
 ACTIVE VISION THROUGH INVARIANT REPRESENTATIONS AND SACCADE 

MOVEMENTS 

 

 

 

 

 

A thesis presented to 

the faculty of 

the Russ College of Engineering and Technology of Ohio University 

 

In partial fulfillment 

of the requirements for the degree 

 Master of Science 

 

 

 

 

 

Yue Li 

June 2006 



This thesis entitled 

ACTIVE VISION THROUGH INVARIANT REPRESENTATIONS AND SACCADE 

MOVEMENTS 

 

 

by 

YUE LI 

 

has been approved for 

the School of Electrical Engineering and Computer Science 

and the Russ College of Engineering and Technology by 

 

 

 

Janusz A. Starzyk 

Professor of Electrical Engineering and Computer Science 

 

 

 

Dennis Irwin 

Dean, Russ College of Engineering and Technology 

 



Abstract 

YUE LI, M.S., June 2006, Electrical Engineering and Computer Science 

ACTIVE VISION THROUGH INVARIANT REPRESENTATIONS AND SACCADE 

MOVEMENT (143 pp.) 

Director of Thesis: Janusz A. Starzyk 

This thesis presents an innovative approach to pattern recognition, by using self-organized, 

invariant representations integrating continuous observation and saccade movements. This 

biologically motivated approach can achieve visual perception through a retina like sampling 

of high resolution images with lower resolution artificial retina.  

 

The neural network uses hierarchical feedback structures to build object representations, 

self-organizes invariant transformations, while iterates on the images received from the retina 

model. The network identifies the whole image by using winner-take-all scheme through 

temporal association of sufficiently accurate saccades. By using our invariance building 

scheme, the network can identify different views of the same object.  
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1. Introduction 

 

1.1 Background and Motivation 

Human vision is a complicated process which has not been completely understood yet, 

despite hundreds of years of study and research. [Tri00] has showed that human recognition 

will be critical in future applications that will allow computers to interact with human and 

environment more efficiently. This raises interests in building computer vision, which is a 

branch of artificial intelligence that deals with image recognition and understanding. It 

focuses on providing computers with the functions typical to human vision [Pic03], thus 

providing the communication interface between human and computers. At present, state of 

technology, computer vision has provided important applications in commercial, security, and 

military fields, such as industrial automation, quality inspection, robotics, target recognition 

and surveillance systems, etc.  

 

As one of the most remarkable and successful applications of computer vision, face 

recognition, has recently received significant attention due to variety of potential applications. 

These potential applications include identification, verification, anticipation, etc. For the 

identification problem, the face to be recognized will be compared to a group of faces of 

known individuals. For the verification problem, the face to be verified will be confirmed or 

rejected by the system [Tor04]. For the anticipation problem, the system will anticipate a 
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visual input (of the observed person) based on its accumulated past learning experience. A 

face recognition system generally includes steps of face detection, feature extraction, and face 

recognition.  

 

It has been widely recognized that feature extraction is important in face recognition. Features 

can be either local features such as lines or points, or basic facial features. For instance, 

OpenCV [Bra05] detects and recognizes objects by extracting local features such as edges and 

textures, and uses some heuristics to find configurations of those features specific to the object of 

interest. Basic facial features, such as eyes, nose and mouth, and their spatial arrangement, are 

important for discrimination among face images that are all quantitatively similar to each 

other [Lia00]. [Kan73] developed one of the earliest face recognition algorithms based on 

automatic facial feature detection. In [Iva04], authors use component facial feature based face 

recognition that trains recognition classifiers on each of the components separately and then 

combines their outputs to recognize faces.  

 

[Ait03] developed a neural network based facial recognition program. While the system can 

only handle the image with both mouth and both eyes visible, it cannot deal with every facial 

image in all possible poses. However, a successful and efficient facial recognition system 

should also be able to obtain “invariant” recognition characteristics, including facial 

recognition under different viewing perspectives [Lee02]. This results in another challenging 

situation when certain facial features are invisible due to large variation in head pose. The 

best solution might be to visualize the missing features by using the symmetry of the face or 
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using past learned information [Zha03].  

 

Other problem in the existing face recognition systems is the resolution reduction. A 

memory-based face recognition algorithm (ARENA) [Sim00] is implemented to identify 

building visitors. However, it reduces the resolution of the visitor’s image to get best match 

against the images stored in the database, which may decrease the recognition accuracy. 

 

To summarize, there is still no technology that provides a robust solution to all situations, 

conditions and different applications that face recognition algorithms may encounter [Tor04]. 

In other words, current systems are still far away from the capability of the human perception 

system [Zha03], and it is still a problem to robustly extract facial regions and features out of 

complex scenes [Kar96].  

  

1.2 Research Goals  

Based on the recent results in computer vision, there is a need to develop invariant image 

interpretation and recognition in a natural and dynamic way. This natural and dynamic 

approach to image recognition is biologically motivated and has a penitential to accomplish higher 

levels of recognition and image understanding than the existing systems. It is aimed at building 

active vision in a learning machine that actively analyzes the perceived image by directing its 

sensors (retina sampling) to most interesting and informative parts of the input image. This thesis 

aims at building an artificial vision model, which can achieve high-resolution image 
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recognition, can support continuous observation, can perform feature extraction, and can 

build internal image representations for machine learning. The task is to maintain observation 

and correct identification of each person, even when a current view of the person cannot be 

uniquely recognized.  

 

The feature extraction in this thesis is based on an artificial retina sampling model. The 

perception of an object in its entirety is built up from active scanning and feature extraction in 

various areas of the object image, known as saccades. Human constantly scan the visual 

world using saccade movements [Dor04]. Saccades are rapid, ballistic eye movements trigged 

by different cues, such as visual, auditory, and planned cues [Gre99]. During these saccades, 

the image moves across the human retina. By using the artificial retina sampling, our vision 

model is capable of extracting features by sampling any interesting area of the observed 

image. Our artificial retina model is built up by following the model of the rods and cones 

distributions in human retina. By repeating saccade movements and building invariant 

temporal correlations of sampled image features at sufficient detail level, an object can be 

successfully perceived.  

 

We use a neural network with hierarchical feedback structures to build object representations, 

self-organize network topology to build invariant transformations, iterate on the images 

received from the artificial retina model, and control the retina model to sample details of the 

observed objects. The network identifies the whole image by using winner-take-all scheme 

after sufficiently accurate saccades. By using our invariance building scheme, the network can 
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identify different views of the same object. When certain facial features are invisible due to 

large variation in the head pose, the network uses its previously learned information, and 

when new facial features appear, the network learns the new features, expanding its 

topological structure.  

 

A reference for our active vision model will be the learning-based computer vision-Open Source 

Computer Vision Library (OpenCV) from Intel Corporation. OpenCV is an open source collection 

of computer vision routines geared mainly towards human-computer interaction, robotics, security, 

and other vision applications [Bra05]. OpenCV detects and recognizes objects by extracting local 

features such as edges and textures, and using some heuristics to find configurations of those 

features specific to the object of interest. Our active vision model not only extracts local features, 

but also extracts facial features such as eyes, mouth and nose which are important for 

discrimination among face images that are all quantitatively similar to each other [Lia00]. We will 

compare the learning quality, learning efficiency and learning capacity between our active vision 

and OpenCV. 

 

1.3 Thesis Organization  

This thesis is organized into six chapters. Chapter 2 presents the network structure of the 

bidirectional feedback self-organization winner-take-all classifier. In this chapter, the network 

operation is detailed described, which includes the supervised learning and unsupervised 

learning schemes. This chapter also covers the results analysis and learning performance of 
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the self-organization winner-take-all classifier.  

 

Chapter 3 discusses the continuous observation network that can maintain observation and 

correct identification of each person, even when a current view of the person cannot be 

uniquely recognized. This continuous observation network is supported by the dual neurons 

that generate feedback prediction signals.  

 

Chapter 4 introduces the four different retina sampling models based on the theoretical model 

and experimental data. In addition, it combines the retina sampling with ganglion cells 

implementations. Motion detection, micro-saccades and substantial simulation results are 

discussed in this chapter. This chapter also presents the saccade movement network that 

applies the retina sampling model discussed in Chapter 4 to achieve accurate recognition for 

higher resolution images. This network can identify the whole high resolution image using the 

low resolution retina after several saccades. Architecture and algorithm for this saccade 

movement network is detailed described.  

 

Chapter 5 gives a conclusion of the work done, summarizes major results obtained from the 

thesis and discusses the future work. 
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2. Self-Organizing Winner-Take-All Classifier 

 

2.1 Bidirectional Feedback Network Structure 

In this section, we propose a novel bidirectional neural network structure for self-organizing 

classifier design. This neural network uses hierarchical feedback WTA structures with 

bidirectional connections between hierarchical levels to build object representations and uses 

self-organization to obtain invariant transformations. It is assumed that the network receives 

continuous input representing the same object over a period of time. The network anticipates 

that the input represents the same object by using feedback prediction signals. The network 

maintains the same internal representation for the received input, unless there is a strong 

disagreement between the feedback predictions and received input signals. In such case, the 

network switches to the internal representation of different object and maintains this 

representation until the next strong disagreement. The mechanism of building these 

predictions and checking the level of the disagreement is described in the following sections.  

 

Suppose that a hierarchical level  receives its inputs from WTA blocks on the previous 

level . For 2D input sampling, each block on level contains inputs  from a 2D 

subarray of output signals from the lower level blocks. 

h

1h− h h
pqa
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where  are  vectors of outputs from 1ˆh
pqb −

11 hn −× 1h−  level WTA blocks. Thus  block 

receives total  scalar inputs from the lower level blocks. Fig. 2.1 shows three 

levels of hierarchical structure illustrating this 2D sampling scheme. In this figure, a single 

element  on level  is connected to a rectangular array of elements  on the lower 

level. Different elements  may receive inputs from different overlapping rectangular 

arrays of elements  on the lower level.  
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Fig. 2.1 Hierarchical structure of 2D sampling 

 

In detail, the input signals to hierarchical blocks  on level  are obtained from blocks 

of lower level signals  by specifying four parameters , where are the 

h
pqa h

1ˆh
pqb − , , ,p q m k ,p q
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coordinates of the origin (e.g, p i= , q j= ) and  are respectively the number of rows 

and columns in each block of signals 

,m k

1ˆh
pqb − . For the uniform sampling (with overlap) of blocks 

of , and may be computed. For instance, if we specify a 2D input signal sampling 

with steps and in horizontal and vertical direction respectively, then 

1ˆh
pqb − p q
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As seen in Fig. 2.2, the inputs of level block are obtained from first taking the product of 

and the interconnect weight matrix . 

h

h
pqa% hW

h h
pq pqb a W=% % h

h

h×

)

,                                                           (2.3) 

where is a vector which is reshaped from , and is 

 weight matrix. Thus, as shown in Fig. 2.2, outputs  are first sampled 

and formulate a vector  that is multiplied by the weight matrix  to obtain inputs to 

level  . In a continuous observation of an object, each scalar signal in hierarchical 

structure shown in Fig. 2.1 is vectorized to represent a sequence of input images or other time 

domain input signals. Thus vectors  and  will be replaced by matrices with number 

of rows corresponding to the number of samples. After  are obtained using initial weight 

matrix , a new  can be computed from equation (2.3) by least square method: 

h
pqa% 11 ( )hn m k−× ⋅ ⋅ h

pqa hW

1( )hn m k n− ⋅ ⋅ × 1ˆh
pqb −

h
pqa% hW

h h
pqb%

h
pqb% h

pqa%

h
pqb%

hW hW

( )h h
pq pqW pinv a b= %% ,                                                    (2.4) 

where ( h
pqpinv a%  is a pseudo inverse of the input signal matrix . h

pqa%
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Fig. 2.2 Outputs of level ( h -1) formated as inputs to level  h

 

Finally, by taking a nonlinear transformation (e.g., sigmoidal transformation followed by 

WTA operation) of , we will obtain the output of level  block  as h
pqb% h ˆh

pqb

ˆ (h
pq pqb f b= % )h ,                                                           (2.5) 

where for each input signal,  is a 1ˆh
pqb hn×  vector that is an input to the next layer. 

Subsequently, we will adjust the weight matrix  to satisfy ˆ hW

ˆ ˆ( )h h T h
pq pqb W a= .                                                         (2.6) 

Equation (2.6) implements a feedback signal idea where the output  of the level  is 

fed back to the input of this level through the same interconnection weights. Thus  

represents weights of the bidirectional links between two levels.  can be updated 

iteratively after each new input signal is received by this network, by using the recursive least 

ˆh
pqb h

ˆ hW

ˆ hW
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1

square method which is described in the next section. 

 

2.2 Recursive Least Square (RLS) Weights Adjustment 

Suppose that we have a linear system of equations 

1 1n n nW z− − −Φ = ,                                                          (2.7) 

where is the  weight matrix, 1nW − k m× 1n−Φ is ( 1)n k− ×  matrix of received signal 

values, and 1nz −  is matrix of desired signal values. ( 1)n − ×m 1nW −  can be obtained by 

using the least square method as follows. 

1
1 1 1 1( )T

n n n nW −
− − − −= Φ Φ Φ 1

T
nz − .                                              (2.8) 

When a new input signal Tx is received, we need to update the weight matrix to a new value 

to satisfy nW

n n nW zΦ = ,                                                             (2.9) 

where 1n
n Tx

−Φ
Φ = ,                                                      (2.10)  

and .                                                        (2.11) 1n
n

z
z

z
−⎡ ⎤

= ⎢
⎣ ⎦

⎥

Our intension is to do it iteratively without inverting the new coefficient matrix . Finding 

the inverse of 

nΦ

T
n nΦ Φ is a key to recursive least square (RLS) weight update. From the matrix 

inverse lemma, we know that for a positive definite matrix A,  

1 1
1 1

1( )
1

T
T

T

A xx AA xx A
x A x

− −
− −

−+ = −
+

.                                           (2.12) 

Thus using and the matrix inverse lemma, we have 1( )T
n n nP−Φ Φ =
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1
1

11

T
n n

n n T
n

P xx PP P 1

x P x
− −

−
−

= −
+

.                                                  (2.13) 

Let us define vector , so we can simplify notation for  1nv P x−= nP

1 1

T

n n T

vvP P
x v−= −

+
,                                                     (2.14) 

and the updated weight matrix  is obtained from nW

(1 11

T
T T

n n n n n n nT

vvW P z P z xz
x v− − −

⎛ ⎞
= Φ = − Φ +⎜ ⎟+⎝ ⎠

)1 .                              (2.15) 

Let 
1

T

T

vvP
x v

∆ =
+

,                                                      (2.16) 

Then the updated weight matrix is 

1 1 1( )( T
n n n nW P P z xz− − −= − ∆ Φ + ) .                                           (2.17) 

In this way, we can update the weights by using the recursive least square method each time a 

new input comes in. The signal flow diagram of the feed forward network that implements 

this iterative scheme is shown in Fig. 2.3. 
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Fig. 2.3 Signal flow diagram for RLS 

 

This network requires storage of a matrix 1nP − and vector 1
T
n nz 1− −Φ . It requires two 

matrix-vector, one vector-vector multiplication, and one scalar-vector, one matrix scalar 

division and add/subtract operations as shown in Fig. 2.3. 

 

2.3 2-layer Self-organizing WTA Classifier 

Let’s first consider a 2-layer network without sampling of the input image. This network has a 

fully connected input and output layers and the interconnection weights are described by a 

single interconnection weight matrix . As illustrated in Fig. 2.4, the 2-layer output is 

computed by first adding the weighted input signals at each output node  

0W

kb

1

1

n

k i
i

b W
=

= ∑ k ia                                                           （2.18） 
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and then performing the WTA operation to obtain . ˆ ( )k kb f b=

 

W

1b

2b

2nb

1a

2a

1na

a b

1iW

2inW

 

Fig. 2.4 A 2-layer classification network 

 

We developed both supervised learning and unsupervised learning schemes to illustrate how 

the RLS method can be used to classify different categories.  

 

There are two ways to achieve this classification. First, unsupervised learning uses the initial 

weight setting for , and another one uses supervised leaning with initial output setting as 

discussed next.

0W
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2.3.1 Initial Weight Setting 

Let us assume that we have a database, which needs to be classified in categories. We will 

first choose samples from the database to represent these categories. The classification 

will be performed by the network with  inputs (input signal size) and  outputs 

( ). The interconnection weights between 

n

n n

1n 2n

2n n= 1h−  and  levels will be initially set 

based on these samples to  as follows. Each of the  output nodes in WTA will be 

connected to all input nodes through weights equal to the input signal values. All the input 

signal values were initially normalized. This results in such weights that the product of each 

sample signal with the weight matrix is equal to one for one of the output nodes and is less 

than one for the other nodes. Thus, this particular node is selected to represent one category. 

This implements Hebbian learning idea, where weights of the winning output are adjusted 

towards the input signal values.  

h

n 0W 2n

 

Then we will send the entire database to the network for least square weights adjustment and 

classification. The network will adjust its weights and classify the database by its 

self-organization learning scheme in an unsupervised way using  

0B AW= ,                                                             (2.19) 

where each row of the matrix A contains a single input signal to the learning network,  is 

the initial interconnection weight matrix (set by chosen  samples from the database) and B 

is the resulting output signals matrix. The interconnection weights are set to their final values 

by solving 

0W

n
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AW B= ,                                                              (2.20) 

using the RLS method.  

 

A small database with 19 images was used to test this learning scheme with initial weight 

setting. Each image is an array of 14×18 8-bit pixels. A 2-layer network with 252 input nodes 

and 4 output nodes was used for classification with RLS method.  

 

Fig. 2.5 shows 4 images for 4 different categories used for initial weight setting.  

 

 

Fig. 2.5 Samples representing 4 categories 

 

Fig. 2.6 shows the surface plot of the output layer after the unsupervised learning of the entire 

database. In Fig. 2.6, the x-axis represents the output node activity, y-axis represents a 
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consecutive image from the database, and z-axis represents the output neuron value in 

response to each input image. Strength of a given output value x corresponds to the strength 

of our belief that sample y belongs to class x. 

 

 

Fig. 2.6 Surface plot of the output layer 

 

Based on the output neuron values, different images correspond to different categories. In this 

unsupervising stage, only 4 categories were obtained. Fig. 2.7(a)-(d) show the resulting image 

categories after self-organized learning.   
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(a) Images classified as class 1 

 

(b) Images classified as class 2 

 

(c) Images classified as class 3 

  

  (d) Images classified as class 4 

Fig. 2.7 Images classified as different classes 

 

As we can see, the self-organized learning using RLS method resulted in a reasonable 

grouping of the input images into similar profile categories. In this initial weight setting, 

main_LSQ_weight_setting.m file is used under RLS_WTA_Classification (see Appendix A).
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2.3.2 Initial Output Setting 

A more natural approach is the supervised output setting method. We will first present the 

network with chosen samples to the inputs of the level , and set the output of the level 

to a  unit matrix. By solving equation 

n h h

n n× 0
h h
pqa W I=% , we can obtain the initial set of 

weights  for the unsupervised learning. Next, we send the entire database to the input of 

the network and use equation (2.4) for the least square weight adjustment. The self-organizing 

network will adjust its weights and classify the database in an unsupervised way. If we choose 

the same 4 samples as in Fig. 2.5, the classification result is the same as shown in Fig. 

2.7(a)-(d). In this initial output setting, main_LSQ_output_setting.m is used in folder 

RLS_WTA_Classification (see Appendix A). 

h
oW

 

2.4 3-layer Self-organizing WTA Classifier with Bidirectional 

Connections 

We already demonstrated that by using a combination of the supervised and unsupervised 

learning, the 2-layer network can self-organize and learn to classify. Now we introduce the 

3-layer network which uses hierarchical feedback WTA structures with bidirectional 

connections between hierarchical levels. Fig. 2.8 shows the signal flow for the 3-layer 

network. 
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ABW
CBW

BCW
 

Fig. 2.8 Signal flow for the 3-layer network 

 

Suppose that we have three layers A, B and C, where A is the input layer, C is the output layer 

which represents the number of categories, and B is the layer which has bidirectional 

connections to and from the layer C. The weights from layer A to layer B are , the 

weights from layer B to C are  and the weights from layer C to B are .  

ABW

BCW CBW

 

Based on this 3-layer network with hierarchical feedback, we develop self-organizing winner 

take all classifier (SOWTAC). Architecture and basic operation of SOWTAC are presented in 

this section.  

 

As discussed before, the input layer A receives inputs from the input images of the database 

by 2D sampling. Each block in layer A contains the inputs from a 2D subarray of an 

input image .  

pqa

Im

, , 1 ,

, , 1 ,

Im Im Im

Im Im Im

i j i j i j k

pq

i m j i m j i m j k m k

a
+ +

+ + + + + ×

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

L

M M M M

L
                       (2.21) 

And  is a 1 (pqa% )m k× ⋅ vector which is reshaped from . So initially, the signal values at pqa
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layer B are obtained by taking the product of  and the interconnect weight matrix  

between  and , 

pqa% abW

pqa% pqb%

pq pq abb a W=% % .                                                           (2.22) 

As shown in Fig. 2.9, there is N blocks of , N blocks of , and N blocks of . For 

simplicity, we use the same notation  for the sampled input at different overlapping 

locations of the input image, and the same notation  for the weight matrix from  to 

at different locations. In reality, equation (2.22) relates different signals and  

through different weight matrices . 

pqa% abW pqb%

pqa%

abW pqa%

pqb% h
pqa% pqb%

abW

In general, we represent the weight matrix from layer A to B by , where ABW

{ }
1,2,..., , 1,2,...,pq p n q

A a
= =

= %
n

,                                                  (2.23) 

{ }
1,2,..., , 1,2,...,pq p n q

B b
= =

= %
n
.                                                  (2.24) 

If there are M  samples sent to the network, the rows of A are set to M  input samples. 
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Fig. 2.9 Hierarchical structure of the 3-layer network 

 

2.4.1 Supervised Learning and Handmade Features 

Basically, as discussed above, we will first have supervised learning followed by the 

unsupervised learning. During supervised learning, we will send  samples from the 

database, each of which represents one category. The output layer C will be set to a unit 

matrix. In the following we will discuss how to set the initial value of .  

n

abW

 

Initial weight setting and weights adjustment will be explained on the same database used in 
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section 2.3. Assume that  and 4m k= = 20M = .  

 

First, we generate 20 different handmade features as shown in Fig. 2.10. 

 

 

Fig. 2.10 20 handmade features 

 

Consider, for instance, N blocks of  obtained from one image in our database (N=48). 

Fig. 2.11(a)-(f) shows how these N original features from one image are classified into these 

20 binary handmade features. We use the supervised output-setting method as described in 

section 2.3.1 to classify the 48 extracted features into 20 different classes.  

pqa
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(a) 

 

(b) 
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(c) 

  

(d) 
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(e) 

 

(f) 

Fig. 2.11 Original features and their classified handmade features  
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All handmade features and can be put together in a matrix shown in Fig. 2.12(a), By using the 

initial output setting as described in section 2.3.1, we will send this matrix to the input layer A, 

and set the output of layer B to the unit matrix. By using the recursive least square weights 

adjustment, we can get the initial value of  as shown in Fig. 2.12(b). Then we will use 

this  in 3-layer supervised training as discussed below.  

0abW

0abW

 

          

(a)                              (b) 

Fig. 2.12 Handmade features and Initial weight matrix  0abW

 

During the supervised learning, for each block , we will have pqa% pqb%

0pq pq abb a W=% % .                                                          (2.25) 

Since { }
1,2,..., , 1,2,...,pq p n q n

A a
= =

= % , { }
1,2,..., , 1,2,...,pq p n q n

B b
= =

= % ,  

0BCBW = C .                                                           (2.26) 

Because C is set to a unit matrix by using the initial output setting, so we will have 

0BCBW C= = I .                                                        (2.27) 

0BCW  can be solved by using the recursive least square method.  

After the supervised learning, we get the initial value of . In this example, we set the 0BCW
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0

0

initial value of  to the handmade features. Later we proved that we could also set the 

initial value of  to random numbers. 

0abW

0abW

 

2.4.2 Unsupervised Learning  

After the supervised learning, we will send the whole database to the network inputs for 

iterative least square weights adjustment and self-organization. This unsupervised learning is 

accomplished in two stages: the linear iterations and the nonlinear iterations. 

 

2.4.2.1 Linear Iterations 

In the linear iterations, we simply iterate between layers B and C until convergence. Since 

during the unsupervised learning, we will send the whole database to the network, the initial 

values of signals B are computed as follows: 

0 ABB AW= ,                                                           (2.28) 

where A is the 2D input matrix. Each row of A represents a single image from the database. 

Layer C receives feed forward signals from layer B. Thus initial signals in layer C can be 

computed as: 

0 0 0 0BC AB BCC B W AW W= = .                                              (2.29) 

In the next iteration, the layer B receives both feed forward signals from layer A and the 

feedback signals from layer C. So the signals in layer B can be updated as: 
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⎥

0

0

0

)

0) )

) ]

0
T

0

0

[ ] 0
1 0

0

AB

CB

W
B A C

W
⎡ ⎤

= ⎢
⎣ ⎦

.                                                   (2.30) 

Since  

1 0 0 0 0 0 0AB CB AB AB BC CBB AW C W AW AW W W= + = + .                           (2.31) 

The successive iterations can be computed as follows:  

2 0 1 0

0 0 0 0 0 0
2

0 0 0 0 0 0

(

( )

AB CB

AB AB AB BC CB BC CB

AB AB BC CB AB BC CB

B AW C W
AW AW AW W W W W

AW AW W W AW W W

= +
= + +

= + +

                            (2.32) 

subsequently, 

3 0 2 0

2
0 0 0 0 0 0 0 0 0

2 3
0 0 0 0 0 0 0 0 0 0

( (

( ) ( )

AB CB

AB AB AB BC CB AB BC CB BC CB

AB AB BC CB AB BC CB AB BC CB

B AW C W

AW AW AW W W AW W W W W

AW AW W W AW W W AW W W

= +

= + + +

= + + +

         (2.33) 

and finally, we will have 

2 3
0 0 0 0 0 0 0 0 0[ ( ) ( ) ( n

n AB BC CB BC CB BC CB BC CBB AW I W W W W W W W W= + + + + +L .     (2.34) 

where A is the input signal matrix. 

Using matrix diagonalization technique, we can express the product of two matrices 

as: .                                     (2.35) 0BC CBW W 1
0 0 ( )T

BC CBW W V DV−=

where is the matrix of eigen vectors of and  is the diagonal matrix of eigen 

values of . If the maximum eigen value in  is less than 1, 

V 0BC CBW W D

0BC CBW W D nB  will gradually 

converge to a stable value. In order to have the eigen value of  less than 1, we 

normalize  and  to have the sum of each column equal to 

0BC CBW W 0

0BCW 0CBW α  , where α  is 

called the convergence parameter, and 0 1α< < . Small α  forces the faster convergence of 

linear iterations. Not only this normalization ensures stability of the iterative process, it also 

makes equal sum of weights for signals that enter each neuron in the winner take all nonlinear 
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output transformation. This removes any statistical bias in selecting a winner, and the only 

criteria for the winning neuron is similarity of its weights to the input signal vector. In a few 

iterations, we can reach stable values for all the signals in layers B and C.  

 

2.4.2.2 Nonlinear Iterations 

Once the signals in layers B and C become stable after the linear iterations, we will start the 

non-linear iterations, which allow the network to gradually push up the winner signal values 

and push down the losers.  

Let us denote the signals iB  and after the nonlinear sigmoidal transformation in equation 

(5) as  and  respectively, so for one nonlinear iteration, we will have 

iC

ˆ
iB ˆ

iC

1. ,                                                          (2.36) ˆ
i i BC BW= Ci

n2. , ,                                     (2.37) 1
ˆ ABi

i i
CBi

W
B A C

W−

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦
0,1,...i =

3. Adjust the weights , , and  by solving equation (2.4). BCiW ABiW CBiW

4. Normalize weights , , and . BCiW ABiW CBiW

After a few nonlinear iterations, all the signals and interconnection weights will become 

stable.  

Fig. 2.13 shows the convergence of the signal  and weights  during the iterations 

with convergence parameter 

iC BCiW

α  set to 0.5. Fig. 2.13 a) shows the norm of 1i iC C +−  after 

each iteration, while Fig. 2.13 b) shows the norm of 1BCi BCiW W +−  in logarithm scale. As we 

can see from the figure, they converge quickly after 15 iterations.  
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(a) 

 

(b) 

Fig. 2.13 Convergence of the signal and weights 

 

2.4.3 Learning Performance and Results Analysis 

Fig. 2.14 shows the surface plot of the values at the output layer C as a function of the input 

sample number y and the output neuron activities x. On Fig. 2.14 when function value equals 

1 at x, y coordinates, this means that the sample number y was classified as class x. Based on 

this surface plot, we can correctly classify all 19 samples.  
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Fig. 2.14 Surface plot of the output layer 

 

Comparing to the surface plot on Fig. 2.6, the feedback network provided clear and more 

desirable classification boundaries.  

 

If we still use the same samples representing 4 categories as shown in Fig. 2.5, we will get the 

classification results as shown in Fig. 2.15(a)-(d). In this 3-layer SOWTAC, 

main_wta_output_setting_nonlinearmodel_cleanup.m is used in the folder named  

RLS_WTA_Classification (see Appendix A).  
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(a) Images classified as class 1 

 

(b) Images classified as class 2 

 

(c) Images classified as class 3 

 

(d) Images classified as class 4 

Fig. 2.15 Images classified as different classes 

 

Now we will illustrate how the updated weights changed from the initial  after the 

nonlinear iterations. Fig. 2.16 shows the norm of difference between the singular values of the  

initial  matrices and updated  matrices, of all 48 different feature matrices  

depicted in Fig. 2.9. We can see that the peak value of norm of the difference between the 

singular values occurs at the sample locations 8

abW 0abW

0abW abW abW

th, 16th, 27th, 34th, 39th, which indicate the 

locations of the most distinguishing parts of the images. These most distinguishing locations 
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are shown in Fig. 2.17. 

 

 

Fig. 2.16 Norm of the difference between singular value vectors of initial  and  0abW abW

 

By comparing the selected location with an eigenface, we can identify these features with eye, 

nose, and lip area.  
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8th

39th

27th

16th

34th

 

Fig. 2.17 Locations of the most distinguishing parts of the images shown on the eigenface 

background 

 

Now we compare the singular value vectors of initial  and the updated at location 

N=8. Singular values can be used as a measure of independence of the associated feature 

vectors. Thus large singular values represent independent feature vectors, while small indicate 

dependence of the corresponding feature vector on other feature vectors. Thus, we can use 

SVD to measure the quality of the extracted features. Let us compare the singular values of 

initial  which is obtained by our handmade features with singular values of the updated 

weight matrix  at the feature location 8. As shown in Fig. 2.18, we can see that features 

11-16 of initial  are dependent on features 1-10, while most of the features of the 

updated matrix  are independent. This may indicate that the updated features represent 

local requirements for self-organized learning much better than hand made features.  

0abW abW

0abW

abW

0abW

abW
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Fig. 2.18 Singular values of the initial  and the updated at location N=8 0abW abW

 

Fig. 2.19 shows the initial  and the updated at the location N=8. We can see that 

after the nonlinear iterations,  changed significantly from the initial . 

0abW abW

abW 0abW

 

               

Fig. 2.19 Initial  and the updated at location N=8 0abW abW

 

Fig. 2.20 shows the 2D samplings from the 19 input images at the location N=8. Note that 
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each row in Fig. 2.20 represents a 2D sampling from one image at this location. The columns 

represent the pixel location in the sampled images.  

 

 

Fig. 2.20 2D samplings from the input images at location N=8 

 

Now let us compare the singular value vectors of initial  and the updated  at 

location N=1. From Fig. 2.21 we can see that for the updated matrix , features 14-16 are 

dependent on features 1-13. The singular value of the updated matrix  is different from 

initial  matrix at features 11-13. Fig. 2.21 and Fig. 2.22 both indicate that  

changed little from . This may confirm small significance of features at this location as 

was indicated by small difference in singular vectors of  and  shown in Fig. 2.16.  

0abW abW

abW

abW

0abW abW

0abW

abW 0abW
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Fig. 2.21 Singular values of the initial  and the updated at location N=1 0abW abW

 

               

(a) Initial                       (b) updated  0abW abW

Fig. 2.22 Initial  and the updated at location N=1 0abW abW

 

Fig. 2.23 shows the 2D sampling from the input images at N=1. While compared with Fig. 

2.20, we can see that there is a much smaller number of independent image samples at this 

location, and the singular values of the updated  look much more similar to those of the abW
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handmade features. 

 

 

Fig. 2.23 2D samplings from the input images at location N=1 

 

As discussed in Fig. 2.18 and 2.21, each  only sees one certain area of all the input 

images. Now we assign all N=48 2D sampling areas from one image to one , which 

means that the weight corresponding to will interact with the whole image. Fig. 2.24 

shows the difference between the singular values of the initial  and the updated . 

Singular values of the updated  look more uniform, which indicates that  use 

different features than features represented by the initial weights.  

abW

pqa%

abW pqa%

0abW abW

abW abW
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Fig. 2.24 Singular values of the initial  and the updated  0abW abW

 

Fig. 2.25 shows the initial  and the updated . Because weight  interact with 

the whole image, the amount of difference between the initial  and the updated  is 

lager than the difference as shown in Fig. 2.22 and smaller than the difference in Fig. 2.19. 

0abW abW abW

0abW abW

 

             

(a) Initial                       (b) updated  0abW abW

Fig. 2.25 Initial  and the updated at location N=1 0abW abW
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3. Continuous Observation Network 

 

3.1 Network Structure 

In the previous sections, we discussed how to use the hierarchical feedback WTA structures to 

classify different positions. This hierarchical WTA feedback network builds invariant 

transformations, such that the network can recognize one object at different positions. In this 

section, another application of the hierarchical WTA feedback network is described. In this 

application, the network receives continuous input representing the same object over a period 

of time. For instance, Figs 3.1(a) and (b) show a sequence of images obtained from 

continuous observation of two different people (called here person A and B).  

 

The WTA network organization is modified to support continuous observation. The task of the 

network is to maintain observation and correct identification of each person, even when a 

current view of the person cannot be uniquely recognized. Such observation requires a 

memory of past activities, and in particular, it uses a prior assumption that the new scene is 

just a modification of the previous scene. We call this assumption the sameness principle. 

Under the sameness principle, the new input represents the same scene (or object) as the 

previous one. Structurally, this is supported by the introduction of dual neurons. Dual neurons 

generate feedback prediction signals in anticipation that the input represents the same object 

as before. With the help of the feedback prediction signals, the network maintains the same 
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internal representation for the received input, unless there is a strong disagreement between 

the feedback prediction and the received input.  

 

The continuous observation network (CON) structure is shown in Fig. 3.2. As the 

self-organizing WTA classifier (SOWTAC), the CON network uses the same organization of 

WTA structures between layers B and C. Fig. 3.1(a) and (b) show the database we used for the 

continuous observation.  

 

 

 

(a) Continuous observation of person A 

 

 

 

(b) Continuous observation of person B 

Fig. 3.1 Continuous observation of person A and B 

 

SOWTAC operation was described using the batch mode, however, in the CON, we use 

online mode. As each input image is presented, the network adjusts its weights iteratively. 

Dual neurons provide feed back prediction signals to the input of layer C. A CON shown in 

Fig. 3.2 is a 4-layer network with dual neurons. Signals in layers A, B, C, and weight matrices 

,  and  were described in detail in Section 2.4. Layer D represents the dual ABW BCW CBW
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neurons with the feedback to layer C.  

 

δ

 

Fig. 3.2 Signal flow for the 4-layer CON with dual neurons 

 

3.1 Network Operation 

The network is first trained using clear (strong) view of each person through a supervised 

training (see Fig. 3.3 (a) and (b)). The initial weight settings of  and  are obtained 

as described in section 2.4.1.  

BCW ABW

 

                                

 (a) Strong view of person A             (b) Strong view of person B 

Fig. 3.3 Strong view of person A and B 

 

For the online mode learning, the input images are sent to the network one by one, and are 

appended to the strong view images that were used for initial weight setting. After each input 

image is sent to the network, the network undergoes both linear and nonlinear iterations as 
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0

described in Section 2.4.2.  

 

During the first linear iteration when the first input image comes in ( ), there is no 

internal feedback signal from layer C. Neurons on layer B only receive signals from the 

neurons on layer A. Thus . After that, neurons on layer B receive both signals 

from the neurons on layer A and layer C, and  

0 0C =

1 ABB AW=

during the linear iterations: 

[ ]1
ABi

i i
CBi

W
B A C

W+

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  .                                            (3.1) 0i ≥

 

Initially, layer C receives only the feed forward signals from layer B. Thus the signals in layer 

C can be computed as: 

1 1i i BCC B W+ += 1i+ .                                                        (3.2) 

 

After the linear iterations converge, the neurons on layer B go through the sigmoidal 

transformation, thus the neurons on layer C are updated as: 

ˆ
BCC BW= .                                                             (3.3) 

 

This result, after nonlinear sigmoidal transformation is stored in dual neurons through forward 

links of fixed weight equal to 1 (see Fig. 3.4). Once activated, dual neurons stay active 

maintaining the memory of the most recent event. When the next input is presented to the 

CON, the dual neurons on layer D provide feedback prediction signals to the input of the 
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neurons on layer C. If the previous winning node of layer C was , then the 

corresponding dual neuron on layer D provides positive feedback 

winnerC

δ  to this node: 

'
winner winerC C δ= + .                                                          (3.4) 

 

And, the neurons on layer B should be updated as: 

' AB

CB

W
B A C

W
⎡ ⎤

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎣ ⎦

.                                                    (3.5) 

 

C DB 1
 

WBC

 

Fig. 3.4 Feed forward activation of dual neurons 

 

During nonlinear iterations: 

1.C B ,                                                           (3.6) ˆ
i i BCiW=

n2. , ,                                      (3.7) 1
ˆ ABi

i i
CBi

W
B A C

W−

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎣ ⎦
0,1,...i =

3. Adjust the weights , , and  by using the formula (2.4).  BCiW ABiW CBiW

4. Normalize weights , , and . BCiW ABiW CBiW
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As a result, the feedback signal helps the network to maintain the same internal representation 

of the perceived input. This prediction of the expected input continues unless there is a strong 

disagreement between the feedback predictions and the received input, at which point 

different dual neuron is activated and it helps to maintain predictions for a new type of input.  

 

3.3 Learning Performance and Results Analysis 

In this experiment, we use the database shown in Fig. 3.1 to test the continuous observation. A 

sequence of 20 images were presented to the network one by one. Table 1 shows the results of 

the test by two neural networks. For comparison, the test results without the dual neurons on 

layer D are also provided. Network 1 has layer D with dual neurons which provided feedback 

signals to layer C. The feedback prediction signal δ  is set to 0.08. Network 2 doesn’t have 

dual neurons. Each row of Table 1 contains a test image, its true classification, and classification 

results by Network 1 and Network 2. Network 1 correctly recognized all the test images of person 

A even with the side view, while Network 2 confused person A with person B in images 6-10. As 

image 11, which represents the clear view of person B, was sent to both networks, Network 1 

correctly recognized that this image is of person B and modified firing pattern of its dual neurons. 

Subsequently, Network 1 switched to person B during images 11-20. Again, Network 2 confused 

person B with person A in images 17-19. 
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Table 3.1 Results of the invariant test 1 by two networks 

 

Number Input images True answer Test results 

(Network 1) 

Test results 

(Network 2) 

1 
 

Person A Person A Person A 

2  Person A Person A Person A 

3  Person A Person A Person A 

4  Person A Person A Person A 

5  Person A Person A Person A 

6 
 

Person A Person A Person B 

7  Person A Person A Person B 

8  Person A Person A Person B 

9 
 

Person A Person A Person B 

10 
 

Person A Person A Person B 

11 
 

Person B Person B Person B 

12 
 

Person B Person B Person B 

13  Person B Person B Person B 

14  Person B Person B Person B 

15  Person B Person B Person B 

16  Person B Person B Person B 

17  Person B Person B Person A 

18  Person B Person B Person A 
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Table 3.1: continued 

19  Person B Person B Person A 

20  Person B Person B Person B 

 

Discussion 

In Table 3.1, the presentation sequence of person A ends with a weak view, while the 

presentation sequence of person B begins with the strong view. In such case, when a strong 

view of person B comes in, although the feedback prediction signal anticipates the same 

object as before (person A), the received input (strong view of person B) is strongly different 

from the internal representation of the previous object so that the network correctly 

recognized this image as person B.  

 

This example illustrates another aspect of the continuous observation with dual neurons. In 

Table 3.2, the representations of person A is from a strong view to a weak view (images 1-10).  

When presented with the weak view of person B in image 11, the feedback prediction signal 

caused the network 1 to continuously match the received input with the same internal 

representation (person A), until the network receives strong disagreement between the 

received input and the internal representation in image 18.  
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Table 3.2 Results of the invariant test 2 by two networks 

 

Number Input images True answer Test results 

(Network 1) 

Test results 

(Network 2) 

1 
 

Person A Person A Person A 

2 
 

Person A Person A Person A 

3  Person A Person A Person A 

4  Person A Person A Person B 

5  Person A Person A Person B 

6  Person A Person A Person B 

7  Person A Person A Person B 

8  Person A Person A Person B 

9  Person A Person A Person B 

10  Person A Person A Person B 

11  Person B Person A Person B 

12 
 

Person B Person A Person B 

13  Person B Person A Person A 

14 
 

Person B Person A Person A 

15 
 

Person B Person A Person A 

16 
 

Person B Person A Person A 

17 
 

Person B Person A Person A 

18  Person B Person B Person B 
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Table 3.2: continued 

19  Person B Person B Person B 

20  Person B Person B Person B 

21 
 

Person B Person B Person B 

22  Person B Person B Person B 

23  Person B Person B Person B 

24 
 

Person B Person B Person B 

25 
 

Person B Person B Person A 

26  Person B Person B Person A 

27  Person B Person B Person B 

28  Person B Person B Person A 

29  Person B Person B Person A 

30  Person B Person B Person A 

 

At this point, dual neurons switch to support continuous observation of person B. This type of 

image recognition is in a good agreement with human vision system if a certain input is 

expected, based on the previously obtained images. Notice the erratic behavior of Network 2 

which confused person A for person B in images 4-12, and person B for person A in images 

25, 26, 28-30. In this CON, main_wta_output_setting_nonlinearmodel_cleanup_online.m is 

used in folder RLS_WTA_Invariance (see Appendix A).  
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4. Retina Sampling and Saccade Movements 

 

4.1 Introduction 

Human visual perception is achieved in two stages. First, the light entering the cornea is 

projected to the back of the eye and converged into electrical signals by the retina. These 

signals represent time correlated saccade samples of dynamically changing visual images. 

Second, these electrical signals received from the retina after local preprocessing by ganglion 

cells are sent to the cortex neurons though the optic nerve for pattern recognition and further 

processing.  

 

Human retina contains two types of photoreceptors. Basically, rods are higher sensitivity, and 

are specialized for night vision; while cones are lower sensitivity, and are specialized for day 

vision. Fig. 4.1 shows the experimentally determined human rods and cones distribution 

diagram [Riede]. We can see that human cone density reaches peak at the fovea, and declines 

rapidly in the first few degrees around it and more slowly outside the fovea. Density of the 

photoreceptors is not symmetrical and covers larger portion of the visual field in the nasal 

direction (see Fig. 4.2). It represents relative density of rods and cones from the center of the 

fovea, at projection angle 0o, towards nose (projection angle up to 70o) and towards temple 

(projection angle up to 55o). 
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Fig. 4.1 Rods and cones distribution diagram 
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Fig. 4.2 Image projection on the retina 
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4.2 Retina Models 

4.2.1 Retina Model 1 

We first approximate the human rods and cones distribution by the superposition of Gaussian 

and linear distribution. The probability density of superposition of Gaussian and linear 

distribution is shown in Fig. 4.3.  

 

 

Fig. 4.3 Probability density of superposition of Gaussian and linear distribution 

 

ince Fig. 4.3 represents only one dimensional distribution of cones and rods density, we S

modified the probability density in Fig. 4.3 by multiplying it by the absolute value of the 

distance from the fovea. Fig. 4.4 shows the resulting probability density of the modified 
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model. By using this density function at a given angular distance and at a random zenith angle 

from 0 to 2π . 

 

 

Fig. 4.4 Probability density of superposition of Gaussian and linear distribution 

 

his density considers that with a given value of the one dimensional density, the number of 

ig. 4.5 shows the corresponding cumulative distribution of the probability density in Fig. 

(multiplied by absolute value of the distance from the fovea) 

T

photoreceptors would increase quadratically with the distance from the fovea. By using the 

PDF from Fig. 4.4, we can easily generate distribution of photoreceptors with the one 

dimensional density as shown in Fig. 4.3.  

 

F
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4.3.  

 

 

Fig. 4.5 Cumulative density of superposition of Gaussian and linear distribution 

 

sing the obtained cumulative density function, we may generate a 2D distribution of cones 

 (multiplied by absolute value of the distance from the fovea) 

U

and rods in the retina model. Fig. 4.6 illustrates the generation process of one photoreceptor 

of 2D distribution. To obtain the 2D distribution of photoreceptors that implements retina 

model 1, we first generate randomly uniform numbers ur  between 0-1, and then generate the 

retina sampling angular distances sr  from fovea b using the inverse function of the 

cumulative density function shown in ig. 4.5: 

y 

 F

1( )s ur CDF r−= .                                                        (4.1) 
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hese distances T sr  are combined with the randomly generated angles α  between 0 - 2π , 

which represent th second angular coordinate (zenith angle) of each photoreceptor. As shown in 

Fig. 4.6, once r and 

e 

α  is determined, the position of the photoreceptor Q can be obtained, 

where coss sx r α= , sins sry α= .                                           (4.2) 

 

 

Fig. 4.6 Generation of 2D distribution of photoreceptors (model 1) 

α 

rs

x 
Center of the fovea 

o 

Q y

xs

s

y 

 

Fig. 4.7 shows an example of generated retina sampling based on model 1.  

 



68 

 

 

Fig. 4.7 Retina sampling distribution (model 1) 

 

After the image is sampled by using the retina model shown in Fig. 4.7, we need to compact 

the sampled data in a uniform way which can be presented to the neural network. As shown in 

Fig. 4.7, there are many more samples in the center than in the peripheral area. In general, we 

need to first scale the 2D sampled data to a 2D uniform array, then move the overlaps to the 

nearest empty neighborhoods to achieve the maximum use of the neural network input space. 

The detailed compaction method is described below. 

 

Retina Sample Compaction 

The main purpose of retina sampling compaction is to fit all retina samples to a small 

matrix uM . The size of uM  ( uS Su× ) depends on the number of the generated 

photoreceptors and can be approximated by s sr r×  , where s is the number of samples (e.g., 

if the number of the generated photoreceptors is 502, then the size of the matrix is 50×50).  
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The compaction algorithm is as follows: 

1). For each photoreceptor at ( , )s sx y , generate the corresponding uniform coordinates 

( , )u ux y  in uM , where 

[ ( 0.5)cos ]u u ux round S r α= − , [ ( 0.5)sin ]u u uy round S r α= − ,                  (4.3) 

where α  is the zenith angle, and ( )ur CDF rs= .                                 (4.4) 

 

Notice that  are the random values that were used to generate ur sr and corresponding 

( , )s sx y in the first place, so they are already shown. 

 

After obtaining the uniform coordinates, the photoreceptor at location ( , )s sx y  can be mapped 

into matrix uM  at location ( , )u ux y . Fig. 4.8 shows an example of a portion of uM  at 

intersection of rows , , 1i − i 1i +  and columns 1k − , , k 1k + . In fig. 4.8, black circles 

represent the photoreceptor mapped to a specific location. Cell A has 4 photoreceptors, and 

cells A1, A2, A3, A4, A5, A6, A7, A8 are its neighbor, with 2, 1, 1, 3, 0, 3, 0, and 0 

photoreceptors respectively.  
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Fig. 4.8 Portion of 

k-2 k-1 k k+1 k+2 

 

a uM  

 

2).Calculate the number of overlaps ( ),overlap u uNum x y  and the demand  of 

each cell. The number of overlaps in a cell at location 

( , )u uDm x y

( , )u ux y  is  

                                     (4.5) 

where represents the number of photoreceptors in this cell. 

 

For instance, in Fig. 4.8, there are 4 photoreceptors in cell A, thus the number of overlaps of cell A 

is 3. 

 

Let denote the number of empty neighborhood cells around the cell 

( , ) ( , ) 1overlap u u perceptor u uNum x y Num x y= − ,

( , )perceptor u uNum x y  

( , )u uEm x y  ( , )u ux y . 

For instance, there are 3 empty neighborhood cells around cell A.  

 

A 

A1 

A2 

A3 A4 A5 

A6 

A7 A8 

i-2 B10 B9 B7 B8 

i-1 
B6 

i 
B5 

i+1
B4 

i+2
B1 B2 B3 
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The demand of cell ( , )u ux y  is defined as: 

( , )
( , )

( , )
overlap u u

u u
u u

Num x y
Dm x y

Em x y
= ,                                              (4.6) 

where  if ( , ) 0u uDm x y = ( , ) 0overlap u uNum x y =  or ( , ) 0u uEm x y = . 

 

Thus the demand of cell A is 1. The demand is used to prioritize the order of cells in the retina 

compaction. Cells with higher demand will be processed first. 

 

3). Let us define the request of an empty cell ( , )u ux y  as the sum of demands of its neighbors.  

8

1
( , ) ( , )u u ui ui

i
Rq x y Dm x y

=

=∑ .                                                 (4.7) 

 

The request tells compaction algorithm which of the empty neighborhood cells can satisfy a 

demand with least possibility of nullifying other demands in its neighborhood. The higher the 

request level, the higher probability of demand nullification will be. A demand can be nullified if 

all empty neighborhood cells are occupied as a result of satisfying other demands. For example, 

empty neighbors of cell A have the following requests: 

 

Let us assume that demands of cells B1, B2, B3, …, B10 are , ( 1) 0Dm B =
1( 2)
4

Dm B = , 

, ( 3) 0Dm B =
1( 4)
2

Dm B = , ( 5) 0Dm B = , ( 6) 0Dm B = , , ( 7) 0Dm B =
1( 8)
3

Dm B = , 

, , respectively. In addition, ( 9) 0Dm B = ( 10) 0Dm B =
1( 1)
2

Dm A = , ( 2) 0Dm A = , 

, ( 4) 1Dm A =
2( 6)
3

Dm A = . 
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Then 
1 1 2 41( 5) 1 1
4 2 3 12

Rq A = + + + + = ,  

1 2( 7) 1 2
3 3

Rq A = + + = ,  

1 2 1( 8) 1
3 3 2

Rq A = + + + =
5
2

. 

 

4).Move one point in the cell which has the highest demand to its empty neighbor which has 

the lowest request level. 

 

For instance, if cell A has the highest demand, then one of the photoreceptors in cell A will be 

moved to A7 as it has the minimum request. 

 

After moving a point from A to one of its empty neighbors, we modify its demand, as well as 

demands of all the neighbors of its empty neighbor that satisfied A’s demand (cell A7). In 

addition, we modify requests of all empty neighbors of A.  

 

5).Repeat 1), 2) and 3) until 0Dm = , which means no more photoreceptors shall be moved. 

 

Fig. 4.9 shows the results of the compaction algorithm from retina model 1, where the small 

dot represents 0 overlap in one cell, the circle represents 1 overlap, the star represents 2 

overlaps, the triangle represents 3 overlaps, and the square represents 4 overlaps. After the 

compaction algorithm, there are 274 empty cells filled by sampled points. In this retina 

sampling model 1, retina_model1.m is used in folder Retina_Sampling (see Appendix A). 
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Fig. 4.9 Results of the compaction algorithm from retina model 1 

 

Although the compaction algorithm satisfies all demands (if there are empty cells in 

neighborhood of cells with nonzero overlap), it leaves some cells with nonzero overlaps. Such 

cells demand is reduced to zero and effectively only one of its photoreceptors can enter the 

input data to the neural network. On the other hand, there are still empty cells in these 

locations where demands were zero. This leaves some inputs to the neural network unused. 

These deficiencies of the compaction algorithm are addressed in retina models 3 and 4.  

 

4.2.2 Retina Model 2 

Retina model 1 is based on theoretical approximation of experimented retina profile. It 

simplifies the experimentally obtained distribution with a symmetrical 2D density function. In 
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order to improve our model, we developed retina model 2 that uses the experimental 

distribution shown in Fig. 4.1. The photoreceptors distribution we used is the summation of 

the rods and cones distribution from Fig. 4.1. Notice that the density of the photoreceptors is 

not symmetrical and covers larger portion of the visual field in the nasal direction. In this case, 

we have 2 CDF profiles for the nasal direction and temporal directions respectively as shown 

in Fig. 4.10.   

 

 

Fig. 4.10 Cumulative density at 0 and 180 degrees 

 

We assume that the experimentally obtained distribution as shown in Fig. 4.1 also represents 

only one dimensional distribution of cones and rods density. We modified the cumulative 
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probability density in Fig. 4.10 by multiplying it by the absolute value of the distance from 

the fovea. Fig. 4.11 shows the resulting probability density of the modified model.  

 

 

Fig. 4.11 Cumulative density at 0 and 180 degrees 

(multiplied by absolute value of the distance from the fovea) 

 

Fig. 4.12 shows an example of generating the retina sampling angular distance sr  from 

fovea. In general, the way of generating the retina sampling angular distance sr  is similar as 

described in retina model 1. However, in this model, the CDF profile varies at different directions. 

α  represents the zenith angle of the photoreceptor, where α  is between 0 - 2π . Suppose 

that the temporal direction is at 0α = , and the nasal direction is at α π= , with the CDF profile 
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at nasal direction described by CDF1, and the CDF profile at temple direction described by CDF2.  

We have: 

1 12 ( ) 2 ( ) 1 ( )
2

1
s u ur CDF r CDF r CDF ru

α
π

− −= + − −      when 0 α π≤ ≤ , 

1 122 ( ) 2 ( ) 1 ( )
2

1
s u u ur CDF r CDF r CDF rπ α

π
− − −−

= + − 2π α π≤ ≤  when .        (4.9) 

 

rs 
Q

Center of the fovea  

α

Nasal direction  Temporal direction  

 

Fig. 4.12 Generation of 2D distribution of photoreceptors (model 2) 

 

Fig. 4.13 shows the corresponding retina sampling by using the CDF shown in Fig. 4.11. 

Obviously, this is not the correct retina sampling of human retina since the intensity in the 

fovea is not high enough. 
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Fig. 4.13 Retina sampling distribution 1(model 2) 

 

Therefore, the experimental experimentally obtained distribution in Fig. 4.1 should be already 

a linear projection from two-dimensional distribution of cones and rods. The CDF in Fig. 4.10 

should be used. Fig. 4.14 shows the retina sampling of model 2 by using the CDF in Fig. 4.10. 

This model can be easily modified to handle separate distribution of rods and cones if needed 

in the neural network learning.  
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Fig. 4.14 Retina sampling distribution 2(model 2) 

 

After the compaction algorithm, the retina model 2 in Fig. 4.14 represents inputs to the neural 

network as shown in Fig. 4.15. In this retina sampling model 2, retina_model2.m is used in 

folder Retina_Sampling (see Appendix A). 

 

Fig. 4.15 shows the results of the compaction algorithm from retina model 1, where the small 

dot represents 0 overlap in one cell, the circle represents 1 overlap, the star represents 2 

overlaps, the triangle represents 3 overlaps, and the square represents 4 overlaps. After the 

compaction algorithm, there are 249 empty cells filled by sampled points. 
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Fig. 4.15 Results of the compaction algorithm from retina model 2 

 

As discussed above, both retina model 1 and 2 require the compaction algorithm to represent 

the sampled image to the neural network. A more direct approach which does not require the 

compaction step and guarantee 100% use of NN input space is presented in retina model 3 

and 4.  

 

4.2.3 Retina Model 3 

In model 3, we first generate the uniform circle shown in Fig. 4.16. Each point in this uniform 

circle has an angle α  ( 0 2α π≤ ≤ ) towards the center of the uniform circle. The distance of 

each point to the center is , where ur 0 ur 1≤ ≤ . By using the inverse of the CDF function 

generated in retina model 1, we can get the corresponding angular distance from the fovea 
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from equation (4.1): 1( )s ur CDF r−= . 

 

                                

Fig. 4.16 Uniform circle 

 

By locating the zenith angle α  and angular distance sr  of each point in the uniform circle, we 

can get the retina sampling distribution shown in Fig. 4.17, where the uniform circle in Fig. 

4.16 is its corresponding compaction matrix sent to the neural network. In this retina sampling 

model 3, retina_model3.m is used in folder Retina_Sampling (see Appendix A). 
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Fig. 4.17 Retina sampling distribution (model 3) 

 

4.2.4 Retina Model 4 

Since in Retina Model 2, the experimentally obtained distribution is already a projection, on 

Retinal Model 4, we need to modify the probability distribution by dividing it by the absolute 

value of the distance from the fovea. Fig. 4.18 shows the corresponding CDF.  
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Fig. 4.18 Cumulative density at 0 and 180 degrees 

(divided by absolute value of the distance from the fovea) 

 

We map the uniform circle in Fig. 4.16 to the retina distribution by the inverse of the CDF 

function in Fig. 4.18. As discussed in retina model 2, each point in the uniform circle shown 

in Fig. 4.16 has an angle α  ( 0 2α π≤ ≤ ) towards the center of the uniform circle. The 

distance of each point to the center is , where ur 0 ur 1≤ ≤ . By using the inverse of two CDF 

functions generated in retina model 2, we can get the corresponding angular distance from the 

fovea as in equation (4.8): 

1 12 ( ) 2 ( ) 1 ( )
2

1
s u ur CDF r CDF r CDF ru

α
π

− −= + − −      when 0 α π≤ ≤ , 

1 122 ( ) 2 ( ) 1 ( )
2

1
s u u ur CDF r CDF r CDF rπ α

π
− − −−

= + − 2π α π≤ ≤  when . 
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Fig. 40 shows the retina sampling distribution of model 4, and its compaction matrix is the 

same as shown in Fig. 4.19. 

 

 

Fig. 4.19 Retina sampling distribution (model 4) 

 

Next we will illustrate an effect of retina image sampling and compare data fed to the neural 

network by using various retina models. Fig. 4.20 shows a binary image with 1000×1000 

pixels.  
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Fig. 4.20 Binary image (1000×1000) 

 

Fig. 4.21 (a)-(d) show the sampled images send to the neural network after compaction by 4 

retina sampling models respectively.  

 

 

 (a) Model1        (b) Model2         (c) Model3        (d) Model4 

Fig. 4.21 Sampled images by 4 retina sampling models (50×50) 

 

Obviously, retina model 4 achieves the best quality of the sampled images. From now on we 

will refer to this model as experimental uniform retina (EURETA) model. In this EURETA 

model (retina sampling model 4), retina_model4.m is used in folder Retina_Sampling (see 
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Appendix A). 

 

Another example to illustrate the retina sampling presented in Fig. 4.22, shows a color image 

with 1000×1000 pixels. 

 

 

Fig. 4.22 Colorful image (1000×1000) 

 

As shown in Fig. 4.2, d is the vertical distance from the object to the eye, and retina_d is the 

maximum vision range of the retina, where 

_ [tan(70 ) tan(55 )]oretina d d= ⋅ + o .                                          (4.9) 

By increasing d we can zoom out of the observed image sampling larger area and opposite, by 

decreasing d we can zoom in. In this way, EURETA can focus on whatever object or its feature 

that is interesting for the active vision system.  

 

Fig. 4.23 (a), (b) and (c) show the sampled images with 41×41 pixels resolution from the 
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original image (1000×1000 pixels) at different fovea locations with retina_d1=1000 pixels, 

retina_d2=1000 pixels, and retina_d3=680 pixels respectively.  

 

 

(a) (retina_d1)            (b) (retina_d2)            (c) (retina_d3) 

Fig. 4.23 Sampled images by EURETA （50×50） 

 

4.3 Retina Sampling with Ganglion Cells 

4.3.1 Introduction 

Ganglion cells are neurons located in the retina of the eye which receive visual information 

from photoreceptors via various intermediate cells such as bipolar cells, amacrine cells, and 

horizontal cells [Wikip]. Ganglion cells are the output neurons of the retina. Different from 

photoreceptors, which respond to light with graded changes in membrane potential, ganglion 

cells transmit information as trains of action potentials [Tes91]. Each ganglion cell responds 

to light directed to a specific area of the retina called receptive area. Ganglion cell receptive 

fields include the receptive center and the antagonistic surround. There are two basic kinds of 

ganglion cells: on-center cells and off-center cells as shown in Fig. 4.24. On-center cells are 

http://en.wikipedia.org/wiki/Neuron
http://en.wikipedia.org/wiki/Retina
http://en.wikipedia.org/wiki/Eye
http://en.wikipedia.org/wiki/Photoreceptor
http://en.wikipedia.org/wiki/Bipolar_cell
http://en.wikipedia.org/wiki/Amacrine_cell
http://en.wikipedia.org/wiki/Horizontal_cell
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These two classes of ganglion cells can be distinguished by their response to a small spot of 

light into the center of their receptive field. On-center ganglion cells fire when the light is 

directed applied to the center of their receptive fields and the light applied to the surround 

inhibits the on-center ganglion cells from firing. In an opposite way, off-center ganglion cells 

fire when the light is directed applied to the surround of their receptive field and inhibit when 

the light is applied to the center [Tes91].  

 

Furthermore, ganglion cells that are found in humans and higher mammals seem to provide 

information to the visual system that is used to construct a picture of the visual world. 

excited when stimulated in the center and inhibited when stimulated in the surround. 

Off-center cells are excited when stimulated in the surround while inhibited when stimulated 

in the center. In the figure, "+" stands for regions giving on responses, "-" for regions giving 

off responses [Tes91]. 

 

 
Fig. 4.24 On-center cell and off-center cell 
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Ganglion cells seem to act as "feature detectors", providing "building blocks" from which the 

visual system can build up a picture of the world and the objects within it [Every].  

 

In our biologically based active vision, we intend to model the ganglion cells in human retina 

to act as feature detectors. When combined with the retina sampling, our model can extract 

any interesting features from any high-resolution image and therefore achieve recognition that 

is more accurate.  

 

4.3.2 Direct Ganglion Cells Implementation 

In this section, we will discuss the use of ganglion cells in the retina sampling model to obtain 

feature extraction and achieve more accurate recognition. For simplicity, we will use two 

kinds of ganglion cells, one is spot detection cells, and the other is edge detection cells.  

4.3.2.1 Spot Detection Cells 

The spot detection positive (P) and negative (N) cells are shown in Fig. 4.25. Thus P cell 

corresponds to on-center cell and N cell corresponds to off-center cell. P cell has the 

excitatory inputs in the center represented by “+” and inhibitory inputs represented by “-” in 

the surround. N cell is opposite.  

 

http://everything2.com/index.pl?node=feature%20detector
http://everything2.com/index.pl?node=building%20blocks
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The output of a spot detection cell is calculated by:  

W                                                               (4.10) 

e signal value ranged from in 0 to 1, is the weight, while the weight of the 

excitatory input is 1, and the weight of the inhibitory input is -1. 

 

Fig. 4.26 shows an example of using the spot detection cell to detect the spot. For simplicity, we 

scale the image from 0-255 to 0-1. In fig. 4.26, “1” represents white pixel and “0” represents black 

pixel.  

 

 
Fig. 4.25 P cell and N cell 

1
1

n

i i
i

O S
=

= ∑ .

where iS  is th iW  

 
   (a)                                (b) 

Fig. 4.26 Example of spot detection  
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9=

0=

 

For a white spot image shown in Fig. 4.26(a), if we use the P cell as shown in Fig. 4.25, the output 

of the P cell is . If we use the same P cell for (b), we will get the output 

. Thus the white spot can be detected by P cell. By using similar analysis, we 

can demonstrate that a black spot can be detected by N cell. 

1
1

n

i i
i

O S W
=

= ∑

1
1

n

i i
i

O S W
=

= ∑

 

P and N cells overlap each other exactly. In addition, they cover the entire visual field in a 

uniform overlapping pattern as shown in Fig. 4.27.  

 

P cell 
N cell 

 
Fig. 4.27 Uniform overlapping pattern 

 

Let us consider a 964×964 image “Lena” as shown in Fig. 4.28. 
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Fig. 4.28 Lena (964×964) 

 

For simplicity, the following 8×8 P and N spot detection cells are used. 
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Fig. 4.29 Weight matrices of P cell and N cell 

 

“-1” represents the weight for the inhibitory input and “+1” represents the weight for the 

excitatory input. The number of inhibitory and excitatory inputs is equal. These P and N cells 

overlap each other exactly. They cover the entire image “Lena” in Fig. 4.28 in a uniform 

overlapping pattern. As a result, the EURETA system needs 240×240 P cells and 240×240 

N cells to cover the entire Lena image that has 964×964 pixels.  

 

Fig. 4.30 shows the output of the P and N spot detection cells.  
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(a) 

 

 

 (b) 

 

Fig. 4.30 P cell and N cell outputs (240×240) 

 

Since the whole image is covered by those uniformly overlapping spot detection cells, the 
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outputs of the overlapping spot detection cells actually show all the white and black edges of 

the image as illustrated in Fig. 4.30. In this spot detection, Main_One_Level_Ganglion.m is 

used in folder Ganglion Cells_8_8_new (see Appendix A).  

 

4.3.2.2 Edge Detection Cells 

Besides spot detection cells, we also have other feature detection cells like edge detection cells. 

Fig. 4.31 shows some examples of the weight matrices of positive feature detection cells, where (a) 

is the left edge detection cell, (b) is the upper edge detection cell, (c) is the rising diagonal edge 

detection cell. They still have the same size (8×8) as the spot detection cells.  
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(a)                (b) 

 

-  

 (c) 

Fig. 4.31 Weight matrices of edge detection cells 

 

Similarly, the output of a feature detection cell is calculated by (4.10): 

 , 
1

1
n

i i
i

O S
=

= ∑ W

where “0” means it is not connected to the corresponding image input.  

Fig. 4.32 shows the outputs of the edge detection cells, where (a) is the outputs of the bottom edge 
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detection cells and (b) is the diagonal falling edge detection cells.  

 

 

(a) 

 

 

(b) 

Fig. 4.32 Outputs of the edge detection cells (240×240) 
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Since the outputs of the detection cells are generated based on the original image Lena, now we 

consider mapping the outputs of the feature detection cells (240×240) back to the original 

image(964×964).  

 

For instance, let us map the outputs of the bottom edge feature detection cells to the original image 

(964×964). The weight matrix of the bottom edge feature detection cell is shown in Fig. 4.33 (a). 

If the output of one bottom edge feature detection cell is positive, the signal values in the 

corresponding 8×8 feature detection cell in the 240×240 matrix will be obtained by: 

1iSig O FeatureMatrix= × .                                                 (4.11) 

where  is the corresponding feature matrix. Feature matrix shows 

corresponding pixel intensity that matches given feature detection cell. For the bottom edge 

feature detection cell, its  is shown in Fig. 4.33 (b). 

FeatureMatrix

FeatureMatrix

 

 

 (a)                                   (b) 

Fig. 4.33 Weight matrix and its corresponding feature 
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Fig. 4.34 shows the corresponding mapping of the bottom edge feature detection cells (964×964).  

 

 
Fig. 4.34 Mapping of the bottom edge feature detection cells (964×964)  

 

In a similar way, we can get the mapping of the negative spot detection cells as shown in Fig. 

4.35. 
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Fig. 4.35 Mapping of the negative spot detection cells (964×964)  

 

Since we have different kinds of spot and edge detection cells, we can finally get the average 

mapping of all of these different features as shown in Fig. 4.36. 
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Fig. 4.36 Average mapping of different features (964×964) 

 

In this edge detection, Main_One_Level_Ganglion.m is used in folder Ganglion 

Cells_8_8_new (see Appendix A). 

 

4.3.2.3 Average Intensity Cells 

The average intensity cells average their input and fire in proportion to this average. They are 

smaller than the spot detection cells, using roughly half of the spot detection cells inputs. 
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Fig. 4.37 shows the weight matrix of the average intensity cell, it only uses half of the spot 

detection cells inputs as shown in Fig. 4.29.  

 

 

 

Fig. 4.37 Weight matrix of average intensity cell 
 

The output of the average intensity cell is obtained by: 

11

n

i i
i

S W
O

m
==
∑

,                                                             (4.12) 

where m is the number of the inputs with weighs are equal 1. In Fig. 4.37, 32
2
nm = = .  

 

Fig. 4.38 shows the outputs of the average intensity cells with 240×240 pixels.  
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Fig. 4.38 Outputs of the average intensity cells (240×240) 

 

Fig. 4.39 shows the mapping of the average intensity cells.  
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Fig. 4.39 Mapping of the average intensity cells (964×964) 

 

Now we could average the mapping of average intensity cells (in Fig. 4.39), and the mapping of 

different features (in Fig. 4.36), as shown in Fig. 4.40. In Fig. 4.40, the edges are more distinct. In 

this average intensity cells implementation, Main_One_Level_Ganglion.m is used in folder 

Ganglion Cells_8_8_new (see Appendix A). 
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Fig. 4.40 Average of average cells mapping and edge detection mapping (964×964) 

 

4.3.2.4 Motion Detection Cells 

An important function of ganglion cells is motion detection. Motion can be detected by using dual 

neurons for all ganglion cells. To reduce the hardware effort, only the average intensity ganglion 

cells will be used. Fig. 4.41 shows the different frames at time t=T0, T0+1 and T0+2.  
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(a) Frame at time t=T0 (964×964) 
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(b) Frame at time t=T0+δ (964×964) 
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(c) Frame at time t=T0+2δ (964×964) 

Fig. 4.41 Frames at time t=T0, T0+δ , T0+2δ  

 

Dual cell B copies the average cell output and holds it for a time period δ . 

 

For instance, at time t=T0+δ , the output of the dual cell B is: 

0( ) (out out 0 )B T A Tδ+ = .                                                     (4.13) 

 

The motion detection cell MD fires in proportion to the absolute value of 0(outB T )δ+  and 

0(outA T )δ+ , that is: 
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0 0 0 0( ) ( ) ( ) (out out out outMD B T A T A T A T )δ δ= + − + = − +δ . (4.14) 

 

Fig. 4.42 shows the result of motion detection cells at time t=T0+δ . In this motion detection, 

Main_One_Level_Ganglion_Motion_Detection.m is used in folder Ganglion Cells_8_8_new 

(see Appendix A). 

 

 

Fig. 4.42 Result of motion detection cells at time t=T0+δ (240×240) 

 

Similarly, Fig. 4.43 shows the result of the motion detection cells at time t=T0+2δ . 
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Fig. 4.43 Result of motion detection cells at time t=T0+2δ (240×240) 
 

4.3.3 Ganglion Cells Implementation with Retina Sampling 

In the previous section, we discussed about using the direct ganglion cells implementation to 

extract features. Now we will combine this ganglion cells implementation with the retina sampling. 

In the following ganglion cells implementation with retina sampling, 

Main_One_Level_Ganglion_With_Retina_Sampling.m is used in folder Ganglion Cells_8_8_new 

(see Appendix A). 

 

Fig. 4.44 shows a sampled image with pixels 221×221 from the original image “Lena”.  
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Fig. 4.44 Sampled image (221×221) 

 

This sampled image will be first covered by those overlapping spot detection cells. The 

outputs of the overlapping P and N spot detection cells are shown in Fig. 4.45 

 

 
Fig. 4.45 P cell and N cell outputs (54×54) 

  

Fig. 4.46 (a) and (b) show the outputs of the bottom edge and diagonal rising edge detection cells 

respectively.  
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(a)                   (b) 

Fig. 4.46 Outputs of the edge detection cells (54×54) 

 

The average mapping of these different spot and edge detection cells is shown in Fig. 4.47. 

 

 
Fig. 4.47 Average mapping of different features (221×221) 

 

Fig. 4.48 shows the mapping of the average intensity cells. 
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Fig. 4.48 Mapping of the average intensity cells (221×221) 

 

Similarly, we could average the mapping of average intensity cells (in Fig. 4.48), and the mapping 

of different features (in Fig. 4.47), as shown in Fig. 4.49. 

 

 

Fig. 4.49 Average of average cells mapping and edge detection mapping (221×221) 
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4.3.4 Retina Sampling with Micro-saccades 

Our eyes perform small movements even while we look at a stationary visual scene. 

Micro-saccades are a kind of fixational eye movement. They are small, jerk-like, involuntary eye 

movements, similar to miniature versions of voluntary saccades [Answe]. They complement 

saccades providing visual enhancement of observed images through spatio-temporal associations 

and time domain filtering.  

 

By implementing micro-saccades, we can get a set of sampled images. In this micro-saccades with 

retina sampling, Main_Micro_Saccade_Sampling.m is used in folder Ganglion Cells_8_8_new 

(see Appendix A). Fig. 4.50 shows two examples of the sampled images by micro-saccades.  

 

http://www.answers.com/main/ntquery;jsessionid=1f61raf3u5qgr?method=4&dsid=2222&dekey=Fixational+eye+movement&curtab=2222_1&sbid=lc05a
http://www.answers.com/main/ntquery;jsessionid=1f61raf3u5qgr?method=4&dsid=2222&dekey=Eye+movements&curtab=2222_1&sbid=lc05a
http://www.answers.com/main/ntquery;jsessionid=1f61raf3u5qgr?method=4&dsid=2222&dekey=Eye+movements&curtab=2222_1&sbid=lc05a
http://www.answers.com/main/ntquery;jsessionid=1f61raf3u5qgr?method=4&dsid=2222&dekey=Saccade&curtab=2222_1&sbid=lc05a
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（a） 

 

 (b) 

Fig. 4.50 Examples of sampled images by micro-saccades (221×221) 

 

Fig. 4.51 shows the average image of the sampled images by micro-saccades in Fig. 4.50. Because 
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of the small eye movements, the average image looks slightly blurred. 

 

 
Fig. 4.51 Average sampled image by micro-saccades 

 

For our active vision model, the sampled image will be sent to the neural network for recognition. 

However, what human perceived is not the direct sampled image from the retina, but the image 

that project the sampled image back to the original image plane. 

 

Now let us consider projecting the sampled image back to the original image plane. In section 

4.2.3 and 4.2.4, we discussed how to get the retina distribution by transforming the uniformly 

distributed samples within a unit circle. Take the sampled image (a) in Fig. 4.50 for example. 

Uniformly distributed samples in image (a) in Fig. 4.50 can be projected back to the original 

image. The size of the sampled image is 221×221 pixels, which is 5.26% of the original image 

size (964×964 pixels). In order to fill up empty spaces and recover the original image, we need to 
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expand the signal value of one sampled pixel to its neighborhood. For instance, we could expand 

each sampled pixel to its ×  pixels neighborhood in the original image space. If there is 

an overlap between two neighborhood areas, we will take the average pixel intensity in this 

overlap. For , we will obtain the image as shown in Fig. 4.52.  

expA expA

exp 5A =

 

 
Fig. 4.52 Partially recovered image  

 

Image in Fig. 4.52 shows that some areas in the original image space are not recovered. It is a 

result of non-uniform retina sampling. 
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Since the density of the photoreceptors decreases as the distance between photoreceptors and the 

fovea  increases, in order to recover the whole image, we need to increase the  as the 

distance between photoreceptors and the fovea increases.  

dist expA

 

By experimentally obtained data, the size of the expand area  is: expA

2.26
exp

1 2
17500

A dist= × + .                                                  (4.15) 

 

By using this equation, we could recover the whole image as shown in Fig. 4.53.  

 

 
Fig. 4.53 Recovered image 
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To illustrate the affects of micro-saccades, we can project 20 sampled images generated by 

micro-saccades back to the original image and average them. In micro-saccades, the retina quickly 

and slightly moves across the image. These moves provide the filtering affect in neighborhood of 

a sampled data and effectively enhance perception. As a result, we could get more smooth-looking 

image as shown in Fig. 4.54. In addition, the recovered image looks more detailed and clear 

around the fovea area compared with the recovered image in Fig. 4.53. 

 

 

Fig. 4.54 Recovered image by micro-saccades 
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In section 4.3.2.4, we discussed direct motion detection implementation. Now let us consider 

combining retina sampling and micro-saccades with the motion detection.  

 

Fig. 4.55 shows the average sampled image with 3 times micro-saccades of the image at time t=T0 

in Fig. 4.41(a).  

 

 

Fig. 4.55 Average sampled image by micro-saccades at time t=T0 

 

Fig. 4.56 shows the corresponding recovered image of the average sampled image at time t=T0 in 

Fig. 4.55. 
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Fig. 4.56 Recovered image by micro-saccades at time t=T0 

 

Similarly, Fig. 4.57 shows the average sampled image with 3 micro-saccades of the image at time 

t=T0+δ  in Fig. 4.41(b).  
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Fig. 4.57 Average sampled image by micro-saccades at time t=T0+δ  

 

Fig. 4.58 shows the corresponding recovered image of the average sampled image at time 

t=T0+δ in Fig. 4.57. 
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Fig. 4.58 Recovered image by micro-saccades at time t=T0+δ  

 

By using the motion detection cells as described in section 4.3.2.4, we can show the result of the 

motion detection through MD cell processing of Fig. 4.56 and Fig. 4.58 as illustrated in Fig. 4.59. 
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Fig. 4.59 Result of motion detection cells with 3 micro-saccades at time t=T0+δ  

 

In Fig. 4.59, we can see that there is some noise in the background. If we increase the combined 

affect of micro-saccades to 10, we will get the result of motion detection cells as shown in Fig. 

4.60. Thus, micro-saccades helped to reduce the background noise, while maintaining strong 

motion detection signals. 

 

 

Fig. 4.60 Result of motion detection cells with 10 micro-saccades at time t=T0+δ  
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The mapping of the average intensity cells in Fig. 4.48 can also be projected back to the original 

image space. Fig. 4.61 shows the recovered image by back projected average intensity cells. 

Compared with the recovered image directly obtained from the retina sampling in Fig. 4.53, Fig. 

4.61 has lower resolutions.  

 

 
Fig. 4.61 Recovered image by average intensity cells 

 

Fig. 4.62 shows the image recovered from sampling average intensity cells with 20 

micro-saccades. As expected, micro-saccades made the result smoother than the recovered image 
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in Fig. 4.61. 

 

 
Fig. 4.62 Recovered image sampled by average intensity cells with micro-saccades 

 

4.4 Saccade Movements Network  

4.4.1 Introduction and Network Structure 

A task of recognizing moving objects with continues observation and saccade movements 

becomes an interesting research topic. The saccade eye movement extracts spatial relations 

between different features in an object. The mechanism of saccade eye movement enables the 

neural network to analyze the whole pattern with relatively small number of samples received 
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through photoreceptors enabling higher precision of the recognition task. During the saccade 

movements, a stationary object will shift on the retina in proportion to the magnitude and the 

direction of a saccade [Whi04]. In addition, the saccade movement may be useful for observation 

of many objects in the visual field. By following the object and its features, saccades make object 

projections on the retina more stable and thus make identification of moving objects easier.  

 

In this section, we will use the EURETA model described in section 4.2.4 to sample the high 

resolution images. We describe an architecture and algorithm for saccade movements network 

(SMN). This network can identify the whole high resolution image using a low resolution 

retina after several accurate saccades. 

 

The block structure of SMN is shown in Fig. 4.63. The SMN contains the retina sampling 

model and the modified SOWTAC network. The original high resolution images are first sent 

to the retina sampling model. After the retina sampling, the original image will be presented 

by a set of extracted features with low resolution saccade images. These sampled features are 

then sent to the modified SOWTAC network for further processing.  
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Original images  

 

Fig. 4.63 Structure of Saccade Movements Network (SMN) 

 

4.4.2 Retina Sampling, Saccade Movements and Micro-saccades 

In this section, we will describe the saccade movements, micro-saccades and retina sampling by 

EURETA block of SMN from Fig. 4.63. Fig. 4.64 shows the original image with 320×240 pixels 

obtained by using face generation software [Faceg]. In this section, main_retina_model4.m is used 

for feature detection and extraction, micro-saccades, and retina sampling in folder 

RLS_WTA_Classificaton_Saccade\Feature_Detection_Micro_Saccade (see Appendix A).  

 

(high resolution) Sampled features  
Saccade Movements, 
Micro-saccades and 
Retina Sampling by 

EURETA 

Modified 
SOWTA

C 
Network

(low resolution) 
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Fig. 4.64 Original Image (320×240) 

 

Once the original image is received from the input, we need to do the image segmentation to find 

the interesting features of the image and perform feature extractions. We use edge detection and 

basic morphology tools [Mathw] for finding the interesting features of the image. The 

segmentation includes detecting the feature, dilating the image, filling interior gaps, removing 

connected object on border, and smoothing the feature. Fig. 4.65 shows the interesting features of 

the original image in Fig. 4.64. In Fig. 4.65, the stars represent the center of each interesting 

feature and the rectangles represent their boundaries.  

 

 

Fig. 4.65 Interesting features and boundaries 
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The retina sampling model EURETA will sample each interesting feature by placing its fovea 

towards the center of each interesting feature (called the focus point). 

 

However, sometimes the focus point obtained from [Mathw] is not accurate. In order to 

improve the sampling quality, we will use reinforcement leaning optimization and 

micro-saccades. They will help the retina find the perfect sampling position. Initially, we 

stored some ideal samples as references for micro-saccades. By using the reinforcement 

leaning optimization algorithm from [Liu06], the fovea of the retina moves slightly each time 

until the sampled image is closest to the corresponding ideal sample. Table 4.1 shows the 

results of the image sampling by using optimization and micro-saccades. The first row shows 

the stored ideal samples. The second row shows the initial sampled images. The third row 

shows the final sampled images after micro-saccades. 

 

Table 4.1 Image sampling by micro-saccade 
 

 Left eye Right eye Nose Mouth 

Ideal images 

 

Initial 

sampled 

images 
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After micro- 

saccades 

 

 

After the original image is presented by a set of extracted features with low resolution saccade 

images, these sampled features will be then sent to the modified SOWTAC network for 

further processing. 

 

4.4.3 Modified SOWTAC Network 

Fig. 4.66 shows the detailed hierarchical structure of the modified SOWTAC network. Layer 

A to layer C contains a set of parallel sub-networks SOWTAC as described in detail in 

Chapter 2. Layer D is the dual neuron layer for saccade merging. Layer E defines the 

classified categories.  
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SOWTAC1 Dual neurons for 
saccade merging 

SOWTAC2 

Sampled 
features D1nA 

SOWTAC3 

D2m En

WDE

Dlp E 

SOWTACn 

C D 

 

Fig. 4.66 Hierarchical structure of multiple SOWTAC network 

 

After saccade movements and retina sampling by EURETA, we will obtain a set of different 

features, like eye, nose and mouth. The sampled features will be sent to layer A as inputs. 

SOWTAC1 to SOWTACn receive the same input from layer A and process it in parallel. 

Specifically, SOWTAC1 differentiates different features (that is to tell whether the current 

input feature is an eye, a nose, or a mouth); and SOWTAC2 to SOWTACn differentiate within 
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a certain feature (e.g., to differentiate between different kinds of noses). For instance, 

SOWTAC2 differentiate a nose from all different kinds of noses, SOWTAC3 differentiate a 

mouth from all different kinds of mouths, SOWTACn differentiate an eye from all different 

kinds of eyes. Thus, the output neurons of SOWTAC1 represent categories of different 

features (eyes, nose, mouth), and the output neurons of SOWTAC2 to SOWTACn represent 

categories of a certain feature (e.g., which kind of nose). 

 

The operations of SOWTAC1 to SOWTACn are the same as described in Chapter 2. During 

the supervised leaning, SOWTAC1 will be trained with eyes, noses and mouths. SOWTAC2 

will be trained with different noses. SOWTAC3 will be trained with different mouths and 

SOWTACn will be trained with different eyes. In Fig. 4.66, the black dot represents the firing 

neuron and the black circle represents the quiet neuron. The output neurons of layer C in 

SOWTAC1 provide excitatory or inhibitory links to the output neurons of layer C in 

SOWTAC2 to SOWTACn. If SOWTAC1 identifies the current feature input is a mouth, then 

the neuron in layer C of SOWTAC1 representing the mouth category will fire. This firing 

neuron in SOWTAC1 will in turn provide excitatory link to the output neurons in SOWTAC3 

which is specialized in differentiating different mouths. It will allow SOWTAC3 to copy its 

output neurons activity to the corresponding dual neurons in layer D. Meanwhile, the firing 

neuron in SOWTAC1 will provide inhibitory links to SOWTAC2 and SOWTACn, thus 

prevent SOWTAC2 and SOWTACn from copying their output neurons activity to the dual 

neurons in layer D.  
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Dual neuron layer D has several groups. The number of groups equals to the number of the 

output neurons of SOWTAC1. The number of dual neurons in each group equals to the 

number of the output neurons of SOWTAC2 to SOWTACn. Therefore, different groups in 

layer D can be regarded as different feature categories. Different neurons in each group 

represent the category of a certain feature.  

 

Layer E defines different categories of the original images (which are combinations of 

different features). DEW  is the weight matrix from layer D to layer E, where 

DEE CW= .                                                                (4.16) 

 

We perform the supervised learning between layer D and layer E to obtain the initial weight 

matrix from layer C to layer D as: 

0 ( )DEW pinv D= E×

p

.                                                       (4.17) 

 

During the unsupervised learning, a set of sampled features from retina sampling model will be 

sent to both SOWTAC1 to SOWTACn. Suppose that  are the firing dual 

neurons of layer D, which in turn triggers firing of the node  in layer E. Then the wining node 

 represents the classified category of the original image. 

1 2, ,...,n m LD D D

nE

nE

 

4.4.4 Simulation Results 

In this SMN simulation, main_wta_output_setting_nonlinearmodel_cleanup_sacade.m is used 
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in folder RLS_WTA_Classificaton_Saccade (see Appendix A). The SMN is tested in the 

following. Fig. 4.67 shows the training set used in the supervised learning.  

 

 

           Person A                Person B                Person C 

Fig. 4.67 Training set 

 

Fig. 4.68 shows the testing images used in the unsupervised training. As shown in Fig. 4.68, 

we can see that the position of each person is slightly different from the training set.  
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Person A                  Person B                 Person C 

Fig. 4.68 Testing set 

 

The testing set is sent to the SMN first for retina sampling and then to the modified SOWTAC 

network for recognition. Table 4.2 shows the activities of output neurons in layer E which 
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defines the categories for different people. Node 1 is person A category, node 2 is person B 

category and node 3 is person C category. From table 4.2, we can see that the network 

correctly recognized each person in testing set. 
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Table 4.2 Activities of output neurons in layer E 

Input to SMN Node 1 (Person A) Node 2 (Person B) Node 3 (Person C) 

Person A 1 0 0.00070700 

Person A 1 0 0.00071837 

Person A 1 0 0.00081445 

Person A 1 0 0.00075313 

Person A 1 0 0.00071274 

Person B 0 1 
0.00140860 

Person B 0 1 
0.00104000 

Person B 0 1 
0.00094245 

Person B 0 1 
0.00085233 

Person B 0 1 
0.00100880 

Person C 
0.0017494 

0 1 

Person C 
0.0018738 

0 1 

Person C 
0.0017975 

0 1 

Person C 
0.0018909 

0 1 

Person C 
0.0017892 

0 1 
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5. Conclusions and Future Work 

5.1 Conclusions 

This thesis research mainly focuses on an innovative artificial vision model that uses 

self-organized, invariant representations, integrating continuous observation and saccade 

movements to achieve pattern recognition.  

 

The neural network uses hierarchical feedback structures and winner-take-all scheme to build 

object representations, and self-organize invariant transformations. This network not only can 

classify different categories, but can also identify different views of the same object, even 

when a current view of the object cannot be uniquely recognized. If the network receives 

continuous input representing the same object over a period of time, the network anticipates 

that the input represents the same object by using feedback prediction signals. It maintains the 

same internal representation for the received input, unless there is a strong disagreement 

between the feedback predictions and received input signals. 

 

This thesis also builds an artificial retina sampling model. Our retina model is built up by 

modeling the rods and cones distributions in human retina. In addition, the retina model 

models the ganglion cells to achieve spot detection and feature detection. When combined 

with the retina sampling, our model can extract any interesting feature from any 

high-resolution image, and therefore achieve more accurate recognition. By using the 
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artificial retina sampling, our artificial vision model is capable of extracting spatial relations 

between different features in an object. The mechanism of saccade eye movement enables the 

neural network to analyze the whole pattern with relatively small number of samples received 

through photoreceptors enabling higher precision of the recognition task. 

 

By using both supervised and unsupervised learning scheme, our saccade movement network 

can identify objects with high resolution. By repeating saccade movements and building their 

invariant temporal correlations at a sufficient detail level, an object can be perceived 

successfully.  

 

Active vision is accomplished by a coordination of saccade movements, retina sampling, 

micro-saccade optimization and filtering, and spatio-temporal association between extracted 

features. It is this closed loop coordination of sensory vision mechanism with motor control of 

eyeball muscles, which makes the vision to be an active action of perception, recognition, 

understanding and expectation rather than staring, typical for classical image recognition.  

 

5.2 Future Work 

Although this thesis has achieved much as described above, there are still some future work 

that needs to be done.  

 

This thesis has introduced a retina sampling model which is biologically based on rods, cones 
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and ganglion cells. The retina sampling model can sample color images and detect motions. 

The neural network still needs to be improved to work in the real world, which contains color 

images and motions. In addition, this thesis mainly aims on image recognition. Similarly, 

speech recognition could be accomplished with similar hierarchical feedback network 

structures and spatio-temporal association combined with attention, speech recognition, 

understanding and expectation.  

 

In the saccade movement network, the number of features is fixed. A more dynamic scheme 

needs to be implemented, which could introduce new features as they appear in the visual 

field or as new categories of objects are introduced.  

 

Major effort in this thesis has been on software simulation. Hardware implementation of the 

active vision will be goal of future works. 
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Appendix A: Source Code Used in Thesis 

The source code packages used in this thesis are available at: 

http://www.ent.ohiou.edu/~lily

RLS_WTA_Classification, package for SOWTAC tool in Chapter 2. 

RLS_WTA_Invariance, package for CON tool in Chapter 3. 

Retina_Sampling, package for retina sampling models in Chapter 4. 

Ganglion Cells_8_8_new, package for ganglion cells implementation in Chapter 4. 

RLS_WTA_Classificaton_Saccade, package for SMN tool in Chapter 4. 

Access to these packages is to be granted upon request. To use the source code package, please 

refer to the help document in each sub-directories.  

 

http://www.ent.ohiou.edu/~lily/
Lily
Line
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