even further. Designing for power methodology is

the next logical step in this project. 

The architecture can be an ideal prototyping platform (especially in an aca-

demic community) for the wireless application in particular and for all communi-

cation systems in general. For that purpose, the architecture needs to be fabricated

and integrated with other components as a PCI board. This will create an imple-

mentation bed for classroom experiments and research.
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Appendix A

WCDMA Matlab Codes

This appendix contains parts of the MATLAB codes used to simulate the

UMTS WCDMA wireless mobile system. The results of simulation are then used to

design the DRAW architecture. 

The complete set of codes are available at the following web address, pass-

word is granted upon request. ftp://www.ent.ohiou.edu/webcad/DRAW/

matlab_codes/

1   Data Generation.

The purpose of this function is to generate binary data from a text or an

image. The text is first converted to its binary ASCII code. The binary data is then

segmented to fit one radio transmission frame. A spreading, filtering and QPSK

modulation are then performed on the data stream.

clear;

%read a text

fid=fopen('text.txt','rt');

Txt=fscanf(fid,'%c');

fclose(fid);
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%Convert txt to binary;

TL=length(Txt);

WW=txt2bin(Txt) ;

%Flip S so that the first data bit is in the right most position 

%S=fliplr(S);

MM=bin2txt(WW);   

%Convert to 1,-1 values.

%y=-2*x+1

%x=(y-1)/-2

S=-2*WW+1;

check=bin2txt((S-1)/-2);

%the K parameter determines how many bits are in one frame:

%num_bits_per_frame=10*2^K.

%the Spreading factor SF is related to K as: SF=512/2^K.

%Select spreading factor: min=4 (K=7 ==> Data rate is max=1920kbps)  

%max=512 (k=0 ==> data rate is min=15kbps)

%let us select a Walsh code of length 4 for max data rate.

SF=4;

%generate a Walsh code.

wlsh_code=wlsh_gen(4,2);

wlsh_code=wlsh_code*(-2)+1;

%According to 3GPP standards, one slot (10ms/15 = .666ms) layout is as 
follows:

% |--Data1--|--TPC--|--TFCI--|--Data2--|--pilot--|

% |  248    |   8   |   8    |   1000  |    16   |

%total bits =1280, SF=4 ==>num_chips=1280*4=5120chips/slot

%channel rate is 1280*15slot=1920 kbps

%to form a slot then a frame we need to break our data stream into

%%284-1000-284-1000... corresponding to Data1 and Data2.

%the other parts (TPC,TFCI,Pilot) of the slot will be filled with random 

%binary values for the time being.

S=S(1:18720);

%construct the frame

j=1;

un_spd_FRAME=[];slot=[];

for i=1:15
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   slot=[S(j:j+247),any_bits(8), any_bits(8),S(j+248:j+1247), 
any_bits(16)];

j=j+1248;

un_spd_FRAME=[un_spd_FRAME,slot];

end

%split the data to I and Q, then spread, conjugate the Q branch. and 
then add.

I_brnch=[];

Q_brnch=[];

for i=1:2:19199

   I_brnch=[I_brnch,un_spd_FRAME(i)];

   Q_brnch=[Q_brnch,un_spd_FRAME(i+1)];

end

%SF=4 ==>num_chips=1280*15*4=76800chips/slot

%Spread the data;

spd_I=wlsh_code'*I_brnch; %(4*1)*(1*19200/2)=4*19200/2.=4*9600 matrix

spd_Q=wlsh_code'*Q_brnch;

%reshape the data to a stream of bits

[M,N]=size(spd_I);

L=M*N;

spd_I=reshape(spd_I,1,L); % (4*9600)=38400 chips long array 

spd_Q=reshape(spd_Q,1,L); % 

%Multiply Q branch by j.

spd_Q=spd_Q*-1;

%Scramble the frame by multiplying with a cell specific down link

%Scrambling code of length 38400. Let us select code number 500

[I_code,Q_code]=dl_sc_code(500);

%change it to bipolar;

I_code=I_code*(-2)+1;

Q_code=Q_code*(-2)+1;

sc_I_brnch=spd_I.*I_code;

sc_Q_brnch=spd_Q.*Q_code;

%create the final stream by complex addition. i.e. create a stream of 
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%38400 symbols, each symbol is 2bits (I+jQ);

sc_frame=[];

for i=1:2:38400

   sc_frame(i)=sc_I_brnch(i);

   sc_frame(i+1)=sc_Q_brnch(i);

end;

   

%QPSK modulation:

%Filter the I and Q branches. RRC Filter.

%[NUM_s, DEN_s] = RCOSINE(1, 4, 'sqrt',  0.22);

I_Fltd=(RCOSFLT(sc_I_brnch, 1, 4, 'sqrt', 0.22))'; %Array was 38400, 
four times 

Q_Fltd=(RCOSFLT(sc_Q_brnch, 1, 4, 'sqrt', 0.22))';% up sampled = 153600 
chips.

%check point

check2=(RCOSFLT(I_Fltd, 1, 4, 'sqrt', 0.22))'; 

check2=[check2, zeros(1,8)];

check3=reshape(check2,16,length(check2)/16);

check4=sum(check3(:,:));

%their is a delay of 3 chips in the filter by default so

check5=check4(4:length(check4));

%change back to -1 1 format so

check6=round(check5);

check7=check6./(abs(check6));

if (check7(1:38397)==sc_I_brnch(1:38397))

    fprintf('correct');

end;

%end check point.

%multiply by the sin and cos of the carrier freq. fo=2050Mhz.

%38400 chips per 10 ms frame. So the data rate is 3.84Mcps.

%chip duration is 10ms/38400.  t=0 to 10ms. step 10/38400ms.

%t=0:(10e-3/153599):10e-3;

%save temp.mat I_Fltd Q_Fltd;

%clear;

%load temp.mat;

%>> t=0:3e-14:4.608e-9;

%>> y=cos(2*pi*2000e6*t);

%>> plot(t,y)
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%one complete wave at this freq 2050e6

% takes 1/20.5e6 in 10msec. and we must over sample by 4. 

%in addition we need to evaluate the multiplication only at >> 
t1=0:(10e-1/(4*2050e5)):10e-3;

t1=0:3e-14:4.608e-9;

t=t1(1:153600);         

I_Fltd=I_Fltd(1:153600);

Q_Fltd=Q_Fltd(1:153600);

I_mod=I_Fltd.*(cos(2*pi*2050e6*t));

Q_mod=Q_Fltd.*(-sin(2*pi*2050e6*t));

%feed the frame bits into the channel.

[chi,chq]= CHNL(I_mod,Q_mod,4,5);

2   Code Generation

The following functions generate different types of codes which are needed

in the transmission and receiving of the data.

%DL Scrambling code Generator

%there are 2^18-1=262,143 codes. not all of them are used.

%generated code length is 38400 chips.

%input is the code number n, which correspond to Primary code when

%n=16*i i=0,...511. and to a secondary code when n=16*i+k k=1...15

%so only 8191 codes are used, of those 512 are primary (codes number 

%0,16,32,48,64,...8176) and 7679 secondary codes (codes number 1,2,3

%,4,..15,17,18,...31,33,34,...8191).

%note: these are scrambling codes not synchronization codes.

function [INFO,I_code,Q_code]=dl_sc_code(n)

%if n>8191

 %  fprintf('generated code is an alternative code n> 8191 \n')

%end

   

%if (rem(n,16)==0&n<8191)

 %  fprintf('code is Primary \n');

%else if (rem(n,16)~=0&n<8191)
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 %  fprintf('code is secondary \n');

%end

%end

%x M seq shift reg x(1)=1 others x(i)=0 i=2,..18.

%y Mseq shift reg y(i)=1

for i=1:18

   x(i)=0;

   y(i)=1;

end

x(1)=1;

for j=1:3840   

x_fed_back_bit=rem((x(1)+x(8)),2);

y_fed_back_bit=rem((y(1)+y(6)+y(8)+y(11)),2);

Q_y=rem((sum(y(9:16))+y(5)+y(6)),2);

Q_x=rem((x(5)+x(7)+x(16)),2);

I_code(j)=xor(x(1),y(1));

Q_code(j)=xor(Q_y,Q_x);

x=[x(2:18),x_fed_back_bit];

y=[y(2:18),y_fed_back_bit];

end

-----------------------

-----------------------

%Primary Sync Code.

% this is a fixed code for all the system, and of length 256 chips. 

function [INFO,PSC_I,PSC_Q]=pri_sync_code

a=[0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 ]; 

PSC_I=[a a a not(a) not(a) a not(a) not(a) a a a not(a) a not(a) a a ];

PSC_Q=PSC_I;
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-----------------------

-----------------------

%Spreading Code generator, code type M-seq.

function [M_code]=Mgen(poly_vector, num_chips)

%M_code is the generated M code of length num_chip

%reg_state returns the last loading of the reg, so we can continue gen-
rating the code later.

%poly_vector is the characteristic Polynomial, [1 0 1 1] is 1+x^2+x^3.

%inti_loading must not be all zeros.

reg_state=ones(1,length(poly_vector))

for i=1:num_chips

   temp_reg=poly_vector.*reg_state;               

   temp_xor=temp_reg(length(poly_vector))                     

   for j=length(poly_vector)-1:-1:1

      temp_xor=xor(temp_reg(j),temp_xor)            

   end

         

         fed_bit=temp_xor 

         M_code(i)= not(reg_state(length(poly_vector)))

         reg_state=[fed_bit, reg_state(1:length(poly_vector)-1) ]

    

      end

------------------

-------------------

%Code Allocation of SSC.

%this function will produce the group of SSC code to be mapped to one 
frame

%based on the selected group. see 3GPP 25-213

%input Group number (1-64), output a 15 SSCs each of length 256. in a 
frame of 

%length 38400 chips, i.e. each code fall in the first 256 of each slot 

%(2560 chip long).the remaining of the slot is filled with zeros.

function [INFO,SSCs_frame]=ssc_group_frame(group_num)

   

GRPS=[  

1 1 2 8 9 10 15 8 10 16 2 7
15 7 16;

1 1 5 16 7 3 14 16 3 10 5 12
14 12 10;
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1 2 1 15 5 5 12 16 6 11 2 16
11 15 12;

1 2 3 1 8 6 5 2 5 8 4 4
6 3 7;

1 2 16 6 6 11 15 5 12 1 15 12
16 11 2;

1 3 4 7 4 1 5 5 3 6 2 8
7 6 8;

1 4 11 3 4 10 9 2 11 2 10 12
12 9 3;

1 5 6 6 14 9 10 2 13 9 2 5
14 1 13;

1 6 10 10 4 11 7 13 16 11 13 6
4 1 16;

1 6 13 2 14 2 6 5 5 13 10 9
1 14 10;

1 7 8 5 7 2 4 3 8 3 2 6
6 4 5;

1 7 10 9 16 7 9 15 1 8 16 8
15 2 2;

1 8 12 9 9 4 13 16 5 1 13 5
12 4 8;

1 8 14 10 14 1 15 15 8 5 11 4
10 5 4;

1 9 2 15 15 16 10 7 8 1 10 8
2 16 9;

1 9 15 6 16 2 13 14 10 11 7 4
5 12 3;

1 10 9 11 15 7 6 4 16 5 2 12
13 3 14;

1 11 14 4 13 2 9 10 12 16 8 5
3 15 6;

1 12 12 13 14 7 2 8 14 2 1 13
11 8 11;

1 12 15 5 4 14 3 16 7 8 6 2
10 11 13;

1 15 4 3 7 6 10 13 12 5 14 16
8 2 11;

1 16 3 12 11 9 13 5 8 2 14 7
4 10 15;

2 2 5 10 16 11 3 10 11 8 5 13
3 13 8;

2 2 12 3 15 5 8 3 5 14 12 9
8 9 14;

2 3 6 16 12 16 3 13 13 6 7 9
2 12 7;

2 3 8 2 9 15 14 3 14 9 5 5
15 8 12;
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2 4 7 9 5 4 9 11 2 14 5 14
11 16 16;

2 4 13 12 12 7 15 10 5 2 15 5
13 7 4;

2 5 9 9 3 12 8 14 15 12 14 5
3 2 15;

2 5 11 7 2 11 9 4 16 7 16 9
14 14 4;

2 6 2 13 3 3 12 9 7 16 6 9
16 13 12;

2 6 9 7 7 16 13 3 12 2 13 12
9 16 6;

2 7 12 15 2 12 4 10 13 15 13 4
5 5 10;

2 7 14 16 5 9 2 9 16 11 11 5
7 4 14;

2 8 5 12 5 2 14 14 8 15 3 9
12 15 9;

2 9 13 4 2 13 8 11 6 4 6 8
15 15 11;

2 10 3 2 13 16 8 10 8 13 11 11
16 3 5;

2 11 15 3 11 6 14 10 15 10 6 7
7 14 3;

2 16 4 5 16 14 7 11 4 11 14 9
9 7 5;

3 3 4 6 11 12 13 6 12 14 4 5
13 5 14;

3 3 6 5 16 9 15 5 9 10 6 4
15 4 10;

3 4 5 14 4 6 12 13 5 13 6 11
11 12 14;

3 4 9 16 10 4 16 15 3 5 10 5
15 6 6;

3 4 16 10 5 10 4 9 9 16 15 6
3 5 15;

3 5 12 11 14 5 11 13 3 6 14 6
13 4 4;

3 6 4 10 6 5 9 15 4 15 5 16
16 9 10;

3 7 8 8 16 11 12 4 15 11 4 7
16 3 15;

3 7 16 11 4 15 3 15 11 12 12 4
7 8 16;

3 8 7 15 4 8 15 12 3 16 4 16
12 11 11;

3 8 15 4 16 4 8 7 7 15 12 11
3 16 12;
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3 10 10 15 16 5 4 6 16 4 3 15
9 6 9;

3 13 11 5 4 12 4 11 6 6 5 3
14 13 12;

3 14 7 9 14 10 13 8 7 8 10 4
4 13 9;

5 5 8 14 16 13 6 14 13 7 8 15
6 15 7;

5 6 11 7 10 8 5 8 7 12 12 10
6 9 11;

5 6 13 8 13 5 7 7 6 16 14 15
8 16 15;

5 7 9 10 7 11 6 12 9 12 11 8
8 6 10;

5 9 6 8 10 9 8 12 5 11 10 11
12 7 7;

5 10 10 12 8 11 9 7 8 9 5 12
6 7 6;

5 10 12 6 5 12 8 9 7 6 7 8
11 11 9;

5 13 15 15 14 8 6 7 16 8 7 13
14 5 16;

9 10 13 10 11 15 15 9 16 12 14 13
16 14 11;

9 11 12 15 12 9 13 13 11 14 10 16
15 14 16;

9 12 10 15 13 14 9 14 15 11 11 13
12 16 10;];

for j=1:2304

   Z(j)=0;

   end

ssc_frame=[];

for i=1:15

   [null,temp]=sec_sync_code(GRPS(group_num,i));

   ssc_frame=[ssc_frame, temp,Z];

end

-----------------------

------------------------

%Walsh code generator

%code_length is also called the SF.

function [INFO,wlsh_code]=wlsh_gen (code_length,code_num)
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H=[0];

for i=1:log2(code_length)

   H=[H H; H not(H)];

end

wlsh_code=H(code_num,:);

---------------------

-----------------------

3   RAKE Receiver

function [INFO,Y]=sRAKE(X,PN,num_fings, intg_prd)

%spread and integrate

%X is the data victor. X length is a intg_prd * frame length. 

%so that when we integrate over the period intg_prd we get one frame.

Y=[];

out=[];

for i=1:num_fings

   out(i,:)=X.*PN;

PN=[0, PN(1:length(PN)-1)];

temp1=1;

temp2=intg_prd;

   for j=1:(length(X)/intg_prd)

      Y(i,j)=sum(out(i,temp1:temp2)); 

      temp1=temp2+1; 

      temp2=temp2+intg_prd;

             

   end;

end;

--------------------

--------------------
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4   Searcher

function [INFO,LOC]=sercher(X,PN)

%search the input sequence for a match of the PN code segment. when a 
match is found

%the function return the location of the first bit of the code.

%EXAMPLE:

X=-2*round(rand(1,200))+1; PN=X(23:87);

XD=[X,X]; 

PEAK=[];

LN=length(PN); %assuming that PN is shorter than X

thr=90/100*LN;  %if 90% of the PN matches X then it is a peak.

for i=1:length(X)

    i;

    Peak=sum(XD(i:LN+i-1).*PN); 

    if Peak > thr

        PEAK=[PEAK, Peak];

    end;

end;

        

LOC=PEAK;

5   Channel Estimation

function [INFO,delay, 
peak_value]=Coars_CH_EST(Data,SC_CODE,Num_of_paths,T_PRCNT,Window_wid
th)

Data=round(rand(1,38400/400))*(-2)+1;

%SC_CODE=dl_sc_code(floor(rand*100));

load dl_scCODE; 

SC_CODE=SCCODE;

%truncate the code to the required length

SC_CODE=SC_CODE(1:38400/400); ;

SC_CODE=SC_CODE*(-2)+1; 
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Num_of_paths=3;

T_PRCNT=30; 

window_width=38400/400; 

%Spread the data

Data_sent=SC_CODE.*Data; 

%generate the paths

Data_path=[];Data_all_paths=zeros(1,196);delay_locations=[];Data_spre
ad_noise=[];

for k=1:Num_of_paths

    delay=floor(100*rand); 

    delay_locations=[delay_locations, delay]; 

    Data_path=[(((round(rand(1,delay)))*(-2))+1) ,  Data_sent , 
(((round(rand(1,100-delay)))*(-2))+1)];

    %Add AWGN

    Noise=zeros(1,196);%round(rand(1,100+(38400/400))); 

    div=div+1;

    Data_spread_noise=Data_path+Noise; 

    

    %Create Data matrix

    Data_all_paths=[Data_all_paths ; Data_spread_noise];

end;

%Add the paths to gather (At the receiver)

Received_Data=sum(Data_all_paths(:,:));

Peaks=[];Data_spread=[Data_sent, (round(rand(1,100))*(-2)+1)]; 

for j=1:96

    Corr=Data_spread.*Received_Data; 

    Sum_Corr=sum(Corr(j:j+95)); 

    Peaks=[Peaks, Sum_Corr]; 

    %Shift Data_spread

    Data_spread=[(((round(rand(1,j)))*(-2))+1) , Data_sent, 
(((round(rand(1,100-j)))*(-2))+1)];

end;

  %stem(Peaks);  
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6   Maximal Ratio Combining

function [INFO,R]=m_r_comp(X_mlty_paths,num_fings)

%X_mlty_paths is the matrix containing the multipaths signals.

%number of rows must equal number of fingers. it is equivalent to the 
output

% of sRAKE function Y.

%R recovered signal.

R=[];

power=ones(num_fings,length(X_mlty_paths(1,:)));

for i=1:num_fings

   power(i)=sum(X_mlty_paths(i,:).*X_mlty_paths(i,:));

end

for i=1:num_fings

   X_mlty_paths(i,:)=X_mlty_paths(i,:)*power(i)/max(power); 

end

R=sign(sum(X_mlty_paths));
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Appendix B

DRAW Architecture VHDL Codes

This appendix contains parts of the VHDL codes of the DRAW architecture.

All the codes are synthesizesable. The first part of this appendix contains the

DRPU top level code which shows the entities of all the components inside the

DRPU. The second section contains the entities of the other components outside

the DRPU. These components are: the Communication and Switching Unit (CSU),

the Configuration Memory Unit (CMU), the Dedicated I/O (DIO), and the Switch-

ing Box (SWB) model.

The complete set of codes are available at the following web address, pass-

word is granted upon request. ftp://www.ent.ohiou.edu/webcad/DRAW/vhdl_codes/

1   DRPU Top Level

---------------------------------------------------------------

---------------------------------------------------------------

--

--  Project            : DRAW

--  File name          : DRPU_TOP_LEVEL.vhd

--  Title              : The Dynamically Reconfigurable Processing 
Unit (DRPU)

--  Description        : The processing unit of the DRAW architecture
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--                     : 

--  Design Libray      : 

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------

--   Revisions   :

-- Date Author  Revision         Comments

-- 4/15/02  A. Alsolaim   Rev 0            

--                         

---------------------------------------------------------------------

--------------------------------------------------------------------- 

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;  

entity DRPU_TOP_LEVEL is 

generic ( DRPU_CONFIG_BITS_WIDTH: integer:=64; 

DATA_PATH_WIDTH: integer:=16; RAM_ADRS_WIDTH: integer:= 3 
);

port (

-- Global inputs

-- Configuration bits input port is shown under "inputs from 
CSU"

CLK: in std_logic;

 CARRY_IN_FROM_E:in std_logic;

CARRY_IN_FROM_N:in std_logic;

CARRY_IN_FROM_S:in std_logic;

CARRY_IN_FROM_W:in std_logic;

SRART_HOLD_FROM_E: in std_logic; 

SRART_HOLD_FROM_N: in std_logic;

SRART_HOLD_FROM_S: in std_logic;

SRART_HOLD_FROM_W: in std_logic; 

--Data lines from global communication channels

IN_G_1_BUS: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');
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IN_G_2_BUS: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

-- Data lines from neighboring RPU

IN_FROM_E_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

IN_FROM_N_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

IN_FROM_S_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

IN_FROM_W_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

--- End inputs to inface 

-- External direct Inputs and outputs to/from CLFSR

CLFSR_IN_1_LFT: in std_logic;

CLFSR_IN_1_RHT: in std_logic;

CLFSR_OUT_1_LFT:out std_logic;

CLFSR_OUT_1_RGT: out std_logic;

--END inputs/outputs to CLFR  

-- Inputs/outputs from/to the CSU (to the DRPU controller)

CONFIGURATION_BITS: in STD_LOGIC_VECTOR 
(DRPU_CONFIG_BITS_WIDTH-1 downto 0):=(others=>'0');

GO_CONFIG: in STD_LOGIC;

GO_HOLD: in STD_LOGIC;

GO_RUN: in STD_LOGIC;

GO_SLEEP: in STD_LOGIC;

 DRPU_DONE: out STD_LOGIC;

-- outputs from the OUTINFACE 

RPU_OUT_1_GBUS : out std_logic_vector ( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

RPU_OUT_2_GBUS : out std_logic_vector ( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); 

IN_E_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_N_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_S_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_W_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

RPU_START_HOLD_E: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_N: out std_logic; --'1' start, '0' hold
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RPU_START_HOLD_S: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_W: out std_logic --'1' start, '0' hold 

);

end DRPU_TOP_LEVEL;

Architecture BEHAV of DRPU_TOP_LEVEL is

-- Configuration layout table:

--Unit Name Number of BitsConfiguration Bits 

--

--Input Interface5 0 to 4

--Output Interface12 5 to 16

--DRAP Interface5 17 to 21

--RAM_FIFO Interface6 22 to 27

--CLFSR Interface2 28 to 29

--CSDP Interface3 30 to 32

--RAP Operations22 33 to 54

--RAM_FIFO Operations1 55 

--CLFSR Operations8 56 to 63

--TOTAL BITS 64 0 to 63 

Component  AND_GATE 

port (

I_IN0 : in STD_LOGIC;

I_IN1 : in STD_LOGIC;

O_OUT : out STD_LOGIC

);

end component;

component CLFSR  

Generic(CLFSR_CONFIG_BITS_WIDTH: integer :=8;DATA_PATH_WIDTH: 
integer:=16);

port(

CLFSR_CLK: in std_logic; --Clock  

CLFSR_CLR: in std_logic; --Clear

CLFSR_ENABLE: in std_logic; -- Enable 

CLFSR_CONFIG_BITS: in 
std_logic_vector(CLFSR_CONFIG_BITS_WIDTH-1 downto 0);

CLFSR_IN_16: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

CLFSR_IN_1_LFT: in std_logic;

CLFSR_IN_1_RHT: in std_logic;
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CLFSR_OUT_16: out  std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

CLFSR_OUT_1_LFT:out std_logic;

CLFSR_OUT_1_RGT: out std_logic;

NEW_DATA_ARVD_FROM_CLFSR: out std_logic

);

end component;

component CLFSR_INFACE  

generic (CLFSR_INFACE_CONFIG_BITS_WIDTH: integer:=2;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

CLFSR_INFACE_CONFIG_BITS: in std_logic_vector 
(CLFSR_INFACE_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

-- data Out lines. PN code in 16 bits word every 16 cycles

CLFSR_INPUT: out std_logic_vector(DATA_PATH_WIDTH-1 downto 
0) 

);

end component;   

component SPRD_INFACE  

generic (SPRD_INTR_FC_CONFIG_BITS_WIDTH: integer:=3;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);
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RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

SPRD_INTR_FC_CONFIG_BITS: in std_logic_vector 
(SPRD_INTR_FC_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

-- data Out lines, Data, and PN

SPRD_DATA: out std_logic_vector(DATA_PATH_WIDTH-1 downto 
0); 

SPRD_PN: out std_logic_vector(DATA_PATH_WIDTH-1 downto 0)

);

end component;

component SPRD_UNIT 

generic(DATA_PATH_WIDTH : integer:=16);

port (

SPRD_CLK : in STD_LOGIC;  --Clock  

SPRD_ENABLE : in STD_LOGIC;  --Enable 

SPRD_RESET: in std_logic;

DATA_IN : in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 0);

PN1: in std_logic_vector (DATA_PATH_WIDTH-1 downto 0); --
PN1 is converted inside the CSDP

--unit to serial stream PN1_SRL.

SPRD_OUT : out STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0)

);

end component ;

component  IN_FACE 

generic (IN_FACE_CONFIG_BITS_WIDTH: integer:=5;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

--Control signals

IN_FACE_CONFIG_BITS: in 
std_logic_vector(IN_FACE_CONFIG_BITS_WIDTH-1 downto 0);

INFACE_RESET: in std_logic;  --Active high
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CLK: in std_logic;

CARRY_IN_FROM_N:in std_logic;

CARRY_IN_FROM_S:in std_logic;

CARRY_IN_FROM_E:in std_logic;

CARRY_IN_FROM_W:in std_logic;

SRART_HOLD_FROM_N: in std_logic; 

SRART_HOLD_FROM_S: in std_logic;

SRART_HOLD_FROM_W: in std_logic;

SRART_HOLD_FROM_E: in std_logic; 

--Data lines from global communication channels

IN_G_1_BUS: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

IN_G_2_BUS: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

-- Data lines from neighboring RPU

IN_N_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

IN_S_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

IN_W_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

IN_E_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

--Done signals from neighboring RPU to local control

RPU_START_HOLD_FROM_X: out std_logic_vector(3 downto 0); -
-START from NSWE respectively 

RPU_CARRY_IN_1:out std_logic;

RPU_CARRY_IN_2:out std_logic;

-- Data lines selected from neighboring RPU and global going 
to the RAPS

RPU_IN_FACE_1: inout std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); --changed to inout to enable the new_data process to read 
them.

RPU_IN_FACE_2: inout std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: inout std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

NEW_DATA_ARVD_1: out std_logic:='0';
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NEW_DATA_ARVD_2: out std_logic:='0';

NEW_DATA_ARVD_3: out std_logic:='0'

);

end component; 

component  OUT_FACE 

generic ( OUT_FACE_CONFIG_BITS_WIDTH: integer:=12;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

--Control signals

TO_OTHER_RPU_START :in std_logic;

OUT_FACE_CLK:in std_logic;

RAP_1_OUT : in std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

RAM_A_OUT : in std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

-- RAM_1_B_OUT : in 
std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

--FROM CLFSR and CSDP

CLFSR_OUT_16: in  std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

SPRD_OUT : in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 0) 
;

--line directly from input

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

-- Configuration bits;

OUT_FACE_CONFIG_BITS: in 
std_logic_vector(OUT_FACE_CONFIG_BITS_WIDTH-1 downto 0);

-------------------------- OUTPUT SIGNALS ---------------

RPU_OUT_1_GBUS : out std_logic_vector ( DATA_PATH_WIDTH-1 
downto 0);

RPU_OUT_2_GBUS : out std_logic_vector ( DATA_PATH_WIDTH-1 
downto 0); 
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IN_N_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

IN_S_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

IN_W_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

IN_E_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

RPU_START_HOLD_E: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_W: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_N: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_S: out std_logic --'1' start, '0' hold 

);

end component; 

component  RAP_INTR_FC

generic (RAP_INTR_FC_CONFIG_BITS_WIDTH: integer:=5;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

RPU_CARRY_IN_1:in std_logic;

RPU_CARRY_IN_2:in std_logic;

-- data lines from the RAP

FROM_RAP: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

-- data lines from RAMs

FROM_RAM_A: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0); 

--data from SPRD unit



174

SPRD_OUT : in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0);

RAP_INTR_FC_CONFIG_BITS: in std_logic_vector 
(RAP_INTR_FC_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

-- data lines, X, and Y

RAP_X_IN: out std_logic_vector(DATA_PATH_WIDTH-1 downto 0); 

RAP_Y_IN: out std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

RAP_CRY_IN: out std_logic

);

end component;

component RAM_FIFO 

generic (DATA_PATH_WIDTH     :natural := 16 
;RAM_CONFIG_BITS_WIDTH: integer :=1;--RAM width

RAM_ADRS_WIDTH  :natural := 3--RAM depth = 
2^RAM_ADRS_WIDTH.

);

port ( 

RAM_A_IN : in std_logic_vector (DATA_PATH_WIDTH-1 downto 
0); 

--RAM_B_IN : in std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

RAM_A_ADRS: in std_logic_vector (RAM_ADRS_WIDTH-1 downto 
0);

RAM_B_ADRS : in std_logic_vector (RAM_ADRS_WIDTH-1 downto 
0); -- Port B is only used for reading.

RAM_WR: in std_logic;-- 0 no op, 1 write. --Port A 

RAM_RD: in std_logic;-- 0 no op, 1 READ.   --Port A 

RAM_ENABLE: in std_logic;  -- synchronous, '1' enabled. 

RAM_CLEAR: in std_logic; -- synchronous Clear 

RAM_CONFIG_BITS:instd_logic:='0'; 

--'0' for RAM behavior and 

-- '1' for FIFO behavior  

RAM_CLK: in std_logic; 

FROM_RAM_FIFO_FULL: out std_logic; --'1' for full

FROM_RAM_FIFO_EMPTY: out std_logic; --'1' for empty

FROM_RAM_A_OUT :out std_logic_vector (DATA_PATH_WIDTH-1 
downto 0)
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-- FROM_RAM_B_OUT :out std_logic_vector 
(DATA_PATH_WIDTH-1 downto 0)

);

end component;

component  RAM_FIFO_FACE 

generic (RAM_FIFO_FACE_CONFIG_BITS_WIDTH: integer:=6;

DATA_PATH_WIDTH: integer:=16; RAM_ADRS_WIDTH:integer:=3);

port (

---------------- INPUT SIGNALS-----------------------

RAM_FIFO_INFACE_CLK:in std_logic;

--Data lines from RAP

RAP_OUT: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

-- Data from the CLFSR

CLFSR_OUT_16: in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0);

NEW_DATA_ARVD_1: in std_logic;

NEW_DATA_ARVD_2: in std_logic;

NEW_DATA_ARVD_3: in std_logic;

NEW_DATA_ARVD_FROM_RAP: in std_logic; -- the Done_runing 
signal out of the RAP

NEW_DATA_ARVD_FROM_CLFSR: in std_logic;

--configuration bits

RAM_FACE_CONFIG_BITS: in 
std_logic_vector(RAM_FIFO_FACE_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

--CLK to the RAM

--Data and ADRS signal to RAM

RAM_A_IN : out std_logic_vector (DATA_PATH_WIDTH-1 downto 
0) ; 

RAM_A_ADRS_OUT: out std_logic_vector (RAM_ADRS_WIDTH-1 
downto 0);

RAM_B_ADRS_OUT: out std_logic_vector (RAM_ADRS_WIDTH-1 
downto 0);
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NEW_DATA_ARVD_2RAM: out std_logic

);

end component; 

component RPU_CTRL_NEW 

port (

CONFIGURATION_BITS: in STD_LOGIC_VECTOR (63 downto 0);

CTRL_CLK: in STD_LOGIC;

FROM_RAM_FIFO_EMPTY: in STD_LOGIC;

FROM_RAM_FIFO_FULL: in STD_LOGIC;

GO_CONFIG: in STD_LOGIC;

GO_HOLD: in STD_LOGIC;

GO_RUN: in STD_LOGIC;

GO_SLEEP: in STD_LOGIC;

NEW_DATA_ARVD_2RAM: in STD_LOGIC;

RESET_CTROL: in STD_LOGIC;

RPU_START_HOLD_FROM_X: in STD_LOGIC_VECTOR (3 downto 0);

DISABLE_CLK: out STD_LOGIC;

DRPU_DONE: out STD_LOGIC;

DRPU_FULL_CONFIG_BITS: out STD_LOGIC_VECTOR (63 downto 0);

DRPU_START_HOLD: out STD_LOGIC;

ENABLE_DRPU: out STD_LOGIC;

RAM_RD: out STD_LOGIC;

RAM_WR: out STD_LOGIC;

RESET_DRPU: out STD_LOGIC;

START_NEXT_DRPU: out STD_LOGIC

);

end component ;

component  RAP16 

generic ( RAP_CONFIG_BITS_WIDTH: integer:=22; 

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

RAP_CLK: in std_logic; --Active high

RAP_ENABLE: in std_logic; --Active high

RAP_RESET: in std_logic;  --Active high

RAP_CONFIG_BITS: in std_logic_vector( 
RAP_CONFIG_BITS_WIDTH -1 downto 0);
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RAP_X_IN: in std_logic_vector (DATA_PATH_WIDTH -1 downto 
0);

RAP_Y_IN: in std_logic_vector (DATA_PATH_WIDTH -1 downto 
0); 

RAP_CRY_IN: in std_logic;

RAP_CARY_OUT : out std_logic;

RAP_OVR_FLW : out std_logic;

RAP_DONE_RUNING: out std_logic;--'1' done, '0' Running

RAP_OUT: out std_logic_vector (DATA_PATH_WIDTH -1 downto 0)

);

end component;

signal DRPU_CLK: std_logic;

signal DRPU_ENABLE:  std_logic;

signal DRPU_RESET:  std_logic;

signal RPU_START_HOLD_FROM_X:  std_logic_vector(3 downto 0); 

signal RPU_CARRY_IN_FROM_N: std_logic;

signal RPU_CARRY_IN_FROM_S: std_logic;

signal RPU_CARRY_IN_FROM_E: std_logic;

signal RPU_CARRY_IN_FROM_W: std_logic;

signal RPU_IN_FACE_1:  std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

signal RPU_IN_FACE_2:  std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

signal RPU_IN_FACE_3:  std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

signal NEW_DATA_ARVD_1:  std_logic:='0';

signal NEW_DATA_ARVD_2:  std_logic:='0';

signal NEW_DATA_ARVD_3:  std_logic:='0';

signal CLFSR_IN_16:  std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

signal CLFSR_OUT_16:   std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

signal NEW_DATA_ARVD_FROM_CLFSR:  std_logic;

signal FROM_RAP:  std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

signal FROM_RAM_A:  std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

signal SPRD_OUT :  STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 0);

signal RAP_X_IN:  std_logic_vector(DATA_PATH_WIDTH-1 downto 0); 

signal RAP_Y_IN:  std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

signal RAP_CARY_OUT :  std_logic;

signal RAP_OVR_FLW :  std_logic;

signal RAP_DONE_RUNING:  std_logic;--'1' done, '0' Running

signal RAP_OUT:  std_logic_vector (DATA_PATH_WIDTH -1 downto 0);

signal RPU_CARRY_IN_1: std_logic;

signal RPU_CARRY_IN_2: std_logic;
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signal RAP_CRY_IN: std_logic;

signal SPRD_DATA:  std_logic_vector(DATA_PATH_WIDTH-1 downto 0); 

signal SPRD_PN:  std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

signal RAM_A_IN :  std_logic_vector (DATA_PATH_WIDTH-1 downto 0) ; 

signal RAM_A_ADRS_OUT:  std_logic_vector (RAM_ADRS_WIDTH-1 downto 0);

signal RAM_B_ADRS_OUT:  std_logic_vector (RAM_ADRS_WIDTH-1 downto 0);

signal NEW_DATA_ARVD_2RAM:  std_logic;

signal RAM_WR:  std_logic;-- 0 no op, 1 write. --Port A 

signal RAM_RD:  std_logic;-- 0 no op, 1 READ.   --Port A 

signal RAM_ENABLE:  std_logic;  -- synchronous, '1' enabled. 

signal RAM_CLEAR:  std_logic; -- synchronous Clear 

signal RAM_CONFIG_BITS:std_logic:='0'; 

signal FROM_RAM_FIFO_FULL:  std_logic; --'1' for full

signal FROM_RAM_FIFO_EMPTY:  std_logic; --'1' for empty

signal FROM_RAM_A_OUT : std_logic_vector (DATA_PATH_WIDTH-1 downto 0);

signal DISABLE_CLK:  STD_LOGIC;

signal DRPU_FULL_CONFIG_BITS:  STD_LOGIC_VECTOR (63 downto 0);

signal DRPU_START_HOLD:  STD_LOGIC;

signal START_NEXT_DRPU:  STD_LOGIC;

begin  

U0_AND_GATE: AND_GATE 

port map (

I_IN0  =>DISABLE_CLK ,

I_IN1  => CLK,

O_OUT => DRPU_CLK

);  

U1_INPUT_INTERFACE:   IN_FACE 

port map (

---------------- INPUT SIGNALS-----------------------

--Control signals

IN_FACE_CONFIG_BITS => CONFIGURATION_BITS(4 downto 0)  ,

INFACE_RESET => DRPU_RESET,  --Active high

CLK => DRPU_CLK,

CARRY_IN_FROM_N=>CARRY_IN_FROM_N ,

CARRY_IN_FROM_S=> CARRY_IN_FROM_S,

CARRY_IN_FROM_E=> CARRY_IN_FROM_E,

CARRY_IN_FROM_W=> CARRY_IN_FROM_W,
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SRART_HOLD_FROM_N=> SRART_HOLD_FROM_N,

SRART_HOLD_FROM_S=>SRART_HOLD_FROM_S ,

SRART_HOLD_FROM_W=>SRART_HOLD_FROM_W,

SRART_HOLD_FROM_E=>SRART_HOLD_FROM_E, 

--Data lines from global communication channels

IN_G_1_BUS=>IN_G_1_BUS ,

IN_G_2_BUS=> IN_G_2_BUS,

-- Data lines from neighboring RPU

IN_N_RPU=>IN_FROM_N_RPU,

IN_S_RPU=>IN_FROM_S_RPU,

IN_W_RPU=>IN_FROM_W_RPU ,

IN_E_RPU=>IN_FROM_E_RPU ,

---------------- OUTPUT SIGNALS----------------------- 

--Done signals from neighboring RPU to local control

RPU_START_HOLD_FROM_X=>RPU_START_HOLD_FROM_X,  -- to be connected 
to the controller

RPU_CARRY_IN_1 => RPU_CARRY_IN_1,

RPU_CARRY_IN_2 => RPU_CARRY_IN_2,

-- Data lines selected from neighboring RPU and global going to 
the RAPS

RPU_IN_FACE_1=>RPU_IN_FACE_1, --changed to inout to enable the 
new_data process to read them.

RPU_IN_FACE_2=>RPU_IN_FACE_2,

RPU_IN_FACE_3=>RPU_IN_FACE_3, 

NEW_DATA_ARVD_1=>NEW_DATA_ARVD_1,

NEW_DATA_ARVD_2=>NEW_DATA_ARVD_2,

NEW_DATA_ARVD_3=>NEW_DATA_ARVD_3 

);

 U2_CLFSR: CLFSR_INFACE  

port map (
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-- data lines from the RPU IN_FACE

RPU_IN_FACE_1 => RPU_IN_FACE_1,

RPU_IN_FACE_2 => RPU_IN_FACE_2,

RPU_IN_FACE_3 => RPU_IN_FACE_3 ,

CLFSR_INFACE_CONFIG_BITS => CONFIGURATION_BITS(29 downto 
28)  ,

---------------- OUTPUT SIGNALS----------------------- 

-- data Out lines. 

CLFSR_INPUT =>CLFSR_IN_16

);

 

   

U3_CLFSR: CLFSR  

-- Generic map(CLFSR_CONFIG_BITS_WIDTH: integer :=8;
DATA_PATH_WIDTH: integer:=16);

port map(

CLFSR_CLK=>DRPU_CLK , --Clock  

CLFSR_CLR => T_RESET, --DRPU_RESET, --Clear

CLFSR_ENABLE => T_ENABLE, -- DRPU_ENABLE , -- Enable 

CLFSR_CONFIG_BITS => CONFIGURATION_BITS(63 downto 56)  ,

CLFSR_IN_16 => CLFSR_IN_16,   -- from clfsr inface

CLFSR_IN_1_LFT =>CLFSR_IN_1_LFT, 

CLFSR_IN_1_RHT =>  CLFSR_IN_1_RHT ,

CLFSR_OUT_16 =>CLFSR_OUT_16 ,--to RAM

CLFSR_OUT_1_LFT => CLFSR_OUT_1_LFT,

CLFSR_OUT_1_RGT => CLFSR_OUT_1_RGT,

NEW_DATA_ARVD_FROM_CLFSR  => NEW_DATA_ARVD_FROM_CLFSR    -- to con-
troll unit

);

U4_RAP_INFACE: RAP_INTR_FC

port map(

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1 =>RPU_IN_FACE_1 ,
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RPU_IN_FACE_2 => RPU_IN_FACE_2,

RPU_IN_FACE_3 =>RPU_IN_FACE_3, 

RPU_CARRY_IN_1=>  RPU_CARRY_IN_1 ,

RPU_CARRY_IN_2=> RPU_CARRY_IN_2,

-- data lines from the RAP

FROM_RAP =>  FROM_RAP,

-- data lines from RAMs

FROM_RAM_A =>FROM_RAM_A ,

--data from SPRD unit

SPRD_OUT  =>SPRD_OUT, 

RAP_INTR_FC_CONFIG_BITS =>  CONFIGURATION_BITS(21 downto 
17)  ,

---------------- OUTPUT SIGNALS----------------------- 

-- data lines, X, and Y

RAP_X_IN => RAP_X_IN,

RAP_Y_IN => RAP_Y_IN ,

RAP_CRY_IN => RAP_CRY_IN

);

U5_RAP_UNIT: RAP16 

port map(

---------------- INPUT SIGNALS-----------------------

RAP_CLK => DRPU_CLK,

RAP_ENABLE => T_ENABLE,

RAP_RESET => T_RESET,

RAP_CONFIG_BITS =>  CONFIGURATION_BITS(54 downto 33)  ,

RAP_X_IN => RAP_X_IN ,

RAP_Y_IN =>RAP_Y_IN, 

RAP_CRY_IN =>RAP_CRY_IN ,

RAP_CARY_OUT  =>RAP_CARY_OUT ,

RAP_OVR_FLW  => RAP_OVR_FLW,

RAP_DONE_RUNING =>RAP_DONE_RUNING, 

RAP_OUT => RAP_OUT
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);

 U6_CSDP_INTERFACE: SPRD_INFACE  

port map (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1 => RPU_IN_FACE_1 ,

RPU_IN_FACE_2 => RPU_IN_FACE_2 ,

RPU_IN_FACE_3 => RPU_IN_FACE_3 ,

SPRD_INTR_FC_CONFIG_BITS => CONFIGURATION_BITS(32 downto 
30) ,

---------------- OUTPUT SIGNALS----------------------- 

-- data Out lines, Data, and PN

SPRD_DATA => SPRD_DATA ,

SPRD_PN => SPRD_PN 

);

  U7_CSDP: SPRD_UNIT 

port map(

SPRD_CLK  =>  DRPU_CLK,   --Clock  

SPRD_ENABLE   => DRPU_ENABLE,   --Enable 

SPRD_RESET  =>  DRPU_RESET,

DATA_IN  =>  SPRD_DATA     ,  -- from sprd inface

PN1  =>   SPRD_PN    ,  -- from sprd inface  

SPRD_OUT  =>  SPRD_OUT      -- to rap inface

);

U8_RAM_INFACE:  RAM_FIFO_FACE 

port map(

---------------- INPUT SIGNALS-----------------------

RAM_FIFO_INFACE_CLK  => DRPU_CLK ,

--Data lines from RAP

RAP_OUT  =>RAP_OUT  ,

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1  => RPU_IN_FACE_1 ,
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RPU_IN_FACE_2  =>RPU_IN_FACE_2  ,

RPU_IN_FACE_3  => RPU_IN_FACE_3 ,

-- Data from the CLFSR

CLFSR_OUT_16  =>  CLFSR_OUT_16,

NEW_DATA_ARVD_1  => NEW_DATA_ARVD_1 ,

NEW_DATA_ARVD_2  => NEW_DATA_ARVD_2 ,

NEW_DATA_ARVD_3  => NEW_DATA_ARVD_3 ,

NEW_DATA_ARVD_FROM_RAP  => RAP_DONE_RUNING , 
NEW_DATA_ARVD_FROM_CLFSR  =>NEW_DATA_ARVD_FROM_CLFSR  ,

--configuration bits

RAM_FACE_CONFIG_BITS  =>  CONFIGURATION_BITS(27 downto 22) 
,

---------------- OUTPUT SIGNALS----------------------- 

--CLK to the RAM

--Data and ADRS signal to RAM

RAM_A_IN  => RAM_A_IN ,

RAM_A_ADRS_OUT  =>RAM_A_ADRS_OUT  ,

RAM_B_ADRS_OUT  => RAM_B_ADRS_OUT ,

NEW_DATA_ARVD_2RAM  => NEW_DATA_ARVD_2RAM 

);

U9_RAM_FIFO: RAM_FIFO 

port map ( 

RAM_A_IN =>RAM_A_IN  ,

--RAM_B_IN : in std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

RAM_A_ADRS =>  RAM_A_ADRS_OUT ,

RAM_B_ADRS  => RAM_B_ADRS_OUT  , -- Port B is only used for 
reading.

-- No input for port B since it is only read port. 

RAM_WR =>  RAM_WR ,-- 0 no op, 1 write. --Port A 

RAM_RD => RAM_RD  ,-- 0 no op, 1 READ.   --Port A 

RAM_ENABLE => DRPU_ENABLE  ,  -- synchronous, '1' enabled. 

RAM_CLEAR => DRPU_RESET  , -- synchronous Clear 

RAM_CONFIG_BITS =>   CONFIGURATION_BITS(55) ,

--'0' for RAM behavior and 

-- '1' for FIFO behavior  
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RAM_CLK => DRPU_CLK  ,

FROM_RAM_FIFO_FULL =>  FROM_RAM_FIFO_FULL , --'1' for full

FROM_RAM_FIFO_EMPTY => FROM_RAM_FIFO_EMPTY  ,--'1' for 
empty

FROM_RAM_A_OUT => FROM_RAM_A_OUT  

);  

U10_RPU_CONTROLLER: RPU_CTRL_NEW 

port map (

CONFIGURATION_BITS => CONFIGURATION_BITS ,

CTRL_CLK =>DRPU_CLK ,

FROM_RAM_FIFO_EMPTY => FROM_RAM_FIFO_EMPTY ,

FROM_RAM_FIFO_FULL =>  FROM_RAM_FIFO_FULL,

GO_CONFIG =>GO_CONFIG  ,

GO_HOLD => GO_HOLD ,

GO_RUN =>GO_RUN  ,

GO_SLEEP => GO_SLEEP ,

NEW_DATA_ARVD_2RAM =>NEW_DATA_ARVD_2RAM  ,

RESET_CTROL => DRPU_RESET  ,

RPU_START_HOLD_FROM_X => RPU_START_HOLD_FROM_X ,

DISABLE_CLK => DISABLE_CLK ,

DRPU_DONE => DRPU_DONE ,

DRPU_FULL_CONFIG_BITS => DRPU_FULL_CONFIG_BITS ,

DRPU_START_HOLD =>DRPU_START_HOLD  , -- to go to the outface

ENABLE_DRPU => DRPU_ENABLE ,

RAM_RD => RAM_RD ,

RAM_WR =>  RAM_WR,

RESET_DRPU => DRPU_RESET ,

START_NEXT_DRPU =>  START_NEXT_DRPU

  );

U11_OUTPUT_INTERFACE: OUT_FACE 

port map(

---------------- INPUT SIGNALS-----------------------

--Control signals

TO_OTHER_RPU_START =>  START_NEXT_DRPU,
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OUT_FACE_CLK => DRPU_CLK ,

RAP_1_OUT => RAP_OUT ,   -- the output of the RAP

RAM_A_OUT  => FROM_RAM_A_OUT , -- ,,  ,, ,, RAM

CLFSR_OUT_16 =>  CLFSR_OUT_16,

SPRD_OUT=> SPRD_OUT  , 

RPU_IN_FACE_1 => RPU_IN_FACE_1 ,

RPU_IN_FACE_2 => RPU_IN_FACE_2 ,

-- Configuration bits;

OUT_FACE_CONFIG_BITS => CONFIGURATION_BITS( 16 downto 5)  ,

-------------------------- OUTPUT SIGNALS ---------------

RPU_OUT_1_GBUS  =>  RPU_OUT_1_GBUS,

RPU_OUT_2_GBUS  =>RPU_OUT_2_GBUS  ,

IN_N_RPU => IN_N_RPU ,

IN_S_RPU => IN_S_RPU ,

IN_W_RPU => IN_W_RPU ,

IN_E_RPU => IN_E_RPU ,

RPU_START_HOLD_E => RPU_START_HOLD_E , --'1' start, '0' 
hold

RPU_START_HOLD_W => RPU_START_HOLD_W , --'1' start, '0' 
hold

RPU_START_HOLD_N => RPU_START_HOLD_N , --'1' start, '0' 
hold

RPU_START_HOLD_S => RPU_START_HOLD_S --'1' start, '0' hold 

);

end Behav;

2   Communication and Switching Unit

---------------------------------------------------------------------

---------------------------------------------------------------------

--

--  Project            : DRAW
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--  File name          : CSU.vhd

--  Title              : Configuration ans Switching control Unit

--  Description : controls the configuration of the CMU 

--  Design Libray      : DRAW

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------

--   Revisions   :

-- Date Author  Revision         Comments

-- 4/15/02  A. Alsolaim   Rev 5            

--                         

---------------------------------------------------------------------

---------------------------------------------------------------------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity CSU is

generic(CONFIG_BITS_WIDTH: integer:=64;

DATA_PATH_WIDTH: integer:=16; NUM_OF_SWB_PER_CSU: inte-
ger:=5);

-- NUM_OF_SWB_PER_CSU is either 4 or 5.

--it depends on the size of the array. the array is square array, where 
--N in the number of elements in one

-- side.  If N is 4 then NUM_OF_SWB_PER_CSU must be 6 or 7. 

--N takes the values of 8, 16, 32,...

port(

CSU_CLK: in std_logic;

---- INPUT from DRPUs

DRPU_DONE: in std_logic_vector (3 downto 0); -- Done sig-
nales from RPU1(bit 0), RPU2 (bit 1),..., RPU4 (bit 3)

----INPOUT FROM GCM

-- LODING NEW CONFIGurationdata for the RPUs or the SWBs to 
be saved in CMU or inside the CSU (near the SWB)

CONFIG_BITS_TYPE: in std_logic; -- 0 means a RPU configura-
tion type, 1 means SWB configuration type
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CONFIG_BITS: in std_logic_vector (CONFIG_BITS_WIDTH-1 
downto 0); -- COnfiguration bits comes from the GCU as 8 bits word.

--if the configuration is for the RPU it will take 8 cycles 
to complete one configuration word of 64

-- if it is for the SWB it will take 3 cycles. 24 bits

STORE_CONFIG: in std_logic; -- from the GCM. when 1 save the 
above data to the lower level of the CMU

--COMMANDING RPUs

DRPU_COMND: in std_logic_vector (15 downto 0); -- Command 
from the GCU to the four RPUS. the structure of this signal is as follows

--bit 0 1  2  3  4  5  6  7

-- SLEEEP1 HOLD1 RUN1 CONFIG1  SLEEP2 HOLD2  RUN2  CONFIG2 

--- when configuration is high, then the number of the con-
figuration need to be selected. and so we need this signal

CONFIG_NUM: in std_logic_vector(2 downto 0);

-- three bits. 2 bits were only needed if we use it for the RPUs only,

--but since we use this input to point to one of the SWB we 
need three bits. SWB may be 4 or 5.

----        OUTPUT SIGNALS------------------

TO_RPUS: out std_logic_vector(15 downto 0); -- this signal 
is to control the four RPUS. the structure of this signal is as follows: 

-- bit 0 1      2    3  4  5  6  
7

-- GO_SLEEEP1 GO_HOLD1 GO_RUN1 GO_CONFIG1 GO_SLEEP2 GO_HOLD2 GO_RUN2 
GO_CONFIG2...

-- configuration bits of the SWB

SWB_CONFIG_BITS: out std_logic_vector(NUM_OF_SWB_PER_CSU 
*24 downto 0); -- 24 bits X 4 SWB . 0-23 for SWB1,...

-- signal to control the writing-to and reading-from the CMU

--Writing new value to the CMU

ENABLE_CMU: out std_logic;

WR_CONFIG: out std_logic;

NEW_CONFIG: out std_logic_vector (CONFIG_BITS_WIDTH-1 
downto 0);

--Reading from CMU to load it to RPU

CONFIG_NUM_TO_CMU: out std_logic_vector (1 downto 0);

RPU_NUM:  out std_logic_vector (1 downto 0);

RD_CONFIG: out std_logic ; 
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-- out signals to GCU 

DRPU_DONE_TO_GCU: out std_logic_vector(3 downto 0);

DRPU_STATUS: out std_logic_vector(7 downto 0)

-- Signals to report the status of every RPU. structured as 
follows:

-- bit 0-1 for RPU1, bits 2-3 for RPU2, ... and so on.

-- bits reports the following: 

-- 00 RPU is sleep

-- 01 RPU is Hold

-- 10 RPU is Running

-- 11 RPU is Configuring.

);

end entity;

Architecture BEHAV of CSU is 

signal START_CONFIG_RPU1:  std_logic; 

signal START_CONFIG_RPU2:  std_logic;

signal START_CONFIG_RPU3:  std_logic;

signal START_CONFIG_RPU4:  std_logic;

begin

-- rout the RPU_DONEs to GCU  (registered)

process( CSU_CLK)

begin 

if rising_edge(CSU_CLK) then

DRPU_DONE_TO_GCU <=DRPU_DONE;

end if;

end process;

-- process to take the commands from the GCU and send the appro-
priate signal to the RPU

process(CSU_CLK)

begin
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if rising_edge(CSU_CLK) then

-- for RPU1, RPU2, RPU3, and RPU4

TO_RPUS<= DRPU_COMND; 

end if;

end process;

--process to report the status of the RPU

process(CSU_CLK)

begin 

if rising_edge(CSU_CLK) then

-- DRPU_COMND  --16 bits bits 3, 7, 11, and 15  are config-
uration commands, so they must be considered with CONFID_NUM

--For RPU1

case conv_integer(DRPU_COMND(3 downto 0)) is --  only one 
command is active so value 

-- of DRPU_COMND can only be 1, 2, 4, or 8

when 1 => DRPU_STATUS(1 downto 0)<="00";  -- RPU is 
SLEEP

when 2 => DRPU_STATUS(1 downto 0)<="01";  -- RPU is 
HOLD

when 4 => DRPU_STATUS(1 downto 0)<="10";  -- RPU is 
RUN

when 8 => DRPU_STATUS(1 downto 0)<="11"; 
START_CONFIG_RPU1<='1';  -- RPU is CONFIG 

when others => null;

end case;

--For RPU2

case conv_integer(DRPU_COMND(7 downto 4)) is -- 1, 2, 4, or 
8

when 1 => DRPU_STATUS(3 downto 2)<="00";  -- RPU is 
SLEEP

when 2 => DRPU_STATUS(3 downto 2)<="01";  -- RPU is 
HOLD

when 4 => DRPU_STATUS(3 downto 2)<="10";  -- RPU is 
RUN

when 8 => DRPU_STATUS(3 downto 2)<="11"; 
START_CONFIG_RPU2<='1';  -- RPU is CONFIG 

when others => null;

end case;

--For RPU3
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case conv_integer(DRPU_COMND(11 downto 8)) is -- 1, 2, 4, 
or 8

when 1 => DRPU_STATUS(5 downto 4)<="00";  -- RPU is 
SLEEP

when 2 => DRPU_STATUS(5 downto 4)<="01";  -- RPU is 
HOLD

when 4 => DRPU_STATUS(5 downto 4)<="10";  -- RPU is 
RUN

when 8 => DRPU_STATUS(5 downto 4)<="11"; 
START_CONFIG_RPU3<='1';  -- RPU is CONFIG 

when others => null;

end case;

--For RPU4

case conv_integer(DRPU_COMND(15 downto 12)) is -- 1, 2, 4, 
or 8

when 1 => DRPU_STATUS(7 downto 6)<="00";  -- RPU is 
SLEEP

when 2 => DRPU_STATUS(7 downto 6)<="01";  -- RPU is 
HOLD

when 4 => DRPU_STATUS(7 downto 6)<="10";  -- RPU is 
RUN

when 8 => DRPU_STATUS(7 downto 6)<="11"; 
START_CONFIG_RPU4<='1';  -- RPU is CONFIG 

when others => null;

end case;

end if;

end process;

--process to configure one of the RPU

process ( 
START_CONFIG_RPU1,START_CONFIG_RPU2,START_CONFIG_RPU3,START_CONFIG_RP
U4, CSU_CLK)

begin

if rising_edge(CSU_CLK) then

if START_CONFIG_RPU1='1' then

CONFIG_NUM_TO_CMU <= CONFIG_NUM(1 downto 0);

RPU_NUM <= "00"; -- first RPU

RD_CONFIG <= '1';-- enable RD config 

elsif START_CONFIG_RPU2='1' then

CONFIG_NUM_TO_CMU <= CONFIG_NUM(1 downto 0);

RPU_NUM <= "01"; -- second RPU

RD_CONFIG <= '1';-- enable RD config
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elsif START_CONFIG_RPU3='1' then

CONFIG_NUM_TO_CMU <= CONFIG_NUM(1 downto 0);

RPU_NUM <= "10"; -- third RPU

RD_CONFIG <= '1';-- enable RD config 

elsif START_CONFIG_RPU4='1' then

CONFIG_NUM_TO_CMU <= CONFIG_NUM(1 downto 0);

RPU_NUM <= "11"; -- fourth RPU

RD_CONFIG <= '1';-- enable RD config 

else 

START_CONFIG_RPU1 <='0';

START_CONFIG_RPU2 <='0'; 

START_CONFIG_RPU3 <='0'; 

START_CONFIG_RPU4 <='0'; 

end if;

if   ( START_CONFIG_RPU1 ='0'and START_CONFIG_RPU2 ='0' and 
START_CONFIG_RPU3 ='0' and START_CONFIG_RPU4 ='0') then 

RD_CONFIG<='0';

end if;

end if;

end process;

-- process to load a new configuration at the bottom of the RPU
or to the selected location in the SWB_CONFIG_BITS

process (CSU_CLK) 

begin   

if rising_edge(CSU_CLK) then

if STORE_CONFIG='1' then

if CONFIG_BITS_TYPE='0' then  -- 0 means a RPU con-
figuration type, 1 means SWB configuration type

ENABLE_CMU<='1' ; -- enable the CMU to load the 
bits into it.

WR_CONFIG<='1'; -- set the WR  signal to 1 for 
writing to the CMU

NEW_CONFIG <= CONFIG_BITS;

end if;

if  CONFIG_BITS_TYPE='1' then  -- 0 means a RPU con-
figuration type, 1 means SWB configuration type 

case conv_integer(CONFIG_NUM) is -- value can 
be from 1  to 5

when 1 => SWB_CONFIG_BITS(23 downto 0) <=
CONFIG_BITS(23 downto 0);
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when 2 => SWB_CONFIG_BITS(47 downto 24) <=
CONFIG_BITS(23 downto 0);

when 3 => SWB_CONFIG_BITS(71 downto 48) <=
CONFIG_BITS(23 downto 0);

when 4 => SWB_CONFIG_BITS(95 downto 72) <=
CONFIG_BITS(23 downto 0);

when 5 => SWB_CONFIG_BITS(119 downto 96) 
<= CONFIG_BITS(23 downto 0);

when others => null;

end case;

end if;

end if; 

end if;

end process;

end BEHAV;

3   Configuration Memory Unit

---------------------------------------------------------------------

---------------------------------------------------------------------

--

--  Project            : DREAM

--  File name          : COM_MEM_UNIT.vhd

--  Title              : Configuration Memory Unit

--  Description        : Configure the RPU with the help of the control 
Unit

--                     : 

--  Design Libray      : 

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 4.2

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------

--   Revisions   :

--          Date             Author  Revision         Comments

--        12/25/01  A. Alsolaim   Rev 5            

--                         

---------------------------------------------------------------------
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--------------------------------------------------------------------- 

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity COM_MEM_UNIT is

generic(CONFIG_BITS_WIDTH: integer:=64;

DATA_PATH_WIDTH: integer:=16);  

port (

------------INPUT PORTS------------

CLK: in std_logic;

--------- CONTROL SIGNALS

ENABLE_CMU: in std_logic;

WR_CONFIG: in std_logic; --write one (selected by 
CONFIG_NUM) of the stored configuration to the output

CONFIG_NUM: in std_logic_vector (1 downto 0);---- CMU 
stores 4 configurations.

RPU_NUM: in    std_logic_vector (1 downto 0);---- CMU con-
figuration one of the RPUs.

RD_CONFIG: in std_logic; --READ new configuration into the 
unit.

NEW_CONFIG: in std_logic_vector(CONFIG_BITS_WIDTH-1 downto 
0);-- the new configuration bits

------------- OUTPUT PORTS----------

CONFIG_RPU_1: out std_logic_vector(CONFIG_BITS_WIDTH-1 
downto 0);

CONFIG_RPU_2: out std_logic_vector(CONFIG_BITS_WIDTH-1 
downto 0);

CONFIG_RPU_3: out std_logic_vector(CONFIG_BITS_WIDTH-1 
downto 0);

CONFIG_RPU_4: out std_logic_vector(CONFIG_BITS_WIDTH-1 
downto 0)

);

end COM_MEM_UNIT;

Architecture BEHAV of COM_MEM_UNIT is

type CMU_type is array (3 downto 0) of

std_logic_vector(CONFIG_BITS_WIDTH-1 downto 0) ;

signal CONFIG_REG: CMU_type;
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begin

process (clk)

begin

if ENABLE_CMU='1' then

if WR_CONFIG='1' then --writing one of the configura-
tion (CONFIG_NUM) 

--to one of the rpu (RPU_NUM)

case conv_integer(RPU_NUM) is

when 0 => CONFIG_RPU_1 <= 
CONFIG_REG(conv_integer(CONFIG_NUM));

when 1 => CONFIG_RPU_2 <= 
CONFIG_REG(conv_integer(CONFIG_NUM));

when 2 => CONFIG_RPU_3 <= 
CONFIG_REG(conv_integer(CONFIG_NUM));

when 3 => CONFIG_RPU_4 <= 
CONFIG_REG(conv_integer(CONFIG_NUM));

when others => null;

end case;

end if;

if RD_CONFIG='1' then --READ a new configuration into 
the CMU

-- all configuration register are shifted up and 
then

--the new configuration is stored into the 
lowest reg.

-- the reg are numbered as 0 is the top and 3 
is in the bottom

for i in 0 to 2 loop

CONFIG_REG(i)<=CONFIG_REG(i+1);

end loop;  

CONFIG_REG(3)<=NEW_CONFIG;

end if;

end if;

end process;

end behav;



195

4   Dedicated I/O Unit

---------------------------------------------------------------------

---------------------------------------------------------------------

--

--  Project            : DREAM

--  File name          : DIO_Unit.vhd

--  Title              : Dedicated I/O Unit

--  Description        : the I/O unit. high speed and bandwidth I/O unit

--                     : 

--  Design Libray      : 

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 4.2

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------

--   Revisions   :

--          Date             Author  Revision         Comments

--        4/15/02 A. Alsolaim   Rev 5            

--                         

---------------------------------------------------------------------

--------------------------------------------------------------------- 

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.alL;

entity DIO_UNIT is

generic (DATA_PATH_WIDTH: integer:=8); 

port (

BUS_1: inout std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

BUS_2: inout std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

BUS_3: inout std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

BUS_4: inout std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

IO_CLK: in std_logic; 

X4_CLK: in std_logic;

IO_CONFIG: in std_logic_vector(5 downto 0);
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-- Configuration bits are as follows:

--bit 0 IN_OUT

--bit 1 reg_not_reg

--bit 2FIXD_SELECT_BUS

--bit 3-4 the number of the fixed selected bus

IO_PAD: inout std_logic_vector (DATA_PATH_WIDTH-1 downto 0)

);

end DIO_UNIT;

architecture BEHAV of DIO_UNIT is  

signal ONE_BUS: std_logic_vector (DATA_PATH_WIDTH-1 downto 0);

signal ONE_BUS_OUT: std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

signal ONE_BUS_IN:std_logic_vector (DATA_PATH_WIDTH-1 downto 0);

signal REG_OUT: std_logic_vector (DATA_PATH_WIDTH-1 downto 0);

signal REG_IN: std_logic_vector (DATA_PATH_WIDTH-1 downto 0);

signal CLK: std_logic;

signal CONTR_OUT: std_logic_vector(1 downto 0);

signal BUS_SELECT: std_logic_vector(1 downto 0);

begin

process (IO_CONFIG(2))

begin

if (IO_CONFIG(2))='0' then

CLK<=X4_CLK;

else CLK<= IO_CLK;

end if;

end process;

--2 bit counter

process(X4_CLK)

variable COUNT: std_logic_vector(1 downto 0) :="00";

begin  

if rising_edge(X4_CLK) then

CONTR_OUT<=COUNT;

COUNT:=COUNT+1;

if COUNT="100" then

COUNT:="00";
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end if ; 

end if;

end process;

process (IO_CONFIG(2))

begin

if IO_CONFIG(2)='0' then

BUS_SELECT<= CONTR_OUT;

else BUS_SELECT<= IO_CONFIG(4 downto 3);

end if;

end process;

process(IO_CONFIG(0))

begin

if IO_CONFIG(0)='1' then -- IO is an output pin

ONE_BUS_OUT<=ONE_BUS;

ONE_BUS_IN<=(others=>'Z');

else

ONE_BUS_IN<=ONE_BUS;

ONE_BUS_OUT<=(others=>'Z');

end if;

end process;

REG1:process(CLK)

begin

if rising_edge(CLK) then

REG_OUT<=ONE_BUS_OUT;

end if;

end process;

REG2:process(CLK)

begin

if rising_edge(CLK) then

REG_IN<=IO_PAD;

end if;

end process;  

twomuxs: process(IO_CONFIG(1))

begin

if IO_CONFIG(1)='1' then --select unregistered in or out

IO_PAD<=ONE_BUS_OUT;

ONE_BUS_IN<=IO_PAD;

else 

IO_PAD<=REG_OUT;
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ONE_BUS_IN<=REG_IN;

end if;

end process;

end BEHAV;

5   Arithmetic and Logical Unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : ALU16.vhd

--  Title              : Arithmatic and Logical Unit

--  Description        : 16-bits Arithmatic and Logical Unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        01/18/02  A. Alsolaim   Rev 18            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 
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entity ALU16 is

generic (DATA_BIT_WIDTH : integer:=16);

port(

ALU_X_IN : in std_logic_vector (DATA_BIT_WIDTH-1 downto 0);

ALU_Y_IN : in std_logic_vector (DATA_BIT_WIDTH-1 downto 0);

AluCfg : in std_logic_vector (2 downto 0);

CARY_IN : in std_logic;

ALU_CLK : in std_logic;

ALU_CLEAR : in std_logic;

ALU_ENABLE : in std_logic;

LOG_ARITH : in std_logic; -- configuration bit # 17. note 
that we only 

--pass the alu op which ic configuration bits 2-0 and 
LOG_ARITH bit.

CARY_OUT : out std_logic;

OVR_FLW : out std_logic;

ALU_OUT : out std_logic_vector (DATA_BIT_WIDTH-1 downto 0)

);

end ALU16;

architecture rtl of ALU16 is

---------------------------------------------------------------
----

-- CONFGI_BITSLOG_ARITH='0'LOG_ARITH='1'LOG_ARITH='1'

-- (LOGICAL)  CARY_IN='0 ' CARY_IN='1'

---------------------------------------------------------------
---

-- 0 X AND Y X + Y  X + Y 
+ CARY_IN

-- 1 X NAND Y X - Y X - Y 
- CARY_IN

-- 2 X OR Y X 
X + CARY_IN 

-- 3 X NOR Y X 
X - CARY_IN 

-- 4 X XOR Y X + 1 X + 1 

-- 5 X XNOR Y X - 1 X - 1 

-- 6 NOT Y MAX(x,y) 

-- 7 NOT X Min(x,y) 

component Two_Cmpl16 

generic (DATA_BIT_WIDTH:integer:=16);
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port(

x : in std_logic_vector(DATA_BIT_WIDTH-1 downto 0);

x_Cmpl : out std_logic_vector(DATA_BIT_WIDTH-1 downto 
0)

);

end component;

component fa16

generic (DATA_BIT_WIDTH :integer:=16);

port (

cin:in std_logic;

a,b :in std_logic_vector(DATA_BIT_WIDTH-1 downto 
0);

s: out std_logic_vector(DATA_BIT_WIDTH-1 downto 0);

cout: out std_logic);

end component;

      

signal YC_Cmpl, YCarry, CarryIn2Vec, CarryInVec  : 
std_logic_vector(DATA_BIT_WIDTH-1 downto 0);

signal tmp_out, tmp_out1, tmp_x,tmp_y : std_logic_vector 
(DATA_BIT_WIDTH-1 downto 0);

signal tmp, tmp_ovflow, tmp_ov,zero: std_logic;

signal CnstZero,CnstOne, CnstMinusOne :std_logic_vector 
(DATA_BIT_WIDTH-1 downto 0);

begin

zero<='0';

CnstOne(DATA_BIT_WIDTH-1 downto 1)<=(oth-
ers=>'0');CnstOne(0)<='1';

CnstMinusOne<=(others=>'1');

CnstZero<=(others=>'0');

CarryInVec(DATA_BIT_WIDTH-1 downto 1) <=(others=>'0');-- 
"0000000" & CARY_IN;

CarryInVec(0)<=Cary_IN;

CarryIN2Vec<=(others=>CARY_IN);-- & CARY_IN & CARY_IN & CARY_IN 
& CARY_IN & CARY_IN & CARY_IN & CARY_IN;

U_Two_Cmpl16:Two_Cmpl16 port map(x=>YCarry, x_Cmpl=>YC_Cmpl);

U1_fa16:fa16 port map (

cin=>zero,

a=>CarryInVec,
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b=>ALU_Y_IN,

s=>YCarry,

cout=>tmp);

process(ALU_ENABLE, AluCfg,ALU_X_IN,ALU_Y_IN,YCarry,YC_Cmpl,Car-
ryInVec,CarryIn2Vec)

begin

if(ALU_ENABLE='1')then

case AluCfg is

when "000"=>

tmp_x<=ALU_X_IN;

tmp_y<=YCarry;

when "001"=>

tmp_x<=ALU_X_IN;

tmp_y<=YC_Cmpl;

when "010"=>

tmp_x<=ALU_X_IN;

tmp_y<=CarryInVec;

when "011"=>

tmp_x<=ALU_X_IN;

tmp_y<=CarryIn2Vec;

when "100"=>

tmp_x<=ALU_X_IN;

tmp_y<=CnstOne;

when "101"=>

tmp_x<=ALU_X_IN;

tmp_y<=CnstMinusOne;

when "110"=>

tmp_x<=ALU_X_IN;

tmp_y<=ALU_Y_IN;

when "111"=>

tmp_x<=ALU_X_IN;

tmp_y<=ALU_Y_IN;

when others=>null;

end case;

end if;

end process;

U2_fa16:fa16 port map(

cin=>zero,

a=>tmp_x,

b=>tmp_y,

s=>tmp_out,

cout=>tmp_ov);
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tmp_ovflow<=(not ( tmp_x(DATA_BIT_WIDTH-1) xor 
tmp_y(DATA_BIT_WIDTH-1)))and (tmp_out(DATA_BIT_WIDTH-1) xor 
tmp_y(DATA_BIT_WIDTH-1));

process(ALU_ENABLE, AluCfg,ALU_X_IN,ALU_Y_IN)

begin

if(ALU_ENABLE='1')then

case AluCfg is

when "000"=>

tmp_out1<=ALU_X_IN and ALU_Y_IN;

when "001"=>

tmp_out1<=not(ALU_X_IN and ALU_Y_IN);

when "010"=>

tmp_out1<=ALU_X_IN or ALU_Y_IN;

when "011"=>

tmp_out1<=not(ALU_X_IN or ALU_Y_IN);

when "100"=>

tmp_out1<=ALU_X_IN xor ALU_Y_IN;

when "101"=>

tmp_out1<=not(ALU_X_IN xor ALU_Y_IN);

when "110"=>

tmp_out1<=not ALU_X_IN;

when "111"=>

tmp_out1<=not ALU_Y_IN;

when others=>null;

end case;

end if;

end process;

process(ALU_ENABLE, ALU_CLK, 
ALU_CLEAR,tmp_out,tmp_out1,LOG_ARITH)

begin

if(ALU_ENABLE='1')then

if(ALU_CLEAR='1')then

ALU_OUT <=(others=>'0');

OVR_FLW <='0';

elsif(ALU_CLK'event and ALU_CLK='1')then

if(LOG_ARITH='1')then

ALU_OUT<=tmp_out; --***********

OVR_FLW<=tmp_ovflow;

else

ALU_OUT<=tmp_out1;

OVR_FLW<='0';

end if;

end if;
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end if;

end process;

end rtl;

6   Booth Decoder Unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : boothdec.vhd

--  Title              : Booth decoder Unit

--  Description        : Booth decoder unit for booth multiplier.

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        01/18/02  M. Ding   Rev 2 By A. Alsolaim           

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity BoothDec is

port (
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Din : in std_logic_vector(2 downto 0);

Dout :out std_logic_vector(1 downto 0);

P_N : out std_logic

);

end BoothDec;

architecture BoothDec of BoothDec is

begin

P_N<= Din(2);

process(Din)

begin

case Din is

when "000"|"111" =>

dout<="00";

when "001"|"010"|"101"|"110"=>

dout<="01";

when "011"|"100"=>

dout<="10";

when others=>

null;

end case;

end process;

end BoothDec;

7   Barrel shifter

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : BRL_SFT_16.vhd

--  Title              : Barrel Shift

--  Description        : 16-bit arithmetic shift unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none
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--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments

--        02/2/02  A. Alsolaim   Rev 6            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;

entity BRL_SFT_16 is 

generic(DATA_WIDTH : integer:=16);

port (

DIR : in STD_LOGIC;  ----1 right 0 left

X_IN : in STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

Y_OUT : out STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

NUM_SHFTS : in STD_LOGIC_VECTOR (3 downto 0) ;

RTT_SHF: in STD_LOGIC:='1'; --0 Rotate 1 Shift

ARTH_LOGC: in std_logic:='0' -- 1 Arithmatic 0 logical

);

end entity ;

architecture BRL_SFT_16 of BRL_SFT_16 is

function MUX2 (A, B, C: std_logic) return std_logic is

begin

if C='1' then

return A;

else

return B;

end if;

end function;
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signal LEVEL_A : STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

signal LEVEL_B : STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

signal LEVEL_C : STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

signal TT: std_logic:='0';

-- TT will take the LSB or MSB ofX_IN depending on Logical or 
Arithmatic

begin

TT<=X_IN(15) when (ARTH_LOGC='1'and DIR='1') else X_IN(0) when 
(ARTH_LOGC='1' and DIR='0')

else '0' when (ARTH_LOGC='0') ;

LEVEL_A(0) <= MUX2(X_IN(15), X_IN(0), NUM_SHFTS(0)) when (DIR = 
'0'and RTT_SHF='0') else MUX2(X_IN(1), X_IN(0), NUM_SHFTS(0))when (DIR 
= '1'and RTT_SHF='0')

else MUX2(TT, X_IN(0), NUM_SHFTS(0)) when (DIR = '0'and 
RTT_SHF='1') else MUX2(X_IN(1), X_IN(0), NUM_SHFTS(0)) when (DIR = 
'1'and RTT_SHF='1');

LEVEL_A(1) <= MUX2(X_IN(0), X_IN(1), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(2), X_IN(1), NUM_SHFTS(0));

LEVEL_A(2) <= MUX2(X_IN(1), X_IN(2), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(3), X_IN(2), NUM_SHFTS(0));

LEVEL_A(3) <= MUX2(X_IN(2), X_IN(3), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(4), X_IN(3), NUM_SHFTS(0));

LEVEL_A(4) <= MUX2(X_IN(3), X_IN(4), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(5), X_IN(4), NUM_SHFTS(0));

LEVEL_A(5) <= MUX2(X_IN(4), X_IN(5), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(6), X_IN(5), NUM_SHFTS(0));

LEVEL_A(6) <= MUX2(X_IN(5), X_IN(6), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(7), X_IN(6), NUM_SHFTS(0));

LEVEL_A(7) <= MUX2(X_IN(6), X_IN(7), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(8), X_IN(7), NUM_SHFTS(0));

LEVEL_A(8) <= MUX2(X_IN(7), X_IN(8), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(9), X_IN(8), NUM_SHFTS(0));

LEVEL_A(9) <= MUX2(X_IN(8), X_IN(9), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(10), X_IN(9), NUM_SHFTS(0));

LEVEL_A(10) <= MUX2(X_IN(9), X_IN(10), NUM_SHFTS(0)) when (DIR = 
'0') else MUX2(X_IN(11), X_IN(10), NUM_SHFTS(0));

LEVEL_A(11) <= MUX2(X_IN(10), X_IN(11), NUM_SHFTS(0)) when (DIR 
= '0') else MUX2(X_IN(12), X_IN(11), NUM_SHFTS(0));

LEVEL_A(12) <= MUX2(X_IN(11), X_IN(12), NUM_SHFTS(0)) when (DIR 
= '0') else MUX2(X_IN(13), X_IN(12), NUM_SHFTS(0));

LEVEL_A(13) <= MUX2(X_IN(12), X_IN(13), NUM_SHFTS(0)) when (DIR 
= '0') else MUX2(X_IN(14), X_IN(13), NUM_SHFTS(0));

LEVEL_A(14) <= MUX2(X_IN(13), X_IN(14), NUM_SHFTS(0)) when (DIR 
= '0') else MUX2(X_IN(15), X_IN(14), NUM_SHFTS(0));
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LEVEL_A(15) <= MUX2(X_IN(14), X_IN(15), NUM_SHFTS(0)) when (DIR 
= '0'and RTT_SHF='0') else MUX2(X_IN(0), X_IN(15), NUM_SHFTS(0))when 
(DIR = '1'and RTT_SHF='0')

else MUX2(X_IN(14), X_IN(15), NUM_SHFTS(0)) when (DIR = '0'and 
RTT_SHF='1') else MUX2(TT, X_IN(15), NUM_SHFTS(0))when (DIR = '1'and 
RTT_SHF='1');

--*********************************

LEVEL_B(0) <= MUX2(LEVEL_A(14), LEVEL_A(0), NUM_SHFTS(1)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_A(2), LEVEL_A(0), NUM_SHFTS(1))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_A(0), NUM_SHFTS(1)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_A(2), LEVEL_A(0), NUM_SHFTS(1))when (DIR = '1'and 
RTT_SHF='1');

LEVEL_B(1) <= MUX2(LEVEL_A(15), LEVEL_A(1), NUM_SHFTS(1)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_A(3), LEVEL_A(1), NUM_SHFTS(1))when (DIR = '1'and 
RTT_SHF='0')

else MUX2( TT, LEVEL_A(1), NUM_SHFTS(1)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_A(3), LEVEL_A(1), NUM_SHFTS(1))when (DIR = '1'and 
RTT_SHF='1');

LEVEL_B(2) <= MUX2(LEVEL_A(0), LEVEL_A(2), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(4), LEVEL_A(2), NUM_SHFTS(1));

LEVEL_B(3) <= MUX2(LEVEL_A(1), LEVEL_A(3), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(5), LEVEL_A(3), NUM_SHFTS(1));

LEVEL_B(4) <= MUX2(LEVEL_A(2), LEVEL_A(4), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(6), LEVEL_A(4), NUM_SHFTS(1));

LEVEL_B(5) <= MUX2(LEVEL_A(3), LEVEL_A(5), NUM_SHFTS(1)) when 
(DIR = '0')
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else MUX2(LEVEL_A(7), LEVEL_A(5), NUM_SHFTS(1));

LEVEL_B(6) <= MUX2(LEVEL_A(4), LEVEL_A(6), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(8), LEVEL_A(6), NUM_SHFTS(1));

LEVEL_B(7) <= MUX2(LEVEL_A(5), LEVEL_A(7), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(9), LEVEL_A(7), NUM_SHFTS(1));

LEVEL_B(8) <= MUX2(LEVEL_A(6), LEVEL_A(8), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(10), LEVEL_A(8), NUM_SHFTS(1));

LEVEL_B(9) <= MUX2(LEVEL_A(7), LEVEL_A(9), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(11), LEVEL_A(9), NUM_SHFTS(1));

LEVEL_B(10) <= MUX2(LEVEL_A(8), LEVEL_A(10), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(12), LEVEL_A(10), NUM_SHFTS(1));

LEVEL_B(11) <= MUX2(LEVEL_A(9), LEVEL_A(11), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(13), LEVEL_A(11), NUM_SHFTS(1));

LEVEL_B(12) <= MUX2(LEVEL_A(10), LEVEL_A(12), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(14), LEVEL_A(12), NUM_SHFTS(1));

LEVEL_B(13) <= MUX2(LEVEL_A(11), LEVEL_A(13), NUM_SHFTS(1)) when 
(DIR = '0')

else MUX2(LEVEL_A(15), LEVEL_A(13), NUM_SHFTS(1));  

LEVEL_B(14) <= MUX2(LEVEL_A(12), LEVEL_A(14), NUM_SHFTS(1)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_A(0), LEVEL_A(14), NUM_SHFTS(1))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(LEVEL_A(12), LEVEL_A(14), NUM_SHFTS(1)) when (DIR = 
'0'and RTT_SHF='1')

else MUX2(TT, LEVEL_A(14), NUM_SHFTS(1))when (DIR = '1'and 
RTT_SHF='1');

LEVEL_B(15) <= MUX2(LEVEL_A(13), LEVEL_A(15), NUM_SHFTS(1))when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_A(1), LEVEL_A(15), NUM_SHFTS(1))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(LEVEL_A(13), LEVEL_A(15), NUM_SHFTS(1))when (DIR = 
'0'and RTT_SHF='1')

else MUX2(TT,LEVEL_A(15), NUM_SHFTS(1))when (DIR = '1'and 
RTT_SHF='1') ;

--**************************************
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LEVEL_C(0) <= MUX2(LEVEL_B(12), LEVEL_B(0), NUM_SHFTS(2)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(4), LEVEL_B(0), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_B(0), NUM_SHFTS(2)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_B(4), LEVEL_B(0), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='1');

LEVEL_C(1) <= MUX2(LEVEL_B(13), LEVEL_B(1), NUM_SHFTS(2))  when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(5), LEVEL_B(1), NUM_SHFTS(2)) when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_B(1), NUM_SHFTS(2))  when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_B(5), LEVEL_B(1), NUM_SHFTS(2)) when (DIR = 
'1'and RTT_SHF='1');

LEVEL_C(2) <= MUX2(LEVEL_B(14), LEVEL_B(2), NUM_SHFTS(2)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(6), LEVEL_B(2), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_B(2), NUM_SHFTS(2)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_B(6), LEVEL_B(2), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='1');

LEVEL_C(3) <= MUX2(LEVEL_B(15), LEVEL_B(3), NUM_SHFTS(2)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(7), LEVEL_B(3), NUM_SHFTS(2)) when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_B(3), NUM_SHFTS(2)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_B(7), LEVEL_B(3), NUM_SHFTS(2)) when (DIR = 
'1'and RTT_SHF='1') ; 

LEVEL_C(4) <= MUX2(LEVEL_B(0), LEVEL_B(4), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(8), LEVEL_B(4), NUM_SHFTS(2));
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LEVEL_C(5) <= MUX2(LEVEL_B(1), LEVEL_B(5), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(9), LEVEL_B(5), NUM_SHFTS(2));

LEVEL_C(6) <= MUX2(LEVEL_B(2), LEVEL_B(6), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(10), LEVEL_B(6), NUM_SHFTS(2));

LEVEL_C(7) <= MUX2(LEVEL_B(3), LEVEL_B(7), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(11), LEVEL_B(7), NUM_SHFTS(2));

LEVEL_C(8) <= MUX2(LEVEL_B(4), LEVEL_B(8), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(12), LEVEL_B(8), NUM_SHFTS(2));

LEVEL_C(9) <= MUX2(LEVEL_B(5), LEVEL_B(9), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(13), LEVEL_B(9), NUM_SHFTS(2));

LEVEL_C(10) <= MUX2(LEVEL_B(6), LEVEL_B(10), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(14), LEVEL_B(10), NUM_SHFTS(2));

LEVEL_C(11) <= MUX2(LEVEL_B(7), LEVEL_B(11), NUM_SHFTS(2)) when 
(DIR = '0')

else MUX2(LEVEL_B(15), LEVEL_B(11), NUM_SHFTS(2)); 

LEVEL_C(12) <= MUX2(LEVEL_B(8), LEVEL_B(12), NUM_SHFTS(2)) when 
(DIR = '0' and RTT_SHF='0')

else MUX2(LEVEL_B(0), LEVEL_B(12), NUM_SHFTS(2)) when (DIR = '1' 
and RTT_SHF='0')

else MUX2(LEVEL_B(8), LEVEL_B(12), NUM_SHFTS(2)) when (DIR = '0' 
and RTT_SHF='1')

else MUX2(TT, LEVEL_B(12), NUM_SHFTS(2)) when (DIR = '1' and 
RTT_SHF='1');

LEVEL_C(13) <= MUX2(LEVEL_B(9), LEVEL_B(13), NUM_SHFTS(2)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(1), LEVEL_B(13), NUM_SHFTS(2))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(LEVEL_B(9), LEVEL_B(13), NUM_SHFTS(2)) when (DIR = 
'0'and RTT_SHF='1')

else MUX2(TT, LEVEL_B(13), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='1');
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LEVEL_C(14) <= MUX2(LEVEL_B(10), LEVEL_B(14), NUM_SHFTS(2)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(2), LEVEL_B(14), NUM_SHFTS(2))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(LEVEL_B(10), LEVEL_B(14), NUM_SHFTS(2)) when (DIR = 
'0'and RTT_SHF='1')

else MUX2(TT, LEVEL_B(14), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='1');

LEVEL_C(15) <= MUX2(LEVEL_B(11), LEVEL_B(15), NUM_SHFTS(2)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_B(3), LEVEL_B(15), NUM_SHFTS(2))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(LEVEL_B(11), LEVEL_B(15), NUM_SHFTS(2)) when (DIR = 
'0'and RTT_SHF='1')

else MUX2(TT, LEVEL_B(15), NUM_SHFTS(2))when (DIR = '1'and 
RTT_SHF='1'); 

--*******************************************************

Y_OUT(0)<= MUX2(LEVEL_C(8), LEVEL_C(0), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(8), LEVEL_C(0), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(0), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(8), LEVEL_C(0), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

Y_OUT(1) <= MUX2(LEVEL_C(9), LEVEL_C(1), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(7), LEVEL_C(1), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(1), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(9), LEVEL_C(1), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

Y_OUT(2) <= MUX2(LEVEL_C(10), LEVEL_C(2), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(6), LEVEL_C(2), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(2), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')
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else MUX2(LEVEL_C(10), LEVEL_C(2), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');

Y_OUT(3) <= MUX2(LEVEL_C(11), LEVEL_C(3), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(5), LEVEL_C(3), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(3), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(11), LEVEL_C(3), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');

Y_OUT(4) <= MUX2(LEVEL_C(12), LEVEL_C(4), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(4), LEVEL_C(4), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(4), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(12), LEVEL_C(4), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');

Y_OUT(5) <= MUX2(LEVEL_C(13), LEVEL_C(5), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(3), LEVEL_C(5), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(5), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(13), LEVEL_C(5), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');

Y_OUT(6) <= MUX2(LEVEL_C(14), LEVEL_C(6), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(2), LEVEL_C(6), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(6), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(14), LEVEL_C(6), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');

Y_OUT(7) <= MUX2(LEVEL_C(15), LEVEL_C(7), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(1), LEVEL_C(7), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(7), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(15), LEVEL_C(7), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');
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--**************

Y_OUT(8) <= MUX2(LEVEL_C(0), LEVEL_C(8), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(0), LEVEL_C(8), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='0')

else MUX2(TT, LEVEL_C(8), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(0), LEVEL_C(8), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

Y_OUT(9) <= MUX2(LEVEL_C(1), LEVEL_C(9), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(15), LEVEL_C(9), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(9), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(1), LEVEL_C(9), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

Y_OUT(10) <= MUX2(LEVEL_C(2), LEVEL_C(10), NUM_SHFTS(3)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_C(14), LEVEL_C(10), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(10), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(2), LEVEL_C(10), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');

Y_OUT(11) <= MUX2(LEVEL_C(3), LEVEL_C(11), NUM_SHFTS(3)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_C(13), LEVEL_C(11), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(11), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(3), LEVEL_C(11), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1'); 

Y_OUT(12) <= MUX2(LEVEL_C(4), LEVEL_C(12), NUM_SHFTS(3)) when 
(DIR = '0'and RTT_SHF='0')

else MUX2(LEVEL_C(12), LEVEL_C(12), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(12), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(4), LEVEL_C(12), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='1');
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Y_OUT(13) <= MUX2(LEVEL_C(5), LEVEL_C(3), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(11), LEVEL_C(13), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(13), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(5), LEVEL_C(3), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

Y_OUT(14) <=MUX2(LEVEL_C(6), LEVEL_C(3), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(10), LEVEL_C(14), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(14), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(6), LEVEL_C(3), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

Y_OUT(15) <= MUX2(LEVEL_C(7), LEVEL_C(3), NUM_SHFTS(3)) when (DIR 
= '0'and RTT_SHF='0')

else MUX2(LEVEL_C(9), LEVEL_C(15), NUM_SHFTS(3))when (DIR = 
'1'and RTT_SHF='0')

else MUX2(TT, LEVEL_C(15), NUM_SHFTS(3)) when (DIR = '0'and 
RTT_SHF='1')

else MUX2(LEVEL_C(7), LEVEL_C(3), NUM_SHFTS(3))when (DIR = '1'and 
RTT_SHF='1');

--------*******************************************************

------Y_OUT(0) <= MUX2(LEVEL_C(8), LEVEL_C(0), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(0), NUM_SHFTS(3))when (RTT_SHF='1');  

------

------Y_OUT(1) <= MUX2(LEVEL_C(9), LEVEL_C(1), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(1), NUM_SHFTS(3))when (RTT_SHF='1'); 

------

------Y_OUT(2) <= MUX2(LEVEL_C(10), LEVEL_C(2), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(2), NUM_SHFTS(3))when (RTT_SHF='1'); 

------

------Y_OUT(3) <= MUX2(LEVEL_C(11), LEVEL_C(3), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(3), NUM_SHFTS(3))when (RTT_SHF='1'); 

------
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------Y_OUT(4) <= MUX2(LEVEL_C(12), LEVEL_C(4), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(4), NUM_SHFTS(3))when (RTT_SHF='1');

------

------Y_OUT(5) <= MUX2(LEVEL_C(13), LEVEL_C(5), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(5), NUM_SHFTS(3))when (RTT_SHF='1');

------

------Y_OUT(6) <= MUX2(LEVEL_C(14), LEVEL_C(6), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(6), NUM_SHFTS(3))when (RTT_SHF='1');

------

------Y_OUT(7) <= MUX2(LEVEL_C(15), LEVEL_C(7), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(TT, LEVEL_C(7), NUM_SHFTS(3))when (RTT_SHF='1');

------

--------**************

------

------Y_OUT(8) <= MUX2(LEVEL_C(0), LEVEL_C(8), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(0), TT, NUM_SHFTS(3))when (RTT_SHF='1');

------

------Y_OUT(9) <= MUX2(LEVEL_C(1), LEVEL_C(9), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(1),TT, NUM_SHFTS(3))when (RTT_SHF='1');

------

------Y_OUT(10) <= MUX2(LEVEL_C(2), LEVEL_C(10), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(2), TT, NUM_SHFTS(3))when (RTT_SHF='1') ;

------

------Y_OUT(11) <= MUX2(LEVEL_C(3), LEVEL_C(11), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(3), TT, NUM_SHFTS(3))when (RTT_SHF='1');  

------

------Y_OUT(12) <= MUX2(LEVEL_C(4), LEVEL_C(12), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(4), TT, NUM_SHFTS(3))when (RTT_SHF='1'); 

------

------Y_OUT(13) <= MUX2(LEVEL_C(5), LEVEL_C(13), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(5), TT, NUM_SHFTS(3))when (RTT_SHF='1');

------

------

------Y_OUT(14) <= MUX2(LEVEL_C(6), LEVEL_C(14), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(6), TT, NUM_SHFTS(3))when (RTT_SHF='1');
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------

------Y_OUT(15) <= MUX2(LEVEL_C(7), LEVEL_C(15), NUM_SHFTS(3))when 
(RTT_SHF='0')

------else MUX2(LEVEL_C(7), TT, NUM_SHFTS(3))when (RTT_SHF='1');

end architecture BRL_SFT_16;

8   RAP configuration control unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : CfgCtl.vhd

--  Title              : RAP configuration control unit

--  Description        : To control the implementation of all arithmatic 
and logical operation. Additionally,

--    : it controls the implemntation of the 
booth multiplier on the ALU.

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : Ahdl 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author   Revision         Comments

--        01/10/02  M. Ding   Rev 7 By A. ALsolaim            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

-------------------------------------------------------------------

-- RAP CONFGI_BITSEIGHT_ONE='0'EIGHT_ONE='1'EIGHT_ONE='1'
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-- (LOGICAL)  CARY_IN='0 ' CARY_IN='1'

------------------------------------------------------------------

-- 0 X AND Y X + Y + CARY_IN 

-- 1 X NAND Y X - Y - CARY_IN 

-- 2 X OR Y X*y

-- 3 X NOR Y x/y  --not used now

-- 4 X XOR Y X + 1 X + 1 

-- 5 X XNOR Y X - 1 X - 1 

-- 6 NOT X MAX(x,y) 

-- 7 NOT Y Min(x,y)

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity CfgCtl is 

generic (RAP_CONFIG_BITS_WIDTH: integer:=22;

CFGCTRL_DATA_PATH_WIDTH: integer:=8);

port (

RapCfg: in std_logic_vector( RAP_CONFIG_BITS_WIDTH -1 
downto 0);

BoothX : in std_logic_vector( CFGCTRL_DATA_PATH_WIDTH-1 
downto 0); 

Py : in std_logic;

Pa : in std_logic;

clk : in std_logic;

--start: in std_logic;

en : in std_logic;

DIR_X : out STD_LOGIC; 

DIR_Y : out STD_LOGIC; 

NUM_SHFTS_X : out STD_LOGIC_VECTOR (2 downto 0);

NUM_SHFTS_Y : out STD_LOGIC_VECTOR (2 downto 0);

YSel : out STD_LOGIC_VECTOR (1 downto 0);

XSel : out STD_LOGIC_VECTOR (1 downto 0);

RTT_SHF_X: out STD_LOGIC:='1'; --0 Rotate 1 Shift

RTT_SHF_Y: out STD_LOGIC:='1'; --0 Rotate 1 Shift

ARTH_LOGC_X: out std_logic:='0'; -- 1 Arithmatic 0 logical

ARTH_LOGC_Y: out std_logic:='0'; -- 1 Arithmatic 0 logical

ASel : out STD_LOGIC_VECTOR (1 downto 0);

ALU_Op : out  STD_LOGIC_VECTOR (2 downto 0);

StateCnt: out std_logic_vector(1 downto 0) 

);

end CfgCtl;

--RAPCfg Words 
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--0 1 2  |3 4 |5 6 |7 8 |9    |10 11 12|13   |14 15 16|17 | 

--ALU_OP |XSel|YSel|ASel|X_dir|X_Shft  |y_dir|Y_Shft  |ext|

architecture CfgCtl of CfgCtl is

component BoothDec 

port (

Din : in std_logic_vector(2 downto 0);

Dout :out std_logic_vector(1 downto 0);

P_N : out std_logic

);

end component;

signal cnt :integer range 0 to 3;

signal BoothCodeX, BoothCodeY,Op :std_logic_vector(2 downto 0);

signal BoothDecodeX,BoothDecodeY :std_logic_vector(1 downto 0);

signal Pxy:std_logic_vector(1 downto 0);

signal Px, P_NX, P_NY :std_logic;

signal LOG_ARITH :std_logic;

begin

U1_BoothDec: BoothDec

port map(

din=>BoothCodeX,

dout=>BoothDecodeX,

P_N=>P_NX);

U2_BoothDec: BoothDec

port map(

din=>BoothCodeY,

dout=>BoothDecodeY,

P_N=>P_NY);

counter:process(clk,en)   -- Changed the Start signal to en -- 
removed the Start signal from the ports.

begin

if(en='0')then

cnt<=3;

elsif(clk'event and clk='1')then

case cnt is

when 3=>

cnt<=0;

when 2=>
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cnt<=3;

when 1=>

cnt<=2;

when 0=>

cnt<=1;

when others=>

cnt<=0;

end case;

end if;

end process;

StateCnt<=conv_std_logic_vector(cnt,2);

ShftGen:process(cnt,BoothX,en)

begin

if(en='1')then

case cnt is

when 0 =>

BoothCodeY<=BoothX(1 downto 0) & '0';

BoothCodeX<=BoothX(3 downto 1);

when 1=>

BoothCodeY<=BoothX(5 downto 3);

BoothCodeX<="000";

when 2=>

BoothCodeY<=BoothX(7 downto 5);

BoothCodeX<="000";

when others =>

null;

end case;

end if;

end process;

LOG_ARITH<=RapCfg(17);

--RAPCfg Words 

--0 1 2  |3 4 |5 6 |7 8 |9    |10 11 12|13   |14 15 16|17 |

--ALU_OP |XSel|YSel|ASel|X_dir|X_Shft  |y_dir|Y_Shft  |LOG_ARITH|

Op<=RapCfg(2 downto 0);

process(clk)--, LOG_ARITH,Op,cnt,BoothDecodeY)**************

begin

if(LOG_ARITH='0')then

Ysel<=RapCfg(6 downto 5);

NUM_SHFTS_Y<=RapCfg(16 downto 14);

Dir_Y<=RapCfg(13); 

RTT_SHF_X<=RapCfg(18) ; --0 Rotate 1 Shift

ARTH_LOGC_X<=RapCfg(19);   -- 1 Arithmatic 0 logical

elsif(clk'event and clk='1')then
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dir_y<='0';

RTT_SHF_X<='1' ; --0 Rotate 1 Shift

ARTH_LOGC_X<='0';   -- 1 Arithmatic 0 logical

case Op is

when "010"=>

case cnt is 

when 0=>

case BoothDecodeY is

when "00"=>

YSel<="11";

NUM_SHFTS_Y<="000";

when "01"=>

YSel<="01";

NUM_SHFTS_Y<="000";

when "10"=>

Ysel<="01";

NUM_SHFTS_Y<="001";

when others=>

null;

end case;

when 1=>

case BoothDecodeY is

when "00"=>

YSel<="11";

NUM_SHFTS_Y<="100";

when "01"=>

YSel<="01";

NUM_SHFTS_Y<="100";

when "10"=>

Ysel<="01";

NUM_SHFTS_Y<="101";

when others=>

null;

end case;

when 2=>

case BoothDecodeY is

when "00"=>

YSel<="11";

NUM_SHFTS_Y<="110";

when "01"=>

YSel<="01";

NUM_SHFTS_Y<="110";

when "10"=>
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Ysel<="01";

NUM_SHFTS_Y<="111";

when others=>

null;

end case;

when others=>

null;

end case;

when "110"=>

Ysel<="00";

NUM_SHFTS_Y<="000";

when "111"=>

Ysel<="00";

Num_SHFTS_Y<="000";

when others=>

Ysel<="00";

Num_SHFTS_Y<="000";

end case;

end if;

end process;

--RAPCfg Words 

--0 1 2  |3 4 |5 6 |7 8 |9    |10 11 12|13   |14 15 16|17 |

--ALU_OP |XSel|YSel|ASel|X_dir|X_Shft  |y_dir|Y_Shft  |LOG_ARITH|

process(clk)--, LOG_ARITH,Op,cnt,BoothDecodeX)

begin

if(LOG_ARITH='0')then 

Xsel<=RapCfg(4 downto 3);

NUM_SHFTS_X<=RapCfg(12 downto 10);

Dir_X<=Rapcfg(9);

RTT_SHF_Y<=RapCfg(20) ; --0 Rotate 1 Shift

ARTH_LOGC_Y<=RapCfg(21);   -- 1 Arithmatic 0 logical

elsif(clk'event and clk='1')then

dir_x<='0';

RTT_SHF_Y<='1' ; --0 Rotate 1 Shift

ARTH_LOGC_Y<='0';   -- 1 Arithmatic 0 logical

case Op is 

when "010" => 

case cnt is 

when 0=>

case BoothDecodeX is

when "00"=>
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XSel<="11";

NUM_SHFTS_X<="000";

when "01"=>

XSel<="01";

NUM_SHFTS_X<="010";

when "10"=>

Xsel<="01";

NUM_SHFTS_X<="011";

when others=>

null;

end case;

when 1|2=>

XSel<="10";

NUM_SHFTS_X<="000";

when others=>

null;

end case;

when "110"=>

Xsel<="00";

NUM_SHFTS_X<="000";

when "111"=>

Xsel<="00";

NUM_SHFTS_X<="000";

when others =>

Xsel<="00";

NUM_SHFTS_X<="000";

end case;

end if;

end process;

process(clk)--LOG_ARITH,Op, clk, cnt,P_NX,P_NY)

variable XY : std_logic;

begin

if(LOG_ARITH='1')then

case Op is

when "010"=>

if(clk'event and clk='1')then

XY:=P_NX xor P_NY;

case cnt is

when 0=>

if(XY='1')then

ALU_op<="001";
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else

ALU_Op<="000";

end if;

when 1|2=>

if(P_NY='1')then

ALU_Op<="001";

else 

ALU_Op<="000";

end if;

when others=>

null;

end case;

end if;

when "110"|"111"=>

Alu_op<="001";

when others=>

Alu_op<=Op;

end case;

else

Alu_op<=Op;

end if;

end process;

Px<=BoothX(7);

Pxy<=Px & Py;

process(clk)--Op, Pxy,Pa, cnt,clk, P_NX)

begin

if(LOG_ARITH='1')then

case Op is

when "010"=>

if(clk'event and clk='1')then

case cnt is

when 0=>

if(P_NX='0')then

ASel<="00";

else

ASel<="11";

end if;

when 1|2=>

ASel<="00";

when others=>

null;

end case;

end if;
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when "110"=>

case Pxy is

when "01"=>

Asel<="01";

when "10"=>

ASel<="10";

when "00"|"11"=>

Asel<=Pa &(not Pa);

when others=>

null;

end case;

when "111"=>

case Pxy is

when "01"=>

Asel<="10";

when "10"=>

ASel<="01";

when "00"|"11"=>

Asel<=(not Pa)& Pa;

when others=>

null;

end case;

when others=>

ASel<="00";

end case;

else ASel<="00";

end if;

end process;

end CfgCtl;

9   Configurable Linear Feedback Shift Regester Unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : CLFSR.vhd

--  Title              : Configurable Linear Feedback Shift Regester Unit
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--  Description        : 16-bit linear shift regester for generation of 
PN and other codes

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments

--        04/28/02  Ahmad Aloslaim   Rev 11            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;

entity CLFSR is  

Generic(CLFSR_CONFIG_BITS_WIDTH: integer :=8;DATA_PATH_WIDTH: 
integer:=16);

port(

CLFSR_CLK: in std_logic; --Clock  

CLFSR_CLR: in std_logic; --Clear

CLFSR_ENABLE: in std_logic; -- Enable 

CLFSR_CONFIG_BITS: in 
std_logic_vector(CLFSR_CONFIG_BITS_WIDTH-1 downto 0);

-- the configuration bits are as follows:

--The lower 3 bit for the POLY of the lsr. and the upper

--three are for the 2or3 stages option, left or midel loca-
tion, and right or midel location.

-- the upper bits are A, B, and C are used to configure the 
MUXs.

-- A bit 5 (MSB) is for the length of the Shift Regester. 
'0' means two reg

-- and '1' means three reg.
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-- B is used to indacate if the last stage is fed from out-
side or

-- is febback from the regs to the right. 

--C is used to control wither the shift reg is to be fed 
from the right

-- or not. 

-- the last two bits are used to select the input and 
output of the SLR.

-- For bit 6, 0 means the SLR is connected to the nighbor 
SLR. 

-- 1 means that the input is from the input_interface.

-- For bit 7, 0 means the SLR is connected to the nighbour 
SLR

-- 1 means the SLR will write it output in 16-bit words 
(Serial2Parallel)

-- that can be routed to RAM or to OUT_inface.   

-- 7 6 5
4 3 2 1 0

-- 1=>out_RGT_161=>IN_LFT_16A MUXB MUXC MUX POLY3 POLY2   
POLY1

-- 0=>OUT_RGT_10=>IN_LFT_1

-- INPUTS AND OUTPUTS 

CLFSR_IN_16: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0);

CLFSR_IN_1_LFT: in std_logic;

CLFSR_IN_1_RHT: in std_logic;

CLFSR_OUT_16: out  std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

CLFSR_OUT_1_LFT:out std_logic;

CLFSR_OUT_1_RGT: out std_logic;

NEW_DATA_ARVD_FROM_CLFSR: out std_logic

);

end entity;

architecture BEHAV of CLFSR is

signal CLFSR_IN_LEFT: std_logic; 

signal CLFSR_IN_RIGHT: std_logic;

signal CLFSR_OUT_LEFT: std_logic;
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signal CLFSR_OUT_RIGHT: std_logic:='0';  

component SERL2PARALL 

port ( 

CLK: in std_logic; 

RESET: in std_logic;

ENABLE: in STD_LOGIC;

SERIAL: in std_logic;

PARALL: out std_logic_vector (DATA_PATH_WIDTH-1 
downto 0)

);

end component;

component PRLL2SRL 

generic (DATA_PATH_WIDTH: integer:=16);

port ( 

CLK: in std_logic;

PARALL: in std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

SERIAL: out std_logic

);

end component;

component ffd

port (

CLR : in std_logic;

CE : in std_logic;

CLK : in std_logic;

DATA : in std_logic;

Q : out std_logic

);

end component ;

component mux is

port (

EN : in std_logic;

I1 : in std_logic;

I2 : in std_logic;

S : in std_logic;

O : out std_logic

);

end component ;

component xnor_gate is

port (
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I0 : in STD_LOGIC;

I1 : in STD_LOGIC;

O : out STD_LOGIC

);

end component ;  

component buff is

port (

EN : in std_logic;

I : in std_logic;

O : out std_logic

);

end component;

signal  D1: std_logic;

signal  Q1: std_logic ;

signal  D2: std_logic ;

signal  Q2: std_logic ;

signal  Y1: std_logic ;

signal  X1: std_logic ;

signal  Y2: std_logic ;

signal  X2: std_logic ;

signal  Y3: std_logic ;

signal  M1: std_logic ;

signal  M2: std_logic ; 

signal  M3: std_logic ;

signal  T1: std_logic:='0' ;

signal TEMP_P2S: std_logic;

signal TEMP_S2P: std_logic_vector (DATA_PATH_WIDTH-1 downto 0);  

signal TEMP_CLFSR_OUT_16:  std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

begin 

p2s: PRLL2SRL 

port map( 

CLK=>CLFSR_CLK ,

PARALL=>CLFSR_IN_16 ,

SERIAL=>TEMP_P2S

); 

s2p: SERL2PARALL 
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port map( 

CLK=>CLFSR_CLK,

RESET =>  CLFSR_CLR,

ENABLE => CLFSR_ENABLE,

SERIAL=>CLFSR_OUT_RIGHT,

PARALL=>TEMP_CLFSR_OUT_16

);

--inputConnection: process (CLFSR_CONFIG_BITS(6),CLFSR_CLK) is

-- begin  

-- if rising_edge(CLFSR_CLK) then

-- if CLFSR_CONFIG_BITS(6)='0' then

-- CLFSR_IN_LEFT<=CLFSR_IN_1_LFT;

-- CLFSR_IN_RIGHT <=CLFSR_IN_1_RHT ; 

-- else if CLFSR_CONFIG_BITS(6)='1' then 

-- CLFSR_IN_LEFT<=TEMP_P2S;

-- CLFSR_IN_RIGHT <=CLFSR_IN_1_RHT; 

-- end if;

-- end if; 

-- end if;

-- end process;

MUX_IN_LFT: mux  

port map (

EN => CLFSR_ENABLE,

I1 => TEMP_P2S,

I2 =>CLFSR_IN_1_LFT,

S =>CLFSR_CONFIG_BITS(6),

O => CLFSR_IN_LEFT

);

CLFSR_IN_RIGHT <=CLFSR_IN_1_RHT; 

-- MUX_IN_RIGHT: mux   --- not needed

-- port map (

-- EN => CLFSR_ENABLE,

-- I1 =>CLFSR_IN_1_RHT,

-- I2 =>CLFSR_IN_1_RHT,

-- S =>CLFSR_CONFIG_BITS(6),

-- O => CLFSR_IN_RIGHT

-- );  
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-- OutputConnection: process (CLFSR_CONFIG_BITS(7),CLFSR_CLK) 
is

-- begin

--  if rising_edge(CLFSR_CLK) then

-- if CLFSR_CONFIG_BITS(7)='0' then

-- CLFSR_OUT_1_LFT<= CLFSR_OUT_LEFT;

-- CLFSR_OUT_1_RGT<= CLFSR_OUT_RIGHT ;

--

-- else if CLFSR_CONFIG_BITS(7)='1' then 

-- CLFSR_OUT_1_LFT<= CLFSR_OUT_LEFT;

-- TEMP_CLFSR_OUT_16 <= TEMP_S2P ; 

-- end if;

-- end if;

-- end if;

-- end process;

-- MUX_OUT_LFT: mux   --not needed

-- port map (

-- EN => CLFSR_ENABLE,

-- I1 =>CLFSR_OUT_LEFT,

-- I2 =>CLFSR_OUT_LEFT,

-- S =>CLFSR_CONFIG_BITS(7),

-- O => CLFSR_OUT_1_LFT

-- );  

-- TEMP_CLFSR_OUT_16 <= TEMP_S2P ; 

CLFSR_OUT_1_LFT<= CLFSR_OUT_LEFT; 

CLFSR_OUT_1_RGT<= CLFSR_OUT_RIGHT ; 

--MUX_OUT_RIGHT: mux  

-- port map (

-- EN => CLFSR_ENABLE,

-- I1 =>CLFSR_OUT_RIGHT,

-- I2 =>TEMP_S2P,

-- S =>CLFSR_CONFIG_BITS(7),

-- O => CLFSR_OUT_1_RGT

-- );
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--

CLFSR_OUT_RIGHT <= T1;

FF1: ffd

port map (

CLR => CLFSR_CLR,

CE  => CLFSR_ENABLE,

CLK => CLFSR_CLK,

DATA => D1,

Q => Q1

);

FF2: ffd

port map (

CLR => CLFSR_CLR,

CE  => CLFSR_ENABLE,

CLK => CLFSR_CLK,

DATA => D2,

Q => Q2

);

FF3: ffd

port map (

CLR => CLFSR_CLR,

CE  => CLFSR_ENABLE,

CLK => CLFSR_CLK,

DATA => Q2,

Q => T1

);

------------------------------

MUX1: mux  

port map (

EN => CLFSR_ENABLE,

I1 =>Q1,

I2 =>M2,

S =>CLFSR_CONFIG_BITS(5),
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O => D2

);  

MUX2: mux  

port map (

EN => CLFSR_ENABLE,

I1 =>M1,

I2 =>X2,

S =>CLFSR_CONFIG_BITS(5),

O => CLFSR_OUT_LEFT

);

MUX3: mux  

port map (

EN => CLFSR_ENABLE,

I1 =>CLFSR_IN_LEFT,

I2 =>M1,

S =>CLFSR_CONFIG_BITS(4),

O => D1

); 

MUX4: mux  

port map (

EN => CLFSR_ENABLE,

I1 =>CLFSR_IN_LEFT,

I2 =>X2,

S =>CLFSR_CONFIG_BITS(4),

O => M2

); 

MUX5: mux  

port map (

EN => CLFSR_ENABLE,

I1 =>X1,

I2 =>T1,

S =>CLFSR_CONFIG_BITS(3),

O => M3

);    

-------------------------------------------------
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XNOR1: xnor_gate 

port map (

I0 => Y3,

I1 =>X2,

O =>M1

);

XNOR2: xnor_gate 

port map (

I0 => Y2,

I1 => M3,

O =>X2

);   

XNOR3: xnor_gate 

port map (

I0 => Y1,

I1 => CLFSR_IN_RIGHT,

O =>X1

); 

---------------------------

P3: buff 

port map(

EN  =>CLFSR_CONFIG_BITS(2),

I =>Q1 ,

O=> Y3

);

P2: buff 

port map (

EN  => CLFSR_CONFIG_BITS(1),

I =>Q2 ,

O => Y2

); 

P1: buff 

port map(

EN  => CLFSR_CONFIG_BITS(0),

I =>T1,

O =>Y1

);
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process (CLFSR_CLK)

begin

if rising_edge(CLFSR_CLK) then

CLFSR_OUT_16 <=TEMP_CLFSR_OUT_16;

end if;

end process;

Process  (TEMP_CLFSR_OUT_16 ,CLFSR_CLK)

variable TEMP_CLFSR_OUT: std_logic_vector( 
DATA_PATH_WIDTH-1 downto 0);

variable CLK_CYCLE: integer:=0;

begin

if falling_edge(CLFSR_CLK)then

NEW_DATA_ARVD_FROM_CLFSR<='0';

end if;  

if ( TEMP_CLFSR_OUT/=TEMP_CLFSR_OUT_16) then

NEW_DATA_ARVD_FROM_CLFSR<='1';

end if;

TEMP_CLFSR_OUT:=TEMP_CLFSR_OUT_16;

end process;

end architecture ;

10   Configurable Linear Feedback Shift Regester 
interface Unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : CLFSR_INFACE.vhd

--  Title              : Configurable Linear Feedback Shift Regester 
interface Unit

--  Description        : 
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--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments

--        04/29/02  Ahmad Aloslaim   Rev 10            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;

entity CLFSR_INFACE is 

generic (CLFSR_INFACE_CONFIG_BITS_WIDTH: integer:=2;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

CLFSR_INFACE_CONFIG_BITS: in std_logic_vector 
(CLFSR_INFACE_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 
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-- data Out lines. PN code in 16 bis word every 16 cycles

CLFSR_INPUT: out std_logic_vector(DATA_PATH_WIDTH-1 downto 
0) 

);

end entity;   

Architecture BEHAV of CLFSR_INFACE is

begin

process (RPU_IN_FACE_1,RPU_IN_FACE_2,RPU_IN_FACE_3)

begin

case 
conv_integer(CLFSR_INFACE_CONFIG_BITS(CLFSR_INFACE_CONFIG_BITS_WIDTH-
1 downto 0))is 

when 0 =>CLFSR_INPUT<= RPU_IN_FACE_1;  

when 1 =>CLFSR_INPUT<= RPU_IN_FACE_2; 

when 2 =>CLFSR_INPUT<= RPU_IN_FACE_3;  

when others =>null;

end case;

end process;  

end BEHAV;

11   16-bit Full Adder unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : FA16.vhd

--  Title              : Full Adder.

--  Description        : 16-bit Full Adder unit.
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--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author   Revision         Comments

--        01/10/02  A. Alsolaim   Rev 1            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

Library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_ARITH.all;

entity fa16 is

generic (DATA_BIT_WIDTH :integer:=16);

port (

CIN:in std_logic;

a,b :in std_logic_vector(DATA_BIT_WIDTH-1 downto 0);

S: out std_logic_vector(DATA_BIT_WIDTH-1 downto 0);

cout: out std_logic);

end fa16;

architecture fa16 of fa16 is

component fa1

port (CIN, A, B : in std_logic;

S, COUT: out std_logic);

end component;

signal one,zero:std_logic;

signal ci :std_logic_vector (DATA_BIT_WIDTH-1 downto 0);

begin

one<='1';

zero<='0';

adder8:for i in 0 to DATA_BIT_WIDTH-1 generate

bit0 : if (i = 0) generate

b0 : fa1
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port map (CIN =>cin, A =>a(0) , B =>b(0) , S => s(0), 
COUT => ci(0));

end generate;

bitm : if (i > 0)  generate

bm : fa1

port map (CIN =>ci(i-1), A => a(i), B =>b(i) , S => 
s(i), COUT => ci(i));

end generate;

end generate;

cout<=ci(DATA_BIT_WIDTH-1);

end fa16;

12   DRPU input interface unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : IN_FACE.vhd

--  Title              : DRPU input interface unit.

--  Description        : The DRPU 16-bit input interface unit. It select 
three

--                     : out of the five possible incoming signals. 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        04/5/02  A. Alsolaim   Rev 15            

--                         

---------------------------------------------------------------------
---------
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---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity  IN_FACE is

generic (IN_FACE_CONFIG_BITS_WIDTH: integer:=5;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

--Control signals

IN_FACE_CONFIG_BITS: in 
std_logic_vector(IN_FACE_CONFIG_BITS_WIDTH-1 downto 0);

INFACE_RESET: in std_logic;  --Active high

CLK: in std_logic;

CARRY_IN_FROM_N:in std_logic;

CARRY_IN_FROM_S:in std_logic;

CARRY_IN_FROM_E:in std_logic;

CARRY_IN_FROM_W:in std_logic;

SRART_HOLD_FROM_N: in std_logic; 

SRART_HOLD_FROM_S: in std_logic;

SRART_HOLD_FROM_W: in std_logic;

SRART_HOLD_FROM_E: in std_logic; 

--Data lines from glocal communication channels

IN_G_1_BUS: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_G_2_BUS: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

-- Data lines from neighboring RPU

IN_N_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_S_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_W_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_E_RPU: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');
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---------------- OUTPUT SIGNALS----------------------- 

--Done signals from neighboring RPU to local control

RPU_START_HOLD_FROM_X: out std_logic_vector(3 downto 
0):=(others=>'0'); --START from NSWE respectively 

RPU_CARRY_IN_1:out std_logic;

RPU_CARRY_IN_2:out std_logic;

--RPU_CARRY_IN_FROM_E:out std_logic;

-- RPU_CARRY_IN_FROM_W:out std_logic;

-- Data lines selected from neighboring RPU and global going 
to the RAPS

RPU_IN_FACE_1: inout std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); --changed to inout to enable the new_data 
process to read them.

RPU_IN_FACE_2: inout std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); 

RPU_IN_FACE_3: inout std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); 

NEW_DATA_ARVD_1: out std_logic:='0';

NEW_DATA_ARVD_2: out std_logic:='0';

NEW_DATA_ARVD_3: out std_logic:='0'

);

end IN_FACE; 

architecture  BEHAV of IN_FACE is

begin  

--for the clock and control signals it is only a direct connection

-- the ATART_HOLD signals are passed to the local control
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RPU_START_HOLD_FROM_X <= SRART_HOLD_FROM_N & SRART_HOLD_FROM_S & 
SRART_HOLD_FROM_W & SRART_HOLD_FROM_E; 

-- RPU_CARRY_IN_FROM_N<= CARRY_IN_FROM_N;

-- RPU_CARRY_IN_FROM_S <= CARRY_IN_FROM_S;

-- RPU_CARRY_IN_FROM_E <= CARRY_IN_FROM_E;

-- RPU_CARRY_IN_FROM_W<= CARRY_IN_FROM_W;

-- the Data lines entering the RPU are selected based on the confi 
bits.

-- we will use case inside a process.

-----------------------------------

-- config number  RPU_IN_1RPU_IN_2RPU_IN_3   CARY1 CARY2  

-- 0 N S
W    N    S

-- 1 N S
E   N    S

-- 2 N S
G1    N    S

-- 3  N S
G2    N    S

-------------   

-- 4 N W
E    N    W

-- 5 N W
G1    N    W

-- 6 N W
G2    N    W

-------------

-- 7 N E
G1    N    E

-- 8 N E
G2    N    E

-------------

-- 9 N G1
G2    N    E

---------------------------------------------------

-- 10 S W
E    S    W

-- 11 S W
G1    S    W
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-- 12 S W
G2   S    W

-------------   

-- 13 S E
G1    S    E

-- 14 S E
G2   S    E

-------------

-- 15 S G1
G2   S    S

-----------------------------------------------------

-- 16 W E
G1   W    E

-- 17 W E
G2   W    E

-----------

-- 18 W G1
G2   W    W

------------------------------------------------

-- 19 E G1
G2   E    E

process 
(IN_N_RPU,IN_S_RPU,IN_W_RPU,IN_E_RPU,IN_G_1_BUS,IN_G_2_BUS)

begin

case conv_integer(IN_FACE_CONFIG_BITS)is 

when 0 =>RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_S_RPU; RPU_IN_FACE_3<= IN_W_RPU; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_S;

when 1 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_S_RPU; RPU_IN_FACE_3<= IN_E_RPU; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_S;

when 2 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_S_RPU; RPU_IN_FACE_3<= IN_G_1_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_S;

when 3 =>RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_S_RPU; RPU_IN_FACE_3<= IN_G_2_BUS; 
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RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_S;

----------------------

when 4 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_W_RPU; RPU_IN_FACE_3<= IN_E_RPU;   

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W;

when 5 =>RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_W_RPU; RPU_IN_FACE_3<= IN_G_1_BUS;

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W;

when 6 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_W_RPU; RPU_IN_FACE_3<= IN_G_2_BUS;

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W;

----------------------------

when 7 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_E_RPU; RPU_IN_FACE_3<= IN_G_1_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

when 8 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_E_RPU; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

--------------

when 9 => RPU_IN_FACE_1<= IN_N_RPU;  RPU_IN_FACE_2<= 
IN_G_1_BUS; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_N ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

----------------------------------------------------
----------------------------------------------

when 10 =>RPU_IN_FACE_1<= IN_S_RPU;  RPU_IN_FACE_2<= 
IN_W_RPU; RPU_IN_FACE_3<= IN_E_RPU;  

RPU_CARRY_IN_1 <= CARRY_IN_FROM_S ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W;

when 11 => RPU_IN_FACE_1<= IN_S_RPU;  RPU_IN_FACE_2
<= IN_W_RPU; RPU_IN_FACE_3<= IN_G_1_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_S ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W;

when 12 => RPU_IN_FACE_1<= IN_S_RPU;  RPU_IN_FACE_2
<= IN_W_RPU; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_S ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W;

----------------------------

when 13 => RPU_IN_FACE_1<= IN_S_RPU;  RPU_IN_FACE_2
<= IN_E_RPU; RPU_IN_FACE_3<= IN_G_1_BUS; 
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RPU_CARRY_IN_1 <= CARRY_IN_FROM_S ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

when 14 => RPU_IN_FACE_1<= IN_S_RPU;  RPU_IN_FACE_2
<= IN_E_RPU; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_S ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

--------------------

when 15 => RPU_IN_FACE_1<= IN_S_RPU;  RPU_IN_FACE_2
<= IN_G_1_BUS; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_S ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_S;

----------------------------------------------------
-------------------------------------------------

when 16 => RPU_IN_FACE_1<= IN_W_RPU;  RPU_IN_FACE_2
<= IN_E_RPU; RPU_IN_FACE_3<= IN_G_1_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_W ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

when 17 => RPU_IN_FACE_1<= IN_W_RPU;  RPU_IN_FACE_2
<= IN_E_RPU; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_W ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

------------------------

when 18 => RPU_IN_FACE_1<= IN_W_RPU;  RPU_IN_FACE_2
<= IN_G_1_BUS; RPU_IN_FACE_3<= IN_G_2_BUS;

RPU_CARRY_IN_1 <= CARRY_IN_FROM_W ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_W; 

----------------------------------------------------
-------------------------------------------------

when 19 => RPU_IN_FACE_1<= IN_E_RPU;  RPU_IN_FACE_2
<= IN_G_1_BUS; RPU_IN_FACE_3<= IN_G_2_BUS; 

RPU_CARRY_IN_1 <= CARRY_IN_FROM_E ; RPU_CARRY_IN_2 <= 
CARRY_IN_FROM_E;

when others =>RPU_IN_FACE_1<= (others=>'0');  
RPU_IN_FACE_2<= (others=>'0'); RPU_IN_FACE_3<= (others=>'0');

end case;

end process;

Process  (RPU_IN_FACE_1,CLK)

variable TEMP_RPU1: std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

variable TEMP_DATA_ARVD: std_logic:='0';

variable CLK_CYCLE: integer:=0;
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begin

if rising_edge(CLK) then 

if (TEMP_RPU1/=RPU_IN_FACE_1 ) then

NEW_DATA_ARVD_1<='1';

TEMP_DATA_ARVD:='1';

elsif TEMP_DATA_ARVD='1' then

NEW_DATA_ARVD_1<='0';

end if;

TEMP_RPU1:=RPU_IN_FACE_1;

end if;

end process;

Process  (RPU_IN_FACE_2,CLK)

variable TEMP_RPU2: std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

variable TEMP_DATA_ARVD: std_logic:='0';

variable CLK_CYCLE: integer:=0;

begin

if rising_edge(CLK) then 

if (TEMP_RPU2/=RPU_IN_FACE_2 ) then

NEW_DATA_ARVD_2<='1';

TEMP_DATA_ARVD:='1';

elsif TEMP_DATA_ARVD='1' then

NEW_DATA_ARVD_2<='0';

end if;

TEMP_RPU2:=RPU_IN_FACE_2;

end if;

end process;

Process  (RPU_IN_FACE_3,CLK)

variable TEMP_RPU3: std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

variable TEMP_DATA_ARVD: std_logic:='0';

variable CLK_CYCLE: integer:=0;

begin

if rising_edge(CLK) then 

if (TEMP_RPU3/=RPU_IN_FACE_3 ) then

NEW_DATA_ARVD_3<='1';
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TEMP_DATA_ARVD:='1';

elsif TEMP_DATA_ARVD='1' then

NEW_DATA_ARVD_3<='0';

end if;

TEMP_RPU3:=RPU_IN_FACE_3;

end if;

end process;

-- Process  (RPU_IN_FACE_1,CLK)

-- variable TEMP_RPU1: std_logic_vector( 
DATA_PATH_WIDTH-1 downto 0);

-- variable CLK_CYCLE: integer:=0;

-- begin  

-- if (TEMP_RPU1/=RPU_IN_FACE_1 ) then

-- NEW_DATA_ARVD_1<='1';

-- end if;

-- if falling_edge(CLK)then

-- NEW_DATA_ARVD_1<='0';

--

-- end if;

-- TEMP_RPU1:=RPU_IN_FACE_1;

-- end process;

Process  (RPU_IN_FACE_2 ,CLK)

variable TEMP_RPU2: std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

variable CLK_CYCLE: integer:=0;

begin  

if ( TEMP_RPU2/=RPU_IN_FACE_2) then

NEW_DATA_ARVD_2<='1';

end if;

if falling_edge(CLK)then

NEW_DATA_ARVD_2<='0';

end if;

TEMP_RPU2:=RPU_IN_FACE_2;
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end process;

Process  (RPU_IN_FACE_3 ,CLK)

variable TEMP_RPU3: std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

variable CLK_CYCLE: integer:=0;

begin  

if ( TEMP_RPU3/=RPU_IN_FACE_3) then

NEW_DATA_ARVD_3<='1';

end if;

if falling_edge(CLK)then

NEW_DATA_ARVD_3<='0';

end if;

TEMP_RPU3:=RPU_IN_FACE_3;

end process;

end BEHAV;

13   DRPU output interface unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : OUT_FACE.vhd

--  Title              : DRPU output interface unit.

--  Description        : The DRPU output interface unit. It is a 16-bit 
regester 

--                     : with scaling and delay cababilities.

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93
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---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        04/15/02  A. Alsolaim   Rev 12            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity  OUT_FACE is

generic ( OUT_FACE_CONFIG_BITS_WIDTH: integer:=12;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

--Control signals

TO_OTHER_RPU_START :in std_logic;

OUT_FACE_CLK:in std_logic;

RAP_1_OUT : in std_logic_vector(DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

RAM_A_OUT : in std_logic_vector(DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

-- RAM_1_B_OUT : in 
std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

--FROM CLFSR and CSDP

CLFSR_OUT_16: in  std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); 

SPRD_OUT : in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0):=(others=>'0') ;

--line directly from input

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); 

-- Configuration bits;
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OUT_FACE_CONFIG_BITS: in 
std_logic_vector(OUT_FACE_CONFIG_BITS_WIDTH-1 downto 0):=(oth-
ers=>'0');

-------------------------- OUTPUT SIGNALS ---------------

RPU_OUT_1_GBUS : out std_logic_vector ( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

RPU_OUT_2_GBUS : out std_logic_vector ( DATA_PATH_WIDTH-1 
downto 0):=(others=>'0'); 

IN_N_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_S_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_W_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

IN_E_RPU: out std_logic_vector( DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

RPU_START_HOLD_E: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_W: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_N: out std_logic; --'1' start, '0' hold

RPU_START_HOLD_S: out std_logic --'1' start, '0' hold 

);

end OUT_FACE; 

architecture  BEHAV of OUT_FACE is 

Component SCALE_REG is

port (

D : in STD_LOGIC_VECTOR (15 downto 0);--DATA in

O : out STD_LOGIC_VECTOR (15 downto 0);  --DATA OUT

S : in STD_LOGIC_VECTOR (3 downto 0)  --Number of 
shifts

);

end component ;

signal SCLD_RAP: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

signal SCLD_RAM: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');
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signal DLYD_RAP: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

signal DLYD_RAM: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0):=(others=>'0');

signal SCALE: integer:=0;

signal DELAY: integer:=0;

signal SCALE_BIN: std_logic_vector(3 downto 0):=(others=>'0');

begin  

--ADD SCALING AND DELAY MODULE HERE. 

--This process calculates the delay and scale values.

ScaleAndDelayValues: Pro-
cess(OUT_FACE_CONFIG_BITS,RPU_IN_FACE_1(3 downto 0)) 

variable V_SCALE: integer:=0;

--

variable V_DELAY: integer:=0;

begin  

--Either scale by a fixed amount specified in the Configu-
ration

-- or scale based on the value of RPU_IN_FACE_1 MAX scale 
is bu 15 bits.

V_SCALE:= conv_integer(OUT_FACE_CONFIG_BITS(11 downto 
8));--scale RAPout and RAMout

--by scale value gevin in the configuration. if the value 
in the confiduration

-- value is 15, then use the RPU-1 input as a scale value. 

--same is true for the delay but it takes its value from 
RPU2. 

--MAX delay is 3 colck cycles through the configuration

V_DELAY:= conv_integer(OUT_FACE_CONFIG_BITS(7 downto 6));-
-))

if V_SCALE=15 then

V_SCALE:= conv_integer(RPU_IN_FACE_1(3 downto 0)); 

end if; 

-- no delay through RAPu2 will be avilable--if V_DELAY=3 
then

-- V_DELAY:= conv_integer(RPU_IN_FACE_2(3 
downto 0));

-- end if;

DELAY<= V_DELAY;

SCALE<= V_SCALE;

end process; 

process( SCALE) 

begin

SCALE_BIN<=conv_std_logic_vector(SCALE,4);

end process;
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-- Scaling is acomplished by SCALE_REG component 

ScaleRegRAP: SCALE_REG 

port map(

D => RAP_1_OUT,--DATA in

O => SCLD_RAP,  --DATA OUT

S => SCALE_BIN --Number of shifts

);

ScaleRegRAM: SCALE_REG 

port map(

D => RAM_A_OUT,--DATA in

O => SCLD_RAM,  --DATA OUT

S => SCALE_BIN --Number of shifts

);

RapDelayProc: process(OUT_FACE_CLK)

variable Num_Cycles:integer:=0;

variable TEMP_REG1: std_logic_vector(DATA_PATH_WIDTH-1 
downto 0);

variable TEMP_REG2: std_logic_vector(DATA_PATH_WIDTH-1 
downto 0);

variable TEMP_REG3: std_logic_vector(DATA_PATH_WIDTH-1 
downto 0);

begin  

if rising_edge(OUT_FACE_CLK)then

if DELAY= 0 then 

DLYD_RAP <= SCLD_RAP; 

elsif DELAY=1 then

DLYD_RAP<=TEMP_REG1;

TEMP_REG1:=SCLD_RAP;

elsif DELAY=2 then 

DLYD_RAP<=TEMP_REG2;

TEMP_REG2:=TEMP_REG1;

TEMP_REG1:=SCLD_RAP;

elsif DELAY=3 then 

DLYD_RAP<=TEMP_REG3; 
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TEMP_REG3:=TEMP_REG2;

TEMP_REG2:=TEMP_REG1;

TEMP_REG1:=SCLD_RAP;

end if;

end if;

end process;

RamDelayProc: process(OUT_FACE_CLK)

variable Num_Cycles:integer:=0;

variable TEMP_1: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

variable TEMP_2: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

variable TEMP_3: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

begin 

if rising_edge(OUT_FACE_CLK)then 

if DELAY= 0 then 

DLYD_RAM <= SCLD_RAM; 

elsif DELAY=1 then

DLYD_RAM<=TEMP_1;

TEMP_1:=SCLD_RAM;

elsif DELAY=2 then 

DLYD_RAM<=TEMP_2;

TEMP_2:=TEMP_1;

TEMP_1:=SCLD_RAM;

elsif DELAY=3 then 

DLYD_RAM<=TEMP_3; 

TEMP_3:=TEMP_2;

TEMP_2:=TEMP_1;

TEMP_1:=SCLD_RAM;

end if;

end if;

end process;
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---- -- no need to select on the START signals,

---- -- since one of the signal will be selected by the input 
interface.

---- process ( OUT_FACE_CONFIG_BITS)

---- begin

---- case conv_integer(OUT_FACE_CONFIG_BITS(1 downto 0)) 
is

---- -- sending the DONE signal to the other rpus

---- when 0 =>RPU_DONE_N <=CTRL_RAP_DONE;

---- when 1 => RPU_DONE_S <=CTRL_RAP_DONE;

---- when 2 =>RPU_DONE_W <=CTRL_RAP_DONE;

---- when 3 =>RPU_DONE_E <=CTRL_RAP_DONE;

---- when others =>null;

---- end case; 

process ( OUT_FACE_CONFIG_BITS)

begin

case conv_integer(OUT_FACE_CONFIG_BITS(1 downto 0)) is --
))

-- sending a START signal to other rpu 

when 0 =>RPU_START_HOLD_E <=TO_OTHER_RPU_START;

when 1 => RPU_START_HOLD_W <=TO_OTHER_RPU_START;

when 2 =>RPU_START_HOLD_N <=TO_OTHER_RPU_START;

when 3 => RPU_START_HOLD_S <=TO_OTHER_RPU_START;

when others =>null;

end case;   

end process;

--this process will rout the output of RAP and RAM_port-A  

--also will route the inputs from the IN_FACEe (when the RPU is 
only routing)

DataOut: process ( OUT_FACE_CONFIG_BITS,OUT_FACE_CLK)

begin

if rising_edge(OUT_FACE_CLK) then

case conv_integer(OUT_FACE_CONFIG_BITS(5 downto 2)) 
is  --))

-- 4 bit configuration.  Z is high impedance.

---------------------------
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--config Number N S E W
G1 G2 

----------------------------------------------
---------------

-- 0 Z Z
Z Z  RPU1 RPU2

-- 1 Z Z
Z Z  RAP RAM

-- 2 Z Z
Z Z  RPU2 RPU1

-- 3 Z Z
Z Z  RAM RAP

----------------------------------------------
---------------

-- 4 RAP RAM Z
Z Z Z

-- 5 RAP Z RAM
Z  Z Z

-- 6 RAP Z Z
RAM Z Z

----------------------------------------------
--------------

-- 7 RAM RAP Z
Z  Z Z

-- 8  Z RAP RAM
Z  Z Z

-- 9  Z RAP Z
RAM Z Z 

----------------------------------------------
----------

-- 10  RAM Z RAP
Z  Z Z

-- 11  Z RAM
RAP Z  Z Z

-- 12  Z Z
RAP RAM Z Z 

----------------------------------------------
----------------

-- 13  RAM Z Z
RAP Z Z

-- 14  Z RAM
Z RAP Z Z

-- 15  Z Z
RAM RAP Z Z

----------------------------------------------
------------
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-- ADDING SPRD AND LFSR OUTS

--4 bit configuration.  Z is high impedance.

---------------------------

--config Number N S E W
G1 G2 

----------------------------------------------
---------------

-- 0 LFSR LFSR LFSR LFSR 
RPU1 RPU2

-- 1 Z Z
Z Z  RAP RAM

-- 2 SPRD SPRD SPRD SPRD 
RPU2 RPU1

-- 3 Z Z
Z Z  RAM RAP

----------------------------------------------
---------------

-- 4 RAP RAM
Z Z Z Z

-- 5 RAP Z
RAM Z  Z Z

-- 6 RAP Z
Z RAM Z Z

----------------------------------------------
--------------

-- 7 RAM RAP Z
Z  Z Z

-- 8  Z RAP RAM
Z  Z Z

-- 9  Z RAP Z
RAM Z Z 

----------------------------------------------
----------

-- 10  RAM Z RAP
Z  Z Z

-- 11  Z RAM
RAP Z  Z Z

-- 12  Z Z
RAP RAM Z Z 

----------------------------------------------
----------------

-- 13  RAM Z Z
RAP Z Z

-- 14  Z RAM
Z RAP Z Z

-- 15  Z Z
RAM RAP Z Z
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----------------------------------------------
------------

when 0 =>

IN_N_RPU  <= CLFSR_OUT_16;

IN_S_RPU <=CLFSR_OUT_16;

IN_W_RPU <=CLFSR_OUT_16;

IN_E_RPU  <= CLFSR_OUT_16;

RPU_OUT_1_GBUS<= RPU_IN_FACE_1;

RPU_OUT_2_GBUS <= RPU_IN_FACE_2;

when 1 =>

IN_N_RPU  <= SPRD_OUT;

IN_S_RPU <= SPRD_OUT;

IN_W_RPU <= SPRD_OUT;

IN_E_RPU  <= SPRD_OUT;

RPU_OUT_1_GBUS<= DLYD_RAP;

RPU_OUT_2_GBUS <= DLYD_RAM;

when 2 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= RPU_IN_FACE_2;

RPU_OUT_2_GBUS <= RPU_IN_FACE_1;

when 3 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= DLYD_RAM;

RPU_OUT_2_GBUS <=DLYD_RAP ; 

when 4 =>

IN_N_RPU  <= DLYD_RAP;

IN_S_RPU <= RPU_IN_FACE_2;--DLYD_RAM;

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 5 =>
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IN_N_RPU  <= DLYD_RAP;

IN_S_RPU <=(others =>'Z');

IN_W_RPU <= DLYD_RAM;

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 6 =>

IN_N_RPU  <= DLYD_RAP;

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= DLYD_RAM;

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 7 =>

IN_N_RPU  <= DLYD_RAM;

IN_S_RPU <= DLYD_RAP;

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 8 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= DLYD_RAP;

IN_W_RPU <= DLYD_RAM;

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 9 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= DLYD_RAP;

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= DLYD_RAM;

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 10 =>

IN_N_RPU  <= DLYD_RAM;

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= DLYD_RAP;

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 11 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= DLYD_RAM;
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IN_W_RPU <= DLYD_RAP;

IN_E_RPU  <= (others =>'Z');

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 12 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= DLYD_RAP;

IN_E_RPU  <= DLYD_RAM;

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 13 =>

IN_N_RPU  <= DLYD_RAM;

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <=DLYD_RAP;

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 14 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= DLYD_RAM;

IN_W_RPU <= (others =>'Z');

IN_E_RPU  <= DLYD_RAP;

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when 15 =>

IN_N_RPU  <= (others =>'Z');

IN_S_RPU <= (others =>'Z');

IN_W_RPU <= DLYD_RAM;

IN_E_RPU  <= DLYD_RAP;

RPU_OUT_1_GBUS<= (others =>'Z');

RPU_OUT_2_GBUS <= (others =>'Z');

when others => null;

end case;

end if;

end process;

end BEHAV;
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14   Paralle to serial unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : PRLL2SRL.vhd

--  Title              : Parall to serial unit.

--  Description        : A 16-bits parallel to serial formating unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        03/29/02  A. Alsolaim   Rev 2            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity PRLL2SRL is

generic (DATA_PATH_WIDTH: integer:=16);

port ( 

CLK: in std_logic;

PARALL: in std_logic_vector (DATA_PATH_WIDTH-1 downto 0);

SERIAL: out std_logic

);

end entity;

Architecture BEHAV of PRLL2SRL is 
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begin  

P2S: process(CLK)

  variable i: integer:=0;

begin

 if rising_edge(CLK) then

 SERIAL<=PARALL(i);

 i:=i+1;

 end if;

 if i>15 then

 i:=0;

 end if;

end process;

end BEHAV;

15   RAM/FIFO unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : RAM_FIFO.vhd

--  Title              : RAM/FIFO unit.

--  Description        : A RAM unit that can be configured to be a FIFO 
Unit.

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93
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---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        02/19/02  A. Alsolaim   Rev 10            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;

use IEEE.numeric_std.all;

entity RAM_FIFO is 

--Dual port RAM constructed of regesters.

generic (DATA_PATH_WIDTH     :natural := 16 
;RAM_CONFIG_BITS_WIDTH: integer :=1;--RAM width

RAM_ADRS_WIDTH  :natural := 3--RAM depth = 
2^RAM_ADRS_WIDTH.

);

port ( 

RAM_A_IN : in std_logic_vector (DATA_PATH_WIDTH-1 downto 
0); 

--RAM_B_IN : in std_logic_vector (DATA_PATH_WIDTH-1 downto 
0);

RAM_A_ADRS: in std_logic_vector (RAM_ADRS_WIDTH-1 downto 
0);

RAM_B_ADRS : in std_logic_vector (RAM_ADRS_WIDTH-1 downto 
0); -- Port B is only used for reading.

-- No input for port B since it is only read port. and no 
outpout for port B also

-- since it can use port A output while port A is writing.

RAM_WR: in std_logic;-- 0 no op, 1 write. --Port A 

RAM_RD: in std_logic;-- 0 no op, 1 READ.   --Port A 

RAM_ENABLE: in std_logic;  -- synchronous, '1' enabled. 

RAM_CLEAR: in std_logic; -- synchronous Clear 

RAM_CONFIG_BITS:instd_logic:='0'; 

--'0' for RAM behavior and 

-- '1' for FIFO behavior  
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RAM_CLK: in std_logic; 

FROM_RAM_FIFO_FULL: out std_logic; --'1' for full

FROM_RAM_FIFO_EMPTY: out std_logic; --'1' for empty

FROM_RAM_A_OUT :out std_logic_vector (DATA_PATH_WIDTH-1 
downto 0)

-- FROM_RAM_B_OUT :out std_logic_vector 
(DATA_PATH_WIDTH-1 downto 0)

);

end RAM_FIFO;

architecture RAM_FIFO of RAM_FIFO is  

type mem_type is array (2**RAM_ADRS_WIDTH-1 downto 0) of

std_logic_vector(DATA_PATH_WIDTH - 1 downto 0) ;

Signal RD_ptr, WR_ptr: integer range 0 to 2**RAM_ADRS_WIDTH;--
Read and Write pointers

--For the FIFO

begin 

Main_Process:

process (RAM_CLK,RAM_CONFIG_BITS) 

variable mem : mem_type;

-- This stores the number of elements needs to be saved.

-- variable fifo : mem_type ;

begin

case  RAM_CONFIG_BITS is 

when '0' =>

if rising_edge(RAM_CLK) then

if RAM_ENABLE = '1' then

if RAM_CLEAR = '1' then

for INDEX in 2**RAM_ADRS_WIDTH-1 
downto 0 loop

mem(INDEX) := (others => '0'); 
-- clear the ram.

end loop;

else

if  (RAM_WR ='1')then  --write oper-
ation ## -- CLEAR ='0' RAM is enabled for reading or writing  
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mem(conv_integer(RAM_A_ADRS)):=RAM_A_IN;

end if;

if(RAM_RD ='1')then  --Read opera-
tion ## --reading at the rising edge   

FROM_RAM_A_OUT <= 
mem(conv_integer(RAM_B_ADRS));

end if;

end if;

end if; 

end if;

--end RAM_Process.

when '1' => --FIFO behvior

if rising_edge(RAM_CLK) then

if RAM_ENABLE = '1' then

if RAM_CLEAR = '1' then

for INDEX in 2**RAM_ADRS_WIDTH-1 
downto 0 loop

mem(INDEX) := (others => '0'); 
-- clear the ram.

end loop;

else -- CLEAR ='0' FIFO is enabled for 
reading or writing

--FIFO writing operation

if (RAM_WR ='1')then   ---   ##

mem(WR_ptr):=RAM_A_IN; --stor 
the input at the writing pointer

end if;

if (RAM_RD ='1')then    -- ###

FROM_RAM_A_OUT<=mem(WR_ptr); 
--read at the reading pointer

end if;

end if;

end if;

end if;

when others => null;

end case;
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end process;  

FIFO_ADRS_PTR: process(RAM_CLK)

variable PTR : INTEGER range 0 to 16;

begin

if rising_edge(RAM_CLK) then

if RAM_ENABLE = '1' then

if RAM_CLEAR = '1'then --Clear all pointers

WR_ptr <= 0;

RD_ptr <= 0;

FROM_RAM_FIFO_EMPTY <= '1';

FROM_RAM_FIFO_FULL <= '0';

PTR := 0;

elsif RAM_WR ='1' and PTR <  2**RAM_ADRS_WIDTH 
then   --##

if WR_PTR < 15 then

WR_PTR <= WR_PTR + 1;

elsif WR_PTR = 15 then

WR_PTR <= 0;

end if;

PTR := PTR + 1;

elsif RAM_RD ='1' and PTR > 0 then  ---##

if RD_PTR<15 then

RD_PTR <= RD_PTR + 1;

elsif RD_PTR = 15 then

RD_PTR <= 0;

end if;

PTR := PTR - 1;

end if;

if PTR = 0 then

FROM_RAM_FIFO_EMPTY <= '1';

else

FROM_RAM_FIFO_EMPTY <= '0';

end if;

if PTR = 16 then

FROM_RAM_FIFO_FULL<= '1';

else

FROM_RAM_FIFO_FULL <= '0';

end if;

end if;
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end if;

end process;

end RAM_FIFO;

16   RAM/FIFO Interface

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : RAM_FIFO_FACE.vhd

--  Title              : RAM/FIFO Interface

--  Description        : The interface of the RAM/FIFO unit.

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.4

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date        Author  Revision         Comments

--        03/10/02  A. Alsolaim   Rev 8            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity  RAM_FIFO_FACE is

generic (RAM_FIFO_FACE_CONFIG_BITS_WIDTH: integer:=6;

DATA_PATH_WIDTH: integer:=16; RAM_ADRS_WIDTH:integer:=3);
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port (

---------------- INPUT SIGNALS-----------------------

RAM_FIFO_INFACE_CLK:in std_logic;

--Data lines from RAP

RAP_OUT: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

-- Data from the CLFSR

CLFSR_OUT_16: in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0);

NEW_DATA_ARVD_1: in std_logic;

NEW_DATA_ARVD_2: in std_logic;

NEW_DATA_ARVD_3: in std_logic;

NEW_DATA_ARVD_FROM_RAP: in std_logic; -- the Done_runing 
signal out of the RAP

NEW_DATA_ARVD_FROM_CLFSR: in std_logic;

--configuration bits

RAM_FACE_CONFIG_BITS: in 
std_logic_vector(RAM_FIFO_FACE_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

--CLK to the RAM

--Data and ADRS signal to RAM

RAM_A_IN : out std_logic_vector (DATA_PATH_WIDTH-1 downto 
0) ; 

RAM_A_ADRS_OUT: out std_logic_vector (RAM_ADRS_WIDTH-1 
downto 0);

RAM_B_ADRS_OUT: out std_logic_vector (RAM_ADRS_WIDTH-1 
downto 0);

NEW_DATA_ARVD_2RAM: out std_logic

);
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end RAM_FIFO_FACE; 

architecture  BEHAV of RAM_FIFO_FACE is

begin 

SelectInputForRAM: Process 
(RAM_FACE_CONFIG_BITS,RPU_IN_FACE_1,RPU_IN_FACE_2,RPU_IN_FACE_3,RAP_O
UT,CLFSR_OUT_16)

begin  

case 
conv_integer(RAM_FACE_CONFIG_BITS(RAM_FIFO_FACE_CONFIG_BITS_WIDTH-1 
downto 0)) is

---------------

-- inputs

-- 1 RPU1  

-- 2 RPU2

-- 3 RPU3

--  4   RAP

--  5   CLFSR  

------------------note: input 5 CLFSR in only used as 
DATA_A

-------------

-- Out puts

-- DATA_A ADRS_A ADRS_B

--0      1       2    3 

--1      1       2    4

--2      1       3    2

--3      1       3    4

--4      1       4    2

--5      1       4    3

-------------------

--6      2       1    3

--7      2       1    4

--8      2       3    1

--9      2       3    4

--10  2       4    1

--11  2       4    3

------------------------

--12  3       1    2

--13  3       1    4
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--14  3       2    1

--15  3       2    4

--16  3       4    1

--17  3       4    2

------------------------

--18  4       1    2

--19  4       1    3

--20  4       2    1

--21  4       2    3

--22  4       3    1

--23  4       3    2

-------------------------

--24  5       1    2

--25  5       1    3

--26  5       1    4

--27  5       2    1

--28  5       2    3

--29  5       2    4

--30  5       3    1

--31  5       3    2

--32  5       3    4

--33  5       4    1

--34  5       4    2

--35  5       4    3

when 0 => RAM_A_IN <=  RPU_IN_FACE_1; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0)  ;

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_1;  

when 1 => RAM_A_IN <=  RPU_IN_FACE_1; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM<=NEW_DATA_ARVD_1 ; 

when 2 => RAM_A_IN <=  RPU_IN_FACE_1; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_1 ; 
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when 3 => RAM_A_IN <=  RPU_IN_FACE_1; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0);

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_1 ;

when 4 => RAM_A_IN <=  RPU_IN_FACE_1; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_1 ;

when 5 => RAM_A_IN <=  RPU_IN_FACE_1; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_1 ; 

----------------------------------------------------
--------------------------------

when 6 => RAM_A_IN <=  RPU_IN_FACE_2; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_2 ;

when 7 => RAM_A_IN <=  RPU_IN_FACE_2; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_2 ;

when 8 => RAM_A_IN <=  RPU_IN_FACE_2; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_2 ;

when 9 => RAM_A_IN <=  RPU_IN_FACE_2; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_2 ;

when 10 => RAM_A_IN <=  RPU_IN_FACE_2; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_2 ;

when 11 => RAM_A_IN <=  RPU_IN_FACE_2; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_2 ;



270

----------------------------------------------------
---------------------------------

when 12 => RAM_A_IN <=  RPU_IN_FACE_3; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_3 ;

when 13 => RAM_A_IN <=  RPU_IN_FACE_3; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_3 ;

when 14 => RAM_A_IN <=  RPU_IN_FACE_3; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_3 ;

when 15 => RAM_A_IN <=  RPU_IN_FACE_3; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_3 ;

when 16 => RAM_A_IN <=  RPU_IN_FACE_3; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_3 ;

when 17 => RAM_A_IN <=  RPU_IN_FACE_3; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_3 ;

----------------------------------------------------
-----------------------------------

when 18 => RAM_A_IN <=  RAP_OUT; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_RAP ;

when 19 => RAM_A_IN <=  RAP_OUT; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_RAP ;
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when 20 => RAM_A_IN <=  RAP_OUT; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_RAP ;

when 21 => RAM_A_IN <=  RAP_OUT; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_RAP ;

when 22 => RAM_A_IN <=  RAP_OUT; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_RAP ;

when 23 => RAM_A_IN <=  RAP_OUT; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_RAP ;

----------------------------------------------------
-----------------------

when 24 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 25 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 26 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 27 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 28 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;



272

when 29 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 30 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 31 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 32 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 33 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_1(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 34 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 0)
;RAM_B_ADRS_OUT<=RPU_IN_FACE_2(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when 35 => RAM_A_IN <=  CLFSR_OUT_16; 
RAM_A_ADRS_OUT<=RAP_OUT(RAM_ADRS_WIDTH-1 downto 
0);RAM_B_ADRS_OUT<=RPU_IN_FACE_3(RAM_ADRS_WIDTH-1 downto 0); 

NEW_DATA_ARVD_2RAM <=NEW_DATA_ARVD_FROM_CLFSR ;

when others => null;

end case;

end process;

end BEHAV;
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17   Dynamically Reconfigurable Processing Unit (DRAP)

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : RAP.vhd

--  Title              : Dynamically Reconfigurable Processing Unit

--  Description        : 16-bit processing unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author  Revision         Comments

--        04/23/02  A. Alsolaim   Rev 13            

--

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity  RAP16 is

generic ( RAP_CONFIG_BITS_WIDTH: integer:=22; -- Added two more

--bits (for the barral shifter) see barral.vhd

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

RAP_CLK: in std_logic; --Active high

RAP_ENABLE: in std_logic; --Active high

RAP_RESET: in std_logic;  --Active high
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-- RAP_START_HOLD: in std_logic; --'1' start, '0' hold 
__ REMOVED. was only needed in CfgCtrl enetity. removed from there.

RAP_CONFIG_BITS: in std_logic_vector( 
RAP_CONFIG_BITS_WIDTH -1 downto 0);

RAP_X_IN: in std_logic_vector (DATA_PATH_WIDTH -1 downto 
0);

RAP_Y_IN: in std_logic_vector (DATA_PATH_WIDTH -1 downto 
0); 

RAP_CRY_IN: in std_logic;

-- RPU_IN_FACE_1 is also an input to be used by the 
num_shft_gen as the variable X 

-- in the multiplication.

--RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

-- rap8_1 is now configuration bit number 18

-- RAP_LOG_ARITH: in std_logic; --'1' Arithmatic, '0' bit-
wise logical 

RAP_CARY_OUT : out std_logic;

RAP_OVR_FLW : out std_logic;

RAP_DONE_RUNING: out std_logic;--'1' done, '0' Runing

RAP_OUT: out std_logic_vector (DATA_PATH_WIDTH -1 downto 0)

-------------------------------------------AHMAD 1/20/02--
------------------

-- Add the two inputs to the BRL shifter to control the type 
of the 

-- shift, either rotate or shift. and also the type of shift 
either

-- Logical (fill with zeros) or Arithmatic (fill with the 
MSB or 

-- LSB depending on the direction of shift

--RAP_CONFIG_BITS(20) 0 Rotate 1 Shift

--RAP_CONFIG_BITS(21) 1 Arithmatic 0 logical

);

end RAP16; 

architecture  BEHAV of RAP16 is

component ALU16  --Configuration bit =3



275

generic (DATA_BIT_WIDTH : integer:=16);

port(

ALU_X_IN : in std_logic_vector (DATA_BIT_WIDTH-1 
downto 0);

ALU_Y_IN : in std_logic_vector (DATA_BIT_WIDTH-1 
downto 0);

AluCfg : in std_logic_vector (2 downto 0);

CARY_IN : in std_logic;

ALU_CLK : in std_logic;

ALU_CLEAR : in std_logic;

ALU_ENABLE : in std_logic;

LOG_ARITH : in std_logic;

CARY_OUT : out std_logic;

OVR_FLW : out std_logic;

ALU_OUT : out std_logic_vector (DATA_BIT_WIDTH-1 
downto 0)

);

end component;

component CfgCtl

generic (RAP_CONFIG_BITS_WIDTH: integer:=22;

CFGCTRL_DATA_PATH_WIDTH: integer:=8);

port (

RapCfg: in std_logic_vector( RAP_CONFIG_BITS_WIDTH -
1 downto 0);

BoothX: in std_logic_vector( CFGCTRL_DATA_PATH_WIDTH-
1 downto 0); 

Py : in std_logic;

Pa : in std_logic;clk : in std_logic;

-- start: in std_logic;

en : in std_logic;

DIR_X : out STD_LOGIC; 

DIR_Y : out STD_LOGIC; 

NUM_SHFTS_X : out STD_LOGIC_VECTOR (2 downto 0);

NUM_SHFTS_Y : out STD_LOGIC_VECTOR (2 downto 0);

YSel : out STD_LOGIC_VECTOR (1 downto 0);

XSel : out STD_LOGIC_VECTOR (1 downto 0);

RTT_SHF_X: out STD_LOGIC:='1'; --0 Rotate 1 Shift

RTT_SHF_Y: out STD_LOGIC:='1'; --0 Rotate 1 Shift

ARTH_LOGC_X: out std_logic:='0'; -- 1 Arithmatic 0 
logical

ARTH_LOGC_Y: out std_logic:='0'; -- 1 Arithmatic 0 
logical

ASel : out STD_LOGIC_VECTOR (1 downto 0);

ALU_Op : out  STD_LOGIC_VECTOR (2 downto 0);
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StateCnt: out std_logic_vector(1 downto 0)

);

end component; 

component BRL_SFT_16 

generic(DATA_WIDTH : integer:=16);

port (

DIR : in STD_LOGIC;   --1 right 0 left

X_IN : in STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

Y_OUT : out STD_LOGIC_VECTOR (DATA_WIDTH-1 downto 0);

NUM_SHFTS : in STD_LOGIC_VECTOR (3 downto 0);

RTT_SHF: in STD_LOGIC:='1'; --0 Rotate 1 Shift

ARTH_LOGC: in std_logic:='0' -- 1 Arithmatic 0 logical

);

end component ;

component MUX41 

generic (DATA_PATH_WIDTH: integer:=16);

port( X0: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

X1: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

X2: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

X3: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

Y: out std_logic_vector( DATA_PATH_WIDTH-1 downto 0);

Sel: in std_logic_vector(1 downto 0);

en: in std_logic

);

end component;

component REG16 

generic(DWidth : integer:=16);

port (

REG_CLR : in std_logic;

REG_CLK : in std_logic;

X_IN : in std_logic_vector (DWidth-1 downto 0);

Y_OUT : out std_logic_vector (DWidth-1 downto 0)

);

end component;

component Two_Cmpl16 

generic (DATA_BIT_WIDTH:integer:=16);

port(

x : in std_logic_vector(DATA_BIT_WIDTH-1 downto 0);

x_Cmpl : out std_logic_vector(DATA_BIT_WIDTH-1 downto 
0)
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);

end component; 

component REG_NO_REG_16 

generic(DWidth : integer:=16);

port ( 

REG_NO_REG: in std_logic;  -- 1 reg, 0 donot reg

REG_CLR : in std_logic;

REG_CLK : in std_logic;

X_IN : in std_logic_vector (DWidth-1 downto 0);

Y_OUT : out std_logic_vector (DWidth-1 downto 0)

);

end component;

signal NUM_SHFTS_X: std_logic_vector(2 downto 0);

signal NUM_SHFTS_Y: std_logic_vector(2 downto 0);

signal DIR_X,tmpRapClk, tmp2RapClk, RapRegClk: std_logic;

signal DIR_Y: std_logic;

signal SHFTED_X: std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

signal SHFTED_Y: std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

--signal OUT_TO_ACCUM:std_logic_vector(DATA_PATH_WIDTH-1 downto 
0); 

signal BoothX : std_logic_vector(7 downto 0);

signal RapXin, ALU_X:std_logic_vector(DATA_PATH_WIDTH-1 downto 
0); 

signal RapYin, ALU_Y: std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

signal NegAluOut, ALU_OUT: std_logic_vector(DATA_PATH_WIDTH-1 
downto 0);

signal tmpRapOut, ALU_MUX_OUT: std_logic_vector(DATA_PATH_WIDTH-
1 downto 0);

signal  ext,clk4, clk3,clk2, CRY_OUT: std_logic;

signal Py, Pa, OVR_FLW: std_logic;

--configuration signals

signal AluCfg,AluOp : std_logic_vector (2 downto 0); --3 bits

signal ASel1D, Asel,XSel,YSel,StateCnt: std_logic_vector(1 
downto 0);

-- signal YSel: std_logic_vector(1 downto 0);

signal zero :std_logic_vector(DATA_PATH_WIDTH-1 downto 0); 

signal extalucfg, NumShftsX4,NumShftsY4 :std_logic_vector (3 
downto 0); 

signal TEMP_RAP_OUT: std_logic_vector (DATA_PATH_WIDTH -1 downto 
0);  

signal RTT_SHF_X : STD_LOGIC; --0 Rotate 1 Shift

signal RTT_SHF_Y:  STD_LOGIC; --0 Rotate 1 Shift

signal ARTH_LOGC_X:  std_logic; -- 1 Arithmatic 0 logical
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signal ARTH_LOGC_Y:  std_logic; -- 1 Arithmatic 0 logical 

begin 

--RAP_CONFIG_BITS Words 

--0 1 2  |3 4 |5 6 |7 8 |9    |10 11 12|13   |14 15 16|17 |

--ALU_OP |XSel|YSel|ASel|X_dir|X_Shft  |y_dir|Y_Shft  |ext|

AluCfg <=RAP_CONFIG_BITS(2 downto 0);  --3 bits

ext <= RAP_CONFIG_BITS(17);

zero<=(others=>'0'); 

clk3<=not(StateCnt(1) or StateCnt(0));

clk2<=not StateCnt(0);

extAluCfg<=ext & AluCfg;  --bits 17-1-0  

process(extAluCfg,RAP_Y_IN, RAP_X_IN, clk2, clk3,RAP_CLK, 
RapRegClk)

begin

if(ext='1')then

case extAluCfg is

when "1010"=>  --

if(clk3'event and clk3='1')then

RapXin<=RAP_Y_IN;

RapYin<=RAP_Y_IN;

BoothX <=RAP_X_IN(7 downto 0);

end if;

when "1110" |"1111"=>

if(Clk2'event and Clk2='1')then

RapXin<=RAP_X_IN;

RapYin<=RAP_Y_IN;

BoothX<=(others=>'0');

end if;

when others=>

if(Rap_Clk'event and Rap_Clk='1')then

RapXin<=RAP_X_IN;

RapYin<=RAP_Y_IN;

BoothX<=(others=>'0');

end if;

end case; 

else

RapXin<=RAP_X_IN;

RapYin<=RAP_Y_IN;

end if;
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end process;

NumShftsX4<='0' & NUM_SHFTS_X;

NumShftsY4<='0' & NUM_SHFTS_Y;

U1X_BShift16: BRL_SFT_16

port map (

DIR=>DIR_X,  

X_IN =>RapXin,

Y_OUT=> SHFTED_X,

NUM_SHFTS=> NumShftsX4,

RTT_SHF=>  RTT_SHF_X,

ARTH_LOGC=> ARTH_LOGC_X

);

U2Y_BShift16: BRL_SFT_16

port map (

DIR =>DIR_Y,

X_IN =>RapYin,

Y_OUT=> SHFTED_Y, 

NUM_SHFTS => numShftsY4,

RTT_SHF=>  RTT_SHF_Y,

ARTH_LOGC=> ARTH_LOGC_Y

);

U3_MUX41: MUX41

port map( 

X0 =>RapXin,

X1=>SHFTED_X, 

X2=>tmpRapOut,

X3=>zero,

Y=>ALU_X,

Sel=>XSel,

en =>RAP_ENABLE

);

U4_Mux41: MUX41

port map( 

X0=> RapYin,

X1=> SHFTED_Y, 

X2=>zero,

X3=>zero,

Y =>ALU_Y,

Sel=>YSel, 

en =>RAP_ENABLE
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);

U5_Mux41:Mux41

port map(

X0=> ALU_OUT,

X1=> RapXin, 

X2=> RapYin,

X3=> NegAluOut,

Y => tmpRapOut,

Sel=>ASel1D, 

en =>RAP_ENABLE

);

process(ext, AluCfg,RAP_CLK,ASel)

begin

if((ext & AluCfg)="1010")then 

if(RAP_CLK'event and RAP_CLK='1')then

ASel1D<=ASel;

end if;

else

Asel1D<=Asel;

end if;

end process;

U6_ALU: ALU16

port map(

ALU_X_IN =>ALU_X,

ALU_Y_IN=>ALU_Y ,

AluCfg => AluOp, 

CARY_IN=>RAP_CRY_IN,

ALU_CLK => RAP_CLK,

ALU_CLEAR => RAP_RESET, 

ALU_ENABLE => RAP_ENABLE, 

LOG_ARITH =>RAP_CONFIG_BITS(17), --
<<<<<<<<<<*************************************

CARY_OUT=> CRY_OUT,

OVR_FLW =>OVR_FLW,

ALU_OUT =>ALU_OUT

);

Py<=RapYin(DATA_PATH_WIDTH-1);

Pa<=Alu_out(DATA_PATH_WIDTH-1);

U7_CfgCtl:CfgCtl 

port map(

RapCfg=>RAP_CONFIG_BITS,

BoothX=>BoothX,
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Py=>Py,

Pa=>Pa,

clk=>RAP_CLK,

-- start=>RAP_START_HOLD,  --removed from CfgCtrl entity

en =>RAP_ENABLE,

DIR_X =>DIR_X, 

DIR_Y =>DIR_Y,

NUM_SHFTS_X =>NUM_SHFTS_X,

NUM_SHFTS_Y =>NUM_SHFTS_y,

YSel=> YSel,

XSel=> XSel, 

RTT_SHF_X=>RTT_SHF_X, --0 Rotate 1 Shift

RTT_SHF_Y=>RTT_SHF_Y, --0 Rotate 1 Shift

ARTH_LOGC_X=>ARTH_LOGC_X, -- 1 Arithmatic 0 logical

ARTH_LOGC_Y=>ARTH_LOGC_Y, -- 1 Arithmatic 0 logical

ASel=> ASel,

ALU_Op=>AluOp,

StateCnt=>StateCnt

);

---- U8_REG: REG16 

---- port map (

---- REG_CLR=>RAP_RESET,

---- REG_CLK => RapRegClk,

---- X_IN=>tmpRapOut, 

---- Y_OUT => TEMP_RAP_OUT

---- );   

U8_REG: REG_NO_REG_16 

port map( 

REG_NO_REG =>'0', -- 1 reg, 0 donot reg

REG_CLR =>RAP_RESET,

REG_CLK => RapRegClk,

X_IN =>tmpRapOut,

Y_OUT  => TEMP_RAP_OUT

);

-- tmpRapClk<=(not RAP_CLK) and (StateCnt(0) and (not State-
Cnt(1)));

process(clk3,RAP_CLK)



282

begin

if(RAP_CLK'event and RAP_CLK='1')then

clk4<=clk3;

end if;

end process;

process(RAP_CLK,AluCfg,ext,StateCnt)

begin

if((ext & AluCfg)="0010" )then

RapRegClk<=clk3 and (not RAP_CLK);

elsif((ext & AluCfg(2 downto 1))="011")then

--RapRegClk<=(not Rap_Clk) and StateCnt(0);

RapRegClk<=StateCnt(0) and (not RAP_CLK);

else

RapRegClk<=RAP_CLK;

end if;

end process;

U9_Two_Cmpl16:Two_cmpl16

port map(

x=>ALU_OUT,

x_Cmpl=>NegAluOut

);

RAP_CARY_OUT<=  CRY_OUT;

counter:process(RAP_CLK,RAP_ENABLE,tmpRapOut)   

variable COUNT :integer range 0 to 3:=0; 

begin

if(RAP_ENABLE='0')then

COUNT:=3;

elsif(RAP_CLK'event and RAP_CLK='1')then

case COUNT is

when 3=>

COUNT:=0;

when 2=> 

COUNT:=3; 

when 1=> 

COUNT:=2;

when 0=> 
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COUNT:=1;

when others=>

COUNT:=0;

end case;

end if;

if  COUNT=3 then

RAP_OUT<=tmpRapOut;

end if;

end process;

--

--RAP_OUT<=tmpRapOut;   -- jump 

--RAP_OUT<=TEMP_RAP_OUT;

RAP_OVR_FLW<=  OVR_FLW ;

Process  (TEMP_RAP_OUT ,RAP_CLK)

variable TEMP_OUT: std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

variable CLK_CYCLE: integer:=0;

begin  

if ( TEMP_OUT/=TEMP_RAP_OUT) then

RAP_DONE_RUNING<='1';

end if;

if falling_edge(RAP_CLK)then

RAP_DONE_RUNING<='0';

end if;

TEMP_OUT:=TEMP_RAP_OUT;

end process;

end BEHAV;

18   DRAP interface unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--
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--  Project            : DRAW

--  File name          : RAP_INTR_FC.vhd

--  Title              : DRAP interface unit.

--  Description        : The DRAP interface. It routs the incoming signal 
to the DRAP unit.

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : AHDL 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author  Revision         Comments

--        4/22/02  A. Alsolaim   Rev 4            

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
---------- 

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

-- Synthisizable and number of gates =797

entity  RAP_INTR_FC is

generic (RAP_INTR_FC_CONFIG_BITS_WIDTH: integer:=5;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);
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RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

RPU_CARRY_IN_1:in std_logic;

RPU_CARRY_IN_2:in std_logic;

-- data lines from the RAP

FROM_RAP: in std_logic_vector( DATA_PATH_WIDTH-1 downto 0); 

-- data lines from RAMs

FROM_RAM_A: in std_logic_vector( DATA_PATH_WIDTH-1 downto 
0); 

--data from SPRD unit

SPRD_OUT : in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0);

RAP_INTR_FC_CONFIG_BITS: in std_logic_vector 
(RAP_INTR_FC_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

-- data lines, X, and Y

RAP_X_IN: out std_logic_vector(DATA_PATH_WIDTH-1 downto 0); 

RAP_Y_IN: out std_logic_vector(DATA_PATH_WIDTH-1 downto 0);

RAP_CRY_IN: out std_logic

);

end RAP_INTR_FC; 

architecture  BEHAV of RAP_INTR_FC is

signal  TEMP_RAP_X_IN:  std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

signal  TEMP_RAP_Y_IN:  std_logic_vector(DATA_PATH_WIDTH-1 downto 
0);

begin
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-- --the 4 LSB bits of the configuration are used to select one of 
the inputs

-- --the MSB is used to flip the inputs or not

process (RPU_IN_FACE_1,RPU_IN_FACE_2,RPU_IN_FACE_3,FROM_RAP, 
FROM_RAM_A,SPRD_OUT )

begin

case 
conv_integer(RAP_INTR_FC_CONFIG_BITS(RAP_INTR_FC_CONFIG_BITS_WIDTH-2 
downto 0))is 

when 0 =>TEMP_RAP_X_IN<= RPU_IN_FACE_1;  
TEMP_RAP_Y_IN<= RPU_IN_FACE_1; RAP_CRY_IN <= RPU_CARRY_IN_1;

when 1 =>TEMP_RAP_X_IN<= RPU_IN_FACE_1;  
TEMP_RAP_Y_IN<= RPU_IN_FACE_2;  RAP_CRY_IN <= RPU_CARRY_IN_1;

when 2 =>TEMP_RAP_X_IN<= RPU_IN_FACE_1;  
TEMP_RAP_Y_IN<= RPU_IN_FACE_3;  RAP_CRY_IN <= RPU_CARRY_IN_1;

when 3 =>TEMP_RAP_X_IN<= RPU_IN_FACE_1;  
TEMP_RAP_Y_IN<= FROM_RAM_A; RAP_CRY_IN <= RPU_CARRY_IN_1;

when 4 =>TEMP_RAP_X_IN<= RPU_IN_FACE_1;  
TEMP_RAP_Y_IN<= SPRD_OUT;    RAP_CRY_IN <= RPU_CARRY_IN_1;

----------------------------------------------------
-----------------------

when 5 =>TEMP_RAP_X_IN <= RPU_IN_FACE_2;  
TEMP_RAP_Y_IN <= RPU_IN_FACE_2; RAP_CRY_IN <= RPU_CARRY_IN_2;

when 6 =>TEMP_RAP_X_IN <= RPU_IN_FACE_2;  
TEMP_RAP_Y_IN <= RPU_IN_FACE_3;  RAP_CRY_IN <= RPU_CARRY_IN_2;

when 7 =>TEMP_RAP_X_IN <= RPU_IN_FACE_2;  
TEMP_RAP_Y_IN <= FROM_RAM_A; RAP_CRY_IN <= RPU_CARRY_IN_2;

when 8 =>TEMP_RAP_X_IN <= RPU_IN_FACE_2;  
TEMP_RAP_Y_IN <= SPRD_OUT; RAP_CRY_IN <= RPU_CARRY_IN_2;

----------------------------------------------------
------------------------

when 9 =>TEMP_RAP_X_IN <= RPU_IN_FACE_3;  
TEMP_RAP_Y_IN <= RPU_IN_FACE_3;  RAP_CRY_IN <= RPU_CARRY_IN_2;

when 10 =>TEMP_RAP_X_IN <= RPU_IN_FACE_3;  
TEMP_RAP_Y_IN <= FROM_RAM_A; RAP_CRY_IN <= RPU_CARRY_IN_2;

when 11 =>TEMP_RAP_X_IN <= RPU_IN_FACE_3;  
TEMP_RAP_Y_IN <= SPRD_OUT;   RAP_CRY_IN <= RPU_CARRY_IN_1;

----------------------------------------------------
-------------------------

when 12 =>TEMP_RAP_X_IN <= FROM_RAM_A;  TEMP_RAP_Y_IN 
<= FROM_RAM_A;  RAP_CRY_IN <= '0';

when 13 =>TEMP_RAP_X_IN <= FROM_RAM_A;  TEMP_RAP_Y_IN 
<= SPRD_OUT;  RAP_CRY_IN <= '0';

----------------------------------------------------
-----------------------

when 14 =>TEMP_RAP_X_IN <= SPRD_OUT;  TEMP_RAP_Y_IN 
<= SPRD_OUT;  RAP_CRY_IN <= '0';
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when others =>null;

end case;

end process;  

-- data lines, X, and Y  

process (TEMP_RAP_Y_IN,TEMP_RAP_X_IN)

begin

case 
conv_integer(RAP_INTR_FC_CONFIG_BITS(RAP_INTR_FC_CONFIG_BITS_WIDTH-
1))is 

when 0 =>RAP_X_IN<= TEMP_RAP_X_IN;  RAP_Y_IN 
<=TEMP_RAP_Y_IN ;

when others =>  RAP_X_IN<= TEMP_RAP_Y_IN;  RAP_Y_IN 
<=TEMP_RAP_X_IN ;

end case;

end process;  

end BEHAV;

19   Scaling Register

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : SCAL_REG.vhd

--  Title              : Scaling Register

--  Description        : 16-bit Sscaling regester. Scales the input data 
according 

--                     : to scale value "S" in one clock cycle.

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : Ahdl 5.1

--                     : 

--  Initialization     : none
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--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments

--        02/21/02  Ahmad Aloslaim      Rev 1           

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

entity SCALE_REG is

port (

D : in STD_LOGIC_VECTOR (15 downto 0);

O : out STD_LOGIC_VECTOR (15 downto 0);

S : in STD_LOGIC_VECTOR (3 downto 0)

);

end entity ;

architecture BEHAV of SCALE_REG is

function MUX2 (A, B, S: std_logic) return std_logic is

begin

if S='1' then

return A;

else

return B;

end if;

end function;

signal TEMP0 : STD_LOGIC_VECTOR (15 downto 0);

signal TEMP1 : STD_LOGIC_VECTOR (15 downto 0);

signal TEMP2 : STD_LOGIC_VECTOR (15 downto 0);

begin

TEMP0(0) <= MUX2(D(1), D(0), S(0));

TEMP0(1) <= MUX2(D(2), D(1), S(0));

TEMP0(2) <= MUX2(D(3), D(2), S(0));

TEMP0(3) <= MUX2(D(4), D(3), S(0));
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TEMP0(4) <= MUX2(D(5), D(4), S(0));

TEMP0(5) <= MUX2(D(6), D(5), S(0));

TEMP0(6) <= MUX2(D(7), D(6), S(0));

TEMP0(7) <= MUX2(D(8), D(7), S(0));

TEMP0(8) <= MUX2(D(9), D(8), S(0));

TEMP0(9) <= MUX2(D(10), D(9), S(0));

TEMP0(10) <= MUX2(D(11), D(10), S(0));

TEMP0(11) <= MUX2(D(12), D(11), S(0));

TEMP0(12) <= MUX2(D(13), D(12), S(0));

TEMP0(13) <= MUX2(D(14), D(13), S(0));

TEMP0(14) <= MUX2(D(15), D(14), S(0));

TEMP0(15) <= MUX2('0', D(15), S(0));

TEMP1(0) <= MUX2(TEMP0(2), TEMP0(0), S(1));

TEMP1(1) <= MUX2(TEMP0(3), TEMP0(1), S(1));

TEMP1(2) <= MUX2(TEMP0(4), TEMP0(2), S(1));

TEMP1(3) <= MUX2(TEMP0(5), TEMP0(3), S(1));

TEMP1(4) <= MUX2(TEMP0(6), TEMP0(4), S(1));

TEMP1(5) <= MUX2(TEMP0(7), TEMP0(5), S(1));

TEMP1(6) <= MUX2(TEMP0(8), TEMP0(6), S(1));

TEMP1(7) <= MUX2(TEMP0(9), TEMP0(7), S(1));

TEMP1(8) <= MUX2(TEMP0(10), TEMP0(8), S(1));

TEMP1(9) <= MUX2(TEMP0(11), TEMP0(9), S(1));

TEMP1(10) <= MUX2(TEMP0(12), TEMP0(10), S(1));

TEMP1(11) <= MUX2(TEMP0(13), TEMP0(11), S(1));

TEMP1(12) <= MUX2(TEMP0(14), TEMP0(12), S(1));

TEMP1(13) <= MUX2(TEMP0(15), TEMP0(13), S(1));

TEMP1(14) <= MUX2('0', TEMP0(14), S(1));

TEMP1(15) <= MUX2('0', TEMP0(15), S(1));

TEMP2(0) <= MUX2(TEMP1(4), TEMP1(0), S(2));

TEMP2(1) <= MUX2(TEMP1(5), TEMP1(1), S(2));

TEMP2(2) <= MUX2(TEMP1(6), TEMP1(2), S(2));

TEMP2(3) <= MUX2(TEMP1(7), TEMP1(3), S(2));

TEMP2(4) <= MUX2(TEMP1(8), TEMP1(4), S(2));

TEMP2(5) <= MUX2(TEMP1(9), TEMP1(5), S(2));

TEMP2(6) <= MUX2(TEMP1(10), TEMP1(6), S(2));

TEMP2(7) <= MUX2(TEMP1(11), TEMP1(7), S(2));

TEMP2(8) <= MUX2(TEMP1(12), TEMP1(8), S(2));

TEMP2(9) <= MUX2(TEMP1(13), TEMP1(9), S(2));

TEMP2(10) <= MUX2(TEMP1(14), TEMP1(10), S(2));

TEMP2(11) <= MUX2(TEMP1(15), TEMP1(11), S(2));

TEMP2(12) <= MUX2('0', TEMP1(12), S(2));

TEMP2(13) <= MUX2('0', TEMP1(13), S(2));
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TEMP2(14) <= MUX2('0', TEMP1(14), S(2));

TEMP2(15) <= MUX2('0', TEMP1(15), S(2));

O(0) <= MUX2(TEMP2(8), TEMP2(0), S(3));

O(1) <= MUX2(TEMP2(9), TEMP2(1), S(3));

O(2) <= MUX2(TEMP2(10), TEMP2(2), S(3));

O(3) <= MUX2(TEMP2(11), TEMP2(3), S(3));

O(4) <= MUX2(TEMP2(12), TEMP2(4), S(3));

O(5) <= MUX2(TEMP2(13), TEMP2(5), S(3));

O(6) <= MUX2(TEMP2(14), TEMP2(6), S(3));

O(7) <= MUX2(TEMP2(15), TEMP2(7), S(3));

O(8) <= MUX2('0', TEMP2(8), S(3));

O(9) <= MUX2('0', TEMP2(9), S(3));

O(10) <= MUX2('0', TEMP2(10), S(3));

O(11) <= MUX2('0', TEMP2(11), S(3));

O(12) <= MUX2('0', TEMP2(12), S(3));

O(13) <= MUX2('0', TEMP2(13), S(3));

O(14) <= MUX2('0', TEMP2(14), S(3));

O(15) <= MUX2( TEMP2(15), TEMP2(15), S(3));

end architecture BEHAV;

20   Serial to Paralle unit

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : SERL2PARALL.vhd

--  Title              : Serail to Parallel unit

--  Description        : 16-bit Serial to parallel formating unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : Ahdl 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93
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---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments

--        04/1/02  Ahmad Aloslaim      Rev 3           

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all; 

entity SERL2PARALL is

generic (DATA_PATH_WIDTH: integer:=16);

port ( 

CLK: in std_logic; 

RESET: in std_logic;

ENABLE: in STD_LOGIC;

SERIAL: in std_logic:='0';

PARALL: out std_logic_vector (DATA_PATH_WIDTH-1 downto 0)

);

end entity;   

Architecture BEHAV of  SERL2PARALL is

begin 

process(RESET,CLK)

variable count: integer:=0;

variable TEMP_PARALL: std_logic_vector(15 downto 0);

begin 

if RESET='1' then

PARALL<=(others=>'0');

else 

if rising_edge(CLK)then

  

if count<16 then

TEMP_PARALL(count):=SERIAL;

count:=count+1 ;  
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end if;

if count=16 then

count:=0;

if count= 0 then

PARALL<=TEMP_PARALL;

end if;

end if;

end if;

end if;

end process;

end BEHAV;

21   Configurable Spreading Data Path Unit (CSDP)

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : SPRD_UNIT.vhd

--  Title              : Spreading Unit

--  Description        : 16-bit Spreading/de-spreading Unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : Ahdl 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93

---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments
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--        04/6/02  Ahmad Aloslaim      Rev 4           

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;

entity SPRD_UNIT is 

generic(DATA_PATH_WIDTH : integer:=16);

port (

SPRD_CLK : in STD_LOGIC;  --Clock  

SPRD_ENABLE : in STD_LOGIC;  --Enable 

SPRD_RESET: in std_logic;

DATA_IN : in STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 0);

PN1: in std_logic_vector (DATA_PATH_WIDTH-1 downto 0); --
PN1 is converted inside the SDP

--unit to serial stream PN1_SRL.

SPRD_OUT : out STD_LOGIC_VECTOR (DATA_PATH_WIDTH-1 downto 
0)

);

end entity SPRD_UNIT;

architecture BEHAV of SPRD_UNIT is

signal REG_16_BITS_1   : std_logic_vector(DATA_PATH_WIDTH-1 
downto 0):=(others=>'0');

signal PN1_SRL: std_logic;

signal CLK16:std_logic:='0';

-- signal READY_TO_SPRD: std_logic:='0';

begin

GenCLK16: Process(SPRD_CLK)

variable i: integer:=0;

begin

if SPRD_ENABLE='1' then

if rising_edge(SPRD_CLK) then

if i>15 then

i:=0;
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end if;

if i=0 then

CLK16<=not CLK16; 

i:=i+1;

else

i:=i+1;

end if;

end if;

else null;

end if;

end process; 

--Load PN1 into Reg1

process (SPRD_RESET,PN1, clk16)

begin  

if SPRD_ENABLE='1' then

if (SPRD_RESET = '0') then

REG_16_BITS_1    <= (Others => '0');

else      

if rising_edge(CLK16) then

REG_16_BITS_1<=PN1;

end if;

end if;

else null;

end if;

end process;

p2s: process (SPRD_CLK) 

variable i: integer :=0;

begin 

if SPRD_ENABLE='1' then

if (rising_edge(SPRD_CLK)) then

PN1_SRL <= REG_16_BITS_1(i)  ;

i:=i+1;

if i=16 then i:=0; end if;

end if;

else null;

end if;

end process;
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Spreading:process(SPRD_CLK,DATA_IN,PN1_SRL)

begin 

if SPRD_ENABLE='1' then

if (rising_edge(SPRD_CLK))then

case PN1_SRL is

when '0' =>SPRD_OUT <= DATA_IN ;

when '1' =>  SPRD_OUT <= NOT DATA_IN ; 

when others => null;

end case;  

end if;

else null;

end if;

end process;

End BEHAV;

22   Configurable Spreading Data Path Unit Interface

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

--

--  Project            : DRAW

--  File name          : SPRD_UNIT.vhd

--  Title              : Spreading Unit Interface

--  Description        : 16-bit Spreading/de-spreading intrface Unit

--                     : 

--  Design Libray      : DRAW.lib

--  Analysis Dependency: none

--  Simulator(s)       : Ahdl 5.1

--                     : 

--  Initialization     : none

--  Notes              : 

--                     : Compile in VHDL'93
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---------------------------------------------------------------------
----------

--   Revisions   :

--          Date             Author   Revision         Comments

--        04/1/02  Ahmad Aloslaim      Rev 3           

--                         

---------------------------------------------------------------------
---------

---------------------------------------------------------------------
----------

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_arith.all;

use IEEE.Std_Logic_Unsigned.all;

entity SPRD_INFACE is 

generic (SPRD_INTR_FC_CONFIG_BITS_WIDTH: integer:=3;

DATA_PATH_WIDTH: integer:=16);

port (

---------------- INPUT SIGNALS-----------------------

-- data lines from the RPU IN_FACE

RPU_IN_FACE_1: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);

RPU_IN_FACE_2: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0); 

RPU_IN_FACE_3: in std_logic_vector( DATA_PATH_WIDTH-1 
downto 0);  

SPRD_INTR_FC_CONFIG_BITS: in std_logic_vector 
(SPRD_INTR_FC_CONFIG_BITS_WIDTH-1 downto 0);

---------------- OUTPUT SIGNALS----------------------- 

-- data Out lines, Data, and PN

SPRD_DATA: out std_logic_vector(DATA_PATH_WIDTH-1 downto 
0); 

SPRD_PN: out std_logic_vector(DATA_PATH_WIDTH-1 downto 0)

);
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end entity;

Architecture BEHAV of SPRD_INFACE is

begin

process (RPU_IN_FACE_1,RPU_IN_FACE_2,RPU_IN_FACE_3)

begin

case 
conv_integer(SPRD_INTR_FC_CONFIG_BITS(SPRD_INTR_FC_CONFIG_BITS_WIDTH-
1 downto 0))is 

when 0 =>SPRD_DATA<= RPU_IN_FACE_1;  SPRD_PN<= 
RPU_IN_FACE_2;

when 1 =>SPRD_DATA<= RPU_IN_FACE_1;  SPRD_PN<= 
RPU_IN_FACE_3;

when 2 =>SPRD_DATA<= RPU_IN_FACE_2;  SPRD_PN<= 
RPU_IN_FACE_1;

when 3 =>SPRD_DATA<= RPU_IN_FACE_2;  SPRD_PN<= 
RPU_IN_FACE_3;

when 4 =>SPRD_DATA<= RPU_IN_FACE_3;  SPRD_PN<= 
RPU_IN_FACE_1;

when 5 =>SPRD_DATA<= RPU_IN_FACE_3;  SPRD_PN<= 
RPU_IN_FACE_2;

when others =>null;

end case;

end process;  

end BEHAV;
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A third generation mobile system is scheduled for launch in 2002. The

system provides a high data rate that can be used for multimedia and internet ser-

vices. As the diversity of required services and performance of the mobile units

increases, the traditional hardware implementation of the mobile terminal will fall

short of providing the required flexibility and performance. This justifies the use

of reconfigurable hardware.

The typical implementations of the current mobile systems are a mixture of

ASICs and DSPs. ASICs are used for their high performance and low power. DSPs

are used for their flexibility. The two implementation paradigms are combined in

this research to reach a compromise between low cost, low power consumption

(long battery life), flexibility, and performance. 

A dynamically reconfigurable computing architecture is an ideal implemen-

tation solution for the third and future generations of mobile systems. This disser-

tation delineates the design and simulation of a new dynamically reconfigurable

architecture called DRAW. DRAW is a hardware fabric specially designed for the

third generation wireless mobile systems.
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Reconfigurable computing lowers the cost of the final product by shortening

the time to market period through the reduction of the design flow steps. Addition-

ally, it reduces the power consumption through the dynamic switching on the

required hardware logic, while avoiding the excessive area requirements of dedi-

cated ASICs.

A Matlab simulation test bed was written and used to extract the main char-

acteristics of the target application. Once a broad guidelines of the design process

were available, a synthesizeable VHDL description of the architecture was writ-

ten. The design of the architecture was further optimized through iterative post-

synthesize simulations and redesign.

A further work is needed in three main points, firstly, optimize the archi-

tecture for power, secondly, develop an automated mapping tools for mapping dif-

ferent baseband algorithms onto the architecture, thirdly, construct a set of

intellectual property blocks for wireless communication to be mapped into the

designed hardware fabric
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