

Hierarchical Self-organizing Learning Systems for Embodied Intelligence

A dissertation presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Doctor of Philosophy

Yinyin Liu

March 2009

© 2009 Yinyin Liu. All Rights Reserved.

2

This dissertation titled

Hierarchical Self-organizing Learning Systems for Embodied Intelligence

by

YINYIN LIU

has been approved for

the School of Electrical Engineering Computer Science

and the Russ College of Engineering and Technology by

Janusz A. Starzyk

Professor of Electrical Engineering and Computer Science

Dennis Irwin

Dean, Russ College of Engineering and Technology

3

ABSTRACT

LIU, YINYIN, Ph.D., March 2009, Electrical Engineering

Hierarchical Self-organizing Learning Systems for Embodied Intelligence (271 pp.)

Director of Dissertation: Janusz A. Starzyk

In this work, a framework of designing embodied intelligence (EI), along with the

essential elements and their design principles, is proposed. This work intends to deploy

the following design principles.

Firstly, hierarchical self-organizing learning systems in the form of network made of

neurons are the essential elements for building machine intelligence. The supervised,

unsupervised and reinforcement learning are all necessary aspects of learning and are

studied for machine intelligence building. In supervised learning, an efficient learning

method for hierarchical multi-layered network structure is proposed and studied. In

addition, a quantitative measure is proposed to quantify overfitting of a network in a

given learning problem to determine proper network structure or proper learning period.

In unsupervised learning, a sparsely-connected hierarchical network is developed to build

the neural representations effectively and efficiently for densely-coded sensory inputs,

and to enable the memory with large memory capacity and great fault tolerance.

Secondly, the memory-based intelligence is not only for passive information

processing and pattern storage. One of the critical capabilities of intelligence is

continuous and intentional learning. Therefore, a goal creation system (GCS), also as a

type of hierarchical self-organizing learning system based on simple and uniform

4

structure, is presented that acts as the trigger for the agent’s goal creation, memory

management, active interaction and goal-oriented learning. As a self-organizing

structure, it is responsible for evaluating actions according to goals, stimulating the

learning of useful associations and representations for sensory inputs and motor outputs.

It enables the more powerful hierarchical reinforcement learning, finds the ontology

among sensory objects, creates the needs, and affects the agent’s attention and perception.

Biologically inspired structural design concept and the framework of EI proposed in

this dissertation create a promising direction in the field of EI. It enables the desired

capabilities for an intelligent machine to have, including the efficient, continuous and

intentional learning, large representative memory capacity, and goal-oriented perception

and action. The hierarchical self-organizing learning systems include all ingredients

necessary to develop intelligence, and to motivate a machine to act on its own in its

environment. Having the framework defined and design principles prepared, the future

work will be done more consistently.

Approved: ___

Janusz A. Starzyk

Professor of Electrical Engineering and Computer Science

5

ACKNOWLEDGMENTS

One of the pleasures of doing doctoral research and writing a dissertation is to find

the topic you work on more and more fascinating. Several years ago, I was someone who

found machine intelligence vaguely interesting, while now I truly believe that it will

shape our future technology in an amazing way that many people wouldn’t imagine. I

wouldn’t have had this exciting and rewarding experience without the help of my advisor,

Dr. Janusz A. Starzyk. I would like to gratefully and sincerely thank him for his

guidance, understanding, patience, and most importantly, his care and friendship during

my graduate studies at Ohio University. He led me into this wonderful field of machine

intelligence, taught me how to conduct research and helped me to be creative, thoughtful,

committed. His mentorship provided me a well rounded experience consistent with my

long-term career goals. His constant inspiration and encouragement made me believe in

myself and made this difficult and stressful doctoral program a lot easier.

I would also like to thank the faculty members in Ohio University and my

dissertation committee members, especially Dr. Jeffrey Dill, Dr. Robert Curtis, Dr. Savas

Kaya, Dr. Jundong Liu, Dr. Jeffrey Vancouver, Dr. Sergiu Aizicovici for their inputs,

valuable discussions and accessibility. I would like to thank Dr. Constantinos Vassiliadis

and Mrs. Zofia Starzyk for their precious intellectual and emotional help.

Additionally, I am very grateful for the friendship from my friends in Ohio

University, especially Zhen Zhu, Ning Zhou, Xinming Yu, Nathan Frey, James Graham,

6

Yiming Huang, Haibo He, Mingwei Ding, Yue Li, Beibei Wang, Luyi Chen, Ting Zhou

for the much needed humor and entertainment over the years.

My greatest gratitude goes to my parents, Qingsu Liu and Lijia Men for being the

most wonderful and fun parents, for their faith in me and unending love and support. It

was under their watchful eye that I gained so much drive and strength to tackle the

challenges head on.

Finally, and most importantly, I thank my husband, Yu Hou for his support,

encouragement, tremendous patience and sweetest love that were undeniably the rock

upon which the past nine years of my life have been built. Among all the wonderful

things that happen in my life, having him with me is and will always be the best one.

7

TABLE OF CONTENTS

Page

Abstract ... 3

Acknowledgments... 5

List of Tables .. 10

List of Figures ... 11

List of Abbreviations .. 14

Chapter 1: Introduction ... 17

1.1. Motivations .. 18
1.2 Related works and background ... 20
1.3 Research objectives ... 27
1.4 Research significance ... 30
1.5 Dissertation organization .. 32

Chapter 2: Efficient supervised learning of multi-layered neural networks for machine

learning ... 34

2.1 Introduction ... 34
2.2. Least-squares method and weighted least-squares method 35
2.3 Least-squares-based multi-layered perceptron training with weighted adaptation 38

2.3.1 Training from the desired output back-propagation 39
2.3.1.1 Training algorithm .. 39
2.3.1.2 Weights optimization with weighted least-squared fitting 43
2.3.1.3 Weights optimization with iterative fitting ... 46

2.3.2 Training from input signal forward-propagation .. 48
2.3.2.1 Training algorithm .. 48
2.3.2.2 Signal optimization with weighted adaptation .. 50

2.4 Simulation and discussion .. 52
2.5 Conclusions ... 55

Chapter 3: Optimized approximation algorithm for supervised learning 56

3.1 Introduction ... 56
3.2 Estimation of signal-to-noise ratio figure ... 62

8

3.2.1 SNRF of the error signal .. 62
3.2.2. SNRF estimation for a one-dimensional function approximation 63
3.2.3 One-dimensional SNRF-based stopping criterion ... 67
3.2.4. SNRF estimation for multi-dimensional function approximation 69
3.2.5 Multidimensional SNRF-based stopping criterion .. 71

3.3 Optimized approximation algorithm ... 73
3.4 Simulation and discussion .. 75

3.4.1. Simulation I: one-dimensional function approximation 76
3.4.2. Simulation II: two-dimensional function approximation 80
3.4.3. Simulation III: Puma robot arm dynamics dataset ... 83

3.5. Conclusions .. 89

Chapter 4: A framework of building embodied intelligence .. 90

4.1 Introduction ... 90
4.1.1 Definition of embodiment of embodied intelligence .. 91
4.1.2 Definition of embodied intelligence ... 93

4.2 Designing the embodied intelligence .. 95
4.2.1 Basic requirements for embodied intelligence ... 95
4.2.2 Hierarchical self-organizing memory .. 98

4.2.2.1 Sensory Pathway ... 100
4.2.2.2 Motor Pathway .. 104
4.2.2.3 Goal creation pathway .. 107

4.3 Conclusions ... 108

Chapter 5: Sparse coding in a hierarchical self-organizing memory in unsupervised

learning ... 109

5.1 Introduction ... 109
5.2 Structure and connectivity of the sensory pathway .. 114

5.2.1 Connectivity analysis ... 115
5.2.2 Hierarchical organization ... 116

5.3 Hierarchical self-organizing memory with sparse winner-take-all 121
5.3.1 Data transmission .. 122
5.3.2. Finding the winner network .. 123
5.3.3. Learning in the winner network .. 126
5.3.4 Properties of the winner networks ... 129
5.3.5 Comparison between SWTA and WTA algorithms .. 132
5.3.6 Finding a global winner in the network with SWTA 135
5.3.7 Representational memory capacity of the network with SWTA 139

5.4 Hierarchical self-organizing memory with oligarchy-take-all 145
5.4.1 Finding the oligarchy ... 146
5.4.2 Grouping active neurons using lateral connections 150

9

5.4.3 Finding a group of winners in the network with OTA 153
5.4.4 Representational memory capacity of the network with OTA 155

5.5 Comparing SWTA and OTA .. 158
5.5.1 Efficiency of SWTA and OTA .. 158
5.5.2 Fault tolerance of SWTA and OTA ... 159
5.5.3 Tolerance to loss of neurons of SWTA and OTA ... 161

5.6 Correlation-based information grouping in OTA ... 163
5.6.1. Calculating correlation ... 164
5.6.2. Determining receptive field ... 170
5.6.3. Information grouping using OTA .. 174

5.7 Attention-aided perception in OTA .. 176
5.8 Conclusions ... 183

Chapter 6: Goal creation and goal-oriented behavior for embodied intelligence 186

6.1 Introduction ... 186
6.2 Goal creation system ... 198

6.2.1 Fundamental characteristics of the goal creation system 199
6.2.2 Basic unit of GCS ... 203
6.2.3 Building goal hierarchy ... 206
6.2.4 Relations to reinforcement learning .. 211

6.3 Anticipation and action selection in hierarchical goal creation network 213
6.3.1 Anticipation and attention in GCS hierarchy ... 215
6.3.2 Alternative action selection .. 217
6.3.3 End of unsuccessful action signal .. 220
6.3.4 Goal creation and pain network .. 223

6.4 Goals, subgoals and goal hierarchy .. 225
6.5 Goal-driven learning system ... 227
6.6. Simulation and discussion ... 231

6.6.1 Goal creation system learning scheme in this experiment 234
6.6.2 Reinforcement learning scheme in this experiment 237
6.6.3 Performance comparison ... 240

6.6.3.1. RL scheme performance .. 240
6.6.3.2 GCS scheme performance ... 242

6.7. Conclusions .. 246

Chapter 7: Conclusions and future work .. 248

References ... 252

10

LIST OF TABLES

 Page

Table 2.1 Performance Comparison on Spiral Classification Problem 53

Table 2.2 Performance Comparison on Engine Dynamics Identification Problem 54

Table 3.1 Simulation I: Results Comparison for Optimizing Number of Neurons 79

Table 3.2 Simulation I: Results Comparison for Optimizing Number of Learning Epochs

... 81

Table 3.3 Simulation II: Results Comparison for Optimizing Number of Hidden Neurons

... 84

Table 3.4 Simulation II: Results Comparison for Optimizing Number of Learning Epochs

... 85

Table 3.5 Simulation III: Results Comparison for Optimizing Number of Hidden Neurons

... 87

Table 3.6 Simulation III: Results Comparison for Optimizing Number of Learning

Epochs ... 88

Table 5.1 Sparse Winner-Take-All Algorithm (SWTA) .. 132

Table 5.2 Comparison between SWTA and global WTA .. 134

Table 5.3 Oligarchy-Take-All Algorithm ... 148

Table 6.1 All Sensory Object and Motor Actions ... 232

Table 6.2 All Possible Action and Object Combinations ... 233

Table 6.3 Initialization and Learned Information in the Goal Creation System Scheme 235

11

LIST OF FIGURES

 Page

Figure 2.1. Weighted least-squared fit compared with least-squared fit. 37

Figure 2.2.. A typical 3-layered MLP. .. 40

Figure 2.3. Nonlinear transfer function and training samples’ operating point. 43

Figure 2.4. Comparison between LSF and WLSF. ... 45

Figure 2.5. Training performances of LSMLP-ITF and LSMLP-1 48

Figure 2.6. 1z ’s distances to the nonlinearity output limit ... 51

Figure 3.1. Validation error and generalization error on overfitting detection. 62

Figure 3.2. SNRF estimation for WGN in one-dimensional case 67

Figure 3.3. SNRF estimation for WGN in three-dimensional case 73

Figure 3.4. Simulation I: optimization of number of hidden neurons 78

Figure 3.5. Comparison of approximated function ... 78

Figure 3.6. Simualtion II: optimization of number of hidden neurons 82

Figure 3.7. Approximated function using (a) 2-25-25-1 and (b) 2-35-35-1MLPs 83

Figure 3.8. Simulation III: Optimizing number of hidden neurons. 86

Figure 4.1. Intelligence core with its embodiment and environment. 91

Figure 4.2. Structure of sensory pathways in the HSOM and exemplar activation

pathways. .. 103

Figure 4.3. Sensory-motor coordination in HSOM. ... 106

Figure 5.1. Primary and secondary levels in HSOM. ... 114

Figure 5.2. r-lower level networks combined for higher level feature extraction. 117

Figure 5.3.Three-layer per level structure. .. 118

Figure 5.4. Connectivity of the networks with different numbers of secondary levels. . 120

Figure 5.5. Local winner-take-all circuit. ... 125

Figure 5.6. Winner network. ... 126

Figure 5.7. Effect of the number of input connections on the number of winners in SWTA.

... 130

Figure 5.8. Effect of tolerances in local competition on number of winners in SWTA. 131

12

Figure 5.9. Comparison of connectivity between SWTA and global WTA. 135

Figure 5.10. Original random pattern and its distortion presented to the SWTA. 136

Figure 5.11. Output neuron activities for original pattern. ... 137

Figure 5.12. Output neuron activities for distorted pattern. .. 138

Figure 5.13. Recognition ability of the network with SWTA... 139

Figure 5.14. Distribution of activities of output neurons of SWTA and WTA. 141

Figure 5.15. Similarities among the patterns that trigger the same output neuron. 142

Figure 5.16. Effect of number of input connections per neuron on representational

capacity of a SWTA network. .. 143

Figure 5.17. Distribution of activities of output neurons of SWTA and WTA (Nh=64,

α=4). ... 144

Figure 5.18. Effect of the number of inputs on number of active neurons in OTA. 149

Figure 5.19. Effect of number of lateral connections per neuron on Cluster indices. 153

Figure 5.20. Ten handwritten digit patterns. ... 154

Figure 5.21. Cluster plots of input patterns and their sparse codes found by OTA. 155

Figure 5.22. Computation cost comparison. ... 159

Figure 5.23. Recognition performance comparison. ... 161

Figure 5.24. Tolerance to loss of neurons of OTA. .. 162

Figure 5.25. Input face image. .. 166

Figure 5.26. The 1st pixel’s correlation to the whole image. .. 167

Figure 5.27. The 70th pixel’s correlation to the whole image. 167

Figure 5.28. A series of face images. .. 168

Figure 5.29. Correlation calculated based on a series of face images. 168

Figure 5.30. Correlation calculated based on 1000 images. ... 169

Figure 5.31. The receptive field of a 2nd layer neuron. ... 171

Figure 5.32. Correlations on the 2nd layer. .. 172

Figure 5.33. The receptive field of a 3rd layer neuron. ... 173

Figure 5.34. An image and its intensity-scaled version. ... 174

Figure 5.35. Noise tolerance of OTA with correlated receptive fields. 175

Figure 5.36. The learned face and house images. ... 179

13

Figure 5.37. The superimposed image. ... 179

Figure 5.38. The number of common neurons to the markers before the attention on

house. .. 180

Figure 5.39. The number of common neurons to the markers after the attention on house.

... 181

Figure 5.40. The number of common neurons to the markers after the attention on face.

... 182

Figure 6.1. Actor-critic architecture .. 189

Figure 6.2. Changes in temporal intensity of the primitive pain signals. 200

Figure 6.3. Basic goal creation unit. ... 203

Figure 6.4. Creating the abstract pain signal. .. 207

Figure 6.5. Expanding the hierarchy. .. 210

Figure 6.6. Activated path in the pain tree. ... 214

Figure 6.7. Attention signal generated by the goal center. ... 215

Figure 6.8. Inhibition of an unsuccessful action. .. 219

Figure 6.9. Generation of the unexpected input (UI) signal. .. 222

Figure 6.10. Expectation and actual inputs. .. 222

Figure 6.11. An example pain tree. ... 224

Figure 6.12. EI machine interacts with environment using its three pathways in HSOM.

... 228

Figure 6.13. Goal-driven learning scheme. ... 229

Figure 6.14. Goal creation experiment flow chart. ... 236

Figure 6.15. Actor-critic architecture for RL. ... 237

Figure 6.16. Results from RL experiment. ... 241

Figure 6.17. The average pain signals in 10 trials for RL scheme. 242

Figure 6.18. Pain signals in GCS experiment. .. 244

Figure 6.19. Action selections in GCS experiment. .. 245

Figure 6.20. The average pain signals in 10 GCS simulations. 245

14

LIST OF ABBREVIATIONS

AC:

ACT-R:

AIC:

AN:

BDI:

BP:

CI:

CN:

CPD:

CPU:

EI:

EUA:

fMRI:

FPGA:

FSM:

GCS:

GOMS:

HRL:

HSOM:

HTM:

kWTA:

Actor Critic

Adaptive Control of Thought – Rational

Akaike’s information criterion

Action Network

Beliefs, Desires and Intentions

Back-propagation

Clustering Index

Critic Network

Conditional probability distribution

Central Processing Unit

Embodied Intelligence

End of Unsuccessful Action

Functional Magnetic Resonance Imaging

Field Programmable Gate Array

Finite State Machine

Goal Creation System

Goals, Operators, Methods and Selection Rules

Hierarchical Reinforcement Learning

Hierarchical Self-organizing Memory

Hierarchical Temporal Memory

k-Winner-Take-ALL

15

LSF:

LSM:

LSMLP

LSMLP-ITF

LTM:

MDL:

MLP:

MPS:

MSE:

NN:

OAA:

OTA:

PET:

PRS:

RL:

SNRF:

SOAR:

SOM:

SVD:

SWTA:

UI:

VLSI:

Least-squares fitting

Least-squared Learning Method

LS-based MLP training algorithm

LS-based MLP training with iterating fitting

Long Term Memory

Minimum Description Length

Multi-layer Perceptron

Motive Processing System

Mean Squared Error

Neural Networks

Optimized Approximation Algorithm

Oligarchy-take-all

Positron Emission Tomography

Procedural Reasoning System

Reinforcement Learning

Signal-to-noise Ratio Figure

State, Operator, Application, Result

Self-organizing Map

Singular Value Decomposition

Sparse Winner-Take-All

Unexpected Input

Very Large Scale Integrated Circuit

16

WGN:

WLSF:

WTA:

White Gaussian Noise

Weighted Least-Squares Fitting

Winner-Take-All

17

CHAPTER 1: INTRODUCTION

Even though artificial intelligent machines have been portrayed in fiction and motion

pictures for so many years and they have been a research topic for decades, they are still

one of the great science problems not fully tackled. Machine intelligence has become a

scientific discipline, focused on providing solutions to real life problems. Examples

include natural language processing, search engines, planning, prediction, decision

making, and handwriting, speech, and facial recognition etc. Although the existing

technologies enable the machines with great computational power, many of the problems,

which are easily dealt with by human intelligence, are still difficult, expensive or even

impossible to handle by existing machines. Machines are still far from reaching the level

of human intelligence. Therefore, it would be promising to build the machines using

approaches insipired by brain intelligence.

Without complete understanding of the mechanism and architecture of brain

intelligence, it is hard or impossible to build the machine wshich can achieve what human

can do. Discoveries in the fields of neuroscience, medical scanning and imaging,

anatomy, physiology and psychology on the human brain can all provide beneficial

information and important insights for building the intelligent machine. For example,

using functional Magnetic resonance imaging (fMRI) technique, it is possible to make

repeated measures of brain responses in different areas. It can provide information on the

temporal sequence of information processing and activation sites in brain areas, which

can support or be interpreted by anatomical, neurobiological, or psychological studies.

Present and future research in related areas, with interdisciplinary studies can begin to

18

provide a functional model of the human brain and motivate the design of machine

intelligence. And hopefully, researchers in engineering and computer science will find

very efficient ways to build the intelligent machines using structural self-organization,

modern electronics, and nano-technology. The power of machine’s intelligence may be

extended into new levels with many successful applications in areas such as pattern

recognition, language recognition, and intelligent mobile devices, etc. In addition, this

new area, where modern technology can be applied, may create a big industry through

exponentially growing demand for electronic hardware and may create new job markets

for generations to come. We will move from information technology of today to

knowledge technology tomorrow, where machines we use and interact with will be

intelligent.

1.1. Motivations

Although there is no uniform definition of intelligence, after decades of research on

machine intelligence we can list capabilities or the features which the intelligence

machines are desired to have. They are desired to have large associative and

representative memory capacity, be able to conduct efficient, continuous and goal-

oriented learning and action, predict future events and make optimal plans, while building

a model of the environment in which they are situated and with which they interact.

It has been widely accepted that behavior should not be a major measure of

intelligence or the objective for building intelligent machines [Haw 04]. Instead, the

significance of being situated and ability to interact with the environment motivated the

19

concept of embodied intelligence (EI) [Bro 91] [Pfe 99]. Embodied intelligence (EI) has

developed into a multidisciplinary field, including biology, neuroscience, electrical

engineering, robotics, biomechanics, material science, and dynamic systems. It focuses

on understanding biological intelligent systems, extracting general principles of

intelligent behavior and applying this knowledge to design robots and intelligent devices.

Learning is a critical element of intelligence. Human learning is an active process.

Human beings accumulate knowledge through interaction with the environment. Even in

supervised learning, we cannot learn without conducting trial-and-errors and likely

motivated by certain goal-oriented behavior. The actions we take affect the environment

and the responses from the environment help us to build perceptions and learn skills.

Unsupervised learning, which builds representations for the input information from the

environment, is not an involuntary process and should be only conducted when the

perceptual objects are meaningful for human. In addition, reinforcement learning that

occurs when responses from the environment are the only directional information

available is another major aspect of the human learning. The agent explores different

actions and learns which actions are desirable and which are not guided by the

reinforcement signal from external environment. In general, the machine interacts with its

environment and gradually builds the model of the environment and gains and knowledge

and skills through supervised, unsupervised and reinforcement learning.

In this work, a framework of designing embodied intelligence (EI), along with the

essential elements of EI and their design principles, is proposed. Hierarchical self-

organizing systems in the form of networks made of neurons are proposed as the essential

20

elements for building machine intelligence. Considering all three types of learning

involved, the design concepts and principles are proposed, and various issues involved

are presented and studied.

The framework of EI proposed in this work enables the desired capabilities for an

intelligent machine to have, including efficient and continuous learning, large memory

capacity, goal-oriented perception, optimal action selection, and future events prediction.

1.2 Related works and background

During the research on intelligence, scientists normally use various tests and

measures to compare the levels of intelligence and differentiate between intelligence of

humans and other species. In fact, scores on various tests for (human level) intelligence

was used as a substitute for its definition. Complex skills and behaviors were used to

define how intelligence manifests itself. This was a result of poor understanding of what

is needed to create intelligence. Such an approach was inconsistent, because a machine

that was obviously not intelligent could still satisfied certain tests, while failed in others.

R. Brooks [Bro 91] [Bro 02], the father of embodied intelligence, proposed to design

an EI system through layers of simple sensory-motor coordinations built on finite state

machines (FSM). In his subsumption architecture, higher levels are built upon the lower

levels, subsuming the lower levels functionality. In subsumption architecture, each layer

consists of asynchronous modules that send messages to each other. Each module is an

augmented FSM. Inputs to such modules can be suppressed and outputs inhibited by

signals from other modules.

21

Although subsumption architecture may be an efficient design approach to building

robots capable of complex behavior, it cannot lead to intelligence. A designer must be

involved in developing each FSM. These FSMs do not know how to modify their own

structures to handle new tasks. There is no self-organization and no learning. Moreover,

since new tasks may not be compatible with old ones, modification of the machine

behavior to incorporate new tasks may become extremely difficult. Very quickly

complexity exceeds understanding of the machine’s operation by the human designer,

who no longer understands how to add a new layer of functionality.

R. Pfeifer [Pfe 99] modified the subsumption architecture approach to include self-

organization and the emergence of necessary links between lower-level processes that

control sensory-motor coordination. He also added a value principle to his design

approach, requiring a mechanism for self-supervised, perpetual learning that employs the

principle of self-organization. The value system acts as a teacher telling an agent what

actions are good for its objectives. Memory of the recent history is necessary to

implement this value system. This memory is accomplished by time-averaging neuron

activities. But as Sporns and Edelman pointed out [Spo 93] “the issue of value

constraints and their number present one of the greatest future challenges to selectional

theories of brain function.”

Earlier attempts to design working models of intelligence include, for instance,

GOMS [Car 83], SOAR [New 90] [Nas 04], and ACT-R [And 93] software systems.

GOMS (Goals, Operators, Methods, and Selection Rules) is a software system for

modeling and describing human performance that provides a framework to analyze

22

human computer interactions. Goals, that a user is trying to accomplish, are organized

hierarchically. Methods describe sequences of basic operations used to accomplish a

goal. Selection rules describe which method should be used in a particular situation. It

uses a production-system representation of human procedural knowledge required to

accomplish production goals, and it gives good quantitative predictions of performance

time and learning.

SOAR (State, Operator, Application, Result) is a cognitive goal-oriented architecture

that develops a minimal set of rules to support intelligent behavior in a specified

environment. It uses symbolic knowledge and knowledge-based symbolic reasoning to

solve problems. It creates subgoals even with incomplete or inconsistent knowledge.

SOAR can also generate rules for the implementation of goals using a process called

chunking. The SOAR program learns using explanation-based learning, macro-operator

learning, strategy acquisition, and learning by instruction.

ACT-R (Adaptive Control of Thought - Rational) is a model of the human cognitive

process focusing on learning and problem solving. Cognitive tasks are performed using

if-then production rules, with working memory (declarative or procedural). ACT-R uses

pattern matching to match conditions for its production rules and conflict resolution to

decide which rule applies. Using ACT-R requires developing a domain-specific

knowledge model of the cognitive task for a specific application. None of these three

systems use self-organization, unsupervised learning, or create a knowledge base for its

actions with the environment.

23

A practical effort to design structural and algorithmic properties of the neocortex was

undertaken by J. Hawkins from Numenta Inc. [Haw 04]. Numenta develops software

code for Hierarchical Temporal Memory (HTM). HTM uses a hierarchy of spatio-

temporal associations and learns complex goal-oriented behaviors. The information, in

the form of probability distributions, passes up and down the hierarchy to represent the

sensory inputs and to make predictions. It uses a combination of unsupervised and

supervised learning to make associations. In the authors’ opinion, future HTM may yield

machines that exceed human level of performance in cognitive tasks.

Human perception building and cognition are very efficient processes. Typically, it

takes less than one second for sensory information to be obtained, perceived, processed

and acted upon. Since neurons in the human brain take several milliseconds to fire, a

typical cognition task takes less than 100 sequential pattern-processing steps. This

recognition performed within such a short period indicates the high efficiency of human

perception. Such recognition, along with the corresponding action, is a very fundamental

task for a human; nonetheless, it is already quite complicated for existing machines.

Furthermore, the way that the brain stores a pattern in its hierarchical memory of the

neocortex is very different from the way a computer does. Neurons in the human brain

self-organize to store the patterns which the brain receives. Humans utilize their senses

to build a perception of the environment and activate appropriate motor neurons to apply

actions. This enables a human to build a model of the world in a fascinating way. They

use this model to quickly recognize patterns in order to respond to the external stimuli

and interact within the environment. They also use this model to build expectations of

24

future events, accomplish efficient planning, and do logical thinking. Up to date, there

are several research findings on building a hierarchical system for intelligent machines

[Lee 03] [Geo 05a] [Geo 05b]. They are mainly focused on information processing from

sensory input (visual cortex) through hierarchical memory to upper levels of abstract

cognition. In this way, an image coming from the visual cortex is stored in the form of its

characteristic features instead of full image details.

The network made of processing units, or called neurons, in the form of feed-forward

multi-layer perceptrons (MLP) have appeared and have been utilized as a powerful

function approximation and adaptive filtering tool as early as 1950s [Ros 58]. A lot of

research has been done using it as the adaptive component in a learning system [Mil 90].

Basically, an MLP consists of the input and the output layer and several hidden layers,

and the hidden layers consist of a number of hidden neurons. All the layers are

connected through trainable, one-directional interconnection weights. The neurons in

hidden layers apply a nonlinear transformation to input data. The nonlinear function

implemented in the neurons act as basis functions, and the interconnection weights

combine the nonlinear basis functions in a complex way. The network weights can be

adjusted during supervised learning based on the training data. So, in this sense, the

weights contain information stored in a neural network. Even though using only MLP

can’t realize any intelligence itself, a network with nonlinear basis functions, like MLP, is

a powerful tool in function approximation. Therefore, it will be very useful for building

hierarchical memories in supervised learning scenarios.

25

Reinforcement learning (RL) [Sut 98] enables the agent to behave in a goal-oriented

way and to adapt to the changing environment using externally administrated and

measurable reward system. Provided with the specific goal, the agent ought to find an

effective way to achieve it following the reward/punishment signals received from the

environment.

Typically, RL algorithms treat all the experiences equally in the knowledge building.

However, during the exploration, the agent experiences a lot of random states and

executes random actions which do not affect its goal achievement. In human intelligence,

if the states or actions are not helpful for the goal achievement, corresponding

representations and skills should not be built. In addition, the goal-relevant states should

be more salient to the agent. The perceptions and actions are activated selectively by the

brain with attention focused on those observations and actions that are related to human

objectives.

RL may require long learning periods and equally long periods of time to adopt to

new requirements (new goals), since all the skills that agent developed in learning one

task are specialized to this task only. It is obvious that learning complex tasks can be

facilitated if simpler tasks are learned first, and the acquired knowledge is reused to

advance both understanding and skill levels. However, there is no clear mechanism of

reusing prior knowledge to learn new skills. With each new externally formulated and

monitored goal, the machine experiences new learning phase that does not guarantee

protecting prior knowledge or skills.

26

In the existing models for designing the intelligent machines, the goal is defined by

designers and is given to the learning agent. Setting a goal makes the machine specialize

to perform specific types of operation. While this may be a useful limitation from a

utilitarian point of view, such a limitation will make the machine less intelligent. In such

cases, the agent is not able to create its own goals or find the sub-goals in order to

accomplish a complicated task. In fact, we would argue that an agent who only follows

externally set goals or subgoals would not be able to develop some higher level cognitive

abilities such as intentional learning, deliberate thought, creativity, and consciousness.

One may ask, why is it important that intelligent machine defines its own goals

rather than relays only on the goals defined by a designer? If a machine only follows an

externally set and monitored goal, it is not equipped to represent complex goals, since

proper interpretations of such goals require complex representations of the environment.

A machine needs a goal to build useful representations, but it also needs those

representations to define goals.

A new learning paradigm is desired in EI in which learning is organized bottom up

from the simplest to more complex representations, skills, and internally created goals.

In such systems, simple external rewards can only be directly applied to satisfy the most

primitive goals. Since humans and animals create their own goals, it is desirable for the

intelligent machines to be able to do so as well. The goal creation mechanism may be

one of the most important elements of machine intelligence. Thus it will be one of the

fundamental requirements for EI.

27

1.3 Research objectives

Motivated by the above insight, this work intends to deploy the following design

principles. Firstly, the memory-based intelligence is assumed to be one promising

framework to implement intelligence in human brain so that hierarchical self-organizing

memory systems are essential for deploying the machine intelligence. Supervised,

unsupervised and reinforcement learning are all essential aspects of learning and should

all be considered and utilized in building machine intelligence. During supervised

learning when the outputs of the network are given, the network is trained as in model

approximation, thus the efficiency and optimality of the solutions are the major concerns.

However, determination of the learning accuracy and the proper parameters of the

learning network, including its structure or learning period, are the major challenges,

which make the design and use of the network more of an art than a science [Xia 05].

Thus, they should be justified quantitatively to avoid overfitting defined as building too

complex models to approximate the input data. In the unsupervised learning, where the

neuronal representations are not defined, we need a mechanism to enable a large capacity

self-organizing memory to build the representations with great fault tolerance.

Secondly, it should be noted that the hierarchical memories, referred in the memory-

based intelligence, are not only for passive information processing and pattern storage,

but for continuous and active learning. Thus an agent that knows how to handle one

problem in a set environment but cannot learn new skills or adapt to new environment

should not be considered intelligent. Continuous and active learning requires not only

information storage but also the memory resources management, so that only the

28

important memories are retained. Therefore, a mechanism is required that will act as the

trigger for the agent’s memory management, active interaction and continuous learning.

Thirdly, we require that an intelligent machine has a built-in mechanism to create

goals for its behavior, and we desire to build a goal creation system based on hierarchical

self-organizing learning memory. It uses a simple and uniform structure and interacts

with the sensory and motor functions of the memory. In a sense, goal creation should

result from the machine’s active interaction with its environment, by perceiving successes

or failures of its actions.

Following the EI framework proposed in this work, the objective of this dissertation

will include several aspects. Firstly, we will propose and study efficient learning

methods for hierarchical multi-layered network structure in the supervised learning

applications. When multi-layered network structure, for instance, in the form of MLP, is

used for supervised learning, a measure is proposed to quantify underfitting or overfitting

of a network in a given learning problem. An algorithm based on such measure should

be able to recognize the occurrence of overfitting by examining the training error without

using a validation set and show where the process can be safely stopped so that the

optimal structure of the MLP for a given problem is found.

To build working models of intelligent machines, an arbitrary and utilitarian

definition of intelligence is adopted in this work and is related to the concept of embodied

intelligence suggested but not defined in [Bro 91] [Pfe 99]. The definition is general

enough to characterize agents of various levels of intelligence including human. It is our

29

aim to base the design concepts of the embodied intelligence on a minimum set of

requirements and mechanisms from which all traits of intelligence can be derived.

In the proposed learning paradigm, the embodied intelligent (EI) machine learns

predominantly in a deliberate, continual, and goal-oriented manner. Basic requirements

for EI are proposed with the detailed models, including hierarchical self-organizing

memory (HSOM) and a goal creation system (GCS). According to different functions for

different parts, the HSOM can be divided into three pathways: sensory pathway, motor

pathway, and goal creation pathway. We will show how these elements of EI can be

implemented in a hierarchical, self-organizing memory made of neurons.

The mechanisms to build object representations on HSOM in unsupervised learning

are proposed and are studied to ensure the large memory storage and robust recognition

capability. Other major types of memories (sequential long term and short term

memories) related to this concept of embodied intelligence are studied elsewhere [Sta

07b].

The machine needs to organize its learning to acquire useful knowledge based on its

goals and create goals for its behavior using a built-in mechanism. In GCS, also as the

goal creation pathway in HSOM, external rewards can only be directly applied to satisfy

the most primitive goals. The creation of goals on various abstract levels is stimulated by

the primitive goals using the GCS’ self-evolving structure. GCS is responsible for

evaluating actions in relation to its goals, stimulating the learning of useful associations

and representations for sensory inputs and motor outputs. The goal creation pathway

finds the ontology among sensory objects, makes connections among the actions and

30

objects, and creates the needs and affects the agent’s attention. Therefore, the goal

creation pathway stimulates the interaction among the three pathways (sensory, motor,

and goal creation) on various abstract levels. It facilitates the growth of the hierarchy

involving sensory representations, motor abilities and abstract goals. Such hierarchy

includes all ingredients necessary to develop intelligence, and to motivate a machine to

act on its own in its environment.

1.4 Research significance

By understanding the way the human brain remembers and builds the model of the

world, and by implementing a similar mechanism in machine learning using modern

technology, the power of the machine memory can be significantly improved. An

intelligent machine with hierarchical self-organizing learning systems will extend the

ability of machines into a brand new stage, and the artificial intelligence will have many

more successful applications ahead, which can greatly affect and change our life. The

significance of this work is stated as follows.

It is required to design a hierarchical network that is able to perform efficient

supervised learning when the desired outputs of the network are given. In addition, it is

required to have a scientific way to adjust the desired learning accuracy and to determine

proper network structure, so that useful information is extracted using minimum cost

without overfitting.

It is also required that the designed hierarchical network is able to perform

unsupervised learning when desired outputs are not given. The object representations

31

should be built in a predictable way and densely-coded input information should be

effectively and efficiently processed leading to invariant representations of the observed

objects. The memory should be able to store a large number of input patterns and have

robust recognition capabilities.

It is useful and promising to equip the hierarchical memory with the appropriate

mechanisms of reinforcement learning (RL). On one hand, the machines need

information from the environment to build the ontological relations among perceived

objects and their relations to various actions. On the other hand, it is very difficult to

deliver enough information using the typical RL scalar reward without a hierarchical

memory organization to deal with the representation and implementation detail.

Combining them will facilitate hierarchical reinforcement learning so that a complex task

can be divided into subtasks or sequential steps and execution as well as supervision of

these subtasks will be accomplished by the agent itself.

It is important and meaningful to define the uniform framework of building EI and

detailed design requirements and principles. Building structural and functional

organization of EI has a long way to go in order to achieve human level intelligence and

to benefit from the developing technologies. Having the promising and uniform

framework and design principles prepared, the future work will be done more

consistently.

32

1.5 Dissertation organization

The rest of the dissertation is organized as follows.

In Chapter 2, efficient and optimal training algorithms are presented for multi-

layered network in the supervised learning. The training methods can not only save the

training time and improve the training accuracy, but also they can be expanded into a

network structure with various types of connections. To avoid overfitting and determine

proper network structure, an optimized approximation algorithm (OAA) with a novel

quantified criterion is proposed in Chapter 3. The OAA procedure utilizing a novel

stopping criterion based on signal-to-noise ratio figure is demonstrated and validated

using both simulated and benchmark data on optimizing the network structure and

learning periods.

The framework of building EI, including the definition of EI, and the needed

elements, are proposed in Chapter 4. Principles of designing an embodied intelligence

with hierarchical self-organizing memory, sensory, motor and goal creation pathways are

discussed.

Based on the characteristics presented for hierarchical self-organizing memory in

Chapter 4, Chapter 5 presents the model for building object representations in a

hierarchical self-organizing memory (HSOM) with sparse connectivity in unsupervised

learning. The effective learning methods and learning abilities are presented. The

memory capacities and fault tolerance of such memory are studied. In addition, the

mechanism of attention-aided perception on HSOM is presented. Chapter 6 discusses

how goals are created based on a hierarchical self-organizing structure for machines’

33

goal-oriented behavior, how the relations among objects are learned, how the action is

selected according to the goal, how the value system required in a typical RL is

embedded in such goal-creation system and how anticipation is generated. The

dissertation is concluded in Chapter 7 with future works. Figure 1.1 shows the

organization of the dissertation and relations among different chapters.

Reinforcement
Learning

Supervised
Learning

Unsupervised
Learning

Learning Memory

Embodied Intelligence

Goal Creation

Efficient
learning
method

Optimized
Approximation

algorithm

Chpt 2

Chpt 3

Definition
Design principles
Required elements

Chpt 4

Sparse coding to build
object representations

Chpt 5

Goal hierarchy

Action selection

Anticipation & Attention

Relation to RL

Chpt 6

Figure 1.1. Organization of the dissertation.

34

CHAPTER 2: EFFICIENT SUPERVISED LEARNING OF MULTI-LAYERED

NEURAL NETWORKS FOR MACHINE LEARNING

2.1 Introduction

In supervised learning, the input and the output for a hierarchical network structure

are given. To achieve a proper mapping between the given set of input and output, the

interconnection structure and the connection weights should be adjusted. The multi-

layered networks in the form of feed-forward multi-layer perceptrons (MLP) have

appeared and have been utilized as a powerful learning model for supervised learning

problems [Ros 58]. The well-known and widely appreciated error back-propagation (BP)

algorithm was proposed by Rumelhart [Rum 86a]. But the slow convergence speed due

to its gradient-descent nature was a concern of many researchers for the last decade [Erd

05]. It takes many iterations to optimize, and it is very easily trapped in local minima. A

global search procedure and a fast training method are highly desired for efficient and

effective training of MLP, or networks with a similar multilayer structure.

Hebbian learning [Heb 49] as a biologically plausible learning algorithm is widely

used in various neural networks. Instead of the supervised learning, Hebbian learning is

more suitable for unsupervised learning when the desired network output is unknown and

self-organizing is needed. Each new pattern leads to a training, which produces a change

of the connection weights. In order to obtain the optimal weights to achieve a desired

training performance, a large number of epochs and training data are usually needed. In

addition, since Hebbian learning is a type of unsupervised learning, the change of weights

35

may go unbounded. Variant versions of Hebbian learning were been proposed for

different considerations and to make it more practical, for example, Oja's rule [Oja 82]

and Generalized Hebbian Algorithm [San 89].

Least-square fitting (LSF) is a method to determine the values of unknown

parameters in a statistical model by minimizing the sum of squared fitting residues (the

difference between the predicted and given values). In the linear LSF, the optimal values

of unknown parameters can be obtained efficiently. When the samples in the given

dataset have different importance in determining the solution, the weighted version of

least-squares fitting (WLSF) can be used. In the learning of multi-layered networks, the

calculation used in LSF or WLSF can be applied in the optimization of the connections

weights between any two layers or desired hidden signals. To introduce a uniform

notation for the later discussion the LSF and WLSF are stated in the following section.

2.2. Least-squares method and weighted least-squares method

For a one-dimensional problem, with a given dataset {xi, yi} (i=1, 2,…n), the

unknown function f can be approximated, for example, using polynomials of order B via

LSF, so that y=f(x), as shown in (2.1).

XAY
a

a
a
a

x

x

xx

xx

y

y

B

B
n

B

nnn

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

 as

...
...

...1

............

...1
...

2

1

0

1

2

2
111

 (2.1)

36

In linear regression, the unknown coefficients a0 through aB can be obtained using

QR decomposition or singular value decomposition (SVD) as in (2.2).

YXA 1)(−= (2.2)

The function value y is estimated for any input x as,

∑
=

=
B

j

j
j xay

0
. (2.3)

Using polynomials for function approximations could be easy and straightforward.

In a typical function approximation, the basis functions could be, for instance, a set of

orthogonal functions, Walsh functions, sinusoidal waves or sigmoid functions.

In certain cases, some samples from the training dataset are relatively more

important and should be weighted more heavily than other ones in the function

approximation. In such cases, weighted least-squares fitting (WLSF) is applied and the

weighting terms can be arbitrarily determined by the user considering the characteristics

of the problem that they are facing. Assuming),...2,1(nii =λ represent the weighting

terms applied to n samples, the WLSF is expressed as follows.

YXA

y

y

a

a
a
a

x

x

xx

xx

nn

B

n
B
n

B

nnnnn

⋅Λ=⋅Λ⇒

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅

⋅

λ

λ

λ

λ

λλλ

λλλ
...

...
...

...1

............

...1 11

2

1

0

11

2

1
2
1111

 (2.4)

37

where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Λ

nλ

λ
λ

0
...

0

2

1

. Due to the weights applied to the given samples, the

approximated function obtained from WLSF will fit into given data to different degrees

of accuracy according to the weighting terms.

The following example in Figure 2.1 illustrates WLSF and compares it with the LSF.

0 0.5 1 1.5 2 2.5 3
-10

-5

0

5

10

15

t
(a)

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

t
(b)

error signal of LSF
error signal of WLSF

WLSF
10sin(t) with WGN
LSF

Figure 2.1. Weighted least-squared fit compared with least-squared fit.

(a). Approximated functions from WLSF and LSF.
(b). Absolute error signals from WLSF and LSF.

38

In this example, the training data set {X, Y} are obtained from a sine wave added

with white Gaussian noise. The weighting terms adopted in this example are

)...,2,1(nt
n

t

t ==
αλ , (2.5)

where we can define nn =α . A 2nd order polynomial is used to approximate the

function. The function is obtained using both WLSF and LSF, shown in Figure 2.1 along

with the corresponding absolute error.

It is noted from Figure 2.1 that WLSF fits the function more to the samples with

larger value of t. And, by observing the absolute error signals from LSF and WLSF, we

can find that absolute errors from WLSF are smaller for those samples than the

corresponding absolute errors from LSF.

2.3 Least-squares-based multi-layered perceptron training with weighted adaptation

The training of MLP can be performed using the concept of LSF to find the global

optimal solution for a given problem. The algorithm finding MLP weights using linear

LSF was presented in [Erd 05] as an initialization method, based on which further back-

propagation (BP) training can be applied. In fact, we can demonstrate that a properly

applied algorithm can be an effective training method for MLP even without the

refinement of weights by BP algorithm.

Given the inputs and desired outputs in the training samples, the training procedure

for MLP can be carried out in two fashions: back-propagation starting with the

desired output signal and forward-propagation starting with the given input signal.

39

In this work, the least-square-based MLP training method is introduced. Considering the

distribution of the training samples and the type of nonlinearity of a MLP transfer

function, weighted adaptation can be applied at various steps of the LS-based MLP

training to improve the training performance.

2.3.1 Training from the desired output back-propagation

2.3.1.1 Training algorithm

The LS-based MLP training algorithm in [Erd 05] consists of two major steps:

propagation of the given desired outputs in the training data backwards through layers

and then optimization of the weights between layers. To back-propagate the desired

outputs, random weights and biases are initially used to calculate the signals on each

layer. Once the signals on the second layer are obtained based on the desired output

information, the weights and biases between the first and the second layer can be

optimized using the given input signals on first layer and signals on the second layer by

LSF. Then the signals on the second layer are re-evaluated based on the given inputs and

the optimized weights and biases. After that, signals on the second and third layers are

used to optimize biases and weights between the second and the third layer and the

signals of the third layer are re-evaluated. The optimization of weights and biases and

recalculation of the signals on the hidden layers are conducted in a feed forward fashion

(moving from lower to higher layers) until the output layer is reached.

Specifically, in a 3-layered MLP shown in Figure 2.2, the inputs)(Nninxx ×ℜ∈ and

desired outputs)(Nnoutdd ×ℜ∈ are given in the training data. The weights and biases

between the input and hidden layer are denoted as)(11 inhidden nnWW ×ℜ∈ and

40

)(111 ×ℜ∈ hiddennbb . The weights and biases between the hidden and output layer are

denoted as)(22 hiddenout nnWW ×ℜ∈ and)(122 ×ℜ∈ outnbb . The signals on the hidden layers

before and after the nonlinearity are denoted as y1, z1),(111 ×ℜ∈ hiddennzy . The output

signals before and after the output layer are y2, z2),(122 ×ℜ∈ outnzy . They are calculated

as

)(111

111

yfz
bxWy

=

+=
 (Nnhiddenzy ×ℜ∈11,), (2.6)

)(222

2122

yfz
bzWy

=

+=
(Nnoutzy ×ℜ∈11,). (2.7)

z2y2

d

W1

y1 z1

b1

W2

x

b2
f 1f 1

f 2f 2
f 1f 1

f 1f 1

f 1f 1

f 2f 2

Figure 2.2.. A typical 3-layered MLP.

In (2.6) and (2.7), f 1 and f 2 are transfer functions of neurons on the hidden and

output layers, whose inverse functions are denoted as (f 1) -1 and (f 2)-1, respectively. The

41

transfer functions can be either linear or nonlinear, for example, the hyperbolic tangent

sigmoid transfer function defined as

y

y

e
ez 2

2

1
1

−

−

+
−

= (2.8)

The basic LS-based MLP training algorithm (LSMLP-1) is described based on a 3-

layered MLP as follows. The procedure was discussed in [Erd 05] and is restated here for

clarity and further discussion.

Note that this algorithm can be easily extended into MLP with more hidden layers.

LSMLP-1 Algorithm:

Step 1). Initialize the weights (W1 and W2) and biases (b1 and b2) in the network.

Step 2). Back-propagate the desired output signals d through the output layer.

Calculate the signal on the output layer before its transfer functions, d̂ , as

)()(ˆ 12 dfd −= . (2.9)

Step 3). Based on the weights W2 and bias b2 between the hidden and the output

layer, calculate the output signal z1 on the hidden layer using LSF to satisfy

dbzW ˆ212 =+ , as in (2.10), where [] 122 −bW represents the pseudo-inverse of the

matrix.

[] dbW
z ˆ
1

122
1

−
=

⎭
⎬
⎫

⎩
⎨
⎧

 (2.10)

Step 4). If f 1’s output is limited within a certain range, the signal 1z should be

linearly scaled into that range. Back-propagate the signals on the hidden layer through the

neurons’ transfer function to obtain the hidden neurons activation signals, as

42

()111 zfy −= . (2.11)

Step 5). Optimize W1 and b1 using LSF to satisfy 111 ybxW =+ , as

[]
1

111

1

−

⎭
⎬
⎫

⎩
⎨
⎧

=
x

ybW . (2.12)

Step 6). Evaluate y1, z1using the new values of the first layer weight W1 and bias b1,

as in (2.6).

Step 7). Optimize W2, b2 using the LSF to satisfy dbzW ˆ212 =+ , based on 1z from

Step 6) and d̂ from Step 2).

[]
11

22

1
ˆ

−

⎭
⎬
⎫

⎩
⎨
⎧

=
z

dbW . (2.13)

Step 8). Evaluate y2, z2 using the new values of the weight W2 and bias b2, as in (2.7).

Then calculate the normalized value of mean squared error (MSE) between obtained

output z2 and desired output d, as in (2.14).

() ()[]
][

22

ddE
zdzdEJ T

T
−−

= . (2.14)

This is the end of one iteration of the algorithm. The procedure from Step 2) through

Step 8) can go through several iterations until the resulting MSE does not vary much

anymore.

The set of the resulting weights and biases obtained during these iterations that can

achieve the best results will be recorded as the final result. Since in this procedure, the

desired output is propagated back through layers and uses the LSF to obtain the optimal

weights and biases, it yields a single global optimum solution for all stages of the applied

43

procedure. It has been tested that this algorithm usually takes 2 or 3 iterations to get

stable results. It enables the fast learning of MLP, and avoids local minima

characteristics of BP. As a result, it can handle several learning benchmarks, while BP

training cannot.

2.3.1.2 Weights optimization with weighted least-squared fitting

In LSMLP, the signals are propagated backwards through the nonlinear transfer

functions for weights optimization, as discussed in Step 5) and Step 7). If a sample’s

operating point (neuron’s input signal value) on the nonlinear function is close to the

saturation point, the variance caused by an error on this sample before the nonlinearity

results in a small variance after the nonlinearity. As shown in Figure 2.3, the error before

the nonlinearity Δy of sample A (whose operating point is at A) results in a larger error Δz

after the nonlinearity than sample B’s with the same amount of error Δy.

Δy
Δy

Δz

Δz y

z

A

B

Figure 2.3. Nonlinear transfer function and training samples’ operating point.

44

Therefore, the samples far from the saturation will have larger effect on the MSE

after the nonlinearity, and should have larger weighting terms when the weights and

biases are optimized to satisfy 111 ybxW =+ , as in Step 5). The weighting terms should

reflect the nonlinear function sensitivity to changes in the sample’s value. For example, a

sample weighting term jiλ can be set to derivative value of the neuron’s transfer function

computed at the input signal value jiy , as in (2.15), where ′1f denotes the derivative of

1f .

())...,2,1,...,2,1(1 Ninjyf hiddenjiji ==
′

=λ , (2.15)

In such case, the weights and biases between input and the hidden layer are calculated as,

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Λ=

Λ=Λ
⎭
⎬
⎫

⎩
⎨
⎧

jN

j

j

hidden

jjj

nj

y
x

bW

λ

λ
λ

0
...

0

,...,2,1

,
1

2

1

1
:

11
:

. (2.16)

For example, if the neurons use the hyperbolic tangent transfer function, the

weighting terms expressed through derivatives are

)1)(1(
1
11)(

2

2

2

zz
e
e

dy
dzy y

y

−+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

−== −

−

λ . (2.17)

Notice that such defined weights are always positive and when z approaches ±1 (that

corresponds to large y and saturation region of nonlinear function), this weight

45

approaches 0. The results from LSF and WLSF for weights optimization are compared in

Figure 2.4. Before the nonlinearity, approximations from LSF in Figure 2.4 (a) show

closer match between the given value and the approximated values over all the samples

than that from WLSF in Figure 2.4(c). However, after the nonlinearity, norm of error

from WLSF is 6.4717 and the error norm from LSF is 7.1324, which demonstrates better

quality of the fit due to minimization of error in the sensitive region.

Therefore, WLSF can be used in Step 5) and Step 7) to optimize the weights and

biases to reduce the output error norm after nonlinearity transformation.

0 50 100 150 200 250
-20

-10

0

10

20
before the nonlinearity

0 50 100 150 200 250
-1

-0.5

0

0.5

1
after the nonlinearity

0 50 100 150 200 250
-10

-5

0

5

10
before the nonlinearity

0 50 100 150 200 250
-1

-0.5

0

0.5

1
after the nonlinearity

given value
learned value

given value
learned value

given value
learned value

given value
learned value

Least-squared fit

Weighted
least-squared fit

(a) (b)

(c) (d)

Figure 2.4. Comparison between LSF and WLSF.

46

2.3.1.3 Weights optimization with iterative fitting

After a weight matrix between certain two layers is calculated, the signals can be

propagated to the output layer of the MLP to find out what the final error signal will be.

For a 3-layered MLP, when W1 and b1 are optimized, the mismatch between the desired

signal y1 on the next layer and the actual one, denoted as 1e , is obtained as,

)(1111 bxWye +−= . (2.18)

Due to 1e , the error signal on the output layer before the transfer function will be

[]211122)(ˆˆ bbxWfWdydeout ++−=−= . (2.19)

In order to reduce oute at the current step, W1 and b1 are further adjusted after the WLSF.

The signals on the output layer y2 and oute can be expressed as

[])(...)()(ˆ
)(ˆˆ

1
:

12
:

1
:2

12
2:

1
:1

12
1:

1122

xWfWxWfWxWfWd

xWfWdyde

hiddenhidden nn

out

+++−=

−=−=
, (2.20)

where 1
:iW denotes the ith row of W1, and 2

: jW denotes the jth column of W2.

We can consider the hidden neurons as the basis functions for the output, in the form

as)(1
:

12
: xWfW jj for the jth basis function. Then, oute can be reduced by adjusting each of

its basis functions. This process starts the weights going to the 1st hidden neuron, 1
:1W .

By adjusting 1
:1W into 1

:1
1
:1 WW Δ+ , we attempt to have (2.21) so that the oute will be

zero.

dxWfWxWfWxWWfW
hiddenhidden nn

ˆ)(...)(])[(1
:

12
:

1
:2

12
2:

1
:1

1
:1

12
1: =+++Δ+ (2.21)

47

Using Taylor expansion for nonlinear function 1f around the operating point xW 1
:1 , we

can have,

() 1
1

1
:1

1
2
1:

1
:1

21
:1

1
:1

1
2
1:

1
:

12
:

1
:2

12
2:

1
:1

1
:1

1
2
1:

1
:1

12
1:

)(

ˆ)(

ˆ)(...)()()(

−
−

⋅⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Δ

=−=Δ

=+++Δ+

xexW
dx
dfWW

eydxWxW
dx
dfW

dxWfWxWfWxWxW
dx
dfWxWfW

out

out

nn hiddenhidden

. (2.22)

The procedure continues until oute is zero or it updates all the hidden neurons. The

process iteratively reduces oute by further adjusting W1 and b1, so will be called Iterative

Fitting (ITF) for weights optimization or least-squared based MLP learning with iterating

fitting (LSMLP-ITF).

To show the effect of ITF, the training performance of MLP will be presented on a

popular classification benchmark problem, the two-spiral classification problem. The

two-spiral problem is known as difficult to achieve the perfect classification due to high

nonlinearity. The spiral dataset contains 50 samples with 2 features, from two classes.

Using the given classes IDs ({ }1,1−∈d) as the desired MLP output, a 3-layered MLP,

with size 2-50-1, is trained using LSMLP-1 algorithm. Adding the ITF as an extra step,

the training performance is greatly improved over direct LSMLP fitting, as shown in

Figure 2.5.

48

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Training performance of MLP on spiral classification problem

samples

M
LP

 o
ut

pu
t

desired outputs
approximated outputs by LSMLP-ITF
approximated outputs by LSMLP-1

Figure 2.5. Training performances of LSMLP-ITF and LSMLP-1

2.3.2 Training from input signal forward-propagation

2.3.2.1 Training algorithm

The alternative fashion of the LS-based MLP training algorithm starts with the input

signal forward-propagation. It consists of two major steps: propagation of the given

inputs in the training data forwardly through layers and then optimization of the weights

between layers. To propagate the input signals, random weights and biases are initially

used to calculate the signals on each layer. Once the signals on the last hidden layer are

obtained, the weights and biases between the last hidden layer and the output layer can be

optimized. Then the signals on the last hidden layer are re-calculated based on the given

desired outputs and the optimized weights and biases. Subsequently, the weights and

49

biases of previous layer will be updated, so will the signals on previous layers. The

optimization of weights and recalculation of the signals on the hidden layers are

conducted until the input layer is reached. The algorithm (LSMLP-2) is described based

on a 3-layered MLP as follows.

LSMLP-2 Algorithm:

Step 1). Initialize the weights (W1 and W2) and biases (b1 and b2) in the network.

Step 2). Evaluate y1, z1using W1 and b1, as in (2.6).

Step 3). Back-propagate the desired output signals d through the output layer.

Calculate the signal before the transfer functions on the output layer, d̂ , as in

(2.9).

Step 4). Optimize W2, b2 to satisfy dbzW ˆ212 =+ , based on 1z from (ii) and d̂ from

Step 3).

Step 5). Based on the new W2 and b2, optimize z1 using LSF to satisfy dbzW ˆ212 =+ ,

as in (2.10).

Step 6). Scale 1z into the f 1’s output range. Then back-propagate 1z through the

neurons’ transfer function.

Step 7). Optimize W1 and b1 using LSF to satisfy 111 ybxW =+ , as in (2.12).

Step 8). Evaluate y1, z1, y2, z2 using the new W1,W2 and b1,b2. And calculate the mean

squared error (MSE) between obtained output z2 and desired output d.

This is the end of one iteration of the algorithm. The procedure from Step 2) to Step

8) can go through several iterations until the resulting MSE does not vary much anymore.

50

The set of the resulting weights and biases, which can achieve the best results, will be

recorded as the final result.

2.3.2.2 Signal optimization with weighted adaptation

In the steps of LSMLP-2 algorithm in which the desired signals are scaled down to

the limit of the nonlinear outputs before being back-propagated through the layer, the

weights of the following layer should be modified accordingly, since the scaling process

would produce mismatch of the signals on the next layer. It is different than in the

procedure of LSMLP-1 in which this modification is not necessary. An alternative is that

in Step 5) of LSMLP-2 algorithm, after W2 and b2 are updated, 1z is optimized

considering the nonlinearity limit. After Step 4), the obtained signal y2 will be different

from d̂ , as

)(ˆˆ 2122 bzWde +−= . (2.23)

To reduce the error 2ê , 1z needs to be optimized, so that

212

2112

ˆ

ˆ)(
ezW

bdzzW
=Δ

−=Δ+ . (2.24)

1z ’s values are limited to a certain interval, typically, a (-1, 1) interval. Distances of 1z

to the maximum and the minimum value of the interval (shown in Figure 2.6) are

determined as

1
min

1
max

1

1

1

1

z

z

z

z

−−=

−=

δ

δ
. (2.25)

51

y

max1zδ

min1zδ

z

max1zδ

min1zδ

A

B

Figure 2.6. 1z ’s distances to the nonlinearity output limit

The allowable amount of change of z1 is

⎩
⎨
⎧

<⋅
>⋅

=
0)ˆ(sgn,
0)ˆ(sgn,

22
min

22
max

1

1

eWif
eWif

z

z
H δ

δ
δ . (2.26)

The allowable amount of change Hδ of 1z shows how much the signal can be

changed and affects how significant it is to update this signal. We can combine Hδ , as

the other type of weighting terms, with the weighting terms determined by the signals’

operating points on the nonlinearity (as discussed in Section 2.2.2.2) so that each sample

of 1zΔ , denoted as 1
)(: izΔ (i=1, 2,…N), is computed using WLSF in (2.27).

() 12121
)(:

1
,

1
),(

1
,2

1
),2(

1
,1

1
),1(

21
)(:

2

)(ˆ

)(0

...
)(

0)(

ˆ

−−
Λ⋅Λ⋅=Δ

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′

′

′

=Λ

Λ⋅=Λ⋅Δ

eWz

yf

yf

yf

ezW

i

ininH

iiH

iiH

i

hiddenhidden
δ

δ

δ

 (2.27)

52

2.4 Simulation and discussion

The 3 variant versions of least-squared based MLP learning algorithms, including

LSMLP-1, LSMLP-ITF, LSMLP-2, are tested and compared using the following

examples.

Example 1

Firstly, the spiral classification problem, used in Section 2.3.1.3, is tested using these

algorithms and the performances are compared in Table 2.1. It is noted that LSMLP-1 is

not able to handle spiral problem very well, while the other two types make very close

approximation of the training data.

Example 2

The identification problem of the engine dynamics [Pow 98] is tested for MLP

learning. The dataset contains 999 samples. A 3-layered MLP, with size 4-5-1, is trained

using these 3 algorithms. The performances are compared in Table 2.2.

On this problem, all algorithms can handle the identification problem, while LSMLP-

2 generates the best performance. Based on these two experiments, the LSMLP-2

algorithm seems to have better learning capability.

53

Table 2.1

Performance Comparison on Spiral Classification Problem

 Learning results Normalized MSE

LSMLP-1

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

sample

M
LP

 o
ut

pu
t

Spiral classification problem learning performance

Desired output values
Obtained output values

0.74622

LSMLP-ITF

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

sample

M
LP

 o
ut

pu
t

Spiral classification problem learning performance

Desired output values
Obtained output values

0

LSMLP-2

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

sample

M
LP

 o
ut

pu
t

Spiral classification problem learning performance
Desired output values
Obtained output values

0

54

Table 2.2

Performance Comparison on Engine Dynamics Identification Problem

 Learning results Normalized MSE

LSMLP-1

0 100 200 300 400 500 600 700 800 900 1000
-4

-2

0

2

4

6

8
x 104

sample

M
LP

 o
ut

pu
t

Engine dynamics identification problem learning performance

Desired output values
Obtained output values

0.0026

LSMLP-ITF

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8
x 104

sample

M
LP

 o
ut

pu
t

Engine dynamics identification problem learning performance

Desired output values
Obtained output values

0.0082

LSMLP-2

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

2

3

4

5

6

7
x 104

sample

M
LP

 o
ut

pu
t

Engine dynamics identification problem learning performance

Desired output values
Obtained output values

0.0017

55

2.5 Conclusions

The weights of a MLP with a preset structure can be efficient and globally optimized

using these least-squares based learning algorithms. They can be applied not only to

classical feed-forward network structure, but networks with other types of connections

(feedback or lateral connections) as well. According to the signal flows in different

networks, these types of algorithms can be tailored, while the concept of LSF or WLSF

can always apply. It makes MLP or similar network structures more suitable for building

complex systems in supervised learning problems. In Chapter 3, we will discuss how to

determine the network structure using optimized approximation algorithm.

56

CHAPTER 3: OPTIMIZED APPROXIMATION ALGORITHM FOR

SUPERVISED LEARNING

3.1 Introduction

Supervised learning problem using multi-layered networks can be looked as and

handled as unknown function approximation or a model approximation problem. Neural

networks (NN) in the form of feed-forward multi-layer perceptrons (MLP) are often

utilized in such problems [Gal 90]. In neural network learning, adding more hidden

neurons is equivalent to adding more basis functions in function approximation and

affects the training accuracy. In addition to the number of hidden neurons, the training

accuracy could also be affected by several other parameters, including the number of

layers, the number of training samples, the length of learning period, the choice of neuron

activation functions, and the training algorithm. Previous work has shown that neural

networks can be used as universal approximators [Lor 66] [Hor 89] [Zur 92]. For

universal approximators, how to determine the proper parameters to use in the model

without a pre-set target for training accuracy is one of the major challenges.

In order to optimize the number of hidden neurons, several techniques have been

developed in the MLP-related literature, which correlate it with the number of training

samples or the input and output layer sizes [Swi 96][Ber 97] [Bog 97]. Other work

estimates the complexity of the desired function and relates it to the number of hidden

neurons [Cam 01]. If the neural network training uses back-propagation (BP) algorithm,

it has been shown that increasing the number of hidden neurons and the number of

57

weights makes it easier to find the global minimum [Law 96] [Law 97]. However,

without examining the goodness-of-fit or considering the statistical characteristics of the

training data, these approaches are less theoretically sound. Geometric interpretation

given in [Xia 05] provides some insight into the problem of determining the number of

neurons. It helps to find the minimum structure of MLP necessary for a satisfactory

approximation of a given problem. However, such a method can be only applied to

problems with the input space’s dimensionality up to two and in most of the applications,

it is difficult to estimate the order of the problem by observing the available noisy data.

Some work [Hua 98][Hua 03] [Sar 15] [Tam 97] on estimating the number of hidden

neurons focused on the learning capabilities of the MLP on a training dataset without

considering the possibility of overfitting.

Using an excessive number of basis functions will cause overfitting, which means

that the approximator over-estimates the complexity of the target problem. This is

usually referred to as the bias/variance dilemma [Gem 92]. The major purpose of

developing function approximation is to interpolate in a meaningful way between the

training samples [Hol 92], in order to generalize a model from existing training data and

make predictions for novel data. Such generalization capability, usually measured by the

generalization error [Kar 00], is degraded by overfitting, which leads to a significant

deviation in prediction. It was addressed in [Xia 05] that finding the minimum structure

of MLP in most cases results in the least cost of computation, least requirements on

implementation resources and best generalization. In this sense, determining the

58

optimum number of neurons or finding the minimum structure to prevent overfitting are

critical in function approximation.

During back-propagation (BP) training in MLP, the weights are adjusted

incrementally. Therefore, besides the network size, training accuracy also depends on the

number of training epochs. Too many epochs used in BP training will lead to

overtraining, which is a concept similar to overfitting.

To find the optimal network structure with an optimal size of the hidden layer or

optimal value of a certain network parameter, constructive/destructive algorithms were

adopted to incrementally increase or decrease the parameter to be optimized [Alp 91]

[Kwo 97] [Ree 93] [Fre 90]. During the constructive/destructive process, cross-validation

is commonly used to check the network quality [Set 01] and the design parameter is

chosen using early-stopping [Ama 97] [Pre 98] [Wan 93]. In these approaches, the

available data are divided usually into two independent sets: a training set and a

validation or testing set. Only the training set participates in the neural network learning,

and the validation set is used to compute validation error, which approximates the

generalization error. The performance of a function approximation during training and

validation is measured respectively by training error trainε and validation error validε

presented, for instance, in the form of mean-squared-error (MSE). Once the validation

performance stops improving as the target parameter continues to increase, it is possible

that the training has begun to fit the noise in the training data, and overfitting occurs.

Therefore, the stopping criterion is set so that, when validε starts to increase, or

59

equivalently when trainε and validε start to diverge, it is assumed that the optimal value of

the target parameter has been reached.

Singular value decomposition (SVD) approach was also used to quantify the

significance of increasing the number of neurons in the hidden layer in the

constructive/destructive process [Teo 06]. The number of neurons is considered sufficient

when contributory effect of each additional neuron is lower than an arbitrary threshold.

There are several other model selection criteria, such as Akaike’s information criterion

(AIC) [Aka 74] and the minimum description length (MDL) [Ris 86], as a function of the

model complexity, the training performance and the number of training samples. Some

work applied such information criteria in the problem of finding optimal neural network

structures [For 91] [Mur 94]. AIC was introduced in order to maximize the mean log-

likelihood of a model while avoiding unnecessary complexity. A penalty term was

applied to make model with excessive number of independent parameters less desirable.

The algorithm using AIC as stopping criterion will choose the model with the minimum

AIC. The bias/variance decomposition [Hua 98] is a method to decompose the bias and

variance term from MSE and measure the sensitivity of a learning model to the training

data. Fitting into the available data will reduce the bias while overfitting may induce

large variance. In practice, the bias and variance components for a certain learning model

are estimated statistically over several training sets samples from the same function.

Among several model choices, the one with least bias and variance is chosen as the

optimum. Overall, cross-validation and early-stopping are still the common techniques

used in finding optimal network structure up to date.

60

Nevertheless, in cross-validation and early stopping, the use of the stopping criterion

based on validε is not straightforward and requires definite answers to several issues. For

example, users have to find out the distribution of data so that training and validation sets

can be properly divided and to assure that each of them have good coverage of the input

space. In addition, as demonstrated in [Law 96], the validation data have to be

representative enough with regard to its size and data distribution, so that validε can

provide an unbiased estimate of the actual network performance and the real

generalization error genε . As validation data are statistically sampled, validε has only a

statistical chance to correlate with the generalization error, thus it is not a reliable

measure. validε , as a function of target parameter, may have many local minima during

the training process. It is not definite which one indicates the occurrence of overfitting

[Pre 98] [Wan 93] and it is even more difficult to find out how likely it is that overfitting

actually happened. Therefore, during the constructive/destructive process, users have to

go through the process of adjusting the target parameter and observing the variation of

validε to vaguely determine a good place to stop, which is a somewhat empirical and a not

well-quantified process. Three classes of better-defined stopping criteria based on the

concept of early-stopping were proposed in [Pre 98], from which users can choose based

on different concerns on efficiency, effectiveness or robustness. The first class of

stopping criteria (GL) proposes to stop training as soon as the generalization loss,

measured by the increase of validε , exceeds a certain threshold. The second class (PQ)

evaluates the quotient of generalization loss and training progress so that even if

generalization error increases, the rapid decrease of training error will suggest

61

continuation of the process. The third class (UP) suggested stopping the process when the

generalization error kept increasing in several successive steps. It helped the users to

choose stopping criterion in a systematic and automatic way to avoid the ad-hoc process.

However, as long as cross-validation is used, the methods require omission of the

validation set in the training stage, which is a significant waste of the precious data

available for training in some real-life cases, eg. plant dataset [Sug 93].

In general, overfitting occurs when excessive numbers of neurons are used in the

network. In these cases, although the validε may not be severely degraded, the network

does overestimate the complexity of the problem and it cost more resources to train and

implement. The case of severe overfitting that went undetected using the validation set

can be easily illustrated with an example of a synthetic data set obtained from a noisy

sine wave signal approximated by polynomial functions. Figure 3.1(a) shows training and

validation data sets. Figure 3.1(b) shows the values of training and validation errors as a

function of the orders of approximating polynomials. Also shown in Figure 3.1(b) is

(usually unknown) generalization error, which measures the deviation of the

approximating result from the original sine wave. As illustrated in Figure 3.1(b), the

validation error did not increase significantly enough to indicate severe overfitting that

occurs when the order of approximating polynomial was higher than 18.

Thus, it is desirable to have a measure that can quantify underfitting or overfitting of

a network in a given learning problem. An algorithm based on such a measure should be

able to recognize the occurrence of overfitting by examining the training error without

using a validation set and show where the process can be safely stopped so that the

62

optimal structure of the MLP for a given problem is found. In this paper, a signal-to-

noise ratio figure (SNRF) is defined to measure the goodness of fit using the training

error. Based on the SNRF measurement, an Optimized Approximation Algorithm (OAA)

is proposed to avoid overfitting in function approximation and neural network design

applications.

-3 -2 -1 0 1 2 3
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

f(x
)

Training and validation set

Training data
Validation data

5 10 15 20
0

0.01

0.02

0.03

0.04

0.05

order of fitting polynomial

M
S

E

Variation of errors

Training error
Validation error
Generalization error

(a) (b)

Figure 3.1. Validation error and generalization error on overfitting detection.

(a) Training and validation set
(b) Variation of errors in function approximation

3.2 Estimation of signal-to-noise ratio figure

3.2.1 SNRF of the error signal

In order to have a clear indication of overfitting, we need to examine the difference

between the approximated function and the training data. This difference, which is

63

defined as the error signal in this work, comes from two possible sources: the

approximation error due to the limited training accuracy in approximation with the given

set of basis functions, and an unknown level of noise in the training data. The noise can

be the result of multiple causes, such as input noise, output noise or system disturbance

which will all be treated as the output noise. In function approximation, without any

knowledge of the noise sources and based on central limit theorem, we can assume the

White Gaussian Noise (WGN) without losing generality. A critical question is whether

there is still useful signal information left to be learned in the error signal. If there is,

based on the assumption that the target function we try to approximate is continuous and

that the noise is White Gaussian Noise (WGN), we can estimate the level of signal and

noise in the error signal. The ratio of the estimated signal level over the noise level in the

error signal is defined as SNRF, and it is used to measure the amount of information left

unlearned in the error signal. The SNRF can be pre-calculated for a signal that contains

solely WGN. The comparison of SNRF of the error signal with that of WGN determines

whether WGN dominates in the error signal. If the noise dominates, there is little useful

information left in the error signal, and there is no point to reduce it anymore as this will

lead to overfitting. The estimation of SNRF will be first illustrated using a one-

dimensional function approximation problem, followed by the discussion for multi-

dimensional problems.

3.2.2. SNRF estimation for a one-dimensional function approximation

Assume that in a one-dimensional function approximation problem, training data are

uniformly sampled from the input space 1ℜ∈X with additive noise at an unknown level.

64

An approximation is obtained using a certain set of basis functions. The error signal e

contains a noise component denoted by n, and an approximation error signal component,

which is the useful signal left unlearned and therefore denoted by s.

),...2,1(Nimsnse iiiii =+=+= β , (3.1)

where N represents the number of samples. Without losing generality, n can be modeled

as a WGN process with standard deviation β, and m stands for a WGN process with unit

standard deviation. The energy of the error signal e is also composed of signal and noise

components.

nsns EEE +=+ (3.2)

The energy of e can be calculated using the autocorrelation function:

∑
=

+ ==
N

i
iiins eeeCE

1

2),(, (3.3)

where C represents the correlation calculation. Notice that a presumption is made that

the target function needs to be continuous, and the approximation F̂ is usually a

continuous function. Practically, the useful signal left unlearned, s, is also a continuous

function. We could further assume that, if treated as time signals, the target function and

F̂ both have relatively small bandwidth compared to the sampling rate or to the noise

bandwidth. As a result, there is a high level of correlation between two neighboring

samples of s. Consequently,

),(),(1 iiii ssCssC ≈− , (3.4)

where si-1 represents the (circular) shifted version of the s. Due to the nature of WGN,

noise of a sample is independent on noise of neighboring samples:

65

0),(),(11 == −− iiii mmCnnC ββ , (3.5)

where ni-1 represents a replica of ni shifted by one-sample. Since the noise component is

independent of the signal component, the correlation of ei with its shifted copy ei-1

approximates the signal energy, as shown in (3.6).

siiii EssCeeC ≈= −−),(),(11 (3.6)

The difference between the autocorrelation with no time shift defined in (3.3) and

),(1−ii eeC gives the noise energy in the error signal.

),(),(1−+ −=−= iiiisnsn eeCeeCEEE (3.7)

The ratio of the signal level to the noise level, defined as the SNRF of the error signal, is

obtained as:

),(),(
),(

1

1

−

−

−
==

iiii

ii

n

s
e eeCeeC

eeC
E
ESNRF . (3.8)

Notice that in SNRF, the signal component and noise component are decomposed by

using the correlation between neighboring samples. In the bias/variance decomposition,

similar estimations of the signal or noise level are obtained from bias and variance

components, which are calculated statistically in common practice.

When learning of the target function improves, it is expected that the useful signal

left unlearned in the error signal is reduced, while the noise component does not change

so that SNRFe will decrease. In order to detect the existence of useful signal in e, the

SNRFe has to be compared with the SNRF estimated for WGN using the same number of

samples. When there is no signal in e, we have,

mnnse β==+= . (3.9)

66

The SNRF for WGN is calculated as,

),(),(
),(

),(),(
),(

),(),(
),(

1

1

1

1

1

1

−

−

−

−

−

−

−
=

−
=

−
=

iiii

ii

iiii

ii

iiii

ii
WGN mmCmmC

mmC
mmCmmC

mmC
nnCnnC

nnCSNRF
ββββ

ββ

(3.10)

It is observed that the SNRFWGN is independent of the noise level β, which means that

SNRFWGN only needs to be estimated with unit standard deviation in order to obtain the

general characterization for any level of WGN. The expected value of the correlation

),(1−ii mmC is zero, which would intuitively indicate a zero SNRFWGN. However,

SNRFWGN is estimated using a limited number of samples, thus it is a random value

related to the number of samples N. The average value and the standard deviation of

SNRFWGN can be derived for a given N.

⎥
⎦

⎤
⎢
⎣

⎡
−

=
−

−

),(),(
),()(

1

1
_

iiii

ii
WGNSNRF mmCmmC

mmCN μμ (3.11)

Since),(),(1−>> iiii mmCmmC ,

[] 0),(
),(
),()(11

_ =≈⎥
⎦

⎤
⎢
⎣

⎡
≈ −−

N
mmC

mmC
mmCN ii

ii

ii
WGNSNRF

μμμ , (3.12)

and,

[] ()

NN
N

N

mm

N
mmC

mmC
mmC

mmCmmC
mmCN

N

i
ii

ii

ii

ii

iiii

ii
WGNSNRF

1
)(

),(

),(
),(

),(),(
),()(

1

2
1

1

1

1

1
_

===≈

⎥
⎦

⎤
⎢
⎣

⎡
≈⎥

⎦

⎤
⎢
⎣

⎡
−

=

∑
=

−
−

−

−

−

σ
σ

σσσ

. (3.13)

Note that the samples of SNRFWGN are statistically independent. According to the

central limit theorem, if N is large enough, the samples of SNRFWGN tends to follow

67

Gaussian distribution with mean WGNSNRF _μ and standard deviation WGNSNRF _σ . In Figure

3.2 (a),)(_ NWGNSNRFσ from a 10000-run Monte-Carlo simulation is shown in the

logarithmic scale as a function of the number of samples. The estimated)(_ NWGNSNRFσ

in (3.13) agrees with the simulation results, especially for the N values larger than 64.

Such estimation is expected to work well for the sample numbers available in real-world

training datasets.

2 4 6 8 10 12 14 16
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1
Standard deviation of SNRF for WGN

log2 of the number of data samples

lo
g2

 o
f t

he
 S

N
R

F
st

an
da

rd
 d

ev
ia

tio
n

log2 of the SNRF
standard deviation
log2(1/N0.5)

-0.015 -0.01 -0.005 0 0.005 0.01 0.015
0

5

10

15

20

25

30

35
Histogram of SNRF for WGN with 216 samples

μ
1.7σmean μ: 0

standard deviation
σ: 0.0039

(a) (b)

Figure 3.2. SNRF estimation for WGN in one-dimensional case

(a) Standard deviation of SNRF for WGN
(b) Histogram of SNRF of WGN for 216 samples

3.2.3 One-dimensional SNRF-based stopping criterion

The stopping criterion in OAA can now be determined by testing the hypothesis that

SNRFe and SNRFWGN are from the same population. The value of SNRFe at which the

68

hypothesis is rejected constitutes a threshold below which training OAA is stopped.

Figure 3.2 (b) illustrates the histogram of SNRFWGN with 216 samples, as an example. It is

observed that the p = 5% significance level [Leh 97] can be approximated by the average

value plus 1.7 times standard deviations for an arbitrary N. As shown in Figure 3.2(b),

the threshold can be calculated using 006.00039.07.107.1 =×+=+ σμ for 216 samples.

Notice it agrees with the threshold of 5% significance level calculated using Gaussian

distribution with mean WGNSNRF _μ and standard deviation WGNSNRF _σ .

SNRF-based stopping criterion in OAA can be defined as a SNRFe smaller than the

threshold determined by (3.14), in which case, there is at least 95% probability that error

signal represents a WGN and learning must stop to avoid overfitting.

)(7.1)()(___ NNNth WGNSNRFWGNSNRFWGNSNRF σμ += . (3.14)

The threshold can be re-calculated for different significance levels if needed, and it

is also based on the mean WGNSNRF _μ and standard deviation WGNSNRF _σ derived in (3.12)

(3.13).

In above discussion, (3.6) and (3.7) have been developed based on the assumption

that e could be treated as a signal with evenly-spaced samples. In a general one-

dimensional function approximation problem, the input samples may be unevenly spaced.

Yet, nsE + , sE and nE can still be approximated using (3.3), (3.6) and (3.7) respectively.

In addition, in the cases when only sparse data samples are available, the data set can be

expanded using the approaches in [Hol 92][Kar 00][Wan 99]. Thus, the SNRFe can be

estimated using (3.8) and the overfitting is determined by comparison of SNRFe with the

threshold in (3.14).

69

3.2.4. SNRF estimation for multi-dimensional function approximation

In a general multi-dimensional function approximation problem, the training data

are usually randomly sampled from the input space DX ℜ∈ . The method used to

estimate SNRF in the one-dimensional case cannot be directly applied to such multi-

dimensional problem. However, we could still assume that variation of s along each of

the dimensions is slow compared to the average sampling distance. Thus the same

principle of signal and noise level estimation using correlation may be utilized. Since s

changes slowly in all directions, the continuous function can be locally approximated

around ep using weighted average of a set of M+1 points, which includes ep and its M

neighbors with the shortest distances. These points are expected to have correlated

values, whereas the noise on these points is assumed to be WGN and has independent

samples. As a result, the signal and noise levels at each sample ep (p=1, 2,…N) can be

estimated through the correlation with its M nearest neighbors and computed using a

weighted combination of the products of ep values with each of its neighbors, epi (i=1,

2,...M). Since the samples of ei are assumed to be spatially correlated, the distances

between samples can be used to calculate the weight values. In a D-dimensional space,

the weights are obtained based on the scaled distance dpi between ep and epi to the power

of D, and normalized, as given by (3.15),

pippiM

i
D
pi

D
pi

pi eed

d

d
w −==

∑
=

 where,
1

1

1

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

Ni
Np

,...2,1
,...2,1

. (3.15)

Thus, the overall signal level of e can be calculated as,

70

∑∑∑
= ==

⋅⋅==
N

p

M

i
pippi

N

p
sps eewEE

1 11
 . (3.16)

As in (3.3), the autocorrelation of ei estimates signal plus noise level:

∑
=

+ =
N

i
ins eE

1

2 . (3.17)

Finally, the SNRFe for M neighbors approach in a multi-dimensional input space is

computed as

∑∑∑

∑∑

= ==

= =

⋅⋅−

⋅⋅
== N

p

M

i
pippi

N

i
i

N

p

M

i
pippi

n

s
e

eewe

eew

E
ESNRF

1 11

2

1 1 . (3.18)

Notice that when applied to one-dimensional cases with M=1, (3.18) is identical to (3.8).

The same calculation is done for WGN with unit standard deviation to characterize

the SNRFWGN in multi-dimensional space. When there is no signal, WGNSNRF is

estimated using (3.18) with e = n. In the calculation of Esp of WGN, pip ee ⋅ is an

independent random process with respect to p or i. Since

1
1

=∑
=

M

i
piw , (3.19)

we can have,

[] ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅≥⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅≥⋅ ∑∑

==

M

i
pip

M

i
pippipip ee

M
eewee

11

1σσσ , (3.20)

where WGNp

M

i
pippi eew ,

1
σσ =⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅∑

=

 is the standard deviation of the perceived signal

energy at sample ep in WGN. It has the minimum value when the piw have equal values

71

(i.e., with uniform sampling distance), which sets the lower bound. Notice that the upper

and lower bound in (3.20) are equal for M=1, independently of the input space

dimensionality. For M>1, the standard deviation gets closer to the upper bound in

problems with large dimensionality D, since the closest neighbor dominates the weight

calculation.

In the estimation of ⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅∑∑

= =

N

p

M

i
pippi eew

1 1
σ , it has to be considered that not all the

pip ee ⋅ items are independent of each other with respect to p and i. For instance, when
points p and p1 are the closest neighbors to each other, 11 ppp eew is calculated twice in

∑∑
= =

⋅⋅
N

p

M

i
pippi eew

1 1
. In the worst case, all the terms in ∑∑

= =

⋅⋅
N

p

M

i
pippi eew

1 1
 may appear twice,

therefore we have

[] NeeNeewNeew pip

M

i
pippi

N

p

M

i
pippi 222

11 1
=⋅⋅⋅≤⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅⋅⋅≤⎥

⎦

⎤
⎢
⎣

⎡
⋅⋅ ∑∑∑

== =

σσσ (3.21)

Then we have the estimate for the standard deviation of SNRFWGN as follows,

NN

eew

eewe

eew
N

N

p

M

i
pippi

N

p

M

i
pippi

N

i
i

N

p

M

i
pippi

WGNSNRF
2)(1 1

1 11

2

1 1
_ ≤

⎥
⎦

⎤
⎢
⎣

⎡
⋅⋅

≈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−

⋅⋅
=

∑∑

∑∑∑

∑∑
= =

= ==

= =

σ
σσ . (3.22)

Also, the average of SNRFWGN is estimated as,

0)(

1 11

2

1 1
_ ≈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⋅⋅−

⋅⋅
=

∑∑∑

∑∑

= ==

= =
N

p

M

i
pippi

N

i
i

N

p

M

i
pippi

WGNSNRF

eewe

eew
N μμ (3.23)

3.2.5 Multidimensional SNRF-based stopping criterion

Notice that the estimation of)(_ NWGNSNRFσ and)(_ NWGNSNRFμ using (3.22) and

(3.23) is no longer a function of the number of samples in the neighborhood or problem

72

dimensionality. Such simplification yields a universal detection threshold.

)(_ NWGNSNRFσ for M=3 in a three-dimensional case from a 1000-run Monte-Carlo

simulation is shown in the logarithmic scale in Figure 3.3(a). The distances among WGN

samples are randomly generated. The estimated)(_ NWGNSNRFσ in (3.22) is consistent

with an upper bound of
N
2 , and the bounds developed in (3.20) are validated.

Figure 3.3(b) shows the histogram of SNRFWGN for 8000 samples in the three-

dimensional case with M=3. We note that the threshold of the significance level p = 5%

can be approximated by the average value plus 1.7 times the standard deviations. With N

= 8000 the threshold is calculated as 0195.00115.07.107.1 =×+=+ σμ . If not all the

samples are independent, central limit theorem does not apply and the distribution of

SNRFWGN is not Gaussian. In such case, the upper estimate of the standard deviation in

(3.22) is used. The threshold can be experimentally established as the average value plus

1.2 times upper estimate of the standard deviation, to achieve the 5% significance level.

Note that this result coincides with (3.14) for M=1.

(22)in limit upper edapproximat theas)(

)(2.1)()(

_

N

NNNth

WGNSNRF

WGNSNRFWGNSNRFWGNSNRF

σ

σμ ⋅+=
 (3.24)

While using M>1 can improve estimation of the signal level by greater noise

filtering when a large number of training samples is available, we did not observe a

significant change in the detection threshold levels, comparing to M=1. Thus using M=1

is preferred for computing efficiency even in multidimensional cases, when the number

of training data is small.

73

In summary, a method for estimating the SNRF of the error signal has been

demonstrated. By comparing SNRFe with SNRFWGN, we are able to develop the

optimized approximation algorithm (OAA) as discussed in the next section. The

threshold for the OAA stopping criterion is determined from the estimate of SNRFWGN,

and can be applied to problems of an arbitrary number of samples and dimensions.

6 7 8 9 10 11 12 13
-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

log2 of the number of data points

lo
g2

 o
f t

he
 S

N
R

F
st

an
da

rd
 d

ev
ia

tio
n

Stardard deviation of SNRF for 3-dimensional WGN

SNRF estimated using (18)
upper bound in (20)
lower bound in (20)
sqrt(2)/sqrt(N)

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

5

10

15

20

25

30

35
Histogram of SNRF of WGN for 8000 samples in 3-dimension

μ
1.7σ

(a) (b)

Figure 3.3. SNRF estimation for WGN in three-dimensional case

(a) Standard deviation of SNRF of WGN in a three-dimensional case with M=3
(b) Histogram of SNRF of WGN for 8000 samples in a three-dimensional case

3.3 Optimized approximation algorithm

Using SNRF, we can estimate the signal level and the noise level for the error signal

and then determine the amount of useful signal information left unlearned. When there is

74

no information left, the learning process must be stopped, and the optimal approximation

has been obtained without overfitting. Otherwise, the target parameter has to be

increased to improve the learning and reduce the approximation error. The following

procedure describes the basic steps of the OAA for the optimization of a given parameter

of the NNs.

Optimized Approximation Algorithm:

(a). Assume that an unknown function F, with input space DX ℜ⊂ is described by N

training samples as),...2,1(,)(NiuxF ii == .

(b). The signal detection threshold is pre-calculated for the given number of samples N

based on
N

Nth WGNSNRF
7.1)(_ = .

(c). Select B as the initial value for the target parameter, for example, number of hidden

neurons or number of BP training iterations.

(d). Use the MLP (or other learning models) to obtain the approximated function

)...,2,1()(ˆ NiaxF ii == .

(e). Calculate the error signal ei=ui - ai , (i=1, 2, …N).

(f). Determine SNRF of the error signal ei, SNRFe. For a one-dimensional problem, use

(3.8); for a multi-dimensional problem, use (3.18).

(g). Stop if the SNRFe is less than WGNSNRFth _ , or if B exceeds its maximum value.

Otherwise, increment B and repeat (d)-(g).

(h). If SNRFe is equal to or less than WGNSNRFth _ , F̂ is the optimized approximation.

75

3.4 Simulation and discussion

A multi-layer perceptron (MLP) is used as an example learning system to

demonstrate the use of the proposed OAA. The MLP contains the input layer and the

output layer with linear transfer functions and hidden layers with nonlinear transfer

functions in the middle. OAA with SNRF-based stopping criterion will be tested in two

aspects, optimization of the number of hidden neurons and optimization of the number of

learning epochs, using synthetic datasets and benchmark datasets. First, the synthetic

datasets are studied since we know the true target function so that real generalization

error genε can be calculated and the results provide a visual insight to the problem and its

proposed solution. Subsequently, the benchmark data sets provide justification for the

use of OAA in practical applications.

In all the simulation examples, when OAA is tested in optimization of the number of

hidden neurons, the Least-Squared learning Method (LSM) proposed in [Erd 05] as

initialization method will be used as training method in this paper. In LSM, the

adaptation of weights in MLP is based on the least-squared calculation so that the

learning performance is only affected by the number of hidden neurons representing the

number of basis functions without concerning the number of iterations.

In addition, in all the simulation examples, when the number of learning epochs is

optimized, a MLP with preset structure is trained using the back-propagation (BP)

method, implemented using the MATLAB neural networks toolbox. The SNRF-based

criterion in OAA will determine when to stop the learning to avoid overtraining

(overfitting).

76

It is expected that when the SNRF-based criterion recognizes overfitting, either trainε

and validε will start to diverge from each other, or validε will reach a minimum. Such

observation will help to prove the effectiveness of the OAA with the SNRF-based

stopping criterion. The results, including the stopping points and corresponding trainε ,

validε and genε (for synthetic data) from OAA will be compared with those from 4 other

classes of stopping criteria described in [Pre 98] and [Aka 74]. Specific criteria used in

the comparison are denoted as follows: AIC (Akaike’s information criteria [Aka 74]),

GL1~GL5 (generalization loss with thresholds 1~5 [Pre 98]), PQ0.5~PQ3 (generalization

loss over training progress with thresholds 0.5~3 [Pre 98]) and UP2~UP8 (the number of

successive increases in the generalization error [Pre 98]). To calculate the AIC for MLP,

the number of free parameters is equal to the overall number of weights and the bias.

3.4.1. Simulation I: one-dimensional function approximation

First, the desired function to be approximated is 5.0sin4.0 += xy , same as the

target function used in [Hol 92]. A 4-layered MLP is used as learning prototype with the

number of hidden neurons to be optimized. The number of hidden neurons in these 2

hidden layers is set equal in the following simulation. The training and validation

datasets, containing 200 samples each, are randomly sampled from the input space, and

the outputs are subjected to WGN with a standard deviation of 0.2.

Simulation results show that SNRFe goes below the threshold when the number of

hidden neurons on each layer is more than 3 for the 4-layered MLP, as can be seen from

Figure 3.4(a). As shown in Figure 3.4(b), the approximated function obtained from the

MLP with size 1-3-3-1 approximates the target function well. At the same time, it makes

77

reasonable predictions on the unseen validation data. Although the validε produced by

MLP with 20 neurons is only 6% higher than that by 3 neurons, but it can be found from

comparison in Figure 3.5(a) that MLP with 20 neurons seriously overestimates the

complexity of the problem and the overfitting definitely shows up.

The results from different kinds of stopping criteria are compared in Table 3.1.

Among all the stopping criteria, SNRF-based stopping criterion suggests the minimum

structure that can efficiently handle the target problem and yield the minimum

generalization error, which corresponds to possibly the best generalization ability.

In [Hol 92], the same target function is approximated using a MLP with size 1-13-1.

It was demonstrated that the overfitting problem can be mitigated to some degree by

using additive noise to expand the sparse dataset [Hol 92]. However, without optimizing

the network structure, the approximated function still deviates from the desired function.

Using the proposed OAA, the SNRF-based stopping criterion shows that the optimal

number of hidden neurons for this 3-layer MLP is 5.

With such 1-5-1 MLP, the number of learning epochs of the BP algorithm can be

optimized using SNRF-based stopping criterion in OAA. It suggests stopping the

training after 10 epochs. The approximated function after 10 epochs is compared with

that after 200 epochs in Figure 3.5(b), which shows that large number of learning epochs

induces overfitting and the SNRF-based stopping criterion is able to stop the learning

process at the optimum point.

78

0 2 4 6 8 10 12 14 16 18 20
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
SNRF of error signal vs. number of hidden neurons

S
N

R
F

SNRF of error signal
threshold

number of hidden neurons

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5
Training performance

x

y

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5
Validation performance

x

y

training data
approximated function
desired function

validation data
approximated value
desired function

(a) (b)

Figure 3.4. Simulation I: optimization of number of hidden neurons

(a). SNRF of the error signal and threshold
(b). The approximated function and desired function

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Learning performance

x

y

approximated function using 3 neurons
approximated function using 20 neurons

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5
Validation performance using 10 iterations

x

y

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5
Validation performance using 200 iterations

x

y

validation data
approximated value

validation data
approximated value

(a) (b)

 Figure 3.5. Comparison of approximated function

(a). Comparison of approximated function using 3 and 20 neurons
(b). Comparison of approximated function using 100 and 200 learning epochs

79

Table 3.1

Simulation I: Results Comparison for Optimizing Number of Neurons

Stopping

Criteria

Optimum number

of hidden neurons

Training error

trainε

Validation error

validε

Generalization

error genε

SNRF 3 0.11278 0.10559 0.0022411

AIC 3 0.11278 0.10559 0.0022411

GL1 10 0.11084 0.10623 0.0024636

GL2 15 0.10895 0.10779 0.0038922

GL3 17 0.10802 0.10994 0.0057212

GL5 18 0.10701 0.11148 0.0091781

PQ0.5 10 0.11084 0.10623 0.0024636

PQ0.75 10 0.11084 0.10623 0.0024636

PQ1 11 0.11075 0.10549 0.0025474

PQ2 14 0.1095 0.10677 0.0042547

PQ3 14 0.1095 0.10677 0.0042547

UP2 7 0.11123 0.10528 0.0027053

UP3 7 0.11123 0.10528 0.0027053

UP4 9 0.11112 0.10566 0.002306

UP6 13 0.10955 0.10594 0.0032101

UP8 17 0.10802 0.10994 0.0057212

80

The results of optimizing the number of learning epochs from different kinds of

stopping criteria are compared in Table 3.2. SNRF-based stopping criterion suggests

stopping the training with minimum number of learning epochs in this case and shows

minimum generalization error. Notice that since the network structure does not change

during the process, the AIC stopping criterion cannot be applied and will be denoted as

“N/A” in the result tables. Some of the stopping criteria, including GL2, GL3 and GL5,

have not been met even with the maximum number of learning epochs and will be

denoted as “Incomplete” in the result tables.

3.4.2. Simulation II: two-dimensional function approximation

A function)4sin()4sin(2)3sin(211
2
12

2
2 xxxxxxy +++= is used as the target

function to illustrate a multidimensional case, as shown in Figure 3.6(a). Data points are

randomly sampled adding WGN with a standard deviation of 0.1 to produce training and

validation data sets, each containing 100 samples.

The OAA is applied to optimize the number of hidden neurons of a 4-layered MLP

and it is discovered that SNRFe falls below the threshold when the number of hidden

neurons exceeds 25 as shown in Figure 3.6(b). It may be seen that the validation error

has many local minima located in the range from 25 to 35 neurons. In this case, it would

be difficult to exactly determine where overfitting begins by using validε .

81

Table 3.2

Simulation I: Results Comparison for Optimizing Number of Learning Epochs

Stopping

Criteria

Optimum number

of learning epochs

Training error

trainε

Validation

error validε

Generalization

error genε

SNRF 10 0.1086 0.0987 0.00053

AIC N/A N/A N/A N/A

GL1 180 0.1064 0.1003 0.0073

GL2 Incomplete Incomplete Incomplete Incomplete

GL3 Incomplete Incomplete Incomplete Incomplete

GL5 Incomplete Incomplete Incomplete Incomplete

PQ0.5 30 0.1076 0.0989 0.0026

PQ0.75 30 0.1076 0.0989 0.0026

PQ1 30 0.1076 0.0989 0.0026

PQ2 130 0.1076 0.0989 0.0026

PQ3 130 0.1076 0.0989 0.0026

UP2 50 0.1066 0.0993 0.0065

UP3 60 0.1074 0.0991 0.0037

UP4 90 0.1078 0.0988 0.0012

UP6 150 0.1075 0.0992 0.0029

UP8 160 0.1073 0.0990 0.0034

82

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-3

-2

-1

0

1

2

3

Multi-dimensional function

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4

6

number of hidden neurons

S
N

R
F

SNRF of error signal vs. number of hidden neurons

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1
Training and validation performances vs. number of hidden neuron

number of hidden neurons

M
S

E

SNRF of error signal
threshold

training performance
validation performance

(a) (b)

Figure 3.6. Simualtion II: optimization of number of hidden neurons

(a). Multi-dimensional function to be approximated
(b). SNRF of the error signal vs. threshold and training and validation performances

Using such 2-25-25-1 MLP as a function approximator, the approximated function

in the given input space replicates the desired function well, as shown in Figure 3.7(a).

However, using 35 hidden neurons, the approximated function has significant deviations

from the target function at the unseen data, which is illustrated in Figure 3.7(b). The

function surface obviously indicates that overfitting already occurs. The optimal network

size with 25 neuron optimum is correctly predicted by the OAA. The optimization

results based on different stopping criteria are compared in Table 3.3. In this case, other

methods stop too early resulting in larger generalization errors.

Subsequently, OAA was used in a 3-layered MLP with size 2-25-1 to find proper

number of learning epochs and the results are compared with others methods in Table

83

3.4. Again, we can see that the proposed SNRF criterion yields an optimum number of

the training epochs with the smallest validation and generalization errors.

-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-3

-2

-1

0

1

2

3

Approximated multi-dimensional function
using 25 hidden neurons in MLP

-1
-0.5

0
0.5

1 -1
-0.5

0
0.5

1

-10

-5

0

5

10

15

Approximated multi-dimensional function
using 35 hidden neurons in MLP

(a) (b)

Figure 3.7. Approximated function using (a) 2-25-25-1 and (b) 2-35-35-1MLPs

3.4.3. Simulation III: Puma robot arm dynamics dataset

The OAA has also been applied to a benchmark dataset to illustrate another

multidimensional case generated from the dynamics of a Unimation Puma 560 robot arm

[Del]. The dataset is subject to an unknown level of noise. The task is to predict the

angular acceleration of the robot arm's links from 8 inputs include angular positions of 3

joints, angular velocities of 3 joints and torques of 2 joints of the robot arm. Various

numbers of neurons (from 1 to 100 with a step size of 3) are used in the MLP to find the

optimum number of hidden neurons using OAA.

84

Table 3.3

Simulation II: Results Comparison for Optimizing Number of Hidden Neurons

Stopping

Criteria

Optimum number

of hidden neurons

Training error

trainε

Validation

error validε

Generalization

error genε

SNRF 25 0.023222 0.22471 0.065502

AIC 1 0.85216 0.87783 0.89908

GL1 6 0.64278 0.82437 0.64931

GL2 6 0.64278 0.82437 0.64931

GL3 6 0.64278 0.82437 0.64931

GL5 16 0.072757 0.41385 0.15182

PQ0.5 6 0.64278 0.82437 0.64931

PQ0.75 16 0.072757 0.41385 0.15182

PQ1 16 0.072757 0.41385 0.15182

PQ2 16 0.072757 0.41385 0.15182

PQ3 16 0.072757 0.41385 0.15182

UP2 6 0.64278 0.82437 0.64931

UP3 16 0.072757 0.41385 0.15182

UP4 16 0.072757 0.41385 0.15182

UP6 16 0.072757 0.41385 0.15182

UP8 17 0.055236 0.19659 0.11702

85

Table 3.4

Simulation II: Results Comparison for Optimizing Number of Learning Epochs

Stopping

Criteria

Optimum number

of learning epochs

Training error

trainε

Validation

error validε

Generalization

error genε

SNRF 21 0.017228 0.072691 0.02101

AIC N/A N/A N/A N/A

GL1 41 0.015332 0.07962 0.024886

GL2 41 0.015332 0.07962 0.024886

GL3 41 0.015332 0.07962 0.024886

GL5 41 0.015332 0.07962 0.024886

PQ0.5 41 0.015332 0.07962 0.024886

PQ0.75 41 0.015332 0.07962 0.024886

PQ1 41 0.015332 0.07962 0.024886

PQ2 61 0.014128 0.13411 0.031172

PQ3 101 0.012752 0.16083 0.039461

UP2 41 0.015332 0.07962 0.024886

UP3 61 0.014128 0.13411 0.031172

UP4 101 0.012752 0.16083 0.039461

UP6 131 0.0097924 0.42093 0.095002

UP8 171 0.0041367 0.78034 0.17466

86

The SNRFe is compared with threshold, as shown in Figure 3.8(a), and indicates that

overfitting starts to occur when the number of neurons is 46. Note that validε has many

local minima, as seen in Figure 3.8(b), and using a local minimum of validε as a stopping

criterion would be ambiguous. The optimization results based on different stopping

criterion are compared in Table 3.5. With a MLP of size 8-46-1, OAA can be used to

find proper number of learning epochs and the results are compared with others in Table

3.6.

In summary, for all tested datasets, the SNRF quantitatively identified overfitting

and helped to find the proper structure or the number of training epochs for effective

neural network learning for a given problem.

0 20 40 60 80 100
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
SNRF of error signal vs. number of hidden neurons

number of hidden neurons

S
N

R
F

SNRF of error signal
threshold

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5
Training and validation performance vs. number of hidden neurons

number of hidden neurons

M
S

E

Training performance
Validation performance

(a) (b)

Figure 3.8. Simulation III: Optimizing number of hidden neurons.

(a) SNRF of the error signal and threshold
(b) Training and validation performance

87

Table 3.5

Simulation III: Results Comparison for Optimizing Number of Hidden Neurons

Stopping

Criteria

Optimum number

of hidden neurons

Training error

trainε

Validation error

validε

SNRF 46 0.043562 0.077474

AIC 1 0.43152 0.44099

GL1 28 0.066768 0.091784

GL2 40 0.049517 0.083847

GL3 40 0.049517 0.083847

GL5 43 0.052393 0.089354

PQ0.5 61 0.034858 0.07574

PQ0.75 73 0.027735 0.084617

PQ1 73 0.027735 0.084617

PQ2 79 0.027958 0.094146

PQ3 85 0.024118 0.082011

UP2 28 0.066768 0.091784

UP3 28 0.066768 0.091784

UP4 28 0.066768 0.091784

UP6 43 0.052393 0.089354

UP8 52 0.038588 0.078167

88

Table 3.6

Simulation III: Results Comparison for Optimizing Number of Learning Epochs

Stopping

Criteria

Optimum number

of learning epochs

Training error

trainε

Validation

error validε

SNRF 4 0.039814 0.077506

AIC N/A N/A N/A

GL1 7 0.032243 0.10845

GL2 7 0.032243 0.10845

GL3 7 0.032243 0.10845

GL5 7 0.032243 0.10845

PQ0.5 11 0.0027257 0.14612

PQ0.75 26 1.0016e-011 0.16009

PQ1 101 1.4087e-018 0.18978

PQ2 101 1.4087e-018 0.18978

PQ3 101 1.4087e-018 0.18978

UP2 7 0.032243 0.10845

UP3 7 0.032243 0.10845

UP4 10 0.0038718 0.11284

UP6 26 1.0016e-011 0.16009

UP8 51 1.3981e-016 0.21248

89

In most simulation cases, OAA suggests the minimum structure or minimum length

of the training period unlike other stopping criteria. In the few cases it does not, OAA

still delivers better generalization in the sense of the smallest validε . In many stopping

criteria variation of validε is one of the measures used to determine possibility of

overfitting rather than providing quantified evaluation of the goodness-of-fit

accomplished by SNRF. To meet the quantified stopping criterion, it may take slightly

more hidden neurons or learning epochs for the SNRF to fall below the threshold than in

some other criteria. However, in all the cases, the network optimized with OAA

outperforms all the other stopping criteria by providing optimized generalization ability.

3.5. Conclusions

In this chapter, an optimized approximation algorithm is proposed to solve the

problem of overfitting in function approximation applications using neural networks. The

OAA utilizes a quantitative stopping criterion based on the signal-to-noise-ratio figure

(SNRF). This algorithm can automatically detect overfitting based on the training errors

only. The algorithm has been validated for optimization of the number of hidden neurons

for MLP and the number of iterations for the BP training. It can be applied to parametric

optimization of any learning model or model selection for other function approximation

problems. Therefore, in a given supervised learning problem, the structure of the multi-

layered network can be determined by the OAA so that useful information is effectively

extracted while minimum computational resources are consumed.

90

CHAPTER 4: A FRAMEWORK OF BUILDING EMBODIED INTELLIGENCE

4.1 Introduction

Intelligence cannot develop without an embodiment or active interaction with the

environment. The embodiment is the extension and interface of the intelligence for its

interaction with the environment. Through embodiment, intelligent agents carry out

motor actions and affect the environment. The response of the environment is registered

through sensors implanted in the embodiment. At the same time the embodiment is a part

of the environment that can be perceived, modeled and learned by intelligence.

Properties of the motors and sensors, their status and limitations can be studied, modeled

and understood by intelligent agents, so that the agents model and understand limitations

of their embodiment and their motor abilities, or effectively their abilities to effect the

environment.

The intelligence core interacts with its environment through its embodiment, as

shown in Figure 4.1. This interaction can be viewed as closed-loop sensory-motor

coordination. The embodiment does not have to be constant nor physically attached to

the EI body. The boundaries between embodiment and the environment change during

the interaction which modifies the intelligent agents’ self-determination. Because of the

dynamically changing boundaries, the definition of embodiment has to reflect this fact

and contain elements of indetermination.

In this chapter, a framework of building an embodied intelligence (EI) is proposed.

The definition of embodiment is presented along with its characteristics. And a general

91

and uniform definition of EI is given for the framework. Based on the definition, we

propose essential elements for building an intelligent machine and spell out its general

design principles. As one of the essential elements of intelligence, hierarchical memories

are further discussed in later chapters.

Embodiment

Environment

Sensors
Communication channel

Embodiment

Actuators
Communication channel

Intelligence
core

Figure 4.1. Intelligence core with its embodiment and environment.

4.1.1 Definition of embodiment of embodied intelligence

Definition:

Embodiment of embodied intelligence is a mechanism under the control of the

intelligence core that contains sensors and actuators connected to the core through

communication channels.

A first consequence of this definition is that the mechanism under control may

92

change. For instance, when the embodiment changes, the way that the embodiment

works and the intelligent agent interacts with the environment will be affected. The

efficiency of the EI sensory perception may be altered by external effects, and its motor

ability may depend on skills and strength of its body, etc.

Secondly, embodiment does not have to be permanently attached to the embodied

intelligence in order to play its role of sensory- motor interaction with the rest of the

environment. For instance, if we operate a machine (drive a car, use keyboard, play

tennis), our embodiment dynamics can be learned and associated with our action to the

extent that reduces the distinction between the dynamics of our own body and the

dynamics of our body operating in tandem with the machine. Likewise, artificially

enhanced senses can be perceived and characterized as our own senses (e.g. glasses that

improve our vision, or a hearing aid that improve our hearing). Another example of

sensory extension could be an electronic implant stimulating the brain of a blind person

to provide visual information or an ultrasound device warning a blind person of incoming

obstacles, etc.

Extended embodiment does not have to be of a physical (mechanical) nature. It

could be in the form of remote control of tools in a distant surgery procedure or

monitoring Martian landscape through mobile, remotely controlled cameras. It could

also be our distant presence at the soccer game through received TV images or our voice

message delivered through a speakerphone to a group of people at a teleconference.

Finally, extended embodiment of intelligence comes in the form of organizations

and their internal working mechanisms and procedures. A general directing troop on a

93

battle field feels a similar directive power of moving armies as a crane operator that feels

the mechanical power of the machine that he operates. The president also feels the

political power of his address to the nation and the large impact it makes on people’s

lives.

This extended embodiment enhances EI’s ability to interact with the environment

and thus its ability to grow in complexity, skills and effectiveness. If the President learns

how to address the nation, his ability to affect the environment grows differently than that

of a woman in Darfur trying to save her child from violence and hunger.

Our knowledge of embodiment properties and its limitations is a key to its proper

use in interaction with the world. We rely on this knowledge to plan our actions and

predict the responses from the environment. A change in the way that our embodiment

implements desired actions or perceives response from the environment introduces

uncertainty in our behavior and may lead to confusion and less than optimum decision

making. If a car’s controls were suddenly reversed during operation a user would require

some adaptation time to adjust to the new situation and probably would not be able to

effectively control the machine that may result in a crash. Therefore, what we learn about

our environment and our ability to change this environment is affected not only by our

intelligence (ability to learn, understand, represent, analyze and plan) but by correct

perception of our embodiment as well. This perception leads to the self awareness and

conscious behavior.

4.1.2 Definition of embodied intelligence

In order to build working models of intelligent machines, an arbitrary and utilitarian

94

definition of intelligence is adopted in this work [Sta 06]. It is our aim to base the design

concepts of embodied intelligence on a minimum set of requirements and mechanisms

from which all traits of intelligence can be derived. We will demonstrate that the

definition is general enough to characterize agents of various levels of intelligence

including human. To differentiate it from enigmatic meaning of intelligence, we will

limit it to embodied intelligence suggested by Brooks [Bro 91] and described in more

detail by Pfeifer [Pfe 99].

Definition:

Embodied intelligence (EI) is defined as a mechanism that learns how to survive in

a hostile environment.

A mechanism in this definition applies to all forms of embodied intelligence,

including biological, mechanical or virtual agents with fixed or variable embodiment, and

fixed or variable sensors and actuators. Implied in this definition is that EI interacts with

an environment (real or virtual) and that the results of actions are perceived by its

sensors. Also implied is that the environment is hostile to EI so that EI has to learn how

to survive. This hostility of environment symbolizes all forms of pains that EI may suffer

– whether it is an act of open hostility or simply scarcity of resources needed for the

survival of the EI. The important fact is that the hostility is persistent as it stimulates the

mechanism to act and learn. For example, low battery power is a persistent threat for an

agent requiring it. Gradually the energy level goes down, and unless the EI replenish its

energy, a perceived discomfort from its energy level sensor will increase.

Hostile stimulation from the environment towards EI is necessary for it to acquire

95

necessary knowledge, develop environment related skills, build models of the

environment and its embodiment, explore and learn successful actions, create its value

system and goals, and grow in sophistication.

We will show in more details how the perpetual hostility will be the foundation and

motivations for learning, goal creation, planning, thinking, and problem solving. In more

advanced forms of EI it will also lead to intuition, consciousness, and emotions. Thus all

forms and levels of intelligence can be considered under the proposed definition of EI.

Notice that this definition of EI clearly differentiates knowledge from intelligence.

Knowledge is the acquired set of skills and information about the environment, while

intelligence requires the ability to acquire knowledge.

4.2 Designing the embodied intelligence

Learning whether certain actions are desirable makes the learning agent more

capable of surviving in the hostile environment. There are several means of adapting to

the environment: evolutionary - by using the natural selection of those agents that are

most fit; cognitive - by using learning memory, pattern recognition, and associations; and

group behavior – by using the individual member skills, specialization, and

communication for the group survival. Here we address only the second, and the most

critical from the machine intelligence point of view, form of adaptation.

4.2.1 Basic requirements for EI

The spatio-temporal patterns that we experience during a lifetime underlie our

knowledge, and produce our internal models of the environment. The perceptual objects

96

that we can recognize, the relations among the objects, and the skills that we have are all

stored in our memory. The perceived patterns have features at various levels of

abstraction, so that they will be remembered accordingly.

Another critical aspect of human brain development is self-organization. By self-

organizing their interconnections, our brains allow us to quickly create representations of

these patterns, interact with the environment, and build expectations regarding future

events. A six year old child has many redundant and plastic connections ready to learn

almost anything. After years of learning, the connection density among neurons is

reduced, as only the most useful information is retained, and related memories and skills

are refined. At the same time, the learning ability is gradually reduced. It is not to say

that an adult cannot learn more efficiently than a child. The knowledge that he

accumulated makes him an efficient learner, however the memory resource that he can

use to learn new facts are gradually depleted since brain’s ability to create new neurons is

very limited.

Although most of the existing neural network models assume full or almost full

connectivity among neurons, human cerebral cortex is a sparsely connected network of

neurons. For example, it has been estimated that synapses of neurons projecting through

the mossy pathway (of the rat) from the dentate gyrus to subregion CA3 of the

hippocampus reach 0.0078% of CA3 pyramidal cells [Rol 89]. Sparse connections can,

at the same time, improve the storage capacity per synapse and reduce the energy

consumption of a network working with the stored patterns.

97

For the purpose of building intelligent machines, it seems instructive to develop a

neural network structure that allows the machine to perceive in a manner similar to how

humans do. Since human cortex is rather uniform in its organization and its able to learn

almost anything in any of its location, the EI memory should be built based on a simple,

uniform, hierarchical, and sparsely-connected structure with capability to self-organize.

EI learns predominantly in an unsupervised manner by responding to stimuli from the

environment. However, learning, as a pattern processing process, is not involuntary.

Learning is deliberate, perpetual, and should be closely related to the machine’s situation

in the environment, and related to how the machine can survive in it.

Having the purpose of surviving and certain more specific goals, the machine can

efficiently organize its resources to process the useful incoming information and learn the

important skills. The creation of goals should result from the machine’s interaction with

its environment. Therefore, we require that an intelligent machine must have a built-in

mechanism to create goals for its behavior and such mechanism will be called the goal

creation system (GCS). As we like to develop the machine’s memory based on simple,

uniform hierarchical and self-organizing structure, we also desire to build a GCS based

on hierarchical structure. The memory structure grows and evolves as the goal hierarchy

develops. Better perceptions and skills facilitate understanding and creation of more

advanced goals. Meanwhile, the creation of more advance goals stimulates the growth of

the hierarchy representing sensory inputs, perception and understanding of the

environment and the hierarchy representing actions and skills.

98

Therefore, it is proposed that in order to build intelligent machines, the following

elements are essential:

1. Hierarchical self-organizing memory (HSOM) with sparse connectivity to

perceive and act according to the machine’s objectives.

2. Goal creation system (GCS) to develop sensory-motor coordination, goal-oriented

learning and goal-oriented action, and to act as stimuli for interaction with the

environment.

In the proposed model of EI, a HSOM will use three basic pathways – a sensory

pathway responsible for perception, a motor pathway responsible for actions, and a goal

creation pathway responsible for goal creation, planning, evaluation of actions in relation

to its goals, learning of useful associations, and stimulation of the machine to perform

useful actions. These three pathways interact and associate on various levels of the

memory hierarchy.

4.2.2 Hierarchical self-organizing memory

HSOM is made of multi-layered processing units (neurons) and their connections.

Neurons on different levels handle the recognition tasks with different levels of

abstraction. Lower-level neurons are either activated directly by the sensory inputs or

indirectly by certain detailed features. Subsequent level neurons combine the extracted

features and represent elements of more complex entities by creating necessary

associations between the lower-level features. The information is gathered, associated

and abstracted (in an invariant form) as it flows upwards in the hierarchy. Finally, top-

99

level neurons represent perceived entities, ideas, and relations in the observed

environment.

In human brains, the neurons in the sensory pathway at the input stage usually make

divergent connections with later processing stages [Kan 00]. Then the information

reaches and activates various parts of the neocortex. In human processing of visual

information, 1 million, densely firing neurons in the optic nerves provide information to

200 million neurons in the primary visual cortex V1 [And 05] that, in turn, activate

significant parts of the neocortex which contains as many as 1011 neurons [Kan 00]. The

work presented in [Ste 01] suggested that not only the number of V1 neurons increases as

the 3/2 power of the number of LGN neurons (NV1= NLGN
3/2), but also the entire volume

of neocortex and thalamus follow a similar expansion rate. The work raised a possibility

that similar scaling rates exist for other cortical areas.

In addition, increasing the number of neurons on the top of the hierarchy increases

the number of abstract symbols that can be represented. This increases the memory

capacity of the network which is a desired feature of the proposed memory organization.

Therefore, the proposed HSOM may accommodate a larger number of neurons at higher

hierarchical levels to represent a large variety of abstract symbols. The feature recognized

in the lower-level neurons may be related to multiple objects represented on the higher-

level, so the lower-level neurons’ activity may be potentially spread to several neurons on

the higher level. It is structured to potentially reach and activate groups of neurons on the

top layers of its hierarchy. However, the number of higher level neurons can be reduced

if needed for smaller memories to lower the simulation cost.

100

4.2.2.1 Sensory pathway

The primary objective of neurons in the sensory pathway is to register the input

information received from the environment and to build intentional representations to

either be acted upon right away or stored in the long-term memory for later use. The

intentional representation is an internal representation of objects, symbols, abstractions,

relations, actions, etc. (jointly called perceptions) related to EI’s interaction with the

environment. Typically, in an HSOM, many neurons are activated on the lower levels to

represent the detailed features of the sensorium while few neurons need be activated at

higher levels. The reduction in neuronal activities at higher levels builds the “sparse

codes” [Bar 72] [Wil 69] [Ama 93] [Fie 94] that represent information. The active

neurons at all layers of the hierarchy form the activation pathways for various stimuli.

Simple features recognized by neurons on the lower levels may be combined to generate

representations of many objects and their relations at higher levels.

The idea of “sparse coding” emerged in an earlier work as one of the propositions of

human visual perception [Bar 72]. The principle has been elaborated and advanced by

several other authors [Wil 69] [Ama 93] [Fie 94] [Day 01] [Fol 02] [Ols 04]. In recent

years, various experimental studies have supported the notion that visual information in

human primary visual cortex is represented by a relatively small number of active

neurons out of a large population of neurons [Vin 00] [Vin 02]. Sparse coding in the

visual system also exists as a consequence of metabolic demands [Len 03] [Bad 96] [Lau

03], and as a result of adaptation to special statistical properties of the natural visual

environment [Vin 00] [Ols 96] [Sim 01]. Sparse coding is expected in auditory cortex as

101

well [Lew 02] [Lew 02], and is observed in the spiking rates of neurons in primary

auditory cortex [DeW 03]. The advantages of using a learning network with sparse

connections and sparse data representations were recently discussed conceptually in [And

05]. With the information flowing up the hierarchy, the responses of the neurons on the

higher levels can become very selective and only a few neurons are active for certain

stimuli.

In the design of machine intelligence, power dissipation is one of the most critical

design factors, especially in large, parallel computing systems. Thus, a learning and

processing model that involves only a small subset of active neurons will save the power

consumed by the learning memory. This containment of neuronal activities in

representation building in sensory pathways is even more critical in the computational

model we assume in this work in which it is possible that higher layers have many more

neurons than the lower layers. Such assumption depends on memory capacity and is

biologically plausible.

If the lower layers correspond to the sensory input stimuli, their size is determined by

the number of sensory inputs. Higher layers use these sensory inputs to build abstract

representations, and finally contribute to representation memories at the top layers in the

hierarchy. In large memories these top layers contain many neurons. For instance it is

estimated that in the human brain the number of cortical neurons is on the order of 1011,

while the number of neurons stimulated by the sensory inputs is on the order of 106.

Thus a majority of neurons reside farther away from the sensory inputs, leading to the

topologically expanding hierarchical structures. Therefore, computational models to

102

build representations used in this work assume such expanding sensory and motor

structures.

Memory structures are developed through the modification of the interconnection

weights between active neurons. Weight adjustment has an important impact on the

machines ability to learn. Our system restricts the magnitude of weight adjustment based

on the amount of times a neuron’s weights have been previously modified. As a result of

the expanding layers and reduced probability of firing, weights on the lower levels are

adjusted more frequently then upper level weights. As sensory information is presented

to the network, lower level connections quickly become rigid and can no longer be

modified (learn). In contrast, upper level neurons are infrequently modified and therefore

retain their ability to be modified even after extensive exposure to the input level stimuli.

This results in a system which can be trained to form representations on each increasing

level with an increased ability to represent new objects.

The structure of the HSOM sensory pathway is proposed as shown in Figure 4.2.

The neurons in the sensory pathway are organized in a layered structure. The neurons on

each layer have sparse connections with neurons of the next higher level. In the figure,

two sensory inputs activate two pathways, shown as the shaded areas. In each activation

pathway, the neuronal activity decreases for higher levels. Features on a particular level

may be reused in two or more different activation pathways during a recognition process.

Such an organization of sensory pathways in which various streams either specialize in

building localized features or represent completely different sensory inputs are well

103

supported in neurobiological studies [Ung 82] [Van 83]. Such paths interact with each

other on various levels of the hierarchy [Sam 97].

Sensory
input

……………... … …
Increasing connection’s adaptability

Figure 4.2. Structure of sensory pathways in the HSOM and exemplar activation

pathways.

EI uses two mechanisms to store the information in its memories and to build the

representation invariance. Firstly, only new and useful information is stored in the form

of intentional representations. To accomplish this, the machine continuously predicts

what information will be coming in. This prediction manifests its understanding of the

perceived signals and an assumption of the continuity and self-similarity (sameness) of

the observed scene over a short observation time. In short time intervals, the sensory

104

input changes, are usually the result of minor changes in the point of view, motion,

lighting conditions, or gradual modification of the object shape, color or form. When EI

interacts with the environment, it is situated in a specific location, observing specific

objects, and performing a specific task. Thus the assumed continuity of the observed

sensory input is used for invariance building. Although we look at an object from

different angles, we know that this is the same object and thus these various inputs must

trigger the same representation on the higher level of the sensory pathway that forms the

representation memory.

Secondly, the intentional representations have to be related to the machine’s

objectives. When the EI realizes that a specific action resulted in a desirable effect, it

stores the representation of the perceived entity and learns associations between the

activated sensory neurons and the motor neurons. If the effect is not desirable, it learns

not to perform such an action by reducing the strength of the connections. Finally, when

no goal is affected, no learning takes place, the machine does not create intentional

representation nor does it remember the action it took. Such organization of the learning

process protects the machine’s memory from overloading by unimportant information.

4.2.2.2 Motor pathway

The primary objective of neurons in the motor pathway is to represent and control

execution of actions. The motor pathway represents skills learned by the EI.

Neurons in the motor pathway are organized in a hierarchical way to be able to store

a large number of skills and actions. At the bottom of the hierarchy are row motor

outputs. Memories are developed through registering these activities by modifications of

105

the interconnection weights between neurons on the lower levels and activated neurons

on the higher level.

Hierarchies of action representations are built bottom-up, from the simplest actions

that require little sensory-motor coordination or sequential memories, to the most

complex ones, that may last for a long period of time and require lots of memories. An

example of a simple action may be a reactive response to a painful shock, while driving

home may be an example of a more complex action. Higher level actions can only be

obtained after lower level skills are learned.

To have large learning capacity for various skills, the number of motor neurons on

the higher levels is much greater than that of the lower levels in the motor pathway

hierarchy. However, the number of activated neurons that represent skills and actions on

the higher levels is less than that on the lower levels. Lower levels may no longer be

capable of storing any new information since they were involved in learning many action

patterns. This results in lower plasticity of the interconnections on the lower level than

on the higher levels.

EI activates motor neurons in response to the request from the value system. If an

action was taken that resulted in a positive value (or a reward), an association between

the sensory and the motor neuron’s activity is learned. This makes it more likely that a

similar action will be executed again when the EI is exposed to a similar environmental

situation. The same complex operation may be executed using various simpler

operations, which leads to a similar concept of invariance building in the motor pathway

as that in the sensory pathway. Continuity of a higher level action is used for invariance

106

building between an action represented on the higher level and its lower level

implementations.

A prediction mechanism is also used in the motor pathway. At every step of a motor

action, a prediction is made regarding expected inputs from the sensory pathway and the

value system. If the prediction is correct there is no need to learn any new associations.

Figure 4.3 shows a schematic representation of interactions between sensory and

motor units on different levels of HSOM hierarchy.

Environment

…

…

…

…

… …

D

R

E

A

Sensor path Motor path Increasing connection’s adaptability

Goal creation
&Value system

R: representation
E: expectation
A: association
D: direction
P: planning

P

Figure 4.3. Sensory-motor coordination in HSOM.

107

In this figure, representation connections indicate entity recognition along the

upward sensory pathway and represent downwards activations along the motor pathways.

Feedback connections represent expectations of future inputs in the sensory and motor

pathways. These expectations are provided by both motor neurons as well as higher level

sensory neurons. The direction arrows indicate stimulation links from the sensory or

from the goal creation pathways to motor neurons, while planning arrows connecting

motor neurons to the sensory neurons predict the sensory inputs after the action

represented by this motor neuron was completed.

4.2.2.3 Goal creation pathway

The primary objective of neurons in the goal creation pathway is goal creation,

evaluation of actions in relation to current goals, and stimulation of the machine to

perform useful actions. The growth of goal creation pathway triggers the intentional

representation building and the growth of sensory and motor pathways. Primitive level of

goal hierarchy is created based on simple external hostile signals from the environment.

On different levels of the goal hierarchy, stimuli are internally generated so that machine

is triggered to find desired actions and implement them. The found desired actions will

be the reason to learn representations of related objects and skills and useful associations

between them.

Similar to neurons in the sensory and motor pathways, neurons in the goal creation

pathway are organized hierarchically in order to represent different levels of goals and the

means of their realization. Lower level goals relate to simple, externally driven

objectives. Higher-level goal creation neurons are developed based on lower level goal

108

creation neurons and other neurons in the sensory-motor pathways. They correspond to

complex objectives that are learned over the machine’s operations and are related to the

means to accomplish lower level goals. Since the lower level goals may be satisfied in

many different ways, they can correlate with multiple higher level goals. In the EI

research, goal creation pathway is less considered and less understood than the other two

pathways. However, we propose it as an essential element of building EI. In Chapter 6,

we will devote more efforts to developing the concept and structures for the goal creation

pathway.

4.3 Conclusions

In this chapter, we presented a definition of EI. This definition of EI clearly

differentiates knowledge from intelligence, with emphasis on the ability to acquire

knowledge. A framework to design working models for EI is proposed based on our

definition of embodiment and embodied intelligence. The design concepts aim to build

intelligence on a simple and uniform neural structure. Two elements are proposed as

essential for EI, including hierarchical self-organizing memory (HSOM) and goal

creation system (GCS) to develop goal-oriented learning, and to stimulate a machine to

interact with the environment. Three self-organizing hierarchical structures – sensory,

motor, and goal creation pathways form the core of EI. They interact on various levels of

abstraction and support the development in the hierarchical memories. The

implementation of HSOM and GCS will be discussed more in later chapters.

109

CHAPTER 5: SPARSE CODING IN A HIERARCHICAL SELF-ORGANIZING

MEMORY IN UNSUPERVISED LEARNING

5.1 Introduction

In this chapter, we focus chiefly on bottom-up sensory information processing in the

sparsely connected HSOM, which is the sparse-coding procedure needed for object

representation building in its sensory pathway. The following discussion is chiefly

concerned with the implementation of architectures and algorithms that can provide some

of the sparse-coding and classification requirements of an HSOM while retain their speed

and efficiency when scaled to brain-size networks. This model employs a Hebbian

learning rule [Heb 49], and produces reduced neuronal activity at higher hierarchical

levels to build sparse codes for object representation. The memory capacity and the fault

tolerance of the proposed algorithms will be investigated. A similar sparsely connected

structure, which performs not only bottom-up information processing, but also uses the

top-down information, may be used for selective attention-aided perception and

invariance building- two critical functions in building sensory representations.

For sparse codes, an important characteristic is the activity ratio f, which shows the

fraction of active neurons at any given time. Lower activity ratio increases code sparsity,

and at its lowest value, single neuron representation is obtained. The activity ratio also

affects the robustness of the representations, the number of distinct categories that can be

represented (the representational capacity), and the generalization properties.

110

Various approaches to reducing neuronal activities, controlling the activity ratio, and

obtaining sparse coding have been tried. In “soft” sparse coding, neuronal activities are

constrained to smooth distributions that are sharper than Gaussian [Ols 96] [Ols 97]. In

networks with sparse connectivity, an optimum activity distribution function depends on

connectivity structure and input signal properties expressed by their statistically

independent components as presented in [Bel 97] [Zha 04]. In “hard” sparse coding, the

percentage of active neurons in a network is kept small [Reh 07]. Either approach

requires the application of global activation criteria to all the neurons on a particular

hierarchical level. Independent component analysis requires iterative computations to

achieve optimum component representations and assumes that the inputs are linear

mixtures of independent components. This strong assumption may not apply for natural

data (nature images) and applying the methods to these data may deliver unsatisfying

results [Zha 04].

Unsupervised, competitive learning, and the extreme case of using global winner

neuron to build single-neuron representations of WTA classification is implemented in

several existing networks, such as the competitive learning network [Aha 90] and

Kohonen self-organizing map (SOM) [Koh 84], which can achieve vector quantization or

dimensionality reduction. These networks typically have two-layered fully-connected

feedforward structures. The winner output neuron in these methods is found by applying

global WTA competition to the output, and then the connection links of the global winner

neuron, and its predefined neighboring neurons, are adjusted during learning.

111

WTA competition implemented using traditional global WTA network [Hay 99] or

MAXNET [Hay 99] [Zur 92] requires full connectivity and full comparison of activities

of all neurons. Several studies have obtained sparse coding by means of WTA networks

with lateral inhibitory links among neurons on the same level [Cou 92] [Xie 02].

Typically, such schemes also employ iterative computations to find the global winner.

The competition time increases with the likelihood of similar signal strengths in large

WTA networks. And the winner can be any neuron whose activity exceeds some

threshold [Xie 02], rather than the neuron that constitutes the best representation. Prompt

responses of humans to sensory information suggest that it is very unlikely that the

winning neurons are selected through iterative global competitions or through global

control of the overall neuronal activity.

A global WTA circuit with full connectivity is expensive in hardware

implementation since it requires large design area and high power dissipation. It also

suffers from matching problems, especially in systems with a large number of inputs [Fis

05]. To implement a large memory for a machine intelligence device, the circuit would

have to compare many analog signal values, which would be inefficient and inaccurate.

The competition time and resolution of finding the global winner are greatly affected by

the circuit design and the analog values to compare [Sta 93].

In a sparsely-connected HSOM, sparse connections between neurons on different

hierarchical levels may fail to transmit enough information up the hierarchy for reliable

feature extraction and pattern recognition if the hierarchy is not properly organized. For

instance, a hierarchy in which neurons’ activities are regulated by a predefined activation

112

threshold may either fail to activate neurons on the top level or activate too many of

them. This makes sparse coding and representation building in the sensory pathway

difficult.

In a local network model of cognition, called an “R-net” [Vog 97] [Vog 05], each

primary neuron randomly projects onto a small fraction of the secondary neurons which

in turn project onto the primary neurons, and provide indirect links between the primary

neurons in a sparsely connected architecture. While R-nets provide large capacity

associative memories, they were not used for feature extraction or sparse coding in the

original work. By expanding the concept of R-nets, one or several layers of secondary

neurons can be used to provide almost complete, indirect connectivity between the

primary neurons on successive levels of the hierarchy. Such an approach is taken in this

work.

Global WTA competitions tend to yield a single neuron (or few correlated neurons)

representations and are known as localist representations. They are associated with a

“grandmother cell” idea of questionable value in connectionists’ machine learning and

lack biological support. Cortical neurons tests performed by [Des 89] [Tan 96] [Fel 91]

demonstrated that multiple neurons are involved in encoding one input stimuli. Often

distributed neuron activities are associated with localized and invariant features of the

representations of the input stimuli build in memory. Thus, distributed and sparse

representations have important advantages over localist representations as discussed in

[Hin 86] [Hum 97].

113

We wanted to deploy, in the HSOM, a sparsely connected architecture that is

biologically inspired and a mechanism that is simple, efficient, and easy to implement in

hardware. The model and the algorithm presented in this chapter come from a new

synthesis of the above ideas. It investigates the use of hierarchical, self-organizing

learning in sparsely connected networks to accomplish sparse recoding of densely coded

input patterns. In this sparse structure, the neuronal activities are gradually reduced and

the activation pathway is formed for certain sensory inputs. To build localist

representation, we implement the method, sparse winner-take-all (SWTA), to find global

winners on the top level of a hierarchy of sparse structures through efficient localized

WTA competitions. Alternatively, an “oligarchy-take-all” (OTA) competition is employed

to build distributed representation in which a group of neurons replace the global winner

on the top level. The OTA approach increases memory reliability through coding

redundancy in the self-organizing learning.

The suggestion that memories are built through modification of the strengths of

synapses between active neurons is commonly referred to as Hebbian Learning [Heb 49].

During memory building, the Hebbian learning adopted in this work uses weight vectors

confined to the unit multidimensional sphere. The learning is performed by adjusting the

connection links of active neurons. Findings on the plasticity of interneuron connections

[Mar 04] suggest the plasticity of synapses is affected by experience and the aging

process. We can postulate that the weights that are adjusted frequently should become

less plastic (i.e., the amount of adjustment they undergo in response to new patterns

decreases). It is expected that this reduction in plasticity is particularly noticeable in the

114

connections of the lower-level neurons that represent basic features. Such features appear

in a large number of input patterns and are adjusted frequently. Higher level neurons that

can be used to store abstract representations composed of the lower level features are

activated less frequently than the lower level neurons and are expected to have

connections with greater plasticity.

5.2 Structure and connectivity of the sensory pathway

One or several layers of secondary neurons can be used to provide almost complete,

indirect connectivity between the primary neurons on successive levels of the hierarchy,

as shown in Figure 5.1. Each lower level primary neuron randomly projects onto a small

fraction of secondary neurons that, in turn, fan out onto primary neurons of the next level

in the network, producing indirect links between any primary neuron of one level and

almost all primary neurons of the next level. In Figure 5.1, two primary levels h and h+1

are shown to be connected through the secondary level s.

…

…

…

… …

In
cr

ea
si

ng
 n

um
be

r
of

 n
eu

ro
ns

Primary level
h+1

Secondary level s

Primary level h…

Primary neuron
Secondary neuron

Figure 5.1. Primary and secondary levels in HSOM.

115

As we proposed in this model, a large memory network may have an increasing

number of neurons at higher levels, the number of secondary neurons on the secondary

level s, denoted by Ns, may be larger than the number of primary neurons on the lower

level h, Nh, and smaller than the number of primary neurons on the higher level h+1,

Nh+1. For example, we can have

shhs NNNN αα == +1 and, , (5.1)

where α denotes a growth factor for the number of neurons on each layer. While we do

not stipulate that a higher layer must have a larger number of neurons than the lower

layer, we believe that occasionally such a feature of sparse memory may be useful and

our model works well in such structures.

5.2.1 Connectivity analysis

Let both the secondary neurons and the primary neurons on the successive layer

have an equal numbers of input connections. For example, we can have,

 and , 1
h

h
inh

s
in NlNl == + , (5.2)

where s
inl and 1+h

inl denote the numbers of input connections to the secondary and the

primary neurons on the secondary level s and the primary level h+1, respectively. Since

the total number of output connections from a layer must equal the total number of input

connections to the next layer, we have

s
outs

h
inh

h
outh

s
ins lNlNlNlN == +

+
1

1 and , . (5.3)

The average number of output connections from each neuron to a higher layer is given by

 and , 11 ++ == h
h
outh

s
out NlNl . (5.4)

116

The total number of interconnections between each two primary levels can be estimated

as,

()hhhh

hhhhh

s
s
inh

h
inall

NNNN

NNNNN

NlNll

+=

+=

+=

++

++

+
+

11

11

1
1

 . (5.5)

The input weight vectors of neurons (including primary and secondary neurons) place the

neurons in a multi-dimensional space. When a particular input pattern is processed,

neurons receive inputs from the lower level, and their activations are determined by the

inner products of the input vector and their input weight vectors. We compare these inner

products to find out the winner. In order for neurons to have a fair competition, and for

neurons’ weight vectors to represent many categories in the output space, the weight

vectors are desired to be unitary (i.e., the summation of the squared input weights is set to

1).

() ()∑∑
+

=

+

=

==
1

1

21

1

2 1 and ,1
h
in

s
in l

j

h
ij

l

j

s
ij ww (5.6)

5.2.2 Hierarchical organization

The outputs of several lower level networks can be combined at higher levels. For

example, one network with a 2-layer structure can extract basic features on level h+1.

The activities of r such networks can be combined and sent to a higher level, say h+2,

through secondary level s+1 for higher level feature extraction or object representation,

as in Figure 5.2.

117

… …Primary level
h+2

Secondary level
s+1

Primary level
h+1

… … …

r-lower level network output

… ……

… …

Figure 5.2. r-lower level networks combined for higher level feature extraction.

This kind of hierarchy, where a higher layer combines locally selected features

extracted by groups of lower layer neurons, was suggested by several authors [Ore 00]

[Haw 04] as a desirable form of cognitive architecture. The total number of

interconnections between each two primary levels may be very large for large memories.

Suppose, for example, we have a network with 1011 neurons in the highest level, and 109

neurons in the input level (N1). Connecting the input to the highest level is comparable to

connecting the entire sensorium to the entire cerebrum without regard to specialization of

any region. The total number of connections and the number of output connections are

given by

55.41

159119119
1

1

102.3 and ,10

105.31010101010

×====

×≈+=+=
+

+
+

s
out

h
out

h
in

s
in

s
s
inh

h
inall

llll

NlNll . (5.7)

The number of connections, here, exceeds the connectivity of pyramidal cells of the

human cortex [Rol 89]. However, if such connectivity is required with fewer synapses,

118

we can increase the overall sparsity of the network while maintaining sufficient numbers

of connections to transmit the sensory information through the hierarchy by increasing

the number of secondary layers. As shown in Figure 5.3, a “stacked” R-net structure, in

which two layers of secondary neurons separate primary neuron levels, can further reduce

the connection density. With growth factor α, the numbers of neurons in secondary layers

s1 and s2, and in the next primary layer h+1 are,

21121 , , shsshs NNNNNN ααα === + . (5.8)

For example, we can have the number of input connections and the average number of

output connections for all the neurons as,

3121
h

h
in

s
in

s
in Nlll === + (5.9)

3
1

21
+=== h

s
out

s
out

h
out Nlll . (5.10)

Then the total number of connections between all the neurons is

⎟
⎠
⎞⎜

⎝
⎛ ++=

++=

+++

+
+

1
3 2

1
3 2

1
3

1
1

2
2

1
1

hhhhhh

h
h
ins

s
ins

s
inall

NNNNNN

NlNlNll
. (5.11)

…

…

…

… …Primary level
h+1

Secondary level
s2

Primary level
h

Secondary level
s1

Figure 5.3.Three-layer per level structure.

119

If this three-layer per level organization is again applied to a network with Nh+1 =

1011 and Nh=109, we get,

1467.3 10 ,10 ≈= h
all

h
out ll . (5.12)

Here, the connectivity is much less than that of a typical pyramidal cell. When the input

size, Nh, and the output size, Nh+1, are specified, we can build an HSOM of almost any

complexity while maintaining almost any connectivity.

The network structure and its connectivity are functions of the number of secondary

levels, ns, as

∑
+

=
=

=+
+=

+=+=

+ +=

1

1

),...,2,1,()1(
1

)1,,...,2,1()1(

)1(1

sn

i
i

hNinlalll

ssnsshlevelsn
hNlevel

outl

hssnsslevelsn
hNlevel

inl

sn

hN
hN

α

α

 . (5.13)

The number of connections to each neuron and the overall connectivity are reduced

by adding more secondary levels, as shown in logarithmic scale in Figure 5.4, for the

sample network with Nh+1 = 1011 and Nh=109. We note that the number of connections

required in fully connected networks is much higher than those in sparsely connected

networks.

120

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

number of secondary levelslo
g1

0
of

 n
um

be
r o

f
co

nn
ec

tio
ns

 to
 e

ac
h

ne
ur

on

Number of connections in sparsely connected network
 with secondary levels

log10 of number of input connections to each neuron
log10 of number of output connections to each neuron

1 2 3 4 5 6 7 8 9 10
12

14

16

18

20

number of secondary levels

lo
g1

0
of

 to
ta

l n
um

be
r

of
 c

on
ne

ct
io

ns

Comparison of total number of connections

sparsely connected network with secondary levels
fully connected network

Figure 5.4. Connectivity of the networks with different numbers of secondary levels.

The networks with secondary layers separating primary layers provide sparseness in

both structure and data representation while complete information is transmitted up the

hierarchy. Such a network ensures high capacity memory, which will be discussed in

Section 5.3.4. In general, the sparse structure with WTA reduces maximum memory

capacity per neuron, while increasing storage capacity per synapse. A proper trade-off

between memory capacity and overall hardware requirements must be considered during

the system implementation.

121

5.3 Hierarchical self-organizing memory with sparse winner-take-all

In unsupervised learning, the intended response of the network to each pattern is not

given. When the input data propagate from lower to higher levels, the neurons on the

higher layer combine output signals of the neurons on its lower levels and produce

different levels of activation. Among the neurons on the top level of a hierarchy, there

will be a neuron having the greatest output signal strength, and will be recognized as the

global winner that provides the best representation of the input pattern. An efficient,

hardware-oriented algorithm that uses local competitions is proposed to find this global

winning neuron and the input pattern’s activation pathway. The algorithm is

implemented for a multilayer sparse network, so we call it a “sparse winner-take-all”

(SWTA) algorithm. The algorithm employs three basic steps:

(1). Sending the inputs up through the hierarchy

(2). Finding the global winner and its “winner network” by means of local

competitions

(3). Recalculating the neuronal activities and training the network through weight

adjustments on connections within the “winner network”

In these three steps, a signal is propagated through the entire network three times.

First, a forward propagation is used to obtain signal strengths of all the neurons. Second,

a back propagation is used to determine the “winner network” through local

competitions. Third, the forward propagation through the local winners identifies the

global winner and trains the connection weights. The following sections describe the

three basic steps of SWTA algorithm.

122

5.3.1 Data transmission

In a network built using the structure with secondary and primary levels discussed in

Section 5.2, the connections and connection weights are initialized with uniformly

random values. To ensure a fair competition, the summation of the squared input weights

to each neuron is set to 1. If the initial random weights have 1 2 ≠∑ jw , a scaling factor τ is

applied so that we have

1
2

2 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⇒= ∑∑ τ

τ j
j

w
w . (5.14)

The input weight vector is on the unit multidimensional sphere, giving each neuron an

equal probability of firing, and increasing the memory capacity of the HSOM.

In the first step of the SWTA algorithm, the input information is propagated to the

highest level of the network using feed forward computations. In this feed forward

computation, each post-synaptic neuron sums its weighted inputs. Each neuron has a

transfer function so that the neuron fires and sends a signal to its own post-synaptic

neurons when the summed signal strength exceeds an activation threshold, which is

typically the medium of the signal range. The neuron’s output is expressed in (5.15),

where layer
jS and 1+layer

iS denote the signal strengths of neuron j of level (layer) and neuron

i of level (layer+1), respectively. layer
iN denotes the set of pre-synaptic neurons on level

(layer) feeding neuron i on level (layer+1) and ijw denotes the input weights.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSw

thresholdSwSw
S

layer
i

layer
i

layer
i

Nj

layer
jij

Nj

layer
jij

Nj

layer
jij

layer
i

0

1 (5.15)

123

This feed forward computation establishes initial signal strengths for each neuron of

the network. In the second step, local competitions at each layer are used to establish the

winner network.

5.3.2. Finding the winner network

In a sparsely connected network, a global winner on the top level can be found

without global competition. Each neuron on a certain level connects to a group of post-

synaptic neurons on the next higher layer. These post-synaptic neurons are considered as

pre-synaptic neuron’s “post-synaptic local region”. Based on the neurons’ output

strengths computed in the 1st step of SWTA algorithm, local competitions can be

performed within corresponding post-synaptic local regions.

In hardware implementation, this local competition in a post-synaptic local region

can be easily implemented using an analog, current-mode WTA circuit [Sta 93] in which

the activity of neuron j is represented as the input current in
jI . Figure 5.5 (a) shows an

example for a neuron 2
1
sn on secondary level s2, which projects onto 3 post-synaptic

neurons on level (h+1). For example, if the input node 1
2
+hn has the highest signal

strength 1
2
+hS , it will become the local winner in this post-synaptic region and will pull

out all the current determined by the bias voltage, and the branches connected with losing

nodes, l1 and l3, will be logically disconnected. Node 2
1
sn receives the full signal from

1
2
+hn , and the signal strength of 1

2
+hn , 1

2
+hS , propagates down to 2

1
sn .

In a multi-level hierarchy illustrated in Figure 5.5(b), on a hierarchical level (layer)

with layerN neurons, post-synaptic local winners are selected according to each neuron’s

124

post-synaptic region on the next level of the hierarchy, as in (5.16a). During the local

competition using WTA circuit, each node)...,2,1(layerlayer
i Nin = on level (layer) receives

the signal strength from its post-synaptic local winner, as in (5.16b). This neuron

maintains an active connection only to this local winner and the connections to other

neurons in post-synaptic region are logically disconnected, as in (5.16c), where

1+layer
jil denotes the logic status of a connection between neuron i on level (layer) and

neuron j on level (layer+1), 1+layer
iN is a set of post-synaptic neurons on level (layer+1)

driven by a neuron i on level (layer), and layer
jN is a set of pre-synaptic neurons of neuron

j on level (layer).

),..2,1(max
1

1
layer

Nk

layer
kjkNj

layer
iwinner NiSwS

layer
j

layerl
i

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
∈

∈

+
+

 (5.16a)

1+= layer
iwinner

layer
i SS (5.16b)

⎩
⎨
⎧

=
+

+
+

1

1
1

:0
:1

layerl
i

layerl
ilayer

ji Namongwinnerlocalnotj
Namongwinnerlocalj

l (5.16c)

125

Local winner

l2l1 l3
X X

2
1
sn

1
1
+hn 1

2
+hn 1

3
+hn

1
2
+hS1

1
+hS

1
3
+hS

i

1+layer
iN

j
layer+1

layer

layer
jN

(a) Winner-take-all circuit in local

competition

(b) Interconnection structure to determine

a local winner

Figure 5.5. Local winner-take-all circuit.

Localized competitions begin at the highest level. The global winner neuron wins

local competitions in each local post-synaptic region in which it is present and its signal

strength is passed down to its pre-synaptic neurons. This process of local competitions is

repeated at each level until the input layer is reached. By receiving the global winner’s

signal strength, the pre-synaptic neurons will win the corresponding local competitions as

well. Accordingly, all the lower-level neurons which connect to the global winner directly

or indirectly will win local competitions and maintain their connections to their pre-

synaptic neurons. Specifically, all branches connected to the global winner are kept active

while those branches not connected to the global winner are logically disconnected. All

these active branches in the hierarchy form the “winner network”, as shown in Figure 5.6.

Notice that the global winner was not established explicitly at the beginning of the

competition. Rather, the global winner begins as a local winner, and progressively wins

all competitions.

126

…

…

…

Active branches form the
winner network

S winnerS winner

Loser neurons in
local competition
Winner neurons in
local competition

S winnerS winner Signal strength of
the global winner

Figure 5.6. Winner network.

Definition: A winner network is a sub-network of the original network that contains all

branches connected to neurons that received the winner signal in the back propagation

step of SWTA algorithm.

If used in a fully connected network without SWTA algorithm, the WTA circuit will

be used to find global winners by comparing all the neuron activities in the same circuit.

But as stated earlier and as was experimentally established by earlier works, such

implementation will greatly increase the computational time for finding global winners

for networks with a large number of output neurons.

5.3.3. Learning in the winner network

The logical statuses of connections are determined through local competitions in the

2nd step of SWTA. In the 3rd step of SWTA, the input pattern is forwardly propagated

127

through the network again and neuronal activities are recalculated considering the

connections’ statuses, as in (5.17).

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSlw

thresholdSlwSlw
S

layer
i

layer
i

layer
i

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

layer
i

0

1 (5.17)

The logically disconnected branches, which have layer
ijl as zeros, do not contribute to

post-synaptic neuronal activities, and only the active branches in the winner network will

send the information up to higher levels. Since all the branches in the winner network are

active, the signal strength of the global winner will not be reduced. However, because of

the logical disconnection of branches of other output neurons, the signal strength of these

neurons decreases and typically falls below threshold. In this way, after the 3rd step of

SWTA, the global winner will be identified as the only active neuron on the top level.

Hebbian learning is carried out simultaneously during this step. Weights are only

adjusted for connections within the winner networks, since only connections to these

neurons contribute to the recognition of this input pattern. The weight vectors are updated

so that the activation level of the global winner is reinforced in accordance with (5.18),

where 1
,

+layer
ijλ , the plasticity of the connection between neuron i of level (layer) and

neuron j of level (layer+1), specifies the learning rate for its weight adjustment.

layer
ij

layer
j

layer
i

layer
ij

layer
ij lSSw 11

,
1

,
+++ =Δ λ (5.18)

After updating, the weights are scaled using (5.14) so that they satisfy (5.6). As

discussed in Section 5.1, the connection plasticity decreases and the learning rate decays

with the number of weight adjustments. For example, we can have

128

rlayer
ij ρλ =+1
, , (5.19)

where r denotes the number of times this connection has been updated and ρ (ρ <1) is

the original plasticity of the connection.

The procedure of SWTA is performed for processing and training on each input

pattern. The logic statuses of connections are determined in order to find the global

winner representing the current input pattern. When new input pattern comes into the

network, the network activations are reset and determined again for the new input.

In summary, the network builds sparse representations by finding global winner

neurons by means of local competitions in sparsely connected networks in which neurons

of different primary levels are connected through secondary neurons. The SWTA finds

global winners in three steps: propagating data forward, finding the winner network by

back-propagating the signal strength from top level neurons, and forward propagation of

input signals through active connections in the winner network. The algorithm provides

an effective and efficient solution to the problem of finding global winners in large

networks, especially those on the scale needed to build human-level intelligence.

In later sections, the learning ability of the HSOM with SWTA will be tested on a

hierarchical structure with two primary levels. The representational capacity of single-

neuron codes, as the number of distinct categories they can represent, is limited by the

number of neurons on the top level of hierarchy. The sparse connectivity will result in

reduction of capacity since it reduces the information flowing upwards the hierarchy. The

representational capacity of networks with SWTA is also investigated.

129

5.3.4 Properties of the winner networks

The properties of winner networks depend on the topology of their interconnections

and can be studied statistically. When connectivity of the network is sufficiently low,

more than one winner network, connected to active neurons at the highest level, can be

found. By setting the connectivity above some threshold, dependent on the network size,

we can have a single winner with all of the active branches in a single winner network. In

the following example, we analyze the conditions under which a single winner is

obtained.

Example

We consider a structure with two secondary layers per level with 64 neurons on the

input level, the growth factor α in (5.8) set to 2.25 (giving levels that are 1.5 times larger

than the previous level in each dimension of two dimensional input), and 729 output

neurons. The number of active output neurons at the top level decreases with increasing

numbers of input connections for each neuron (as shown in Figure 5.7 by a solid line).

For this size of network, we observe that there is typically a single winner neuron at the

top level when the number of input connections to each neuron in the network is greater

than 6.

In the local competitions, we can choose to keep, as local winners, all the neurons

having activations within a certain range of the greatest local activation. This tolerance

range in the local competitions affects the number of winners on the top level. For this

structure with 64 input, 729 output neurons and 6 input connections for each neuron, the

number of active neurons at the highest level increases rapidly with increasing tolerance,

130

as shown in Figure 5.8 by a solid line. While a small number of active output neurons

may be beneficial, because they introduce robustness in object representations, too great a

number of active neurons may defeat the purpose of sparse coding process needed for

information storage in sparsely connected networks.

This experiment was repeated with a different network size, choosing α in (5.8) as 4,

and reaching 4096 output neurons. The results are shown by dashed lines in Figure 5.7

and Figure 5.8. We observe a similar trend relating number of winners and signal strength

to the number of input connections.

2 3 4 5 6 7 8 9 10
0

5

10

15

number of input connections

nu
m

be
r o

f w
in

ne
rs

 o
n

to
p

le
ve

l

Number of winners on top level vs.
Number of input links to each neuron

α = 2.25
α = 4

Figure 5.7. Effect of the number of input connections on the number of winners in SWTA.

131

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

Relative tolerance in local competition

N
um

be
r o

f w
in

ne
rs

 o
n

to
p

le
ve

l

Number of winners on top level vs. tolerance in local competition

α = 2.25
α = 4

Figure 5.8. Effect of tolerances in local competition on number of winners in SWTA.

In summary, the sparsely connected network in which neurons at different primary

levels are connected through secondary neurons builds sparse representations and finds

global winner neurons by means of local competitions.

The SWTA finds global winners in three steps: propagating data forward, finding the

winner network by back-propagation and local competitions, and forward propagation of

input signals through active connections in the winner network, organized as the

following Table 5.1.

132

Table 5.1

Sparse Winner-Take-All Algorithm (SWTA)

1. Data transmission

(feedforward process)

FOR Layer = 2: Top Layer
 FOR i=1: number of neurons on (Layer)

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSw

thresholdSwSw
S

layer
i

layer
i

layer
i

Nj

layer
jij

Nj

layer
jij

Nj

layer
jij

layer
i

0

1

(5.15)

 ENDFOR
ENDFOR

2. Finding the winner

network

(backpropagation process)

FOR Layer = Top Layer-1: -1: 1
 FOR i=1: number of neurons on (Layer)

⎩
⎨
⎧

=

=

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

+

+
+

+

∈
∈

+ ∑+

1

1
1

1

1

:0
:1

),..2,1(max
1

layerl
i

layerl
ilayer

ji

layer
iwinner

layer
i

layer
Nk

layer
kjkNj

layer
iwinner

Namongwinnerlocalnotj
Namongwinnerlocalj

l

SS

NiSwS
layer
j

layerl
i

 (5.16)

 ENDFOR
ENDFOR

3. Learning in the winner

network

(feedforward process)

FOR Layer = 2: Top Layer
 FOR i=1: number of neurons on (Layer)

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSlw

thresholdSlwSlw
S

layer
i

layer
i

layer
i

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

layer
i

0

1 (5.17)

 layer
ij

layer
j

layer
i

layer
ij

layer
ij lSSw 11

,
1

,
+++ =Δ λ (5.18)

 ENDFOR
ENDFOR

5.3.5 Comparison between SWTA and WTA algorithms

The presented SWTA algorithm provides an effective and efficient solution to the

problem of finding global winners in large networks, especially those on the scale needed

to build human-level intelligence. The number of calculations to process the input

133

information and the number of connections are compared between a sparse network with

SWTA and a traditional fully connected network with global WTA in Table 5.2. In this

example, assume the network has hN inputs and the growth factor α . The structural

properties of two networks are listed in Table 5.2 as well. It is noted that the computation

cost and the design area are both correlated with the overall number of connections in the

network.

Figure 5.9 compares the connectivity of a sparse network to that of a fully-connected

network as a function of the number of input neurons Nh (logarithmic scale). One can see

that the sparsely connected network has a greatly reduced number of connections which

results in reduced calculation cost and design area. In comparisons of parallel processing

hardware architectures, efficiency is measured by a product of time and area. Thus an

architecture that requires smaller area is more efficient than the one with larger area even

if the computational time is the same in both. Sparse network with SWTA shows its

advantage especially in large networks.

134

Table 5.2

Comparison between SWTA and global WTA

Sparse network with

SWTA

Fully-connected network with

global WTA

Number of layers 4 2

Structure (number of

neurons on each

level)

hhhh NNNN 32 ααα −−− hh NN 3α−

Number of inputs to

each neuron
3

hN hN

Number of

connections

3/432)(hNααα ++ 23
hNα

Number of

calculations

3/432)(hNααα ++ 23
hNα

Design area α 3/432)(hNααα ++ α 23
hNα

135

10
0

10
2

10
4

10
6

10
8

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

10
20

number of input neurons (Nh)

ov
er

al
l n

um
be

r o
f c

on
ne

ct
io

ns

comparison between SWTA and global WTA
 (α = 10, Lin = (Nh)

1/3)
number of connections in sparse network
number of connections in fully-connected network

Figure 5.9. Comparison of connectivity between SWTA and global WTA.

Representational capacity of single-neuron codes, as the number of distinct

categories stored, is limited by the number of output neurons. The sparse connectivity

used in SWTA results in a slight reduction of memory capacity since it reduces the

information transmission through the hierarchy. However, the memory per synapse is

improved. Further investigation on the representational capacity of networks with SWTA

is provided in Section 5.3.7.

5.3.6 Finding a global winner in the network with SWTA

The learning ability of the network with SWTA mechanism was tested on the same 3-

layer per level structure with 64 input and 729 output neurons described in the example in

Section 5.3.4. Weights were in the range [-1, 1] and the inputs for learning were grey-

scale patterns in the range [-1, 1] as well. When a pattern is applied to the network with

136

the SWTA, a single neuron is found as the global winner at the highest level. In this

experiment, an 8 by 8 grey-scale random image pattern is applied to the randomly

initialized network. The network builds the input representation and learns by adjusting

its weights. To evaluate the network’s fault tolerance, 5 bits of the original information

were assigned random values, and the distorted pattern was presented to the network. A

random pattern and its distorted pattern are shown in Figure 5.10.

original image variant imageoriginal image variant image

Distorted area
Input size: 8 x 8
Number of distorted bits: 5

original image variant imageoriginal image variant image

Distorted area
Input size: 8 x 8
Number of distorted bits: 5

Figure 5.10. Original random pattern and its distortion presented to the SWTA.

The activities of output neurons, after the original pattern is processed are shown in

Figure 5.11(a). Activities of the output neurons are then shown in Figure 5.11(b) after

finding the winner network and adjusting the weights. After the local competitions and

weights adjustment, only the global winner neuron has its signal strength higher than the

activation threshold. After learning the original input pattern, the network with SWTA

137

responds to the distorted pattern, as shown in Figure 5.12 before (a) and after (b) the local

competitions.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial output signal strength

output neurons

ne
ur

on
al

 a
ct

iv
iti

es

output neuron activities
activation threshold

Global Winner

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Winner selected in training, winner is neuron 405

output neurons

ne
ur

on
al

 a
ct

iv
iti

es

output neuron activities
activation threshold

Global Winner

(a) (b)

Figure 5.11. Output neuron activities for original pattern.

(a). before (b). after local competitions

Such small levels of pattern distortion can be tolerated by the network which gives

the same neuronal representation for both patterns. However, it is anticipated that, as the

network learns more patterns, the level of tolerance for distortion of the network will

decrease. This expectation was tested by finding the fraction of distorted patterns that

were correctly recognized by the network with SWTA as a function of the number of

patterns. The performance is obtained based on 10 Monte-Carlo runs (shown in Figure 5.

13). Each stored pattern was tested 10 times with 5 different bits in the pattern randomly

changed on each trial. The results agree with the expectation that level of distortion

138

tolerance of the network on classification problems decreases with increasing numbers of

training patterns. The performance of a STWA network is evaluated with and without

training. During the training, the representation built in the network for a particular

pattern is reinforced so that each pattern can be better recognized when a large number of

patterns are stored in the network.

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5
Initial output signal strength for distorted pattern

output neurons

ne
ur

on
al

 a
ct

iv
iti

es

output neuron activities
activation threshold

Global Winner

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5
Winner selected for distorted pattern, winner is 405

output neurons

ne
ur

on
al

 a
ct

iv
iti

es
output neuron activities
activation threshold

Global Winner

(a) (b)

Figure 5.12. Output neuron activities for distorted pattern.

(a). before (b) after local competitions

139

0 10 20 30 40 50 60 70 80 90 100

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

number of patterns to learn

 p
er

ce
nt

ag
e

of
 c

or
re

ct
ne

ss

 o

n
va

ria
nt

 p
at

te
rn

 re
co

gn
iti

on

Tolerance to variant information vs. number of patterns to learn

percentage of correct recognition
without training the network
percentage of correct recognition
with training the network

Figure 5.13. Recognition ability of the network with SWTA.

(Percentage of correct recognition of distorted information vs. number of patterns
learned)

5.3.7 Representational memory capacity of the network with SWTA

In sparse coding, an important measure of the memory structure is to evaluate how

many representations of the input categories can be reliably obtained. Such

representations can then be stored in the associative memory, that is capable to associate

different parts of the code and recover the missing parts. Associative memory capacity

(typically referred to as memory capacity) is then different from the representational

capacity. In a fully-connected WTA network, each pattern is represented by a single

neuron at the highest level, and the maximum number of distinct categories the network

can represent and recognize equals to the number of top-level neurons. It is desired that

the representational capacity of SWTA be close to this number as well. In the next

experiment, a network with 729 neurons on the top level was exposed to 7000 random

140

patterns. It is found that 452 different neurons at the top level were activated at least

once. It means that approximately 57% output neurons can be used to store and represent

categories, and the SWTA can store 452 different categories without interference. Figure

5.14(a) shows the neuronal firing frequency distribution, and it is observed that most of

these activated neurons are triggered by a small number of patterns. The neuronal firing

frequencies of these 452 neurons, sorted by descending order, are shown in Figure

5.14(b). It is noticed that one of the top-level neurons is activated by 197 patterns. The

distribution of similarities, in the sense of sum of squared intensity difference [Hil 01],

among these 197 patterns is compared with the distribution of similarities among

randomly generated patterns in Figure 5.15. In this metric, similar patterns have small

intensity differences. As we can see from Figure 5.15, the average intensity difference for

patterns which trigger the same output neuron is two standard deviations smaller than that

of random patterns. This indicates statistical significance for the similarity of patterns that

trigger the same output neuron. Using the results presented in Figure 5.15, one can easily

estimate the likelihood that a pattern is from the given class rather than a random pattern.

For a fully connected network with 64 neurons as the input and 729 neurons as the

output with no secondary levels, all the 729 neurons at the highest level are activated at

least once after applying 7000 random patterns. The neuron firing frequencies and the

firing frequency distribution are also shown in Figure 5.14(a) and (b) for comparison.

This indicates that the reuse of the common links in storing various input patterns in the

sparse structures reduces the representational capacity per neuron of the network with

SWTA compared to that of a fully connected memory with global WTA competition on

141

the output layers. However, the representational capacity per synapse of a SWTA

network is significantly higher than that of a fully connected WTA network, and is 6.04

times as great in the given example. This representational capacity can be computed

using

all

neuronsactivated
synapse l

N
C = (5.20)

where Nactivated neurons is the total number of neurons that can be used to represent

categories and lall is the total number of connections.

20 40 60 80 100 120 140 160 180 200 220
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

neuronal firing frequency

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

Neuronal firing frequency distribution

Fully connected WTA network
Sparsely connected SWTA network

0 100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

140

160

180

200

neuronal firing frequency

Fr
eq

ue
nc

y
of

 n
eu

ro
na

l f
iri

ng

Frequency of neuronal firing

Fully connected WTA network
Sparsely connected SWTA network

(a) (b)

Figure 5.14. Distribution of activities of output neurons of SWTA and WTA.

(Nh=64, α=2.25)

(a). Neuronal activities distribution (b). Frequency of neuron firing

142

10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

0.12

similarity metric

P
ro

ba
bi

lit
y

Probablity distribution of similarity between patterns

Patterns triggering the same output neuron
Random patterns

Figure 5.15. Similarities among the patterns that trigger the same output neuron.

The number of input connections to each neuron affects the information

transmission from lower levels to higher levels in SWTA. Therefore, it also affects the

representational capacity in the sense of the number of neurons on the top level that

receive sufficient information to become representations for categories. Assuming that the

number of inputs per neuron is estimated by 3
hNp ⋅ , we can find the optimum scaling

factor p to maximize the representational capacity of a SWTA network. The

representational capacities of a SWTA network as a function of p are shown in Figure

5.16. The optimum representational capacity is obtained when p is approximately 1,

which supports the selection on lin in (5.9).

143

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

ratio p (Number of input connections per neuron lin = p(Nh)1/3

M
em

or
y

C
ap

ac
ity

(to
ta

l n
um

be
r o

f n
eu

ro
ns

 w
er

e
ac

tiv
at

ed

Memory capacity vs. Number of input connections

Figure 5.16. Effect of number of input connections per neuron on representational

capacity of a SWTA network.

The representational capacity was tested on the network with 64 input neurons and

4096 output neurons described in the example in Section 5.3.4. The 40000 random

patterns trigger 1916 different neurons on the top level as global winners at least once. In

Figure 5.17, the neuron firing frequency and its distribution are compared with those of

the fully connected 64-4096 network, which can activate all 4096 neurons on the top

level.

144

0 100 200 300 400 500 600 700 800 900 1000
10-6

10-5

10-4

10-3

10-2

10-1

100

neuronal activity

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

Neuronal activities distribution

Sparsely connected SWTA network
Fully connected WTA network

0 500 1000 1500 2000 2500 3000 3500 4000 4500

100

101

102

103

neuronal firing frequency

Fr
eq

ue
nc

y
of

 n
eu

ro
na

l f
iri

ng

Frequency of neuronal firing

Sparsely connected SWTA network
Fully connected WTA network

(a) (b)

Figure 5.17. Distribution of activities of output neurons of SWTA and WTA (Nh=64, α=4).

(a). Neuronal activities distribution (b). Frequency of neuronal firing

Representational capacity per synapse in this SWTA network, which is calculated by

(5.20), is significantly higher (5.7 times as great) than that of a fully connected WTA

network.

Typically, sparse connectivity, when we simply reduce the number of connections

between two hierarchical levels, may fail to transmit the information sufficiently for

higher level neurons to build higher level representations. It produces statistical bias on

certain higher-level neurons in the winner-take-all competition. When many of the

higher-level neurons always fail in the competition and are not used to store or represent

categories, the representational capacity of such sparse network is greatly reduced.

However, the secondary levels used in the proposed network provide sufficient

interconnections between primary levels so that approximately 50% of the neurons on the

145

higher level can be used for information storage. When the network is scaled up to a size

needed for advanced intelligent machines, we can expect that a large number of the

higher-level neurons will be used in memory building and the network will possess

desirable representational capacity. The loss of representational capacity per neuron is

more than compensated by its lower hardware cost expressed by lower total number of

connections.

5.4 Hierarchical self-organizing memory with oligarchy-take-all

Encoding the sensory input into only one dominant neuron, as in the network with

SWTA, is not very robust. Since the connection weights in the activation pathway are

updated after each pattern is learned and the activation pathways may overlap for

different patterns, the change in connection weights of one activation pathway will affect

another pathway. Accordingly, the signal strength of top level neurons of previously

learned patterns may change. Recognition in large WTA networks, whether sparsely or

densely connected, is vulnerable to small changes in the activities of the highest level

neurons. Moreover, recognition may fail because of noise, faults, and variant

representations of the same object. More robust results can be obtained by encoding the

sensory input into a group of active neurons, called an “oligarchy” in this work, at the

highest level. In the network using the oligarchy-take-all (OTA) algorithm, described

below, the winning neurons are found directly in a feed forward process instead of the 3-

step procedure used in the SWTA described in Section 5.3.

Distributed representations typified by the oligarchy encoding have several

146

advantages over the localist representations. First, they are more efficient as fewer

neurons may code significantly more representations based on the group coding. Second,

a new representation can be easily formed by a novel combination of the existing

features, while the localist representation requires a new output unit. Third, similar

patterns have a number of common units in a distributed representation. Fourth,

distributed representation is more accurate since it may code up to 2n values over n output

units while localist represents up to n values. Fifth, sparse representation is more robust,

since it has some redundancy. Finally, learning and invariance building is improved as

changes in representation are gradual.

5.4.1 Finding the oligarchy

After the neurons on the 1st layer receive the input data, the input activations of post-

synaptic neurons are calculated, as in the 1st step of SWTA, by (3.15). Each neuron on the

1st layer finds its set of post-synaptic neurons on the 2nd layer and their signal strengths

are compared and the local winner is found. The local competitions in OTA are

implemented using the same WTA circuit expressed in (3.16), and branches connected

with losing nodes are logically cut off as the signal propagates up the hierarchy. Learning

is carried out on the logically connected pathways, and Hebbian learning method in

(3.18) is applied. Afterwards, signal strengths of the 2nd level neurons are recalculated

and the procedure is continued until the top level of the hierarchy is reached. Only active

neurons on each level are able to send information up the hierarchy. Eventually, the

activation pathway and the active neurons at the highest level are found through the OTA

process. The oligarchy at the highest level, as the most abstract representation of the

147

sensory input, provides redundant, distributed coding of the input pattern. When similar

patterns are presented, it is expected that similar groups of neurons will be activated. The

OTA algorithm is organized as the following program, shown in Table 5.3.

The properties of oligarchies depend on the topology of their interconnections and

the dependence can be studied statistically. By properly choosing the interconnection

density for a given network size, we can obtain oligarchies of roughly any desired size. In

the following example, we analyze the effect of the number of input connections per

neuron on the size of the oligarchy.

Example

Two structures are compared in this test. Each network has two secondary layers per

level with 64 neurons on the input level and α in (5.8) as 2.25 or 4. In both networks, the

number of active neurons in the oligarchy at the top level, which represents a particular

category, decreases with increasing numbers of input connections to each neuron (as

shown in Figure 5.18). Therefore, the number of input connections to each neuron can be

optimized based on such considerations as the desired coding redundancy and robustness,

memory capacity, and implementation cost.

148

Table 5.3

Oligarchy-Take-All Algorithm

FOR Layer = 2: Top Layer

 FOR i=1: number of neurons on (Layer)

 (1). Data transmission (feedforward process)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSw

thresholdSwSw
S

layer
i

layer
i

layer
i

Nj

layer
jij

Nj

layer
jij

Nj

layer
jij

layer
i

0

1 (5.15)

 (2). Finding the winner network (backpropagation process)

⎩
⎨
⎧

=

=

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

+

+
+

+

∈
∈

+ ∑+

1

1
1

1

1

:0
:1

),..2,1(max
1

layerl
i

layerl
ilayer

ji

layer
iwinner

layer
i

layer
Nk

layer
kjkNj

layer
iwinner

Namongwinnerlocalnotj
Namongwinnerlocalj

l

SS

NiSwS
layer
j

layerl
i

 (5.16)

 (3). Learning in the winner network (feedforward process)

⎪
⎪
⎩

⎪⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSlw

thresholdSlwSlw
S

layer
i

layer
i

layer
i

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

layer
i

0

1 (5.17)

layer
ij

layer
j

layer
i

layer
ij

layer
ij lSSw 11

,
1

,
+++ =Δ λ (5.18)

 ENDFOR

ENDFOR

149

2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

35

40

Number of input connections per neuron lin

N
um

be
r o

f a
ct

iv
e

ne
ur

on
s

on
 th

e
to

p
le

ve
l o

f n
et

w
or

k
w

ith
 O

TA

Number of active neurons on the top level
vs. Number of input connections per neuron

α = 2.25
α = 4

Figure 5.18. Effect of the number of inputs on number of active neurons in OTA.

Oligarchy-take-all idea is similar to k-winners-take-all (kWTA) concept described by

[Van83]. However, unlike kWTA, no prior assumption is made about the number of

winners on top level. This number is effectively controlled by the network connectivity.

Both methods lead to building sparse distributed representations thus are useful for

cognitive signal processing. They provide local inhibition that reduces neuron activities

in higher layers and yield feedforward pattern competition [Koh 84] [McC 81] [Rum

86b] [Gro 76] [McN 87].

As demonstrated by [Day 95] [Hin 97], balance between a single neuron (localist)

representation and distributed representation, requires that a relatively small number of

output units are used for representation building. The main objective of our model is to

obtain this kind of distributed representation building that is similar to behavior of

150

cortical networks, even if not all the implementation details of our method are

biologically plausible.

5.4.2 Grouping active neurons using lateral connections

Even though the representations of patterns are built on groups of neurons so that

information is distributed at higher abstraction levels, it has been suggested that

information in real brains is not necessarily widely distributed. Therefore, lateral

connections are introduced to change the information distribution. Such lateral

connections are found at all levels of the visual cortical hierarchy [Sir 95] [Lun 93].

When firing is positively correlated, the lateral connections are expected to amplify the

signal strengths of nearby neurons and diminish those of distant neurons. It is noted that,

in this work, lateral connections are not used for the purpose of finding winner neurons as

in earlier works of [Hay 99] [Xie 02]. They are utilized to change the distribution of

neuronal activities so as to cluster the active neurons.

Each neuron is mainly connected to nearby neurons, and has few lateral connections

to distant neurons. The connection distribution can follow a Gaussian distribution with a

negative offset. Therefore, the neurons have short-range recurrent excitation and long-

range recurrent inhibition. The effect of the lateral weights on neuronal activation is made

small, by normalizing the lateral weights, so as not to overwhelm the effects of the input

signals. For example, we can have SYYY WW
2
1

= , where WSY is the mapping from the

lower level to yth level neurons, and WYY is the lateral mapping among neurons on the yth

level.

151

Since lateral connections introduce recurrent signals, the neuronal activities are

calculated iteratively, the neuronal activities of each time cycle being used to calculate

the lateral input of its next time cycle. When the same pattern is presented to the network

for learning for n cycles, the neuronal activities Yn are calculated as

cycle)nth (after)...1(

...
cycle) 2nd(after)1()1(

cycle)1st (after) (1
signalsrecurrent thehavingafter

on)presentati (initial

2
0

2
000102

0001

00

n
YYYYYYSYn

YYYYSYYYYYYY

YYSYYY

SY

WWWWSY

WWWSWWYYWYYY

WWSWYYY

WSY

++++=

++=++=+=

+=+=

=

, (5.21)

where S0 represents the input from lower level neurons, WSY is the mapping from lower

level to yth level neurons, and WYY is the lateral mapping among neurons on the yth level.

Let WH denote the sum in (5.21)

n
YYYYYYH WWWW ++++= ...1 2 . (5.22)

YYW can be diagonalized as

DVVW T
YY = , (5.23)

where V is the eigenvector matrix and D denotes the eigenvalues,

() ()YYkk

k

WfordiagD 1
0

...
01

<=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= λλ

λ

λ
. (5.24)

HW in (5.22) can thus be expressed as,

() VdiagVVDVWW
n

i

i
k

n

i

TiT
n

i

i
YYH ⎟

⎠

⎞
⎜
⎝

⎛
=== ∑∑∑

=== 000
λ (5.25)

152

If WYY have eigenvalues kλ within the unit circle (1<kλ), WH can converge to a stable

value and then Yn , as the network output after n cycles, can have stable response as,

VdiagVWSWWSY
k

T
SYHSYn ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

===
λ1

1
00 (5.26)

The number of lateral connections and the standard deviation of the connection

distribution affect the grouping effect of active neurons on every layer including the

distribution of the active neurons on the top level. The number of lateral connections for

neurons on a certain level and the standard deviation of the lateral connection distribution

can be related to the overall number of neurons on that level, as shown in (5.27), where a

and b are arbitrary constants.

in

hh
lateral

in

hh
lateral

N
Nb

N
Nal

⋅=

⋅=

σ
 (5.27)

The clustering effects can be evaluated by the clustering index (CI) [Rip 81]. The

CI measures the nearest-neighbor distance between two active neurons within a

measurement window, divided by the average distance between a random point in the

window and its nearest active neuron [Gro 00]. It is expected that a more clustered

distribution will give a higher CI. The CIs of OTA output neurons with and without the

lateral connections are compared for various a values in (5.27) while b is fixed. It is noted

that in Figure 5.19 that CIs are improved after the grouping effect of the lateral

connections. The factor a affected the grouping effect and the optimum clustering can be

obtained when using a as 10.

153

0 5 10 15 20 25
-1

-0.5

0

0.5

scaling factor a (l lateral
h = aNh/Nin) (b = 10)

C
lu

st
er

 In
de

x

Cluster Index vs. number of lateral connections per neuron

OTA
OTA with lateral grouping

Figure 5.19. Effect of number of lateral connections per neuron on Cluster indices.

5.4.3 Finding a group of winners in the network with OTA

In a network with the OTA algorithm, each pattern is represented by an oligarchy, as

a group of neurons, at the highest level, so that information coding is redundant. When a

similar pattern is presented to the network, similar groups of neurons are expected to fire.

Recognition depends on a determination of the similarities of the oligarchy of a presented

pattern to those of previously learned patterns.

In order to show the advantage of this distributed, redundant representation, and

demonstrate the learning ability of a network with OTA, a set of handwritten digits from

a benchmark database [LeC] was used for training a sparse network with 64 input

154

neurons and 729 output neurons. All patterns have 8 by 8 grey pixel inputs, as shown in

Figure 5.20.

Figure 5.20. Ten handwritten digit patterns.

The number of neurons in the oligarchy activated by each pattern is not pre-

determined since the learning process is self-organizing and unsupervised. Based on the

structure of this network and the connectivity proposed in this work, each pattern

activates 19.1 out of 729 neurons at the highest level (range 14 to 23) on average. These

sets of neuronal indices become the representing markers of these 10 different digits. In

the recognition process, the class to which an input pattern is assigned is determined by

the number of neurons in the resulting oligarchy that are common to each of the marked

oligarchies.

It is expected that the sparse network with OTA can recognize a learned pattern with

some level of noise tolerance. Similar patterns which are originated from the same digit

but with different random noise are desired to produce similar sparse codes on the top

level of OTA network. The similarity can be measured by the Euclidean distance between

patterns. For example, the cluster plot of ten digits with two groups of noisy patterns is

155

shown in Figure 5.21(a). It is shown that the noisy versions of the same digit are clustered

together. Similar clustering can be found on the sparse codes produced by OTA as shown

in Figure 5.21(b).

2 2 2 7 7 7 9 9 9 1 1 1 0 0 0 3 3 3 5 5 5 6 6 6 8 8 8 4 4 4
1

2

3

4

5

6

7

8

9

10

Cluster plot of input patterns

6 6 6 0 0 0 2 2 2 4 4 4 5 5 5 7 7 7 9 9 9 1 1 1 8 8 8 3 3 3

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Cluster plot of sparse codes

(a) (b)

Figure 5.21. Cluster plots of input patterns and their sparse codes found by OTA.

(a). Cluster plot of input patterns (b). Cluster plot of sparse codes

5.4.4 Representational memory capacity of the network with OTA

As we demonstrated in Section 5.3.7, per synapse representational capacity of

network with SWTA is higher than that of a fully connected traditional WTA network. A

WTA network with Nout output neurons and Nin input neurons has a per synapse

representational capacity equal to 1/Nin. As the WTA assigns a signal output neuron to

156

each class of training data, WTA representational capacity is both low and intolerant of

much output error.

The OTA algorithm permits coding that is error-tolerant. The representational

capacity depends on the number of neurons used in the OTA code and the amount of

overlap between the codes. The number of neurons in an oligarchy can be controlled by

the input connections per neurons, as shown in section 5.4.1. So it must be carefully

chosen. In the following example, we select a simple coding scheme to support our

claims of high capacity and error tolerance of the OTA.

Let us assume that Nout neurons are divided into d disjoint groups of neurons, where

each group has
d

Nm out= neurons. Let us use k such disjoint groups of neurons to code

one category of input objects. Thus among d disjoint groups, we can distinguish

)!(!
!

kdk
d

k
d

C d
k −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= distinct categories. In addition, each group can tolerate a certain

level of different neurons, for instance, 1
2
−

m neurons, and still be identified as the

correct category. Therefore, the entire code may tolerate up to km
⎟
⎠
⎞

⎜
⎝
⎛ −1

2
 errors provided

that no single group has more than 1
2
−

m errors.

For example, if we choose Nout = 4096, and m =15, we will get approximately 273

disjoint groups of neurons. If we use k =10 disjoint groups to code one category, and

each group could tolerate up to 5 errors (50 errors total per code) to be correctly

157

recognized, we will have 17273
10 1036.5

10
273

×≅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=C distinct codes. Memories of this

capacity are not yet demonstrated by any neural network model or a learning method.

They could explain how human memory can store and quickly retrieve extraordinary

amounts of information. This example assumes that the OTA network could activate the

required number of independent groups of neurons. As was observed in the SWTA

network (approximately 50% of output neurons were activated), this may not be the case.

However, even much smaller activation of the output groups in an OTA will yield a large

storage capacity with a significant tolerance to errors. In the work presented in [Abb 96],

the representational capacity of face coding in monkeys is investigated by recording 14

neurons in the superior temporal sulcus of monkeys in response to 20 images of faces.

Based on the experimental data and Monte-Carlo simulation it was presented in [Abb 96]

that, for distributed coding, the representational capacity grows exponentially and the

information grows linearly with the number of coding neurons. In addition, the number of

distinct categories that can be represented with a 50% discrimination accuracy by N

neurons is approximately)2(3 4.0 N . The OTA algorithm is the approach that can possibly

make a sparsely-connected network achieve such level of representational capacity.

However, the practical representation capacity of OTA depends on the selection of

optimum connectivity, coding scheme, and specific application data set, which is beyond

the scope of this work and requires a separate study.

As shown in [Wil 69], sparse codes increase the memory capacity of associative

memories. Since a missing part of the code could be recovered, or a noise in the code

removed by the associative memory, sparse coding network can be combined with an

158

associative memory to increase the robustness of the sparse coding. For example, the

OTA structure can be combined with the original R-net organization, which is a type of

associative memory, to improve robustness of the code. R-nets were demonstrated to

have large storage capacities for sparsely coded memories. In addition, they have a

significant error tolerance and a mechanism that can recover distorted information. As

was demonstrated in [Sta 05], when the R-network size reaches 109 primary neurons

(with an average of 104 projections per neuron that is similar to the interconnection

density of human brain), the network can store over 109 patterns and the optimum storage

for these memories is achieved with a pattern size of about 150 neurons. With the

recovered information from R-net, the robustness of the OTA coding will be greatly

improved.

5.5 Comparing SWTA and OTA

5.5.1 Efficiency of SWTA and OTA

In Section 5.3.5, a sparse network with SWTA is compared with a fully-connected

two-layered network with global WTA in terms of the computation and design cost. Here

we will compare efficiency of the proposed SWTA and OTA algorithms with a popular

self-organizing learning based on WTA. A Kohonen self-organizing map (SOM), which

is a common fully-connected competitive network with global WTA, is implemented

using MATLAB Neural Networks toolbox. Both types of simulated networks have the

same input (e.g. 64 pixels) and output sizes. Their corresponding number of output

159

neurons is changed from 10 to 400. All networks will be trained using the same set of

digits for 1 epoch. The simulation times are plotted and compared in Figure 5.22.

As shown in the figure, the simulation time of SOM grows rapidly with the

increased network size. The efficiency of SWTA is slightly lower than OTA, since it

requires three transmissions of the signals in order to find out the winner neuron. The

sparse networks with both SWTA and OTA have greate advantage over SOM especially

for large networks.

0 100 200 300 400
10-1

100

101

102

103

number of output neurons

C
P

U
 ti

m
e

Computation cost (simulation time)

OTA
SWTA
SOM

Figure 5.22. Computation cost comparison.

5.5.2 Fault tolerance of SWTA and OTA

It is expected that introducing more noise into the original patterns will degrade

160

recognition performance. However, the tolerance of the network with OTA for such

change is expected to be better than that of the SWTA. Figure 5.23 compares the

performances of the SWTA and the OTA for different numbers of changed bits in the

training patterns based on 10 Monte-Carlo trials. Both sparse networks contain 64 input

neurons and 729 output neurons and are trained for 300 epochs. We note that increasing

the number of changed bits in the patterns quickly degrades the SWTA’s performance on

this recognition task. However, the network with OTA has much better fault tolerance.

For reference, a Kohonen self-organizing map (SOM), which has the 2-layered fully

connected structure with 64 inputs and 729 outputs, is implemented using MATLAB

Neural Networks toolbox. The recognition performances of SOM is evaluated and

compared with SWTA and OTA representations in Figure 5.23. The SOM are trained for

300 learning epochs and its performance is averaged from 10 Monte-Carlo runs. It is

demonstrated that the OTA’s distributed coding scheme have the best fault tolerance over

SOM and SWTA. The SOM presents better noise tolerance than SWTA, since its full

connectivity can transmit more information up to the top level, but it is still outperformed

by OTA.

161

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of bits changed in the pattern

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

gn
iti

on

Performance vs. Amount of information distortion

SWTA
SOM
OTA

Figure 5.23. Recognition performance comparison.

5.5.3 Tolerance to loss of neurons of SWTA and OTA

Due to the expanding structure of the HSOM and the distributed codes built by OTA,

the network with OTA can tolerate a large loss of neurons. Such tolerance of an OTA

structure is evaluated and compared with SWTA and SOM networks. The tested OTA

network, SWTA network, and SOM have the same structures as used in Section 5.5.2.

Ten grey-scaled pixel handwritten patterns organized in 8 by 8 arrays, shown in Figure

5.20, are applied to all these networks for training. In the testing phase, the same group of

patterns is applied to various versions of these networks, with the same structures but

with a different number of missing neurons in the input pattern. The number of missing

neurons varies from 2 to 20 percent of the total number of neurons in each network. The

locations of the missing neurons are chosen randomly.

162

The performance is obtained based on 10 Monte-Carlo runs. As shown in Figure

5.24, with small numbers of missing neurons (e.g., 8 percent of the overall number of

neurons in the specified OTA network), the OTA network can still correctly recognize the

patterns. With more neurons missing from the network, accuracy gradually decreases.

When 20 percent of the neurons are missing, 84% of patterns are still correctly classified

in OTA networks. The performance of the SWTA in this test is much lower than that of

the OTA. The specified SOM show tolerance to the loss of neurons, but are not as good

as the OTA. Therefore, it is observed that the distributed codes generated by the OTA are

robust to the loss of neurons.

2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percentage of missing neurons

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

gn
iti

on

Performance vs. Overall loss of neurons

SWTA
SOM
OTA

Figure 5.24. Tolerance to loss of neurons of OTA.

163

5.6 Correlation-based information grouping in OTA

In the proposed organization of the sensory pathways using WTA or OTA

algorithms, the number of incoming connections that each neuron connects has is

determined and is correlated to the input level size to maximize the network’s

representational capacity. Positions of these pre-synaptic neurons on the previous layer

are randomly selected, which means that each neuron does not have a local receptive

field or a self-organized receptive field.

Local receptive fields for neurons are adopted in many earlier works to preserve the

input topology, extract features and group information in the learning networks. Such

local receptive fields were successfully used for pattern recognition in neural network

schemes such as convolutional neural networks LeNet [LeC 89], Linsker model [Lin 86]

and pyramidal neural network [Phu 07]. In these earlier works, the networks have local

receptive fields with predefined and fixed size through all the layers in the network.

While Linsker demonstrated that such an approach produced self-organization and local

features (starting with on-center off-surround and off-center on-surround cells on the

lower layer), the receptive field is always local over all the layers and the location and

size of the local region had to be arbitrarily decided.

In the sensory pathway, it is expected that local correlations dominate on the lower

levels of hierarchy. For instance, in the input image, neighboring pixels are more

correlated than distant pixels. On higher levels where features are extracted, it is expected

that strength of local correlations will diminish and the neurons representing features are

active simultaneously responding to the input patterns.

164

Therefore, we propose to determine the location of the receptive field statistically by

checking correlations among various neuron activations using a large set of training data

and setting the wiring threshold to have a desired number of the input links to each

neuron.

5.6.1. Calculating correlation

The correlation between each two locations should represent similarity of their

signal activation strengths. The correlation should be 0 for uncorrelated variables while it

should be 1 for the most correlated variables. On the input level, input neurons receive

gray-scaled signals in the range of 0 to 255. In order to find the similarity, we can encode

the grey scales pj into angles in the range of 0 to π/2, as in (5.28). The cosine of the

difference between two angles gives the similarity Cmn between these two grey scales pm

and pn, as in (5.29), where Nin is the number of the input neurons.

),...2,1(
255

2/
injj Nipp =⋅=

π (5.28)

()nmmn ppC −= cos (5.29)

On higher levels, the signals of neurons are in the range of (-1, 1), or specified otherwise

as in HSOM. Then the signals are scaled into the range of (0, π/2) before correlation

(5.29) is applied.

The procedure to determine the correlation and the size of the local receptive field is

described as follows.

Step 1). Collect a large number (N) of images as the neural network input.

Step 2). Each image is represented by Nx by Ny matrix Pi (i=1, 2, … N), where Nin

equals to NxNy. Start with the first image and its representation matrix P1.

165

Step 3). Use (5.29) to determine the correlation matrix inin NN
inC ×ℜ∈ for the current

image.

Step 4). Update the total correlation matrix CT and total count Nt, as in (5.30).

1
1

+=
+
+

=

tt

t

inTt
T

NN
N

CCNC (5.30)

Step 5). Repeat Step 3)- Step 5) until all images are process.

Step 6). Each row of the resulting CT contains a vector of single pixel’s correlations

to all other pixels over all the images.

Step 7). Reshape each row to the image size in order to determine the size of local

correlation region.

A similar process can be repeated on the higher levels except that each row of the CT

gives a single neuron’s correlation to all the other neurons on a certain level of HSOM

after the images are processed by the lower levels.

For example, consider a network structure with 320 input neurons, which can

perceive images with the size 20 by 16. The following calculation and discussion will be

based on this structure. The 20 by 16 face image from [Fac] is shown in Figure 5.25.

166

Figure 5.25. Input face image.

By observation, on the input level, the 1st pixel (which is dark) is expected to be closely

correlated with the dark area of the picture. Using the procedure above, the correlation of

the 1st pixel to the whole picture is shown in Figure 5.26, in which the location of the 1st

pixel is marked as star. It is noted that high correlation exists in the expected areas of the

input image. One of the pixels on the right cheek area correlates to the whole picture as

in Figure 5.27.

167

0

5

10

15

20

0

5

10

15

20
0

0.5

1

Figure 5.26. The 1st pixel’s correlation to the whole image.

0

5

10

15

20

0

5

10

15

20
0.5

1

Figure 5.27. The 70th pixel’s correlation to the whole image.

If we have a series of images with the same size, as shown in Figure 5.28, the

correlation matrices from all pictures should be averaged. The 1st pixel and the 70th

168

pixel’s correlation matrices are shown in Figure 5.29. Eventually, after presenting the

network with 1000 20x16 input images of all types of patterns, the correlation matrices

for the input level are obtained. Several of them are shown in Figure 5.30.

Figure 5.28. A series of face images.

0

5

10
15

20

0

5

10

15

20
0

0.5

1

0

5

10

15

20

0

5

10

15

20
0

0.5

1

(a) (b)

Figure 5.29. Correlation calculated based on a series of face images.

(a). The 1st pixel’s correlation to the whole image.
(b). The 70th pixel’s correlation to the whole image.

169

0

5

10

15

20
0 5 10 15 20

0.75

0.8

0.85

0.9

0.95

1

0

5

10

15

20 0
5

10
15

20

0.8

0.85

0.9

0.95

1

(a) (b)

0
5

10
15

20

0

5

10

15

20
0.8

0.85

0.9

0.95

1

0
5

10
15

20

0
5

10

15
20

0.75

0.8

0.85

0.9

0.95

1

(c) (d)

Figure 5.30. Correlation calculated based on 1000 images.

(a). The 1st pixel’s correlation to the whole image
(b). The 161st pixel’s correlation to the whole image
(c). The 70th pixel’s correlation to the whole image
(b). The 170st pixel’s correlation to the whole image

170

5.6.2. Determining receptive field

The input level of the network receives the whole image. Once again consider the

network containing 320 input neurons and overall 4 layers (the input level, 2 secondary

layers and the output level), with α in (5.8) equal to 1.21 (giving image representation 1.1

times larger than the previous level in each dimension for two dimensional array). This

yields a 320-396-500-594 multi-layered network. Before the correlations among neurons

on the 2nd layer are calculated, the receptive field of neurons on the 2nd layer should be

determined so that they can be activated by the incoming information.

As shown in Figure 5.31, a neuron on the 2nd layer is projected onto the plane of 1st

layer and finds the closest neuron to its projection. This closes neuron is denoted as

1
projectionN . Based on the correlation calculation on the previous layer, the most correlated

region of 1
projectionN can be found. The number of incoming connections has been chosen

as in (5.9). Thus, the neuron on the 2nd layer is connected to 2
inl neurons on the previous

layer within this correlated region. In the specified network structure, each neuron has 7

pre-synaptic neurons, and they are illustrated in Figure 5.31. The same process applies to

all the neurons on the 2nd layer in finding their corresponding receptive fields.

171

0

5

10

15

20
0 5 10 15 20

0.75

0.8

0.85

0.9

0.95

1 0 5 10 15 20 22

5
0

10
15

20
10 15 20 22

5
0

10
15

20
22

1st layer
(20x16)

2nd layer
(22x18)

2nd layer neuron

1st layer neuron closest to the projection
2nd layer neuron’s projection

1st layer neuron’s correlated neighborhood

1st layer neurons in the neighborhood

Figure 5.31. The receptive field of a 2nd layer neuron.

The algorithm of OTA is used to calculate the signal responses on the 2nd layer.

Then over all the input patterns, the statistical correlations among the activation levels of

the neurons are obtained. Due to the local competitions applied when the signals go to

the 2nd layer, some of the neurons on the 2nd layer may not be activated at all although

many patterns are applied. A silent neuron’s output should have no correlation with any

other active neurons or silent neurons.

172

If a neuron is always silent during this process, the correlation of this neuron’s

location to all the other locations will be zero. Such neurons could be assigned a wiring

pattern that averages these of its neighbors.

The correlations among 2nd layer neurons are calculated and 3
inl most correlated

neurons of the 1st and the 160th neurons are shown in Figure 5.32.

It is noted that instead of obtaining the local region as in the first layer, each neuron

is more correlated to distant neurons which may represent relevant features. Then a

neuron on the 3rd layer is connected to its projection neuron on the 2nd layer and the

projection neurons’ most correlated neurons, as shown in Figure 5.33.

0

5

10

15

20 0
5

10
15

20
25

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20 0
5

10
15

20
25

0

0.5

1

(a) (b)

Figure 5.32. Correlations on the 2nd layer.

(a). The 1st neuron’s correlation to all the 2nd layer neurons
(b). The 160th neuron’s correlation to all the 2nd layer neurons

173

The correlations among neurons on the higher levels are obtained and neurons on

each layer are connected to previous layer in the same way. Notice that using the

algorithm in Section 5.6.1, the statistical correlations can be calculated in an on-line

fashion. The network can start learning as a randomly-connected structure. After each

new pattern is perceived and learned, the correlations among neurons on each layer can

be updated and the connections can be updated as well leading to dynamical changes in

the network topology.

0

5

10

15

20 0
5

10
15

20
25

0

0.2

0.4

0.6

0.8

1

2nd layer
(22x18)

3rd layer
(25x20)

0
5

10
15 20

255
0

10
15

20 0
5

10
15 20

255
0

10
15

20

Figure 5.33. The receptive field of a 3rd layer neuron.

174

5.6.3. Information grouping using OTA

With the correlation-based receptive field, the information is processed and grouped

by the network with OTA and the corresponding representations are built. For example,

the image shown in Figure 5.34 can activate 36 neurons on the top of a 320-396-500-594

multi-layered sparsely-connected network as its representation. It was observed in the

experiment that the scaling of the network with correlated receptive fields does not affect

the representations. For example, the intensity-scaled picture shown in Figure 5.34

activates exactly the same group of neurons on the top level, which shows that the OTA

network with correlated receptive fields builds representations invariant to linear scaling

of stimuli intensity.

Figure 5.34. An image and its intensity-scaled version.

It is desired and expected that the correlated receptive fields will not affect the

representational capacity and the fault tolerance that OTA network has with the random

receptive fields. It was observed that the group of 10 patterns shown in Figure 5.20 can

activate, on average, 37 neurons on the top level of the network with random receptive

175

fields. The same group of patterns activates on average 34 neurons in the network with

correlated receptive fields. Thus we believe that the networks with these two types of

receptive fields have similar levels of representational capacity.

In order to show the noise tolerance of the network with correlated receptive fields,

the recognition performances are tested for different amount of noise added to the given

patterns based on 10 Monte-Carlo trials. The results shown in Figure 5.35 compare the

noise tolerance of the networks with random and correlated receptive fields. We note that

the correlated receptive fields do not degrade the noise tolerance in the OTA.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percentage of noise in the pattern

pe
rc

en
ta

ge
 o

f c
or

re
ct

 re
co

gn
iti

on

performance of OTA with correlated receptive fields
performance of OTA with random receptive fields

Figure 5.35. Noise tolerance of OTA with correlated receptive fields.

176

5.7 Attention-aided perception in OTA

It has been investigated that attentions can affect the visual perception. Visual

attention, as cognitive control over perception, can be deployed in typically two ways:

space-based and object-based [Yan 03], based on the type of the representation on which

the selection is carried out. Space-based attention is applied in a particular location of the

visual field, while object-based attention is directed to perceptual objects. Both types of

attentions are separately supported by various studies, and the study in [Sot 04] found

that two types of attentions work in an interactive way.

The behavioral and neurophysiological studies have shown that selective attention is

often deployed in an object-based fashion [Roe 98]. When several objects are in the

visual scene simultaneously, the attention helps recognizing the attended object while

ignoring the rest of the present objects. The mechanism of the top-down attentional

based competition was postulated in several earlier works. One candidate for such

mechanism was presented in [Ste 00]. It was described as the top-down feedback signal

that synchronizes the activity of target neurons that represented the attended object. Then

this synchrony increased the efficacy of that neuronal representation at the next

perceptual stage.

In this section, a mechanism is proposed to demonstrate how the object-based

attention affects the perception in HSOM with the OTA algorithm. As discussed earlier,

during the learning, the input patterns are processed in the HSOM with OTA algorithm

and are represented as a group of winner neurons on the top level of the network. In the

learning stage, each pattern forms a particular group of winner neurons on the top

177

hierarchical level and these particular groups of neurons can be called the pattern’s

neuronal marker. When a new input comes into the network the winner neuron group is

compared with existing markers obtained from the stage of learning and the most similar

one is found as the category that it belongs to. When the attention is paid on a particular

previously memorized object, in the network, the attention signal is applied on that

object’s winner neurons to active them so that to synchronize the attended neuronal

marker with the currently activated marker. As suggested in [Ste 00], the synchrony will

help the attended object to win the competition in the next stage of perception. Hence,

the attention-aided perception by object-based attention is a process described as follows.

Step 1). Learning a group of objects

Objects (C1, C2, C3…) are perceived and memorized. Every object is represented by

a neuronal marker, denoted as (N1, N2, N3…..).

Step 2). Finding Oligarchy

A pattern containing multiple perceptual objects is presented to the network. A group

of winner neurons, Nwin, are found by OTA algorithm for this input pattern.

Step 3). Applying attention signal

An attention signal is applied on the marker, Natt, of the attended object Catt.

(...},,{ 321 CCCCatt ∈). This makes the active neurons on the top level include {Nwin,

Natt} and have the same level of activation.

Step 4). Finding the winner network (back-propagation process)

178

FOR Layer = Top Layer-1: -1: 1

 FOR i=1: number of neurons on (Layer)

 ⎩
⎨
⎧

=

=

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

+

+
+

+

∈
∈

+ ∑+

1

1
1

1

1

:0
:1

),..2,1(max
1

layerl
i

layerl
ilayer

ji

layer
iwinner

layer
i

layer
Nk

layer
kjkNj

layer
iwinner

Namongwinnerlocalnotj
Namongwinnerlocalj

l

SS

NiSwS
layer
j

layerl
i

 ENDFOR

ENDFOR

Step 5). Finding final oligarchy Nfinal (feedforward process)

FOR Layer = 2: Top Layer

 FOR i=1: number of neurons on (Layer)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

<

>
=

∑

∑∑

∈

∈∈+

thresholdSlw

thresholdSlwSlw
S

layer
i

layer
i

layer
i

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

Nj

layer
j

layer
ijij

layer
i

0

1

layer
ij

layer
j

layer
i

layer
ij

layer
ij lSSw 11

,
1

,
+++ =Δ λ

 ENDFOR

ENDFOR

Step 6). The final marker Nfinal is compared with (N1, N2, N3…..) to determine its

category.

This experiment is conducted using a grayscale image of spatially superimposed

patterns. Since these two patterns occupy the same spatial region, the only method to

control the perception (internal representation) is by object-based attention. Firstly, the

179

patterns, including a face image and a house image with 20 by 16 pixels, are learned by

the network. The face and the house images are shown in Figure 5.36. These two objects

are learned and represented in OTA network using neuronal marker Nfacee, Nhouse,

respectively. A test with these two images superimposed is shown in Figure 5.37.

Figure 5.36. The learned face and house images.

Figure 5.37. The superimposed image.

When the superimposed image is processed using OTA without the affect of object-

based attention, it is represented by Nwin and Nwin is compared with the face and house

180

markers Nfacee, Nhouse for recognition. The numbers of common neurons between Nwin and

Nfacee, Nhouse are shown in Figure 5.38. Therefore, the superimposed image is recognized

more as a face object than a house object.

1

2

0

1

2

3

4

5

6

face marker house marker

nu
m

be
r o

f c
om

m
on

 n
eu

ro
ns

Figure 5.38. The number of common neurons to the markers before the attention on

house.

After the attention is applied to the house, the test marker is compared with the

markers and the numbers of common neurons with them are shown in Figure 5.39. It was

shown that the perception is altered by the applied attention and the superimposed image

is identified as a house pattern.

181

1

2

0

1

2

3

4

5

6

face marker house marker

nu
m

be
r o

f c
om

m
on

 n
eu

ro
ns

Figure 5.39. The number of common neurons to the markers after the attention on house.

Similarly, if the attention is applied on the face object, the perception after the

attention in terms of common neurons to the markers is shown in Figure 5.40. And it

shows that the attention makes the superimposed image identified as a face.

A similar procedure can be used for invariant object recognition building through the

continuous observation. In human visual perception, within a certain period of time when

an object exists in the visual field, different viewpoints of the same object are presented.

Through attention on object tracking or boundary detection, the group of images can be

determined to belong to the same object. The sense that all these frames of images belong

to the same object directs humans to collect the input patterns of these viewpoints to

build invariant neural representation in the memory.

182

This assumption that the observed scene contains the same objects of interest over

continuously observed time windows is defined as the sameness principle.

1

2

0

2

4

6

8

face marker house marker

nu
m

be
r o

f c
om

m
on

 n
eu

ro
ns

Figure 5.40. The number of common neurons to the markers after the attention on face.

Such process is considered as top-down process, as contrary to the bottom-up

process where input images are processed in a feed-forward fashion in sparse coding

network. The interaction between bottom-up and top-down processes in invariance

building has been studied for building invariance. On one hand, when the variant

patterns of the same object are processed and activate a different group of neurons, the

top-down process using feedback can affect the neural processing and reinforce the

activation of the same group of neurons. On the other hand, such forced feedback to

previous layers helps the network development for invariance building. It affects the

183

wiring patterns by changing the correlation among the neurons activities in a given layer

and it affects the connection weights by stimulating firing of more desired neurons.

5.8 Conclusions

Sparsely connected R-nets have been used to store information and perform

computations that seem analogous to a variety of “higher” cognitive functions [Vog 05].

However, such devices utilize information that has already been sparsely coded, while the

inputs from the early stage of sensory information processing are often densely coded. It

seems necessary for any sensory device concerned with natural images or sounds to

produce sparsely coded information which can be easily handled by R-nets or any other

associative memory structures.

We have described a sparsely connected architecture, a hierarchical self-organizing

memory, which produces sparse representations of objects. The architecture has low

energy consumption in the sense of a much smaller number of connections. The sparse

coding and reduction of neuronal activities are generated by means of local competitions,

a strategy which is efficient and easily implemented in hardware. The secondary levels,

which make interconnections between primary neurons, transmit sufficient information

up the hierarchy and provide high memory capacity per synapse while preserving low

network connectivity.

In the network with the SWTA algorithm, each pattern activates a single neuron as its

representation. The SWTA can be used not only to produce local codes, but also to

efficiently find global winners in a sparsely connected structure. In the network with the

184

OTA algorithm, a pattern triggers a group of distributed neurons and the information is

redundantly coded so that recognition is more reliable and robust. Simulations of the

proposed models demonstrate that they possess the anticipated mnemonic and coding

properties, and an increased level of tolerance to faults and loss of neurons that are

essential for the construction of intelligent machines.

The studies of SWTA and OTA in section 5.3.5 are based on the randomly connected

networks to eliminate the effects of connection topology on the network coding

properties. However, it is also proposed that the neuronal connectivity and receptive

fields can be determined based on the statistical correlation among neuron activities. The

correlated neurons’ information is grouped so that the features are correlated and sent to

higher levels. It was also tested that the correlation-based receptive field does not affect

the representational capacity and the fault tolerance that the OTA network has with the

random receptive field.

Knowing that the top-down process, like attention and the sameness principle can

affect the human perception and object recognition, we demonstrated a mechanism of

how the object-based attention signal affects the recognition process in HSOM with OTA

algorithm. The experiment showed that with attention paid on different object on the

superposing images, the image was better recognized as the expected object. The similar

mechanism can be implemented for invariance building, in which case the top-down

influence comes from the sameness principle instead of attention.

Sparsely connected neural networks are useful devices for learning sparsely coded

information. Their large per synapse memory capacities, low energy consumption,

185

efficient algorithms, failure tolerance, and relative ease of implementation in hardware

have presumably given sparsely connected networks an adaptive advantage in the

evolution of biological brains. It is difficult to imagine how the processing capacities of

the roughly 1014 synapses of the human brain could be achieved in any densely connected

architecture. These same properties seem to make sparsely connected neural networks

more likely devices for similar advances in machine intelligence. In addition, the HSOM

can implement not only feed-forward processing, but its structure enables the back

projection of top-down influence for attention-aided perception and invariance building.

In attention-aided perception, the object-based attention is assumed as given top-down

signal to be applied on the top level of hierarchy. How this attention is created in the

learning or interacting process will be discussed in the next section.

186

CHAPTER 6: GOAL CREATION AND GOAL-ORIENTED BEHAVIOR FOR

EMBODIED INTELLIGENCE

6.1 Introduction

Goal-oriented behavior of intelligent machines was extensively studied in the area of

reinforcement learning. Reinforcement learning (RL) [Sut 98] [Bar 03] is an active area

of machine learning research that focuses on how a learning agent can learn to

approximate an optimal behavioral strategy to maximize the reward while interacting

with its environment. One of the characteristics of RL is that it treats the whole problem

in a goal-oriented manner. Presented with defined goals but not told what to do

explicitly, the agent learns during the interacting, in so-called trial-and-error search. In

each step, the learning agent in RL problems senses the state of its environment and

chooses actions to influence its environment. RL enables the learning agent to plan, to

behave actively, to be situated in an environment and to consider how its actions might fit

in a larger picture of continuous interaction with the environment.

The idea of learning from interaction is very fundamental and significant, underlying

nearly all theories of learning and intelligence. As stated in [Bar 98], in learning

problems, the learning examples of good actions for one situation may not apply to other

situations. An agent must be able to obtain new knowledge from experience and

interaction with the environment for unseen situations. So, RL is ideal for dealing with

uncertain environments or environments that are subject to change.

187

Basic elements of RL system include a reward function, a policy, a value function

and, optionally, a model of the environment [Sut 98]. The reward function is normally

given or observable to the agent, while the other three elements are to be learned by the

agent. The reward function specifies what the good and bad actions are for the agent.

The reward can be either in an immediate or a delayed form. In a biological system,

rewards might be identified with pleasure and pain. The policy is a mapping from states

of the environment to actions, or a set of states and actions associations. There are two

types of values in RL, the value of a state and the value of a state-action pair. The value

of a state is the total amount of reward an agent can expect to accumulate over the future,

starting from this state s and following a certain policy π, as shown in (6.1), in which r

represents the reward received at a certain time, and γ is the decay factor along the time.

Thus, a value function specifies what is good in the long run.

(){ } ()1
0

() k
t t t k t

k

V s E R s s E r s sπ
π π γ

∞

+ +
=

⎧ ⎫⎪ ⎪= = = =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ (6.1)

The value of a state-action pair is defined as the total amount of reward

accumulated over the future, starting from this state s, taking this action a, and following

a certain policy π, as given by (6.2).

(){ } ()1
0

(,) , ,k
t t t t k t t

k

Q s a E R s s a a E r s s a aπ
π π γ

∞

+ +
=

⎧ ⎫⎪ ⎪= = = = = =⎨ ⎬
⎪ ⎪⎩ ⎭
∑ (6.2)

The fourth element of some RL systems is a model of the environment, which are

used for planning. Early RL systems were explicitly trial-and-error learners and the

model was mostly ignored in the RL designs [Si 01], because the model of environment

188

is not available, subject to change and increase the complexity of the computation.

However, with relatively newer developments, the models of planning are incorporated

into RL systems. The model of environment is an important part of planning and

predicting. In human intelligence, we can consider that, within the complex hierarchical

memory that humans have, they can build and hold a model of the environment. Humans

build such models of the environment over repetitive training in the lifetime, in

supervised, unsupervised or reinforcement fashion. With this model in their memory,

humans could make predictions and plan the actions, while making some adjustments

based on the information from the environment about the existing situation details.

Many of the earliest RL systems used one of the typical RL methods, actor-critic

(AC) method [Wit 77] [Bar 83]. The typical AC architecture [Bar 98] is shown in Figure

6.1. In an AC system, the policy (the actor) and the value function (the critic) are two

major parts. The actor is used to select actions based on the states. Having a mapping

from current environmental states to the action is a feasible implementation of human’s

basic actions. Although a typical actor in AC scheme maps the states to a single action

decision, the mapping from states to actions can be in the form of states with various

action choices with different probabilities.

189

Environment

Critic
States

Value
Function

Policy

reward

action

Environment

Critic
States

Value
Function

Policy

reward

action

Figure 6.1. Actor-critic architecture

The critic learns about the value function from the reward from environment, so

that it is able to evaluate the value function and the actions made by actor. Typically, the

critic estimates the state value, described in (6.1). In the action dependent versions of the

critic, the critic estimates the state-action value, which is the predicted accumulated

future reward by taking certain action at current states, as in (6.2). After each action

selection, the critic determines whether this action will improve the value or not. The

existence of the critic, as a value system, is a significant component in RL. With the

value system, the agent can make predictions about future events and give the values for

different predictions so that it can have the optimal choice of action.

In existing designs of intelligent machines, the goal is usually explicitly defined and

is given by designers to the learning agent. In RL, the agent does not need to create its

own overall goals since it uses a specific, externally provided and externally defined

reward. This award implicitly defines its goals and an agent is under complete control of

the award giver (a trainer or the environment). However, goal creation is an important

190

and essential consideration for an agent to behave autonomously, conduct intentional and

continuous learning in a real-world domain.

In existing designs of intelligent machine, sub-goals are given by designers as well

and in most cases cannot be found by the agent itself through experiments. They are

strictly related to its externally specified goal. It was demonstrated [Mur 07] that such

externally specified subgoals that are explicitly defined and controlled by the system

designer yield more effective RL in cases of complex goals.

Due to the top-down approach of learning the values of the state-action pairs, the

learning is not a structured process, may require long learning periods as well as equally

long periods of time to adopt to new requirements (new goals). RL will scale poorly

when applied to problems with high dimensional state space and to train the agents to

have complex behavior, which is usually referred to as the curse of dimensionality [Bel

61]. The delayed reward signal most of the time cannot provide enough information for

the agent to improve the policy. One promising approach to scale up RL in the existing

research is to add hierarchical reinforcement learning (HRL) [McC 96] [McC 94] [Her

00] [Bak 04].

There are several existing directions within the range of HRL research. The first

direction in HRL is selective perception [McC 94] [McC 96]. When the model has high-

dimensional and large state space, observing and considering the full state space with all

state variables will require a great deal of computational resources. Also, during the

process that an agent accomplishes a certain part of the complex task, not all the state

information is required all the time. To reduce the demand for large amount of resources

191

and computations and to focus on the necessary state information, selective perception

may lead designers to more efficient data collection and possibly cheaper design by

focusing on the part of state space that is sufficient to solve the current task. In selective

perception, due to the switching of attention or perception, short-term memory is required

to remember where the attention was focused. Thus, after a certain part of the task is

finished, the attention can be switched back. This method requires the full diagram of the

agent’s policy; that is, the desired complex sequential task will be analyzed and divided

into the sub-goals and their corresponding attention switches. Such a diagram, most

likely provided by designers, is a finite-state-machine available to the agent and the agent

will learn the probability of state transition to form the optimal policy during RL.

Attention-based learning is also desired in order to protect the memory from

saturation in the sense that only attended objects are learned; thus the attention should be

closely related to the goals. It has been investigated that given a specific task, top-down

processes guide the attention to the task-relevant objects in the environment [Cor00]

[Hop 00]. In [Nav 02], a goal-oriented attention guidance model was developed. In this

model, the saliency map [Koc 85], which encodes the visual salience of visual inputs, and

task-relevance map are combined to have attention-guide responding to objects. The

model utilized the ontology in a long-term memory (LTM), which represents the relations

among objects, to find the relevant objects. Even though such a model is supposedly

biologically-plausible, it is very difficult to build since the ontology in LTM is assumed

to exist as a given knowledge base. Although the drive of the agent to interact with the

environment and the gradual process to build such ontology are significant for building

192

intelligent machines, they are not a part of the learning system presented in [Koc 85]. In

addition, the attention-based behavior still relies on the defined goal or a task given by

the designers instead of being formulated by agents themselves.

The second direction in HRL is memory-based RL [Her 00]. In large state space,

the state information available to the agent may be incomplete, corrupted or the selective

attention may produce perceptual aliasing. Adding hierarchical memory about past

perceptions is a strategy to deal with such problem. In different levels of hierarchy, past

experience is explicitly remembered. Take a robot navigation problem as example. The

lowest level strategy includes motions on all the motors on the robot. The 2nd level

strategy includes actions of turning left, turning right, and going straight and so on. The

highest level strategy includes going to the left part of the room, maneuvering around an

obstacle, meeting the cross-section, going to the dead end, and so on. The memory on

each level of the hierarchy will remember what actions were taken in the successive

steps. And the value system is built for each level, which is updated by the explicit

action history in the memory. This hierarchy-based RL is one of the promising ways to

go, since the model is divided by the abstraction levels, instead of the states of the finite-

state machine. However, there is still one step away from the goal orientated intelligent

agent we would desire, because we have to provide the hierarchical structure of the

certain tasks. We desire to have an agent which is able to discover the sub-goals and

formulate the hierarchical structure of the task automatically given a final goal.

There are several design features we would like to have for the hierarchical RL

system for embodied intelligence. Firstly, the final goal of the learning problem can be

193

divided into sub-goals. The sub-goals are accomplished on a certain level of hierarchy.

Thus, policies of different levels are constructed in order to achieve the sub-goals. The

high-level policies can automatically discover the sub-goals and try to solve the overall

task. The low-level policies can be re-used easily, either within the same task or in other

tasks [Bak 04]. Accordingly, values systems are built on different levels concerning

different level of policies.

Secondly, currently the research in hierarchical RL solves the problem given a

hierarchical structure provided by the designers. The agent will learn the policies within

its hardwired structure [Bar 03] [Her 00]. It is highly desirable for the agent to learn the

hierarchy itself. As stated in HSOM, the representations of patterns are built in a

hierarchical way and the abstraction levels of the patterns on different hierarchical levels

are not predefined by the designers. It is desired that the procedure that divides the

overall goal into different levels of subgoals is an automatic process.

In general, in order to achieve the hierarchical RL with sub-goal automatic

discovery and sub-policy specialization, the information stored in the HSOM and a

similar hierarchical structure should be utilized. It is obvious that learning complex tasks

can be facilitated if simpler tasks are learned first, and that the knowledge acquired in this

process should be reused to advance both understanding and skill levels. The machine

needs to organize its learning to acquire useful knowledge based on its goals and to create

goals for its behavior using a built-in mechanism. In order for the machine to

intentionally organize its learning, goal creation is required.

194

The goal creation issues have been mainly studied in the framework of beliefs,

desires and intentions (BDI) [Rao 91] [Rao 92]. In a BDI architecture, beliefs represent

existing knowledge the agent has about the environment. Desires are defined as a set of

states that agents try to achieve. Intentions are defined as the approaches to achieve the

desires. In general, the agents in a BDI system have multiple desires and intentions

active simultaneously. The desires and intentions could come in the form of reaction to

the environment or proaction from a long-term plan. It is proposed in [Tha 02] that the

way to achieve a balance among different desires is to have a library of goals which

capture knowledge of limited and well-defined aspects of the world [Luc 98]. The goals

in the library are designed to have a uniform type of representation so that goal conflict

can be detected and consistency can be maintained. In general, the goal creation issues

discussed in the BDI framework deals with the problem of how certain goals are

triggered or chosen from the set of available goals instead of being created, for example,

in the procedural reasoning system (PRS) [Geo 89] [Geo 87], the motive processing

system (MPS) [Bea 93] [Bea 94], and in the motivational goal creation [Nor 95].

Although, the goals in these works are defined in a specific way adopting meaning in

various abstraction levels, the hierarchy of goals is not generated by the agent as a part of

the learning and interaction process.

In human intelligence, the perception and the actions are intentional and selective

processes. The perceptions are built and actions are carried out attempting to meet

certain goals or needs. Based on primitive goals and needs, people firstly create simple

goals and learn simple actions. Based on the learned perception and skills, they build

195

complex perception and actions to meet complex goals. It can be postulated that such

bottom-up process enables a human to find relevant subtasks for a complex task so that

the task is divided into procedures that a human can finish step-by-step. The process also

generates the human needs and the needs or expectations can affect the human attention

on input sensory information. In human reinforcement learning, the rewards are rather

subjective than definite, numerical and given by the environment. Different individuals

interpret the environmental inputs differently. The mechanism to create the goals and

motivations for a human should be relatively simple and embedded inside its brain

structures as a part of the mechanism that is capable to create human level intelligence.

Besides the use of goal creation for useful hierarchical RL, it can be used in the

studies of motivation for the intelligent machine to behave and interact autonomously in

an unknown environment.

In embodied intelligence, a fundamental question is what should be the motivation

that a machine has, so that it can develop into an intelligent and knowledgeable agent.

An attempt to answer this question introduced “flow” theory, which states that humans

get internal reward for activities that are slightly above their level of development [Csi

96]. Another development an intrinsic motivation system for autonomous robots is

presented in [Oud 07]. In [Oud 07], a robot explores the environment and learning is

activated when its predictions do not match the observed environmental response. The

motivation in such exploratory learning systems comes from the desire to minimize the

prediction error. Although exploratory learning helps to gain knowledge of the

196

environment, it is void of a specific purpose and does not provide a complete and

efficient mechanism of the motivations to develop intelligence.

We propose that it is the hostility of the environment, as expressed in the definition

of EI in Section 4.1.2, that is the most effective motivational factor for learning. The pain

we receive from the hostile environment motivates us to act, learn and develop in order to

reduce this pain. The two conditions are needed together - hostility of the environment

and intelligence that learns how to “survive” by reducing the pain signal.

Pain, as the general term for all types of discomfort and unpleasant feelings, is the

common experience to all people. On the most primitive level, people feel discomfort

when they are hungry so that they learn to eat and to search for food. They feel pain

when they touch burning charcoal so that they learn to stay away. Although, on more

abstract levels, individuals experience different degrees of stress and anxiety (so that

people have very different motives and higher-level goals), these primitive pains

essentially help them to survive in the environment and start to obtain skills that will be

useful for the sustained survival.

Neurobiology study facilitated by the neuro-imaging techniques, such as positron

emission tomography (PET) and functional magnetic resonance imaging (fMRI) etc,

supports the suggestion that there are multiple regions of brain involved in the pain

system which form the neomatrix, usually called “pain matrix” [Mel 90]. Experiments

using fMRI have identified that such a matrix includes a number of cortical structures,

the anterior insula, cingulate and dorsolateral prefrontal cortices [Pey 00], and subcortical

structures including the amygdala [Der 97] and the thalamus and hypothalamus [Hsi 01].

197

Two parallel systems are recognized in the pain matrix - the lateral pain system,

which processes the physical sensational pains, and the medial pain system, which

processes the emotional aspects of pain, including fear, stress, dread and anxiety [Töl 99].

The intensity of the pain is processed throughout the matrix. The physically noxious

stimuli activate certain regions in the lateral pain system, and the anticipation of the pains

can induce stress and anxiety, which activates the medial pain system. Recently, it has

been shown experimentally that the anticipation of a painful stimulus can activate both

systems as well [Por 02].

It has been widely accepted since decades ago that pain has sensory-discriminative,

affective, motivational, and evaluative components [Mel 68]. The work put forward by

[Mes 90] [Mor 93] on a large-scale neurocognitive network model suggests that the

cingulate cortex is the main contributor to a motivational map that interacts with a

perceptual map provided by the posterior parietal cortex. By affecting the motivation,

attention and sensory perception, it is proposed in this learning paradigm that the pain

matrix is essentially a part of the goal creation process of EI machine learning machine.

In the proposed learning paradigm, we would expect the machine to use uniform

neuronal structure to self-organize the proposed goal creation system (GCS). GCS, as the

third pathway in HSOM, stimulates the creation of goals on various abstract levels

starting from the given primitive goals. It is responsible for evaluating actions in relation

to its goals, stimulating the learning of useful associations and representations for sensory

inputs and motor outputs. The goal creation pathway finds the ontology among sensory

198

objects, makes connections among the actions and objects, and creates the needs and

affects the agent’s attention.

In the following sections the concept and structures for the goal creation system will

be further developed. The rest of this chapter is organized as follows. Section 6.2

explains the fundamental characteristics of the proposed goal creation system and states

the structure of goal creation system in detail, including the basic unit, connections

among neurons, and the growth of the goal creation system hierarchy. Section 6.3

explains how such goal creation system works in the action selection and its role in

attention and anticipation based learning. Section 6.4 discusses how such goal creation

system fits in the overall goal-driven learning system. Section 6.5 illustrates the GCS

using experiment. The proposed model with its future work is concluded in Section 6.6.

6.2 Goal creation system

The built-in goal creation and value system provides a mechanism that triggers

learning of intentional representations and associations between the sensory and the

motor pathways. When the EI machine realizes that a specific action resulted in a

desirable effect related to a current goal, it stores the representation of the perceived

objected involved in such action and learns associations between the representations in

the sensory pathway and the active action neurons in the motor pathway. If the produced

results are not relevant to the current goal, no intentional learning is taking place. Since

this happens most of the time during the exploration stage, such a deliberate learning

process protects the machine’s memory from overloading with unimportant information.

199

Similar to neurons in the sensory and motor pathways, neurons in the goal creation

pathway are organized hierarchically. The neurons are essentially a hierarchy of pain

centers. They receive the pain signals and trigger the creation of goals, which represent

the needs of the machine and the means to solve the pains. Lower level goals are

externally stimulated through primitive sensory inputs. Neurons’ activation on these

inputs may represent a large number of situations that the EI encounters while interacting

with the environment. Higher level goals are developed through associations between

activities on the lower level goal creation neurons and other neurons in the sensory-motor

pathways. Goals represented on the lower levels correspond to simple, externally driven

objectives, while those on the higher levels correspond to complex objectives that are

learned over the machine’s activities and are related to its understanding of the best ways

to accomplish the lower level goals.

6.2.1 Fundamental characteristics of the goal creation system

In the proposed goal creation system (GCS) for intelligent machines, the evolvement

and growth of EI value and action systems are stimulated by a simple built-in mechanism

based on dedicated sensory inputs, called “primitive pains”. Since the pain signal comes

from the environment (including the embodiment of EI machine), it is inevitable and

gradually increasing unless the machine figures out how to reduce and avoid it. Pain

reduction is desirable while pain increase is not. Thus, the agent has a desire to reduce the

pain or equivalently to pursue pleasure/comfort. So it is forced by the “primitive pain” to

explore the environment seeking solutions to pursue its goal - reduction of the pain. In

200

this process, the machine will accumulate the knowledge about the environment and its

own embodiment, and will develop its skills.

The EI machine may have several primitive pains, and each one of them has its own

changing intensity, and requires its own solution. A pain threshold th can be introduced

and a pain higher than the threshold requires the machine to look for solutions. At any

given time, the machine suffers from the combination of different pains with different

intensities, as shown in Figure 6.2. Different pains vary in time in different ways and the

agent needs to take care of the strongest pain signal and sets reduction of this particular

pain as its current goal.

Pain level

time

Pain signal 1
Pain signal 2
Pain signal 3

th

Figure 6.2. Changes in temporal intensity of the primitive pain signals.

We can make references to human learning, where a similar mechanism is used to

induce activity-based exploration and learning. The “primitive pain” inputs for a human

include pain, hunger, urge, anxiety, fear and other types of physical discomfort. The pain

usually happens when something is missing. For instance, we feel hungry when we lack

201

of the sufficient sugar level in our blood. We feel anxious when we lack of enough food

or money. Such postulate of deficiency is satisfying our goals as a trigger for action and

learning will make the proposed goal creation mechanism biologically plausible even at

the level of human intelligence. For example, in a new-born baby, a hierarchical goal

creation system and value system has not been developed yet. If the baby is exposed to a

primitive pain and suffers, the baby will not be satisfied nor its pain reduced until some

action can result in the primitive pain reduction. When the pain is reduced, the baby

learns to represent objects and actions that helped to lower that pain.

We also need to find and eat food to sustain our activities. A gradually increasing

discomfort coming from the low “sugar level” tells us that we must eat. The pain is

getting stronger and forces us more and more to search for solutions. Similar urges

pressure us to go to the bathroom, put on clothes when we feel cold, or not touch a

burning coal. The pain warns us against incoming threats, but also forces us to take an

action. We also feel relief if we take an action that reduces this pain. Thus pleasure and

comfort can be perceived as opposite to pain and discomfort.

The intensities of the perceived pains serve as a regulator to set priorities to our

actions and thus be responsible for goal creation. For example, the urgent need to go to

the bathroom may easily overtake our desire to eat, or even more so to sit through an

interesting lecture. In general, the strongest pains will determine the most pressing goals.

Thus the pain-based GCS will also yield a natural goal management scheme.

A primitive pain is a signal received from the primitive pain sensors. It stimulates

the primitive pain detection center. In solving the pain on the primitive level, the

202

machine is stimulated to explore for actions or to exploit the action that relieves the

primitive pain. The exploration at first is based on the random stimulation and activation

links or links that were initially (genetically) set to help to reduce the primitive pains.

Such genetically set links facilitate learning of higher level skills and correspond to built-

in skills. Genetic setting of lower level skills (by pre-wiring sensory-motor responses)

may be a preferred solution to designing machines when they need to develop complex

skills in a practical case.

Genetically set associations between the primitive pain centers and actions also exist

in humans. A baby cries when it is wet or hungry, it also has well developed skills to eat.

A burning pain from touching a hot plate triggers an automatic pull back reflex. These

sensations and actions become gradually associated with circumstances under which they

occurred, leading an intelligent agent to learn basic skills or to improve upon them.

A primitive pain leads the machine to find the solution and then the solution is set as

the primitive goals. Afterwards, the primitive pain will also be a trigger for developing

higher level pain/pleasure centers and a mechanism for the creation of higher level goals.

This is based on a fundamental mechanism for need to act and a simple measure for

satisfying such a need. We would like to argue that this simple need to act may lead to

complex goal creation and its implementation. The mechanism of goal creation in

humans, and how the human brain controls his behaviors are not fully theoretically

established yet in the field of behavioral science or psychology. It is possible that the

mechanism we propose here is not the way people create their goals biologically.

However, it is feasible, simple, and it satisfies our need to establish goal creation and to

203

formulate the emergence of a goal hierarchy for machine learning. In addition, this goal

creation system stimulates the machine to interact with its environment.

6.2.2 Basic unit of GCS

The proposed goal creation mechanism is based on evolving the idea of a uniform,

basic goal creation unit. The GCS unit contains three groups of neurons that interact with

each other, including the pain center neurons, reinforcement neurons and corresponding

connected neurons in the sensory and motor pathways of the HSOM. The basic goal

creation unit structure is shown in Figure 6.3. Although as demonstrated in [Sta 07a], the

representations for certain sensory objects or motor actions are built using a group of

neurons in HSOM’s sensory and motor pathway, they are illustrated as one single neuron

in this work for simple illustration.

+

-

Sensor

Motor
Pain

detection

Dual
pain

memory

Pain increase

Pain
decrease

(-)

(+)

Stimulation

(-)

(+)

activation

need

Pain detection/goal creation center
Reinforcement neuro-transmitter
Sensory neuron
Motor neuron

Pain detection/goal creation center
Reinforcement neuro-transmitter
Sensory neuron
Motor neuron

Missing
objects

inhibition

ex
pe

ct
at

io
n

Figure 6.3. Basic goal creation unit.

204

In the first group, the pain detection center (detecting the pain level, denoted as IP)

is stimulated by the pain signal from the sensory input and represents the negative

stimulation, such as pain, discomfort, or displeasure. Since the pain exists due to the

absence of certain objects, denoted as “missing object” in Figure 6.3, the perceived object

can inhibit the pain signal through the “inhibition” link. Thus the pain detection center is

activated by the silence of this sensory neuron. A dual pain memory center stores the

delayed pain level, IPd. Thus the currently detected pain signal and the pain signal in the

last time step (in the previously completed event) are stored and need to be compared in

the second group which contains reinforcement neurons.

Reinforcement neurons register a decrease or increase in the pain level by

comparing signals from the pain detection center and the dual pain memory center. They

do not physically connect to any neuron but send positive or negative reinforcement

signals to build the associations. The “pain decrease” reinforcement neuron gives a

positive reinforcement while the “pain increase” neuron gives a negative reinforcement.

The reinforcement signal is calculated in (6.3).

PdP IIr −= (6.3)

The third group contains the corresponding active neurons in the sensory and motor

pathways of the HSOM that these pain center neurons connect to.

In a GCS unit, initially, the pain detection center directly stimulates multiple motor

neurons. A gradually increasing pain level forces the machine to explore through the

motor actions by stimulate the motor neurons with random connection weights WMP,

since this is the only chance that the machine will learn a proper action when it has yet to

205

learn anything about its embodiment, its environment and the way to interact with it. The

machine explores starting from the action with the strongest activation (strongest weights

connecting to given pain stimuli). To carry out such action, certain objects which will be

involved in this action must be available. Initially, a motor neuron may be associated with

multiple sensory neurons by activation weights WMS. The available (active) sensory

neurons send activations to the motor neurons so that a certain sensory-motor

combination is implemented. The direct links from the pain center to the motor neurons

force exploration or the implementation of certain motor actions all the time.

After the action is taken, once the pain reduction or increase is detected by the

second group of neurons, a learning signal r is produced to reinforce or weaken the value

of an action and the value of the sensory-action pair by strengthening or weakening the

stimulation links from the pain detection center to the motor neurons and the activation

links from the sensor to the motor neurons. Pain increase will make the links more

inhibitory, while pain decrease will make links more excitatory, as shown in (6.4).

n
MSMS

n
MPMP

rWW

rWW

β

β

⋅+=

⋅+=

 (6.4)

where β denotes a learning rate within range (0, 1] and n denotes how many times the

link has been adjusted.

Meanwhile, since the active sensory neuron representing the object which was

involved in the action helps reduce the pain, a “need” link, with weight WSP will be

created to connect the active pain detection center to the active sensory neuron using

Hebbian Learning. On the other hand, the object, which was missing and producing the

pain signal earlier, becomes available and the neuron representing the object becomes

206

active after the motor action, an “expectation” link with weight WSM will be created to

connect the motor neuron and the missing object.

The “need” link and the “expectation” link will be updated by the reinforcement

learning signals as well. The bigger the change of the pain level is, the stronger are the

reinforcement signal and the weight adjustment on the involved links. The described

interaction of various groups of neurons in the goal creation mechanism and the

“stimulation”, “activation”, “expectation” and “need” links are illustrated in Figure 6.3.

To solve the primitive pain from “low sugar level”, after several random trials, the

action “eat”, connected with perception of “food”, will be rewarded. As a result, the

strength of the stimulation link from primitive pain detection center to “eat” and the

activation link from “food” to “eat” will be increased. The “need” link is connected from

the pain center to “food” and reinforced when such successful action is exploited and

rewarded for several times. And the action “eat” will expect the appearance of sufficient

“sugar level”. Whenever the “low sugar level” pain center sends out pain signals, the

“eat” will be excited prompting the machine for this action.

This simple mechanism is easy to expand and generalize. In order to generate

abstract and complex goals, we will incorporate basic goal creation units into a hierarchy

of the goal creation pathway as discussed next.

6.2.3 Building a goal hierarchy

When solving the primitive pain, “food” is needed for and its absence now will lead

to anxiety or stress for the machine. A second level pain center is created to represente

such stress and is called an abstract pain center, shown in Figure 6.4. It connects with

207

the primitive pain centers through an “echo” link since it echoes the pain signal from the

primitive pain centers. Each time the primitive pain center is excited, it sends activation

to the abstract pain center. Because these centers are not stimulated from the physical

pain sensors, they only symbolize the real pain or represent the discomfort for not having

the objects that can prevent the primitive pain.

Activation
Stimulation
Inhibition
Reinforcement
Echo
Need
Expectation

Activation
Stimulation
Inhibition
Reinforcement
Echo
Need
Expectation

- +

Pain
Dual pain

+

Sugar level

Abstract pain
“food” –

sensory input
to abstract pain

center

Sensory pathway
(perception, sense)

Motor pathway
(action, reaction)

Primitive
Level

Level I

Level IIrefrigerator

-

Food

Open

Eat

Figure 6.4. Creating the abstract pain signal.

When “food” is available and the agent “eats”, primitive pain is relieved and the

echo link will relieve the abstract pain as well. The pain signals disappear and the agent

goes back to its normal painless state. As a result an inhibitory link is developed between

sensory signal “food” and the abstract pain center, which means the existence of the

“food” can inhibit the abstract pain.

208

When “food” is not available, the agent cannot reduce the physical primitive pain.

Then, it tries to find the solution to reduce an “abstract pain”. Although reduction of the

abstract pain does not directly reduce the primitive pain on its lower level, it may be a

prerequisite for such reduction.

In this experiment, the primitive pain center forces the agent to explore to reduce the

abstract pain. Again, exploration is done based on the initial associations between the

abstract pain center and motor actions and associations between sensory representations

and motor actions. The reinforcement neuro-transmitters connected with this abstract

pain center update the interconnection weights. Eventually, the reduction in the abstract

pain resulted by the action “open” combined with sensory object “refrigerator” indicates

that the pain from absence of “food” will be associated with the state-action pair

“refrigerator ”-“open”. It does not matter whether such action (opening refrigerator) was

found by pure exploration or by instruction from a teacher. Since once the machine

opens the refrigerator, it sees the food and the abstract pain is suppressed, the action will

be reinforced. In addition, an expectation link from the motor action “open” to the

sensory neuron “food” is built, thus “food” will be expected as the result of the action

“open”. It is noticed that this expectation link will be used for planning future actions in

which a certain action’s result can be expected. Such process can be illustrated using

Figure 6.4.

The goal hierarchy containing three levels can be further expanded vertically. If the

agent “opens” the “refrigerator”, but the “food” is not found, the machine needs other

options to suppress the abstract pain, and subsequently the primitive pain. The machine

209

may explore by random search or by instruction. Once it “spends” some “money” (in a

store), food is available and then the abstract pain (no food) is reduced. Such action is

rewarded and will be more strongly stimulated by the abstract pain center. The “food” is

eaten, the primitive pain is suppressed, and the pain signals are reduced. However, when

“money” is not available, an abstract pain center on level II is activated with an inhibitory

link from “money” and directly stimulated by the pain center on level I (that represents

“no food” in this example). Subsequently, the machine needs to act to solve the pain on

level II. After exploration, the agent finds out that the solution to the pain represented by

“no money” is to “work” at a “job”.

The agent may also find that “stealing” other person’s “purse” can provide “money”.

However, even if such action suppresses the pain on this pain branch, the agent will be

punished by inflicting pain on other pain branch so that this association will be weakened

and “working” at a “job” will stand out as the best option. Subsequently, pain centers on

higher levels will be created and the hierarchy of pain centers and goal creations will be

built. The previous example can be illustrated by Figure 6.5.

In the process of finding efficient solutions for a certain goal, there will possibly be

time lag between when the action is taken and when the action start to take effect. The

time lag may affect the association between a certain goal and the correct action.

However, it is believed that after enough interactive cycles, the agent will eventually

make strong associations between the effective action and the goal.

In the proposed GCS, at every step, the machine finds an action that satisfies its

goals and such action and the involved objects may result in creating further goals.

210

Therefore, in this mechanism, the machine simultaneously learns to associate the goals

with deliberate actions, the expected results of actions, the means to obtain objects, and

hierarchical relations among various objects. It reinforces which objects in its visual field

are related to its goals, facilitating and stimulating learning of the desired objects. It

helps to establish higher level goals and the means of their implementation. It governs

execution of actions to satisfy the goals and manages the goals priorities at a given time.

Activation
Stimulation
Inhibition
Reinforcement
Echo
Need
Expectation

- +

+

Sugar level Primitive
Level

Level I

Level IIMoney

-

Food

Spend

Eat

+

Sensory pathway
(perception, sense)

Motor pathway
(action, reaction)

Level IIIJob

-

Work

- +

+

Sugar level Primitive
Level

Level I

Level IIMoney

-

Food

Spend

Eat

+

Sensory pathway
(perception, sense)

Motor pathway
(action, reaction)

Level IIIJob

-

Work

Figure 6.5. Expanding the hierarchy.

211

6.2.4 Relations to reinforcement learning

In GCS and RL scheme, an agent has different overall objectives. In GCS scheme, a

learning agent learns to minimize the pains caused by the hostile environment. On the

contrary, a learning agent learns to achieve the maximum reward from the environment in

a classical RL structure. When the agent is situated in an environment with multiple

inputs, the GCS and RL systems not only have different optimization objectives (min vs

max), but also, they will lead to different behavior of the agent. When there are multiple

pains at the same time, the GCS agent always tries to reduce the strongest pain. Over the

time, he carries out different actions depending on which pain is the strongest every

moment. Eventually all the pains will be reduced and be controlled within a certain

range. When all the pains become zeros, the agent won’t have to do anything until a

certain pain increases. However, an RL agent will repeat the same action which produces

the reward, even though he fails to obtain the other rewards.

In a RL AC architecture, the agent’s critic network learns the values of state-action

pairs through the reinforcement signals coming from the environment or a teacher. Then

the state/action pairs are evaluated by the critic network. In a contrast to the RL, GCS

learns to accomplish only the primitive goals using the external reward, and has

reinforcement neurons of each GCS unit to generate internal rewards to build the required

associations. Outputs of the reinforcement neurons correspond to the rewards used to

instruct the machine regarding desired or undesired state/action pairs in RL.

In a learning system using GCS, instead of a computational-based value system used

in typical RL, the value system is essentially embedded in the hierarchical GCS. In the

212

actor-critic (AC) RL paradigm shown in Figure 6.1, the action is chosen by the actor

based on the present sensory (state) inputs. The critic evaluates the state-action pair to

determine whether the actor needs to improve the selection of actions and how to

improve it. Practically, the interactive activities of the agent in AC paradigm are triggered

by the sensory (state) inputs, which make it a passive process. Using the GCS, the

machines’ interaction with its environment becomes an active process since the machine

finds the optimum actions according to its internal goals and the pain inputs. To

implement the desired actions, certain sensory inputs are necessary. Such state-action

pair’s value is determined by the strength of the sensory inputs and the strength of the

desired action. The need for the sensory inputs becomes a higher level goal. Through

building the goal hierarchy, an intelligent machine learns to associate goals with states

and the values of different states for accomplishing goals.

Therefore, in this scheme, learning about particular actions may only concern

particular goal achievements. Learning that occurs on a higher level of the memory

structure to satisfy a higher level goal may have no direct relationship with actions that

may satisfy the lower level goals. For instance, an abstract goal of earning money might

have been stipulated by a need to buy food or by a need to pay the heating bill or both. In

a similar way, accomplishing this higher level goal does not necessary remove hunger or

heat the living space. In particular, the only externally observable “primitive pain” may

remain unaffected. This isolates externally administered reward related to a “primitive

pain” from the reward that satisfies a higher level goal. While we can measure (and thus

optimize) the overall reward received externally to satisfy the primitive goals, it is

213

impossible to measure (and therefore optimize) total amount of reward received for

higher level goals, as these goals remain mostly unknown to the external observer. This

fact differentiates the proposed GCS from the RL scheme, in which the total amount of

reward is assumed measurable, so that a system can be optimized to maximize the

reward.

This argument somehow negates the existence of a mathematically optimum

intelligent agent like the one discussed in [Leg 06]. Since the total amount of reward in

the proposed GCS cannot be measured from outside, mathematical proof of optimality

presented in [Leg 06] does not apply.

6.3 Anticipation and action selection in hierarchical goal creation network

Visual attention has been investigated in a variety of studies and was shown to affect

the human perception. It was known that superior parietal lobule (SPL) is an area of the

brain involved in attentional control [Yan 03]. The prefrontal cortex produces a top-down

signal which reflects the current goal and sends it to SPL. SPL issues a transient signal

for attention control. The signal is sustained in lateral intraparietal (LIP) [Bis 03] and

modulates the sensory representations in extrastriate cortex. However, there was no clear

and feasible mechanism or working model about how this signal was created and how it

is constantly involved in intelligent behavior.

In this section, we will discuss how an agent may choose the most appropriate action

to implement its goal. This will lead to such higher level functions of the cognitive

process like planning, anticipation, and action selection.

214

Figure 6.6 shows a single activated path of a goal hierarchy, which is obtained as a

result of the mechanism presented in Section 6.2.

environment

Growing pain
signal

S1
P1

M1

P2

S2

activatesensory
tree

motor
tree

sensory
tree

sensory
tree

motor
tree

motor
tree

inhibit

need
stimulate

expect

environment

Pain centers

Motor neurons

Sensory neurons

environment

Growing pain
signal

M2

P3

S3 M3

Primitive
Sensor

Sp

activate

inhibit

Echo

expect

environment

sensory
tree

sensory
tree

motor
tree

motor
tree

motor
tree

Figure 6.6. Activated path in the pain tree.

We can see from the figure that how GCS interact with sensory and motor pathways

on various levels (The goal creation unit is shown using a simplified triangle symbol).

215

Primitive pain, denoted as P1 in Figure 6.6, is activated by the absence of primitive

sensory Sp. We will illustrate the mechanism responsible for anticipation of the sensory

input and selection of action involved in the alleviation of the primitive pain P1 in this

pain tree.

6.3.1 Anticipation and attention in GCS hierarchy

Suppose that, as the machine explores the means to provide Sp to reduce the pain P1,

M1 is found as the best action which needs activation from the sensory object S1. Then

the stimulation connection from P1 to M1 and the activation link from S1 to M1 are

reinforced. And P1 generates the need link directed from P1 to S1 and M1 builds the

expectation link to Sp. The “need” link sends an additional top-down stimuli coming from

the pain center to the needed object, as shown in Figure 6.7.

input

pain

object
need

Figure 6.7. Attention signal generated by the goal center.

When S1 is not available, the lack of S1 creates the abstract pain P2 which triggers

the machine to look for further actions to solve active P2. Accordingly, M2 is found to be

216

the best action to reduce P2, and P2 needs S2. M2 expects that S1 becomes available in the

sensory pathway after the machine implements action M2. A similar organization

structure is built for P3. Echo links are used to connect P2 from P1, and P3 from P2.

Notice that in this process, the stimulation and activation links are found through

exploration and are trained by reinforcement learning signal issued by neuro-transmitters

in the goal center. Both the need and expectation links occur naturally in Hebbian

learning as a result of learned observations and actions taken in response to specific

goals.

Assume that on the top level an expected sensory input S3 was found available. This

activated the top level motor function M3 that resulted in the act on the environment.

Since the action M3 has been previously learned to accomplish the goal of reducing the

pain P3, it is expected that the next input from the environment will activate S2 resulting

in inhibition of P3.

While stimulation link from P1 to M1 and activation link from S1 to M1 are essential

for effective implementation of the GCS scheme, the need link from P1 to S1 is not

critical in finding M1 and reducing P1. The “need” link is useful for building meaningful

object representations for accomplishing goals. Using again the “food eating” example,

when “food” is not known to the agent and found to be useful to reduce the primitive

pain, a neural representation of “food” will be built with the help of “need” link input.

Similarly, to reduce higher levels of pains for lack of “food”, the representation of

“refrigerator” will be built since it is useful for the agent to obtain food. This goal-

oriented learning also explains our postulate earlier that the machine only learns

217

something useful once it finds it to be meaningful for the machine’s survival in the

environment.

The need link also helps to focus the attention on finding particular desired object

needed by the action. Therefore, it may have a role in determining the current attention in

machine’s goal-oriented behaviors, when an object representation was learned to be

useful for a machine’s goal. As discussed in Section 5.7 such attention signal may help to

recognize a desired object perceived by the sensory pathway.

Thus higher level representations related to needed elements are triggered easier

since attention focus helps to observe the needed elements and keeps neurons that

represent them activated to build this higher-level representation.

With the attention as an additional top-down stimuli coming from the pain center via

the need link, the needed object will be recognized easier through integration of the

perception with the need. For instance, when you are on a treasure hunt or look for a lost

object, your attention may be focused on detecting such object among many others,

providing additional excitatory signals to trigger object representation neurons once an

object is in the visual field.

6.3.2 Alternative action selection

In the activated pain path shown in Figure 6.6, the expectation links from motors to

lower level sensors will play an important role in motor action selection on the same level

of abstract pain. As described earlier, an action is considered successful when the pain is

reduced in the next time iteration. And when an action is taken, while the pain is

increased, the action is determined to be unsuccessful and the next alternative action will

218

be taken. However, any action takes time to finish and to actually reduce the pain and the

pain signal can keep increasing during the process of action being undertaken. In this

section, we will discuss how the action is determined to be unsuccessful and when the

next alternative action needs to be taken.

In the activated pain path, if P1, P2 and P3 represent “lack of enough sugar level”,

“lack of food” and “lack of money”, respectively, M3 represents the action to solve P3, we

expect that the activation of M3 will provide the money. Usually, a pain can be alleviated

in several different ways. Suppose that we can get money from the bank, from the friend,

from the mother in law, or from a stranger. Assume also that each next case is less

favorable that the previous one. The initial action Ma is chosen as the action with the

strongest stimulation from the pain center P and activation from the sensory object S, as

in,

}max{ MSMPa WSWPM ⋅+⋅= (6.5)

where MPW denotes the stimulation weights from the pain center to the actions and WMS

denotes the activation weights from the sensors to the actions.

We may go to the bank since it is currently our best option and find out that it is

closed. If the bank is still perceived through the sensory pathway, the existing mechanism

may insist on going to the bank to get the money since getting money from the bank was

the strongest action related to the lack of money. Thus, an additional mechanism based on

the expectation signal is needed to abandon this action and to try another one. For

instance, if P3 (lack of money) is also linked to getting money from your friend, we need

an inhibitory signal blocking the unsuccessful action, as shown in Figure 6.8.

219

S31
S32

S33

M32

M31

M33

I31
I32

I33

EUA 31

P3

EUA 32

EUA 33

Figure 6.8. Inhibition of an unsuccessful action.

Suppose that M31 received the strongest activation from P3 but the expected result

was not provided at the end of the action. At the end of the unsuccessful action, the

concurrent activations of M31 and its “end of unsuccessful action” (EUA) signal EUA31

activate the inhibitory neuron I31, whose activation is determined by (6.6), where m

denotes all the possible actions and i denotes the level of goals in this single path of goal

hierarchy the machine is acting for.

()mjEUAMI ijij ,...2,1ij =⋅= (6.6)

This neuron I31 inhibits the activation of M31 allowing other action to take place, as

in (6.7).

()mjIWPM ij
sti

PMi ij
,...2,1ij =−⋅= (6.7)

For instance, if S33 is observed (mother in law), the action M33 will be active and

220

with M31 lowered by inhibition (as in (6.7)), M33 will win the competition in (6.5) and this

action will be selected. Inhibitory neurons (I31, I32…), which give inhibitory inputs to the

motor neurons, gradually lose their signal strength as time goes by, as in (6.8), where t

denotes the time.

()1;,...2,1 <=⋅= αα mjII t
ijij (6.8)

This feature enables the machine to retry a formerly unsuccessful action when its

activation becomes the highest after some time, since the situation may change (for

instance bank reopens). In the following Section 6.3.3, we will discuss how the EUA

signal is generated using neural circuit.

6.3.3 End of unsuccessful action signal

End of unsuccessful action (EUA) signal has two roles. Its main role is to inhibit an

unsuccessful action and force the machine to explore. Its supporting role is to lower the

interconnection weight between the pain detection center and related motor action

neurons.

All expectation signals are feedback signals fired from active motor neurons to

expected sensory neurons. To discuss how the EUA is generated, let us consider the

columnar structure of a sensory pathway as discussed in [Gro 98]. An unexpected input

(UI) neuron is proposed in this work to represent the mismatch between the real input and

the expected input from the lower level sensory neurons. Layer 5 neuron of a column

which represents the expected sensory object can receive feedback and be connected with

the expectation signal from the motor neurons. It was also discussed in [Gro 98] that in a

column, layer 6 neuron is activated only when it receives input from a lower level

221

neuron. Therefore, the UI neurons are connected with layer 5 and layer 6 neurons as

shown in Figure 6.9. The value of UI is calculated as in (6.9).

56 layerlayer nnUI ⋅= (6.9)

Each motor neuron can lead to multiple expected results. For instance, if motor

action M31 was activated (go to the bank to get money) we expect that the result of this

action is to either get cash, traveler’s check, debit card etc, all of which will be a

successful completion of this task. So the expectation signal from a motor neuron is sent

to all the connected columns on the lower level of the sensory pathway, as shown in

Figure 6.9.

In Figure 6.10, M3 sends the expectation signals to columns 2 - 4 in the sensory

columns. Each column in the sensory pathway is simplified to 3 neurons for clarity in the

figure. Then the layer 5 neurons of column 2, 3 and 4 are activated. The UI signals are

determined considering all combinations of neuronal activations of layer 5 and layer 6

neurons. If any one of the expected sensory inputs is activated, the corresponding UI

neuron in this column will not fire, since it receives inhibition from its layer 5 neuron.

However, if for instance, unexpected sensory input 1 is activated, it will activate UI

neuron in column 1. This may illustrate the case in which we went to bank, but instead

we were told that our account was overdrawn and we will get no money.

222

Input activation

Layer 4

Layer 6

Layer 2/3

Layer 6

Layer 5

Unexpected
Input (UI)

expectation
feedback

need

Figure 6.9. Generation of the unexpected input (UI) signal.

EUA

I31

M3

Column 1

Column 2

Column 3

Column 4

Column 5

Layer 6
neuron

Layer 5
neuron

UI

Sensory inputs S2i

Pain
increaseexpect

atio
n

Figure 6.10. Expectation and actual inputs.

223

End of unsuccessful action (EUA) signal is generated if any of the columns has an

active UI, as in (6.10), where s denotes all the connected columns in the sensory pathway.

∑
=

=
s

j
jUIEUA

1
 (6.10)

The activation of EUA neuron results in subsequent action inhibition I31. Finally, an

action inhibition neuron may be activated directly by the pain increase signal when the

pain level goes above an arbitrary threshold, without a clear sensory signal of

unsuccessful action. This may happen, for instance, if the action takes too long time to

complete and growing pain triggers its inhibition to abandon this action without its

completion.

Notice that a similar feedback mechanism may be used to screen the sensory

information for novelty. The machine, by using the feedback signal, similar to the

expectation signal, predicts what input representations it expects in the sensory pathway.

Any surprises may trigger its attention and may result in learning a new representation or

appending the set of acceptable features of the observed object. This attention based

screening for novelty may also be a basis for the representational invariance building.

6.3.4 Goal creation and pain network

In previous Section 6.3.3, the goal hierarchy is created based on one primitive pain

input. In GCS, there are multiple primitive pain inputs, and normally, the goal hierarchy

is complex with many goals and pain centers created both vertically and horizontally.

One primitive pain in the goal hierarchy creates and activates one pain tree, which is part

of the pain hierarchy. In the example pain tree shown in Figure 6.11, the goal creation

unit is shown using a simplified triangle symbol. The nodes on one pain tree can also

224

belong to other pain trees. For instance a need for money could be created as a result of

lack of food (related to hunger) as well as satisfy the need to buy clothes (related to

feeling cold). Thus, the overlapping of pain trees forms the pain network.

0

1 2 3

4 5 6 7 8

9 10 11 12 13 14 15 16

Figure 6.11. An example pain tree.

The goal creation scheme works in a way described as follows. An activated pain

node P, due to the absence of a certain object S, along with the sensory input So activates

one of the associated motor neurons with the largest signal value, which is found by (6.5).

If it is found that this action Ma brings the expected objects and lowers that particular

pain P, the stimulation and activation links are reinforced, as in (6.4). An expectation

feedback link will be built connecting the Ma and the absent object S. In addition, the

need link is built to connect the pain node and the sensory object So. Then, a new pain

node which can be inhibited by So is created and made to echo P. If this pain node was

created before, the echo link should be reinforced. A pain tree made of a group of pain

nodes is gradually built. These links can be referred to Figure 6.6.

225

6.4 Goals, subgoals and goal hierarchy

In the goal creation pathway, higher level goals are created to manifest a way to

provide the objects necessary for accomplishing lower level goals. They are based on

perceptions and actions associated with successful implementation of the lower level

goals. The abstract goals are defined as abstract since they are less closely related to the

primitive level of goals. Abstract goals do not have direct relationship to lower level

goals that once lead to their creation. To realize the lower level goals, it is not necessary

to solve its higher-level goals first. It becomes necessary only when certain objects are

missing and the lower level actions cannot be performed. On the other hand, to realize a

higher level goal, it is not necessary to achieve the lower level goals first, as typically

realization of such lower level goals do not provide conditions for attaining higher level

goals. Similarly, realization of a higher level goal does not have to satisfy the lower level

goal (even the one that triggered its emergence in the goal hierarchy).

These higher level goals are not necessarily the same as “subgoals”. In a goal-

driven behavior, there is a need to simplify complex goals by dividing them into subgoals

and to implement subgoals in a specific sequence. Many machine learning techniques

take this approach. For instance, in [Mur 07], it was used to simplify realization of a

complex goal using reinforcement learning. It was demonstrated that if a goal was

divided into subgoals, the reinforcement learning was much more effective and was

accomplished with a smaller number of exploratory searches. In this work, we use the

term “subgoals” to represent the tasks that are elements of a temporal sequence to

implement a goal. Subgoals are related to a specific goal on the same level and they are

226

the prerequisite for the final goal. Typically, all the subgoals must be completed to

realize the final goal. For example, an agent who needs to go to a specific location in a

room needs to go through two doors, A and B, using two corresponding keys, key A and

key B. Thus, finding key A to go through door A, and, subsequently, finding key B to go

through door B are two necessary subgoals to realize before the ultimate goal is achieved.

It is proposed that subgoals can be found out using the similar goal creation concept,

basic goal creation unit and evolving processes in GCS. Given the keys available in the

initial exploration, the agent will find out the optimum action is to go through door A

using key A when it approaches door A instead of going in other directions. Since key A

was involved in the successful action, it creates another level of goal and pain center.

The absence of key A generates pain and drives the agent to search for key A. Therefore,

search for key A becomes a subgoal. The similar mechanism applies to creating another

subgoal as finding the key B.

Structurally, it is easy to confuse higher level goals with complex goals, as both

types of goals may lead to a goal hierarchy. We would like to differentiate them by

calling higher level goals in GCS as abstract goals, and calling the goals that are

composed by subgoals as complex goals. These two types of goals play different roles in

developing embodied intelligence. Application-driven approaches in many intelligent

systems focus on complex goals. Subgoals may be further divided into simpler tasks

which will lead to a top-down hierarchy of goals and related actions.

Having said that, we must indicate that higher-level goals may become subgoals if

they are directly driven by the need to accomplish a lowerlevel goal. For example,

227

finding a store was a subgoal of finding food, but at the same time buying food from a

store (and therefore finding the store was a higher-level more abstract goal than observing

food). One reason is that finding the store may satisfy other lower-level goals as well.

Thus it may be a subgoal of several lower-level goals and, at the same time, a higher level

(more abstract goal) than any of them.

6.5 Goal-driven learning system

As discussed earlier, the learning involving GCS is an active process, in which the

machine searches for useful actions to solve undesirable pain input perceived by the

HSOM sensory pathway. The action taken leads to the change of the environmental

states, which is also perceived by the HSOM sensory pathway. The overall diagram of

the EI machine interacting with the environment is shown in Figure 6.12. The

availability of the needed objects (states) enables the implementation of the action, using

a “gate control” fashion. With the needed objects, the action can be carried out and cause

the transition of environment states. Otherwise, the GCS will take other action.

228

HSOM
Sensory
pathway

HSOM
Motor

pathway

HSOM
GCS

Environment

Pain

States

Gate control

Desired
action
&state

Action
decision

Action

Figure 6.12. EI machine interacts with environment using its three pathways in HSOM.

In previous examples, a single path of the goal hierarchy and related pain tree were

illustrated. In the EI design, GCS in HSOM involves multiple pain trees. Pain trees

overlap and create a pain (and related goal) network. Thus competition for action exists

not only within a single pain tree, but also between different pains within the whole pain

network. In general, the stronger the pain, the more attention it gets from EI to lower it.

In the learning system, the pain network interacts with the sensory and motor pathways

on various levels of abstraction and multiple abstract goals can be pursued concurrently.

Such concurrent attainment of various abstract goals may be organized in the GCS

despite that, at any given time, the EI focuses its attention on completing one (usually

lower level) task. The motor neurons accept stimulations from different pain trees and

the strongest pain signals influence the choice of action. The schematic structure of a

goal-driven learning system and the interaction among three pathways are shown in

Figure 6.13.

229

Pain tree I
Pain tree II
Motor pathway
Sensory pathway
Pain center and motor association
Sensor and motor association
Sensor and pain center connection

Figure 6.13. Goal-driven learning scheme.

It is also quite likely that implementation of a higher level goal requires more steps

(and more time) and during this implementation another (usually lower level pain) may

start to dominate, causing the machine to switch from one task to another one. This

requires that the suspended goal maintains memory of its implementation stage, such that

the machine can reassume its action after completion of the lower level goal that caused

230

the interruption. Thus using sequential spatio-temporal memory is critical for proper goal

management.

During the process of interaction, the reinforcement signals play a significant role in

finding new goals, having expectations, and building sensory-motor associations. The

reinforcement signals come from the environment, and include autonomous primitive

pain signals as well as the teacher’s input. The machine’s experience built through

interactions with the environment affects the associations between different sensory

inputs and different goals. The three pathways evolve simultaneously. First, low level

representations in the sensory pathway and simple motor actions are developed to

manage the primitive pain signals. The machine focuses its attention on objects and

actions it can use to lower the pain; thus learning of sensory inputs and motor actions is

selective. Not all the objects in the sensory inputs are of interest to the machine, and only

those of intent are stored in its memory.

Once representations that are associated with lower-level goals are formed and the

machine is capable of formulating its higher-level goals, it may extend its representations

to include higher level concepts on the sensory pathway, and learn a sequence of actions

to implement them. Thus memories of more abstract entities and useful actions will be

formed on the higher levels. Gradually, the complexity of the machine’s operations - its

intentional memory of objects, actions and goals increases; and its three hierarchical

pathways are built concurrently. As a result, complex, long lasting goals may be created

and managed by such a system, resulting in a complex, intelligent behavior.

231

6.6. Simulation and discussion

In this section, let’s assume that the GCS has to learn “how not to go hungry” in an

environment in which there are limited food resources and advanced skills are required to

get them. We assume that both sensory inputs and motor outputs are symbolic, which

means that the machine already learned all the available sensory objects and motor

actions, and a source (sensory) or/and a motor action are represented by the symbols. The

current state of the environment is determined by the availability of the resources in a

binary form. We will also compare effectiveness and performance of learning based on

the GCS and RL.

The machine is motivated by one primitive pain signal, which is triggered by low

sugar level in the blood. This primitive pain automatically increases if the machine does

not eat for some time. All the symbols representing sensory objects and motor actions are

shown in Table 6.1. Overall, there are 6 sensory objects and 5 possible motor actions.

Initially, all sensors are randomly connected with all the motors and there are 25 possible

sensory-motor pairs, as listed in Table 6.2. It is expected that after learning, the

association between sensors and motors are learned and only the meaningful pairs will

remain. All other sensory-motor pairs are either undesirable or have no effect on the

machine’s perceived success. The desired sensory-motor pairs and their effect on the

environment are also listed in the following Table 6.1.

232

Table 6.1

All Sensory Object and Motor Actions

SENSORY
SCALING

FACTOR
MOTOR

EFFECT ON THE ENVIRONMENT

INCREASES DECREASES

Sugar level

Food 10 Eat Sugar level Food supplies

Grocery 10 Buy Food supplies Money at hand

Bank 2 Withdraw Money at hand Spending limits

Job 1e8 Work Spending limits Job opportunities

School 1e8 Study Job opportunities -

Initially there are plenty of resources around, indicated by a high probability of

availability of all the sensory inputs. This allows the machine to learn by exploration how

to satisfy its primitive goal (reduce hunger). However, as the machine uses them, the

original resources are gradually depleted and need to be replaced. Thus the machine

needs to learn how to use other actions to provide the resources. It will use the GCS to

find out goal hierarchy and learn how to accomplish different level of goals.

233

Table 6.2

All Possible Action and Object Combinations

1 2 3 4 5

Eat food Eat money Eat bank Eat job Eat school

6 7 8 9 10

Spend food Spend money Spend bank Spend job Spend school

11 12 13 14 15

Withdraw food
Withdraw

money

withdraw

bank

Withdraw

job

Withdraw

school

16 17 18 19 20

Work food Work money Work bank Work job Work school

21 22 23 24 25

Study food Study money Study bank Study job Study school

A sensory input probability of various items of category ci (availability of resource)

is described by the function:

c

c
cici k

kf

τ
+

=
1

1)((6.11)

where: τc is a scaling factor (resource decline rate), kc stands for the number of the times

a resource was used (initially set to zero). Each time a specific action is taken by the

machine (for instance the machine withdraws money from the bank account) the

234

corresponding kc is increased by 1 decreasing the likelihood of this particular resource.

This resource can be renewed by invoking a higher-level goal after which kc at a

particular level is reset to 0. For instance if grocery was bought, the counter for food was

rest to zero and at the same time the counter for money increased by 1. Also, it is noted

that the smaller the scaling factor τc is, the sooner the resource gets exhausted. “Sugar

level” is considered always low, and triggers increasing primitive pain unless it is

renewed by the proper action. Therefore, its likelihood is always 0. In this experiment

the scaling factor used for these resources is listed in Table 6.1 as well.

6.6.1 Goal creation system learning scheme in this experiment

Initially, the primitive pain P1 has random stimulations to all the motor actions and

the sensory neurons have random activation connections to all the motor neurons as well.

Also, we initialized 6 pain centers due to lack of the 6 corresponding resources. All the

pains are randomly connected to all the other pains, assuming other pains can be the

higher level pains.

It is intended to show that after the learning, the machine learns the optimum action

to solve the primitive pains, finds the connection from each goal to its abstract goals,

finds out the ontology among objects related by the pain centers, builds the “need” and

“expectations” among motor actions and sensory objects, and builds the meaningful

association among sensory and motor neurons.

The initial information and the information to be learned or created through goal

creation process are listed in Table 6.3 as follows. The learning process is described in the

earlier sections, with a brief flow chart shown in Figure 6.14.

235

Table 6.3

Initialization and Learned Information in the Goal Creation System Scheme

 Randomly initialized information Learned information

1 Stimulation weights: WMP Optimized WMP (from pains to motors)

2 Activation weights: WMS Optimized WMS (from sensors to motors)

3 Pain connection weights: Wpps
Optimized Wpps, and hierarchical structure

of pain centers

4
“Need” connections WSP (from pains to

sensors)

5
“Expectation” connections WSM (from

motors to sensors)

In the experiment, in each time iteration, the machine acts only on the most active

pain signals among all the active ones. When it is acting according to the jth pain node, Pj,

the action is Ma chosen based on the stimulation weights WMP from Pj to all the motors,

as in (6.5). The most correlated sensory object from the existing sensory-motor

association is chosen. The result of the action will lead to positive or negative

reinforcement learning.

236

Choose motor action Ma

Implement (Ma, So)
combination

All
active pains

Resulted
objects

Expected
objects

Pj
decrease Match

EUA

NN

Positive
reinforcement

learning

Negative
reinforcement

learning

Y Y

Update “need” link WSP
Update “expect” link WSM
Update “echo” link Wpps

Update “stimulation” link WPM
Update “activation” link WMS

Next time
iteration

Most active pain

Choose sensory object So
according to Ma

Figure 6.14. Goal creation experiment flow chart.

237

6.6.2 Reinforcement learning scheme in this experiment

A typical AC system for RL is adopted in this experiment for performance

comparison. The algorithm of RL used is actor-critic architecture shown in Figure 6.15.

In the RL scheme, the machine is only triggered by the primitive pain as its reinforcement

signal (reward). It has only one primitive goal, which is to reduce the primitive pain. The

machine does not create any higher-level pains or goals. In this scheme, the optimal

mapping from states to actions is to be learned during interaction with the external

environment based on the primary primitive reinforcement.

Action
Network

Critic
Network α

－

－

Environment

X(t)

X(t+1)

X(t)

u(t)
J(t)

J(t-1)

Primary
Reinforcement
r(t)

Uc(t)

ea(t)

ec(t)

Action
Network

Critic
Network α

－

－

Environment

X(t)

X(t+1)

X(t)

u(t)
J(t)

J(t-1)

Primary
Reinforcement
r(t)

Uc(t)

ea(t)

ec(t)

Figure 6.15. Actor-critic architecture for RL.

The actor-critic architecture contains two components: the action network and the

critic network, and both networks are implemented by a multi-layer perceptron (MLP) in

this experiment. The action network determines the action u(t) based on current states

X(t). The critic network evaluates the state-action value J according to {X(t), u(t)}. The

238

J(X(t), u(t)), also denoted as J(t) value is defined as

∑
∞

=
+++++ =+++==

0
13

2
21 ,))(),((

k
kt

k
tttt rrrrRtutXJ γγγ L (6.12)

where 10, ≤≤ γγ , is the discount rate.

The critic network is trained using the temporal difference method [Sut 98]. The

critic network directs the action network to produce better action so that J(t) is

maximized; thus the action network is trained. A more detailed implementation of this

algorithm can be found in [Si 01].

Since the agent has no prior knowledge, the reasonable associations among different

objects and actions are not yet built; therefore all possible object- action combinations are

considered. The algorithm is described below.

Reinforcement learning using AC method:

Step 1). The agent receives states information X(t) and the reward signal r(t) from the

environment.

The X(t) shows the availability of the resources as a binary vector, with “1” indicating

being available. The reward signal r(t) is related to the current states X(t). In this

experiment, the r(t) is the pain input signal, which is due to the “lack of sufficient sugar

level”.

Step 2). Action network (AN) determines the action u(t) from 25 possible action-

object combinations based on current states X(t).

The u(t) is in the form of a binary vector as well, with “1” indicating the selected

action and “0” for the rest of the actions.

Step 3). Critic network (CN) determines the value of this state-action pair J(t).

239

Step 4). Using the reward signal r(t), CN is trained by TD method. The error function

of CN is show in (6.13).

)(
2
1)(

)]()1([)()(
2 tetE

trtJtJte

cc

c

=

−−−= γ

 (6.13)

Step 5). The weights in CN are updated according to gradient descent,

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−=Δ

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−=Δ

Δ+=+

)(
)(

)()(

)(
)(

)()(

)()()1(

)1(
)1(

)2(
)2(

tw
tE

tltw

tw
tE

tltw

twtwtw

c

c
cc

c

c
cc

ccc

 (6.14)

where)(tlc is the learning rate of CN.

Step 6). The CN reevaluate the value J(t).

Step 7). The AN is trained in order to produce action u(t) which can have a desired

value J(t). The error function is formulated as,

)(
2
1)(

)()()(
2 tetE

tUtJte

aa

ca

=

−=

 (6.15)

where Uc(t) is the desired value.

The updating algorithm is similar to that in CN. By a gradient descent rule,

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)()(

tw
tu

tu
tJ

tJ
tE

tw
tE

tw
tE

tltw

a

a

a

a

a

a
aa

∂
∂

∂
∂

∂
∂

=
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−=Δ

 (6.16)

where)(tla is the learning rate of AN.

240

Step 8). Apply the determined action u(t) to the environment, and the environment

will give new states X(t+1). Repeat Step 1) to Step 8).

The performance is shown in the following section.

6.6.3 Performance comparison

6.6.3.1. RL scheme performance

Using the RL scheme, in a simulated trial, the agent runs for 600 time steps. The pain

input (hunger) during this trial is shown in Figure 6.16. Initially it takes the RL agent 27

iterations to learn to control the pain input by performing “eat food” action. Then the pain

input goes to 0, as shown in Figure 6.16 (a). But as the food resource is depleted the

agent needs to learn another action to renew food resource. In iteration 129, the agent

accidently takes the action “buy the food” and restores the food supply likelihood, as

illustrated in Figure 6.16 (d). The primitive pain is under control as the action “eating”

was repeated. However, the food probability is gradually reduced and the agent does not

seem to learn how to restore the food. After iteration 322, it never returns to “eat food”

action even though the food is available and the primitive pain increases. As it is evident

from the simulation result, it takes a long time for the RL mechanism to adjust to the

changing environment and learn efficient actions.

241

0 100 200 300 400 500 600
0

10

20

30

pa
in

 in
pu

t

Pain input signal

0 100 200 300 400 500 600
0

10

20

30

m
ot

or
 a

ct
io

n
in

de
x Actions taken during a trial

0 100 200 300 400 500 600
0

0.5

1

av
ai

la
bi

lit
y

of
 th

e
fo

od

Availability of the food

0 100 200 300 400 500 600
0

0.5

1

pr
ob

ab
ilit

y
of

 th
e

fo
od

Probability of availability of the food

t=129 t=322

(a)

(b)

(c)

(d)

Figure 6.16. Results from RL experiment.

The overall performance by RL scheme on this experiment can be evaluated from

multiple trials, as shown in Figure. 6.17. In general, the pain input was not effectively

suppressed. It is observed in several runs that the changes in environment happened too

quickly for the RL system to keep up developing new skills.

242

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150 Pain Input

Figure 6.17. The average pain signals in 10 trials for RL scheme.

6.6.3.2 GCS scheme performance

On the other hand, using GCS, as soon as the machine learns how to satisfy a lower

level pain, it identifies the environment condition (the sensory-motor pair) that helps to

remove the pain (for instance by eating the food) and creates an abstract pain that is

activated when these conditions are not met (for instance when no food is present). The

agent uses its GCS approach to learn what to do, and how to adjust to changing

environment conditions.

A typical result of CGS simulation is shown in Figure 6.18. This figure shows

dynamic changes for the pain signals (including the primitive pain) over 600 iterations.

At first, the only pain that machine receives is the primitive pain. Once the machine

learns that eating food reduces the primitive pain, the lack of food becomes an abstract

pain. As there is less and less food in the environment, the primitive pain increases again

(since the machine cannot get the food) and the machine must learn how to get the food

243

(buy grocery). Once it learns this, a new pain source is created and so on. Notice that the

primitive pain is maintained under control eventually in spite of changing environment

conditions. In this presented trial, the machine can learn to create, develop and solve all

abstract pains in this experiment within 300 iterations. In this experiment, school

opportunity is designed as always available. Therefore, it is noted in Figure 6.18 that the

abstract pain for “lack of school opportunity”, although was created when solving lower-

level pains, it was never activated and stayed zero.

Figure 6.19 show a scatter plot that illustrates selection of a specific action during a

trial of the GCS experiment. The corresponding sensory-action pairs are denoted for the

useful actions in the figure. It is seen that the machine makes association between sensor

and actions, learns the useful actions while exploring environment and selecting the most

useful actions very repetitively. There are still several sensory-action pairs left which are

not meaningful and are selected by the machine sometimes. It is expected that with

longer period of interaction, the machine will only maintain the meaningful pairs and

select them only to have proper interaction with the environment.

The average of all abstract pain signals obtained on the basis of 10 such experiments

is shown on Figure 6.20. As we can observe, the machine learns to control all abstract

pains and maintains the primitive pain signal on a low level in demanding environment

conditions.

244

0 100 200 300 400 500 600
0

2

4
pa

in

Primitive pain

0 100 200 300 400 500 600
0

1

2

pa
in

Lack of food

0 100 200 300 400 500 600
0

1

2

pa
in

Lack of money

0 100 200 300 400 500 600
0

0.5

1

pa
in

Lack of bank savings

0 100 200 300 400 500 600
0

2

4

pa
in

Lack of job opportunity

0 100 200 300 400 500 600
-1

0

1

pa
in

Lack of school opportunity

Figure 6.18. Pain signals in GCS experiment.

245

0 100 200 300 400 500 600
-5

0

5

10

15

20

25
m

ot
or

 a
ct

io
n

in
de

x
Actions taken during a trial

Eat food

Spend money
(to buy food)

Withdraw from bank
(to get money)

Work at a job
(to restock bank
saving)

Study in school
(to get job
opportunity)

Figure 6.19. Action selections in GCS experiment.

0 100 200 300 400 500 600
0

0.5

1

pa
in

Primitive pain

0 100 200 300 400 500 600
0

0.5

1

pa
in

Lack of food

0 100 200 300 400 500 600
0

0.2

0.4

pa
in

Lack of money

0 100 200 300 400 500 600
0

0.2

0.4

pa
in

Lack of bank savings

0 100 200 300 400 500 600
0

0.2

0.4

pa
in

Lack of job opportunity

0 100 200 300 400 500 600
-1

0

1

pa
in

Lack of school opportunity

Figure 6.20. The average pain signals in 10 GCS simulations.

246

6.7. Conclusions

This chapter presented a goal creation system that motivates embodied intelligence

to learn how to efficiently interact with the environment. It develops higher-level

abstract goals and increases the internal complexity of the stored representations and

skills.

The proposed GCS is a mechanism that motivates the creation of more complex

knowledge from simpler ones by the pain signals from which the machine suffers. The

pain centers in the GCS hierarchy connect the sensory and motor pathways, generate the

machine’s needs and expectations and find the ontology among objects as well as

optimum actions to achieve goals.

Using the GCS learning scheme, the complex knowledge, skills and goals evolve

from simpler ones through learning. Thus, in this model, knowledge building is goal-

driven activity. Such bottom up goal creation, representation building and action learning

adopted in this work is more natural than a top-down approach. It does not define the

upper limit of the machine complexity, nor the amount of learning or developed skills,

thus it is conducive to developing a general intelligence. The only limitation for

developed intelligence in such scheme comes from the limited resources used to build the

intelligence memory structures.

In contrast to classical RL, GCS generates an internal reward associated with the

abstract goal that the machine was able to accomplish. This makes the reinforcement

process not observable, and to some degree makes the machine less controllable than one

whose operation is based on classical RL. The machine’s actions are more difficult to

247

understand and explain by an external observer, thus the machine behaves more like an

independent intelligent being rather than a well-trained robot.

To the contrary, top-down learning approach is based on top-level complex goals

implicitly imposes the upper limit of knowledge. Such approaches lead to effective

design of an application and goal specific machine. It has severe drawbacks from the

point of view of developing general intelligence. Firstly, it requires initializing machine

with a substantial knowledge about its environment and complex representation of

perceptions in relation to the complex goal. This knowledge and its organizational

structure expressed by complex interactions between various representations, must be

explicitly entered by a human designer (a computer programmer). Development and

maintenance of such knowledge structure is very costly and time consuming. The second

drawback is lack of a natural mechanism to create knowledge and to learn more complex

representations from simpler ones. While there may be a little need for such mechanism

if the environment is well described through the initial built-in knowledge, lack of such

mechanisms may be detrimental to further development of a machine’s knowledge and

skills in changing tasks and environments. It was demonstrated that this type of system

learns better and faster than traditional reinforcement learning systems.

In summary, the presented goal creation system motivates a machine to act and

develop its cognitive skills in response to externally applied pain signals. It also helps the

machine to perceive its environment, learn with a purpose, and respond to changes in

environment.

248

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

Biologically inspired and hardware-oriented, research work and structural design

concepts presented in this dissertation create a promising direction in the field of EI by

providing:

(1). Hierarchical learning memory with efficient and global optimized training algorithms

and quantitative measure to detect overfitting for supervised learning.

(2). Hierarchical self-organizing memory in unsupervised learning based on sparse

connectivity.

(3). Goal creation systems to stimulate the continuous, intentional, and active learning

and to enable reinforcement learning.

(4). A uniform and promising framework to design working models for EI is proposed

based on our definition of intelligence and its embodiment, including the detailed

design principles and presenting the HSOM and GCS as two essential elements of EI.

These essential elements for building EI are proposed and studied considering their

neuronal structure, learning algorithms, memory capacity, fault tolerance and ability to

create goals. The design concepts aim to build intelligence on a simple and uniform

neural structure.

Such intelligent machine will have many more successful applications, which can

greatly affect and amazingly change our life. In addition, this area, where modern

technology including VLSI and FPGA can be applied, will create exponentially growing

demand for electronic hardware, will invigorate the electronics industry, and may create

an intensive economical growth in the years to come. Hopefully in the near future, the

249

existence of non-biological intelligence will supplement the biological one and empower

it many times over its current potential.

Embodied Intelligence can be implemented in hardware or software. In the

following comparison, hardware implementation will use multiple processors working

concurrently, while software will run on a single central processing unit (CPU). The

processing speed of today’s hardware is much higher than that needed to simulate a single

neuron in a real time. Thus in hardware implementation a hybrid approach can be used,

where a group of neurons is simulated at each concurrent processor, and a number of

neurons simulated is set to deliver a real time operation. This depends on the speed of

operation. For instance, if a concurrent hardware operates at 200 MHz, a single operation

may take 5 nsec. So in 5 msec, which is needed for a real time neuronal response, up to 1

million operations can be performed on a single processor. This will set a limit on the

number of neurons that each concurrent processor can simulate and put requirements for

the system size. For instance, at that speed, a system with human level neuron capacity

would require 106 processors working concurrently (assuming that each neuron requires

only 10 operations for real time processing). With the current distributed computing

devices, software implementation can be instantiated into parallel computation, which

will greatly improve the system efficiency.

Software implementation is a convenient choice today due largely to inadequate

hardware design or programming tools for easy implementation and experimentation with

cognitive mechanisms. However, software simulation has inherent limitations for

implementing real-time operation of EI with brain level complexity. The major limitation

250

comes from replacing the network of interconnected concurrent processors by a single

CPU. Not only does the CPU have to run n times faster to compensate for the combined

processing power of n neurons, but also it must simulate the complexity of the

interconnections as well. With the average number of interconnections growing with the

size of the network and the time the machine spends updating the interconnections and

simulating signal transformations through these interconnections, interconnection

processing may dominate. For instance, to simulate the human brain with 1011 neurons

and each with an average of 10000 connections per neuron, the CPU must run 1015 times

faster than biological neurons. With the average response time of a neuron on the level of

5msec, the CPU would have to perform 1015 operations in 5 msec. Assuming that a

single operation can be performed in one clock cycle, this would require the clock speed

of 200,000,000 GHz, (or 10mln times faster than current computers). During the time

period, which corresponds to such switching frequency, light travels on the distance of

1.5 nm. Thus even if the switching is performed with the speed of light, the device

geometry should be comparable with the particle size of silicon to operate at such speed.

Operating on such small scale would require going beyond the single electron switching

or spin electronics. Thus a single CPU may never be able to perform the real-time

operations of a system with the complexity of the human brain, unless the computational

models are simplified. For instance, instead of performing analysis of the entire network

at each time step only, selected pathways could be activated and updated in a fashion

similar to event driven simulation used in the logical circuits. This requires

computational and learning schemes that are based on sparse coding in sparse neural

251

structures. It is very likely that software implementation will be limited to modeling

small sized networks necessary to develop mechanisms for EI. It is our opinion that only

hybrid hardware approach may reach complexity of human level intelligence in the

predictable future.

EI, as an interdisciplinary area, requires not only progress in engineering. A

significant growth in other technologies including computer science, nanotechnology,

medical scanning, physiology, neuroscience, and psychology, could invigorate progress

of this rewarding mission. Building structural and functional organization of EI has a

long way to go in order to achieve human level intelligence and to benefit from the

developing technologies. Having the promising and uniform framework and design

principles prepared, the future work will be done more consistently.

In the future work, a more integrated system will be developed using all the

elements and systems proposed and developed in this work. The motor pathway

development will be further studied. A closed loop system, including sensory inputs,

decision making, action selection and motor outputs, will be built to interact with a

certain environment and test over more complex problems and over longer period of

time. The performance of the machine on goal creation, complex task accomplishment,

and learning capability will be further evaluated. In that way, we can see how the

proposed designs in this work can be further developed into an intelligent machine.

I feel fortunate and privileged to get the chance to continue my study and research

on machine intelligence, to build integrated reconfigurable intelligent systems using

advanced technologies, and to keep pursuing their applications into various areas.

252

REFERENCES

[Abb 96] L. F. Abbott, E. T. Rolls, M. J. Tovee, “Representational capacity of face

coding in monkeys,” Cerebral Cortex, vol.6, pp.498-505, 1996.

[Aha 90] S. C. Ahalt, A. K. Arishnamurty, P. Chen, and D. E. Melton, “Competitive

learning algorithms for vector quantization,” Neural Networks, vol. 3, pp. 277–

291, 1990.

[Aka 74] H. Akaike, “A new look at the statistical model identification,” IEEE Trans. on

Automatic Control, vol.19, no.6, pp.716-723, Dec, 1974.

[Alp 91] E. Alpaydın, “GAL: Networks that grow when they learn and shrink when they

forget,” ICSI Berkeley, CA, Tech. Rep. TR-91-032, 1991.

[Ama 93] S, Amari, “Neural representation of information by sparse encoding,” Brain

Mechanisms of Perception and Memory from Neuron to Behavior, Oxford

University Press, pp. 630-637, 1993.

[Ama 97] S. Amari, N. Murata, K. Muller, M. Finke, and H. H. Yang, “Asymptotic

statistical theory of overtraining and cross-validation,” IEEE Trans. On Neural

Networks, vol.8, no.5, pp.985-996, Sep, 1997.

[And 93] J. Anderson, Rules of the Mind, Lawrence Erlbaum Associates, Hillsdale, NJ,

1993.

[And 05] J. Anderson, “Learning in sparsely connected and sparsely coded system,”

Ersatz Brain Project working note, 2005.

[Bad 96] R. Baddeley, “An efficient code in V1?” Nature, vol.381, pp.560-561, 1996.

253

[Bak 04] B. Bakker, J. Schmidhuber, “Hierarchical Reinforcement Learning Based on

Subgoal Discovery and Subpolicy Specialization,” Proceedings of the 8th Conf.

on Intelligent Autonomous Systems, Amsterdam, The Netherlands, pp. 438-445,

2004.

[Bar 72] H. B. Barlow, “Single units and sensation: a neuron doctrine for perceptual

psychology?” Perception, vol.1, pp.371-394, 1972.

[Bar 83] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuron like adaptive elements

that can solve difficult learning control problems,” IEEE Trans. Syst., Man,

Cybern. vol.13, pp. 834-847, 1983.

[Bar 98] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT

Press, Cambridge, MA 1998

[Bar 03] A. Barto, S. Mahadevan, “Recent Advances in Hierarchical Reinforcement

Learning,” Discrete Event Dynamic Systems: Theory and Applications, Springer

Netherlands, vol.13, no. 4, pp. 343-379, October, 2003.

[Bea 93] L.P. Beaudoin and A. Sloman, “A study of motive processing and attention,” In

Prospects for Artificial Intelligence: Proceedings of AISB-93, pages 229–38,

1993.

[Bea 94] L.P. Beaudoin. Motive processing and attention. PhD thesis, School of

Computer Science, University of Birmingham, 1994.

[Bel 61] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University

Press.1961.

254

[Bel 97] A.J. Bell, T.J. Sejnowski, “The independent components of natural images are

edge filters,” Vision Research. Vol.37, No. 23, pp.3327-3338, 1997.

[Ber 97] M. J. Berry, G. Linoff, Data Mining Techniques, NY: John Wiley & Sons, 1997.

[Bis 03] J. W. Bisley, M. Goldberg, “Neuronal activity in the lateral intraparietal area and

spatial attention,” Science, vol. 299, pp. 81-86, 2003.

[Bog 97] Z. Boger, and H. Guterman, “Knowledge extraction from artificial neural

network models,” IEEE Systems, Man, and Cybernetics Conference, Orlando,

FL, 1997.

[Bro 91] R. A. Brooks, “Intelligence without reason,” Proc. IJCAI-91, pp. 569-595, 1991.

[Bro 02] R. A. Brooks, Flesh and Machines: How Robots Will Change Us, Pantheon,

2002.

[Cam 01] L. S. Camargo, T. Yoneyama, “Specification of training sets and the number of

hidden neurons for multilayer perceptrons,” Neural Computation, vol.13,

pp.2673-2680, 2001.

[Car 83] S. Card, T. Moran, and A. Newell, The psychology of human-computer

interaction. Hillsdale, NJ: Lawrence Erlbaum Associates, 1983.

[Cor 00] M. Corbetta, J. M. Kincade, J. M. Ollinger, M. P. McAvoy, and G. L. Shulman,

“Voluntary orienting is dissociated form target detection in human posterior

parietal cortex,” Nature Neuroscience, vol. 3, no. 3, pp. 292-297, March, 2000.

[Cou 92] R. Coultrip, R. Granger, G. Lynch, “A cortical model of winner-take-all

competition via lateral inhibition,” Neural networks, vol.5, pp.47-54, 1992.

255

[Csi 96] M. Csikszentmihalyi, Creativity-Flow and the Psychology of Discovery and

Invention, New York: Harper Perennial, 1996.

[Day 95] P. Dayan, R. S. Zemel, “Competition and multiple cause models,” Neural

Computation, Vol.7, pp. 565—579, 1995.

[Day 01] P. Dayan, L. F. Abbott, Theoretical neuroscience: computational and

mathematical modeling of neural systems, MIT Press, pp. 378-383, 2001.

[Def 98] S. R. y Cajal, E. G. Jones, J. DeFelipe, Cajal on the Cerebral Cortex: An

Annotated Translation of the Complete Writings (History of Neuroscience, No

1), Oxford Univ. Press, New York, 1998.

[Del] Delve Datasets, University of Toronto, [Online] Available:

http://www.cs.toronto.edu/~delve/data/datasets.html

[Der 97] S.W. G. Derbyshire, A. K. P, Jones, F. Gyulai, et al. “Pain processing during

three levels of noxious stimulation produces differential patterns of central

activity,” Pain, vol. 73, pp.431–445, 1997.

[Des 89] R. Desimone, L. G. Ungerleider, “Neural mechanisms of visual processing in

monkeys,” In F. Boller, & J. Grafman (Eds.), Handbook of neurophysiology,

vol. 2, Chap. 14, pp. 267-299, Elsevier, 1989.

[DeW 03] M. DeWeese, M. Wehr, A. Zador, “Binary spiking in auditory cortex”, Journal

of Neuroscience, vol.23, pp.7940-7949, 2003.

[Erd 05] D. Erdogmus, O. Fontenla-Romero, J.C. Principe, A. Alonso-Betanzos, E.

Castillo, “Linear-least-squares initialization of multilayer perceptrons through

256

backpropagation of the desired response”, IEEE Trans. On Neural Networks,

vol.16, no.2, pp. 325-337, 2005.

[Fel 91] D. J. Felleman, D. C. Van Essen, “Distributed hierarchical processing in the

primate cerebral cortex,” Cerebral Cortex, vol.1, pp. 1-47, 1991.

[Fie 94] D. J. Field, “What is the goal of sensory coding?” Neural Computing, vol. 6, pp.

559-601, 1994.

[Fis 05] A. Fish, V. Milrud and O. Yadid-Pecht, “High-speed and high-precision current

winner-take-all circuit,” IEEE Trans. on Circuits and Systems II, vol. 52, no. 3,

March, 2005

[Fol 02] P. Foldiak, “Sparse coding in the primate cortex,” The handbook of brain theory

and neural networks, 2nd edition, MIT Press, 2002.

[Fre 90] M. R. Frean, “The upstart algorithm: A method for constructing and training

feedforward neural networks,” IEEE Trans. on Neural Networks, vol. 2, pp.

198–209, 1990

[For 91] D. B. Forgel, “An information criterion for optimal neural network selection,”

IEEE Trans. On Neural Networks, vol.2, no.5, pp.490-497, Nov, 1991.

[Gal 90] S. I. Gallant, “Perceptron-based learning algorithms,” IEEE Trans. on Neural

Networks, vol. 1, no. 2, pp. 179-191, Jun, 1990.

[Gem 92] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the

bias/variance dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992.

[Geo 87] M. P. Georgeff and A.L. Lansky, “Reactive reasoning and planning,” In Proc. of

the 6th National Conf. on Artificial Intelligence, pp 677–681, 1987.

257

[Geo 89] M.P. Georgeff and F.F. Ingrand. “Decision-making in an embedded reasoning

system,” Proc. of 11th Int. Joint Conf. on Artificial Intelligence, vol. 2, pp. 972–

978, 1989.

[Geo 05a] D. George, J. Hawkins, “A Hierarchical Bayesian Model of Invariant Pattern

Recognition in the Visual Cortex,” IEEE proceedings of the International Joint

Conference on NN, 2005.

[Geo 05b] D. George, J. Hawkins, “Invariant Pattern Recognition using Bayesian

Inference on Hierarchical Sequences,” Redwood Neuroscience Institute

Technical Report, 2005. Available: http:\\www.cnbc.cmu.edu.

[Gro 76] S. Grossberg, “Adaptive pattern classification and universal recoding I: Parallel

development and coding of neural feature detectors,” Biological Cybernetics,

Vol.23, pp. 121—134, 1976.

[Gro 98] S. Grossberg, How does the cerebral cortex work? Learning, attention, and

grouping by the laminar circuits of visual cortex, Technical report CAS/CNS-

97-023, 1998.

[Gro 00] S. Grossberg, “Linking visual cortical development to visual perception,” Tech

Report CAS/CNS-2000-026, Boston university, 2000.

[Haw 04] J. Hawkins, S. Blakeslee, On Intelligence, Times Books, Henry Holt and

Company, New York, NY, 2004.

[Hay 99] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall,

1999.

[Heb 49] D. O. Hebb, The organization of behavior. New York: Wiley, 1949.

258

[Her 00] N. Hernandez-Gardiol, S. Mahadevan, “Hierarchical Memory-Based

Reinforcement Learning,” NIPS’02, pp. 1047-1053, 2000.

[Hil 01] D. L. G. Hill and P. Batchelor, “Registration methodology: concepts and

algorithms,” Medical Image Registration, J. V. Hajnal, D. L. G. Hill, and D. J.

Hawkes, Eds. Boca Raton, FL: CRC, 2001.

[Hin 86] G. E. Hinton, J. L. McClelland, D. E. Rumelhart, “Distributed representations,”

In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel

distributed processing. Volume 1: Foundations (Chap. 3, pp. 77--109).

Cambridge, MA: MIT Press, 1986.

[Hin 97] G. E. Hinton, Z. Ghahramani, “Generative models for discovering sparse

distributed representations,” Philosophical Transactions of the Royal Society

(London) B, Vol.352, pp.1177—1190, 1997.

[Hol 92] L. Holmstrom, P. Koistinen, “Using additive noise in back-propagation

training,” IEEE Trans. On Neural Networks, vol.3, no.1, pp.24-38, Jan, 1992.

[Hop 00] J. B. Hopfinger, M. H. Buonocore, G. R. Mangun, “The neural mechanisms of

top-down attentional control,” Nature Neuroscience, vol. 3, no. 3, pp. 284-291,

March 2000.

[Hor 89] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol.2, pp.359-366, 1989.

[Hsi 01] J.C. Hsieh, C. H. Tu, F. P. Chen, et al. “Activation of the hypothalamus

characterizes the acupuncture stimulation at the analgesic point in human: a

259

positron emission tomography study,” Neurosci Lett vol.307, pp. 105–108,

2001.

[Hua 98] G. Huang, H. A. Babri, “Upper bounds on the number of hidden neurons in

feedforward networks with arbitrary bounded nonlinear activation functions,”

IEEE Trans. On Neural Networks, vol.9, no.1, pp.224-229, Jan, 1998.

[Hua 03] G. Huang, “Learning capability and storage capacity of two-hidden-layer

feedforward networks,” IEEE. Trans. Neural Networks, vol. 14, no. 2, pp. 274-

281, Mar, 2003.

[Hum 97] J. E. Hummel, K. J. Holyoak, “Distributed representations of structure: A

theory of analogical access and mapping,” Psychological Review, Vol.104, No.

3, pp. 427-466, 1997.

[Ish 04] K. Ishii, T, Zant, V, Becanovic, P. Ploger, Optimization of Parameters of Echo

State Network and its Application to Underwater, Robot, SIC Annual

Conference, Sapporo, Japan, 2004

[Kan 00] E. R. Kandel, J. H. Schwartz, T. M. Jessell, Principles of Neural Science,

McGraw-Hill Medical; 4th edition, 2000.

[Kar 00] G.N. Karystinos, D.A. Pados, “On overfitting, generalization, and randomly

expanded Training Sets,” IEEE Trans. On Neural Networks, vol.11, no.5,

pp.1050-1057, Sep, 2000.

[Koc 85] C. Koch, S. Ullman, “Shifts in selective visual attention: towards the underlying

neural circuitry,” Human Neurobiology, vol.4, no. 4, pp. 219-227, 1985.

260

[Koh 84] T. Kohonen, Self-Organization and Associative Memory. New York: Springer-

Verlag, vol. 8, Springer Ser. Inform. Sci., 1984

[Kwo 97] T. Kwok and D. Yeung, “Constructive algorithms for structure learning in

feedforward neural networks for regression problems,” IEEE Trans. on Neural

Networks, vol. 8, no. 3, pp. 630–645, May, 1997.

[Lau 03] S. B. Laughlin, T.J. Sejnowski, “Communication in neuronal networks,”

Science, vol.301, pp.1870-1874, 2003.

[Law 96] S. Lawrence, C. L. Giles, and A. C. Tsoi, "What size neural network gives

optimal generalization? Convergence properties of backpropagation,” Institute

for Advanced Computer Studies, University of Maryland, Tech. Rep. UMIACS-

TR-96-22 and CS-TR-3617, June, 1996

[Law 97] S. Lawrence, C. L. Giles, and A. C. Tsoi, “Lessons in neural network training:

overfitting may be harder than expected,” Proc. of the 14th National Conf. on

Artificial Intelligence, pp. 540-545, 1997.

[LeC] Y. LeCun, C. Cortes, The MNIST database of handwritten digits,

http://yann.lecun.com/exdb/mnist/

[LeC 89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel, “Backpropagation applied to handwritten zip code

recognition,” Neural Comput., vol. 1, no. 4, pp.541–551, 1989.

[Lee 03] T. Lee, D. Mumford. “Hierarchical Bayesian Inference in the Visual Cortex,”

J. Opt. Soc. Am. A Opt Image Sci Vis, vol. 20, no. 7, pp.1434-1448, July, 2003.

[Leg 06] S. Legg, M. Hutter, “A Formal Measure of Machine Intelligence,” Proc. 15th

261

Annual Machine Learning Conference of Belgium and The Netherlands, pp.73-

80, 2006.

[Leh 97] E. L, Lehmann, Testing statistical hypotheses, New York: Springer, 1997.

[Len 03] P. Lennie, “The cost of cortical computation,” Current Biology, vol.13, pp. 493-

497, 2003.

[Lew 02] M. S. Lewicki, “Efficient coding of natural sounds,” National Neuroscience,

vol.5, pp.356-363, 2002.

[Lin 86] R. Linsker, “From basic network principle to neural architecture (series),”

Neurobiology, Proc. Natl. Acad. Sci. vol. 83, pp.7508-7512, 8390-8394, 8779-

8793, 1986.

[Liu 08] Y. Liu, J. A. Starzyk, Z. Zhu, “Optimized Approximation Algorithm in Neural

Networks without overfitting”, IEEE Trans. on Neural Networks, vol. 19, no. 6,

pp. 983-995, June. 2008.

[Lor 66] G. Lorentz, Approximation of Functions. New York: Holt, Rinehart and

Winston, 1966.

[Luc 98] M. Luck, M. d’Inverno, “Motivated Behavior for Goal Adoption,” In Multi-

Agent Systems: Theories, Languages and Applications –Proc. of the 4th

Australian Workshop on Distributed Artificial Intelligence, C. Zhang and D.

Lukose, (eds.), Lecture Notes in Artificial Intelligence, vol. 1544, pp. 58-73,

Springer-Verlag, 1998.

262

[Lun 93] J. S. Lund, S. Yoshita, J. B. Levitt, “Comparison of intrinsic connections in

different areas of macaque cerebral cortex,” Cerebral Cortex, vol.3, no.2,

pp.148-162, 1993.

[Mar 04] J. A. Markham, W. T. Greenough, “Experience-driven brain plasticity: beyond

the synapse,” Neuron Glia Biol, vol.1, no. 4, pp.351-363, 2004.

[McC 81] J. L. McClelland, D. E. Rumelhart, “An interactive activation model of context

effects in letter perception: Part 1. An account of basic findings,” Psychological

Review, vol. 88, no. 5, pp. 375-407, 1981.

 [McC 94] R. A. McCallum, “Short-Term Memory in Visual Routines for Off-Road Car

Chasing,” Working Notes of AAAI Spring Symposium Series, “Toward Physical

Interaction and Manipulation”, Stanford University, March 21-23, 1994.

[McC 96] R. A. McCallum, “Learning to Use Selective Attention and Short-Term

Memory in Sequential Tasks,” From Animals to Animats, Fourth International

Conference on Simulation of Adaptive Behavior, (SAB'96). Cape Cod,

Massachusetts. September, 1996.

[McN 87] B. L. McNaughton, R. G. M. Morris, “Hippocampal synaptic enhancement and

information storage within a distributed memory system,” Trends in

Neurosciences, vol. 10, no.10, pp. 408—415, 1987.

[Mel 68] R. Melzack, K. L. Casey, “Sensory, motivational, and central control

determinants of pain” In: Kenshalo DR (Ed). The Skin Senses. Springfield: C.C.

Thomas, pp 423–439, 1968.

263

[Mel 90] R. Melzack, “Phantom limbs and the concept of a neuromatrix,” Trends

Neurosci, vol. 13, pp. 88-92, 1990.

[Mes 90] M. M. Mesulam, “Large-scale neurocognitive networks and distributed

processing for attention, language, and memory,” Ann Neurol, vol. 28, pp. 597–

613, 1990.

[Mil 90] W. T. Miller, R. Sutton, and P. Werbos, Neural Networks for Control. MIT

Press, Cambridge, Massachusetts, 1990.

[Mor 93] R. J. Morecraft, C. Geula, MM. Mesulam, “Architecture of connectivity within

a cingulo-fronto-parietal neurocognitive network for directed attention,” Arch

Neurol, vol. 50, pp. 279–284, 1993.

[Mou 57] V. B. Mountcastle, “Response Properties of Neurons of Cat’s Somatic Sensory

Cortex to Peripheral Stimuli,” J. Neurophysiol, vol. 20, pp. 374-407, 1957.

[Mou 03] V. B. Mountcastle, “Introduction to a special issue of cerebral cortext on

columns”, Cerebral Cortex, 13, pp. 2-4, 2003.

[Mur 94] N. Murate, S. Yoshizawa, and S. Amari, “Network information criterion-

determining the number of hidden units for an artificial neural network model,”

IEEE Trans. On Neural Networks, vol.5, no.6, pp.865-872, Nov, 1994.

[Mur 07] J. Murata, Y. Abe, K. Ota, “Introduction and control of subgoals in

reinforcement learning,” Proc. of the 25th IASTED Int. Multi-Conf. AIA, Feb 12-

14, Innsbruck, Austria, 2007.

[Nas 04] S. Nason and J. E. Laird, “Soar-RL, Integrating Reinforcement Learning with

Soar,” Int.l Conf. Cognitive Modeling, 2004.

264

[Nav 02] V. Navalpakkam, L. Itti, “A Goal Oriented Attention Guidance Model,” Proc.

2nd Int. Workshop of Biologically Motivated Computer Vision, BMCV 2002,

Tübingen, Germany, November 22-24, 2002.

[New 90] A. Newell, Unified Theories of Cognition. Cambridge, Massachusetts: Harvard

University Press, 1990.

[Nor 95] T. J. Norman, D. Long, “Goal Creation in Motivated Agents,” Intelligent

Agents: Theories, Architectures, and Languages (LNAI vol. 890), 1995.

[Oja 82] E. Oja, “Simplified neuron model as a principal component analyzer.” Journal

of Mathematical Biology, vol.15, no. 3, pp.267-273, Nov, 1982.

[Ols 96] B. A. Olshausen, D.J. Field, “Emergence of simple-cell receptive field properties

by learning a sparse code for natural images,” Nature, vol.381, no.13, pp.607-

609, 1996.

[Ols 97] B. A. Olshausen, D.J. Field, “Sparse coding with an overcomplete basis set: a

strategy employed in V1,” Vision Research, vol.37, no.23, pp.3311-3325, 1997.

[Ols 02] B. A. Olshausen, K. N. O’Connor, “A new window on sound,” National

Neuroscience, vol.5, pp.292-294, 2002.

[Ols 04] B. A. Olshausen, D. J. Field, “Sparse coding of sensor inputs,” Current Opinions

in Neurobiology, vol.14, pp.481-487, 2004.

[Ore 00] R. C. O'Reilly, Y. Munakata, Computational Explorations in Cognitive

Neuroscience, MIT press, pp. 207, 2000.

265

[Oud 07] P-Y. Oudeyer, F. Kaplan, V. Hafner, “Intrinsic Motivation Systems for

Autonomous Mental Development,” IEEE Transactions on Evolutionary

Computation, vol.11, no. 2, pp. 265-286, April, 2007.

[Pey 00] R. Peyron, B. Laurent, L. Garcia-Larrea, “Functional imaging of brain responses

to pain. A review and meta-analysis,” Neurophysiol Clin, vol. 30, pp.263–288,

2000.

[Pfe 99] R. Pfeifer and C. Scheier, Understanding Intelligence, MIT Press, Cambridge,

MA, 1999.

[Phu 07] S. L. Phung, A. Bouzerdoum, “A pyramidal neural network for visual pattern

recognition,” IEEE Trans. on Neural Networks, vol. 18, no. 2, pp. 329-343,

March, 2007.

[Por 02] C. A. Porro, P. Baraldi, G. Pagnoni, et al. “Does anticipation of pain affect

cortical nociceptive systems?” J Neurosci, vol. 22. pp. 3206–3214, 2002.

[Pre 98] L. Prechelt. “Automatic early stopping using cross validation: quantifying the

criteria,” Neural Networks, vol.11, no.4, pp.761-777, 1998.

[Pow 98] J. D. Powell, N. P. Fekete, C.-F. Chang, “Observer-based air-fuel ratio control”,

IEEE Control Syst. Mag., vol. 18, no. 5, pp. 72-83. 1998.

[Rao 91] A. S. Rao, M. P. Georgeff, “Modeling rational agents within a BDI-

architecture,” In R. Fikes and E. Sandewall, editors, Proc. of the 2nd Int. Conf.

on Principles of Knowledge Representation and Reasoning, KR’91, pp. 473-

484, Cambridge, MA, 1991.

[Rao 92] A. S. Rao, M. P. Georgeff, “An abstract architecture for rational agents,” In C.

266

Rich, W. Startout, B. Nebel, editors, Proc. of the 3rd Int. Conf. on Principles of

Knowledge Representation and Reasoning, KR’92, pp. 439-449, Boston, MA,

1992.

[Ree 93] R. Reed, “Pruning algorithms – a survey,” IEEE Trans. on Neural Networks,

vol. 4, pp. 740–747, Sep, 1993.

[Reh 07] M. Rehn, F.T. Sommer, “A network that uses few active neurons to code visual

input predicts the diverse shape of cortical receptive fields,” Journal of

Computer Neuroscience, 2007.

[Rip 81] B. D. Ripley, Spatial statistics. New York: Wiley 1981.

[Ris 86] J. Rissanen, “Stochastic complexity and modeling,” Ann. Statist, vol.14, no.3,

pp.1080-1100, 1986.

[Roe 98] P. R. Roelfsema, V. A. Lamme, H. Spekreijse, “Object-based attention in the

primary visual cortex of the macaque monkey,” Nature, vol. 395, pp. 376-381,

1998.

[Rol 89] E. T. Rolls, “Functions of neuronal networks in the hippocampus and neocortex

in memory,” Neural models of plasticity: experimental and theoretical

approaches, pp. 240–265, San Diego: Academic Press, 1989.

[Ros 58] F. Rosenblatt, “The perceptron: A probabilistic model for information storage

and organization in the brain,” Psych. Review, vol.65, pp. 386-408, 1958.

[Rum 86a] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations

of backpropagtaion errors,” Nature, vol.323, pp. 533-536, 1986.

267

[Rum 86b] D. E. Rumelhart, D. Zipser, “Feature discovery by competitive learning,” In

D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel

distributed processing. Volume 1: Foundations (Chap. 5, pp. 151--193).

Cambridge, MA: MIT Press. 1986.

[Sal 05] M. Salmen, P. G. Ploger, “Echo State Networks used for Motor Control,” in

Proc. of ICRA’05, Barcelona, Spain, 2005.

[Sam 97] A. Samsonovich, B. L. McNaughton, “Path integration and cognitive mapping

in a continuous attractor neural network model,” Journal of Neuroscience, vol.

17, pp. 5900-5920, 1997.

[San 89] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear

feedforward neural network,” Neural Networks, vol. 2, no. 6, pp. 459-473,

1989.

[Sar 15] M. Sartori, P. Antsaklis, “A simple method to derive bounds on the size and to

train multi-layer neural networks,” IEEE Trans. Neural Networks, vol. 2, no. 4,

pp. 467-471, 1991.

[Set 01] R. Setiono, “Feedforward neural network construction using cross validation,”

Neural Computation, vol. 13, pp. 2865–2877, 2001.

[Si 01] J. Si, Y. Wang, “On-Line Learning Control by Association and Reinforcement,”

IEEE Trans. on Neural Networks, vol.12, no.2, 2001.

[Sir 95] J. Sirosh, R. Miikkulainen, Y. Choe, Lateral interactions in the cortex: structure

and function, electronic book, [Online] Available: http://nn.cs.utexas.edu/web-

pubs/htmlbook96/ , 1995.

268

[Sim 01] E. P. Simoncelli, B.A. Olshausen, “Natural image statistics and neural

representation,” Annual review of neuroscience, vol.24, pp.1193-1216, 2001.

[Smi 98] R. L. Smith. Intelligent Motion Control with an Artificial Cerebellum. Ph.D

dissertation, University of Auckland, New Zealand, 1998

[Sot 04] D. Soto, M. J. Blanco, “Spatial attention and object-based attention: a

comparison within a single task,” Vision research, vol. 44, pp. 69-81, 2004.

[Spo 93] O. Sporns, and G. M. Edelman, “Solving Bernstein's problem: A proposal for the

development of coordinated movement by selection.” Child Development,

64(4), 1993, pp. 960-981.

[Sta 93] J. A. Starzyk and X. Fang, “A CMOS Current Mode Winner-Take-All Circuit

with both Excitatory and Inhibitory Feedback”, Electronics Letters, Vol.29,

No.10, pp.908-910, 1993.

[Sta 05] J. A. Starzyk, and Y. Li, D. D. Vogel, "Neural Network with Memory and

Cognitive Functions", Artificial Neural Networks: Biological Inspirations.

Lecture Notes in Computer Science 3696. pp. 85-90, 2005.

[Sta 06] J. A. Starzyk, Y. Liu, H. He, “Challenges of Embodied Intelligence,” Proc. Int.

Conf. on Signals and Electronic Systems, ICSES'06, Lodz, Poland, Sep. 17-20,

2006.

[Sta 07a] J. A. Starzyk, Y. Liu, D. Vogel, “Sparse coding in a hierarchical self-organizing

memory with sparse connectivity,” under revision for second submission to

IEEE Trans. Neural Networks, 2007.

[Sta 07b] J. A. Starzyk, H. He, “Anticipation-Based Temporal Sequences Learning in

269

Hierarchical Structure,” IEEE Trans. Neural Networks, vol. 18, pp. 344 - 358,

2007.

[Ste 00] P. N. Steinmetz, A. Roy, P. J. Fitzgerald, S. S. Hsiao, K. O. Johnson, E. Niebur,

“Attention modulates synchronized neuronal firing in primate somatosensory

cortex,” Nature, vol. 404, pp. 187-190, 2000.

[Ste 01] C. F. Stevens, “An evolutionary scaling law for the primate visual system and its

basis in cortical function,” Nature, Vol. 411, pp. 193-195, May, 2001.

[Sug 93] M. Sugeno, and T.Yasukawa, “ A Fuzzy-Logic based approach to qualitative

modeling,” IEEE Trans. On Fuzzy Systems, vol. 1, no. 1, pp. 7-31, Feb, 1993.

[Sut 98] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT

Press, Cambridge, MA, 1998.

[Swi 96] K. Swingler, Applying Neural Networks: A Practical Guide, London: Academic

Press, 1996.

[Tam 97] S. Tamura, M. Tateishi, “Capabilities of a four-layered feedforward neural

network: Four layers versus three,” IEEE Trans. Neural Networks, vol.8, no.2,

pp.251-255, 1997.

[Tan 96] K. Tanaka, “Inferotemporal cortex and object vision,” Annual Review of

Neuroscience, Vol.19, pp.109-139, 1996.

[Teo 06] E. J. Teoh, K. C. Tan, and C. Xiang, “Estimating the number of hidden neurons

in a feedforward network using the singular value decomposition,” IEEE Trans.

on Neural Networks, vol. 17, no.6, pp.1623-1629, Nov, 2006.

[Tha 02] J. Thangarajah, L. Padgham, J. Harland, “Representation and reasoning for

270

goals in BDI agents,” Proc. of the 25th Australasian conference on Computer

science, vol. 4, pp.259 – 265, 2002.

[Töl 99] T. R. Tölle, T. Kaufmann, T. Siessmeier, et al. “Region-specific encoding of

sensory and affective components of pain in the human brain: a positron

emission tomography correlation analysis,” Ann Neurol, vol. 45, pp. 40–47,

1999.

[Ung 82] L. G. Ungerleider, M. Mishkin, “Two cortical visual systems,” The analysis of

visual behavior, Cambridge, MA: MIT Press. 1982.

[Van 83] D. C. Van Essen, J. H. R. Maunsell, “Hierarchical organization and functional

streams in the visual cortex,” Trends in Neurosciences, Vol.6, pp. 370-375,

1983.

[Vin 00] W.E.Vinje, J. L. Gallant, “Sparse coding and decorrelation in primary visual

cortex during natural vision,” Science, vol.287, no.5456, pp. 1273-1276, 2000.

[Vin 02] W.E. Vinje, J. L Gallant, “Natural stimulation of the nonclassical receptive field

increases information transmission efficiency in V1,” J. of Neuroscience,

vol.22, pp.2904-2915, 2002.

[Vog 97] D. D. Vogel, W. Boos, “Sparsely connected, Hebbian networks with strikingly

large storage capacities,” Neural Networks, vol. 10, no. 4, pp. 671-682, 1997.

[Vog 05] D. D. Vogel, “A neural network model of memory and higher cognitive

functions,” Int J Psychophysiology, vol. 55, no.1, pp.3-21, 2005.

[Wan 99] C. Wang, and J. C. Principe, “Training neural networks with additive noise in

the desired signal,” IEEE Trans. On Neural Networks, vol.10, no.6, Nov, 1999.

271

[Wan 93] S. Wang, J. Judd, and S. S. Venkatesh, “When to stop: on optimal stopping and

effective machine size in learning”, presented at the Conf. on Neural

Information Processing Systems, Denver, Colorado, 1993.

[Wil 69] D.J., Willsahw, O. P., Buneman, H. C., Longuet-Higgins, “Nonholographic

associative memory”, Nature, Vol. 222, pp. 960-962, 1969.

[Wit 77] I. H. Witten, “An adaptive optimal controller for discrete-time Markov

Environments,” Information and control, vol.34, pp. 286-295, 1977.

[Xia 05] C. Xiang, S. Ding, and T. Lee, “Geometrical interpretation and architecture

selection of MLP,” IEEE Trans. On Neural Networks, vol.16, no.1, pp.84-96,

Jan. 2005.

[Xie 02] X. Xie, R. Hahnolser, H. S. Seung, “Selectively grouping neurons in recurrent

networks of lateral inhibition,” Neural computation, vol.14, pp.2627-2646,

2002.

[Yan 03] S. Yantis, J. T. Serences, “Cortical mechanisms of space-based and object-based

attentional control,” Current opinion in neurobiology, vol. 13, pp. 187-193,

2003.

[Zha 04] N. Zhang, J. Weng, “Sparse representation from a winner-take-all neural

network”, Proc. Of International Joint Conference on Neural Networks,

Budapest, Hungary, 2004.

[Zur 92] J. M. Zurada, Introduction to artificial neural systems, West Publishing

Company, 1992.

		2009-02-02T16:20:56-0500
	TAD Services

