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ABSTRACT 

LIU, YINYIN, Ph.D., March 2009, Electrical Engineering 

Hierarchical Self-organizing Learning Systems for Embodied Intelligence (271 pp.) 

Director of Dissertation: Janusz A. Starzyk 

 

In this work, a framework of designing embodied intelligence (EI), along with the 

essential elements and their design principles, is proposed.  This work intends to deploy 

the following design principles. 

Firstly, hierarchical self-organizing learning systems in the form of network made of 

neurons are the essential elements for building machine intelligence. The supervised, 

unsupervised and reinforcement learning are all necessary aspects of learning and are 

studied for machine intelligence building.  In supervised learning, an efficient learning 

method for hierarchical multi-layered network structure is proposed and studied.  In 

addition, a quantitative measure is proposed to quantify overfitting of a network in a 

given learning problem to determine proper network structure or proper learning period.  

In unsupervised learning, a sparsely-connected hierarchical network is developed to build 

the neural representations effectively and efficiently for densely-coded sensory inputs, 

and to enable the memory with large memory capacity and great fault tolerance.   

Secondly, the memory-based intelligence is not only for passive information 

processing and pattern storage. One of the critical capabilities of intelligence is 

continuous and intentional learning.  Therefore, a goal creation system (GCS), also as a 

type of hierarchical self-organizing learning system based on simple and uniform 
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structure, is presented that acts as the trigger for the agent’s goal creation, memory 

management, active interaction and goal-oriented learning.  As a self-organizing 

structure, it is responsible for evaluating actions according to goals, stimulating the 

learning of useful associations and representations for sensory inputs and motor outputs.  

It enables the more powerful hierarchical reinforcement learning, finds the ontology 

among sensory objects, creates the needs, and affects the agent’s attention and perception.   

Biologically inspired structural design concept and the framework of EI proposed in 

this dissertation create a promising direction in the field of EI. It enables the desired 

capabilities for an intelligent machine to have, including the efficient, continuous and 

intentional learning, large representative memory capacity, and goal-oriented perception 

and action.  The hierarchical self-organizing learning systems include all ingredients 

necessary to develop intelligence, and to motivate a machine to act on its own in its 

environment.  Having the framework defined and design principles prepared, the future 

work will be done more consistently.  
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CHAPTER 1: INTRODUCTION 

 
Even though artificial intelligent machines have been portrayed in fiction and motion 

pictures for so many years and they have been a research topic for decades, they are still 

one of the great science problems not fully tackled. Machine intelligence has become a 

scientific discipline, focused on providing solutions to real life problems. Examples 

include natural language processing, search engines, planning, prediction, decision 

making, and handwriting, speech, and facial recognition etc. Although the existing 

technologies enable the machines with great computational power, many of the problems, 

which are easily dealt with by human intelligence, are still difficult, expensive or even 

impossible to handle by existing machines.  Machines are still far from reaching the level 

of human intelligence.  Therefore, it would be promising to build the machines using 

approaches insipired by brain intelligence.  

Without complete understanding of the mechanism and architecture of brain 

intelligence, it is hard or impossible to build the machine wshich can achieve what human 

can do. Discoveries in the fields of neuroscience, medical scanning and imaging, 

anatomy, physiology and psychology on the human brain can all provide beneficial 

information and important insights for building the intelligent machine. For example, 

using functional Magnetic resonance imaging (fMRI) technique, it is possible to make 

repeated measures of brain responses in different areas.  It can provide information on the 

temporal sequence of information processing and activation sites in brain areas, which 

can support or be interpreted by anatomical, neurobiological, or psychological studies.  

Present and future research in related areas, with interdisciplinary studies can begin to 



 
 

18

provide a functional model of the human brain and motivate the design of machine 

intelligence. And hopefully, researchers in engineering and computer science will find 

very efficient ways to build the intelligent machines using structural self-organization, 

modern electronics, and nano-technology. The power of machine’s intelligence may be 

extended into new levels with many successful applications in areas such as pattern 

recognition, language recognition, and intelligent mobile devices, etc.  In addition, this 

new area, where modern technology can be applied, may create a big industry through 

exponentially growing demand for electronic hardware and may create new job markets 

for generations to come.  We will move from information technology of today to 

knowledge technology tomorrow, where machines we use and interact with will be 

intelligent. 

 

1.1. Motivations 

 
Although there is no uniform definition of intelligence, after decades of research on 

machine intelligence we can list capabilities or the features which the intelligence 

machines are desired to have. They are desired to have large associative and 

representative memory capacity, be able to conduct efficient, continuous and goal-

oriented learning and action, predict future events and make optimal plans, while building 

a model of the environment in which they are situated and with which they interact.  

It has been widely accepted that behavior should not be a major measure of 

intelligence or the objective for building intelligent machines [Haw 04].  Instead, the 

significance of being situated and ability to interact with the environment motivated the 
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concept of embodied intelligence (EI) [Bro 91] [Pfe 99]. Embodied intelligence (EI) has 

developed into a multidisciplinary field, including biology, neuroscience, electrical 

engineering, robotics, biomechanics, material science, and dynamic systems.  It focuses 

on understanding biological intelligent systems, extracting general principles of 

intelligent behavior and applying this knowledge to design robots and intelligent devices. 

Learning is a critical element of intelligence. Human learning is an active process. 

Human beings accumulate knowledge through interaction with the environment. Even in 

supervised learning, we cannot learn without conducting trial-and-errors and likely 

motivated by certain goal-oriented behavior. The actions we take affect the environment 

and the responses from the environment help us to build perceptions and learn skills.  

Unsupervised learning, which builds representations for the input information from the 

environment, is not an involuntary process and should be only conducted when the 

perceptual objects are meaningful for human. In addition, reinforcement learning that 

occurs when responses from the environment are the only directional information 

available is another major aspect of the human learning. The agent explores different 

actions and learns which actions are desirable and which are not guided by the 

reinforcement signal from external environment. In general, the machine interacts with its 

environment and gradually builds the model of the environment and gains and knowledge 

and skills through supervised, unsupervised and reinforcement learning.  

In this work, a framework of designing embodied intelligence (EI), along with the 

essential elements of EI and their design principles, is proposed. Hierarchical self-

organizing systems in the form of networks made of neurons are proposed as the essential 
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elements for building machine intelligence. Considering all three types of learning 

involved, the design concepts and principles are proposed, and various issues involved 

are presented and studied.  

The framework of EI proposed in this work enables the desired capabilities for an 

intelligent machine to have, including efficient and continuous learning, large memory 

capacity, goal-oriented perception, optimal action selection, and future events prediction.  

 

1.2 Related works and background 

 
During the research on intelligence, scientists normally use various tests and 

measures to compare the levels of intelligence and differentiate between intelligence of 

humans and other species.  In fact, scores on various tests for (human level) intelligence 

was used as a substitute for its definition.  Complex skills and behaviors were used to 

define how intelligence manifests itself.  This was a result of poor understanding of what 

is needed to create intelligence.  Such an approach was inconsistent, because a machine 

that was obviously not intelligent could still satisfied certain tests, while failed in others. 

R. Brooks [Bro 91] [Bro 02], the father of embodied intelligence, proposed to design 

an EI system through layers of simple sensory-motor coordinations built on finite state 

machines (FSM).  In his subsumption architecture, higher levels are built upon the lower 

levels, subsuming the lower levels functionality.  In subsumption architecture, each layer 

consists of asynchronous modules that send messages to each other. Each module is an 

augmented FSM. Inputs to such modules can be suppressed and outputs inhibited by 

signals from other modules. 
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Although subsumption architecture may be an efficient design approach to building 

robots capable of complex behavior, it cannot lead to intelligence.  A designer must be 

involved in developing each FSM.  These FSMs do not know how to modify their own 

structures to handle new tasks.  There is no self-organization and no learning.  Moreover, 

since new tasks may not be compatible with old ones, modification of the machine 

behavior to incorporate new tasks may become extremely difficult. Very quickly 

complexity exceeds understanding of the machine’s operation by the human designer, 

who no longer understands how to add a new layer of functionality. 

R. Pfeifer [Pfe 99] modified the subsumption architecture approach to include self-

organization and the emergence of necessary links between lower-level processes that 

control sensory-motor coordination.  He also added a value principle to his design 

approach, requiring a mechanism for self-supervised, perpetual learning that employs the 

principle of self-organization. The value system acts as a teacher telling an agent what 

actions are good for its objectives. Memory of the recent history is necessary to 

implement this value system. This memory is accomplished by time-averaging neuron 

activities.  But as Sporns and Edelman pointed out [Spo 93] “the issue of value 

constraints and their number present one of the greatest future challenges to selectional 

theories of brain function.”  

Earlier attempts to design working models of intelligence include, for instance, 

GOMS [Car 83], SOAR [New 90] [Nas 04], and ACT-R [And 93] software systems.  

GOMS (Goals, Operators, Methods, and Selection Rules) is a software system for 

modeling and describing human performance that provides a framework to analyze 
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human computer interactions. Goals, that a user is trying to accomplish, are organized 

hierarchically.  Methods describe sequences of basic operations used to accomplish a 

goal.  Selection rules describe which method should be used in a particular situation.  It 

uses a production-system representation of human procedural knowledge required to 

accomplish production goals, and it gives good quantitative predictions of performance 

time and learning.   

SOAR (State, Operator, Application, Result) is a cognitive goal-oriented architecture 

that develops a minimal set of rules to support intelligent behavior in a specified 

environment. It uses symbolic knowledge and knowledge-based symbolic reasoning to 

solve problems. It creates subgoals even with incomplete or inconsistent knowledge.  

SOAR can also generate rules for the implementation of goals using a process called 

chunking.  The SOAR program learns using explanation-based learning, macro-operator 

learning, strategy acquisition, and learning by instruction.  

ACT-R (Adaptive Control of Thought - Rational) is a model of the human cognitive 

process focusing on learning and problem solving. Cognitive tasks are performed using 

if-then production rules, with working memory (declarative or procedural). ACT-R uses 

pattern matching to match conditions for its production rules and conflict resolution to 

decide which rule applies.  Using ACT-R requires developing a domain-specific 

knowledge model of the cognitive task for a specific application.   None of these three 

systems use self-organization, unsupervised learning, or create a knowledge base for its 

actions with the environment.  
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A practical effort to design structural and algorithmic properties of the neocortex was 

undertaken by J. Hawkins from Numenta Inc. [Haw 04]. Numenta develops software 

code for Hierarchical Temporal Memory (HTM). HTM uses a hierarchy of spatio-

temporal associations and learns complex goal-oriented behaviors. The information, in 

the form of probability distributions, passes up and down the hierarchy to represent the 

sensory inputs and to make predictions.  It uses a combination of unsupervised and 

supervised learning to make associations.  In the authors’ opinion, future HTM may yield 

machines that exceed human level of performance in cognitive tasks.   

Human perception building and cognition are very efficient processes.  Typically, it 

takes less than one second for sensory information to be obtained, perceived, processed 

and acted upon. Since neurons in the human brain take several milliseconds to fire, a 

typical cognition task takes less than 100 sequential pattern-processing steps.  This 

recognition performed within such a short period indicates the high efficiency of human 

perception.  Such recognition, along with the corresponding action, is a very fundamental 

task for a human; nonetheless, it is already quite complicated for existing machines. 

Furthermore, the way that the brain stores a pattern in its hierarchical memory of the 

neocortex is very different from the way a computer does.  Neurons in the human brain 

self-organize to store the patterns which the brain receives.  Humans utilize their senses 

to build a perception of the environment and activate appropriate motor neurons to apply 

actions.  This enables a human to build a model of the world in a fascinating way.  They 

use this model to quickly recognize patterns in order to respond to the external stimuli 

and interact within the environment.  They also use this model to build expectations of 
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future events, accomplish efficient planning, and do logical thinking.  Up to date, there 

are several research findings on building a hierarchical system for intelligent machines 

[Lee 03] [Geo 05a] [Geo 05b].  They are mainly focused on information processing from 

sensory input (visual cortex) through hierarchical memory to upper levels of abstract 

cognition.  In this way, an image coming from the visual cortex is stored in the form of its 

characteristic features instead of full image details.  

The network made of processing units, or called neurons, in the form of feed-forward 

multi-layer perceptrons (MLP) have appeared and have been utilized as a powerful 

function approximation and adaptive filtering tool as early as 1950s [Ros 58].  A lot of 

research has been done using it as the adaptive component in a learning system [Mil 90].  

Basically, an MLP consists of the input and the output layer and several hidden layers, 

and the hidden layers consist of a number of hidden neurons.  All the layers are 

connected through trainable, one-directional interconnection weights.  The neurons in 

hidden layers apply a nonlinear transformation to input data.  The nonlinear function 

implemented in the neurons act as basis functions, and the interconnection weights 

combine the nonlinear basis functions in a complex way.  The network weights can be 

adjusted during supervised learning based on the training data.  So, in this sense, the 

weights contain information stored in a neural network. Even though using only MLP 

can’t realize any intelligence itself, a network with nonlinear basis functions, like MLP, is 

a powerful tool in function approximation. Therefore, it will be very useful for building 

hierarchical memories in supervised learning scenarios.  
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Reinforcement learning (RL) [Sut 98] enables the agent to behave in a goal-oriented 

way and to adapt to the changing environment using externally administrated and 

measurable reward system.  Provided with the specific goal, the agent ought to find an 

effective way to achieve it following the reward/punishment signals received from the 

environment.   

Typically, RL algorithms treat all the experiences equally in the knowledge building.  

However, during the exploration, the agent experiences a lot of random states and 

executes random actions which do not affect its goal achievement.  In human intelligence, 

if the states or actions are not helpful for the goal achievement, corresponding 

representations and skills should not be built.  In addition, the goal-relevant states should 

be more salient to the agent.  The perceptions and actions are activated selectively by the 

brain with attention focused on those observations and actions that are related to human 

objectives.  

RL may require long learning periods and equally long periods of time to adopt to 

new requirements (new goals), since all the skills that agent developed in learning one 

task are specialized to this task only.  It is obvious that learning complex tasks can be 

facilitated if simpler tasks are learned first, and the acquired knowledge is reused to 

advance both understanding and skill levels. However, there is no clear mechanism of 

reusing prior knowledge to learn new skills.  With each new externally formulated and 

monitored goal, the machine experiences new learning phase that does not guarantee 

protecting prior knowledge or skills.   
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In the existing models for designing the intelligent machines, the goal is defined by 

designers and is given to the learning agent.  Setting a goal makes the machine specialize 

to perform specific types of operation.  While this may be a useful limitation from a 

utilitarian point of view, such a limitation will make the machine less intelligent.  In such 

cases, the agent is not able to create its own goals or find the sub-goals in order to 

accomplish a complicated task.  In fact, we would argue that an agent who only follows 

externally set goals or subgoals would not be able to develop some higher level cognitive 

abilities such as intentional learning, deliberate thought, creativity, and consciousness.   

One may ask, why is it important that intelligent machine defines its own goals 

rather than relays only on the goals defined by a designer?  If a machine only follows an 

externally set and monitored goal, it is not equipped to represent complex goals, since 

proper interpretations of such goals require complex representations of the environment.  

A machine needs a goal to build useful representations, but it also needs those 

representations to define goals. 

A new learning paradigm is desired in EI in which learning is organized bottom up 

from the simplest to more complex representations, skills, and internally created goals.  

In such systems, simple external rewards can only be directly applied to satisfy the most 

primitive goals.  Since humans and animals create their own goals, it is desirable for the 

intelligent machines to be able to do so as well.  The goal creation mechanism may be 

one of the most important elements of machine intelligence.  Thus it will be one of the 

fundamental requirements for EI. 
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1.3 Research objectives 

 
Motivated by the above insight, this work intends to deploy the following design 

principles.  Firstly, the memory-based intelligence is assumed to be one promising 

framework to implement intelligence in human brain so that hierarchical self-organizing 

memory systems are essential for deploying the machine intelligence.  Supervised, 

unsupervised and reinforcement learning are all essential aspects of learning and should 

all be considered and utilized in building machine intelligence.  During supervised 

learning when the outputs of the network are given, the network is trained as in model 

approximation, thus the efficiency and optimality of the solutions are the major concerns. 

However, determination of the learning accuracy and the proper parameters of the 

learning network, including its structure or learning period, are the major challenges, 

which make the design and use of the network more of an art than a science [Xia 05].  

Thus, they should be justified quantitatively to avoid overfitting defined as building too 

complex models to approximate the input data.  In the unsupervised learning, where the 

neuronal representations are not defined, we need a mechanism to enable a large capacity 

self-organizing memory to build the representations with great fault tolerance.  

Secondly, it should be noted that the hierarchical memories, referred in the memory-

based intelligence, are not only for passive information processing and pattern storage, 

but for continuous and active learning.  Thus an agent that knows how to handle one 

problem in a set environment but cannot learn new skills or adapt to new environment 

should not be considered intelligent.  Continuous and active learning requires not only 

information storage but also the memory resources management, so that only the 
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important memories are retained. Therefore, a mechanism is required that will act as the 

trigger for the agent’s memory management, active interaction and continuous learning. 

Thirdly, we require that an intelligent machine has a built-in mechanism to create 

goals for its behavior, and we desire to build a goal creation system based on hierarchical 

self-organizing learning memory.  It uses a simple and uniform structure and interacts 

with the sensory and motor functions of the memory.  In a sense, goal creation should 

result from the machine’s active interaction with its environment, by perceiving successes 

or failures of its actions.  

Following the EI framework proposed in this work, the objective of this dissertation 

will include several aspects.  Firstly, we will propose and study efficient learning 

methods for hierarchical multi-layered network structure in the supervised learning 

applications.  When multi-layered network structure, for instance, in the form of MLP, is 

used for supervised learning, a measure is proposed to quantify underfitting or overfitting 

of a network in a given learning problem.  An algorithm based on such measure should 

be able to recognize the occurrence of overfitting by examining the training error without 

using a validation set and show where the process can be safely stopped so that the 

optimal structure of the MLP for a given problem is found. 

To build working models of intelligent machines, an arbitrary and utilitarian 

definition of intelligence is adopted in this work and is related to the concept of embodied 

intelligence suggested but not defined in [Bro 91] [Pfe 99].  The definition is general 

enough to characterize agents of various levels of intelligence including human.  It is our 
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aim to base the design concepts of the embodied intelligence on a minimum set of 

requirements and mechanisms from which all traits of intelligence can be derived.  

In the proposed learning paradigm, the embodied intelligent (EI) machine learns 

predominantly in a deliberate, continual, and goal-oriented manner. Basic requirements 

for EI are proposed with the detailed models, including hierarchical self-organizing 

memory (HSOM) and a goal creation system (GCS).  According to different functions for 

different parts, the HSOM can be divided into three pathways: sensory pathway, motor 

pathway, and goal creation pathway. We will show how these elements of EI can be 

implemented in a hierarchical, self-organizing memory made of neurons.   

The mechanisms to build object representations on HSOM in unsupervised learning 

are proposed and are studied to ensure the large memory storage and robust recognition 

capability.  Other major types of memories (sequential long term and short term 

memories) related to this concept of embodied intelligence are studied elsewhere [Sta 

07b].  

The machine needs to organize its learning to acquire useful knowledge based on its 

goals and create goals for its behavior using a built-in mechanism.  In GCS, also as the 

goal creation pathway in HSOM, external rewards can only be directly applied to satisfy 

the most primitive goals.  The creation of goals on various abstract levels is stimulated by 

the primitive goals using the GCS’ self-evolving structure.  GCS is responsible for 

evaluating actions in relation to its goals, stimulating the learning of useful associations 

and representations for sensory inputs and motor outputs.  The goal creation pathway 

finds the ontology among sensory objects, makes connections among the actions and 
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objects, and creates the needs and affects the agent’s attention.  Therefore, the goal 

creation pathway stimulates the interaction among the three pathways (sensory, motor, 

and goal creation) on various abstract levels.  It facilitates the growth of the hierarchy 

involving sensory representations, motor abilities and abstract goals.  Such hierarchy 

includes all ingredients necessary to develop intelligence, and to motivate a machine to 

act on its own in its environment.  

 

1.4 Research significance 

 
By understanding the way the human brain remembers and builds the model of the 

world, and by implementing a similar mechanism in machine learning using modern 

technology, the power of the machine memory can be significantly improved.  An 

intelligent machine with hierarchical self-organizing learning systems will extend the 

ability of machines into a brand new stage, and the artificial intelligence will have many 

more successful applications ahead, which can greatly affect and change our life. The 

significance of this work is stated as follows. 

It is required to design a hierarchical network that is able to perform efficient 

supervised learning when the desired outputs of the network are given.  In addition, it is 

required to have a scientific way to adjust the desired learning accuracy and to determine 

proper network structure, so that useful information is extracted using minimum cost 

without overfitting.  

It is also required that the designed hierarchical network is able to perform 

unsupervised learning when desired outputs are not given.  The object representations 
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should be built in a predictable way and densely-coded input information should be 

effectively and efficiently processed leading to invariant representations of the observed 

objects.  The memory should be able to store a large number of input patterns and have 

robust recognition capabilities. 

It is useful and promising to equip the hierarchical memory with the appropriate 

mechanisms of reinforcement learning (RL).  On one hand, the machines need 

information from the environment to build the ontological relations among perceived 

objects and their relations to various actions.  On the other hand, it is very difficult to 

deliver enough information using the typical RL scalar reward without a hierarchical 

memory organization to deal with the representation and implementation detail.  

Combining them will facilitate hierarchical reinforcement learning so that a complex task 

can be divided into subtasks or sequential steps and execution as well as supervision of 

these subtasks will be accomplished by the agent itself.  

It is important and meaningful to define the uniform framework of building EI and 

detailed design requirements and principles.  Building structural and functional 

organization of EI has a long way to go in order to achieve human level intelligence and 

to benefit from the developing technologies.  Having the promising and uniform 

framework and design principles prepared, the future work will be done more 

consistently.  

 

 



 
 

32

1.5 Dissertation organization 

 
The rest of the dissertation is organized as follows.  

In Chapter 2, efficient and optimal training algorithms are presented for multi-

layered network in the supervised learning.  The training methods can not only save the 

training time and improve the training accuracy, but also they can be expanded into a 

network structure with various types of connections.  To avoid overfitting and determine 

proper network structure, an optimized approximation algorithm (OAA) with a novel 

quantified criterion is proposed in Chapter 3.  The OAA procedure utilizing a novel 

stopping criterion based on signal-to-noise ratio figure is demonstrated and validated 

using both simulated and benchmark data on optimizing the network structure and 

learning periods.  

The framework of building EI, including the definition of EI, and the needed 

elements, are proposed in Chapter 4.  Principles of designing an embodied intelligence 

with hierarchical self-organizing memory, sensory, motor and goal creation pathways are 

discussed.   

Based on the characteristics presented for hierarchical self-organizing memory in 

Chapter 4, Chapter 5 presents the model for building object representations in a 

hierarchical self-organizing memory (HSOM) with sparse connectivity in unsupervised 

learning.  The effective learning methods and learning abilities are presented.  The 

memory capacities and fault tolerance of such memory are studied.  In addition, the 

mechanism of attention-aided perception on HSOM is presented.  Chapter 6 discusses 

how goals are created based on a hierarchical self-organizing structure for machines’ 
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goal-oriented behavior, how the relations among objects are learned, how the action is 

selected according to the goal, how the value system required in a typical RL is 

embedded in such goal-creation system and how anticipation is generated.  The 

dissertation is concluded in Chapter 7 with future works.  Figure 1.1 shows the 

organization of the dissertation and relations among different chapters. 
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Figure 1.1. Organization of the dissertation. 
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CHAPTER 2: EFFICIENT SUPERVISED LEARNING OF MULTI-LAYERED 

NEURAL NETWORKS FOR MACHINE LEARNING 

 
2.1 Introduction 

 
In supervised learning, the input and the output for a hierarchical network structure 

are given.  To achieve a proper mapping between the given set of input and output, the 

interconnection structure and the connection weights should be adjusted.  The multi-

layered networks in the form of feed-forward multi-layer perceptrons (MLP) have 

appeared and have been utilized as a powerful learning model for supervised learning 

problems [Ros 58]. The well-known and widely appreciated error back-propagation (BP) 

algorithm was proposed by Rumelhart [Rum 86a].  But the slow convergence speed due 

to its gradient-descent nature was a concern of many researchers for the last decade [Erd 

05].  It takes many iterations to optimize, and it is very easily trapped in local minima.  A 

global search procedure and a fast training method are highly desired for efficient and 

effective training of MLP, or networks with a similar multilayer structure.  

Hebbian learning [Heb 49] as a biologically plausible learning algorithm is widely 

used in various neural networks.  Instead of the supervised learning, Hebbian learning is 

more suitable for unsupervised learning when the desired network output is unknown and 

self-organizing is needed.  Each new pattern leads to a training, which produces a change 

of the connection weights.  In order to obtain the optimal weights to achieve a desired 

training performance, a large number of epochs and training data are usually needed.  In 

addition, since Hebbian learning is a type of unsupervised learning, the change of weights 
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may go unbounded.  Variant versions of Hebbian learning were been proposed for 

different considerations and to make it more practical, for example, Oja's rule [Oja 82] 

and Generalized Hebbian Algorithm [San 89].  

Least-square fitting (LSF) is a method to determine the values of unknown 

parameters in a statistical model by minimizing the sum of squared fitting residues (the 

difference between the predicted and given values). In the linear LSF, the optimal values 

of unknown parameters can be obtained efficiently. When the samples in the given 

dataset have different importance in determining the solution, the weighted version of 

least-squares fitting (WLSF) can be used.  In the learning of multi-layered networks, the 

calculation used in LSF or WLSF can be applied in the optimization of the connections 

weights between any two layers or desired hidden signals. To introduce a uniform 

notation for the later discussion the LSF and WLSF are stated in the following section. 

 

2.2. Least-squares method and weighted least-squares method 

 
For a one-dimensional problem, with a given dataset {xi, yi} (i=1, 2,…n), the 

unknown function f can be approximated, for example, using polynomials of order B via 

LSF, so that y=f(x), as shown in (2.1). 
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In linear regression, the unknown coefficients a0 through aB can be obtained using 

QR decomposition or singular value decomposition (SVD) as in (2.2). 

YXA 1)( −=      (2.2) 

The function value y is estimated for any input x as, 
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Using polynomials for function approximations could be easy and straightforward. 

In a typical function approximation, the basis functions could be, for instance, a set of 

orthogonal functions, Walsh functions, sinusoidal waves or sigmoid functions.  

In certain cases, some samples from the training dataset are relatively more 

important and should be weighted more heavily than other ones in the function 

approximation. In such cases, weighted least-squares fitting (WLSF) is applied and the 

weighting terms can be arbitrarily determined by the user considering the characteristics 

of the problem that they are facing. Assuming ),...2,1( nii =λ  represent the weighting 

terms applied to n samples, the WLSF is expressed as follows. 
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where 
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.  Due to the weights applied to the given samples, the 

approximated function obtained from WLSF will fit into given data to different degrees 

of accuracy according to the weighting terms.  

The following example in Figure 2.1 illustrates WLSF and compares it with the LSF.  
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Figure 2.1. Weighted least-squared fit compared with least-squared fit. 

(a). Approximated functions from WLSF and LSF. 
(b). Absolute error signals from WLSF and LSF. 
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In this example, the training data set {X, Y} are obtained from a sine wave added 

with white Gaussian noise. The weighting terms adopted in this example are 

)...,2,1( nt
n

t

t ==
αλ ,    (2.5) 

where we can define nn =α .  A 2nd order polynomial is used to approximate the 

function.  The function is obtained using both WLSF and LSF, shown in Figure 2.1 along 

with the corresponding absolute error. 

It is noted from Figure 2.1 that WLSF fits the function more to the samples with 

larger value of t. And, by observing the absolute error signals from LSF and WLSF, we 

can find that absolute errors from WLSF are smaller for those samples than the 

corresponding absolute errors from LSF. 

 

2.3 Least-squares-based multi-layered perceptron training with weighted adaptation 

 
The training of MLP can be performed using the concept of LSF to find the global 

optimal solution for a given problem. The algorithm finding MLP weights using linear 

LSF was presented in [Erd 05] as an initialization method, based on which further back-

propagation (BP) training can be applied. In fact, we can demonstrate that a properly 

applied algorithm can be an effective training method for MLP even without the 

refinement of weights by BP algorithm. 

Given the inputs and desired outputs in the training samples, the training procedure 

for MLP can be carried out in two fashions: back-propagation starting with the 

desired output signal and forward-propagation starting with the given input signal. 
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In this work, the least-square-based MLP training method is introduced. Considering the 

distribution of the training samples and the type of nonlinearity of a MLP transfer 

function, weighted adaptation can be applied at various steps of the LS-based MLP 

training to improve the training performance.  

2.3.1 Training from the desired output back-propagation 

2.3.1.1 Training algorithm 

The LS-based MLP training algorithm in [Erd 05] consists of two major steps: 

propagation of the given desired outputs in the training data backwards through layers 

and then optimization of the weights between layers. To back-propagate the desired 

outputs, random weights and biases are initially used to calculate the signals on each 

layer.  Once the signals on the second layer are obtained based on the desired output 

information, the weights and biases between the first and the second layer can be 

optimized using the given input signals on first layer and signals on the second layer by 

LSF.  Then the signals on the second layer are re-evaluated based on the given inputs and 

the optimized weights and biases. After that, signals on the second and third layers are 

used to optimize biases and weights between the second and the third layer and the 

signals of the third layer are re-evaluated. The optimization of weights and biases and 

recalculation of the signals on the hidden layers are conducted in a feed forward fashion 

(moving from lower to higher layers) until the output layer is reached.  

Specifically, in a 3-layered MLP shown in Figure 2.2, the inputs )( Nninxx ×ℜ∈  and 

desired outputs )( Nnoutdd ×ℜ∈  are given in the training data.  The weights and biases 

between the input and hidden layer are denoted as )( 11 inhidden nnWW ×ℜ∈  and 



 
 

40

)( 111 ×ℜ∈ hiddennbb .  The weights and biases between the hidden and output layer are 

denoted as  )( 22 hiddenout nnWW ×ℜ∈  and )( 122 ×ℜ∈ outnbb . The signals on the hidden layers 

before and after the nonlinearity are denoted as y1, z1 ),( 111 ×ℜ∈ hiddennzy .  The output 

signals before and after the output layer are y2, z2 ),( 122 ×ℜ∈ outnzy .  They are calculated 

as 

)( 111

111

yfz
bxWy

=

+=
 ( Nnhiddenzy ×ℜ∈11, ),    (2.6) 

)( 222

2122

yfz
bzWy

=

+=
( Nnoutzy ×ℜ∈11, ).        (2.7) 
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Figure 2.2.. A typical 3-layered MLP. 

 

 

In (2.6) and (2.7), f 1 and f 2 are transfer functions of neurons on the hidden and 

output layers, whose inverse functions are denoted as ( f 1) -1 and ( f 2)-1, respectively.  The 
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transfer functions can be either linear or nonlinear, for example, the hyperbolic tangent 

sigmoid transfer function defined as 
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=      (2.8) 

The basic LS-based MLP training algorithm (LSMLP-1) is described based on a 3-

layered MLP as follows. The procedure was discussed in [Erd 05] and is restated here for 

clarity and further discussion. 

Note that this algorithm can be easily extended into MLP with more hidden layers. 

LSMLP-1 Algorithm: 

Step 1). Initialize the weights (W1 and W2) and biases (b1 and b2) in the network.  

Step 2). Back-propagate the desired output signals d through the output layer. 

Calculate the signal on the output layer before its transfer functions, d̂ , as  

)()(ˆ 12 dfd −= .          (2.9) 

Step 3). Based on the weights W2 and bias b2 between the hidden and the output 

layer, calculate the output signal z1 on the hidden layer using LSF to satisfy 

dbzW ˆ212 =+ , as in (2.10), where [ ] 122 −bW represents the pseudo-inverse of the 

matrix. 
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Step 4). If f 1’s output is limited within a certain range, the signal 1z  should be 

linearly scaled into that range. Back-propagate the signals on the hidden layer through the 

neurons’ transfer function to obtain the hidden neurons activation signals, as 
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( )111 zfy −= .      (2.11) 

Step 5). Optimize W1 and b1 using LSF to satisfy 111 ybxW =+ , as  
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Step 6). Evaluate y1, z1using the new values of the first layer weight W1 and bias b1, 

as in (2.6). 

Step 7). Optimize W2, b2 using the LSF to satisfy dbzW ˆ212 =+ , based on 1z  from 

Step 6) and d̂  from Step 2). 
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Step 8). Evaluate y2, z2 using the new values of the weight W2 and bias b2, as in (2.7).  

Then calculate the normalized value of mean squared error (MSE) between obtained 

output z2 and desired output d, as in (2.14). 

( ) ( )[ ]
][

22

ddE
zdzdEJ T

T
−−

= .      (2.14) 

This is the end of one iteration of the algorithm. The procedure from Step 2) through 

Step 8) can go through several iterations until the resulting MSE does not vary much 

anymore.  

The set of the resulting weights and biases obtained during these iterations that can 

achieve the best results will be recorded as the final result.  Since in this procedure, the 

desired output is propagated back through layers and uses the LSF to obtain the optimal 

weights and biases, it yields a single global optimum solution for all stages of the applied 
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procedure.  It has been tested that this algorithm usually takes 2 or 3 iterations to get 

stable results.  It enables the fast learning of MLP, and avoids local minima 

characteristics of BP.  As a result, it can handle several learning benchmarks, while BP 

training cannot. 

2.3.1.2 Weights optimization with weighted least-squared fitting  

In LSMLP, the signals are propagated backwards through the nonlinear transfer 

functions for weights optimization, as discussed in Step 5) and Step 7).  If a sample’s 

operating point (neuron’s input signal value) on the nonlinear function is close to the 

saturation point, the variance caused by an error on this sample before the nonlinearity 

results in a small variance after the nonlinearity.  As shown in Figure 2.3, the error before 

the nonlinearity Δy of sample A (whose operating point is at A) results in a larger error Δz 

after the nonlinearity than sample B’s with the same amount of error Δy.  
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Figure 2.3. Nonlinear transfer function and training samples’ operating point. 
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Therefore, the samples far from the saturation will have larger effect on the MSE 

after the nonlinearity, and should have larger weighting terms when the weights and 

biases are optimized to satisfy 111 ybxW =+ , as in Step 5).  The weighting terms should 

reflect the nonlinear function sensitivity to changes in the sample’s value. For example, a 

sample weighting term jiλ can be set to derivative value of the neuron’s transfer function 

computed at the input signal value jiy , as in (2.15), where ′1f denotes the derivative of 

1f .  

( ) )...,2,1,...,2,1(1 Ninjyf hiddenjiji ==
′

=λ ,  (2.15) 

In such case, the weights and biases between input and the hidden layer are calculated as, 
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For example, if the neurons use the hyperbolic tangent transfer function, the 

weighting terms expressed through derivatives are 
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Notice that such defined weights are always positive and when z approaches ±1 (that 

corresponds to large y  and saturation region of nonlinear function), this weight 
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approaches 0. The results from LSF and WLSF for weights optimization are compared in 

Figure 2.4.  Before the nonlinearity, approximations from LSF in Figure 2.4 (a) show 

closer match between the given value and the approximated values over all the samples 

than that from WLSF in Figure 2.4(c).  However, after the nonlinearity, norm of error 

from WLSF is 6.4717 and the error norm from LSF is 7.1324, which demonstrates better 

quality of the fit due to minimization of error in the sensitive region.  

Therefore, WLSF can be used in Step 5) and Step 7) to optimize the weights and 

biases to reduce the output error norm after nonlinearity transformation. 
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Figure 2.4. Comparison between LSF and WLSF. 
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2.3.1.3 Weights optimization with iterative fitting 

After a weight matrix between certain two layers is calculated, the signals can be 

propagated to the output layer of the MLP to find out what the final error signal will be.  

For a 3-layered MLP, when W1 and b1 are optimized, the mismatch between the desired 

signal y1 on the next layer and the actual one, denoted as 1e , is obtained as, 

)( 1111 bxWye +−= .     (2.18) 

Due to 1e , the error signal on the output layer before the transfer function will be 

[ ]211122 )(ˆˆ bbxWfWdydeout ++−=−= .   (2.19) 

In order to reduce oute  at the current step, W1 and b1 are further adjusted after the WLSF. 

The signals on the output layer y2 and oute  can be expressed as 
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where 1
:iW denotes the ith row of W1, and 2

: jW  denotes the jth column of W2.  

We can consider the hidden neurons as the basis functions for the output, in the form 

as )( 1
:

12
: xWfW jj  for the jth basis function.  Then, oute  can be reduced by adjusting each of 

its basis functions. This process starts the weights going to the 1st hidden neuron, 1
:1W . 

By adjusting 1
:1W  into 1

:1
1
:1 WW Δ+ , we attempt to have (2.21) so that the oute  will be 

zero. 
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Using Taylor expansion for nonlinear function 1f  around the operating point xW 1
:1 , we 

can have, 
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The procedure continues until oute  is zero or it updates all the hidden neurons. The 

process iteratively reduces oute  by further adjusting W1 and b1, so will be called Iterative 

Fitting (ITF) for weights optimization or least-squared based MLP learning with iterating 

fitting (LSMLP-ITF). 

To show the effect of ITF, the training performance of MLP will be presented on a 

popular classification benchmark problem, the two-spiral classification problem. The 

two-spiral problem is known as difficult to achieve the perfect classification due to high 

nonlinearity. The spiral dataset contains 50 samples with 2 features, from two classes. 

Using the given classes IDs ( { }1,1−∈d ) as the desired MLP output, a 3-layered MLP, 

with size 2-50-1, is trained using LSMLP-1 algorithm. Adding the ITF as an extra step, 

the training performance is greatly improved over direct LSMLP fitting, as shown in 

Figure 2.5. 
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Figure 2.5. Training performances of LSMLP-ITF and LSMLP-1 

 

 

2.3.2 Training from input signal forward-propagation 

2.3.2.1 Training algorithm 

The alternative fashion of the LS-based MLP training algorithm starts with the input 

signal forward-propagation. It consists of two major steps: propagation of the given 

inputs in the training data forwardly through layers and then optimization of the weights 

between layers. To propagate the input signals, random weights and biases are initially 

used to calculate the signals on each layer.  Once the signals on the last hidden layer are 

obtained, the weights and biases between the last hidden layer and the output layer can be 

optimized.  Then the signals on the last hidden layer are re-calculated based on the given 

desired outputs and the optimized weights and biases. Subsequently, the weights and 
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biases of previous layer will be updated, so will the signals on previous layers. The 

optimization of weights and recalculation of the signals on the hidden layers are 

conducted until the input layer is reached.  The algorithm (LSMLP-2) is described based 

on a 3-layered MLP as follows. 

LSMLP-2 Algorithm: 

Step 1). Initialize the weights (W1 and W2) and biases (b1 and b2) in the network.  

Step 2). Evaluate y1, z1using W1 and b1, as in (2.6). 

Step 3). Back-propagate the desired output signals d through the output layer. 

Calculate the signal before the transfer functions on the output layer, d̂ , as in 

(2.9). 

Step 4). Optimize W2, b2 to satisfy dbzW ˆ212 =+ , based on 1z  from (ii) and d̂  from 

Step 3). 

Step 5). Based on the new W2 and b2, optimize z1 using LSF to satisfy dbzW ˆ212 =+ , 

as in (2.10). 

Step 6). Scale 1z  into the f 1’s output range. Then back-propagate 1z  through the 

neurons’ transfer function. 

Step 7). Optimize W1 and b1 using LSF to satisfy 111 ybxW =+ , as in (2.12). 

Step 8). Evaluate y1, z1, y2, z2 using the new W1,W2 and b1,b2. And calculate the mean 

squared error (MSE) between obtained output z2 and desired output d. 

This is the end of one iteration of the algorithm. The procedure from Step 2) to Step 

8) can go through several iterations until the resulting MSE does not vary much anymore. 
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The set of the resulting weights and biases, which can achieve the best results, will be 

recorded as the final result.  

2.3.2.2 Signal optimization with weighted adaptation 

In the steps of LSMLP-2 algorithm in which the desired signals are scaled down to 

the limit of the nonlinear outputs before being back-propagated through the layer, the 

weights of the following layer should be modified accordingly, since the scaling process 

would produce mismatch of the signals on the next layer.  It is different than in the 

procedure of LSMLP-1 in which this modification is not necessary.  An alternative is that 

in Step 5) of LSMLP-2 algorithm, after W2 and b2 are updated, 1z  is optimized 

considering the nonlinearity limit.  After Step 4), the obtained signal y2 will be different 

from d̂ , as 

)(ˆˆ 2122 bzWde +−= .     (2.23) 

To reduce the error 2ê , 1z  needs to be optimized, so that 

212
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1z ’s values are limited to a certain interval, typically, a (-1, 1) interval.  Distances of 1z  

to the maximum and the minimum value of the interval (shown in Figure 2.6) are 

determined as 
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Figure 2.6. 1z ’s distances to the nonlinearity output limit 
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The allowable amount of change Hδ  of 1z  shows how much the signal can be 

changed and affects how significant it is to update this signal. We can combine Hδ , as 

the other type of weighting terms, with the weighting terms determined by the signals’ 

operating points on the nonlinearity (as discussed in Section 2.2.2.2) so that each sample 

of 1zΔ , denoted as 1
)(: izΔ (i=1, 2,…N), is computed using WLSF in (2.27).  
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2.4 Simulation and discussion 

 
The 3 variant versions of least-squared based MLP learning algorithms, including 

LSMLP-1, LSMLP-ITF, LSMLP-2, are tested and compared using the following 

examples.  

 

Example 1 

Firstly, the spiral classification problem, used in Section 2.3.1.3, is tested using these 

algorithms and the performances are compared in Table 2.1.  It is noted that LSMLP-1 is 

not able to handle spiral problem very well, while the other two types make very close 

approximation of the training data. 

 

Example 2 

The identification problem of the engine dynamics [Pow 98] is tested for MLP 

learning. The dataset contains 999 samples. A 3-layered MLP, with size 4-5-1, is trained 

using these 3 algorithms.  The performances are compared in Table 2.2.  

On this problem, all algorithms can handle the identification problem, while LSMLP-

2 generates the best performance. Based on these two experiments, the LSMLP-2 

algorithm seems to have better learning capability. 
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Table 2.1 

Performance Comparison on Spiral Classification Problem 

 Learning results Normalized MSE 
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Table 2.2 

Performance Comparison on Engine Dynamics Identification Problem 

 Learning results  Normalized MSE 

LSMLP-1 
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2.5 Conclusions 

 
The weights of a MLP with a preset structure can be efficient and globally optimized 

using these least-squares based learning algorithms. They can be applied not only to 

classical feed-forward network structure, but networks with other types of connections 

(feedback or lateral connections) as well.  According to the signal flows in different 

networks, these types of algorithms can be tailored, while the concept of LSF or WLSF 

can always apply. It makes MLP or similar network structures more suitable for building 

complex systems in supervised learning problems. In Chapter 3, we will discuss how to 

determine the network structure using optimized approximation algorithm. 
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CHAPTER 3: OPTIMIZED APPROXIMATION ALGORITHM FOR 

SUPERVISED LEARNING 

 
3.1 Introduction 

 
Supervised learning problem using multi-layered networks can be looked as and 

handled as unknown function approximation or a model approximation problem. Neural 

networks (NN) in the form of feed-forward multi-layer perceptrons (MLP) are often 

utilized in such problems [Gal 90].  In neural network learning, adding more hidden 

neurons is equivalent to adding more basis functions in function approximation and 

affects the training accuracy.  In addition to the number of hidden neurons, the training 

accuracy could also be affected by several other parameters, including the number of 

layers, the number of training samples, the length of learning period, the choice of neuron 

activation functions, and the training algorithm. Previous work has shown that neural 

networks can be used as universal approximators [Lor 66] [Hor 89] [Zur 92].  For 

universal approximators, how to determine the proper parameters to use in the model 

without a pre-set target for training accuracy is one of the major challenges.  

In order to optimize the number of hidden neurons, several techniques have been 

developed in the MLP-related literature, which correlate it with the number of training 

samples or the input and output layer sizes [Swi 96][Ber 97] [Bog 97]. Other work 

estimates the complexity of the desired function and relates it to the number of hidden 

neurons [Cam 01]. If the neural network training uses back-propagation (BP) algorithm, 

it has been shown that increasing the number of hidden neurons and the number of 
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weights makes it easier to find the global minimum [Law 96] [Law 97].  However, 

without examining the goodness-of-fit or considering the statistical characteristics of the 

training data, these approaches are less theoretically sound. Geometric interpretation 

given in [Xia 05] provides some insight into the problem of determining the number of 

neurons.  It helps to find the minimum structure of MLP necessary for a satisfactory 

approximation of a given problem.  However, such a method can be only applied to 

problems with the input space’s dimensionality up to two and in most of the applications, 

it is difficult to estimate the order of the problem by observing the available noisy data. 

Some work [Hua 98][Hua 03] [Sar 15] [Tam 97] on estimating the number of hidden 

neurons focused on the learning capabilities of the MLP on a training dataset without 

considering the possibility of overfitting. 

Using an excessive number of basis functions will cause overfitting, which means 

that the approximator over-estimates the complexity of the target problem.  This is 

usually referred to as the bias/variance dilemma [Gem 92].  The major purpose of 

developing function approximation is to interpolate in a meaningful way between the 

training samples [Hol 92], in order to generalize a model from existing training data and 

make predictions for novel data.  Such generalization capability, usually measured by the 

generalization error [Kar 00], is degraded by overfitting, which leads to a significant 

deviation in prediction.  It was addressed in [Xia 05] that finding the minimum structure 

of MLP in most cases results in the least cost of computation, least requirements on 

implementation resources and best generalization.  In this sense, determining the 
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optimum number of neurons or finding the minimum structure to prevent overfitting are 

critical in function approximation. 

During back-propagation (BP) training in MLP, the weights are adjusted 

incrementally.  Therefore, besides the network size, training accuracy also depends on the 

number of training epochs.  Too many epochs used in BP training will lead to 

overtraining, which is a concept similar to overfitting.  

To find the optimal network structure with an optimal size of the hidden layer or 

optimal value of a certain network parameter, constructive/destructive algorithms were 

adopted to incrementally increase or decrease the parameter to be optimized [Alp 91] 

[Kwo 97] [Ree 93] [Fre 90]. During the constructive/destructive process, cross-validation 

is commonly used to check the network quality [Set 01] and the design parameter is 

chosen using early-stopping [Ama 97] [Pre 98] [Wan 93].  In these approaches, the 

available data are divided usually into two independent sets: a training set and a 

validation or testing set.  Only the training set participates in the neural network learning, 

and the validation set is used to compute validation error, which approximates the 

generalization error.  The performance of a function approximation during training and 

validation is measured respectively by training error trainε  and validation error validε  

presented, for instance, in the form of mean-squared-error (MSE).  Once the validation 

performance stops improving as the target parameter continues to increase, it is possible 

that the training has begun to fit the noise in the training data, and overfitting occurs.  

Therefore, the stopping criterion is set so that, when validε  starts to increase, or 
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equivalently when trainε  and validε  start to diverge, it is assumed that the optimal value of 

the target parameter has been reached. 

Singular value decomposition (SVD) approach was also used to quantify the 

significance of increasing the number of neurons in the hidden layer in the 

constructive/destructive process [Teo 06]. The number of neurons is considered sufficient 

when contributory effect of each additional neuron is lower than an arbitrary threshold. 

There are several other model selection criteria, such as Akaike’s information criterion 

(AIC) [Aka 74] and the minimum description length (MDL) [Ris 86], as a function of the 

model complexity, the training performance and the number of training samples.  Some 

work applied such information criteria in the problem of finding optimal neural network 

structures [For 91] [Mur 94].  AIC was introduced in order to maximize the mean log-

likelihood of a model while avoiding unnecessary complexity.  A penalty term was 

applied to make model with excessive number of independent parameters less desirable.  

The algorithm using AIC as stopping criterion will choose the model with the minimum 

AIC.  The bias/variance decomposition [Hua 98] is a method to decompose the bias and 

variance term from MSE and measure the sensitivity of a learning model to the training 

data. Fitting into the available data will reduce the bias while overfitting may induce 

large variance. In practice, the bias and variance components for a certain learning model 

are estimated statistically over several training sets samples from the same function. 

Among several model choices, the one with least bias and variance is chosen as the 

optimum.  Overall, cross-validation and early-stopping are still the common techniques 

used in finding optimal network structure up to date. 
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Nevertheless, in cross-validation and early stopping, the use of the stopping criterion 

based on validε is not straightforward and requires definite answers to several issues.  For 

example, users have to find out the distribution of data so that training and validation sets 

can be properly divided and to assure that each of them have good coverage of the input 

space.  In addition, as demonstrated in [Law 96], the validation data have to be 

representative enough with regard to its size and data distribution, so that validε  can 

provide an unbiased estimate of the actual network performance and the real 

generalization error genε .  As validation data are statistically sampled, validε  has only a 

statistical chance to correlate with the generalization error, thus it is not a reliable 

measure.  validε , as a function of target parameter, may have many local minima during 

the training process.  It is not definite which one indicates the occurrence of overfitting 

[Pre 98] [Wan 93] and it is even more difficult to find out how likely it is that overfitting 

actually happened. Therefore, during the constructive/destructive process, users have to 

go through the process of adjusting the target parameter and observing the variation of 

validε to vaguely determine a good place to stop, which is a somewhat empirical and a not 

well-quantified process. Three classes of better-defined stopping criteria based on the 

concept of early-stopping were proposed in [Pre 98], from which users can choose based 

on different concerns on efficiency, effectiveness or robustness. The first class of 

stopping criteria (GL) proposes to stop training as soon as the generalization loss, 

measured by the increase of validε , exceeds a certain threshold. The second class (PQ) 

evaluates the quotient of generalization loss and training progress so that even if 

generalization error increases, the rapid decrease of training error will suggest 
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continuation of the process. The third class (UP) suggested stopping the process when the 

generalization error kept increasing in several successive steps. It helped the users to 

choose stopping criterion in a systematic and automatic way to avoid the ad-hoc process. 

However, as long as cross-validation is used, the methods require omission of the 

validation set in the training stage, which is a significant waste of the precious data 

available for training in some real-life cases, eg. plant dataset [Sug 93]. 

In general, overfitting occurs when excessive numbers of neurons are used in the 

network.  In these cases, although the validε  may not be severely degraded, the network 

does overestimate the complexity of the problem and it cost more resources to train and 

implement. The case of severe overfitting that went undetected using the validation set 

can be easily illustrated with an example of a synthetic data set obtained from a noisy 

sine wave signal approximated by polynomial functions. Figure 3.1(a) shows training and 

validation data sets. Figure 3.1(b) shows the values of training and validation errors as a 

function of the orders of approximating polynomials. Also shown in Figure 3.1(b) is 

(usually unknown) generalization error, which measures the deviation of the 

approximating result from the original sine wave. As illustrated in Figure 3.1(b), the 

validation error did not increase significantly enough to indicate severe overfitting that 

occurs when the order of approximating polynomial was higher than 18. 

Thus, it is desirable to have a measure that can quantify underfitting or overfitting of 

a network in a given learning problem. An algorithm based on such a measure should be 

able to recognize the occurrence of overfitting by examining the training error without 

using a validation set and show where the process can be safely stopped so that the 
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optimal structure of the MLP for a given problem is found.  In this paper, a signal-to-

noise ratio figure (SNRF) is defined to measure the goodness of fit using the training 

error. Based on the SNRF measurement, an Optimized Approximation Algorithm (OAA) 

is proposed to avoid overfitting in function approximation and neural network design 

applications.   
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Figure 3.1. Validation error and generalization error on overfitting detection. 

(a) Training and validation set 
(b) Variation of errors in function approximation 

 

 

3.2 Estimation of signal-to-noise ratio figure 

 
3.2.1 SNRF of the error signal 

In order to have a clear indication of overfitting, we need to examine the difference 

between the approximated function and the training data. This difference, which is 
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defined as the error signal in this work, comes from two possible sources: the 

approximation error due to the limited training accuracy in approximation with the given 

set of basis functions, and an unknown level of noise in the training data.  The noise can 

be the result of multiple causes, such as input noise, output noise or system disturbance 

which will all be treated as the output noise.  In function approximation, without any 

knowledge of the noise sources and based on central limit theorem, we can assume the 

White Gaussian Noise (WGN) without losing generality. A critical question is whether 

there is still useful signal information left to be learned in the error signal.  If there is, 

based on the assumption that the target function we try to approximate is continuous and 

that the noise is White Gaussian Noise (WGN), we can estimate the level of signal and 

noise in the error signal.  The ratio of the estimated signal level over the noise level in the 

error signal is defined as SNRF, and it is used to measure the amount of information left 

unlearned in the error signal.  The SNRF can be pre-calculated for a signal that contains 

solely WGN.  The comparison of SNRF of the error signal with that of WGN determines 

whether WGN dominates in the error signal.  If the noise dominates, there is little useful 

information left in the error signal, and there is no point to reduce it anymore as this will 

lead to overfitting. The estimation of SNRF will be first illustrated using a one-

dimensional function approximation problem, followed by the discussion for multi-

dimensional problems. 

3.2.2. SNRF estimation for a one-dimensional function approximation 

Assume that in a one-dimensional function approximation problem, training data are 

uniformly sampled from the input space 1ℜ∈X  with additive noise at an unknown level.  
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An approximation is obtained using a certain set of basis functions.  The error signal e 

contains a noise component denoted by n, and an approximation error signal component, 

which is the useful signal left unlearned and therefore denoted by s. 

),...2,1(  Nimsnse iiiii =+=+= β ,    (3.1) 

where N represents the number of samples.  Without losing generality, n can be modeled 

as a WGN process with standard deviation β, and m stands for a WGN process with unit 

standard deviation.  The energy of the error signal e is also composed of signal and noise 

components. 

nsns EEE +=+       (3.2) 

The energy of e can be calculated using the autocorrelation function: 

∑
=

+ ==
N

i
iiins eeeCE

1

2),( ,     (3.3) 

where C represents the correlation calculation.  Notice that a presumption is made that 

the target function needs to be continuous, and the approximation F̂  is usually a 

continuous function.  Practically, the useful signal left unlearned, s, is also a continuous 

function.  We could further assume that, if treated as time signals, the target function and 

F̂  both have relatively small bandwidth compared to the sampling rate or to the noise 

bandwidth.  As a result, there is a high level of correlation between two neighboring 

samples of s. Consequently, 

),(),( 1 iiii ssCssC ≈− ,     (3.4) 

where si-1 represents the (circular) shifted version of the s.  Due to the nature of WGN, 

noise of a sample is independent on noise of neighboring samples: 
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0),(),( 11 == −− iiii mmCnnC ββ ,    (3.5) 

where ni-1 represents a replica of ni shifted by one-sample.  Since the noise component is 

independent of the signal component, the correlation of ei with its shifted copy ei-1 

approximates the signal energy, as shown in (3.6). 

siiii EssCeeC ≈= −− ),(),( 11     (3.6) 

The difference between the autocorrelation with no time shift defined in (3.3) and 

),( 1−ii eeC  gives the noise energy in the error signal.  

),(),( 1−+ −=−= iiiisnsn eeCeeCEEE    (3.7) 

The ratio of the signal level to the noise level, defined as the SNRF of the error signal, is 

obtained as: 
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e eeCeeC

eeC
E
ESNRF .   (3.8) 

Notice that in SNRF, the signal component and noise component are decomposed by 

using the correlation between neighboring samples. In the bias/variance decomposition, 

similar estimations of the signal or noise level are obtained from bias and variance 

components, which are calculated statistically in common practice.  

When learning of the target function improves, it is expected that the useful signal 

left unlearned in the error signal is reduced, while the noise component does not change 

so that SNRFe will decrease.  In order to detect the existence of useful signal in e, the 

SNRFe has to be compared with the SNRF estimated for WGN using the same number of 

samples.  When there is no signal in e, we have,  

mnnse β==+= .     (3.9) 
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The SNRF for WGN is calculated as, 
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It is observed that the SNRFWGN is independent of the noise level β, which means that 

SNRFWGN only needs to be estimated with unit standard deviation in order to obtain the 

general characterization for any level of WGN.  The expected value of the correlation 

),( 1−ii mmC  is zero, which would intuitively indicate a zero SNRFWGN.  However, 

SNRFWGN is estimated using a limited number of samples, thus it is a random value 

related to the number of samples N.  The average value and the standard deviation of 

SNRFWGN can be derived for a given N.  
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Since ),(),( 1−>> iiii mmCmmC , 

[ ] 0),(
),(
),()( 11

_ =≈⎥
⎦

⎤
⎢
⎣

⎡
≈ −−

N
mmC

mmC
mmCN ii

ii

ii
WGNSNRF

μμμ ,                 (3.12) 

and, 
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Note that the samples of SNRFWGN are statistically independent.  According to the 

central limit theorem, if N is large enough, the samples of SNRFWGN tends to follow 
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Gaussian distribution with mean WGNSNRF _μ  and standard deviation WGNSNRF _σ .  In Figure 

3.2 (a), )(_ NWGNSNRFσ  from a 10000-run Monte-Carlo simulation is shown in the 

logarithmic scale as a function of the number of samples.  The estimated )(_ NWGNSNRFσ  

in (3.13) agrees with the simulation results, especially for the N values larger than 64.  

Such estimation is expected to work well for the sample numbers available in real-world 

training datasets.  
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(a)                                             (b) 

Figure 3.2. SNRF estimation for WGN in one-dimensional case 

(a) Standard deviation of SNRF for WGN 
(b) Histogram of SNRF of WGN for 216 samples 

 

 

3.2.3 One-dimensional SNRF-based stopping criterion 

The stopping criterion in OAA can now be determined by testing the hypothesis that 

SNRFe and SNRFWGN are from the same population.  The value of SNRFe at which the 
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hypothesis is rejected constitutes a threshold below which training OAA is stopped.  

Figure 3.2 (b) illustrates the histogram of SNRFWGN with 216 samples, as an example.  It is 

observed that the p = 5% significance level [Leh 97] can be approximated by the average 

value plus 1.7 times standard deviations for an arbitrary N.  As shown in Figure 3.2(b), 

the threshold can be calculated using 006.00039.07.107.1 =×+=+ σμ  for 216 samples.  

Notice it agrees with the threshold of 5% significance level calculated using Gaussian 

distribution with mean WGNSNRF _μ  and standard deviation WGNSNRF _σ  . 

SNRF-based stopping criterion in OAA can be defined as a SNRFe smaller than the 

threshold determined by (3.14), in which case, there is at least 95% probability that error 

signal represents a WGN and learning must stop to avoid overfitting.  

)(7.1)()( ___ NNNth WGNSNRFWGNSNRFWGNSNRF σμ += .                  (3.14) 

The threshold can be re-calculated for different significance levels if needed, and it 

is also based on the mean WGNSNRF _μ  and standard deviation WGNSNRF _σ  derived in (3.12) 

(3.13). 

In above discussion, (3.6) and (3.7) have been developed based on the assumption 

that e could be treated as a signal with evenly-spaced samples.  In a general one-

dimensional function approximation problem, the input samples may be unevenly spaced.  

Yet, nsE + , sE  and nE  can still be approximated using (3.3), (3.6) and (3.7) respectively.  

In addition, in the cases when only sparse data samples are available, the data set can be 

expanded using the approaches in [Hol 92][Kar 00][Wan 99]. Thus, the SNRFe can be 

estimated using (3.8) and the overfitting is determined by comparison of SNRFe with the 

threshold in (3.14). 
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3.2.4. SNRF estimation for multi-dimensional function approximation 

In a general multi-dimensional function approximation problem, the training data 

are usually randomly sampled from the input space DX ℜ∈ .  The method used to 

estimate SNRF in the one-dimensional case cannot be directly applied to such multi-

dimensional problem.  However, we could still assume that variation of s along each of 

the dimensions is slow compared to the average sampling distance.  Thus the same 

principle of signal and noise level estimation using correlation may be utilized.  Since s 

changes slowly in all directions, the continuous function can be locally approximated 

around ep using weighted average of a set of M+1 points, which includes ep and its M 

neighbors with the shortest distances.  These points are expected to have correlated 

values, whereas the noise on these points is assumed to be WGN and has independent 

samples.  As a result, the signal and noise levels at each sample ep (p=1, 2,…N) can be 

estimated through the correlation with its M nearest neighbors and computed using a 

weighted combination of the products of ep values with each of its neighbors, epi (i=1, 

2,...M).  Since the samples of ei are assumed to be spatially correlated, the distances 

between samples can be used to calculate the weight values.  In a D-dimensional space, 

the weights are obtained based on the scaled distance dpi between ep and epi to the power 

of D, and normalized, as given by (3.15), 
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Thus, the overall signal level of e can be calculated as, 
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As in (3.3), the autocorrelation of ei estimates signal plus noise level: 
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Finally, the SNRFe for M neighbors approach in a multi-dimensional input space is 

computed as  
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Notice that when applied to one-dimensional cases with M=1, (3.18) is identical to (3.8). 

The same calculation is done for WGN with unit standard deviation to characterize 

the SNRFWGN in multi-dimensional space.  When there is no signal, WGNSNRF  is 

estimated using (3.18) with e = n.  In the calculation of Esp of WGN, pip ee ⋅  is an 

independent random process with respect to p or i.  Since 

1
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we can have, 
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where WGNp
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 is the standard deviation of the perceived signal 

energy at sample ep in WGN.  It has the minimum value when the piw  have equal values 
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(i.e., with uniform sampling distance), which sets the lower bound.  Notice that the upper 

and lower bound in (3.20) are equal for M=1, independently of the input space 

dimensionality.  For M>1, the standard deviation gets closer to the upper bound in 

problems with large dimensionality D, since the closest neighbor dominates the weight 

calculation. 
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pip ee ⋅  items are independent of each other with respect to p and i.  For instance, when 
points p and p1 are the closest neighbors to each other, 11 ppp eew  is calculated twice in 
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Then we have the estimate for the standard deviation of SNRFWGN as follows, 
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Also, the average of SNRFWGN is estimated as, 
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3.2.5 Multidimensional SNRF-based stopping criterion 

Notice that the estimation of )(_ NWGNSNRFσ  and )(_ NWGNSNRFμ  using (3.22) and 

(3.23) is no longer a function of the number of samples in the neighborhood or problem 
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dimensionality.  Such simplification yields a universal detection threshold.  

)(_ NWGNSNRFσ  for M=3 in a three-dimensional case from a 1000-run Monte-Carlo 

simulation is shown in the logarithmic scale in Figure 3.3(a).  The distances among WGN 

samples are randomly generated.  The estimated )(_ NWGNSNRFσ  in (3.22) is consistent 

with an upper bound of 
N
2 , and the bounds developed in (3.20) are validated. 

Figure 3.3(b) shows the histogram of SNRFWGN for 8000 samples in the three-

dimensional case with M=3.  We note that the threshold of the significance level p = 5% 

can be approximated by the average value plus 1.7 times the standard deviations.  With N 

= 8000 the threshold is calculated as 0195.00115.07.107.1 =×+=+ σμ .  If not all the 

samples are independent, central limit theorem does not apply and the distribution of 

SNRFWGN is not Gaussian.  In such case, the upper estimate of the standard deviation in 

(3.22) is used.  The threshold can be experimentally established as the average value plus 

1.2 times upper estimate of the standard deviation, to achieve the 5% significance level.  

Note that this result coincides with (3.14) for M=1. 
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While using M>1 can improve estimation of the signal level by greater noise 

filtering when a large number of training samples is available, we did not observe a 

significant change in the detection threshold levels, comparing to M=1.  Thus using M=1 

is preferred for computing efficiency even in multidimensional cases, when the number 

of training data is small.  
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In summary, a method for estimating the SNRF of the error signal has been 

demonstrated.  By comparing SNRFe with SNRFWGN, we are able to develop the 

optimized approximation algorithm (OAA) as discussed in the next section.  The 

threshold for the OAA stopping criterion is determined from the estimate of SNRFWGN, 

and can be applied to problems of an arbitrary number of samples and dimensions. 
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Figure 3.3. SNRF estimation for WGN in three-dimensional case 

(a) Standard deviation of SNRF of WGN in a three-dimensional case with M=3 
(b) Histogram of SNRF of WGN for 8000 samples in a three-dimensional case 

 

 

3.3 Optimized approximation algorithm 

 
Using SNRF, we can estimate the signal level and the noise level for the error signal 

and then determine the amount of useful signal information left unlearned.  When there is 
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no information left, the learning process must be stopped, and the optimal approximation 

has been obtained without overfitting.  Otherwise, the target parameter has to be 

increased to improve the learning and reduce the approximation error.  The following 

procedure describes the basic steps of the OAA for the optimization of a given parameter 

of the NNs. 

Optimized Approximation Algorithm: 

(a). Assume that an unknown function F, with input space DX ℜ⊂  is described by N 

training samples as ),...2,1(  ,)( NiuxF ii == . 

(b). The signal detection threshold is pre-calculated for the given number of samples N 

based on 
N

Nth WGNSNRF
7.1)(_ = . 

(c). Select B as the initial value for the target parameter, for example, number of hidden 

neurons or number of BP training iterations. 

(d). Use the MLP (or other learning models) to obtain the approximated function 

)...,2,1()(ˆ NiaxF ii == . 

(e). Calculate the error signal ei=ui - ai , (i=1, 2, …N). 

(f). Determine SNRF of the error signal ei, SNRFe.  For a one-dimensional problem, use 

(3.8); for a multi-dimensional problem, use (3.18). 

(g). Stop if the SNRFe is less than WGNSNRFth _ , or if B exceeds its maximum value.  

Otherwise, increment B and repeat (d)-(g). 

(h). If SNRFe is equal to or less than WGNSNRFth _ , F̂  is the optimized approximation. 
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3.4 Simulation and discussion 

 
A multi-layer perceptron (MLP) is used as an example learning system to 

demonstrate the use of the proposed OAA. The MLP contains the input layer and the 

output layer with linear transfer functions and hidden layers with nonlinear transfer 

functions in the middle. OAA with SNRF-based stopping criterion will be tested in two 

aspects, optimization of the number of hidden neurons and optimization of the number of 

learning epochs, using synthetic datasets and benchmark datasets. First, the synthetic 

datasets are studied since we know the true target function so that real generalization 

error genε can be calculated and the results provide a visual insight to the problem and its 

proposed solution.  Subsequently, the benchmark data sets provide justification for the 

use of OAA in practical applications.  

In all the simulation examples, when OAA is tested in optimization of the number of 

hidden neurons, the Least-Squared learning Method (LSM) proposed in [Erd 05] as 

initialization method will be used as training method in this paper. In LSM, the 

adaptation of weights in MLP is based on the least-squared calculation so that the 

learning performance is only affected by the number of hidden neurons representing the 

number of basis functions without concerning the number of iterations. 

In addition, in all the simulation examples, when the number of learning epochs is 

optimized, a MLP with preset structure is trained using the back-propagation (BP) 

method, implemented using the MATLAB neural networks toolbox.  The SNRF-based 

criterion in OAA will determine when to stop the learning to avoid overtraining 

(overfitting). 
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It is expected that when the SNRF-based criterion recognizes overfitting, either trainε  

and validε  will start to diverge from each other, or validε  will reach a minimum.  Such 

observation will help to prove the effectiveness of the OAA with the SNRF-based 

stopping criterion.  The results, including the stopping points and corresponding trainε , 

validε  and genε  (for synthetic data) from OAA will be compared with those from 4 other 

classes of stopping criteria described in [Pre 98] and [Aka 74].  Specific criteria used in 

the comparison are denoted as follows: AIC (Akaike’s information criteria [Aka 74]), 

GL1~GL5 (generalization loss with thresholds 1~5 [Pre 98]), PQ0.5~PQ3 (generalization 

loss over training progress with thresholds 0.5~3 [Pre 98]) and UP2~UP8 (the number of 

successive increases in the generalization error [Pre 98]).  To calculate the AIC for MLP, 

the number of free parameters is equal to the overall number of weights and the bias. 

3.4.1. Simulation I: one-dimensional function approximation 

First, the desired function to be approximated is 5.0sin4.0 += xy , same as the 

target function used in [Hol 92].  A 4-layered MLP is used as learning prototype with the 

number of hidden neurons to be optimized. The number of hidden neurons in these 2 

hidden layers is set equal in the following simulation.  The training and validation 

datasets, containing 200 samples each, are randomly sampled from the input space, and 

the outputs are subjected to WGN with a standard deviation of 0.2. 

Simulation results show that SNRFe goes below the threshold when the number of 

hidden neurons on each layer is more than 3 for the 4-layered MLP, as can be seen from 

Figure 3.4(a).  As shown in Figure 3.4(b), the approximated function obtained from the 

MLP with size 1-3-3-1 approximates the target function well.  At the same time, it makes 
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reasonable predictions on the unseen validation data.  Although the validε  produced by 

MLP with 20 neurons is only 6% higher than that by 3 neurons, but it can be found from 

comparison in Figure 3.5(a) that MLP with 20 neurons seriously overestimates the 

complexity of the problem and the overfitting definitely shows up. 

The results from different kinds of stopping criteria are compared in Table 3.1.  

Among all the stopping criteria, SNRF-based stopping criterion suggests the minimum 

structure that can efficiently handle the target problem and yield the minimum 

generalization error, which corresponds to possibly the best generalization ability.  

In [Hol 92], the same target function is approximated using a MLP with size 1-13-1.  

It was demonstrated that the overfitting problem can be mitigated to some degree by 

using additive noise to expand the sparse dataset [Hol 92].  However, without optimizing 

the network structure, the approximated function still deviates from the desired function.  

Using the proposed OAA, the SNRF-based stopping criterion shows that the optimal 

number of hidden neurons for this 3-layer MLP is 5.  

With such 1-5-1 MLP, the number of learning epochs of the BP algorithm can be 

optimized using SNRF-based stopping criterion in OAA.  It suggests stopping the 

training after 10 epochs.  The approximated function after 10 epochs is compared with 

that after 200 epochs in Figure 3.5(b), which shows that large number of learning epochs 

induces overfitting and the SNRF-based stopping criterion is able to stop the learning 

process at the optimum point. 
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(a)                                                  (b) 

Figure 3.4. Simulation I: optimization of number of hidden neurons  

(a). SNRF of the error signal and threshold 
(b). The approximated function and desired function 
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 Figure 3.5. Comparison of approximated function 

(a). Comparison of approximated function using 3 and 20 neurons 
(b). Comparison of approximated function using 100 and 200 learning epochs 
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Table 3.1 

Simulation I: Results Comparison for Optimizing Number of Neurons 

Stopping 

Criteria 

Optimum number 

of hidden neurons 

Training error 

trainε  

Validation error 

validε  

Generalization 

error genε  

SNRF 3 0.11278 0.10559 0.0022411 

AIC 3 0.11278 0.10559 0.0022411 

GL1 10 0.11084 0.10623 0.0024636 

GL2 15 0.10895 0.10779 0.0038922 

GL3 17 0.10802 0.10994 0.0057212 

GL5 18 0.10701 0.11148 0.0091781 

PQ0.5 10 0.11084 0.10623 0.0024636 

PQ0.75 10 0.11084 0.10623 0.0024636 

PQ1 11 0.11075 0.10549 0.0025474 

PQ2 14 0.1095 0.10677 0.0042547 

PQ3 14 0.1095 0.10677 0.0042547 

UP2 7 0.11123 0.10528 0.0027053 

UP3 7 0.11123 0.10528 0.0027053 

UP4 9 0.11112 0.10566 0.002306 

UP6 13 0.10955 0.10594 0.0032101 

UP8 17 0.10802 0.10994 0.0057212 
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The results of optimizing the number of learning epochs from different kinds of 

stopping criteria are compared in Table 3.2.  SNRF-based stopping criterion suggests 

stopping the training with minimum number of learning epochs in this case and shows 

minimum generalization error.  Notice that since the network structure does not change 

during the process, the AIC stopping criterion cannot be applied and will be denoted as 

“N/A” in the result tables.  Some of the stopping criteria, including GL2, GL3 and GL5, 

have not been met even with the maximum number of learning epochs and will be 

denoted as “Incomplete” in the result tables. 

3.4.2. Simulation II: two-dimensional function approximation 

A function )4sin()4sin(2)3sin( 211
2
12

2
2 xxxxxxy +++=  is used as the target 

function to illustrate a multidimensional case, as shown in Figure 3.6(a).  Data points are 

randomly sampled adding WGN with a standard deviation of 0.1 to produce training and 

validation data sets, each containing 100 samples.   

The OAA is applied to optimize the number of hidden neurons of a 4-layered MLP 

and it is discovered that SNRFe falls below the threshold when the number of hidden 

neurons exceeds 25 as shown in Figure 3.6(b).  It may be seen that the validation error 

has many local minima located in the range from 25 to 35 neurons.  In this case, it would 

be difficult to exactly determine where overfitting begins by using validε . 
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Table 3.2 

Simulation I: Results Comparison for Optimizing Number of Learning Epochs 

Stopping 

Criteria 

Optimum number 

of learning epochs

Training error 

trainε  

Validation 

error validε  

Generalization 

error genε  

SNRF 10 0.1086 0.0987 0.00053 

AIC N/A N/A N/A N/A 

GL1 180 0.1064 0.1003 0.0073 

GL2 Incomplete Incomplete Incomplete Incomplete 

GL3 Incomplete Incomplete Incomplete Incomplete 

GL5 Incomplete Incomplete Incomplete Incomplete 

PQ0.5 30 0.1076 0.0989 0.0026 

PQ0.75 30 0.1076 0.0989 0.0026 

PQ1 30 0.1076 0.0989 0.0026 

PQ2 130 0.1076 0.0989 0.0026 

PQ3 130 0.1076 0.0989 0.0026 

UP2 50 0.1066 0.0993 0.0065 

UP3 60 0.1074 0.0991 0.0037 

UP4 90 0.1078 0.0988 0.0012 

UP6 150 0.1075 0.0992 0.0029 

UP8 160 0.1073 0.0990 0.0034 
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(a)                                           (b) 

Figure 3.6. Simualtion II: optimization of number of hidden neurons 

(a). Multi-dimensional function to be approximated 
(b). SNRF of the error signal vs. threshold and training and validation performances 

 

 

Using such 2-25-25-1 MLP as a function approximator, the approximated function 

in the given input space replicates the desired function well, as shown in Figure 3.7(a).  

However, using 35 hidden neurons, the approximated function has significant deviations 

from the target function at the unseen data, which is illustrated in Figure 3.7(b).  The 

function surface obviously indicates that overfitting already occurs.  The optimal network 

size with 25 neuron optimum is correctly predicted by the OAA.  The optimization 

results based on different stopping criteria are compared in Table 3.3.  In this case, other 

methods stop too early resulting in larger generalization errors. 

Subsequently, OAA was used in a 3-layered MLP with size 2-25-1 to find proper 

number of learning epochs and the results are compared with others methods in Table 
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3.4.  Again, we can see that the proposed SNRF criterion yields an optimum number of 

the training epochs with the smallest validation and generalization errors. 
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Figure 3.7. Approximated function using (a) 2-25-25-1 and (b) 2-35-35-1MLPs 

 

 

3.4.3. Simulation III: Puma robot arm dynamics dataset 

The OAA has also been applied to a benchmark dataset to illustrate another 

multidimensional case generated from the dynamics of a Unimation Puma 560 robot arm 

[Del].  The dataset is subject to an unknown level of noise.  The task is to predict the 

angular acceleration of the robot arm's links from 8 inputs include angular positions of 3 

joints, angular velocities of 3 joints and torques of 2 joints of the robot arm.  Various 

numbers of neurons (from 1 to 100 with a step size of 3) are used in the MLP to find the 

optimum number of hidden neurons using OAA.   
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Table 3.3 

Simulation II: Results Comparison for Optimizing Number of Hidden Neurons 

Stopping 

Criteria 

Optimum number 

of hidden neurons 

Training error 

trainε  

Validation 

error validε  

Generalization 

error genε  

SNRF 25 0.023222 0.22471 0.065502 

AIC 1 0.85216 0.87783 0.89908 

GL1 6 0.64278 0.82437 0.64931 

GL2 6 0.64278 0.82437 0.64931 

GL3 6 0.64278 0.82437 0.64931 

GL5 16 0.072757 0.41385 0.15182 

PQ0.5 6 0.64278 0.82437 0.64931 

PQ0.75 16 0.072757 0.41385 0.15182 

PQ1 16 0.072757 0.41385 0.15182 

PQ2 16 0.072757 0.41385 0.15182 

PQ3 16 0.072757 0.41385 0.15182 

UP2 6 0.64278 0.82437 0.64931 

UP3 16 0.072757 0.41385 0.15182 

UP4 16 0.072757 0.41385 0.15182 

UP6 16 0.072757 0.41385 0.15182 

UP8 17 0.055236 0.19659 0.11702 
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Table 3.4 

Simulation II: Results Comparison for Optimizing Number of Learning Epochs 

Stopping 

Criteria 

Optimum number 

of learning epochs

Training error 

trainε  

Validation 

error validε  

Generalization 

error genε  

SNRF 21 0.017228 0.072691 0.02101 

AIC N/A N/A N/A N/A 

GL1 41 0.015332 0.07962 0.024886 

GL2 41 0.015332 0.07962 0.024886 

GL3 41 0.015332 0.07962 0.024886 

GL5 41 0.015332 0.07962 0.024886 

PQ0.5 41 0.015332 0.07962 0.024886 

PQ0.75 41 0.015332 0.07962 0.024886 

PQ1 41 0.015332 0.07962 0.024886 

PQ2 61 0.014128 0.13411 0.031172 

PQ3 101 0.012752 0.16083 0.039461 

UP2 41 0.015332 0.07962 0.024886 

UP3 61 0.014128 0.13411 0.031172 

UP4 101 0.012752 0.16083 0.039461 

UP6 131 0.0097924 0.42093 0.095002 

UP8 171 0.0041367 0.78034 0.17466 
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The SNRFe is compared with threshold, as shown in Figure 3.8(a), and indicates that 

overfitting starts to occur when the number of neurons is 46.  Note that validε  has many 

local minima, as seen in Figure 3.8(b), and using a local minimum of validε  as a stopping 

criterion would be ambiguous.  The optimization results based on different stopping 

criterion are compared in Table 3.5.  With a MLP of size 8-46-1, OAA can be used to 

find proper number of learning epochs and the results are compared with others in Table 

3.6. 

In summary, for all tested datasets, the SNRF quantitatively identified overfitting 

and helped to find the proper structure or the number of training epochs for effective 

neural network learning for a given problem.  
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Figure 3.8. Simulation III: Optimizing number of hidden neurons. 

(a) SNRF of the error signal and threshold 
(b) Training and validation performance 
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Table 3.5 

Simulation III: Results Comparison for Optimizing Number of Hidden Neurons 

Stopping 

Criteria 

Optimum number 

of hidden neurons 

Training error 

trainε  

Validation error 

validε  

SNRF 46 0.043562 0.077474 

AIC 1 0.43152 0.44099 

GL1 28 0.066768 0.091784 

GL2 40 0.049517 0.083847 

GL3 40 0.049517 0.083847 

GL5 43 0.052393 0.089354 

PQ0.5 61 0.034858 0.07574 

PQ0.75 73 0.027735 0.084617 

PQ1 73 0.027735 0.084617 

PQ2 79 0.027958 0.094146 

PQ3 85 0.024118 0.082011 

UP2 28 0.066768 0.091784 

UP3 28 0.066768 0.091784 

UP4 28 0.066768 0.091784 

UP6 43 0.052393 0.089354 

UP8 52 0.038588 0.078167 
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Table 3.6 

Simulation III: Results Comparison for Optimizing Number of Learning Epochs 

Stopping 

Criteria 

Optimum number 

of learning epochs

Training error 

trainε  

Validation 

error validε  

SNRF 4 0.039814 0.077506 

AIC N/A N/A N/A 

GL1 7 0.032243 0.10845 

GL2 7 0.032243 0.10845 

GL3 7 0.032243 0.10845 

GL5 7 0.032243 0.10845 

PQ0.5 11 0.0027257 0.14612 

PQ0.75 26 1.0016e-011 0.16009 

PQ1 101 1.4087e-018 0.18978 

PQ2 101 1.4087e-018 0.18978 

PQ3 101 1.4087e-018 0.18978 

UP2 7 0.032243 0.10845 

UP3 7 0.032243 0.10845 

UP4 10 0.0038718 0.11284 

UP6 26 1.0016e-011 0.16009 

UP8 51 1.3981e-016 0.21248 
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In most simulation cases, OAA suggests the minimum structure or minimum length 

of the training period unlike other stopping criteria.  In the few cases it does not, OAA 

still delivers better generalization in the sense of the smallest validε .  In many stopping 

criteria variation of validε  is one of the measures used to determine possibility of 

overfitting rather than providing quantified evaluation of the goodness-of-fit 

accomplished by SNRF.  To meet the quantified stopping criterion, it may take slightly 

more hidden neurons or learning epochs for the SNRF to fall below the threshold than in 

some other criteria.  However, in all the cases, the network optimized with OAA 

outperforms all the other stopping criteria by providing optimized generalization ability. 

 

3.5. Conclusions 

 
In this chapter, an optimized approximation algorithm is proposed to solve the 

problem of overfitting in function approximation applications using neural networks. The 

OAA utilizes a quantitative stopping criterion based on the signal-to-noise-ratio figure 

(SNRF).  This algorithm can automatically detect overfitting based on the training errors 

only.  The algorithm has been validated for optimization of the number of hidden neurons 

for MLP and the number of iterations for the BP training.  It can be applied to parametric 

optimization of any learning model or model selection for other function approximation 

problems. Therefore, in a given supervised learning problem, the structure of the multi-

layered network can be determined by the OAA so that useful information is effectively 

extracted while minimum computational resources are consumed. 
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CHAPTER 4: A FRAMEWORK OF BUILDING EMBODIED INTELLIGENCE 

 
4.1 Introduction 

 
Intelligence cannot develop without an embodiment or active interaction with the 

environment. The embodiment is the extension and interface of the intelligence for its 

interaction with the environment. Through embodiment, intelligent agents carry out 

motor actions and affect the environment. The response of the environment is registered 

through sensors implanted in the embodiment. At the same time the embodiment is a part 

of the environment that can be perceived, modeled and learned by intelligence.  

Properties of the motors and sensors, their status and limitations can be studied, modeled 

and understood by intelligent agents, so that the agents model and understand limitations 

of their embodiment and their motor abilities, or effectively their abilities to effect the 

environment. 

The intelligence core interacts with its environment through its embodiment, as 

shown in Figure 4.1.  This interaction can be viewed as closed-loop sensory-motor 

coordination.  The embodiment does not have to be constant nor physically attached to 

the EI body.  The boundaries between embodiment and the environment change during 

the interaction which modifies the intelligent agents’ self-determination.  Because of the 

dynamically changing boundaries, the definition of embodiment has to reflect this fact 

and contain elements of indetermination. 

In this chapter, a framework of building an embodied intelligence (EI) is proposed.  

The definition of embodiment is presented along with its characteristics.  And a general 



 
 

91

and uniform definition of EI is given for the framework.  Based on the definition, we 

propose essential elements for building an intelligent machine and spell out its general 

design principles.  As one of the essential elements of intelligence, hierarchical memories 

are further discussed in later chapters. 
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Figure 4.1. Intelligence core with its embodiment and environment. 

 

 

4.1.1 Definition of embodiment of embodied intelligence 

Definition: 

Embodiment of embodied intelligence is a mechanism under the control of the 

intelligence core that contains sensors and actuators connected to the core through 

communication channels. 

A first consequence of this definition is that the mechanism under control may 
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change.  For instance, when the embodiment changes, the way that the embodiment 

works and the intelligent agent interacts with the environment will be affected. The 

efficiency of the EI sensory perception may be altered by external effects, and its motor 

ability may depend on skills and strength of its body, etc. 

Secondly, embodiment does not have to be permanently attached to the embodied 

intelligence in order to play its role of sensory- motor interaction with the rest of the 

environment.  For instance, if we operate a machine (drive a car, use keyboard, play 

tennis), our embodiment dynamics can be learned and associated with our action to the 

extent that reduces the distinction between the dynamics of our own body and the 

dynamics of our body operating in tandem with the machine.  Likewise, artificially 

enhanced senses can be perceived and characterized as our own senses (e.g. glasses that 

improve our vision, or a hearing aid that improve our hearing).  Another example of 

sensory extension could be an electronic implant stimulating the brain of a blind person 

to provide visual information or an ultrasound device warning a blind person of incoming 

obstacles, etc. 

Extended embodiment does not have to be of a physical (mechanical) nature.  It 

could be in the form of remote control of tools in a distant surgery procedure or 

monitoring Martian landscape through mobile, remotely controlled cameras.  It could 

also be our distant presence at the soccer game through received TV images or our voice 

message delivered through a speakerphone to a group of people at a teleconference.   

Finally, extended embodiment of intelligence comes in the form of organizations 

and their internal working mechanisms and procedures.  A general directing troop on a 
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battle field feels a similar directive power of moving armies as a crane operator that feels 

the mechanical power of the machine that he operates.  The president also feels the 

political power of his address to the nation and the large impact it makes on people’s 

lives.  

This extended embodiment enhances EI’s ability to interact with the environment 

and thus its ability to grow in complexity, skills and effectiveness.  If the President learns 

how to address the nation, his ability to affect the environment grows differently than that 

of a woman in Darfur trying to save her child from violence and hunger. 

Our knowledge of embodiment properties and its limitations is a key to its proper 

use in interaction with the world.  We rely on this knowledge to plan our actions and 

predict the responses from the environment.  A change in the way that our embodiment 

implements desired actions or perceives response from the environment introduces 

uncertainty in our behavior and may lead to confusion and less than optimum decision 

making.  If a car’s controls were suddenly reversed during operation a user would require 

some adaptation time to adjust to the new situation and probably would not be able to 

effectively control the machine that may result in a crash.  Therefore, what we learn about 

our environment and our ability to change this environment is affected not only by our 

intelligence (ability to learn, understand, represent, analyze and plan) but by correct 

perception of our embodiment as well.  This perception leads to the self awareness and 

conscious behavior. 

4.1.2 Definition of embodied intelligence 

In order to build working models of intelligent machines, an arbitrary and utilitarian 
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definition of intelligence is adopted in this work [Sta 06].  It is our aim to base the design 

concepts of embodied intelligence on a minimum set of requirements and mechanisms 

from which all traits of intelligence can be derived.  We will demonstrate that the 

definition is general enough to characterize agents of various levels of intelligence 

including human.  To differentiate it from enigmatic meaning of intelligence, we will 

limit it to embodied intelligence suggested by Brooks [Bro 91] and described in more 

detail by Pfeifer [Pfe 99].   

Definition: 

Embodied intelligence (EI) is defined as a mechanism that learns how to survive in 

a hostile environment. 

A mechanism in this definition applies to all forms of embodied intelligence, 

including biological, mechanical or virtual agents with fixed or variable embodiment, and 

fixed or variable sensors and actuators.  Implied in this definition is that EI interacts with 

an environment (real or virtual) and that the results of actions are perceived by its 

sensors.  Also implied is that the environment is hostile to EI so that EI has to learn how 

to survive.  This hostility of environment symbolizes all forms of pains that EI may suffer 

– whether it is an act of open hostility or simply scarcity of resources needed for the 

survival of the EI.  The important fact is that the hostility is persistent as it stimulates the 

mechanism to act and learn.  For example, low battery power is a persistent threat for an 

agent requiring it.  Gradually the energy level goes down, and unless the EI replenish its 

energy, a perceived discomfort from its energy level sensor will increase.  

Hostile stimulation from the environment towards EI is necessary for it to acquire 
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necessary knowledge, develop environment related skills, build models of the 

environment and its embodiment, explore and learn successful actions, create its value 

system and goals, and grow in sophistication. 

We will show in more details how the perpetual hostility will be the foundation and 

motivations for learning, goal creation, planning, thinking, and problem solving. In more 

advanced forms of EI it will also lead to intuition, consciousness, and emotions. Thus all 

forms and levels of intelligence can be considered under the proposed definition of EI. 

Notice that this definition of EI clearly differentiates knowledge from intelligence. 

Knowledge is the acquired set of skills and information about the environment, while 

intelligence requires the ability to acquire knowledge.  

 

4.2 Designing the embodied intelligence 

 
Learning whether certain actions are desirable makes the learning agent more 

capable of surviving in the hostile environment. There are several means of adapting to 

the environment: evolutionary - by using the natural selection of those agents that are 

most fit; cognitive - by using learning memory, pattern recognition, and associations; and 

group behavior – by using the individual member skills, specialization, and 

communication for the group survival.  Here we address only the second, and the most 

critical from the machine intelligence point of view, form of adaptation. 

4.2.1 Basic requirements for EI 

The spatio-temporal patterns that we experience during a lifetime underlie our 

knowledge, and produce our internal models of the environment. The perceptual objects 
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that we can recognize, the relations among the objects, and the skills that we have are all 

stored in our memory. The perceived patterns have features at various levels of 

abstraction, so that they will be remembered accordingly. 

Another critical aspect of human brain development is self-organization. By self-

organizing their interconnections, our brains allow us to quickly create representations of 

these patterns, interact with the environment, and build expectations regarding future 

events. A six year old child has many redundant and plastic connections ready to learn 

almost anything. After years of learning, the connection density among neurons is 

reduced, as only the most useful information is retained, and related memories and skills 

are refined.  At the same time, the learning ability is gradually reduced.  It is not to say 

that an adult cannot learn more efficiently than a child.  The knowledge that he 

accumulated makes him an efficient learner, however the memory resource that he can 

use to learn new facts are gradually depleted since brain’s ability to create new neurons is 

very limited. 

Although most of the existing neural network models assume full or almost full 

connectivity among neurons, human cerebral cortex is a sparsely connected network of 

neurons. For example, it has been estimated that synapses of neurons projecting through 

the mossy pathway (of the rat) from the dentate gyrus to subregion CA3 of the 

hippocampus reach 0.0078% of CA3 pyramidal cells [Rol 89].  Sparse connections can, 

at the same time, improve the storage capacity per synapse and reduce the energy 

consumption of a network working with the stored patterns. 
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For the purpose of building intelligent machines, it seems instructive to develop a 

neural network structure that allows the machine to perceive in a manner similar to how 

humans do.  Since human cortex is rather uniform in its organization and its able to learn 

almost anything in any of its location, the EI memory should be built based on a simple, 

uniform, hierarchical, and sparsely-connected structure with capability to self-organize. 

EI learns predominantly in an unsupervised manner by responding to stimuli from the 

environment.  However, learning, as a pattern processing process, is not involuntary.  

Learning is deliberate, perpetual, and should be closely related to the machine’s situation 

in the environment, and related to how the machine can survive in it.  

Having the purpose of surviving and certain more specific goals, the machine can 

efficiently organize its resources to process the useful incoming information and learn the 

important skills. The creation of goals should result from the machine’s interaction with 

its environment. Therefore, we require that an intelligent machine must have a built-in 

mechanism to create goals for its behavior and such mechanism will be called the goal 

creation system (GCS).  As we like to develop the machine’s memory based on simple, 

uniform hierarchical and self-organizing structure, we also desire to build a GCS based 

on hierarchical structure.  The memory structure grows and evolves as the goal hierarchy 

develops.  Better perceptions and skills facilitate understanding and creation of more 

advanced goals.  Meanwhile, the creation of more advance goals stimulates the growth of 

the hierarchy representing sensory inputs, perception and understanding of the 

environment and the hierarchy representing actions and skills. 
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Therefore, it is proposed that in order to build intelligent machines, the following 

elements are essential: 

1. Hierarchical self-organizing memory (HSOM) with sparse connectivity to 

perceive and act according to the machine’s objectives. 

2. Goal creation system (GCS) to develop sensory-motor coordination, goal-oriented 

learning and goal-oriented action, and to act as stimuli for interaction with the 

environment. 

In the proposed model of EI, a HSOM will use three basic pathways – a sensory 

pathway responsible for perception, a motor pathway responsible for actions, and a goal 

creation pathway responsible for goal creation, planning, evaluation of actions in relation 

to its goals, learning of useful associations, and stimulation of the machine to perform 

useful actions.  These three pathways interact and associate on various levels of the 

memory hierarchy.   

4.2.2 Hierarchical self-organizing memory  

HSOM is made of multi-layered processing units (neurons) and their connections.  

Neurons on different levels handle the recognition tasks with different levels of 

abstraction.  Lower-level neurons are either activated directly by the sensory inputs or 

indirectly by certain detailed features.  Subsequent level neurons combine the extracted 

features and represent elements of more complex entities by creating necessary 

associations between the lower-level features.  The information is gathered, associated 

and abstracted (in an invariant form) as it flows upwards in the hierarchy.  Finally, top-
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level neurons represent perceived entities, ideas, and relations in the observed 

environment.  

In human brains, the neurons in the sensory pathway at the input stage usually make 

divergent connections with later processing stages [Kan 00].  Then the information 

reaches and activates various parts of the neocortex. In human processing of visual 

information, 1 million, densely firing neurons in the optic nerves provide information to 

200 million neurons in the primary visual cortex V1 [And 05] that, in turn, activate 

significant parts of the neocortex which contains as many as 1011 neurons [Kan 00]. The 

work presented in [Ste 01] suggested that not only the number of V1 neurons increases as 

the 3/2 power of the number of LGN neurons (NV1= NLGN
3/2), but also the entire volume 

of neocortex and thalamus follow a similar expansion rate.  The work raised a possibility 

that similar scaling rates exist for other cortical areas.  

In addition, increasing the number of neurons on the top of the hierarchy increases 

the number of abstract symbols that can be represented.  This increases the memory 

capacity of the network which is a desired feature of the proposed memory organization. 

Therefore, the proposed HSOM may accommodate a larger number of neurons at higher 

hierarchical levels to represent a large variety of abstract symbols. The feature recognized 

in the lower-level neurons may be related to multiple objects represented on the higher-

level, so the lower-level neurons’ activity may be potentially spread to several neurons on 

the higher level. It is structured to potentially reach and activate groups of neurons on the 

top layers of its hierarchy. However, the number of higher level neurons can be reduced 

if needed for smaller memories to lower the simulation cost.  
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4.2.2.1 Sensory pathway 

The primary objective of neurons in the sensory pathway is to register the input 

information received from the environment and to build intentional representations to 

either be acted upon right away or stored in the long-term memory for later use.  The 

intentional representation is an internal representation of objects, symbols, abstractions, 

relations, actions, etc. (jointly called perceptions) related to EI’s interaction with the 

environment.  Typically, in an HSOM, many neurons are activated on the lower levels to 

represent the detailed features of the sensorium while few neurons need be activated at 

higher levels.  The reduction in neuronal activities at higher levels builds the “sparse 

codes” [Bar 72] [Wil 69] [Ama 93] [Fie 94] that represent information.  The active 

neurons at all layers of the hierarchy form the activation pathways for various stimuli. 

Simple features recognized by neurons on the lower levels may be combined to generate 

representations of many objects and their relations at higher levels.   

The idea of “sparse coding” emerged in an earlier work as one of the propositions of 

human visual perception [Bar 72].  The principle has been elaborated and advanced by 

several other authors [Wil 69] [Ama 93] [Fie 94] [Day 01] [Fol 02] [Ols 04].  In recent 

years, various experimental studies have supported the notion that visual information in 

human primary visual cortex is represented by a relatively small number of active 

neurons out of a large population of neurons [Vin 00] [Vin 02].  Sparse coding in the 

visual system also exists as a consequence of metabolic demands [Len 03] [Bad 96] [Lau 

03], and as a result of adaptation to special statistical properties of the natural visual 

environment [Vin 00] [Ols 96] [Sim 01]. Sparse coding is expected in auditory cortex as 
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well [Lew 02] [Lew 02], and is observed in the spiking rates of neurons in primary 

auditory cortex [DeW 03].  The advantages of using a learning network with sparse 

connections and sparse data representations were recently discussed conceptually in [And 

05].  With the information flowing up the hierarchy, the responses of the neurons on the 

higher levels can become very selective and only a few neurons are active for certain 

stimuli. 

In the design of machine intelligence, power dissipation is one of the most critical 

design factors, especially in large, parallel computing systems.  Thus, a learning and 

processing model that involves only a small subset of active neurons will save the power 

consumed by the learning memory. This containment of neuronal activities in 

representation building in sensory pathways is even more critical in the computational 

model we assume in this work in which it is possible that higher layers have many more 

neurons than the lower layers.  Such assumption depends on memory capacity and is 

biologically plausible. 

If the lower layers correspond to the sensory input stimuli, their size is determined by 

the number of sensory inputs.  Higher layers use these sensory inputs to build abstract 

representations, and finally contribute to representation memories at the top layers in the 

hierarchy.  In large memories these top layers contain many neurons.  For instance it is 

estimated that in the human brain the number of cortical neurons is on the order of 1011, 

while the number of neurons stimulated by the sensory inputs is on the order of 106.  

Thus a majority of neurons reside farther away from the sensory inputs, leading to the 

topologically expanding hierarchical structures.  Therefore, computational models to 
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build representations used in this work assume such expanding sensory and motor 

structures. 

Memory structures are developed through the modification of the interconnection 

weights between active neurons.  Weight adjustment has an important impact on the 

machines ability to learn.  Our system restricts the magnitude of weight adjustment based 

on the amount of times a neuron’s weights have been previously modified.  As a result of 

the expanding layers and reduced probability of firing, weights on the lower levels are 

adjusted more frequently then upper level weights.  As sensory information is presented 

to the network, lower level connections quickly become rigid and can no longer be 

modified (learn).  In contrast, upper level neurons are infrequently modified and therefore 

retain their ability to be modified even after extensive exposure to the input level stimuli.  

This results in a system which can be trained to form representations on each increasing 

level with an increased ability to represent new objects. 

The structure of the HSOM sensory pathway is proposed as shown in Figure 4.2.  

The neurons in the sensory pathway are organized in a layered structure. The neurons on 

each layer have sparse connections with neurons of the next higher level.  In the figure, 

two sensory inputs activate two pathways, shown as the shaded areas. In each activation 

pathway, the neuronal activity decreases for higher levels. Features on a particular level 

may be reused in two or more different activation pathways during a recognition process. 

Such an organization of sensory pathways in which various streams either specialize in 

building localized features or represent completely different sensory inputs are well 
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supported in neurobiological studies [Ung 82] [Van 83]. Such paths interact with each 

other on various levels of the hierarchy [Sam 97]. 

 

 

Sensory 
input

……………... … …
Increasing connection’s adaptability

 

Figure 4.2. Structure of sensory pathways in the HSOM and exemplar activation 

pathways. 

 

 

EI uses two mechanisms to store the information in its memories and to build the 

representation invariance.  Firstly, only new and useful information is stored in the form 

of intentional representations.  To accomplish this, the machine continuously predicts 

what information will be coming in.  This prediction manifests its understanding of the 

perceived signals and an assumption of the continuity and self-similarity (sameness) of 

the observed scene over a short observation time.  In short time intervals, the sensory 
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input changes, are usually the result of minor changes in the point of view, motion, 

lighting conditions, or gradual modification of the object shape, color or form.  When EI 

interacts with the environment, it is situated in a specific location, observing specific 

objects, and performing a specific task.  Thus the assumed continuity of the observed 

sensory input is used for invariance building.  Although we look at an object from 

different angles, we know that this is the same object and thus these various inputs must 

trigger the same representation on the higher level of the sensory pathway that forms the 

representation memory.   

Secondly, the intentional representations have to be related to the machine’s 

objectives. When the EI realizes that a specific action resulted in a desirable effect, it 

stores the representation of the perceived entity and learns associations between the 

activated sensory neurons and the motor neurons.  If the effect is not desirable, it learns 

not to perform such an action by reducing the strength of the connections.  Finally, when 

no goal is affected, no learning takes place, the machine does not create intentional 

representation nor does it remember the action it took.  Such organization of the learning 

process protects the machine’s memory from overloading by unimportant information.  

4.2.2.2 Motor pathway 

The primary objective of neurons in the motor pathway is to represent and control 

execution of actions.  The motor pathway represents skills learned by the EI.  

Neurons in the motor pathway are organized in a hierarchical way to be able to store 

a large number of skills and actions. At the bottom of the hierarchy are row motor 

outputs.  Memories are developed through registering these activities by modifications of 
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the interconnection weights between neurons on the lower levels and activated neurons 

on the higher level. 

Hierarchies of action representations are built bottom-up, from the simplest actions 

that require little sensory-motor coordination or sequential memories, to the most 

complex ones, that may last for a long period of time and require lots of memories.  An 

example of a simple action may be a reactive response to a painful shock, while driving 

home may be an example of a more complex action.  Higher level actions can only be 

obtained after lower level skills are learned.   

To have large learning capacity for various skills, the number of motor neurons on 

the higher levels is much greater than that of the lower levels in the motor pathway 

hierarchy.  However, the number of activated neurons that represent skills and actions on 

the higher levels is less than that on the lower levels.  Lower levels may no longer be 

capable of storing any new information since they were involved in learning many action 

patterns.  This results in lower plasticity of the interconnections on the lower level than 

on the higher levels.   

EI activates motor neurons in response to the request from the value system.  If an 

action was taken that resulted in a positive value (or a reward), an association between 

the sensory and the motor neuron’s activity is learned.  This makes it more likely that a 

similar action will be executed again when the EI is exposed to a similar environmental 

situation.  The same complex operation may be executed using various simpler 

operations, which leads to a similar concept of invariance building in the motor pathway 

as that in the sensory pathway.  Continuity of a higher level action is used for invariance 
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building between an action represented on the higher level and its lower level 

implementations.   

A prediction mechanism is also used in the motor pathway.  At every step of a motor 

action, a prediction is made regarding expected inputs from the sensory pathway and the 

value system.  If the prediction is correct there is no need to learn any new associations.   

Figure 4.3 shows a schematic representation of interactions between sensory and 

motor units on different levels of HSOM hierarchy.  

 

Environment

…

…

…

…

… …

D

R

E

A

Sensor path Motor path Increasing connection’s adaptability

Goal creation 
&Value system 

R: representation
E: expectation
A: association
D: direction
P: planning

P

 

Figure 4.3. Sensory-motor coordination in HSOM. 
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In this figure, representation connections indicate entity recognition along the 

upward sensory pathway and represent downwards activations along the motor pathways.  

Feedback connections represent expectations of future inputs in the sensory and motor 

pathways.  These expectations are provided by both motor neurons as well as higher level 

sensory neurons.  The direction arrows indicate stimulation links from the sensory or 

from the goal creation pathways to motor neurons, while planning arrows connecting 

motor neurons to the sensory neurons predict the sensory inputs after the action 

represented by this motor neuron was completed. 

4.2.2.3 Goal creation pathway 

The primary objective of neurons in the goal creation pathway is goal creation, 

evaluation of actions in relation to current goals, and stimulation of the machine to 

perform useful actions.  The growth of goal creation pathway triggers the intentional 

representation building and the growth of sensory and motor pathways.  Primitive level of 

goal hierarchy is created based on simple external hostile signals from the environment. 

On different levels of the goal hierarchy, stimuli are internally generated so that machine 

is triggered to find desired actions and implement them.  The found desired actions will 

be the reason to learn representations of related objects and skills and useful associations 

between them.   

Similar to neurons in the sensory and motor pathways, neurons in the goal creation 

pathway are organized hierarchically in order to represent different levels of goals and the 

means of their realization.  Lower level goals relate to simple, externally driven 

objectives.  Higher-level goal creation neurons are developed based on lower level goal 
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creation neurons and other neurons in the sensory-motor pathways.  They correspond to 

complex objectives that are learned over the machine’s operations and are related to the 

means to accomplish lower level goals.  Since the lower level goals may be satisfied in 

many different ways, they can correlate with multiple higher level goals. In the EI 

research, goal creation pathway is less considered and less understood than the other two 

pathways.  However, we propose it as an essential element of building EI.  In Chapter 6, 

we will devote more efforts to developing the concept and structures for the goal creation 

pathway. 

 

4.3 Conclusions 

 
In this chapter, we presented a definition of EI. This definition of EI clearly 

differentiates knowledge from intelligence, with emphasis on the ability to acquire 

knowledge. A framework to design working models for EI is proposed based on our 

definition of embodiment and embodied intelligence.  The design concepts aim to build 

intelligence on a simple and uniform neural structure. Two elements are proposed as 

essential for EI, including hierarchical self-organizing memory (HSOM) and goal 

creation system (GCS) to develop goal-oriented learning, and to stimulate a machine to 

interact with the environment. Three self-organizing hierarchical structures – sensory, 

motor, and goal creation pathways form the core of EI.  They interact on various levels of 

abstraction and support the development in the hierarchical memories. The 

implementation of HSOM and GCS will be discussed more in later chapters.  
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CHAPTER 5: SPARSE CODING IN A HIERARCHICAL SELF-ORGANIZING 

MEMORY IN UNSUPERVISED LEARNING 

 
5.1 Introduction 

 
In this chapter, we focus chiefly on bottom-up sensory information processing in the 

sparsely connected HSOM, which is the sparse-coding procedure needed for object 

representation building in its sensory pathway.  The following discussion is chiefly 

concerned with the implementation of architectures and algorithms that can provide some 

of the sparse-coding and classification requirements of an HSOM while retain their speed 

and efficiency when scaled to brain-size networks. This model employs a Hebbian 

learning rule [Heb 49], and produces reduced neuronal activity at higher hierarchical 

levels to build sparse codes for object representation.  The memory capacity and the fault 

tolerance of the proposed algorithms will be investigated.  A similar sparsely connected 

structure, which performs not only bottom-up information processing, but also uses the 

top-down information, may be used for selective attention-aided perception and 

invariance building- two critical functions in building sensory representations. 

For sparse codes, an important characteristic is the activity ratio f, which shows the 

fraction of active neurons at any given time.  Lower activity ratio increases code sparsity, 

and at its lowest value, single neuron representation is obtained.  The activity ratio also 

affects the robustness of the representations, the number of distinct categories that can be 

represented (the representational capacity), and the generalization properties.   
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Various approaches to reducing neuronal activities, controlling the activity ratio, and 

obtaining sparse coding have been tried.  In “soft” sparse coding, neuronal activities are 

constrained to smooth distributions that are sharper than Gaussian [Ols 96] [Ols 97].  In 

networks with sparse connectivity, an optimum activity distribution function depends on 

connectivity structure and input signal properties expressed by their statistically 

independent components as presented in [Bel 97] [Zha 04].  In “hard” sparse coding, the 

percentage of active neurons in a network is kept small [Reh 07].  Either approach 

requires the application of global activation criteria to all the neurons on a particular 

hierarchical level.  Independent component analysis requires iterative computations to 

achieve optimum component representations and assumes that the inputs are linear 

mixtures of independent components.  This strong assumption may not apply for natural 

data (nature images) and applying the methods to these data may deliver unsatisfying 

results [Zha 04]. 

Unsupervised, competitive learning, and the extreme case of using global winner 

neuron to build single-neuron representations of WTA classification is implemented in 

several existing networks, such as the competitive learning network [Aha 90] and 

Kohonen self-organizing map (SOM) [Koh 84], which can achieve vector quantization or 

dimensionality reduction. These networks typically have two-layered fully-connected 

feedforward structures. The winner output neuron in these methods is found by applying 

global WTA competition to the output, and then the connection links of the global winner 

neuron, and its predefined neighboring neurons, are adjusted during learning. 
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WTA competition implemented using traditional global WTA network [Hay 99] or 

MAXNET [Hay 99] [Zur 92] requires full connectivity and full comparison of activities 

of all neurons. Several studies have obtained sparse coding by means of WTA networks 

with lateral inhibitory links among neurons on the same level [Cou 92] [Xie 02].  

Typically, such schemes also employ iterative computations to find the global winner. 

The competition time increases with the likelihood of similar signal strengths in large 

WTA networks. And the winner can be any neuron whose activity exceeds some 

threshold [Xie 02], rather than the neuron that constitutes the best representation.  Prompt 

responses of humans to sensory information suggest that it is very unlikely that the 

winning neurons are selected through iterative global competitions or through global 

control of the overall neuronal activity. 

A global WTA circuit with full connectivity is expensive in hardware 

implementation since it requires large design area and high power dissipation. It also 

suffers from matching problems, especially in systems with a large number of inputs [Fis 

05]. To implement a large memory for a machine intelligence device, the circuit would 

have to compare many analog signal values, which would be inefficient and inaccurate. 

The competition time and resolution of finding the global winner are greatly affected by 

the circuit design and the analog values to compare [Sta 93]. 

In a sparsely-connected HSOM, sparse connections between neurons on different 

hierarchical levels may fail to transmit enough information up the hierarchy for reliable 

feature extraction and pattern recognition if the hierarchy is not properly organized.  For 

instance, a hierarchy in which neurons’ activities are regulated by a predefined activation 
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threshold may either fail to activate neurons on the top level or activate too many of 

them. This makes sparse coding and representation building in the sensory pathway 

difficult.  

In a local network model of cognition, called an “R-net” [Vog 97] [Vog 05], each 

primary neuron randomly projects onto a small fraction of the secondary neurons which 

in turn project onto the primary neurons, and provide indirect links between the primary 

neurons in a sparsely connected architecture.  While R-nets provide large capacity 

associative memories, they were not used for feature extraction or sparse coding in the 

original work.  By expanding the concept of R-nets, one or several layers of secondary 

neurons can be used to provide almost complete, indirect connectivity between the 

primary neurons on successive levels of the hierarchy. Such an approach is taken in this 

work. 

Global WTA competitions tend to yield a single neuron (or few correlated neurons) 

representations and are known as localist representations.  They are associated with a 

“grandmother cell” idea of questionable value in connectionists’ machine learning and 

lack biological support.  Cortical neurons tests performed by [Des 89] [Tan 96] [Fel 91] 

demonstrated that multiple neurons are involved in encoding one input stimuli.  Often 

distributed neuron activities are associated with localized and invariant features of the 

representations of the input stimuli build in memory.  Thus, distributed and sparse 

representations have important advantages over localist representations as discussed in 

[Hin 86] [Hum 97]. 
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We wanted to deploy, in the HSOM, a sparsely connected architecture that is 

biologically inspired and a mechanism that is simple, efficient, and easy to implement in 

hardware. The model and the algorithm presented in this chapter come from a new 

synthesis of the above ideas.  It investigates the use of hierarchical, self-organizing 

learning in sparsely connected networks to accomplish sparse recoding of densely coded 

input patterns. In this sparse structure, the neuronal activities are gradually reduced and 

the activation pathway is formed for certain sensory inputs. To build localist 

representation, we implement the method, sparse winner-take-all (SWTA), to find global 

winners on the top level of a hierarchy of sparse structures through efficient localized 

WTA competitions. Alternatively, an “oligarchy-take-all” (OTA) competition is employed 

to build distributed representation in which a group of neurons replace the global winner 

on the top level. The OTA approach increases memory reliability through coding 

redundancy in the self-organizing learning. 

The suggestion that memories are built through modification of the strengths of 

synapses between active neurons is commonly referred to as Hebbian Learning [Heb 49]. 

During memory building, the Hebbian learning adopted in this work uses weight vectors 

confined to the unit multidimensional sphere.  The learning is performed by adjusting the 

connection links of active neurons. Findings on the plasticity of interneuron connections 

[Mar 04] suggest the plasticity of synapses is affected by experience and the aging 

process.  We can postulate that the weights that are adjusted frequently should become 

less plastic (i.e., the amount of adjustment they undergo in response to new patterns 

decreases).  It is expected that this reduction in plasticity is particularly noticeable in the 



 
 

114

connections of the lower-level neurons that represent basic features.  Such features appear 

in a large number of input patterns and are adjusted frequently.  Higher level neurons that 

can be used to store abstract representations composed of the lower level features are 

activated less frequently than the lower level neurons and are expected to have 

connections with greater plasticity. 

 

5.2 Structure and connectivity of the sensory pathway  

 
One or several layers of secondary neurons can be used to provide almost complete, 

indirect connectivity between the primary neurons on successive levels of the hierarchy, 

as shown in Figure 5.1.  Each lower level primary neuron randomly projects onto a small 

fraction of secondary neurons that, in turn, fan out onto primary neurons of the next level 

in the network, producing indirect links between any primary neuron of one level and 

almost all primary neurons of the next level.  In Figure 5.1, two primary levels h and h+1 

are shown to be connected through the secondary level s. 
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Figure 5.1. Primary and secondary levels in HSOM. 
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As we proposed in this model, a large memory network may have an increasing 

number of neurons at higher levels, the number of secondary neurons on the secondary 

level s, denoted by Ns, may be larger than the number of primary neurons on the lower 

level h, Nh, and smaller than the number of primary neurons on the higher level h+1, 

Nh+1.  For example, we can have 

shhs NNNN αα == +1  and, ,    (5.1) 

where α denotes a growth factor for the number of neurons on each layer.  While we do 

not stipulate that a higher layer must have a larger number of neurons than the lower 

layer, we believe that occasionally such a feature of sparse memory may be useful and 

our model works well in such structures. 

5.2.1 Connectivity analysis 

Let both the secondary neurons and the primary neurons on the successive layer 

have an equal numbers of input connections.  For example, we can have, 

   and   , 1
h

h
inh

s
in NlNl == + ,    (5.2) 

where s
inl and 1+h

inl denote the numbers of input connections to the secondary and the 

primary neurons on the secondary level s and the primary level h+1, respectively.  Since 

the total number of output connections from a layer must equal the total number of input 

connections to the next layer, we have 

s
outs

h
inh

h
outh

s
ins lNlNlNlN == +

+
1

1  and , .   (5.3) 

The average number of output connections from each neuron to a higher layer is given by 

    and  , 11 ++ == h
h
outh

s
out NlNl .    (5.4) 
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The total number of interconnections between each two primary levels can be estimated 

as, 
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The input weight vectors of neurons (including primary and secondary neurons) place the 

neurons in a multi-dimensional space.  When a particular input pattern is processed, 

neurons receive inputs from the lower level, and their activations are determined by the 

inner products of the input vector and their input weight vectors.  We compare these inner 

products to find out the winner. In order for neurons to have a fair competition, and for 

neurons’ weight vectors to represent many categories in the output space, the weight 

vectors are desired to be unitary (i.e., the summation of the squared input weights is set to 

1).  
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5.2.2 Hierarchical organization 

The outputs of several lower level networks can be combined at higher levels.  For 

example, one network with a 2-layer structure can extract basic features on level h+1.  

The activities of r such networks can be combined and sent to a higher level, say h+2, 

through secondary level s+1 for higher level feature extraction or object representation, 

as in Figure 5.2. 
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Figure 5.2. r-lower level networks combined for higher level feature extraction. 

 

 

This kind of hierarchy, where a higher layer combines locally selected features 

extracted by groups of lower layer neurons, was suggested by several authors [Ore 00] 

[Haw 04] as a desirable form of cognitive architecture. The total number of 

interconnections between each two primary levels may be very large for large memories. 

Suppose, for example, we have a network with 1011 neurons in the highest level, and 109 

neurons in the input level (N1). Connecting the input to the highest level is comparable to 

connecting the entire sensorium to the entire cerebrum without regard to specialization of 

any region. The total number of connections and the number of output connections are 

given by 
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The number of connections, here, exceeds the connectivity of pyramidal cells of the 

human cortex [Rol 89]. However, if such connectivity is required with fewer synapses, 
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we can increase the overall sparsity of the network while maintaining sufficient numbers 

of connections to transmit the sensory information through the hierarchy by increasing 

the number of secondary layers.  As shown in Figure 5.3, a “stacked” R-net structure, in 

which two layers of secondary neurons separate primary neuron levels, can further reduce 

the connection density. With growth factor α, the numbers of neurons in secondary layers 

s1 and s2, and in the next primary layer h+1 are, 

21121   ,  , shsshs NNNNNN ααα === + .     (5.8) 

For example, we can have the number of input connections and the average number of 

output connections for all the neurons as, 
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Then the total number of connections between all the neurons is 
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Figure 5.3.Three-layer per level structure. 
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If this three-layer per level organization is again applied to a network with Nh+1 = 

1011 and Nh=109, we get, 

1467.3 10  ,10 ≈= h
all

h
out ll .    (5.12) 

Here, the connectivity is much less than that of a typical pyramidal cell. When the input 

size, Nh, and the output size, Nh+1, are specified, we can build an HSOM of almost any 

complexity while maintaining almost any connectivity. 

The network structure and its connectivity are functions of the number of secondary 

levels, ns, as 
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The number of connections to each neuron and the overall connectivity are reduced 

by adding more secondary levels, as shown in logarithmic scale in Figure 5.4, for the 

sample network with Nh+1 = 1011 and Nh=109. We note that the number of connections 

required in fully connected networks is much higher than those in sparsely connected 

networks. 
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Figure 5.4. Connectivity of the networks with different numbers of secondary levels. 

 

 

The networks with secondary layers separating primary layers provide sparseness in 

both structure and data representation while complete information is transmitted up the 

hierarchy. Such a network ensures high capacity memory, which will be discussed in 

Section 5.3.4.  In general, the sparse structure with WTA reduces maximum memory 

capacity per neuron, while increasing storage capacity per synapse. A proper trade-off 

between memory capacity and overall hardware requirements must be considered during 

the system implementation.  

 



 
 

121

5.3 Hierarchical self-organizing memory with sparse winner-take-all 

 
In unsupervised learning, the intended response of the network to each pattern is not 

given. When the input data propagate from lower to higher levels, the neurons on the 

higher layer combine output signals of the neurons on its lower levels and produce 

different levels of activation. Among the neurons on the top level of a hierarchy, there 

will be a neuron having the greatest output signal strength, and will be recognized as the 

global winner that provides the best representation of the input pattern. An efficient, 

hardware-oriented algorithm that uses local competitions is proposed to find this global 

winning neuron and the input pattern’s activation pathway.  The algorithm is 

implemented for a multilayer sparse network, so we call it a “sparse winner-take-all” 

(SWTA) algorithm. The algorithm employs three basic steps: 

(1). Sending the inputs up through the hierarchy 

(2). Finding the global winner and its “winner network” by means of local 

competitions 

(3). Recalculating the neuronal activities and training the network through weight 

adjustments on connections within the “winner network” 

In these three steps, a signal is propagated through the entire network three times. 

First, a forward propagation is used to obtain signal strengths of all the neurons. Second, 

a back propagation is used to determine the “winner network” through local 

competitions. Third, the forward propagation through the local winners identifies the 

global winner and trains the connection weights. The following sections describe the 

three basic steps of SWTA algorithm.  
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5.3.1 Data transmission 

In a network built using the structure with secondary and primary levels discussed in 

Section 5.2, the connections and connection weights are initialized with uniformly 

random values. To ensure a fair competition, the summation of the squared input weights 

to each neuron is set to 1. If the initial random weights have 1 2 ≠∑ jw , a scaling factor τ is 

applied so that we have  

1
2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⇒= ∑∑ τ

τ j
j

w
w  .      (5.14) 

The input weight vector is on the unit multidimensional sphere, giving each neuron an 

equal probability of firing, and increasing the memory capacity of the HSOM. 

In the first step of the SWTA algorithm, the input information is propagated to the 

highest level of the network using feed forward computations. In this feed forward 

computation, each post-synaptic neuron sums its weighted inputs. Each neuron has a 

transfer function so that the neuron fires and sends a signal to its own post-synaptic 

neurons when the summed signal strength exceeds an activation threshold, which is 

typically the medium of the signal range. The neuron’s output is expressed in (5.15), 

where layer
jS  and 1+layer

iS  denote the signal strengths of neuron j of level (layer) and neuron 

i of level (layer+1), respectively. layer
iN denotes the set of pre-synaptic neurons on level 

(layer) feeding neuron i on level (layer+1) and ijw denotes the input weights. 
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This feed forward computation establishes initial signal strengths for each neuron of 

the network.  In the second step, local competitions at each layer are used to establish the 

winner network.   

5.3.2. Finding the winner network 

In a sparsely connected network, a global winner on the top level can be found 

without global competition. Each neuron on a certain level connects to a group of post-

synaptic neurons on the next higher layer. These post-synaptic neurons are considered as 

pre-synaptic neuron’s “post-synaptic local region”. Based on the neurons’ output 

strengths computed in the 1st step of SWTA algorithm, local competitions can be 

performed within corresponding post-synaptic local regions. 

In hardware implementation, this local competition in a post-synaptic local region 

can be easily implemented using an analog, current-mode WTA circuit [Sta 93] in which 

the activity of neuron j is represented as the input current in
jI . Figure 5.5 (a) shows an 

example for a neuron 2
1
sn  on secondary level s2, which projects onto 3 post-synaptic 

neurons on level (h+1). For example, if the input node 1
2
+hn  has the highest signal 

strength 1
2
+hS , it will become the local winner in this post-synaptic region and will pull 

out all the current determined by the bias voltage, and the branches connected with losing 

nodes, l1 and l3, will be logically disconnected. Node 2
1
sn  receives the full signal from 

1
2
+hn , and the signal strength of 1

2
+hn , 1

2
+hS , propagates down to 2

1
sn . 

In a multi-level hierarchy illustrated in Figure 5.5(b), on a hierarchical level (layer) 

with layerN neurons, post-synaptic local winners are selected according to each neuron’s 
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post-synaptic region on the next level of the hierarchy, as in (5.16a). During the local 

competition using WTA circuit, each node )...,2,1( layerlayer
i Nin = on level (layer) receives 

the signal strength from its post-synaptic local winner, as in (5.16b). This neuron 

maintains an active connection only to this local winner and the connections to other 

neurons in post-synaptic region are logically disconnected, as in (5.16c), where 

1+layer
jil denotes the logic status of a connection between neuron i on level (layer) and 

neuron j on level (layer+1), 1+layer
iN is a set of post-synaptic neurons on level (layer+1) 

driven by a neuron i on level (layer), and layer
jN is a set of pre-synaptic neurons of neuron 

j on level (layer). 

),..2,1(max
1
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(a) Winner-take-all circuit in local 
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(b) Interconnection structure to determine 

a local winner 

Figure 5.5. Local winner-take-all circuit. 

 

 

Localized competitions begin at the highest level. The global winner neuron wins 

local competitions in each local post-synaptic region in which it is present and its signal 

strength is passed down to its pre-synaptic neurons. This process of local competitions is 

repeated at each level until the input layer is reached. By receiving the global winner’s 

signal strength, the pre-synaptic neurons will win the corresponding local competitions as 

well. Accordingly, all the lower-level neurons which connect to the global winner directly 

or indirectly will win local competitions and maintain their connections to their pre-

synaptic neurons. Specifically, all branches connected to the global winner are kept active 

while those branches not connected to the global winner are logically disconnected. All 

these active branches in the hierarchy form the “winner network”, as shown in Figure 5.6.  

Notice that the global winner was not established explicitly at the beginning of the 

competition. Rather, the global winner begins as a local winner, and progressively wins 

all competitions. 
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winner network
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Loser neurons in 
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local competition

S winnerS winner Signal strength of 
the global winner  

Figure 5.6. Winner network. 

 

 

Definition: A winner network is a sub-network of the original network that contains all 

branches connected to neurons that received the winner signal in the back propagation 

step of SWTA algorithm.  

If used in a fully connected network without SWTA algorithm, the WTA circuit will 

be used to find global winners by comparing all the neuron activities in the same circuit. 

But as stated earlier and as was experimentally established by earlier works, such 

implementation will greatly increase the computational time for finding global winners 

for networks with a large number of output neurons. 

5.3.3. Learning in the winner network 

The logical statuses of connections are determined through local competitions in the 

2nd step of SWTA. In the 3rd step of SWTA, the input pattern is forwardly propagated 
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through the network again and neuronal activities are recalculated considering the 

connections’ statuses, as in (5.17).  

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSlw

thresholdSlwSlw
S

layer
i

layer
i

layer
i

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

layer
i

0

1   (5.17) 

The logically disconnected branches, which have layer
ijl as zeros, do not contribute to 

post-synaptic neuronal activities, and only the active branches in the winner network will 

send the information up to higher levels. Since all the branches in the winner network are 

active, the signal strength of the global winner will not be reduced. However, because of 

the logical disconnection of branches of other output neurons, the signal strength of these 

neurons decreases and typically falls below threshold. In this way, after the 3rd step of 

SWTA, the global winner will be identified as the only active neuron on the top level.  

Hebbian learning is carried out simultaneously during this step. Weights are only 

adjusted for connections within the winner networks, since only connections to these 

neurons contribute to the recognition of this input pattern. The weight vectors are updated 

so that the activation level of the global winner is reinforced in accordance with (5.18), 

where 1
,

+layer
ijλ , the plasticity of the connection between neuron i of level (layer) and 

neuron j of level (layer+1), specifies the learning rate for its weight adjustment. 

layer
ij

layer
j

layer
i

layer
ij

layer
ij lSSw 11

,
1

,
+++ =Δ λ     (5.18) 

After updating, the weights are scaled using (5.14) so that they satisfy (5.6). As 

discussed in Section 5.1, the connection plasticity decreases and the learning rate decays 

with the number of weight adjustments. For example, we can have 
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rlayer
ij ρλ =+1
, ,       (5.19) 

where r denotes the number of times this connection has been updated and ρ ( ρ <1) is 

the original plasticity of the connection. 

The procedure of SWTA is performed for processing and training on each input 

pattern. The logic statuses of connections are determined in order to find the global 

winner representing the current input pattern. When new input pattern comes into the 

network, the network activations are reset and determined again for the new input. 

In summary, the network builds sparse representations by finding global winner 

neurons by means of local competitions in sparsely connected networks in which neurons 

of different primary levels are connected through secondary neurons. The SWTA finds 

global winners in three steps: propagating data forward, finding the winner network by 

back-propagating the signal strength from top level neurons, and forward propagation of 

input signals through active connections in the winner network. The algorithm provides 

an effective and efficient solution to the problem of finding global winners in large 

networks, especially those on the scale needed to build human-level intelligence.  

In later sections, the learning ability of the HSOM with SWTA will be tested on a 

hierarchical structure with two primary levels. The representational capacity of single-

neuron codes, as the number of distinct categories they can represent, is limited by the 

number of neurons on the top level of hierarchy. The sparse connectivity will result in 

reduction of capacity since it reduces the information flowing upwards the hierarchy. The 

representational capacity of networks with SWTA is also investigated. 
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5.3.4 Properties of the winner networks 

The properties of winner networks depend on the topology of their interconnections 

and can be studied statistically. When connectivity of the network is sufficiently low, 

more than one winner network, connected to active neurons at the highest level, can be 

found. By setting the connectivity above some threshold, dependent on the network size, 

we can have a single winner with all of the active branches in a single winner network. In 

the following example, we analyze the conditions under which a single winner is 

obtained.  

Example 

We consider a structure with two secondary layers per level with 64 neurons on the 

input level, the growth factor α in (5.8) set to 2.25 (giving levels that are 1.5 times larger 

than the previous level in each dimension of two dimensional input), and 729 output 

neurons. The number of active output neurons at the top level decreases with increasing 

numbers of input connections for each neuron (as shown in Figure 5.7 by a solid line). 

For this size of network, we observe that there is typically a single winner neuron at the 

top level when the number of input connections to each neuron in the network is greater 

than 6. 

In the local competitions, we can choose to keep, as local winners, all the neurons 

having activations within a certain range of the greatest local activation. This tolerance 

range in the local competitions affects the number of winners on the top level. For this 

structure with 64 input, 729 output neurons and 6 input connections for each neuron, the 

number of active neurons at the highest level increases rapidly with increasing tolerance, 
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as shown in Figure 5.8 by a solid line. While a small number of active output neurons 

may be beneficial, because they introduce robustness in object representations, too great a 

number of active neurons may defeat the purpose of sparse coding process needed for 

information storage in sparsely connected networks. 

This experiment was repeated with a different network size, choosing α in (5.8) as 4, 

and reaching 4096 output neurons. The results are shown by dashed lines in Figure 5.7 

and Figure 5.8. We observe a similar trend relating number of winners and signal strength 

to the number of input connections.  
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Figure 5.7. Effect of the number of input connections on the number of winners in SWTA. 
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Figure 5.8. Effect of tolerances in local competition on number of winners in SWTA. 

 

 

In summary, the sparsely connected network in which neurons at different primary 

levels are connected through secondary neurons builds sparse representations and finds 

global winner neurons by means of local competitions.  

The SWTA finds global winners in three steps: propagating data forward, finding the 

winner network by back-propagation and local competitions, and forward propagation of 

input signals through active connections in the winner network, organized as the 

following Table 5.1.  
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Table 5.1  

Sparse Winner-Take-All Algorithm (SWTA) 

1. Data transmission 

(feedforward process) 

FOR Layer = 2: Top Layer 
     FOR i=1: number of neurons on (Layer) 
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     ENDFOR 
ENDFOR 

2. Finding the winner 

network  

(backpropagation process) 

FOR Layer = Top Layer-1: -1: 1 
     FOR i=1: number of neurons on (Layer) 
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     ENDFOR 
ENDFOR 

3. Learning in the winner 

network  

(feedforward process) 

FOR Layer = 2: Top Layer 
     FOR i=1: number of neurons on (Layer) 
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              layer
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     ENDFOR 
ENDFOR 

 

 

5.3.5 Comparison between SWTA and WTA algorithms 

The presented SWTA algorithm provides an effective and efficient solution to the 

problem of finding global winners in large networks, especially those on the scale needed 

to build human-level intelligence. The number of calculations to process the input 
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information and the number of connections are compared between a sparse network with 

SWTA and a traditional fully connected network with global WTA in Table 5.2. In this 

example, assume the network has hN  inputs and the growth factor α . The structural 

properties of two networks are listed in Table 5.2 as well. It is noted that the computation 

cost and the design area are both correlated with the overall number of connections in the 

network.  

Figure 5.9 compares the connectivity of a sparse network to that of a fully-connected 

network as a function of the number of input neurons Nh (logarithmic scale). One can see 

that the sparsely connected network has a greatly reduced number of connections which 

results in reduced calculation cost and design area. In comparisons of parallel processing 

hardware architectures, efficiency is measured by a product of time and area. Thus an 

architecture that requires smaller area is more efficient than the one with larger area even 

if the computational time is the same in both. Sparse network with SWTA shows its 

advantage especially in large networks. 
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Table 5.2 

Comparison between SWTA and global WTA 

 
Sparse network with 

SWTA 

Fully-connected network with 

global WTA 

Number of layers 4 2 

Structure (number of 

neurons on each 

level) 

hhhh NNNN 32 ααα −−−  hh NN 3α−  

Number of inputs to 

each neuron 
3

hN  hN  

Number of 

connections 

3/432 )( hNααα ++  23
hNα  

Number of 

calculations 

3/432 )( hNααα ++  23
hNα  

Design area α 3/432 )( hNααα ++  α 23
hNα  
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Figure 5.9. Comparison of connectivity between SWTA and global WTA. 

 

 

Representational capacity of single-neuron codes, as the number of distinct 

categories stored, is limited by the number of output neurons. The sparse connectivity 

used in SWTA results in a slight reduction of memory capacity since it reduces the 

information transmission through the hierarchy. However, the memory per synapse is 

improved. Further investigation on the representational capacity of networks with SWTA 

is provided in Section 5.3.7.  

5.3.6 Finding a global winner in the network with SWTA 

The learning ability of the network with SWTA mechanism was tested on the same 3-

layer per level structure with 64 input and 729 output neurons described in the example in 

Section 5.3.4. Weights were in the range [-1, 1] and the inputs for learning were grey-

scale patterns in the range [-1, 1] as well. When a pattern is applied to the network with 
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the SWTA, a single neuron is found as the global winner at the highest level. In this 

experiment, an 8 by 8 grey-scale random image pattern is applied to the randomly 

initialized network. The network builds the input representation and learns by adjusting 

its weights. To evaluate the network’s fault tolerance, 5 bits of the original information 

were assigned random values, and the distorted pattern was presented to the network. A 

random pattern and its distorted pattern are shown in Figure 5.10. 

 

 

original image variant imageoriginal image variant image

Distorted area
Input size: 8 x 8
Number of distorted bits: 5

original image variant imageoriginal image variant image

Distorted area
Input size: 8 x 8
Number of distorted bits: 5  

Figure 5.10. Original random pattern and its distortion presented to the SWTA. 

 

 

The activities of output neurons, after the original pattern is processed are shown in 

Figure 5.11(a). Activities of the output neurons are then shown in Figure 5.11(b) after 

finding the winner network and adjusting the weights. After the local competitions and 

weights adjustment, only the global winner neuron has its signal strength higher than the 

activation threshold. After learning the original input pattern, the network with SWTA 
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responds to the distorted pattern, as shown in Figure 5.12 before (a) and after (b) the local 

competitions. 
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(a)      (b) 

Figure 5.11. Output neuron activities for original pattern. 

(a). before  (b). after local competitions 
 

 

Such small levels of pattern distortion can be tolerated by the network which gives 

the same neuronal representation for both patterns. However, it is anticipated that, as the 

network learns more patterns, the level of tolerance for distortion of the network will 

decrease. This expectation was tested by finding the fraction of distorted patterns that 

were correctly recognized by the network with SWTA as a function of the number of 

patterns.  The performance is obtained based on 10 Monte-Carlo runs (shown in Figure 5. 

13).  Each stored pattern was tested 10 times with 5 different bits in the pattern randomly 

changed on each trial. The results agree with the expectation that level of distortion 
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tolerance of the network on classification problems decreases with increasing numbers of 

training patterns. The performance of a STWA network is evaluated with and without 

training. During the training, the representation built in the network for a particular 

pattern is reinforced so that each pattern can be better recognized when a large number of 

patterns are stored in the network. 
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Figure 5.12. Output neuron activities for distorted pattern. 

(a). before  (b) after local competitions 
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Figure 5.13. Recognition ability of the network with SWTA. 

(Percentage of correct recognition of distorted information vs. number of patterns 
learned) 

 

 

5.3.7 Representational memory capacity of the network with SWTA 

In sparse coding, an important measure of the memory structure is to evaluate how 

many representations of the input categories can be reliably obtained.  Such 

representations can then be stored in the associative memory, that is capable to associate 

different parts of the code and recover the missing parts.  Associative memory capacity 

(typically referred to as memory capacity) is then different from the representational 

capacity.  In a fully-connected WTA network, each pattern is represented by a single 

neuron at the highest level, and the maximum number of distinct categories the network 

can represent and recognize equals to the number of top-level neurons. It is desired that 

the representational capacity of SWTA be close to this number as well. In the next 

experiment, a network with 729 neurons on the top level was exposed to 7000 random 
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patterns. It is found that 452 different neurons at the top level were activated at least 

once. It means that approximately 57% output neurons can be used to store and represent 

categories, and the SWTA can store 452 different categories without interference. Figure 

5.14(a) shows the neuronal firing frequency distribution, and it is observed that most of 

these activated neurons are triggered by a small number of patterns. The neuronal firing 

frequencies of these 452 neurons, sorted by descending order, are shown in Figure 

5.14(b). It is noticed that one of the top-level neurons is activated by 197 patterns.  The 

distribution of similarities, in the sense of sum of squared intensity difference [Hil 01], 

among these 197 patterns is compared with the distribution of similarities among 

randomly generated patterns in Figure 5.15.  In this metric, similar patterns have small 

intensity differences. As we can see from Figure 5.15, the average intensity difference for 

patterns which trigger the same output neuron is two standard deviations smaller than that 

of random patterns. This indicates statistical significance for the similarity of patterns that 

trigger the same output neuron.  Using the results presented in Figure 5.15, one can easily 

estimate the likelihood that a pattern is from the given class rather than a random pattern. 

For a fully connected network with 64 neurons as the input and 729 neurons as the 

output with no secondary levels, all the 729 neurons at the highest level are activated at 

least once after applying 7000 random patterns. The neuron firing frequencies and the 

firing frequency distribution are also shown in Figure 5.14(a) and (b) for comparison. 

This indicates that the reuse of the common links in storing various input patterns in the 

sparse structures reduces the representational capacity per neuron of the network with 

SWTA compared to that of a fully connected memory with global WTA competition on 
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the output layers.  However, the representational capacity per synapse of a SWTA 

network is significantly higher than that of a fully connected WTA network, and is 6.04 

times as great in the given example.  This representational capacity can be computed 

using 

all

neuronsactivated
synapse l

N
C =      (5.20) 

where Nactivated neurons is the total number of neurons that can be used to represent 

categories and lall is the total number of connections. 
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(a)       (b) 

Figure 5.14. Distribution of activities of output neurons of SWTA and WTA. 

(Nh=64, α=2.25) 
 

(a). Neuronal activities distribution  (b). Frequency of neuron firing  
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Figure 5.15. Similarities among the patterns that trigger the same output neuron. 

 

 

The number of input connections to each neuron affects the information 

transmission from lower levels to higher levels in SWTA. Therefore, it also affects the 

representational capacity in the sense of the number of neurons on the top level that 

receive sufficient information to become representations for categories. Assuming that the 

number of inputs per neuron is estimated by 3
hNp ⋅ , we can find the optimum scaling 

factor p to maximize the representational capacity of a SWTA network. The 

representational capacities of a SWTA network as a function of p are shown in Figure 

5.16. The optimum representational capacity is obtained when p is approximately 1, 

which supports the selection on lin in (5.9).  
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Figure 5.16. Effect of number of input connections per neuron on representational 

capacity of a SWTA network. 

 

 

The representational capacity was tested on the network with 64 input neurons and 

4096 output neurons described in the example in Section 5.3.4. The 40000 random 

patterns trigger 1916 different neurons on the top level as global winners at least once. In 

Figure 5.17, the neuron firing frequency and its distribution are compared with those of 

the fully connected 64-4096 network, which can activate all 4096 neurons on the top 

level. 

 

 



 
 

144

0 100 200 300 400 500 600 700 800 900 1000
10-6

10-5

10-4

10-3

10-2

10-1

100

neuronal activity

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

Neuronal activities distribution

Sparsely connected SWTA network
Fully connected WTA network

 
0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

101

102

103

neuronal firing frequency

Fr
eq

ue
nc

y 
of

 n
eu

ro
na

l f
iri

ng

Frequency of neuronal firing

Sparsely connected SWTA network
Fully connected WTA network

 

(a)      (b) 

Figure 5.17. Distribution of activities of output neurons of SWTA and WTA (Nh=64, α=4). 

(a). Neuronal activities distribution  (b). Frequency of neuronal firing  
 

 

Representational capacity per synapse in this SWTA network, which is calculated by 

(5.20), is significantly higher (5.7 times as great) than that of a fully connected WTA 

network. 

Typically, sparse connectivity, when we simply reduce the number of connections 

between two hierarchical levels, may fail to transmit the information sufficiently for 

higher level neurons to build higher level representations. It produces statistical bias on 

certain higher-level neurons in the winner-take-all competition. When many of the 

higher-level neurons always fail in the competition and are not used to store or represent 

categories, the representational capacity of such sparse network is greatly reduced. 

However, the secondary levels used in the proposed network provide sufficient 

interconnections between primary levels so that approximately 50% of the neurons on the 
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higher level can be used for information storage.  When the network is scaled up to a size 

needed for advanced intelligent machines, we can expect that a large number of the 

higher-level neurons will be used in memory building and the network will possess 

desirable representational capacity. The loss of representational capacity per neuron is 

more than compensated by its lower hardware cost expressed by lower total number of 

connections. 

 

5.4 Hierarchical self-organizing memory with oligarchy-take-all 

 
Encoding the sensory input into only one dominant neuron, as in the network with 

SWTA, is not very robust. Since the connection weights in the activation pathway are 

updated after each pattern is learned and the activation pathways may overlap for 

different patterns, the change in connection weights of one activation pathway will affect 

another pathway. Accordingly, the signal strength of top level neurons of previously 

learned patterns may change. Recognition in large WTA networks, whether sparsely or 

densely connected, is vulnerable to small changes in the activities of the highest level 

neurons.  Moreover, recognition may fail because of noise, faults, and variant 

representations of the same object.  More robust results can be obtained by encoding the 

sensory input into a group of active neurons, called an “oligarchy” in this work, at the 

highest level. In the network using the oligarchy-take-all (OTA) algorithm, described 

below, the winning neurons are found directly in a feed forward process instead of the 3-

step procedure used in the SWTA described in Section 5.3.  

Distributed representations typified by the oligarchy encoding have several 
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advantages over the localist representations. First, they are more efficient as fewer 

neurons may code significantly more representations based on the group coding. Second, 

a new representation can be easily formed by a novel combination of the existing 

features, while the localist representation requires a new output unit. Third, similar 

patterns have a number of common units in a distributed representation. Fourth, 

distributed representation is more accurate since it may code up to 2n values over n output 

units while localist represents up to n values.  Fifth, sparse representation is more robust, 

since it has some redundancy.  Finally, learning and invariance building is improved as 

changes in representation are gradual. 

5.4.1 Finding the oligarchy 

After the neurons on the 1st layer receive the input data, the input activations of post-

synaptic neurons are calculated, as in the 1st step of SWTA, by (3.15). Each neuron on the 

1st layer finds its set of post-synaptic neurons on the 2nd layer and their signal strengths 

are compared and the local winner is found. The local competitions in OTA are 

implemented using the same WTA circuit expressed in (3.16), and branches connected 

with losing nodes are logically cut off as the signal propagates up the hierarchy. Learning 

is carried out on the logically connected pathways, and Hebbian learning method in 

(3.18) is applied. Afterwards, signal strengths of the 2nd level neurons are recalculated 

and the procedure is continued until the top level of the hierarchy is reached. Only active 

neurons on each level are able to send information up the hierarchy. Eventually, the 

activation pathway and the active neurons at the highest level are found through the OTA 

process. The oligarchy at the highest level, as the most abstract representation of the 
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sensory input, provides redundant, distributed coding of the input pattern. When similar 

patterns are presented, it is expected that similar groups of neurons will be activated. The 

OTA algorithm is organized as the following program, shown in Table 5.3. 

The properties of oligarchies depend on the topology of their interconnections and 

the dependence can be studied statistically. By properly choosing the interconnection 

density for a given network size, we can obtain oligarchies of roughly any desired size. In 

the following example, we analyze the effect of the number of input connections per 

neuron on the size of the oligarchy.  

Example 

Two structures are compared in this test. Each network has two secondary layers per 

level with 64 neurons on the input level and α in (5.8) as 2.25 or 4.  In both networks, the 

number of active neurons in the oligarchy at the top level, which represents a particular 

category, decreases with increasing numbers of input connections to each neuron (as 

shown in Figure 5.18).  Therefore, the number of input connections to each neuron can be 

optimized based on such considerations as the desired coding redundancy and robustness, 

memory capacity, and implementation cost.  

 

 

 

 

 

 



 
 

148

Table 5.3 

Oligarchy-Take-All Algorithm 

FOR Layer = 2: Top Layer 

     FOR i=1: number of neurons on (Layer) 

       (1). Data transmission (feedforward process) 
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              (2). Finding the winner network (backpropagation process) 
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       (3). Learning in the winner network (feedforward process) 
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    ENDFOR 

ENDFOR 

 

 

 



 
 

149

 
2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35

40

Number of input connections per neuron lin

N
um

be
r o

f a
ct

iv
e 

ne
ur

on
s 

   
   

   
  

on
 th

e 
to

p 
le

ve
l o

f n
et

w
or

k 
w

ith
 O

TA

Number of active neurons on the top level 
vs. Number of input connections per neuron

α = 2.25
α = 4

 

Figure 5.18. Effect of the number of inputs on number of active neurons in OTA. 

 

 

Oligarchy-take-all idea is similar to k-winners-take-all (kWTA) concept described by 

[Van83].  However, unlike kWTA, no prior assumption is made about the number of 

winners on top level.  This number is effectively controlled by the network connectivity. 

Both methods lead to building sparse distributed representations thus are useful for 

cognitive signal processing. They provide local inhibition that reduces neuron activities 

in higher layers and yield feedforward pattern competition [Koh 84] [McC 81] [Rum 

86b] [Gro 76] [McN 87]. 

As demonstrated by [Day 95] [Hin 97], balance between a single neuron (localist) 

representation and distributed representation, requires that a relatively small number of 

output units are used for representation building.  The main objective of our model is to 

obtain this kind of distributed representation building that is similar to behavior of 
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cortical networks, even if not all the implementation details of our method are 

biologically plausible.   

5.4.2 Grouping active neurons using lateral connections 

Even though the representations of patterns are built on groups of neurons so that 

information is distributed at higher abstraction levels, it has been suggested that 

information in real brains is not necessarily widely distributed. Therefore, lateral 

connections are introduced to change the information distribution. Such lateral 

connections are found at all levels of the visual cortical hierarchy [Sir 95] [Lun 93]. 

When firing is positively correlated, the lateral connections are expected to amplify the 

signal strengths of nearby neurons and diminish those of distant neurons. It is noted that, 

in this work, lateral connections are not used for the purpose of finding winner neurons as 

in earlier works of [Hay 99] [Xie 02]. They are utilized to change the distribution of 

neuronal activities so as to cluster the active neurons.  

Each neuron is mainly connected to nearby neurons, and has few lateral connections 

to distant neurons. The connection distribution can follow a Gaussian distribution with a 

negative offset. Therefore, the neurons have short-range recurrent excitation and long-

range recurrent inhibition. The effect of the lateral weights on neuronal activation is made 

small, by normalizing the lateral weights, so as not to overwhelm the effects of the input 

signals. For example, we can have SYYY WW
2
1

= , where WSY  is the mapping from the 

lower level to yth level neurons, and WYY is the lateral mapping among neurons on the yth 

level.  
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Since lateral connections introduce recurrent signals, the neuronal activities are 

calculated iteratively, the neuronal activities of each time cycle being used to calculate 

the lateral input of its next time cycle.  When the same pattern is presented to the network 

for learning for n cycles, the neuronal activities Yn are calculated as 

cycle)nth (after      )...1(

...
cycle) 2nd(after     )1( )1(

cycle)1st (after     ) (1
signalsrecurrent   thehavingafter 

on)presentati (initial  

2
0

2
000102

0001

00

n
YYYYYYSYn

YYYYSYYYYYYY

YYSYYY

SY

WWWWSY

WWWSWWYYWYYY

WWSWYYY

WSY

++++=

++=++=+=

+=+=

=

, (5.21) 

where S0 represents the input from lower level neurons, WSY  is the mapping from lower 

level to yth level neurons, and WYY is the lateral mapping among neurons on the yth level. 

Let WH denote the sum in (5.21) 

n
YYYYYYH WWWW ++++= ...1 2 .     (5.22) 

YYW  can be diagonalized as 

DVVW T
YY = ,       (5.23) 

where V is the eigenvector matrix and D denotes the eigenvalues, 
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HW  in (5.22) can thus be expressed as, 
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If WYY have eigenvalues kλ  within the unit circle ( 1<kλ ), WH can converge to a stable 

value and then Yn , as the network output after n cycles, can have stable response as, 

VdiagVWSWWSY
k

T
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The number of lateral connections and the standard deviation of the connection 

distribution affect the grouping effect of active neurons on every layer including the 

distribution of the active neurons on the top level. The number of lateral connections for 

neurons on a certain level and the standard deviation of the lateral connection distribution 

can be related to the overall number of neurons on that level, as shown in (5.27), where a 

and b are arbitrary constants. 

in

hh
lateral

in

hh
lateral

N
Nb

N
Nal

⋅=

⋅=

σ
     (5.27) 

The clustering effects can be evaluated by the clustering index (CI) [Rip 81].  The 

CI measures the nearest-neighbor distance between two active neurons within a 

measurement window, divided by the average distance between a random point in the 

window and its nearest active neuron [Gro 00].  It is expected that a more clustered 

distribution will give a higher CI. The CIs of OTA output neurons with and without the 

lateral connections are compared for various a values in (5.27) while b is fixed. It is noted 

that in Figure 5.19 that CIs are improved after the grouping effect of the lateral 

connections. The factor a affected the grouping effect and the optimum clustering can be 

obtained when using a as 10. 
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Figure 5.19. Effect of number of lateral connections per neuron on Cluster indices. 

 

 

5.4.3 Finding a group of winners in the network with OTA 

In a network with the OTA algorithm, each pattern is represented by an oligarchy, as 

a group of neurons, at the highest level, so that information coding is redundant. When a 

similar pattern is presented to the network, similar groups of neurons are expected to fire. 

Recognition depends on a determination of the similarities of the oligarchy of a presented 

pattern to those of previously learned patterns.  

In order to show the advantage of this distributed, redundant representation, and 

demonstrate the learning ability of a network with OTA, a set of handwritten digits from 

a benchmark database [LeC] was used for training a sparse network with 64 input 
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neurons and 729 output neurons. All patterns have 8 by 8 grey pixel inputs, as shown in 

Figure 5.20. 

 

 

 

Figure 5.20. Ten handwritten digit patterns. 

 

 

The number of neurons in the oligarchy activated by each pattern is not pre-

determined since the learning process is self-organizing and unsupervised. Based on the 

structure of this network and the connectivity proposed in this work, each pattern 

activates 19.1 out of 729 neurons at the highest level (range 14 to 23) on average. These 

sets of neuronal indices become the representing markers of these 10 different digits. In 

the recognition process, the class to which an input pattern is assigned is determined by 

the number of neurons in the resulting oligarchy that are common to each of the marked 

oligarchies.  

It is expected that the sparse network with OTA can recognize a learned pattern with 

some level of noise tolerance. Similar patterns which are originated from the same digit 

but with different random noise are desired to produce similar sparse codes on the top 

level of OTA network. The similarity can be measured by the Euclidean distance between 

patterns. For example, the cluster plot of ten digits with two groups of noisy patterns is 
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shown in Figure 5.21(a). It is shown that the noisy versions of the same digit are clustered 

together. Similar clustering can be found on the sparse codes produced by OTA as shown 

in Figure 5.21(b). 
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(a)      (b) 

Figure 5.21. Cluster plots of input patterns and their sparse codes found by OTA. 

(a). Cluster plot of input patterns (b). Cluster plot of sparse codes  
 

 

5.4.4 Representational memory capacity of the network with OTA 

As we demonstrated in Section 5.3.7, per synapse representational capacity of 

network with SWTA is higher than that of a fully connected traditional WTA network. A 

WTA network with Nout output neurons and Nin input neurons has a per synapse 

representational capacity equal to 1/Nin. As the WTA assigns a signal output neuron to 
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each class of training data, WTA representational capacity is both low and intolerant of 

much output error. 

The OTA algorithm permits coding that is error-tolerant. The representational 

capacity depends on the number of neurons used in the OTA code and the amount of 

overlap between the codes. The number of neurons in an oligarchy can be controlled by 

the input connections per neurons, as shown in section 5.4.1. So it must be carefully 

chosen. In the following example, we select a simple coding scheme to support our 

claims of high capacity and error tolerance of the OTA. 

Let us assume that Nout neurons are divided into d disjoint groups of neurons, where 

each group has 
d

Nm out= neurons.  Let us use k such disjoint groups of neurons to code 

one category of input objects. Thus among d disjoint groups, we can distinguish 

)!(!
!

kdk
d

k
d

C d
k −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  distinct categories.  In addition, each group can tolerate a certain 

level of different neurons, for instance, 1
2
−

m  neurons, and still be identified as the 

correct category. Therefore, the entire code may tolerate up to km
⎟
⎠
⎞

⎜
⎝
⎛ −1

2
 errors provided 

that no single group has more than 1
2
−

m  errors. 

For example, if we choose Nout = 4096, and m =15, we will get approximately 273 

disjoint groups of neurons.  If we use k =10 disjoint groups to code one category, and 

each group could tolerate up to 5 errors (50 errors total per code) to be correctly 
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recognized, we will have 17273
10 1036.5

10
273

×≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=C distinct codes.  Memories of this 

capacity are not yet demonstrated by any neural network model or a learning method. 

They could explain how human memory can store and quickly retrieve extraordinary 

amounts of information. This example assumes that the OTA network could activate the 

required number of independent groups of neurons. As was observed in the SWTA 

network (approximately 50% of output neurons were activated), this may not be the case. 

However, even much smaller activation of the output groups in an OTA will yield a large 

storage capacity with a significant tolerance to errors. In the work presented in [Abb 96], 

the representational capacity of face coding in monkeys is investigated by recording 14 

neurons in the superior temporal sulcus of monkeys in response to 20 images of faces. 

Based on the experimental data and Monte-Carlo simulation it was presented in [Abb 96] 

that, for distributed coding, the representational capacity grows exponentially and the 

information grows linearly with the number of coding neurons. In addition, the number of 

distinct categories that can be represented with a 50% discrimination accuracy by N 

neurons is approximately )2(3 4.0 N . The OTA algorithm is the approach that can possibly 

make a sparsely-connected network achieve such level of representational capacity. 

However, the practical representation capacity of OTA depends on the selection of 

optimum connectivity, coding scheme, and specific application data set, which is beyond 

the scope of this work and requires a separate study. 

As shown in [Wil 69], sparse codes increase the memory capacity of associative 

memories. Since a missing part of the code could be recovered, or a noise in the code 

removed by the associative memory, sparse coding network can be combined with an 
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associative memory to increase the robustness of the sparse coding.  For example, the 

OTA structure can be combined with the original R-net organization, which is a type of 

associative memory, to improve robustness of the code. R-nets were demonstrated to 

have large storage capacities for sparsely coded memories. In addition, they have a 

significant error tolerance and a mechanism that can recover distorted information. As 

was demonstrated in [Sta 05], when the R-network size reaches 109 primary neurons 

(with an average of 104 projections per neuron that is similar to the  interconnection 

density of human brain), the network can store over 109 patterns and the optimum storage 

for these memories is achieved with a pattern size of about 150 neurons. With the 

recovered information from R-net, the robustness of the OTA coding will be greatly 

improved. 

 

5.5 Comparing SWTA and OTA 

 
5.5.1 Efficiency of SWTA and OTA 

In Section 5.3.5, a sparse network with SWTA is compared with a fully-connected 

two-layered network with global WTA in terms of the computation and design cost. Here 

we will compare efficiency of the proposed SWTA and OTA algorithms with a popular 

self-organizing learning based on WTA. A Kohonen self-organizing map (SOM), which 

is a common fully-connected competitive network with global WTA, is implemented 

using MATLAB Neural Networks toolbox. Both types of simulated networks have the 

same input (e.g. 64 pixels) and output sizes. Their corresponding number of output 
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neurons is changed from 10 to 400. All networks will be trained using the same set of 

digits for 1 epoch. The simulation times are plotted and compared in Figure 5.22.  

As shown in the figure, the simulation time of SOM grows rapidly with the 

increased network size. The efficiency of SWTA is slightly lower than OTA, since it 

requires three transmissions of the signals in order to find out the winner neuron. The 

sparse networks with both SWTA and OTA have greate advantage over SOM especially 

for large networks. 

 

 

0 100 200 300 400
10-1

100

101

102

103

number of output neurons

C
P

U
 ti

m
e

Computation cost (simulation time)

OTA
SWTA
SOM

 

Figure 5.22. Computation cost comparison. 

 

 

5.5.2 Fault tolerance of SWTA and OTA 

It is expected that introducing more noise into the original patterns will degrade 
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recognition performance. However, the tolerance of the network with OTA for such 

change is expected to be better than that of the SWTA. Figure 5.23 compares the 

performances of the SWTA and the OTA for different numbers of changed bits in the 

training patterns based on 10 Monte-Carlo trials. Both sparse networks contain 64 input 

neurons and 729 output neurons and are trained for 300 epochs. We note that increasing 

the number of changed bits in the patterns quickly degrades the SWTA’s performance on 

this recognition task.  However, the network with OTA has much better fault tolerance. 

For reference, a Kohonen self-organizing map (SOM), which has the 2-layered fully 

connected structure with 64 inputs and 729 outputs, is implemented using MATLAB 

Neural Networks toolbox. The recognition performances of SOM is evaluated and 

compared with SWTA and OTA representations in Figure 5.23. The SOM are trained for 

300 learning epochs and its performance is averaged from 10 Monte-Carlo runs. It is 

demonstrated that the OTA’s distributed coding scheme have the best fault tolerance over 

SOM and SWTA. The SOM presents better noise tolerance than SWTA, since its full 

connectivity can transmit more information up to the top level, but it is still outperformed 

by OTA. 
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Figure 5.23. Recognition performance comparison. 

 

 

5.5.3 Tolerance to loss of neurons of SWTA and OTA 

Due to the expanding structure of the HSOM and the distributed codes built by OTA, 

the network with OTA can tolerate a large loss of neurons. Such tolerance of an OTA 

structure is evaluated and compared with SWTA and SOM networks. The tested OTA 

network, SWTA network, and SOM have the same structures as used in Section 5.5.2. 

Ten grey-scaled pixel handwritten patterns organized in 8 by 8 arrays, shown in Figure 

5.20, are applied to all these networks for training. In the testing phase, the same group of 

patterns is applied to various versions of these networks, with the same structures but 

with a different number of missing neurons in the input pattern. The number of missing 

neurons varies from 2 to 20 percent of the total number of neurons in each network. The 

locations of the missing neurons are chosen randomly.  
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The performance is obtained based on 10 Monte-Carlo runs. As shown in Figure 

5.24, with small numbers of missing neurons (e.g., 8 percent of the overall number of 

neurons in the specified OTA network), the OTA network can still correctly recognize the 

patterns. With more neurons missing from the network, accuracy gradually decreases. 

When 20 percent of the neurons are missing, 84% of patterns are still correctly classified 

in OTA networks. The performance of the SWTA in this test is much lower than that of 

the OTA. The specified SOM show tolerance to the loss of neurons, but are not as good 

as the OTA.  Therefore, it is observed that the distributed codes generated by the OTA are 

robust to the loss of neurons.  
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Figure 5.24. Tolerance to loss of neurons of OTA. 
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5.6 Correlation-based information grouping in OTA 

 
In the proposed organization of the sensory pathways using WTA or OTA 

algorithms, the number of incoming connections that each neuron connects has is 

determined and is correlated to the input level size to maximize the network’s 

representational capacity. Positions of these pre-synaptic neurons on the previous layer 

are randomly selected, which means that each neuron does not have a local receptive 

field or a self-organized receptive field.  

Local receptive fields for neurons are adopted in many earlier works to preserve the 

input topology, extract features and group information in the learning networks.  Such 

local receptive fields were successfully used for pattern recognition in neural network 

schemes such as convolutional neural networks LeNet [LeC 89], Linsker model [Lin 86] 

and pyramidal neural network [Phu 07].  In these earlier works, the networks have local 

receptive fields with predefined and fixed size through all the layers in the network.  

While Linsker demonstrated that such an approach produced self-organization and local 

features (starting with on-center off-surround and off-center on-surround cells on the 

lower layer), the receptive field is always local over all the layers and the location and 

size of the local region had to be arbitrarily decided.  

In the sensory pathway, it is expected that local correlations dominate on the lower 

levels of hierarchy. For instance, in the input image, neighboring pixels are more 

correlated than distant pixels. On higher levels where features are extracted, it is expected 

that strength of local correlations will diminish and the neurons representing features are 

active simultaneously responding to the input patterns.  
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Therefore, we propose to determine the location of the receptive field statistically by 

checking correlations among various neuron activations using a large set of training data 

and setting the wiring threshold to have a desired number of the input links to each 

neuron. 

5.6.1. Calculating correlation 

The correlation between each two locations should represent similarity of their 

signal activation strengths.  The correlation should be 0 for uncorrelated variables while it 

should be 1 for the most correlated variables. On the input level, input neurons receive 

gray-scaled signals in the range of 0 to 255. In order to find the similarity, we can encode 

the grey scales pj into angles in the range of 0 to π/2, as in (5.28). The cosine of the 

difference between two angles gives the similarity Cmn between these two grey scales pm 

and pn, as in (5.29), where Nin is the number of the input neurons. 

),...2,1(
255

2/
injj Nipp =⋅=

π    (5.28) 

( )nmmn ppC −= cos     (5.29) 

On higher levels, the signals of neurons are in the range of (-1, 1), or specified otherwise 

as in HSOM. Then the signals are scaled into the range of (0, π/2) before correlation 

(5.29) is applied. 

The procedure to determine the correlation and the size of the local receptive field is 

described as follows. 

Step 1). Collect a large number (N) of images as the neural network input.  

Step 2). Each image is represented by Nx by Ny matrix Pi (i=1, 2, … N), where Nin 

equals to NxNy.  Start with the first image and its representation matrix P1.  
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Step 3). Use (5.29) to determine the correlation matrix inin NN
inC ×ℜ∈  for the current 

image. 

Step 4). Update the total correlation matrix CT and total count Nt, as in (5.30). 

1
1

+=
+
+

=

tt

t

inTt
T

NN
N

CCNC      (5.30) 

Step 5). Repeat Step 3)- Step 5) until all images are process. 

Step 6). Each row of the resulting CT contains a vector of single pixel’s correlations 

to all other pixels over all the images.  

Step 7). Reshape each row to the image size in order to determine the size of local 

correlation region. 

A similar process can be repeated on the higher levels except that each row of the CT 

gives a single neuron’s correlation to all the other neurons on a certain level of HSOM 

after the images are processed by the lower levels.  

For example, consider a network structure with 320 input neurons, which can 

perceive images with the size 20 by 16. The following calculation and discussion will be 

based on this structure. The 20 by 16 face image from [Fac] is shown in Figure 5.25. 
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Figure 5.25. Input face image. 

 

 

By observation, on the input level, the 1st pixel (which is dark) is expected to be closely 

correlated with the dark area of the picture. Using the procedure above, the correlation of 

the 1st pixel to the whole picture is shown in Figure 5.26, in which the location of the 1st 

pixel is marked as star. It is noted that high correlation exists in the expected areas of the 

input image.  One of the pixels on the right cheek area correlates to the whole picture as 

in Figure 5.27. 
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Figure 5.26. The 1st pixel’s correlation to the whole image. 
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Figure 5.27. The 70th pixel’s correlation to the whole image. 

 

 

If we have a series of images with the same size, as shown in Figure 5.28, the 

correlation matrices from all pictures should be averaged.  The 1st pixel and the 70th 
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pixel’s correlation matrices are shown in Figure 5.29.  Eventually, after presenting the 

network with 1000 20x16 input images of all types of patterns, the correlation matrices 

for the input level are obtained. Several of them are shown in Figure 5.30.  

 

 

 

Figure 5.28. A series of face images. 
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(a)                                              (b) 

Figure 5.29. Correlation calculated based on a series of face images. 

(a). The 1st pixel’s correlation to the whole image. 
(b). The 70th pixel’s correlation to the whole image. 
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(c)      (d) 

Figure 5.30. Correlation calculated based on 1000 images. 

(a). The 1st pixel’s correlation to the whole image 
(b). The 161st pixel’s correlation to the whole image 
(c). The 70th pixel’s correlation to the whole image 
(b). The 170st pixel’s correlation to the whole image 
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5.6.2. Determining receptive field 

The input level of the network receives the whole image.  Once again consider the 

network containing 320 input neurons and overall 4 layers (the input level, 2 secondary 

layers and the output level), with α in (5.8) equal to 1.21 (giving image representation 1.1 

times larger than the previous level in each dimension for two dimensional array).  This 

yields a 320-396-500-594 multi-layered network.  Before the correlations among neurons 

on the 2nd layer are calculated, the receptive field of neurons on the 2nd layer should be 

determined so that they can be activated by the incoming information.  

As shown in Figure 5.31, a neuron on the 2nd layer is projected onto the plane of 1st 

layer and finds the closest neuron to its projection.  This closes neuron is denoted as 

1
projectionN .  Based on the correlation calculation on the previous layer, the most correlated 

region of 1
projectionN  can be found.  The number of incoming connections has been chosen 

as in (5.9).  Thus, the neuron on the 2nd layer is connected to 2
inl  neurons on the previous 

layer within this correlated region.  In the specified network structure, each neuron has 7 

pre-synaptic neurons, and they are illustrated in Figure 5.31.  The same process applies to 

all the neurons on the 2nd layer in finding their corresponding receptive fields.  
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Figure 5.31. The receptive field of a 2nd layer neuron. 

 

 

The algorithm of OTA is used to calculate the signal responses on the 2nd layer.  

Then over all the input patterns, the statistical correlations among the activation levels of 

the neurons are obtained.  Due to the local competitions applied when the signals go to 

the 2nd layer, some of the neurons on the 2nd layer may not be activated at all although 

many patterns are applied.  A silent neuron’s output should have no correlation with any 

other active neurons or silent neurons.   
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If a neuron is always silent during this process, the correlation of this neuron’s 

location to all the other locations will be zero.  Such neurons could be assigned a wiring 

pattern that averages these of its neighbors.  

The correlations among 2nd layer neurons are calculated and 3
inl most correlated 

neurons of the 1st and the 160th neurons are shown in Figure 5.32.  

It is noted that instead of obtaining the local region as in the first layer, each neuron 

is more correlated to distant neurons which may represent relevant features.  Then a 

neuron on the 3rd layer is connected to its projection neuron on the 2nd layer and the 

projection neurons’ most correlated neurons, as shown in Figure 5.33. 
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(a)       (b) 

Figure 5.32. Correlations on the 2nd layer. 

(a). The 1st neuron’s correlation to all the 2nd layer neurons 
(b). The 160th neuron’s correlation to all the 2nd layer neurons 
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The correlations among neurons on the higher levels are obtained and neurons on 

each layer are connected to previous layer in the same way.  Notice that using the 

algorithm in Section 5.6.1, the statistical correlations can be calculated in an on-line 

fashion.  The network can start learning as a randomly-connected structure.  After each 

new pattern is perceived and learned, the correlations among neurons on each layer can 

be updated and the connections can be updated as well leading to dynamical changes in 

the network topology. 

 

 

0

5

10

15

20 0
5

10
15

20
25

0

0.2

0.4

0.6

0.8

1

2nd layer
(22x18)

3rd layer
(25x20)

0
5

10
15 20

255
0

10
15

20 0
5

10
15 20

255
0

10
15

20

 

Figure 5.33. The receptive field of a 3rd layer neuron. 
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5.6.3. Information grouping using OTA 

With the correlation-based receptive field, the information is processed and grouped 

by the network with OTA and the corresponding representations are built.  For example, 

the image shown in Figure 5.34 can activate 36 neurons on the top of a 320-396-500-594 

multi-layered sparsely-connected network as its representation.  It was observed in the 

experiment that the scaling of the network with correlated receptive fields does not affect 

the representations.  For example, the intensity-scaled picture shown in Figure 5.34 

activates exactly the same group of neurons on the top level, which shows that the OTA 

network with correlated receptive fields builds representations invariant to linear scaling 

of stimuli intensity.  

 

 

 

Figure 5.34. An image and its intensity-scaled version. 

 

 

It is desired and expected that the correlated receptive fields will not affect the 

representational capacity and the fault tolerance that OTA network has with the random 

receptive fields.  It was observed that the group of 10 patterns shown in Figure 5.20 can 

activate, on average, 37 neurons on the top level of the network with random receptive 
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fields.  The same group of patterns activates on average 34 neurons in the network with 

correlated receptive fields.  Thus we believe that the networks with these two types of 

receptive fields have similar levels of representational capacity.  

In order to show the noise tolerance of the network with correlated receptive fields, 

the recognition performances are tested for different amount of noise added to the given 

patterns based on 10 Monte-Carlo trials.  The results shown in Figure 5.35 compare the 

noise tolerance of the networks with random and correlated receptive fields.  We note that 

the correlated receptive fields do not degrade the noise tolerance in the OTA.  
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Figure 5.35. Noise tolerance of OTA with correlated receptive fields. 
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5.7 Attention-aided perception in OTA  

 
It has been investigated that attentions can affect the visual perception.  Visual 

attention, as cognitive control over perception, can be deployed in typically two ways: 

space-based and object-based [Yan 03], based on the type of the representation on which 

the selection is carried out.  Space-based attention is applied in a particular location of the 

visual field, while object-based attention is directed to perceptual objects.  Both types of 

attentions are separately supported by various studies, and the study in [Sot 04] found 

that two types of attentions work in an interactive way. 

The behavioral and neurophysiological studies have shown that selective attention is 

often deployed in an object-based fashion [Roe 98].  When several objects are in the 

visual scene simultaneously, the attention helps recognizing the attended object while 

ignoring the rest of the present objects.  The mechanism of the top-down attentional 

based competition was postulated in several earlier works.  One candidate for such 

mechanism was presented in [Ste 00].  It was described as the top-down feedback signal 

that synchronizes the activity of target neurons that represented the attended object.  Then 

this synchrony increased the efficacy of that neuronal representation at the next 

perceptual stage.  

In this section, a mechanism is proposed to demonstrate how the object-based 

attention affects the perception in HSOM with the OTA algorithm.  As discussed earlier, 

during the learning, the input patterns are processed in the HSOM with OTA algorithm 

and are represented as a group of winner neurons on the top level of the network.  In the 

learning stage, each pattern forms a particular group of winner neurons on the top 
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hierarchical level and these particular groups of neurons can be called the pattern’s 

neuronal marker.  When a new input comes into the network the winner neuron group is 

compared with existing markers obtained from the stage of learning and the most similar 

one is found as the category that it belongs to.  When the attention is paid on a particular 

previously memorized object, in the network, the attention signal is applied on that 

object’s winner neurons to active them so that to synchronize the attended neuronal 

marker with the currently activated marker.  As suggested in [Ste 00], the synchrony will 

help the attended object to win the competition in the next stage of perception.  Hence, 

the attention-aided perception by object-based attention is a process described as follows. 

Step 1). Learning a group of objects 

Objects (C1, C2, C3…) are perceived and memorized. Every object is represented by 

a neuronal marker, denoted as (N1, N2, N3…..). 

Step 2). Finding Oligarchy  

A pattern containing multiple perceptual objects is presented to the network. A group 

of winner neurons, Nwin, are found by OTA algorithm for this input pattern. 

Step 3). Applying attention signal 

An attention signal is applied on the marker, Natt, of the attended object Catt. 

( ...},,{ 321 CCCCatt ∈ ). This makes the active neurons on the top level include {Nwin, 

Natt} and have the same level of activation. 

Step 4). Finding the winner network (back-propagation process) 
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FOR Layer = Top Layer-1: -1: 1 

     FOR i=1: number of neurons on (Layer) 
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     ENDFOR 

ENDFOR 

Step 5). Finding final oligarchy Nfinal (feedforward process) 

FOR Layer = 2: Top Layer 

     FOR i=1: number of neurons on (Layer) 
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     ENDFOR 

ENDFOR 

Step 6). The final marker Nfinal is compared with (N1, N2, N3…..) to determine its 

category. 

This experiment is conducted using a grayscale image of spatially superimposed 

patterns. Since these two patterns occupy the same spatial region, the only method to 

control the perception (internal representation) is by object-based attention. Firstly, the 
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patterns, including a face image and a house image with 20 by 16 pixels, are learned by 

the network. The face and the house images are shown in Figure 5.36.  These two objects 

are learned and represented in OTA network using neuronal marker Nfacee, Nhouse, 

respectively.  A test with these two images superimposed is shown in Figure 5.37. 

 

 

  

Figure 5.36. The learned face and house images. 

 

 

 

Figure 5.37. The superimposed image. 

 

 

When the superimposed image is processed using OTA without the affect of object-

based attention, it is represented by Nwin and Nwin  is  compared with the face and house 
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markers Nfacee, Nhouse for recognition. The numbers of common neurons between Nwin and 

Nfacee, Nhouse are shown in Figure 5.38.  Therefore, the superimposed image is recognized 

more as a face object than a house object.  
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Figure 5.38. The number of common neurons to the markers before the attention on 

house. 

 

 

After the attention is applied to the house, the test marker is compared with the 

markers and the numbers of common neurons with them are shown in Figure 5.39.  It was 

shown that the perception is altered by the applied attention and the superimposed image 

is identified as a house pattern.  
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Figure 5.39. The number of common neurons to the markers after the attention on house. 

 

 

Similarly, if the attention is applied on the face object, the perception after the 

attention in terms of common neurons to the markers is shown in Figure 5.40.  And it 

shows that the attention makes the superimposed image identified as a face.  

A similar procedure can be used for invariant object recognition building through the 

continuous observation. In human visual perception, within a certain period of time when 

an object exists in the visual field, different viewpoints of the same object are presented.  

Through attention on object tracking or boundary detection, the group of images can be 

determined to belong to the same object. The sense that all these frames of images belong 

to the same object directs humans to collect the input patterns of these viewpoints to 

build invariant neural representation in the memory.   
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This assumption that the observed scene contains the same objects of interest over 

continuously observed time windows is defined as the sameness principle.   
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Figure 5.40. The number of common neurons to the markers after the attention on face. 

 

 

Such process is considered as top-down process, as contrary to the bottom-up 

process where input images are processed in a feed-forward fashion in sparse coding 

network. The interaction between bottom-up and top-down processes in invariance 

building has been studied for building invariance.  On one hand, when the variant 

patterns of the same object are processed and activate a different group of neurons, the 

top-down process using feedback can affect the neural processing and reinforce the 

activation of the same group of neurons.  On the other hand, such forced feedback to 

previous layers helps the network development for invariance building.  It affects the 
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wiring patterns by changing the correlation among the neurons activities in a given layer 

and it affects the connection weights by stimulating firing of more desired neurons. 

 

5.8 Conclusions 

 
Sparsely connected R-nets have been used to store information and perform 

computations that seem analogous to a variety of “higher” cognitive functions [Vog 05]. 

However, such devices utilize information that has already been sparsely coded, while the 

inputs from the early stage of sensory information processing are often densely coded. It 

seems necessary for any sensory device concerned with natural images or sounds to 

produce sparsely coded information which can be easily handled by R-nets or any other 

associative memory structures.  

We have described a sparsely connected architecture, a hierarchical self-organizing 

memory, which produces sparse representations of objects. The architecture has low 

energy consumption in the sense of a much smaller number of connections. The sparse 

coding and reduction of neuronal activities are generated by means of local competitions, 

a strategy which is efficient and easily implemented in hardware. The secondary levels, 

which make interconnections between primary neurons, transmit sufficient information 

up the hierarchy and provide high memory capacity per synapse while preserving low 

network connectivity. 

In the network with the SWTA algorithm, each pattern activates a single neuron as its 

representation.  The SWTA can be used not only to produce local codes, but also to 

efficiently find global winners in a sparsely connected structure.  In the network with the 
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OTA algorithm, a pattern triggers a group of distributed neurons and the information is 

redundantly coded so that recognition is more reliable and robust.  Simulations of the 

proposed models demonstrate that they possess the anticipated mnemonic and coding 

properties, and an increased level of tolerance to faults and loss of neurons that are 

essential for the construction of intelligent machines. 

The studies of SWTA and OTA in section 5.3.5 are based on the randomly connected 

networks to eliminate the effects of connection topology on the network coding 

properties. However, it is also proposed that the neuronal connectivity and receptive 

fields can be determined based on the statistical correlation among neuron activities. The 

correlated neurons’ information is grouped so that the features are correlated and sent to 

higher levels.  It was also tested that the correlation-based receptive field does not affect 

the representational capacity and the fault tolerance that the OTA network has with the 

random receptive field. 

Knowing that the top-down process, like attention and the sameness principle can 

affect the human perception and object recognition, we demonstrated a mechanism of 

how the object-based attention signal affects the recognition process in HSOM with OTA 

algorithm. The experiment showed that with attention paid on different object on the 

superposing images, the image was better recognized as the expected object. The similar 

mechanism can be implemented for invariance building, in which case the top-down 

influence comes from the sameness principle instead of attention. 

Sparsely connected neural networks are useful devices for learning sparsely coded 

information. Their large per synapse memory capacities, low energy consumption, 
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efficient algorithms, failure tolerance, and relative ease of implementation in hardware 

have presumably given sparsely connected networks an adaptive advantage in the 

evolution of biological brains.  It is difficult to imagine how the processing capacities of 

the roughly 1014 synapses of the human brain could be achieved in any densely connected 

architecture.  These same properties seem to make sparsely connected neural networks 

more likely devices for similar advances in machine intelligence. In addition, the HSOM 

can implement not only feed-forward processing, but its structure enables the back 

projection of top-down influence for attention-aided perception and invariance building.  

In attention-aided perception, the object-based attention is assumed as given top-down 

signal to be applied on the top level of hierarchy. How this attention is created in the 

learning or interacting process will be discussed in the next section. 



 
 

186

CHAPTER 6: GOAL CREATION AND GOAL-ORIENTED BEHAVIOR FOR 

EMBODIED INTELLIGENCE 

 
6.1 Introduction  

 
Goal-oriented behavior of intelligent machines was extensively studied in the area of 

reinforcement learning. Reinforcement learning (RL) [Sut 98] [Bar 03] is an active area 

of machine learning research that focuses on how a learning agent can learn to 

approximate an optimal behavioral strategy to maximize the reward while interacting 

with its environment. One of the characteristics of RL is that it treats the whole problem 

in a goal-oriented manner.  Presented with defined goals but not told what to do 

explicitly, the agent learns during the interacting, in so-called trial-and-error search.  In 

each step, the learning agent in RL problems senses the state of its environment and 

chooses actions to influence its environment.  RL enables the learning agent to plan, to 

behave actively, to be situated in an environment and to consider how its actions might fit 

in a larger picture of continuous interaction with the environment.   

The idea of learning from interaction is very fundamental and significant, underlying 

nearly all theories of learning and intelligence. As stated in [Bar 98], in learning 

problems, the learning examples of good actions for one situation may not apply to other 

situations. An agent must be able to obtain new knowledge from experience and 

interaction with the environment for unseen situations. So, RL is ideal for dealing with 

uncertain environments or environments that are subject to change.  
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Basic elements of RL system include a reward function, a policy, a value function 

and, optionally, a model of the environment [Sut 98].  The reward function is normally 

given or observable to the agent, while the other three elements are to be learned by the 

agent.  The reward function specifies what the good and bad actions are for the agent. 

The reward can be either in an immediate or a delayed form.  In a biological system, 

rewards might be identified with pleasure and pain. The policy is a mapping from states 

of the environment to actions, or a set of states and actions associations.  There are two 

types of values in RL, the value of a state and the value of a state-action pair.  The value 

of a state is the total amount of reward an agent can expect to accumulate over the future, 

starting from this state s and following a certain policy π, as shown in (6.1), in which r 

represents the reward received at a certain time, and γ is the decay factor along the time.  

Thus, a value function specifies what is good in the long run. 
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The value of a state-action pair is defined as the total amount of reward 

accumulated over the future, starting from this state s, taking this action a, and following 

a certain policy π, as given by (6.2). 
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The fourth element of some RL systems is a model of the environment, which are 

used for planning.  Early RL systems were explicitly trial-and-error learners and the 

model was mostly ignored in the RL designs [Si 01], because the model of environment 
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is not available, subject to change and increase the complexity of the computation.  

However, with relatively newer developments, the models of planning are incorporated 

into RL systems.  The model of environment is an important part of planning and 

predicting.  In human intelligence, we can consider that, within the complex hierarchical 

memory that humans have, they can build and hold a model of the environment.  Humans 

build such models of the environment over repetitive training in the lifetime, in 

supervised, unsupervised or reinforcement fashion.  With this model in their memory, 

humans could make predictions and plan the actions, while making some adjustments 

based on the information from the environment about the existing situation details.   

Many of the earliest RL systems used one of the typical RL methods, actor-critic 

(AC) method [Wit 77] [Bar 83].  The typical AC architecture [Bar 98] is shown in Figure 

6.1.  In an AC system, the policy (the actor) and the value function (the critic) are two 

major parts. The actor is used to select actions based on the states.  Having a mapping 

from current environmental states to the action is a feasible implementation of human’s 

basic actions.  Although a typical actor in AC scheme maps the states to a single action 

decision, the mapping from states to actions can be in the form of states with various 

action choices with different probabilities. 
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Figure 6.1. Actor-critic architecture  

 

 

The critic learns about the value function from the reward from environment, so 

that it is able to evaluate the value function and the actions made by actor.  Typically, the 

critic estimates the state value, described in (6.1). In the action dependent versions of the 

critic, the critic estimates the state-action value, which is the predicted accumulated 

future reward by taking certain action at current states, as in (6.2).  After each action 

selection, the critic determines whether this action will improve the value or not.  The 

existence of the critic, as a value system, is a significant component in RL.  With the 

value system, the agent can make predictions about future events and give the values for 

different predictions so that it can have the optimal choice of action. 

In existing designs of intelligent machines, the goal is usually explicitly defined and 

is given by designers to the learning agent.  In RL, the agent does not need to create its 

own overall goals since it uses a specific, externally provided and externally defined 

reward.  This award implicitly defines its goals and an agent is under complete control of 

the award giver (a trainer or the environment). However, goal creation is an important 
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and essential consideration for an agent to behave autonomously, conduct intentional and 

continuous learning in a real-world domain.  

In existing designs of intelligent machine, sub-goals are given by designers as well 

and in most cases cannot be found by the agent itself through experiments. They are 

strictly related to its externally specified goal. It was demonstrated [Mur 07] that such 

externally specified subgoals that are explicitly defined and controlled by the system 

designer yield more effective RL in cases of complex goals. 

Due to the top-down approach of learning the values of the state-action pairs, the 

learning is not a structured process, may require long learning periods as well as equally 

long periods of time to adopt to new requirements (new goals). RL will scale poorly 

when applied to problems with high dimensional state space and to train the agents to 

have complex behavior, which is usually referred to as the curse of dimensionality [Bel 

61]. The delayed reward signal most of the time cannot provide enough information for 

the agent to improve the policy.  One promising approach to scale up RL in the existing 

research is to add hierarchical reinforcement learning (HRL) [McC 96] [McC 94] [Her 

00] [Bak 04]. 

There are several existing directions within the range of HRL research.  The first 

direction in HRL is selective perception [McC 94] [McC 96].  When the model has high-

dimensional and large state space, observing and considering the full state space with all 

state variables will require a great deal of computational resources.  Also, during the 

process that an agent accomplishes a certain part of the complex task, not all the state 

information is required all the time.  To reduce the demand for large amount of resources 
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and computations and to focus on the necessary state information, selective perception 

may lead designers to more efficient data collection and possibly cheaper design by 

focusing on the part of state space that is sufficient to solve the current task.  In selective 

perception, due to the switching of attention or perception, short-term memory is required 

to remember where the attention was focused.  Thus, after a certain part of the task is 

finished, the attention can be switched back.  This method requires the full diagram of the 

agent’s policy; that is, the desired complex sequential task will be analyzed and divided 

into the sub-goals and their corresponding attention switches.  Such a diagram, most 

likely provided by designers, is a finite-state-machine available to the agent and the agent 

will learn the probability of state transition to form the optimal policy during RL.   

Attention-based learning is also desired in order to protect the memory from 

saturation in the sense that only attended objects are learned; thus the attention should be 

closely related to the goals.  It has been investigated that given a specific task, top-down 

processes guide the attention to the task-relevant objects in the environment [Cor00] 

[Hop 00].  In [Nav 02], a goal-oriented attention guidance model was developed.  In this 

model, the saliency map [Koc 85], which encodes the visual salience of visual inputs, and 

task-relevance map are combined to have attention-guide responding to objects.  The 

model utilized the ontology in a long-term memory (LTM), which represents the relations 

among objects, to find the relevant objects.  Even though such a model is supposedly 

biologically-plausible, it is very difficult to build since the ontology in LTM is assumed 

to exist as a given knowledge base.  Although the drive of the agent to interact with the 

environment and the gradual process to build such ontology are significant for building 
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intelligent machines, they are not a part of the learning system presented in [Koc 85].  In 

addition, the attention-based behavior still relies on the defined goal or a task given by 

the designers instead of being formulated by agents themselves. 

The second direction in HRL is memory-based RL [Her 00].  In large state space, 

the state information available to the agent may be incomplete, corrupted or the selective 

attention may produce perceptual aliasing.  Adding hierarchical memory about past 

perceptions is a strategy to deal with such problem.  In different levels of hierarchy, past 

experience is explicitly remembered.  Take a robot navigation problem as example.  The 

lowest level strategy includes motions on all the motors on the robot.  The 2nd level 

strategy includes actions of turning left, turning right, and going straight and so on.  The 

highest level strategy includes going to the left part of the room, maneuvering around an 

obstacle, meeting the cross-section, going to the dead end, and so on.  The memory on 

each level of the hierarchy will remember what actions were taken in the successive 

steps.  And the value system is built for each level, which is updated by the explicit 

action history in the memory.  This hierarchy-based RL is one of the promising ways to 

go, since the model is divided by the abstraction levels, instead of the states of the finite-

state machine.  However, there is still one step away from the goal orientated intelligent 

agent we would desire, because we have to provide the hierarchical structure of the 

certain tasks. We desire to have an agent which is able to discover the sub-goals and 

formulate the hierarchical structure of the task automatically given a final goal. 

There are several design features we would like to have for the hierarchical RL 

system for embodied intelligence.  Firstly, the final goal of the learning problem can be 
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divided into sub-goals.  The sub-goals are accomplished on a certain level of hierarchy.  

Thus, policies of different levels are constructed in order to achieve the sub-goals.  The 

high-level policies can automatically discover the sub-goals and try to solve the overall 

task. The low-level policies can be re-used easily, either within the same task or in other 

tasks [Bak 04]. Accordingly, values systems are built on different levels concerning 

different level of policies.  

Secondly, currently the research in hierarchical RL solves the problem given a 

hierarchical structure provided by the designers.  The agent will learn the policies within 

its hardwired structure [Bar 03] [Her 00].  It is highly desirable for the agent to learn the 

hierarchy itself.  As stated in HSOM, the representations of patterns are built in a 

hierarchical way and  the abstraction levels of the patterns on different hierarchical levels 

are not predefined by the designers.  It is desired that the procedure that divides the 

overall goal into different levels of subgoals is an automatic process.  

In general, in order to achieve the hierarchical RL with sub-goal automatic 

discovery and sub-policy specialization, the information stored in the HSOM and a 

similar hierarchical structure should be utilized.  It is obvious that learning complex tasks 

can be facilitated if simpler tasks are learned first, and that the knowledge acquired in this 

process should be reused to advance both understanding and skill levels.  The machine 

needs to organize its learning to acquire useful knowledge based on its goals and to create 

goals for its behavior using a built-in mechanism.  In order for the machine to 

intentionally organize its learning, goal creation is required. 
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The goal creation issues have been mainly studied in the framework of beliefs, 

desires and intentions (BDI) [Rao 91] [Rao 92].  In a BDI architecture, beliefs represent 

existing knowledge the agent has about the environment.  Desires are defined as a set of 

states that agents try to achieve. Intentions are defined as the approaches to achieve the 

desires.  In general, the agents in a BDI system have multiple desires and intentions 

active simultaneously.  The desires and intentions could come in the form of reaction to 

the environment or proaction from a long-term plan.  It is proposed in [Tha 02] that the 

way to achieve a balance among different desires is to have a library of goals which 

capture knowledge of limited and well-defined aspects of the world [Luc 98].  The goals 

in the library are designed to have a uniform type of representation so that goal conflict 

can be detected and consistency can be maintained.  In general, the goal creation issues 

discussed in the BDI framework deals with the problem of how certain goals are 

triggered or chosen from the set of available goals instead of being created, for example, 

in the procedural reasoning system (PRS) [Geo 89] [Geo 87], the motive processing 

system (MPS) [Bea 93] [Bea 94], and in the motivational goal creation [Nor 95]. 

Although, the goals in these works are defined in a specific way adopting meaning in 

various abstraction levels, the hierarchy of goals is not generated by the agent as a part of 

the learning and interaction process.  

In human intelligence, the perception and the actions are intentional and selective 

processes.  The perceptions are built and actions are carried out attempting to meet 

certain goals or needs.  Based on primitive goals and needs, people firstly create simple 

goals and learn simple actions.  Based on the learned perception and skills, they build 
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complex perception and actions to meet complex goals.  It can be postulated that such 

bottom-up process enables a human to find relevant subtasks for a complex task so that 

the task is divided into procedures that a human can finish step-by-step.  The process also 

generates the human needs and the needs or expectations can affect the human attention 

on input sensory information.  In human reinforcement learning, the rewards are rather 

subjective than definite, numerical and given by the environment.  Different individuals 

interpret the environmental inputs differently.  The mechanism to create the goals and 

motivations for a human should be relatively simple and embedded inside its brain 

structures as a part of the mechanism that is capable to create human level intelligence.  

Besides the use of goal creation for useful hierarchical RL, it can be used in the 

studies of motivation for the intelligent machine to behave and interact autonomously in 

an unknown environment.   

In embodied intelligence, a fundamental question is what should be the motivation 

that a machine has, so that it can develop into an intelligent and knowledgeable agent.  

An attempt to answer this question introduced “flow” theory, which states that humans 

get internal reward for activities that are slightly above their level of development [Csi 

96].  Another development an intrinsic motivation system for autonomous robots is 

presented in [Oud 07].  In [Oud 07], a robot explores the environment and learning is 

activated when its predictions do not match the observed environmental response.  The 

motivation in such exploratory learning systems comes from the desire to minimize the 

prediction error.  Although exploratory learning helps to gain knowledge of the 
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environment, it is void of a specific purpose and does not provide a complete and 

efficient mechanism of the motivations to develop intelligence.  

We propose that it is the hostility of the environment, as expressed in the definition 

of EI in Section 4.1.2, that is the most effective motivational factor for learning.  The pain 

we receive from the hostile environment motivates us to act, learn and develop in order to 

reduce this pain. The two conditions are needed together - hostility of the environment 

and intelligence that learns how to “survive” by reducing the pain signal. 

Pain, as the general term for all types of discomfort and unpleasant feelings, is the 

common experience to all people.  On the most primitive level, people feel discomfort 

when they are hungry so that they learn to eat and to search for food.  They feel pain 

when they touch burning charcoal so that they learn to stay away.  Although, on more 

abstract levels, individuals experience different degrees of stress and anxiety (so that 

people have very different motives and higher-level goals), these primitive pains 

essentially help them to survive in the environment and start to obtain skills that will be 

useful for the sustained survival.  

Neurobiology study facilitated by the neuro-imaging techniques, such as positron 

emission tomography (PET) and functional magnetic resonance imaging (fMRI) etc, 

supports the suggestion that there are multiple regions of brain involved in the pain 

system which form the neomatrix, usually called “pain matrix” [Mel 90]. Experiments 

using fMRI have identified that such a matrix includes a number of cortical structures, 

the anterior insula, cingulate and dorsolateral prefrontal cortices [Pey 00], and subcortical 

structures including the amygdala [Der 97] and the thalamus and hypothalamus [Hsi 01].  
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Two parallel systems are recognized in the pain matrix - the lateral pain system, 

which processes the physical sensational pains, and the medial pain system, which 

processes the emotional aspects of pain, including fear, stress, dread and anxiety [Töl 99].  

The intensity of the pain is processed throughout the matrix.  The physically noxious 

stimuli activate certain regions in the lateral pain system, and the anticipation of the pains 

can induce stress and anxiety, which activates the medial pain system.  Recently, it has 

been shown experimentally that the anticipation of a painful stimulus can activate both 

systems as well [Por 02]. 

It has been widely accepted since decades ago that pain has sensory-discriminative, 

affective, motivational, and evaluative components [Mel 68].  The work put forward by 

[Mes 90] [Mor 93] on a large-scale neurocognitive network model suggests that the 

cingulate cortex is the main contributor to a motivational map that interacts with a 

perceptual map provided by the posterior parietal cortex.  By affecting the motivation, 

attention and sensory perception, it is proposed in this learning paradigm that the pain 

matrix is essentially a part of the goal creation process of EI machine learning machine. 

In the proposed learning paradigm, we would expect the machine to use uniform 

neuronal structure to self-organize the proposed goal creation system (GCS).  GCS, as the 

third pathway in HSOM, stimulates the creation of goals on various abstract levels 

starting from the given primitive goals.  It is responsible for evaluating actions in relation 

to its goals, stimulating the learning of useful associations and representations for sensory 

inputs and motor outputs.  The goal creation pathway finds the ontology among sensory 
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objects, makes connections among the actions and objects, and creates the needs and 

affects the agent’s attention.  

In the following sections the concept and structures for the goal creation system will 

be further developed.  The rest of this chapter is organized as follows.  Section 6.2 

explains the fundamental characteristics of the proposed goal creation system and states 

the structure of goal creation system in detail, including the basic unit, connections 

among neurons, and the growth of the goal creation system hierarchy.  Section 6.3 

explains how such goal creation system works in the action selection and its role in 

attention and anticipation based learning.  Section 6.4 discusses how such goal creation 

system fits in the overall goal-driven learning system.  Section 6.5 illustrates the GCS 

using experiment.  The proposed model with its future work is concluded in Section 6.6. 

 

6.2 Goal creation system 

 
The built-in goal creation and value system provides a mechanism that triggers 

learning of intentional representations and associations between the sensory and the 

motor pathways.  When the EI machine realizes that a specific action resulted in a 

desirable effect related to a current goal, it stores the representation of the perceived 

objected involved in such action and learns associations between the representations in 

the sensory pathway and the active action neurons in the motor pathway.  If the produced 

results are not relevant to the current goal, no intentional learning is taking place.  Since 

this happens most of the time during the exploration stage, such a deliberate learning 

process protects the machine’s memory from overloading with unimportant information. 
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Similar to neurons in the sensory and motor pathways, neurons in the goal creation 

pathway are organized hierarchically. The neurons are essentially a hierarchy of pain 

centers. They receive the pain signals and trigger the creation of goals, which represent 

the needs of the machine and the means to solve the pains. Lower level goals are 

externally stimulated through primitive sensory inputs.  Neurons’ activation on these 

inputs may represent a large number of situations that the EI encounters while interacting 

with the environment.  Higher level goals are developed through associations between 

activities on the lower level goal creation neurons and other neurons in the sensory-motor 

pathways.  Goals represented on the lower levels correspond to simple, externally driven 

objectives, while those on the higher levels correspond to complex objectives that are 

learned over the machine’s activities and are related to its understanding of the best ways 

to accomplish the lower level goals. 

6.2.1 Fundamental characteristics of the goal creation system 

In the proposed goal creation system (GCS) for intelligent machines, the evolvement 

and growth of EI value and action systems are stimulated by a simple built-in mechanism 

based on dedicated sensory inputs, called “primitive pains”. Since the pain signal comes 

from the environment (including the embodiment of EI machine), it is inevitable and 

gradually increasing unless the machine figures out how to reduce and avoid it.  Pain 

reduction is desirable while pain increase is not. Thus, the agent has a desire to reduce the 

pain or equivalently to pursue pleasure/comfort. So it is forced by the “primitive pain” to 

explore the environment seeking solutions to pursue its goal - reduction of the pain.  In 
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this process, the machine will accumulate the knowledge about the environment and its 

own embodiment, and will develop its skills. 

The EI machine may have several primitive pains, and each one of them has its own 

changing intensity, and requires its own solution.  A pain threshold th can be introduced 

and a pain higher than the threshold requires the machine to look for solutions.  At any 

given time, the machine suffers from the combination of different pains with different 

intensities, as shown in Figure 6.2.  Different pains vary in time in different ways and the 

agent needs to take care of the strongest pain signal and sets reduction of this particular 

pain as its current goal. 
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Figure 6.2. Changes in temporal intensity of the primitive pain signals. 

 

 

We can make references to human learning, where a similar mechanism is used to 

induce activity-based exploration and learning.  The “primitive pain” inputs for a human 

include pain, hunger, urge, anxiety, fear and other types of physical discomfort.  The pain 

usually happens when something is missing.  For instance, we feel hungry when we lack 
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of the sufficient sugar level in our blood.  We feel anxious when we lack of enough food 

or money.  Such postulate of deficiency is satisfying our goals as a trigger for action and 

learning will make the proposed goal creation mechanism biologically plausible even at 

the level of human intelligence.  For example, in a new-born baby, a hierarchical goal 

creation system and value system has not been developed yet.  If the baby is exposed to a 

primitive pain and suffers, the baby will not be satisfied nor its pain reduced until some 

action can result in the primitive pain reduction.  When the pain is reduced, the baby 

learns to represent objects and actions that helped to lower that pain. 

We also need to find and eat food to sustain our activities.  A gradually increasing 

discomfort coming from the low “sugar level” tells us that we must eat.  The pain is 

getting stronger and forces us more and more to search for solutions.  Similar urges 

pressure us to go to the bathroom, put on clothes when we feel cold, or not touch a 

burning coal.  The pain warns us against incoming threats, but also forces us to take an 

action.  We also feel relief if we take an action that reduces this pain.  Thus pleasure and 

comfort can be perceived as opposite to pain and discomfort.   

The intensities of the perceived pains serve as a regulator to set priorities to our 

actions and thus be responsible for goal creation.  For example, the urgent need to go to 

the bathroom may easily overtake our desire to eat, or even more so to sit through an 

interesting lecture.  In general, the strongest pains will determine the most pressing goals.  

Thus the pain-based GCS will also yield a natural goal management scheme.  

A primitive pain is a signal received from the primitive pain sensors.  It stimulates 

the primitive pain detection center.  In solving the pain on the primitive level, the 
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machine is stimulated to explore for actions or to exploit the action that relieves the 

primitive pain. The exploration at first is based on the random stimulation and activation 

links or links that were initially (genetically) set to help to reduce the primitive pains. 

Such genetically set links facilitate learning of higher level skills and correspond to built-

in skills. Genetic setting of lower level skills (by pre-wiring sensory-motor responses) 

may be a preferred solution to designing machines when they need to develop complex 

skills in a practical case.  

Genetically set associations between the primitive pain centers and actions also exist 

in humans.  A baby cries when it is wet or hungry, it also has well developed skills to eat.  

A burning pain from touching a hot plate triggers an automatic pull back reflex.  These 

sensations and actions become gradually associated with circumstances under which they 

occurred, leading an intelligent agent to learn basic skills or to improve upon them.  

A primitive pain leads the machine to find the solution and then the solution is set as 

the primitive goals.  Afterwards, the primitive pain will also be a trigger for developing 

higher level pain/pleasure centers and a mechanism for the creation of higher level goals.  

This is based on a fundamental mechanism for need to act and a simple measure for 

satisfying such a need.  We would like to argue that this simple need to act may lead to 

complex goal creation and its implementation.  The mechanism of goal creation in 

humans, and how the human brain controls his behaviors are not fully theoretically 

established yet in the field of behavioral science or psychology.  It is possible that the 

mechanism we propose here is not the way people create their goals biologically.  

However, it is feasible, simple, and it satisfies our need to establish goal creation and to 
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formulate the emergence of a goal hierarchy for machine learning.  In addition, this goal 

creation system stimulates the machine to interact with its environment. 

6.2.2 Basic unit of GCS 

The proposed goal creation mechanism is based on evolving the idea of a uniform, 

basic goal creation unit. The GCS unit contains three groups of neurons that interact with 

each other, including the pain center neurons, reinforcement neurons and corresponding 

connected neurons in the sensory and motor pathways of the HSOM.  The basic goal 

creation unit structure is shown in Figure 6.3. Although as demonstrated in [Sta 07a], the 

representations for certain sensory objects or motor actions are built using a group of 

neurons in HSOM’s sensory and motor pathway, they are illustrated as one single neuron 

in this work for simple illustration. 
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Figure 6.3. Basic goal creation unit. 
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In the first group, the pain detection center (detecting the pain level, denoted as IP) 

is stimulated by the pain signal from the sensory input and represents the negative 

stimulation, such as pain, discomfort, or displeasure.  Since the pain exists due to the 

absence of certain objects, denoted as “missing object” in Figure 6.3, the perceived object 

can inhibit the pain signal through the “inhibition” link.  Thus the pain detection center is 

activated by the silence of this sensory neuron.  A dual pain memory center stores the 

delayed pain level, IPd.  Thus the currently detected pain signal and the pain signal in the 

last time step (in the previously completed event) are stored and need to be compared in 

the second group which contains reinforcement neurons. 

Reinforcement neurons register a decrease or increase in the pain level by 

comparing signals from the pain detection center and the dual pain memory center.  They 

do not physically connect to any neuron but send positive or negative reinforcement 

signals to build the associations.  The “pain decrease” reinforcement neuron gives a 

positive reinforcement while the “pain increase” neuron gives a negative reinforcement.  

The reinforcement signal is calculated in (6.3). 

PdP IIr −=      (6.3) 

The third group contains the corresponding active neurons in the sensory and motor 

pathways of the HSOM that these pain center neurons connect to. 

In a GCS unit, initially, the pain detection center directly stimulates multiple motor 

neurons. A gradually increasing pain level forces the machine to explore through the 

motor actions by stimulate the motor neurons with random connection weights WMP, 

since this is the only chance that the machine will learn a proper action when it has yet to 
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learn anything about its embodiment, its environment and the way to interact with it.  The 

machine explores starting from the action with the strongest activation (strongest weights 

connecting to given pain stimuli).  To carry out such action, certain objects which will be 

involved in this action must be available. Initially, a motor neuron may be associated with 

multiple sensory neurons by activation weights WMS.  The available (active) sensory 

neurons send activations to the motor neurons so that a certain sensory-motor 

combination is implemented.  The direct links from the pain center to the motor neurons 

force exploration or the implementation of certain motor actions all the time.  

After the action is taken, once the pain reduction or increase is detected by the 

second group of neurons, a learning signal r is produced to reinforce or weaken the value 

of an action and the value of the sensory-action pair by strengthening or weakening the 

stimulation links from the pain detection center to the motor neurons and the activation 

links from the sensor to the motor neurons. Pain increase will make the links more 

inhibitory, while pain decrease will make links more excitatory, as shown in (6.4). 

n
MSMS

n
MPMP

rWW

rWW

β

β

⋅+=

⋅+=

 

 
     (6.4) 

where β denotes a learning rate within range (0, 1] and n denotes how many times the 

link has been adjusted. 

Meanwhile, since the active sensory neuron representing the object which was 

involved in the action helps reduce the pain, a “need” link, with weight WSP will be 

created to connect the active pain detection center to the active sensory neuron using 

Hebbian Learning. On the other hand, the object, which was missing and producing the 

pain signal earlier, becomes available and the neuron representing the object becomes 
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active after the motor action, an “expectation” link with weight WSM will be created to 

connect the motor neuron and the missing object. 

The “need” link and the “expectation” link will be updated by the reinforcement 

learning signals as well. The bigger the change of the pain level is, the stronger are the 

reinforcement signal and the weight adjustment on the involved links. The described 

interaction of various groups of neurons in the goal creation mechanism and the 

“stimulation”, “activation”, “expectation” and “need” links are illustrated in Figure 6.3. 

To solve the primitive pain from “low sugar level”, after several random trials, the 

action “eat”, connected with perception of “food”, will be rewarded. As a result, the 

strength of the stimulation link from primitive pain detection center to “eat” and the 

activation link from “food” to “eat” will be increased. The “need” link is connected from 

the pain center to “food” and reinforced when such successful action is exploited and 

rewarded for several times.  And the action “eat” will expect the appearance of sufficient 

“sugar level”.  Whenever the “low sugar level” pain center sends out pain signals, the 

“eat” will be excited prompting the machine for this action. 

This simple mechanism is easy to expand and generalize. In order to generate 

abstract and complex goals, we will incorporate basic goal creation units into a hierarchy 

of the goal creation pathway as discussed next. 

6.2.3 Building a goal hierarchy 

When solving the primitive pain, “food” is needed for and its absence now will lead 

to anxiety or stress for the machine.  A second level pain center is created to represente 

such stress and is called an abstract pain center, shown in Figure 6.4.  It connects with 
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the primitive pain centers through an “echo” link since it echoes the pain signal from the 

primitive pain centers.  Each time the primitive pain center is excited, it sends activation 

to the abstract pain center.  Because these centers are not stimulated from the physical 

pain sensors, they only symbolize the real pain or represent the discomfort for not having 

the objects that can prevent the primitive pain. 
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Figure 6.4. Creating the abstract pain signal. 

 

 

When “food” is available and the agent “eats”, primitive pain is relieved and the 

echo link will relieve the abstract pain as well.  The pain signals disappear and the agent 

goes back to its normal painless state.  As a result an inhibitory link is developed between 

sensory signal “food” and the abstract pain center, which means the existence of the 

“food” can inhibit the abstract pain. 
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When “food” is not available, the agent cannot reduce the physical primitive pain. 

Then, it tries to find the solution to reduce an “abstract pain”. Although reduction of the 

abstract pain does not directly reduce the primitive pain on its lower level, it may be a 

prerequisite for such reduction.  

In this experiment, the primitive pain center forces the agent to explore to reduce the 

abstract pain.  Again, exploration is done based on the initial associations between the 

abstract pain center and motor actions and associations between sensory representations 

and motor actions.  The reinforcement neuro-transmitters connected with this abstract 

pain center update the interconnection weights.  Eventually, the reduction in the abstract 

pain resulted by the action “open” combined with sensory object “refrigerator” indicates 

that the pain from absence of “food” will be associated with the state-action pair 

“refrigerator ”-“open”.  It does not matter whether such action (opening refrigerator) was 

found by pure exploration or by instruction from a teacher.  Since once the machine 

opens the refrigerator, it sees the food and the abstract pain is suppressed, the action will 

be reinforced.  In addition, an expectation link from the motor action “open” to the 

sensory neuron “food” is built, thus “food” will be expected as the result of the action 

“open”.  It is noticed that this expectation link will be used for planning future actions in 

which a certain action’s result can be expected.  Such process can be illustrated using 

Figure 6.4. 

The goal hierarchy containing three levels can be further expanded vertically. If the 

agent “opens” the “refrigerator”, but the “food” is not found, the machine needs other 

options to suppress the abstract pain, and subsequently the primitive pain. The machine 
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may explore by random search or by instruction.  Once it “spends” some “money” (in a 

store), food is available and then the abstract pain (no food) is reduced. Such action is 

rewarded and will be more strongly stimulated by the abstract pain center. The “food” is 

eaten, the primitive pain is suppressed, and the pain signals are reduced.  However, when 

“money” is not available, an abstract pain center on level II is activated with an inhibitory 

link from “money” and directly stimulated by the pain center on level I (that represents 

“no food” in this example).  Subsequently, the machine needs to act to solve the pain on 

level II. After exploration, the agent finds out that the solution to the pain represented by 

“no money” is to “work” at a “job”. 

The agent may also find that “stealing” other person’s “purse” can provide “money”.  

However, even if such action suppresses the pain on this pain branch, the agent will be 

punished by inflicting pain on other pain branch so that this association will be weakened 

and “working” at a “job” will stand out as the best option.  Subsequently, pain centers on 

higher levels will be created and the hierarchy of pain centers and goal creations will be 

built. The previous example can be illustrated by Figure 6.5. 

In the process of finding efficient solutions for a certain goal, there will possibly be 

time lag between when the action is taken and when the action start to take effect.  The 

time lag may affect the association between a certain goal and the correct action. 

However, it is believed that after enough interactive cycles, the agent will eventually 

make strong associations between the effective action and the goal. 

In the proposed GCS, at every step, the machine finds an action that satisfies its 

goals and such action and the involved objects may result in creating further goals. 
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Therefore, in this mechanism, the machine simultaneously learns to associate the goals 

with deliberate actions, the expected results of actions, the means to obtain objects, and 

hierarchical relations among various objects.  It reinforces which objects in its visual field 

are related to its goals, facilitating and stimulating learning of the desired objects.  It 

helps to establish higher level goals and the means of their implementation.  It governs 

execution of actions to satisfy the goals and manages the goals priorities at a given time. 
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Figure 6.5. Expanding the hierarchy. 
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6.2.4 Relations to reinforcement learning 

In GCS and RL scheme, an agent has different overall objectives. In GCS scheme, a 

learning agent learns to minimize the pains caused by the hostile environment. On the 

contrary, a learning agent learns to achieve the maximum reward from the environment in 

a classical RL structure.  When the agent is situated in an environment with multiple 

inputs, the GCS and RL systems not only have different optimization objectives (min vs 

max), but also, they will lead to different behavior of the agent. When there are multiple 

pains at the same time, the GCS agent always tries to reduce the strongest pain. Over the 

time, he carries out different actions depending on which pain is the strongest every 

moment.  Eventually all the pains will be reduced and be controlled within a certain 

range.  When all the pains become zeros, the agent won’t have to do anything until a 

certain pain increases.  However, an RL agent will repeat the same action which produces 

the reward, even though he fails to obtain the other rewards.  

In a RL AC architecture, the agent’s critic network learns the values of state-action 

pairs through the reinforcement signals coming from the environment or a teacher.  Then 

the state/action pairs are evaluated by the critic network.  In a contrast to the RL, GCS 

learns to accomplish only the primitive goals using the external reward, and has 

reinforcement neurons of each GCS unit to generate internal rewards to build the required 

associations.  Outputs of the reinforcement neurons correspond to the rewards used to 

instruct the machine regarding desired or undesired state/action pairs in RL.  

In a learning system using GCS, instead of a computational-based value system used 

in typical RL, the value system is essentially embedded in the hierarchical GCS. In the 
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actor-critic (AC) RL paradigm shown in Figure 6.1, the action is chosen by the actor 

based on the present sensory (state) inputs. The critic evaluates the state-action pair to 

determine whether the actor needs to improve the selection of actions and how to 

improve it. Practically, the interactive activities of the agent in AC paradigm are triggered 

by the sensory (state) inputs, which make it a passive process.  Using the GCS, the 

machines’ interaction with its environment becomes an active process since the machine 

finds the optimum actions according to its internal goals and the pain inputs.  To 

implement the desired actions, certain sensory inputs are necessary.  Such state-action 

pair’s value is determined by the strength of the sensory inputs and the strength of the 

desired action.  The need for the sensory inputs becomes a higher level goal.  Through 

building the goal hierarchy, an intelligent machine learns to associate goals with states 

and the values of different states for accomplishing goals.  

Therefore, in this scheme, learning about particular actions may only concern 

particular goal achievements.  Learning that occurs on a higher level of the memory 

structure to satisfy a higher level goal may have no direct relationship with actions that 

may satisfy the lower level goals.  For instance, an abstract goal of earning money might 

have been stipulated by a need to buy food or by a need to pay the heating bill or both.  In 

a similar way, accomplishing this higher level goal does not necessary remove hunger or 

heat the living space.  In particular, the only externally observable “primitive pain” may 

remain unaffected.  This isolates externally administered reward related to a “primitive 

pain” from the reward that satisfies a higher level goal. While we can measure (and thus 

optimize) the overall reward received externally to satisfy the primitive goals, it is 
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impossible to measure (and therefore optimize) total amount of reward received for 

higher level goals, as these goals remain mostly unknown to the external observer. This 

fact differentiates the proposed GCS from the RL scheme, in which the total amount of 

reward is assumed measurable, so that a system can be optimized to maximize the 

reward. 

This argument somehow negates the existence of a mathematically optimum 

intelligent agent like the one discussed in [Leg 06].  Since the total amount of reward in 

the proposed GCS cannot be measured from outside, mathematical proof of optimality 

presented in [Leg 06] does not apply.  

 

6.3 Anticipation and action selection in hierarchical goal creation network 

 
Visual attention has been investigated in a variety of studies and was shown to affect 

the human perception.  It was known that superior parietal lobule (SPL) is an area of the 

brain involved in attentional control [Yan 03].  The prefrontal cortex produces a top-down 

signal which reflects the current goal and sends it to SPL.  SPL issues a transient signal 

for attention control.  The signal is sustained in lateral intraparietal (LIP) [Bis 03] and 

modulates the sensory representations in extrastriate cortex.  However, there was no clear 

and feasible mechanism or working model about how this signal was created and how it 

is constantly involved in intelligent behavior.  

In this section, we will discuss how an agent may choose the most appropriate action 

to implement its goal.  This will lead to such higher level functions of the cognitive 

process like planning, anticipation, and action selection. 
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Figure 6.6 shows a single activated path of a goal hierarchy, which is obtained as a 

result of the mechanism presented in Section 6.2.   
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Figure 6.6. Activated path in the pain tree. 

 

 

We can see from the figure that how GCS interact with sensory and motor pathways 

on various levels (The goal creation unit is shown using a simplified triangle symbol). 
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Primitive pain, denoted as P1 in Figure 6.6, is activated by the absence of primitive 

sensory Sp. We will illustrate the mechanism responsible for anticipation of the sensory 

input and selection of action involved in the alleviation of the primitive pain P1 in this 

pain tree.  

6.3.1 Anticipation and attention in GCS hierarchy 

Suppose that, as the machine explores the means to provide Sp to reduce the pain P1, 

M1 is found as the best action which needs activation from the sensory object S1.  Then 

the stimulation connection from P1 to M1 and the activation link from S1 to M1 are 

reinforced. And P1 generates the need link directed from P1 to S1 and M1 builds the 

expectation link to Sp. The “need” link sends an additional top-down stimuli coming from 

the pain center to the needed object, as shown in Figure 6.7.  
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Figure 6.7. Attention signal generated by the goal center. 

 

 

When S1 is not available, the lack of S1 creates the abstract pain P2 which triggers 

the machine to look for further actions to solve active P2.  Accordingly, M2 is found to be 
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the best action to reduce P2, and P2 needs S2.  M2 expects that S1 becomes available in the 

sensory pathway after the machine implements action M2.  A similar organization 

structure is built for P3.  Echo links are used to connect P2 from P1, and P3 from P2.  

Notice that in this process, the stimulation and activation links are found through 

exploration and are trained by reinforcement learning signal issued by neuro-transmitters 

in the goal center.  Both the need and expectation links occur naturally in Hebbian 

learning as a result of learned observations and actions taken in response to specific 

goals. 

Assume that on the top level an expected sensory input S3 was found available. This 

activated the top level motor function M3 that resulted in the act on the environment. 

Since the action M3 has been previously learned to accomplish the goal of reducing the 

pain P3, it is expected that the next input from the environment will activate S2 resulting 

in inhibition of P3.  

While stimulation link from P1 to M1 and activation link from S1 to M1 are essential 

for effective implementation of the GCS scheme, the need link from P1 to S1 is not 

critical in finding M1 and reducing P1.  The “need” link is useful for building meaningful 

object representations for accomplishing goals. Using again the “food eating” example, 

when “food” is not known to the agent and found to be useful to reduce the primitive 

pain, a neural representation of “food” will be built with the help of “need” link input.  

Similarly, to reduce higher levels of pains for lack of “food”, the representation of 

“refrigerator” will be built since it is useful for the agent to obtain food.  This goal-

oriented learning also explains our postulate earlier that the machine only learns 
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something useful once it finds it to be meaningful for the machine’s survival in the 

environment. 

The need link also helps to focus the attention on finding particular desired object 

needed by the action. Therefore, it may have a role in determining the current attention in 

machine’s goal-oriented behaviors, when an object representation was learned to be 

useful for a machine’s goal.  As discussed in Section 5.7 such attention signal may help to 

recognize a desired object perceived by the sensory pathway. 

Thus higher level representations related to needed elements are triggered easier 

since attention focus helps to observe the needed elements and keeps neurons that 

represent them activated to build this higher-level representation. 

With the attention as an additional top-down stimuli coming from the pain center via 

the need link, the needed object will be recognized easier through integration of the 

perception with the need. For instance, when you are on a treasure hunt or look for a lost 

object, your attention may be focused on detecting such object among many others, 

providing additional excitatory signals to trigger object representation neurons once an 

object is in the visual field.  

6.3.2 Alternative action selection 

In the activated pain path shown in Figure 6.6, the expectation links from motors to 

lower level sensors will play an important role in motor action selection on the same level 

of abstract pain. As described earlier, an action is considered successful when the pain is 

reduced in the next time iteration. And when an action is taken, while the pain is 

increased, the action is determined to be unsuccessful and the next alternative action will 



 
 

218

be taken.  However, any action takes time to finish and to actually reduce the pain and the 

pain signal can keep increasing during the process of action being undertaken.  In this 

section, we will discuss how the action is determined to be unsuccessful and when the 

next alternative action needs to be taken. 

In the activated pain path, if P1, P2 and P3 represent “lack of enough sugar level”, 

“lack of food” and “lack of money”, respectively, M3 represents the action to solve P3, we 

expect that the activation of M3 will provide the money. Usually, a pain can be alleviated 

in several different ways.  Suppose that we can get money from the bank, from the friend, 

from the mother in law, or from a stranger.  Assume also that each next case is less 

favorable that the previous one.  The initial action Ma is chosen as the action with the 

strongest stimulation from the pain center P and activation from the sensory object S, as 

in,  

}max{ MSMPa WSWPM ⋅+⋅=     (6.5) 

where MPW  denotes the stimulation weights from the pain center to the actions and WMS  

denotes the activation weights from the sensors to the actions. 

We may go to the bank since it is currently our best option and find out that it is 

closed. If the bank is still perceived through the sensory pathway, the existing mechanism 

may insist on going to the bank to get the money since getting money from the bank was 

the strongest action related to the lack of money. Thus, an additional mechanism based on 

the expectation signal is needed to abandon this action and to try another one. For 

instance, if P3 (lack of money) is also linked to getting money from your friend, we need 

an inhibitory signal blocking the unsuccessful action, as shown in Figure 6.8. 
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Figure 6.8. Inhibition of an unsuccessful action. 

 

 

Suppose that M31 received the strongest activation from P3 but the expected result 

was not provided at the end of the action. At the end of the unsuccessful action, the 

concurrent activations of M31 and its “end of unsuccessful action” (EUA) signal EUA31 

activate the inhibitory neuron I31, whose activation is determined by (6.6), where m 

denotes all the possible actions and i denotes the level of goals in this single path of goal 

hierarchy the machine is acting for.  

( )mjEUAMI ijij ,...2,1ij =⋅=     (6.6) 

This neuron I31 inhibits the activation of M31 allowing other action to take place, as 

in (6.7). 

( )mjIWPM ij
sti

PMi ij
,...2,1ij =−⋅=    (6.7) 

For instance, if S33 is observed (mother in law), the action M33 will be active and 
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with M31 lowered by inhibition (as in (6.7)), M33 will win the competition in (6.5) and this 

action will be selected.  Inhibitory neurons (I31, I32…), which give inhibitory inputs to the 

motor neurons, gradually lose their signal strength as time goes by, as in (6.8), where t 

denotes the time. 

( )1;,...2,1 <=⋅= αα mjII t
ijij     (6.8) 

This feature enables the machine to retry a formerly unsuccessful action when its 

activation becomes the highest after some time, since the situation may change (for 

instance bank reopens). In the following Section 6.3.3, we will discuss how the EUA 

signal is generated using neural circuit. 

6.3.3 End of unsuccessful action signal 

End of unsuccessful action (EUA) signal has two roles.  Its main role is to inhibit an 

unsuccessful action and force the machine to explore.  Its supporting role is to lower the 

interconnection weight between the pain detection center and related motor action 

neurons. 

All expectation signals are feedback signals fired from active motor neurons to 

expected sensory neurons.  To discuss how the EUA is generated, let us consider the 

columnar structure of a sensory pathway as discussed in [Gro 98].  An unexpected input 

(UI) neuron is proposed in this work to represent the mismatch between the real input and 

the expected input from the lower level sensory neurons.  Layer 5 neuron of a column 

which represents the expected sensory object can receive feedback and be connected with 

the expectation signal from the motor neurons.  It was also discussed in [Gro 98] that in a 

column, layer 6 neuron is activated only when it receives input from a lower level 
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neuron.  Therefore, the UI neurons are connected with layer 5 and layer 6 neurons as 

shown in Figure 6.9.  The value of UI is calculated as in (6.9). 

56 layerlayer nnUI ⋅=     (6.9) 

Each motor neuron can lead to multiple expected results.  For instance, if motor 

action M31 was activated (go to the bank to get money) we expect that the result of this 

action is to either get cash, traveler’s check, debit card etc, all of which will be a 

successful completion of this task.  So the expectation signal from a motor neuron is sent 

to all the connected columns on the lower level of the sensory pathway, as shown in 

Figure 6.9. 

In Figure 6.10, M3 sends the expectation signals to columns 2 - 4 in the sensory 

columns.  Each column in the sensory pathway is simplified to 3 neurons for clarity in the 

figure.  Then the layer 5 neurons of column 2, 3 and 4 are activated.  The UI signals are 

determined considering all combinations of neuronal activations of layer 5 and layer 6 

neurons. If any one of the expected sensory inputs is activated, the corresponding UI 

neuron in this column will not fire, since it receives inhibition from its layer 5 neuron.  

However, if for instance, unexpected sensory input 1 is activated, it will activate UI 

neuron in column 1.  This may illustrate the case in which we went to bank, but instead 

we were told that our account was overdrawn and we will get no money.  
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Figure 6.9. Generation of the unexpected input (UI) signal. 
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Figure 6.10. Expectation and actual inputs. 
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End of unsuccessful action (EUA) signal is generated if any of the columns has an 

active UI, as in (6.10), where s denotes all the connected columns in the sensory pathway. 

∑
=

=
s

j
jUIEUA

1
     (6.10) 

The activation of EUA neuron results in subsequent action inhibition I31. Finally, an 

action inhibition neuron may be activated directly by the pain increase signal when the 

pain level goes above an arbitrary threshold, without a clear sensory signal of 

unsuccessful action. This may happen, for instance, if the action takes too long time to 

complete and growing pain triggers its inhibition to abandon this action without its 

completion. 

Notice that a similar feedback mechanism may be used to screen the sensory 

information for novelty.  The machine, by using the feedback signal, similar to the 

expectation signal, predicts what input representations it expects in the sensory pathway.  

Any surprises may trigger its attention and may result in learning a new representation or 

appending the set of acceptable features of the observed object.  This attention based 

screening for novelty may also be a basis for the representational invariance building. 

6.3.4 Goal creation and pain network 

In previous Section 6.3.3, the goal hierarchy is created based on one primitive pain 

input.  In GCS, there are multiple primitive pain inputs, and normally, the goal hierarchy 

is complex with many goals and pain centers created both vertically and horizontally.  

One primitive pain in the goal hierarchy creates and activates one pain tree, which is part 

of the pain hierarchy.  In the example pain tree shown in Figure 6.11, the goal creation 

unit is shown using a simplified triangle symbol.  The nodes on one pain tree can also 
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belong to other pain trees.  For instance a need for money could be created as a result of 

lack of food (related to hunger) as well as satisfy the need to buy clothes (related to 

feeling cold).  Thus, the overlapping of pain trees forms the pain network. 
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Figure 6.11. An example pain tree. 

 

 

The goal creation scheme works in a way described as follows.  An activated pain 

node P, due to the absence of a certain object S, along with the sensory input So activates 

one of the associated motor neurons with the largest signal value, which is found by (6.5).  

If it is found that this action Ma brings the expected objects and lowers that particular 

pain P, the stimulation and activation links are reinforced, as in (6.4).  An expectation 

feedback link will be built connecting the Ma and the absent object S.  In addition, the 

need link is built to connect the pain node and the sensory object So.  Then, a new pain 

node which can be inhibited by So is created and made to echo P.  If this pain node was 

created before, the echo link should be reinforced.  A pain tree made of a group of pain 

nodes is gradually built. These links can be referred to Figure 6.6.   
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6.4 Goals, subgoals and goal hierarchy 

 
In the goal creation pathway, higher level goals are created to manifest a way to 

provide the objects necessary for accomplishing lower level goals. They are based on 

perceptions and actions associated with successful implementation of the lower level 

goals. The abstract goals are defined as abstract since they are less closely related to the 

primitive level of goals. Abstract goals do not have direct relationship to lower level 

goals that once lead to their creation. To realize the lower level goals, it is not necessary 

to solve its higher-level goals first. It becomes necessary only when certain objects are 

missing and the lower level actions cannot be performed. On the other hand, to realize a 

higher level goal, it is not necessary to achieve the lower level goals first, as typically 

realization of such lower level goals do not provide conditions for attaining higher level 

goals.  Similarly, realization of a higher level goal does not have to satisfy the lower level 

goal (even the one that triggered its emergence in the goal hierarchy).    

These higher level goals are not necessarily the same as “subgoals”.  In a goal-

driven behavior, there is a need to simplify complex goals by dividing them into subgoals 

and to implement subgoals in a specific sequence.  Many machine learning techniques 

take this approach.  For instance, in [Mur 07], it was used to simplify realization of a 

complex goal using reinforcement learning.  It was demonstrated that if a goal was 

divided into subgoals, the reinforcement learning was much more effective and was 

accomplished with a smaller number of exploratory searches.  In this work, we use the 

term “subgoals” to represent the tasks that are elements of a temporal sequence to 

implement a goal.  Subgoals are related to a specific goal on the same level and they are 
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the prerequisite for the final goal.  Typically, all the subgoals must be completed to 

realize the final goal.  For example, an agent who needs to go to a specific location in a 

room needs to go through two doors, A and B, using two corresponding keys, key A and 

key B.  Thus, finding key A to go through door A, and, subsequently, finding key B to go 

through door B are two necessary subgoals to realize before the ultimate goal is achieved.  

It is proposed that subgoals can be found out using the similar goal creation concept, 

basic goal creation unit and evolving processes in GCS.  Given the keys available in the 

initial exploration, the agent will find out the optimum action is to go through door A 

using key A when it approaches door A instead of going in other directions.  Since key A 

was involved in the successful action, it creates another level of goal and pain center.  

The absence of key A generates pain and drives the agent to search for key A.  Therefore, 

search for key A becomes a subgoal.  The similar mechanism applies to creating another 

subgoal as finding the key B. 

Structurally, it is easy to confuse higher level goals with complex goals, as both 

types of goals may lead to a goal hierarchy.  We would like to differentiate them by 

calling higher level goals in GCS as abstract goals, and calling the goals that are 

composed by subgoals as complex goals.  These two types of goals play different roles in 

developing embodied intelligence. Application-driven approaches in many intelligent 

systems focus on complex goals.  Subgoals may be further divided into simpler tasks 

which will lead to a top-down hierarchy of goals and related actions.  

Having said that, we must indicate that higher-level goals may become subgoals if 

they are directly driven by the need to accomplish a lowerlevel goal.   For example, 
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finding a store was a subgoal of finding food, but at the same time buying food from a 

store (and therefore finding the store was a higher-level more abstract goal than observing 

food).  One reason is that finding the store may satisfy other lower-level goals as well. 

Thus it may be a subgoal of several lower-level goals and, at the same time, a higher level 

(more abstract goal) than any of them. 

 

6.5 Goal-driven learning system 

 
As discussed earlier, the learning involving GCS is an active process, in which the 

machine searches for useful actions to solve undesirable pain input perceived by the 

HSOM sensory pathway.  The action taken leads to the change of the environmental 

states, which is also perceived by the HSOM sensory pathway.  The overall diagram of 

the EI machine interacting with the environment is shown in Figure 6.12.  The 

availability of the needed objects (states) enables the implementation of the action, using 

a “gate control” fashion.  With the needed objects, the action can be carried out and cause 

the transition of environment states.  Otherwise, the GCS will take other action. 
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Figure 6.12. EI machine interacts with environment using its three pathways in HSOM. 

 

 

In previous examples, a single path of the goal hierarchy and related pain tree were 

illustrated.  In the EI design, GCS in HSOM involves multiple pain trees.  Pain trees 

overlap and create a pain (and related goal) network. Thus competition for action exists 

not only within a single pain tree, but also between different pains within the whole pain 

network.  In general, the stronger the pain, the more attention it gets from EI to lower it.  

In the learning system, the pain network interacts with the sensory and motor pathways 

on various levels of abstraction and multiple abstract goals can be pursued concurrently.  

Such concurrent attainment of various abstract goals may be organized in the GCS 

despite that, at any given time, the EI focuses its attention on completing one (usually 

lower level) task.  The motor neurons accept stimulations from different pain trees and 

the strongest pain signals influence the choice of action.  The schematic structure of a 

goal-driven learning system and the interaction among three pathways are shown in 

Figure 6.13. 
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Figure 6.13. Goal-driven learning scheme. 

 

 

It is also quite likely that implementation of a higher level goal requires more steps 

(and more time) and during this implementation another (usually lower level pain) may 

start to dominate, causing the machine to switch from one task to another one.  This 

requires that the suspended goal maintains memory of its implementation stage, such that 

the machine can reassume its action after completion of the lower level goal that caused 
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the interruption.  Thus using sequential spatio-temporal memory is critical for proper goal 

management. 

During the process of interaction, the reinforcement signals play a significant role in 

finding new goals, having expectations, and building sensory-motor associations. The 

reinforcement signals come from the environment, and include autonomous primitive 

pain signals as well as the teacher’s input.  The machine’s experience built through 

interactions with the environment affects the associations between different sensory 

inputs and different goals.  The three pathways evolve simultaneously.  First, low level 

representations in the sensory pathway and simple motor actions are developed to 

manage the primitive pain signals.  The machine focuses its attention on objects and 

actions it can use to lower the pain; thus learning of sensory inputs and motor actions is 

selective.  Not all the objects in the sensory inputs are of interest to the machine, and only 

those of intent are stored in its memory. 

Once representations that are associated with lower-level goals are formed and the 

machine is capable of formulating its higher-level goals, it may extend its representations 

to include higher level concepts on the sensory pathway, and learn a sequence of actions 

to implement them.  Thus memories of more abstract entities and useful actions will be 

formed on the higher levels.  Gradually, the complexity of the machine’s operations - its 

intentional memory of objects, actions and goals increases; and its three hierarchical 

pathways are built concurrently.  As a result, complex, long lasting goals may be created 

and managed by such a system, resulting in a complex, intelligent behavior. 
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6.6. Simulation and discussion 

 
In this section, let’s assume that the GCS has to learn “how not to go hungry” in an 

environment in which there are limited food resources and advanced skills are required to 

get them.  We assume that both sensory inputs and motor outputs are symbolic, which 

means that the machine already learned all the available sensory objects and motor 

actions, and a source (sensory) or/and a motor action are represented by the symbols. The 

current state of the environment is determined by the availability of the resources in a 

binary form.  We will also compare effectiveness and performance of learning based on 

the GCS and RL.  

The machine is motivated by one primitive pain signal, which is triggered by low 

sugar level in the blood. This primitive pain automatically increases if the machine does 

not eat for some time. All the symbols representing sensory objects and motor actions are 

shown in Table 6.1. Overall, there are 6 sensory objects and 5 possible motor actions. 

Initially, all sensors are randomly connected with all the motors and there are 25 possible 

sensory-motor pairs, as listed in Table 6.2.  It is expected that after learning, the 

association between sensors and motors are learned and only the meaningful pairs will 

remain. All other sensory-motor pairs are either undesirable or have no effect on the 

machine’s perceived success.  The desired sensory-motor pairs and their effect on the 

environment are also listed in the following Table 6.1. 
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Table 6.1 

All Sensory Object and Motor Actions 

SENSORY 
SCALING 

FACTOR 
MOTOR 

EFFECT ON THE ENVIRONMENT 

INCREASES DECREASES 

Sugar level     

Food 10 Eat Sugar level Food supplies 

Grocery 10 Buy Food supplies Money at hand 

Bank 2 Withdraw Money at hand Spending limits 

Job 1e8 Work Spending limits Job opportunities 

School 1e8 Study Job opportunities - 

 

 

Initially there are plenty of resources around, indicated by a high probability of 

availability of all the sensory inputs. This allows the machine to learn by exploration how 

to satisfy its primitive goal (reduce hunger).  However, as the machine uses them, the 

original resources are gradually depleted and need to be replaced.  Thus the machine 

needs to learn how to use other actions to provide the resources.  It will use the GCS to 

find out goal hierarchy and learn how to accomplish different level of goals.   
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Table 6.2  

All Possible Action and Object Combinations 

1 2 3 4 5 

Eat food Eat money Eat bank Eat job Eat school 

6 7 8 9 10 

Spend food Spend money Spend bank Spend job Spend school 

11 12 13 14 15 

Withdraw food 
Withdraw 

money 

withdraw 

bank 

Withdraw 

job 

Withdraw  

school 

16 17 18 19 20 

Work food Work money Work bank Work job Work school 

21 22 23 24 25 

Study food Study money Study bank Study job Study school 

 

 

A sensory input probability of various items of category ci (availability of resource) 

is described by the function: 

c

c
cici k

kf

τ
+

=
1

1)(      (6.11) 

where: τc is a scaling factor (resource decline rate), kc stands for the number of the times 

a resource was used (initially set to zero).  Each time a specific action is taken by the 

machine (for instance the machine withdraws money from the bank account) the 
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corresponding kc is increased by 1 decreasing the likelihood of this particular resource. 

This resource can be renewed by invoking a higher-level goal after which kc at a 

particular level is reset to 0. For instance if grocery was bought, the counter for food was 

rest to zero and at the same time the counter for money increased by 1.  Also, it is noted 

that the smaller the scaling factor τc is, the sooner the resource gets exhausted.  “Sugar 

level” is considered always low, and triggers increasing primitive pain unless it is 

renewed by the proper action.  Therefore, its likelihood is always 0.  In this experiment 

the scaling factor used for these resources is listed in Table 6.1 as well. 

6.6.1 Goal creation system learning scheme in this experiment 

Initially, the primitive pain P1 has random stimulations to all the motor actions and 

the sensory neurons have random activation connections to all the motor neurons as well. 

Also, we initialized 6 pain centers due to lack of the 6 corresponding resources.  All the 

pains are randomly connected to all the other pains, assuming other pains can be the 

higher level pains.  

It is intended to show that after the learning, the machine learns the optimum action 

to solve the primitive pains, finds the connection from each goal to its abstract goals, 

finds out the ontology among objects related by the pain centers, builds the “need” and 

“expectations” among motor actions and sensory objects, and builds the meaningful 

association among sensory and motor neurons.  

The initial information and the information to be learned or created through goal 

creation process are listed in Table 6.3 as follows. The learning process is described in the 

earlier sections, with a brief flow chart shown in Figure 6.14. 
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Table 6.3  

Initialization and Learned Information in the Goal Creation System Scheme 

 Randomly initialized information Learned information 

1 Stimulation weights: WMP Optimized WMP (from pains to motors) 

2 Activation weights: WMS Optimized WMS (from sensors to motors) 

3 Pain connection weights: Wpps 
Optimized Wpps, and hierarchical structure 

of pain centers 

4  
“Need” connections WSP (from pains to 

sensors) 

5  
“Expectation” connections WSM (from 

motors to sensors) 

 

In the experiment, in each time iteration, the machine acts only on the most active 

pain signals among all the active ones. When it is acting according to the jth pain node, Pj, 

the action is Ma chosen based on the stimulation weights WMP from Pj to all the motors, 

as in (6.5). The most correlated sensory object from the existing sensory-motor 

association is chosen. The result of the action will lead to positive or negative 

reinforcement learning.  
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Figure 6.14. Goal creation experiment flow chart. 
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6.6.2 Reinforcement learning scheme in this experiment 

A typical AC system for RL is adopted in this experiment for performance 

comparison. The algorithm of RL used is actor-critic architecture shown in Figure 6.15.  

In the RL scheme, the machine is only triggered by the primitive pain as its reinforcement 

signal (reward). It has only one primitive goal, which is to reduce the primitive pain. The 

machine does not create any higher-level pains or goals.  In this scheme, the optimal 

mapping from states to actions is to be learned during interaction with the external 

environment based on the primary primitive reinforcement.  
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Figure 6.15. Actor-critic architecture for RL. 

 

 

The actor-critic architecture contains two components: the action network and the 

critic network, and both networks are implemented by a multi-layer perceptron (MLP) in 

this experiment. The action network determines the action u(t) based on current states 

X(t). The critic network evaluates the state-action value J according to {X(t), u(t)}. The 
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J(X(t), u(t)), also denoted as J(t) value is defined as 
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where 10, ≤≤ γγ , is the discount rate.  

The critic network is trained using the temporal difference method [Sut 98].  The 

critic network directs the action network to produce better action so that J(t) is 

maximized; thus the action network is trained. A more detailed implementation of this 

algorithm can be found in [Si 01]. 

Since the agent has no prior knowledge, the reasonable associations among different 

objects and actions are not yet built; therefore all possible object- action combinations are 

considered. The algorithm is described below. 

Reinforcement learning using AC method: 

Step 1). The agent receives states information X(t) and the reward signal r(t) from the 

environment.  

The X(t) shows the availability of the resources as a binary vector, with “1” indicating 

being available. The reward signal r(t) is related to the current states X(t). In this 

experiment, the r(t) is the pain input signal, which is due to the “lack of sufficient sugar 

level”.  

Step 2). Action network (AN) determines the action u(t) from 25 possible action-

object combinations based on current states X(t).  

The u(t) is in the form of a binary vector as well, with “1” indicating the selected 

action and “0” for the rest of the actions.  

Step 3). Critic network (CN) determines the value of this state-action pair J(t).  
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Step 4). Using the reward signal r(t), CN is trained by TD method. The error function 

of CN is show in (6.13). 
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Step 5). The weights in CN are updated according to gradient descent, 
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where )(tlc is the learning rate of CN. 

Step 6). The CN reevaluate the value J(t). 

Step 7). The AN is trained in order to produce action u(t) which can have a desired 

value J(t). The error function is formulated as, 
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where Uc(t) is the desired value. 

The updating algorithm is similar to that in CN. By a gradient descent rule,  
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where )(tla is the learning rate of AN. 
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Step 8). Apply the determined action u(t) to the environment, and the environment 

will give new states X(t+1). Repeat Step 1) to Step 8). 

The performance is shown in the following section. 

6.6.3 Performance comparison 

6.6.3.1. RL scheme performance 

Using the RL scheme, in a simulated trial, the agent runs for 600 time steps. The pain 

input (hunger) during this trial is shown in Figure 6.16.  Initially it takes the RL agent 27 

iterations to learn to control the pain input by performing “eat food” action. Then the pain 

input goes to 0, as shown in Figure 6.16 (a).  But as the food resource is depleted the 

agent needs to learn another action to renew food resource.  In iteration 129, the agent 

accidently takes the action “buy the food” and restores the food supply likelihood, as 

illustrated in Figure 6.16 (d). The primitive pain is under control as the action “eating” 

was repeated. However, the food probability is gradually reduced and the agent does not 

seem to learn how to restore the food.  After iteration 322, it never returns to “eat food” 

action even though the food is available and the primitive pain increases.  As it is evident 

from the simulation result, it takes a long time for the RL mechanism to adjust to the 

changing environment and learn efficient actions. 
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Figure 6.16. Results from RL experiment. 

 

 

The overall performance by RL scheme on this experiment can be evaluated from 

multiple trials, as shown in Figure. 6.17. In general, the pain input was not effectively 

suppressed.  It is observed in several runs that the changes in environment happened too 

quickly for the RL system to keep up developing new skills.   
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Figure 6.17. The average pain signals in 10 trials for RL scheme. 

 

 

6.6.3.2 GCS scheme performance 

On the other hand, using GCS, as soon as the machine learns how to satisfy a lower 

level pain, it identifies the environment condition (the sensory-motor pair) that helps to 

remove the pain (for instance by eating the food) and creates an abstract pain that is 

activated when these conditions are not met (for instance when no food is present).  The 

agent uses its GCS approach to learn what to do, and how to adjust to changing 

environment conditions.   

A typical result of CGS simulation is shown in Figure 6.18.  This figure shows 

dynamic changes for the pain signals (including the primitive pain) over 600 iterations.  

At first, the only pain that machine receives is the primitive pain.  Once the machine 

learns that eating food reduces the primitive pain, the lack of food becomes an abstract 

pain.  As there is less and less food in the environment, the primitive pain increases again 

(since the machine cannot get the food) and the machine must learn how to get the food 
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(buy grocery). Once it learns this, a new pain source is created and so on.  Notice that the 

primitive pain is maintained under control eventually in spite of changing environment 

conditions.  In this presented trial, the machine can learn to create, develop and solve all 

abstract pains in this experiment within 300 iterations.  In this experiment, school 

opportunity is designed as always available. Therefore, it is noted in Figure 6.18 that the 

abstract pain for “lack of school opportunity”, although was created when solving lower-

level pains, it was never activated and stayed zero. 

Figure 6.19 show a scatter plot that illustrates selection of a specific action during a 

trial of the GCS experiment. The corresponding sensory-action pairs are denoted for the 

useful actions in the figure.  It is seen that the machine makes association between sensor 

and actions, learns the useful actions while exploring environment and selecting the most 

useful actions very repetitively.  There are still several sensory-action pairs left which are 

not meaningful and are selected by the machine sometimes. It is expected that with 

longer period of interaction, the machine will only maintain the meaningful pairs and 

select them only to have proper interaction with the environment. 

The average of all abstract pain signals obtained on the basis of 10 such experiments 

is shown on Figure 6.20.  As we can observe, the machine learns to control all abstract 

pains and maintains the primitive pain signal on a low level in demanding environment 

conditions. 
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Figure 6.18. Pain signals in GCS experiment. 
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Figure 6.19. Action selections in GCS experiment. 
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Figure 6.20. The average pain signals in 10 GCS simulations. 
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6.7. Conclusions 

 
This chapter presented a goal creation system that motivates embodied intelligence 

to learn how to efficiently interact with the environment.  It develops higher-level 

abstract goals and increases the internal complexity of the stored representations and 

skills. 

The proposed GCS is a mechanism that motivates the creation of more complex 

knowledge from simpler ones by the pain signals from which the machine suffers. The 

pain centers in the GCS hierarchy connect the sensory and motor pathways, generate the 

machine’s needs and expectations and find the ontology among objects as well as 

optimum actions to achieve goals.  

Using the GCS learning scheme, the complex knowledge, skills and goals evolve 

from simpler ones through learning.  Thus, in this model, knowledge building is goal-

driven activity.  Such bottom up goal creation, representation building and action learning 

adopted in this work is more natural than a top-down approach.  It does not define the 

upper limit of the machine complexity, nor the amount of learning or developed skills, 

thus it is conducive to developing a general intelligence.  The only limitation for 

developed intelligence in such scheme comes from the limited resources used to build the 

intelligence memory structures. 

In contrast to classical RL, GCS generates an internal reward associated with the 

abstract goal that the machine was able to accomplish.  This makes the reinforcement 

process not observable, and to some degree makes the machine less controllable than one 

whose operation is based on classical RL.  The machine’s actions are more difficult to 
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understand and explain by an external observer, thus the machine behaves more like an 

independent intelligent being rather than a well-trained robot. 

To the contrary, top-down learning approach is based on top-level complex goals 

implicitly imposes the upper limit of knowledge.  Such approaches lead to effective 

design of an application and goal specific machine.  It has severe drawbacks from the 

point of view of developing general intelligence.  Firstly, it requires initializing machine 

with a substantial knowledge about its environment and complex representation of 

perceptions in relation to the complex goal.  This knowledge and its organizational 

structure expressed by complex interactions between various representations, must be 

explicitly entered by a human designer (a computer programmer).  Development and 

maintenance of such knowledge structure is very costly and time consuming.  The second 

drawback is lack of a natural mechanism to create knowledge and to learn more complex 

representations from simpler ones.  While there may be a little need for such mechanism 

if the environment is well described through the initial built-in knowledge, lack of such 

mechanisms may be detrimental to further development of a machine’s knowledge and 

skills in changing tasks and environments. It was demonstrated that this type of system 

learns better and faster than traditional reinforcement learning systems. 

In summary, the presented goal creation system motivates a machine to act and 

develop its cognitive skills in response to externally applied pain signals.  It also helps the 

machine to perceive its environment, learn with a purpose, and respond to changes in 

environment. 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORK 

 
Biologically inspired and hardware-oriented, research work and structural design 

concepts presented in this dissertation create a promising direction in the field of EI by 

providing: 

(1). Hierarchical learning memory with efficient and global optimized training algorithms 

and quantitative measure to detect overfitting for supervised learning. 

(2). Hierarchical self-organizing memory in unsupervised learning based on sparse 

connectivity. 

(3). Goal creation systems to stimulate the continuous, intentional, and active learning 

and to enable reinforcement learning.  

(4). A uniform and promising framework to design working models for EI is proposed 

based on our definition of intelligence and its embodiment, including the detailed 

design principles and presenting the HSOM and GCS as two essential elements of EI.  

These essential elements for building EI are proposed and studied considering their 

neuronal structure, learning algorithms, memory capacity, fault tolerance and ability to 

create goals. The design concepts aim to build intelligence on a simple and uniform 

neural structure. 

Such intelligent machine will have many more successful applications, which can 

greatly affect and amazingly change our life.  In addition, this area, where modern 

technology including VLSI and FPGA can be applied, will create exponentially growing 

demand for electronic hardware, will invigorate the electronics industry, and may create 

an intensive economical growth in the years to come.  Hopefully in the near future, the 
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existence of non-biological intelligence will supplement the biological one and empower 

it many times over its current potential. 

Embodied Intelligence can be implemented in hardware or software. In the 

following comparison, hardware implementation will use multiple processors working 

concurrently, while software will run on a single central processing unit (CPU).  The 

processing speed of today’s hardware is much higher than that needed to simulate a single 

neuron in a real time.  Thus in hardware implementation a hybrid approach can be used, 

where a group of neurons is simulated at each concurrent processor, and a number of 

neurons simulated is set to deliver a real time operation.  This depends on the speed of 

operation. For instance, if a concurrent hardware operates at 200 MHz, a single operation 

may take 5 nsec. So in 5 msec, which is needed for a real time neuronal response, up to 1 

million operations can be performed on a single processor.  This will set a limit on the 

number of neurons that each concurrent processor can simulate and put requirements for 

the system size.  For instance, at that speed, a system with human level neuron capacity 

would require 106 processors working concurrently (assuming that each neuron requires 

only 10 operations for real time processing).  With the current distributed computing 

devices, software implementation can be instantiated into parallel computation, which 

will greatly improve the system efficiency.  

Software implementation is a convenient choice today due largely to inadequate 

hardware design or programming tools for easy implementation and experimentation with 

cognitive mechanisms.  However, software simulation has inherent limitations for 

implementing real-time operation of EI with brain level complexity.  The major limitation 
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comes from replacing the network of interconnected concurrent processors by a single 

CPU.  Not only does the CPU have to run n times faster to compensate for the combined 

processing power of n neurons, but also it must simulate the complexity of the 

interconnections as well.  With the average number of interconnections growing with the 

size of the network and the time the machine spends updating the interconnections and 

simulating signal transformations through these interconnections, interconnection 

processing may dominate.  For instance, to simulate the human brain with 1011 neurons 

and each with an average of 10000 connections per neuron, the CPU must run 1015 times 

faster than biological neurons.  With the average response time of a neuron on the level of 

5msec, the CPU would have to perform 1015 operations in 5 msec.  Assuming that a 

single operation can be performed in one clock cycle, this would require the clock speed 

of 200,000,000 GHz, (or 10mln times faster than current computers).  During the time 

period, which corresponds to such switching frequency, light travels on the distance of 

1.5 nm.  Thus even if the switching is performed with the speed of light, the device 

geometry should be comparable with the particle size of silicon to operate at such speed.  

Operating on such small scale would require going beyond the single electron switching 

or spin electronics.  Thus a single CPU may never be able to perform the real-time 

operations of a system with the complexity of the human brain, unless the computational 

models are simplified.  For instance, instead of performing analysis of the entire network 

at each time step only, selected pathways could be activated and updated in a fashion 

similar to event driven simulation used in the logical circuits.  This requires 

computational and learning schemes that are based on sparse coding in sparse neural 
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structures.  It is very likely that software implementation will be limited to modeling 

small sized networks necessary to develop mechanisms for EI.  It is our opinion that only 

hybrid hardware approach may reach complexity of human level intelligence in the 

predictable future. 

EI, as an interdisciplinary area, requires not only progress in engineering. A 

significant growth in other technologies including computer science, nanotechnology, 

medical scanning, physiology, neuroscience, and psychology, could invigorate progress 

of this rewarding mission.  Building structural and functional organization of EI has a 

long way to go in order to achieve human level intelligence and to benefit from the 

developing technologies.  Having the promising and uniform framework and design 

principles prepared, the future work will be done more consistently.   

In the future work, a more integrated system will be developed using all the 

elements and systems proposed and developed in this work. The motor pathway 

development will be further studied. A closed loop system, including sensory inputs, 

decision making, action selection and motor outputs, will be built to interact with a 

certain environment and test over more complex problems and over longer period of 

time.  The performance of the machine on goal creation, complex task accomplishment, 

and learning capability will be further evaluated.  In that way, we can see how the 

proposed designs in this work can be further developed into an intelligent machine. 

I feel fortunate and privileged to get the chance to continue my study and research 

on machine intelligence, to build integrated reconfigurable intelligent systems using 

advanced technologies, and to keep pursuing their applications into various areas. 
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