

FUTURE HARDWARE REALIZATION

OF SELF-ORGANIZING LEARNING ARRAY

AND ITS SOFTWARE SIMULATION

A Thesis Presented to

The Faculty of the

Fritz J. and Dolores H. Russ

College of Engineering Technology

Ohio University

In Partial Fulfillment

of the Requirement for the Degree

Master of Science

By

Tsun-Ho Liu

November, 2002

THIS THESIS ENTITLED

“FUTURE HARDWARE REALIZATION

OF SELF-ORGANIZING LEARNING ARRAY

AND ITS SOFTWARE SIMULATION”

by Tsun-Ho Liu

has been approved

for the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology

Janusz Starzyk, Professor

School of Electrical Engineering and Computer Science

Dennis Irwin, Dean

Fritz J. and Dolores H. Russ

College of Engineering and Technology

 iii

ACKNOWLEDGEMENT

First, I like to thank my parents who have been standing behind me through these

years. This work will never be completed without their support.

I like to thank many of my friends. A special thank you to Zhen Zhu and Mingwei

Ding for their valuable ideas and suggestions to my works. Thank you to Ivan Chang

who helped us in developing the software code.

Finally, I think my advisor, Dr. Janusz. A. Starzyk, who proposed this self-organizing

learning structure and gave me the opportunity to develop it. During this time, not

only was he an advisor, but a friend. Thank you for teaching me how to play tennis.

 iv

CONTENTS

ACKNOWLEDGEMENT ..iii

LIST OF TABLES...viii

LIST OF ILLUSTRATIONS .. x

1. Introduction .. 1

1.1 Research Objective... 2

1.2 Thesis Organization.. 3

2. Overview of the Biological Neural Networks... 5

2.1 Living Neuron Structure and Function... 5

2.2 Biological Neuron Organization .. 6

3. Structure of Self-Organizing Learning Array... 9

3.1 Neural Network Organization .. 10

3.2 Initial Wiring .. 11

 v

4. Neurons’ Inputs and Outputs.. 14

4.1 Basic Operation of a Neuron .. 15

4.2 Neurons’ Clock Inputs and Outputs ... 16

4.3 Neurons’ Signal Inputs ... 18

4.3.1 Neurons’ Input Data .. 18

4.3.1.1 Missing Data... 19

 4.3.1.1.1 Illustration of Missing Data Recovery ... 23

4.3.1.2 Symbolic Values... 29

 4.3.1.2.1 Illustration of Symbolic Values Assignment................................ 37

4.3.1.3 Other Approach for Missing and Symbolic Data 50

4.4 Neurons’ Output ... 50

5. Arithmetic Operations ... 51

5.1 Basic Arithmetic Operations .. 52

5.2 Multiple functions .. 55

6. Self-Organization Principles ... 57

6.1 Neuron Self-Organizing and Learning ... 58

6.2 Subspace Learning ... 63

 vi

6.2.1 Termination of Learning.. 64

7. Final Classifications ... 65

7.1 Voting Neurons .. 65

7.2 Weighting Function .. 66

7.2.1 Example of Weighting Function Calculation .. 69

8. Software Simulations ... 70

8.1 Two Dimensional Data Illustration .. 73

8.1.1 Network Parameters .. 74

8.1.2 Initial Wiring ... 75

8.1.3 Functions ... 76

8.1.4 Neuron Learning.. 78

8.1.4.1 Local Space .. 79

8.1.4.2 Original Space .. 82

8.1.5 Neuron Testing .. 86

8.2 Credit Card Dataset .. 91

8.2.1 Dataset Background .. 91

8.2.2 Missing Data and Symbolic Values .. 94

8.2.3 Network Parameters .. 95

8.2.4 Simulation Results... 96

 vii

8.3 Adult Income Dataset ... 101

8.3.1 Dataset Background .. 101

8.3.2 Missing Data and Symbolic Values .. 104

8.3.3 Network Parameters .. 106

8.3.4 Simulation Results... 106

9. Conclusion and Future Work.. 113

9.1 Conclusion.. 113

9.2 Future Work ... 114

Reference ... 116

Appendix A ... 118

Appendix B.. 125

Appendix C ... 130

 viii

LIST OF TABLES

Table 4-1 Original and Recovered Data Comparison .. 24

Table 4-2 Singular Input Matrix with Missing Data .. 27

Table 4-3 Result of a Singular Input Matrix with Missing Data.................................. 28

Table 4-4 Correlation Coefficient Between Numerical and Symbolic Values 42

Table 4-5 Two Sets of Evaluated Symbolic Values... 45

Table 4-6 Correlation Coefficient Between Numerical and Symbolic Values 45

Table 4-7 Determinants of Resulting Covariance Matrices ... 47

Table 5-1 L(a) Function ... 52

Table 5-2 E(a) Function ... 52

Table 5-3 Simple Arithmetic Operations ... 53

Table 7-1 SOT and SOTI Flag Set Condition .. 66

Table 7-2 Probabilities of Correct Classification ... 69

Table 7-3 Voting Weight for Different Classes ... 69

Table 8-1 Classes of Two Dimensional Training Data .. 73

Table 8-2 Output Information Deficiencies of Neuron (28) .. 80

Table 8-4 Probabilities of Correct Classification ... 87

Table 8-5 Probability Estimates for Different Classes ... 88

Table 8-6 Probabilities of Classification .. 89

 ix

Table 8-7 Credit Card Dataset Information.. 92

Table 8-8 Missing Data and Class Distribution of Credit Card Dataset 92

Table 8-9 Symbolic Values Assignment for Credit Card Dataset................................ 94

Table 8-10 Performance of Each SOLAR.. 97

Table 8-11 Average Performance after Majority Voting (Credit Card)....................... 97

Table 8-12 Voting Thresholds and Error Rates (Credit Card) 98

Table 8-13 Probabilities of Classification (Credit Card).. 100

Table 8-14 Comparison Result for Credit Card Approval Dataset 100

Table 8-15 Adult Income Dataset Information .. 102

Table 8-16 Symbolic Values Assignment for Adult Income Dataset 104

Table 8-17 Performance of Each SOLAR.. 107

Table 8-18 Average Performance after Majority Voting (Adult Income) 108

Table 8-19 Voting Thresholds and Error Rates (Adult Income)................................ 109

Table 8-20 Probabilities of Classification (Adult Income) .. 112

Table 8-21 Comparison Result for Adult Income Dataset ... 112

Table A-1 Probabilities of Correct Classification and Calculated Mean Value......... 123

Table A-2 Weights Comparison... 124

 x

LIST OF ILLUSTRATIONS

Figure 2-1 Structure of a Biological Neuron.. 6

Figure 2-2 Neurons Organization in Groups and Layers ... 7

Figure 3-1 Basic SOLAR Structure.. 12

Figure 3-2 Example of Neurons’ Initial Wiring ... 13

Figure 4-1 Neuron’s Input and Output Signals .. 14

Figure 4-2 Neuron Inputs and Outputs... 16

Figure 4-3 TCOT.. 17

Figure 4-4 TCOTI .. 17

Figure 4-5 Missing Data Recovery Illustration .. 25

Figure 4-6 Graphical Illustration of Symbolic Values Assignment 39

Figure 4-7 Symbolic Values Assignment Using 1st Column of Numerical Values 43

Figure 4-8 Symbolic Values Assignment Using 2nd Column of Numerical Values 43

Figure 4-9 Symbolic Values Assignment in a Three-Dimensional Space 44

Figure 5-1 Exponent, Square, Square root, Logarithm, and Inverse Function............. 54

Figure 5-2 Combination of Multiple Functions ... 56

Figure 6-1 Finding Information Index Using Addition.. 61

Figure 6-2 Finding Information Index Using Multiplication 61

Figure 6-3 Input space Separation Using Subtraction.. 62

 xi

Figure 8-1 Flow Chart of SOLAR Software Program in Learning.............................. 71

Figure 8-2 Flow Chart of SOLAR Software Program in Testing 72

Figure 8-3 Two Dimensional Input Space ... 73

Figure 8-4 Initial Wiring of SOLAR for Two Dimensional Dataset 76

Figure 8-5 Wiring of SOLAR after Learning Process.. 78

Figure 8-6 Neuron Dividing Local Input Space ... 79

Figure 8-7 Neuron Dividing Local Input Space (Zoom In) ... 80

Figure 8-8 Cutting the Original Input Space .. 82

Figure 8-9 Two Neurons Separating Class 2.. 84

Figure 8-10 Two Neurons Separating Class 2 (Zoom In) .. 85

Figure 8-11 Overlapping Classes ... 90

Figure 8-12 Numerical Values Distributions of Credit Card Dataset 93

Figure 8-13 Majority Voting with Parallel SOLARs ... 97

Figure 8-14 Voting Threshold Searching (Credit Card) .. 98

Figure 8-15 Self-Organized Network Structure for Credit Card Problem 99

Figure 8-16 Numerical Values Distributions of Adult Income Dataset 103

Figure 8-17 Error Rate Comparison with Number of Layers and TCI Inputs 109

Figure 8-18 Voting Threshold Searching (Adult Income) ... 110

Figure 8-19 Self-Organized Network Structure for Credit Card Problem 111

Figure A-1 Probability Density Function of P(Px | Pc) – pdf(x)................................ 120

Figure A-2 Estimated Probability Density Function of P(Px | Pc)............................. 122

 1

Chapter 1.
1. Introduction

In the recent computational history, problems have been analyzed and solved by

powerful computational machines in order to achieve a good result in a short time

interval. Although the performance of digital processors double yearly, solving more

complex problems may still require more powerful machines and more complex

software. In addition, our daily problems are usually presented by a relationship that

is not well defined. Therefore, biologically inspired networks, which do not require

software to operate, have been introduced.

One type of these networks is called the Artificial Neural Networks. Unlike the digital

computer that is extremely effective at producing accurate answers to well-defined

problems, the artificial neural network, which is modeled after the structure of the

human brain, splits an ill-defined problem into many small pieces allowing each

neuron in the network to solve its own task and gives an approximate output. It may

perform better than other methods, especially in categorization and pattern

recognition. Such a system classifies an object and processes it as one of the possible

categories, which may result in a recommendation of an action. The processing speed

of each neuron is not the main factor in the network since effective performance can

 2

be achieved with parallel processing for real-time applications. This is an advantage

with which no software based learning algorithms can compete, especially with a large

dimensional training dataset. Due to their good performance, artificial neural

networks have been adopted in many practical applications such as credit card

approvals, potential customer analysis and pattern recognition. However, many

existing artificial neural network designs require a huge number of connections

between inputs, neurons, and outputs (Dayhoff, 1990, p. 3). It causes the area

consumed by interconnections to be far greater than that of the processing units. This

can result in an expensive hardware implementation, and ineffective Very Large Scale

Integration (VLSI) circuit design. Thus, new artificial neural network design with less

interconnections and better organization can result in a more effective network to

solve complicated problems.

1.1 Research Objective

This thesis focuses on Future Hardware Realization of Self-Organizing Learning

Array (SOLAR) and its Software Simulation. The structure of this network is similar

to programmable arrays such as Field Programmable Gate Arrays (FPGA). The basic

fabric of SOLAR is a fixed lattice of processing units acting as single neurons with

programmable interconnections between them. In this thesis, a software version of

SOLAR architecture is considered with the lattice size based on the number of inputs.

The network is designed for nonspecific classification and for future hardware

 3

realization. In SOLAR, a set of preprocessed training data, which well represents the

learning space, is given to the network for learning. The network can then determine

and self-organize the interconnections between inputs and outputs during the learning

process. Each neuron can also select the best transformation function and threshold

value for later classification using information index. After learning, SOLAR is

prepared for any classification within the learning space.

1.2 Thesis Organization

The thesis is structured as follows:

Chapter 2 gives an overview of the biological neural networks. Architecture,

functionalities, and organization of living neurons are discussed.

Chapter 3 discusses the organization of Self-Organizing Learning Array (SOLAR).

Different artificial neural network organizations are described in this chapter. SOLAR

organization and wiring concept are explained.

Chapter 4 explains the inputs and outputs of neurons. The basic structure of SOLAR

neuron is shown, and details of inputs and outputs of SOLAR are discussed. Data pre-

processing methods for missing data and symbolic values are also introduced.

Chapter 5 deals with the arithmetic operations. Possible operations are listed and

demonstrated graphically.

 4

Chapter 6 shows the self-organization principles. In this chapter, SOLAR self-

organization and learning principles are demonstrated both verbally and graphically.

In addition, information index calculation is explained in this chapter.

Chapter 7 shows final classification and voting. Weight function is introduced for

each neuron participating in the final voting.

Chapter 8 demonstrates the software simulation. In this chapter, a two-dimensional

sample data is used to illustrate the performance of SOLAR. Besides, two real world

problems are used to compare the SOLAR performance to other algorithms.

Chapter 9 is the conclusion of this thesis. It concludes the SOLAR software project

and gives the prospects for future works.

 5

Chapter 2.
2. Overview of the Biological Neural
Networks

In order to create an artificial neural network, one must study the structure and

behavior of living neurons. Glia and neuron are the basic elements of the brain. Glias

are supporting cells while the decision making processes are done within neurons.

Jobs of neurons are receiving, integrating, and transmitting information. Organization

of neurons is not homogeneous. Neurons located in different regions of the brain are

shaped differently due to their responsibility and functions. However, each of them

has the same basic elements.

2.1 Living Neuron Structure and Function

The structure of a neuron, shown in Figure 2-1, includes three basic elements: a

nucleus, dendrites, and an axon. Dendrites act as receivers of a neuron while an axon

acts as the transmitter. When a neuron communicates with another neuron, chemicals

are fired from the axon terminals. These chemicals travel through a small synaptic

gap and arrive at receptor sites of the dendrites. Dendrites are excited by the

chemicals, and the potential of positively charged ions increases. When the potential

 6

exceeds the threshold, the neuron fires to thousands of other neurons. This process is

repeated throughout the network.

Figure 2-1 Structure of a Biological Neuron
(Fraser, 1998, September)

2.2 Biological Neuron Organization

Neurons, in general, can be classified into two categories: long-axon cells and short-

axon cells (Dowling, 1998, p. 15). Long-axon cells are responsible for carrying

information from one side of the brain to another. They have long axons and tend to

communicate with neurons further away. Short-axon cells, on the other hand, are

interconnected only with local neurons. They are mainly involved in integrating and

processing information. In some regions of the brain, neurons function in continuous

layers rather than in a random network. This layer organization is illustrated in Figure

 7

2-2. In general, short-axon neurons tend to interact with neighboring neurons locally

while long-axon neurons pass information from one local neighborhood to another.

Figure 2-2 Neurons Organization in Groups and Layers
(Dowling, 1998, p. 17)

In addition, some neurons in some parts of the brain can grow quicker than other parts.

When a person grows up, during learning, new branches are expanded from one

neuron to another to form new connections. However, it is suggested that initial

connections may be broken during development (Dowling, 1998, p. 133). Most

synapses move away from less useful neurons (Purves, 1994, p. 60). These are the

reasons neurons can self-organize to achieve a better performance.

The Self-Organizing Learning Array discussed in this thesis uses these distinct

features of biological neural networks: local pseudo-random interconnections,

selection of control and input signals by each neuron and parallel processing in

 8

training and recognition. This work is based on the self-organizing learning array

project developed at the Ohio University by Dr. Starzyk and partially described at

http://www.ent.ohiou.edu/%7Ewebcad/proj/solar/index.html (Starzyk, 2000)

 9

 Chapter 3.
3. Structure of Self-Organizing
Learning Array

SOLAR is simply an electronic model based on the biological brain structure. It has

the capability to solve and analyze problems, such as pattern recognition and

classification, which may be impossible for traditional digital computers. SOLAR

includes three main components which are the inputs, process layers, and outputs.

Just like the biological brain that can solve and analyze more complicated problems

after years of learning, SOLAR requires learning before it can be put to any test.

Before learning can take place, initial wiring is required. This wiring will be modified

during the learning process.

Biological neural networks are constructed in three-dimensions from microscopic

components. Billions of neuron interconnections can be broken or developed to

achieve a better performance. This is not true for artificial neural networks built with

integrated circuits on silicon. Artificial neural networks are limited to a two-

dimensional plane whose hard-wiring interconnections cannot be replaced or changed

once they are constructed. In addition to the inert, space on an integrated circuit is

 10

limited. Artificial neurons can only learn within these limited conditions. Therefore,

neurons organization and initial wiring are extremely important for a good

performance.

3.1 Neural Network Organization

Most of the existing artificial neural network organizations can be classified into three

main categories: cellular neural network (CNN), feed backward neural network

(FBNN) and feed forward neural network (FFNN) (Cichocki & Unbehauen, 1993, p.

65).

CNN includes many identical cells (or processing units) that have local

interconnections among each other, and only the nearest neighbors are connected. The

neighboring cells can interact directly with each other, while other cells, not directly

connected together, may still be affected indirectly due to the propagation effects from

the dynamics of CNN. Applications of CNN are mainly in image processing, where

they show a great performance in solving many complex image-processing tasks that

cannot be solved using conventional approaches.

In FBNN organization, neurons are generated in parallel. Output of each neuron in the

network can be connected backward or forward as inputs to other neurons. Networks

having FBNN organization may become unstable if a positive feedback causes the

 11

increase in the input signal values. One must ensure that the mean of the output of any

neuron in the network must be less or equal to the mean of all the inputs.

In FFNN organization, on the other hand, structure of the network is constructed under

the condition that all inputs of each neuron are connected to the input layer or the

existing neuron outputs. Neurons are generated in parallel. The size of the network

increases when new neurons are added. As a result, growing number of outputs from

existing neurons can be used as inputs for new neurons generated at later stages.

Outputs of subsequently generated neurons cannot be used as inputs for those neurons

already generated in feed forward organized neuron network, so that the network is

always stable. Therefore, feed forward organization is chosen for SOLAR.

3.2 Initial Wiring

Since this is a software simulation version of SOLAR, it can take any number of

inputs. Based on the size of input, numbers of neurons are generated. It is assumed

that a fixed number of neurons are added per each layer. Each neuron is then

identified by its location, row and column as shown in Figure 3-1. Although this

organization is not a requirement of SOLAR, it is better suited for VLSI design of

SOLAR, where neurons are organized in a regular array to best utilize the available

silicon area.

 12

Figure 3-1 Basic SOLAR Structure

It is believed that a large number of biological neurons, which are responsible for

processing information, tend to have local connections. There is a higher probability

that one neuron should have connections to close neighboring neurons. Therefore,

statistically determined Mahalanobis distance (Mahalanobis, 1936) is introduced in the

determination of the initial wiring. With the feed-forward structure, new neurons are

connected only to the previously generated neurons. As shown in Figure 3-2, the

neuron located at a given row and column should always be connected to the one at

the same row and the previous column. The next nearest neurons are those located at

 13

two neurons away from the connecting neuron and so on. Similar to the short-axon

cells, although local connecting is highly preferred, some random and further

connections may also be allowed with smaller probability in the pre-wiring stage.

This pseudorandom wiring organization applies to both the neuron’s input signals as

well as the neuron’s control (input clock), which come from logical output (output

clock) of other neurons.

Figure 3-2 Example of Neurons’ Initial Wiring

 14

Chapter 4.

4. Neurons’ Inputs and Outputs

The process layers are where the processing neurons are located. Preprocessed data is

sent to different neurons through pre-wired interconnections. Self-organizing neural

network is very similar to living neurons in terms of architecture. A neuron has many

parallel inputs but only a single output, which may feed many other neurons as their

inputs as shown in Figure 4-1.

Figure 4-1 Neuron’s Input and Output Signals

 15

4.1 Basic Operation of a Neuron

Figure 4-2 shows all necessary inputs and outputs of a neuron. All input data are

rescaled so that they are always within a specified range (for instance 0-255 for 8-bit

digital hardware representation). Each neuron is able to select any inputs (or a single

input) and perform different transformation operations. During the learning process,

neurons learn in parallel one layer at a time. A neuron calculates the information

index and selects a threshold for a combination of inputs (or a single input), a

transformation function, and an input clock. Information index indicates the quality of

learning, and it is discussed in detail in Chapter 6 Self-Organization Principles.

With the highest information index, the input combination, transformation function

and threshold are stored and fixed in the neuron for later use during testing. The

values of the output information deficiency indicate how much the selected subspace

has been learned, and this is also described in details in Chapter 6 Self-Organization

Principles. These output information deficiency values are saved. Calculated output

(system output) is passed to other neurons as inputs. Output clocks are also generated

and passed to other connected neurons with their output information deficiency.

 16

Figure 4-2 Neuron Inputs and Outputs

4.2 Neurons’ Clock Inputs and Outputs

Similar to all sequential machines, every neuron has an input clock control. At each

clock cycle, an input data is expected to arrive from the previous neurons or initial

inputs. There is one more clock input in SOLAR called threshold-control-input (TCI).

This particular clock is designed to control neuron operation, and it is obtained by

multiplexing the output clocks. A neuron tries to learn more about a particular space

based on the selected TCI. There are three types of output clocks per neuron, and they

are listed as follows:

1. Threshold-control-output (TCO) is the original TCI of this neuron.

 17

2. Threshold-control-output-thresholded (TCOT) is the original TCI multiplied

with the logic value indication that the transformed data points passes the

threshold. It can be done with an AND operation as shown in Figure 4-3.

Figure 4-3 TCOT

Figure 4-4 TCOTI

3. Threshold-control-output-thresholded-inverted (TCOTI) is the original TCI

multiplied with the logic value indication that the transformed data points do

not pass the threshold. It can be implemented with an inverse operation of

TCOT as shown in Figure 4-4.

There can be more than one TCI for a neuron. One always connects to the output

clock from the closest neuron (the one located at the same row and previous column)

since local interconnection is believed to result in a better performance. Other TCIs

can be selected with lower probability from other previously generated neurons.

These n TCIs can be selected by a n-to-1 muliplexer by each neuron.

 18

4.3 Neurons’ Signal Inputs

Each neuron has more than one input pre-wired from the initial inputs or from outputs

of previous neurons. One or two of these will be selected to perform arithmetic

operation and to produce a system output that may be used as an input by other

neurons. Similar to TCI, these n inputs can be selected by a n-to-1 or a n-to-2

muliplexers for each neuron based on the transformation function, its threshold value,

and a selected information index. In general, neuron inputs are normalized to provide

sufficient resolution for input-output functions.

4.3.1 Neurons’ Input Data

Input data is presented to SOLAR as n dimensional feature vectors. Each feature

represents one dimension of the whole input space. At each clock cycle, one set of n

dimensional data is buffered to the input layer. The jth input data with n features can

be represented by a vector: Xj=[xj
1, xj

2 … xj
n]. As a result, the whole set of input data

can be described by a matrix in (4-1).

















=
















Χ

Χ
=

t
n

t
2

t
1

1
n

1
2

1
1

1

x...x.x
....

 x... xx
...X

t

where t is the length of the whole input data set.

(4-1)

 19

The problem of databases containing missing data and symbolic values is very

common. These incomplete data can cause problems for neuron operations that only

take numerical inputs. Therefore, blanks and symbols must be replaced by meaningful

numerical values with some transformations, which are discussed in 4.3.1.1 and

4.3.1.2.

4.3.1.1 Missing Data

There are three approaches to the missing values datasets (Ennett, Frize & Walker,

2001). First approach is to simply delete all cases with missing values. This can

result in losing potential important information of the cases. Second approach is to

find the mean value. Although it is easy to calculate, it can bias the dataset. The last

approach is to replace missing data with statistically unbiased estimates that can

improve the network performance. Mahalanobis distance is used in the procedure

developed to normalize the missing values.

To define the Mahalanobis distance, mean value vector for a given class µc and

covariance matrix for all training data from this class Cc are needed. Then, a given

vector of training data X ∈ Χ with missing coordinates is represented as X=[Xk, Xm]

where Xk are known coordinates while the missing values Xm are

 20







 =







ΧΧ=Χ min

~~
: dd mmm

where () () ()Τ− −Χ−Χ=Χ ccc Cd µµ 1

Since d(X) is a quadratic form of the unknown values Xm, the minimum can be

obtained by setting its derivative to zero.

() 0
~

=
Χ∂
Χ∂

Χ=Χ mm
m

d

The inverse of the covariance matrix Cc is divided according to partition of X into

known and missing values parts.









==−

mmmk

kmkk
c

1
c D,D

D,D
DC

Since Cc is symmetrical km
T

mk DD = and

[]{ } 0
D,D
D,D

2
X
d...

X
d

mmmk

kmkk

n1

=







−ΧΧ=









∂
∂

∂
∂

cmk µ

(4-2)

(4-3)

(4-4)

(4-5)

 21

As a result vector Xm can be obtained from

() cmck µµ +−−= mm
-1

kmkm DDXX

where µck is the part in µc corresponding to Xk while µcm represents the part

corresponding to Xm.

If the matrix Y = Χ – µc does not have the full column rank, Y can be first factorized

using QR factorization.









==ΥΕ ΥΥ

ΥΥΥ 00
21 RR

QRQ

where E is the permutation matrix, and RY1 is upper triangular. Therefore, Y can be

represented as

[] [] []2
1
11~21~21 Υ

−
ΥΥΥΥΥΥ Ι==ΥΥ=Υ RRRQRRQ

where Υ~Q contains columns of ΥQ which are multiplied by 1ΥR in (4-7)

Y2 can be expressed as a linear combination of Y1

() rCRR 12
1
112 Υ=Υ=Υ Υ

−
Υ

(4-6)

(4-7)

(4-8)

(4-9)

 22

Only elements of the matrix Y1 need to be determined for the missing data. The

reduced covariance matrix, which is based on the matrix Y1 only, is defined as

kkkRC 11 ΥΥ⊥= Τ

where 








Υ
Υ

=Υ
m

k

1

1
1 and 









ΥΥ
ΥΥ

=Υ
mm

kk

21

21

The reduced Mahalanobis distance for vector X is

() () ()Τ− −Χ−Χ=Χ 11
1

11 cRc Cd µµ

where X = [X1 X2] and mc = [µc1 µc2] according to partition of matrix Y = [Y1 Y2]

Following derivation (4-3) to (4-6), missing data result can be generated as follows

() 1mmR
-1

kmR1k1m1 DDXX cmck µµ +−−=

where 







=−

mmRmkR

kmRkkR1
R D,D

D,D
C

(4-10)

(4-11)

(4-12)

 23

After missing data is recovered, the result can be obtained and pasted back to vector

X1.

X1 = [Xk1 Xm1]

After vector X1 is obtained, X2 can be determined from

()2
1
11112 Υ

−
ΥΧ=Χ=Χ RRC

Thus, all missing data (independent and dependent) are recovered. This operation can

be repeated sequentially for each data vector X with missing data or performed

concurrently on all vectors with some missing data. However, separation of matrix Χ

into missing and known values may be difficult or impossible.

4.3.1.1.1 Illustration of Missing Data Recovery

The following two examples are used to show the missing data recovery by applying

Mahalanobis distance. The dataset (Abalone Database) of the first example was

obtained from the University of California at Irvine (ICS, UCI, 1995, December).

This dataset contains information from 4177 input data with 29 classes. In order to

demonstrate the performance in a 2 dimensional plane, only two features, which are

“height” and “weight”, are used.

(4-13)

(4-14)

 24

In this example, class 9 is chosen. There are 689 data points that belong to this class.

Ten of them in feature “weight” have been randomly chosen, removed and become the

missing data. Then, these data were recovered by the missing data recovery algorithm

using the Mahalanobis distance. As the results shown in Table 4-1 and Figure 4-5, the

recovered missing data are replaced with reasonable numerical values based on the

distribution of this particular class.

Table 4-1 Original and Recovered Data Comparison

Original Weight Recovered Weight
0.2800 0.4818
1.5100 1.4995
1.2945 1.1037
0.6995 0.7079
0.6880 0.8776
1.1000 0.9907
0.5780 0.9907
0.9070 0.7645
0.9615 0.8210
1.2960 0.9341

 25

Figure 4-5 Missing Data Recovery Illustration

 26

Sometimes, a dataset contains dependent information. This dependent features have to

be identified and taken out when recovering the missing data because error can occur

when the inverse covariance matrix is calculated during the process of missing data

recovery. Dependent features can be calculated after the independent part of the

dataset is recovered. The following example illustrates how singular matrix is

handled. An input matrix with 2 classes is shown in Table 4-2, which contains 21 data

points with 11 features. Two of the features in the input matrix are dependent, and the

relationship is:

Row 1 = Row 2 * 1.03 + Row 4 * 1.02

Row 8 = Row 11 * 1.10 - Row 5 * 1.05

 27

Table 4-2 Singular Input Matrix with Missing Data
#1 #2 #3 #4 #5 #6 #7

Class 1 Class 2 Class 2 Class 1 Class 1 Class 2 Class 1
579.2 ? 5699.7 577.0 534.4 5708.9 538.5
184.0 ? 1827.0 177.0 194.0 1727.0 193.0
294.0 2749.0 2843.0 255.0 223.0 2213.0 283.0
382.0 ? 3743.0 387.0 328.0 3853.0 333.0
494.0 4360.0 4321.0 439.0 485.0 4996.0 442.0
578.0 5700.0 5495.0 523.0 596.0 5323.0 510.0
623.0 6210.0 6723.0 663.0 688.0 6232.0 693.0
518.6 5682.8 5718.3 564.3 494.0 4788.4 574.3
743.0 7410.0 7239.0 732.0 723.0 7221.0 734.0
842.0 8318.0 8372.0 898.0 839.0 8843.0 833.0
943.0 9328.0 9323.0 932.0 912.0 9122.0 944.0

#8 #9 #10 #11 #12 #13 #14

Class 1 Class 1 Class 2 Class 2 Class 2 Class 1 Class 1
431.4 ? 5905.6 4636.7 4555.4 516.3 523.8
101.9 ? 1923.0 1101.0 1231.0 121.0 154.0
240.0 291.0 2938.0 2302.0 2943.0 254.0 298.0
320.0 380.0 3848.0 3434.0 3223.0 384.0 358.0

? 490.0 4858.0 4324.0 4211.0 432.0 475.0
530.0 580.0 5959.0 5483.0 5321.0 549.0 552.0
639.0 619.0 6835.0 6859.0 6948.0 684.0 671.0

? 518.4 5263.3 5891.1 6101.0 583.7 593.6
853.0 ? 7122.0 7473.0 7484.0 723.0 718.0
821.0 840.0 8235.0 8243.0 8873.0 824.0 892.0

? 939.0 9422.0 9483.0 9566.0 943.0 993.0

#15 #16 #17 #18 #19 #20 #21
Class 1 Class 1 Class 1 Class 2 Class 2 Class 1 Class 1
466.2 513.2 532.1 5865.5 5724.2 433.8 582.2
112.0 111.0 172.0 1983.0 1837.0 101.3 183.0
238.0 219.0 232.0 2837.0 2744.0 243.0 254.0
344.0 391.0 348.0 3748.0 3757.0 323.0 386.0
483.0 438.0 495.0 4983.0 4372.0 443.0 493.0
594.0 512.0 538.0 5848.0 5748.0 535.0 573.0
673.0 611.0 695.0 6382.0 6223.0 646.0 654.0
541.2 567.5 568.2 4912.0 56746 550.2 497.7
732.0 739.0 724.0 7223.0 7434.0 754.0 786.0
844.0 800.0 832.0 8332.0 8321.0 823.0 834.0
953.0 934.0 989.0 9222.0 9332.0 923.0 923.0

 28

After missing data of the independent feature is recovered with equation (4-12),

dependent part of the missing data can be generated by equation (4-14). Results are

demonstrated in Table 4-3. Recovered data seems reasonable and fits in the whole

matrix.

Table 4-3 Result of a Singular Input Matrix with Missing Data
#2 #8 #9

Class 2 Class 1 Class 1
5772.1 431.4 555.3
1919.9 101.9 162.2
2749.0 240.0 291.0
3720.2 320.0 380.6
4360.0 454.7 490.0
5700.0 530.0 580.0
6210.0 639.0 619.0
4447.2 491.7 499.8
7410.0 853.0 757.3
8318.0 821.0 840.0
9328.0 881.1 939.0

 29

4.3.1.2 Symbolic Values

If the input matrix Χ contains symbolic (non-numerical) data, this data can be

assigned a numerical value so that they are best correlated to the existing data. This

can be accomplished with minimization of the determinant of the resulting covariance

matrix.

nt
sr

×





 ΧΧ=Χ
~

where s
~
Χ is a sub-matrix or a vector with all symbolic values

rΧ is a sub-matrix or a vector with all numerical values

 t is the number of samples

 n is the number of features

In order to minimize ()[]ΧCovdet , value Xs can be selected to minimize the rank of

Χ . First, one should consider a single symbolic vector s
~
Χ to which numerical values

should be assigned so that the numerical vector Xs is a linear combination of vectors

Xr.

α∗Χ=Χ rs , ss Χ∈Χ ~

where α is a nonzero linear combination vector.

(4-15)

(4-16)

 30

Since this problem may not have an exact solution, the norm of error vector E is

minimized, where

α∗Χ−Χ= rsE

Xs can be replaced by the product of a binary matrix A and a vector of all symbols H.

ΑΗ=Χ s

A final form of the error vector is obtained.

αrE Χ−ΑΗ=

Since the objective is to minimize the error (E=0), values of H can be obtained

applying pseudo-inverse of A

() αrpinv ΧΑ=Η

This is a desired solution with α=1 if Xr has only a single column. If Xr has more than

one column, H can be achieved by minimizing the norm of the error function and

setting its derivatives to zero.

(4-17)

(4-18)

(4-19)

(4-20)

 31

02 ≥= Τ EEE

[] 0
2

=








−
Η

ΑΧΑ=
Η∂
Ε∂ Τ

αr

[] 0
2

=








−
Η

ΑΧΧ=
∂
Ε∂ Τ

αα r

Let us define matrix B as below and partition it into symbolic and numerical parts Bs

and Br.

[] []rs
rrr

r
r

r

ΒΒ=








ΧΧΑΧ
ΧΑΑΑ

=ΑΧ












Χ

Α
=Β ΤΤ

ΤΤ

Τ

Τ

The minimum error norm is obtained by solving the following equation

[] 0=








−
Η
αrs BB

Br can be factorized by using QR factorization and its orthogonal matrix Q will be

divided according to the rank of its upper triangular matrix R.

[] 







==Β

00
21

21

RR
QQQRr

(4-21)

(4-22)

(4-23)

(4-24)

(4-25)

(4-26)

 32









=









−
Η





























Β
Β

0
0

00
21

2

1

α
RR

Q
Q

s
T

s
T

Equation (4-25) will change to and can be separated to two equations (4-28) and (4-

29).

[]








=ΗΒ

=







+ΗΒ

Τ

Τ

0

0

2

2

1
211

s

s

Q

RRQ
α
α

Values of H can be solved by using equation (4-29) since it does not depend on α.

However, H is always zero if QT
2Bs is a full rank matrix. A single variable in H has to

be set, such as H1=1

() [] 0
1

~
~1

~

1
2 =









Η
=









Η
Η

ΒΤ

s
s

s
s CCQ

where C1 is the first column of QT
2 Bs

and s~Η can be determined from

1~~ CC ss −=Η

(4-27)

(4-28)

(4-29)

(4-30)

(4-31)

 33

After applying pseudo-inverse of sC~ , H can be solved as follows.

() 








−
=Η

1~

1
CCpinv s

Equation (4-32) requires that sC~ has full column rank. If it does not, it can be divided

into independent and dependent parts as follows

[] []2
1

1
1

2~1~~
0

RR
R

QCCC sss
−Ι








==

where 1~sC and 2~sC can be determined using QR factorization of sC~ .

s~Η is partitioned accordingly to []2~1~~ sss ΗΗ=Η . Instead of (4-31), the following

equation will be solved.

() 12~2
1

11~1~ CRRC sss −=Η+Η −

Instead of solving for parameters of H, a combined vector Hc can be solved as follows

() 11~2~2
1

11~ CCpinvRR sssc −=Η+Η=Η −

(4-32)

(4-33)

(4-34)

(4-35)

 34

Since 1~sΗ and 2~sΗ cannot be uniquely defined, one can either set 2~sΗ to zero and

1~sΗ =Hc or introduce another constraint for elements of 1~sΗ and 2~sΗ , for instance

minimize the norm of H under constraint defined by (4-35). The constraint

minimization problem can be formulated using a Lagrangian function. The objective

function is:

∑
Η∈

=
sish

ishF
~~

2
~

with constraints

() 011~2~1~ =+Η+Η= CCpinvDe sss

where 2
1

1 RRD −=

The Lagrangian function is defined as follows:

() ∑
Η

=

−=Η
c

j
jjs eFL

1
~ , λλ eej ∈

where cΗ is the cardinality of Hc

(4-36)

(4-37)

(4-38)

 35

In order to locate the optimum of the constrained minimization of || s~Η || the

derivatives of L(s~Η ,λ) with respect to H and λ are set to zero as shown in (4-39) and

(4-40).

0
~

=Ν−∇=
∂
∂ λF
h
L

is

() 0~ =Η−=
∂
∂

sjeL
λ

where
















=∇

ns

s

h

h
F

~

1~

...2 and [] 






 Ι
=∇∇=Ν ΤΗ D

ee
c

...1 , n = sΗ

After determining derivatives of L(s~Η ,λ), equation (4-41) is obtained from (4-39).

02
2~

1~
=







 Ι
−









Η
Η

Τ λ
Ds

s

Equations (4-42) and (4-43) are obtained from (4-41).

02 1~ =−Η λs

02 2~ =−Η ΤλDs

(4-39)

(4-40)

(4-41)

(4-42)

(4-43)

 36

λ and 2~sΗ are solved from (4-42) and (4-43) and shown as the follows:

1~2 sΗ=λ

1~2~ ss D Η=Η Τ

After substituting (4-45) in (4-37), a new equation is obtained as follows:

() 011~1~1~ =+Η+Η Τ CCpinvDD sss

From which a unique solution for 1~sΗ can be obtained

() () 11~
1

1~ 1 CCpinvDD ss
−Τ+−=Η

Thus, the minimum norm solution of (4-35) is










Η
Η

=Η Τ
1~

1~

s

s
s D

(4-44)

(4-45)

(4-46)

(4-47)

(4-48)

 37

4.3.1.2.1 Illustration of Symbolic Values Assignment

The following two examples are used to show the symbolic values assignment

performance. An example is for input matrix containing only one feature vector of

numerical values while the second has more than one column of numerical values.

The following example illustrates the assignment of symbolic values when numerical

sub-matrix Xr is a vector. The input matrix is given as Χ ,

Τ









=Χ

cccddbbaae
10989843421

The norm of the error vector in equation (4-19) must be minimized. To do so, a binary

matrix A, which locates the symbolic values in Χ , is obtained first.

Τ























=Α

0000000001
0001100000
1110000000
0000011000
0000000110

Xr can be obtained from Χ by removing the symbolic values.

[]T

r 10989843421=Χ

(4-49)

(4-50)

(4-51)

 38

Since Xr has only one column, H can be computed by applying equation (4-20). The

results are shown in (4-52), and symbolic values Xs can be replaced by numerical

values by multiplying matrix A and H as shown in (4-53).

[]Τ=Η 0.15.80.95.30.3

Xs = AH = [1.0 3.0

The correlation coefficient betwee

calculated using (4-54).

where ΗΧ r
σ is covariance betw

deviations of Xr and H.

The calculated correlation coeffic

the solution values H are well

correlation coefficient is

(4-52)

e
a b c d
 3.0 3.5 3.5 8.5 8.5 9.0 9.0 9.0]T

n numerical values and evaluated symbolic values is

Hr

rr
σσ

σ

Χ

ΗΧ=

een the two vectors and (
rΧσ , Hσ) are standard

ient, shown in (4-55), and Figure 4-6 illustrate that

correlated with the numerical values. Calculated

r = 0.9746

(4-54)

(4-55)

(4-53)

 39

Figure 4-6 Graphical Illustration of Symbolic Values Assignment

The following is another example illustrating the assignment of symbolic values when

numerical sub-matrix Xr has more than one row. The input matrix is given as Χ ,

Τ

















−−
=Χ

1224240221

10989843421
cccddbbaae

(4-56)

 40

A binary matrix A which represents symbolic values in Χ and Xr which contains all

numerical values are

Τ























=Α

0000000001
0001100000
1110000000
0000011000
0000000110

and

Τ










−−
=Χ

1224240221
10989843421

r

Since Xr has more than one column, H can be determined by minimizing the norm of

the error function and setting its derivatives to zero as shown in equation (4-22) to (4-

23). To minimize the error norm, the matrix B can be obtained as defined in (4-24).





























−

−=Β

543312344
334361172776
1110000
21702000

32700300
4700020
4600002

 Bs Br

(4-57)

(4-58)

(4-59)

 41

Then, Τ
2Q is obtained using QR factorization on Br and sQ ΒΤ

2 is equal to























−
−

−−−
−−

−−−−

=ΒΤ

0731.01345.04663.05848.11332.0
0704.00064.03389.05709.06685.1
9825.00224.00704.01062.00766.0
0184.01191.10066.10747.00893.0
0735.09888.03394.14929.05359.0

2 sQ

H, the normalized vector of symbolic values, c

pseudo-inverse of sC~ (4-32).

[=Η 27683.21495.10000.1

To compare the previous result, H is scaled by m

becomes

[=Η 8840.72738.38480.2

 1C

(4-60)
an be now computed by applying

]Τ3511.05424.

ultiplying all values by
3511.0
1 , H

]Τ0000.12406.7

sC~

(4-61)

(4-62)

a b c d e

 42

Symbolic values Xs can be replaced by numerical values by multiplying matrix A and

H as shown in (4-63).

 Xs = [1.0 2.85 2.85 3.274 3.274 7.241 7.241 7.884 7.884 7.884]T

The correlation coefficients between different columns of numerical values and the

evaluated symbolic values are calculated using (4-54). The calculated correlation

coefficients are shown in Table 4-4.

Table 4-4 Correlation Coefficient Between Numerical and Symbolic Values

Symbolic values are correlated with Correlation coefficient (r)
the 1st column of Xr 0.9739
the 2nd column of Xr -0.3102

The calculated correlation coefficient results, and Figures 4-7 and 4-8 illustrate that

the solution values H are well correlated with the first column of numerical values

while they are not well correlated with the second column of Xr. It suggests that this

set of symbolic values have much more dependence on the first column of numerical

values than the second one.

(4-63)

 43

Figure 4-7 Symbolic Values Assignment Using 1st Column of Numerical Values

Figure 4-8 Symbolic Values Assignment Using 2nd Column of Numerical Values

 44

Figure 4-9 gives an overview of how well the features are correlated in a three

dimensional space. Although the calculated symbolic values do not have much

dependence on the 2nd column of Xr alone, all features fit well in a three dimensional

space.

Figure 4-9 Symbolic Values Assignment in a Three-Dimensional Space

The following illustrates that evaluated symbolic values with better representation can

be achieved using all numerical values rather than taking only one vector of numerical

values. The comparison is done by obtaining determinants of the resulting covariance

 45

matrixes of Χ in (4-56). If symbolic values assignments of matrix Χ are obtained by

applying equation (4-20) and by selecting one vector of numerical values at a time,

two solutions are produced as shown in Table 4-5. The correlation coefficients

between different columns of numerical values and their evaluated symbolic values

are calculated using (4-54). The calculated correlation coefficients are illustrated in

Table 4-6, and the symbolic values assignment corresponding to the highest

correlation coefficient is selected.

Table 4-5 Two Sets of Evaluated Symbolic Values

the 1st column of Xr the 2nd column of Xr
3.0000 2.0000
3.5000 2.0000
9.0000 1.0000
8.5000 -1.0000
1.0000 1.0000

Table 4-6 Correlation Coefficient Between Numerical and Symbolic Values

the 1st column of Xr the 2nd column of Xr
0.9746 0.5222

Since the solution obtained from the 1st column of Xr has the larger correlation

coefficient, it is used to replace all symbolic values. Therefore, the matrix Χ (4-56)

becomes aΧ (4-64) where the calculated symbolic values are obtained from only one

 46

vector of numerical values, and becomes bΧ (4-65) when the symbolic values are

obtained from all numerical values.

Τ

















−−
=Χ

1224240221
9995.85.85.35.3331

10989843421

a

Τ

















−−
=Χ

1224240221
88.788.788.724.724.727.327.385.285.21

10989843421

b

(4-64)

(4-65)

 47

The covariance is defined as the average of the products of the deviations of feature

values from their means in a closed sphere. This sphere can be normalized to obtain a

unit volume, and each element of the covariance matrix can be correspondingly

multiplied by (n-1), where (n x n) is the size of the covariance matrix. Determinant of

such normalized covariance matrix gives an overview of how well all features are

correlated within a matrix in a multidimensional space. Ideally, the determinant of

such normalized covariance Dc is one if all features in the matrix are totally

independent, and it is zero if all features are perfectly correlated. Determinants of

resulting covariance matrices of aΧ and bΧ are shown in Table 4-7. The evaluated

symbolic values obtained with all numerical values give a better representation since

the determinant is smaller.

Table 4-7 Determinants of Resulting Covariance Matrices

 Determinant of Covariance of aΧ Determinant of Covariance of bΧ
Dc 0.3455 0.3444

 48

The following example illustrates how H is obtained if sC~ does not have full rank.

Suppose that the coefficient matrix sC~ and 1C are as follows:























−−−
−

−−−
−−

−−−

=

1982.18946.147.058.1
3015.09077.034.057.0

0645.01771.007.011.0
4631.13469.00.107.0
0913.20621.034.149.0

~sC























−
−
−
−

=

13.0
67.1
08.0
09.0
54.0

1C

If a straightforward solution is used with equation (4-35) by setting 2~sΗ = 0, 1~sΗ

becomes

() 








−
−

=−=Η
5741.0
5256.0

11~1~ CCpinv ss

and its norm is

7784.01~ =Η s

(4-66)

(4-67)

(4-68)

(4-69)

 49

However, if 1~sΗ is calculated using equation (4-47), it becomes

() () 







=+−=Η −Τ

1698.0
1761.0

1 11~
1

1~ CCpinvDD ss

where 








−
== −

44.144.0
33.033.1

2
1

1 RRD

Instead of setting 2~sΗ to zero, it can be calculated using equation (4-45).










−
=Η=Η Τ

1864.0
309.0

1~2~ ss D

The resulting symbolic vector Hs = []ΤΤΤ ΗΗ 2~
1~ ss

= [0.1761 0.1698 0.309 –0.1864]T,

which has the norm ||Hs|| = 0.4360. Obviously, the obtained solution satisfies equation

(4-37) with the minimum norm.

(4-70)

(4-71)

 50

4.3.1.3 Other Approach for Missing and Symbolic Data

Instead of using the same covariance matrix for all points from a given class, local

covariance matrixes obtained from clusters of points in a given class should be used.

A clustering algorithm has to be used first to obtain these clusters and their covariance

matrixes. Then, their missing and symbolic values problems can be solved. When a

combination of symbolic and missing data exists, then the symbolic values problem

should be solved first using samples without missing data, after which all missing data

should be recovered.

4.4 Neurons’ Output

In a process layer, after a neuron has selected inputs (or a single input), transformation

function, threshold value, and the TCI, the neuron’s output is generated. This output

will become an input to other neurons which are wired to the present neuron. These

outputs are combined with the results of the transformation functions from previous

layers of neurons with neuron’s own transformation creating complex partitions of the

input space. Final, logical outputs are generated based on the threshold separation

results from the process layers.

 51

Chapter 5.
5. Arithmetic Operations

Each neuron processes its input data by selecting one of the operations. Since

artificial neuron networks are designed for real time processing, operations must be

simple in order to result a small physical area and fast processing time. Moreover,

neurons are capable to perform liner and nonlinear mathematical operations. The

processor performing these operations is a reduced instruction-set processor (RISP).

This processor is able to select one of the operations and perform it on the inputs. It is

assumed that the processor is designed to work with 8-bit input data.

All linear and nonlinear transformations can be derived from adding, subtracting,

averaging, and shifting. Nonnegative results and inputs are expected. All results from

arithmetic operations must be scaled to full range from 0 – 255 for the 8-bit numbers

in order to maintain the full resolution.

 52

5.1 Basic Arithmetic Operations

Since both linear and nonlinear arithmetic operations can be obtained using add,

subtract, compare, and shift, the RISP processor only needs to perform such

operations. In addition, two single bit operations are defined in Table 5-1 and Table 5-

2:

L(a) returns the location (starting from 0) of the most significant bit position of its

argument a, while E(a) is the inverse of L(a).

Table 5-1 L(a) Function

a 0 1 2 4 8 16 32 64 128
L(a) 0 1 2 3 4 5 6 7 8

Table 5-2 E(a) Function

a 0 1 2 3 4 5 6 7 8
E(a) 0 1 2 4 8 16 32 64 128

The property which relates L(a) and E(a) is follows:

()[] ()[] aaLEaEL ==

(5-1)

 53

Potential transformation operations within 0-255 are defined in Table 5-3.

Table 5-3 Simple Arithmetic Operations

Identical (X): X

Half (X):
2
Χ

Addition (a, b): ()
2

ba +

Subtraction (a, b):


 −
0

ba

if
if

ba
ba

<
>

Multiplication (a, b):

() ()[]{ }BbLaLSubE ,+

Exponent (a): () ()[]{ }32, LaLSubEE

Square root (a): ()






 +

22
BaLE

Inverse (a): ()[]{ }aLBSubE ,

Square (a): ()[]{ }BaLSubE ,*2

Logarithm (a): ()[]{ }5+aLLE

 54

Figure 5-1 shows the behaviors of one-argument operations: exponent, square, square

root, logarithm, and inverse functions in an 8-bits space.

X feature input array = 1, 2, 3, … 255

Y feature output array = 1, 2, 3, … 255

Figure 5-1 Exponent, Square, Square root, Logarithm, and Inverse Function

 55

5.2 Multiple functions

Besides regular operations, multiple functions, which combine the different arithmetic

operations, can also be used to generate more complicated expressions. These

functions are useful in separating different classes from the local input space. In fact,

with these operations, more complex transformation functions corresponding to the

original input space grow along with increasing numbers of neuron’s layers. After

several layers, a neuron may be able to generate a complex transformation function

based on its own basic operations with input data that may have been processed with

many prior operations. Figure 5-2 demonstrates how multiple simple functions

combined together become a complex function as the one described by equation (5-1).

X feature input array = 1, 2, 3, … 255

Y feature input array = 1, 2, 3, … 255

() () () 374.424log
8
log2log =Χ−




 Υ+Χ−Υ

where 424.374 was the equivalent threshold value in the input space.

(5-1)

 56

Figure 5-2 Combination of Multiple Functions

 57

Chapter 6
6. Self-Organization Principles

Once a network has been designed, it is ready for training. There are two types of

learning approaches in artificial neural network design: supervised and unsupervised

(Hassoun, 1995, p. 57). Supervised learning requires desired outputs and inputs.

Outputs of the network are compared with the desired outputs, and the differences are

propagated back to the system. The network has to adjust its weights to match the

network outputs. This process continues until the network is able to produce output

similar to the desired one. However, if the network cannot solve the problem, all the

parameters, such as weights, connections, number of layers, etc, must be revised and

adjusted.

The other approach is called unsupervised learning. With such learning, only the input

signal is provided to the network with no other influence. Unsupervised learning in

literature refers almost exclusively to self-organization of the training data. It helps

with clustering and data representation.

In this thesis, self-organization is applied to the learning hardware and, in general, can

be either supervised or unsupervised. However, the examples illustrating its use in

 58

this thesis are based on the supervised training. Unlike neural networks which have

well defined organization of interconnection and neuron functions, SOLAR involves

its connections, neuron control, the transformation function, and the threshold value to

achieve the best performance during the learning phase. Since it does not require an

outside help and is able to organize itself, it is also referred to as self-organizing

network.

6.1 Neuron Self-Organizing and Learning

During learning, a neuron counts the total amount of training data nt. This can be done

simply by counting the impulses of its system clock input. Similar to any sequential

machines, each neuron performs an operation on the selected inputs (or single input) at

the rising edge of the system clock. The result may become the system output or an

input to other neurons. If the TCI associated with a particular input data is high, the

result of this operation is compared against a set threshold value. This means that this

input data is within the subspace where the current neuron is learning. If TCI is zero,

on the other hand, no comparison takes place since this particular input data is outside

of the subspace where the neuron is learning. Counters in each neuron controlled by

its TCI count three sets of numbers.

• Amount of data that satisfy the threshold value: ns

• Amount of data belonging to a class that satisfy the threshold value: nsc

 59

• Amount of data belonging to a class that does not satisfy the threshold value:

nsic

By doing so, threshold value divides the neuron’s input space into two subspaces. The

quality of learning of each neuron can be calculated statistically by computing the

information index.

In order to calculate information index, finding the probabilities of training data which

fall into each subspace is required.

• Probability of a class satisfying threshold:
t

sc
sc n

n
=Ρ

• Probability of a class not satisfying threshold:
t

sic
sic n

n
=Ρ

• Subspace probability (pass threshold):
t

s
s n

n
=Ρ

• Complementary subspace probability

 (does not pass threshold): ssi Ρ−=Ρ 1

• Class probability –
t

c
c n

n
=Ρ

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)

 60

With these calculated probabilities, information index can be obtained from (6-6).

() () () ()

()c
c

c

sisi
sic

sicsicss
sc

scsc
s

ΡΡ








 ΡΡ−ΡΡ+






 ΡΡ−ΡΡ
−=

Ε
∆Ε

−=Ι
∑

∑∑

log

loglogloglog
11

max

Different combinations of inputs, transformation operations and TCI can result in

different information index values. Neurons perform information index calculation for

different combinations, and the maximized result is obtained in order to provide an

optimum separation of the input training data. When the index value becomes “1”, it

indicates that the neuron has solved its problem completely. However, it does not

mean that any test data can be classified correctly all the time.

Figure 6-1 and Figure 6-2 show that different transformation functions can result in

the different information index values. These graphs show the information index

computation by using addition and multiplication. Having the same inputs and TCI,

multiplication of neuron’s inputs can produce a higher information index than

addition. If the value remains the highest among all combinations, multiplication is

selected by this neuron as its transformation function. These input connections (or

single connection) and threshold value are also stored.

(6-6)

 61

Figure 6-1 Finding Information Index Using Addition

Figure 6-2 Finding Information Index Using Multiplication

 62

Threshold value is used to separate the input space. Figure 6-3 shows how subtraction

with a threshold divides a space into two subspaces and separates the two classes.

Figure 6-3 Input space Separation Using Subtraction

 63

6.2 Subspace Learning

Information deficiency is simply a normalized relative subspace entropy. It indicates

the amount of knowledge that must be learned to solve a classification problem in a

given subspace. Subspace s information deficiency is defined in equation (6-7).

() ()

()c
c

c

ss
sc

scsc
s

s ΡΡ

ΡΡ−ΡΡ
=

Ε
∆Ε

=
∑

∑

log

loglog

max
δ

One space can be divided into many subspaces during learning. At the first layer of

neurons, it is assumed that the input information deficiency is one. The relationship of

the information index and the information deficiencies are shown in equation (6-8)

∑=Ι−
s

sδ1

Each subspace can be learned by minimizing the information deficiency. If the

information deficiency becomes zero, it means that there is nothing left to be learned

by a neuron. The frequency of subdividing a subspace is based on the probability of

each neuron selecting a TCOT or TCOTI as its TCI. If TCI of a neuron is connected

to TCO from the previous neurons, it has a greater chance in subdividing an input

subspace.

(6-7)

(6-8)

 64

Once local features are selected based on the maximum local information index,

output information deficiencies for TCOT and TCOTI are obtained, which are defined

as the product of subspace information deficiencies and input information deficiency.

On the other hand, the information deficiency for TCO remains the same as its input

information deficiency. These output information deficiencies are carried out to the

neurons where they are connected to the threshold-control-clock (TCO, TCOTI,

TCOT) for the next stage of learning and become the input information deficiencies of

the next stage neurons.

6.2.1 Termination of Learning

The computed output information deficiency allows the next neuron to know if its

corresponding selected subspace has been learned enough. If the incoming

information deficiency is less than or equal to the chosen information deficiency

threshold (IDT), it indicates that not much information can be gained by further

dividing the selected input space. This neuron stops learning the selected subspace

and moves on to other selected subspaces. If the incoming information deficiencies

are all low enough, this neuron stops learning and will not participate in voting during

the testing stage.

 65

Chapter 7.
7. Final Classifications

Data which needs to be classified is sent to the network, and each neuron performs

classification based on their learning results. Finally during the voting process, all

participating neurons vote for the class to which they believe the data is categorized.

The voting layer gathers all the information and decides which class the input really

belongs to using a weighting function.

7.1 Voting Neurons

Each neuron identifies itself whether it is qualified to participate in the final

classification after training. This identification is done by comparing neurons’ output

information deficiencies of TCOT and TCOTI with the voting threshold. There are

two flags in each neuron. One flag is select-output-passed threshold (SOT) which

indicates that the neuron is capable to vote when its calculated output passes its

threshold. It is set only if the neuron’s output information deficiency of TCOT is less

than or equal to a voting threshold. The other flag, select-output-passed threshold-

inverse (SOTI), indicates that the neuron is qualified to participate in voting when the

transformed output does not pass its threshold. This flag is set if the neuron’s output

 66

information deficiency of TCOTI is smaller than or equal to a voting threshold. If

both flags are set, a neuron can vote for either its transformed output data passes its

threshold or fails it. Table 7-1 shows all the conditions for setting flags SOT and

SOTI required for a neuron to vote.

Table 7-1 SOT and SOTI Flag Set Condition

SOT SOTI δoutput of TCOT δoutput of TCOTI
0 0 > (1-DIT) > (1-DIT)
0 1 > (1-DIT) <= (1-DIT)
1 0 <= (1-DIT) > (1-DIT)
1 1 <= (1-DIT) <= (1-DIT)

7.2 Weighting Function

Unlike other artificial neural networks using the “winner takes all” approach, a neuron

having more knowledge about an input data is weighted heavier, while other neurons

weights are lower and have less influence in the final voting. Neurons of SOLAR first

check whether they are capable to vote by checking their flags for a given input.

Then, they internally stored probabilities of correct classification, based on whether

the input data passes or does not pass threshold values, are used to calculate the

weighting function which determines the classification of input data.

During learning, each neuron counts and stores three numbers. One is the total

amount of data that satisfies threshold ns, another is the total number of data belonging

 67

to a class that satisfies threshold nsc and finally an amount of data belonging to a class

that does not satisfy threshold nsic.

The probability of correct classification Pcc can be computed as follows:

• Probability of correct classification:
b

a
cc n

n
=Ρ

where




=
sic

sc
a n

n
n





=
si

s
b n

n
n

nsi = nt - ns

ns = amount of data that satisfy the threshold value

nsc = amount of data belonging to a class that satisfy the threshold value

nsic = mount of data belonging to a class that does not satisfy the threshold

value

nt = total among training data

After the transformed signals are calculated and checked against threshold, neurons set

their self-organizing neural network output (SONNO) to notify the voting layer if they

are voting for this incoming data. Their classification probabilities are also sent to the

voting layer for final classification calculation.

(7-1)

(pass threshold)
(does not pass threshold)

(pass threshold)
(does not pass threshold)

 68

Once the voting layer receives the information from all participating neurons, it

performs a final classification calculation using a weight function which is described

in equation (7-3).

() ()

∑

∑

=

=















+Ρ−









Ρ−






 Ρ−+Ρ
−=

n

i cc

cc

n

i
cccc

c

i

MAXiMAX

W

1

1

1
1

11
1

ε

where
MAXccΡ = maximum ccΡ of all SONNOs’ “voting” for class c

iccΡ = ccΡ of each “vote” for class c

 n = number of “votes” for class c

 ε = small number preventing division by zero

(7-3)

 69

7.2.1 Example of Weighting Function Calculation

In order to illustrate the property of this weight function, an example is provided.

Assume that there are five neurons participating in voting for a particular input data

with three classes, and that the correct classification probabilities of each neuron

corresponding to the threshold value are shown in Table 7-2. This information is

obtained from each neuron after a learning process.

Table 7-2 Probabilities of Correct Classification

 Neuron Number
 1 2 3 4 5

Class 1 0 0.293 0.179 0.671 0.015
Class 2 0.833 0.632 0.325 0.329 0.985
Class 3 0.167 0.075 0.496 0 0

As ε = 0.001, the weights of different classes for this particular input data are

calculated with equation (7-3), and they are shown in Table 7-3. Class 2 is classified

by the network for this particular input data since it has the largest weight value.

Table 7-3 Voting Weight for Different Classes

Class 1 Class 2 Class 3
0.7478 0.9863 0.5774

 70

Chapter 8

8. Software Simulations

In order to show the results of the network learning, two sets of real datasets are

selected from the University of California at Irvine (ICS, UCI, 1995, December) and

fed to SOLAR as inputs. These datasets represent real world application problems.

One is a credit card approval problem from Australia, and the other one is a personal

income classification. In addition, a two-dimensional data example, based on

synthetic data, is used to illustrate the SOLAR performance. Figure 8-1 and Figure 8-

2 are flow charts indicating the logic flow of SOLAR simulation program during

learning and testing.

 71

Figure 8-1 Flow Chart of SOLAR Software Program in Learning

 72

Figure 8-2 Flow Chart of SOLAR Software Program in Testing

 73

8.1 Two Dimensional Data Illustration

This two-dimensional training dataset was statistically generated, and it is not a real-

world application dataset. There are five classes in this training dataset as shown in

Table 8-1 and Figure 8-3.

Table 8-1 Classes of Two Dimensional Training Data

 Class 1 Class2 Class 3 Class 4 Class 5
Number of

points
503 429 190 682 542

Figure 8-3 Two Dimensional Input Space

 74

8.1.1 Network Parameters

Before generating the network, design parameters are required to be set. These

parameters determine the size of the input, input control clock, probability of selecting

a subspace, and information deficiency threshold. For example, majority of the TCI

(90%) is connected to the TCO while 5% of the TCI connects to either TCOT or

TCOTI randomly, when the subspace selection probability is set to 0.1. These

parameters are important because they can have significant effect on the network

performance.

• Input parameters:

1. Number of input(s) from the nearest neighbors = 1

2. Number of input(s) from the next nearest neighbors = 1

3. Number of input(s) from remote neighbors = 1

• Number of connection(s) to TCI = 3

• Voting threshold = 0.9

• Subspace selection probability = 0.1

• Information deficiency threshold = 0.1

• Number of layers = 15

• Number of neurons per layer = 2

 75

8.1.2 Initial Wiring

As discussed in Chapter 3, statistically generated Mahalanobis Distance is applied in

initial wiring for neurons’ inputs. According to the design parameter setting, there are

three inputs for each neuron. The nearest neuron, which is located at the previous

column and the same row, is always connected. Since more than one neuron are

considered as the next nearest, one of them is connected based on a random generator.

The last input is connected totally based on the random generator.

After wiring the input signals, threshold-control-inputs (TCI) are connected. Because

local learning is believed to result in a better performance, one of the TCI is always

connected to the nearest neuron while the other two are connected to the previous

neurons based on the random generator. The final initial wiring of the network is

shown in Figure 8-4.

 76

Figure 8-4 Initial Wiring of SOLAR for Two Dimensional Dataset

8.1.3 Functions

Each neuron in SOLAR has pre-defined set of operations, and they are all the same for

each neuron throughout the network. For faster operation, few simple operations are

included in each neuron. These operations (discussed in Chapter 5 – Arithmetic

Operations) can be classified into two groups. One group is called “unary kernels ”

while another one is called “binary kernels”.

 77

“Unary kernels” include operations such as identity, half, logarithm and exponential.

• Identity function: Y = IDENT (X) = X

• Half function: Y = HALF (X) =
2
Χ

• Logarithm function: Y = NLOG2 (X) = ()[]{ }52log2log2 +Χ

• Exponential function: Y = NEXP2 (X) =







 Χ
322

“Binary kernels” include operations such as addition and subtraction.

• Addition function: Y = NADD (X, Y) =
2

Υ+Χ

• Subtraction function: Y = NSUB (X, Y) = X – Y

A combination of “unary kernels” and “binary kernels” operation is encouraged since

multiple transformation functions can result in a more complicated curve that may be

used in dividing local input space.

(8-1)

(8-2)

(8-3)

(8-4)

(8-5)

(8-6)

 78

8.1.4 Neuron Learning

Figure 8-5 Wiring of SOLAR after Learning Process

Figure 8-5 shows the wiring of the network after learning. Each neuron connects to a

maximum of two inputs, and only one output clock is selected for its TCI. Neurons,

in Figure 8-5 which have no wires connected, do not have any effect on the final

classification since they did not learn during the training process. It is because there is

nothing left for this neuron to learn from the input space.

 79

8.1.4.1 Local Space

Figure 8-6 and Figure 8-7 are examples showing a neuron (28) that divides a local

input space by applying a combination of “unary kernels” and “binary kernels”

operations. The combination is:

Output = NADD [NHALF (X), NLOG2 (Y)]

Figure 8-6 Neuron Dividing Local Input Space

(8-7)

 80

Figure 8-7 Neuron Dividing Local Input Space (Zoom In)

Since both information deficiencies of neuron (28) are less than voting threshold as

shown in Table 8-2, both SOT and SOTI are set. This neuron is qualified to

participate in the final classification for a testing data which either passes or fails its

threshold. Probabilities of the correct classification are calculated, and they are shown

in Table 8-3.

Table 8-2 Output Information Deficiencies of Neuron (28)

Output Information Deficiency
(Passing Threshold)

Output Information Deficiency
(Not Passing Threshold)

0.1425 0.0017

 81

Table 8-3 Correct Classification Probabilities of Neuron (28)
 Class 1 Class 2 Class 3 Class 4 Class 5

Pass Threshold 0.0253 0.0013 0.2527 0 0.7207
Does Not Pass

Threshold
0 0.9950 0 0.0050 0

Table 8-2 and Table 8-3 illustrate the close relationship between an output information

deficiencies and the probabilities of correct classification. As the output information

deficiency decreases, it indicates how much this neuron knows about its local input

space. For neuron (28), the output information deficiency of data that did not pass

threshold is 0.0017, and it has 0.995 probability of a correct classification for Class 2.

This is also demonstrated graphically in Figure 8-6 and Figure 8-7 where Class 2 is

efficiently separated from the rest of the classes by the neuron’s threshold line.

Therefore, at later testing classification, a data, which belongs to neuron (28)’s local

input space and does not satisfy its threshold value, is voted with high probability as

being Class 2.

 82

8.1.4.2 Original Space

Figure 8-8 Cutting the Original Input Space

More and more complex transformation functions grow along with the increasing

layers of neurons. As discussed in Chapter 5, a neuron applies its different

transformation functions to the local input space. These inputs may have been

subjected to many transformations of the original input space after several neurons

processing. For example, neuron (28) cuts the original space as shown in Figure 8-8.

It basically makes the transformation function more complicated which corresponds to

 83

the original space by applying its own operation on the two inputs. The relationship

between final transformation of this neuron and the original space at Figure 8-8 can be

obtained by tracing back all the operations that have been applied to the local inputs

(or a single input). The output of neuron (28) expressed by input variables in the

original space is as follows:

Output (28) = ()






 Χ+Υ+Χ+Χ−Χ

32
exp82log

4
exp

(8-7)

 84

Figures 8-9 and 8-10 show that having help from another neuron, most of Class 2 can

be divided from the rest of the classes. Classification is achieved if all neurons work

together.

Figure 8-9 Two Neurons Separating Class 2

 85

Figure 8-10 Two Neurons Separating Class 2 (Zoom In)

 86

8.1.5 Neuron Testing

After learning, SOLAR is prepared to classify any data that is within the learning

space. A testing data is chosen from the training data to demonstrate how the network

performs the final classification based on their probabilities of correct classification.

The chosen test data is one of the training data from Class 2. Values of its input

features are

X = 097

Y = 138

According to the TCI, SOT, and SOTI, neurons that participate in voting are

Neuron (1)

Neuron (2)

Neuron (3)

Neuron (4)

Neuron (5)

Neuron (8)

Neuron (10)

Neuron (16)

Neuron (21)

Neuron (24)

Neuron (28)

 87

Correct classification probabilities of each neuron corresponding to their threshold

values are illustrated in Table 8-4.

Table 8-4 Probabilities of Correct Classification

 Neuron Number
 1 2 3 4 5 8
Class 1 0.0352 0.0055 0.2399 0.0199 0 0
Class 2 0.1586 0.3341 0.2809 0.2109 0.9850 0.6073
Class 3 0.2093 0.1480 0 0.1994 0 0.3897
Class 4 0 0.0903 0.4792 0.0010 0.0150 0.0030
Class 5 0.5969 0.4221 0 0.5687 0 0

 Neuron Number

 10 16 21 24 28
Class 1 0 0.0012 0.0073 0 0
Class 2 0.5106 0.2442 0.7806 0.9850 0.9950
Class 3 0.4894 0.0948 0 0 0
Class 4 0 0.0012 0.2121 0.0150 0.0050
Class 5 0 0.6586 0 0 0

 88

As discussed in Chapter 7 – Final Classification, probability of being a class of a

testing data can be calculated with a weight function as described in equation (8-8).

() ()

∑

∑

=

=















+Ρ−









Ρ−






 Ρ−+Ρ
−=

n

i cc

cc

n

i
cccc

c

i

MAXiMAX

W

1

1

1
1

11
1

ε

where
MAXccΡ = maximum ccΡ of all SONNOs’ “voting” for class c

iccΡ = ccΡ of each “vote” for class c

 n = number of “votes” for class c

 ε = small number preventing division by zero

As ε = 0.001, the weights of different classes for this particular testing data are

calculated; and they are shown in Table 8-5. The final voting result suggests that this

testing data belongs to Class 2, which is a correct classification.

Table 8-5 Probability Estimates for Different Classes

Class 1 Class 2 Class 3 Class 4 Class 5
0.2645 0.9967 0.6018 0.5206 0.7780

(8-8)

 89

As all the training data were used to test the performance of SOLAR, probabilities of

classification for different classes are shown in Table 8-6. Table 8-6 suggests that

SOLAR is more confident to classify Class 2, Class 3, and Class 5 compared to others.

Table 8-6 Probabilities of Classification

 Data Classified as
 Class 1 Class 2 Class 3 Class 4 Class 5

Data from Class 1 0.8171 0 0.0040 0.1769 0.0020
Data from Class 2 0 0.9977 0.0023 0 0
Data from Class 3 0 0 0.9263 0 0.0737
Data from Class 4 0.1481 0.0103 0 0.8416 0
Data from Class 5 0 0 0 0 1

The reason SOLAR has inefficient performance in classifying Class 1 and Class 4 is

because Class 1 has large overlapping area with Class 4 as illustrated in Figure 8-11.

Information deficiency calculation can result in a good separation between two

groups. After a few layers of neurons, different classes should be identified by the

network. However, if a large number of different members from different classes

overlap, SOLAR can never accurately classify these members even with many layers

of neurons because they are statically non-separable, and the probabilities of correct

classification of these classes are always low. The algorithm performance in such case

is limited by Bayesian probabilities.

 90

Figure 8-11 Overlapping Classes

 91

8.2 Credit Card Dataset

Credit cards have been widely used and have become very popular around the world.

According to Master Card International, the number of credit cards in Asia/Pacific

region alone grew from 30.9 million to 72.6 million between 1990 and 1998. The

increasing number of applications create a huge task for processing them, which is

impossible to handle by hand. Artificial neural networks can be used to facilitate this

task.

8.2.1 Dataset Background

The credit card approval data in Australia (Credit Screening Database) was acquired

from the University of California at Irvine (ICS, UCI, 1995, December). The dataset

has 690 instances, 16 features including class attribute, and it is divided into 2 classes,

which are approve and reject represented by “+” and “–”. The dataset contains

numbers of credit card applications, which feature names and values have been

replaced by symbols to protect the individuals’ privacy of the data. The content of the

dataset is described in Table 8-7. Missing values and class distribution are presented

in Table 8-8.

 92

Table 8-7 Credit Card Dataset Information

Number of instances 690
Number of attributes 15 + Class attribute

Attribute information
Attribute 1 b,a
Attribute 2 Continuous values (13.75-80.25)
Attribute 3 Continuous values (0-28)
Attribute 4 u,y,l,t
Attribute 5 g,p,gg
Attribute 6 c,d,cc,i,j,k,m,r,q,w,x,e,aa,ff
Attribute 7 v,h,bb,j,n,z,dd,ff,o
Attribute 8 Continuous values (0-28.5)
Attribute 9 t,f
Attribute 10 t,f
Attribute 11 Continuous values (0-67)
Attribute 12 t,f
Attribute 13 g,p,s
Attribute 14 Continuous values (0-2000)
Attribute 15 Continuous values (0-100000)
Attribute 16 +,- (Class attribute)

Table 8-8 Missing Data and Class Distribution of Credit Card Dataset

Missing attribute 37 cases (5%) has one or more
missing values

Attribute 1 12
Attribute 2 12
Attribute 4 6
Attribute 5 6
Attribute 6 9
Attribute 7 9
Attribute 14 13

Class distribution
+ 307 (44.5%)
- 383 (55.5%)

 93

The ranges of numerical values are listed in Table 8-7, and their distributions are

shown in Figure 8-12. All plots are illustrated in their original scales except for

Attribute 15 because the majority of its samples are extremely small. Applying

logarithm scale helps to present its distribution.

Figure 8-12 Numerical Values Distributions of Credit Card Dataset

 94

8.2.2 Missing Data and Symbolic Values

There are missing data and symbolic values presented in this credit card dataset due to

the protection of privacy of the individuals and the nature of the dataset. These data

and values must be replaced by meaningful numerical values so that SOLAR can

perform transformation functions on the data. The replacement values can be obtained

by applying the methods discussed in section 4.3.1.1 and 4.3.1.2. The result of

assigning numerical values to symbolic values are shown in Table 8-9.

Table 8-9 Symbolic Values Assignment for Credit Card Dataset

b, a 0.9189, 1.0000
u, y, l, t 1.0000, 1.0081, 12.6678, 0
g, p, gg 0.0784, 1.0081, 12.6678
c, d, cc,
i, j, k,
m, r, q,
w, x, e,
aa, ff

1.0000, 1.1453, 1.1053,
1.1479, 1.4554, 1.1103
1.2030, 2.1342, 1.0121,
1.0602, 1.2539, 1.5053,
1.0444, 1.3118

v, h, bb,
j, n, z,
dd, ff, o

1.0000, 1.0997, 1.3572,
1.6518, 1.8488, 2.9303,
1.6381, 1.3340, 6.2384

t, f 1.0000, 0.8646
t, f 1.0000, 0.8520
t, f 1.0000, 0.9135
g, p, s 1.0000, 15.7278, 1.2447

 95

8.2.3 Network Parameters

All parameters are set the same as for the two-dimensional problem discussed in

section 8.1 except number of neurons per layer and the number of layers since this

problem has more input features. Since the increased number of features raises the

complexity of the problem, more neurons are required in generating a reliable result.

All parameters are shown as follows:

• Input parameters:

1. Number of input(s) from the nearest neighbors = 1

2. Number of input(s) from the next nearest neighbors = 1

3. Number of input(s) from remote neighbors = 1

• Number of connection(s) to TCI = 3

• Voting threshold = 0.9

• Subspace selection probability = 0.1

• Information deficiency threshold = 0.1

• Number of layers = 17

• Number of neurons per layer = 15

 96

8.2.4 Simulation Results

In order to compare a result from SOLAR with previous works, the same experimental

setup as used in previous experiments (Michie, Spiegelhalter & Taylor, 1994) was

introduced in this simulation. The setup of the previous experiments used cross-

validation technique (Ston, 1974) to divide the dataset randomly into n mutually

exclusive data groups with equal size. The number of times of training and testing

process is based on the number of data groups n. During each training and testing

process, one of the groups is selected as testing data, while the rest (n-1) of the groups

are training data. The same testing group will not be selected as testing data again if it

has been chosen before, and each data group will be selected as testing data group

only once. The error rate is the average error rate of the n groups. This can eliminate

the statistical biases, and the error rate can be estimated efficiently. Similar to the

previous experiments, n was set to 10 in this simulation.

Since SOLAR is a self-organizing network, each network with different pre-wiring

can result in a different performance. In order to observe and estimate the average

performance of SOLAR, nine identical networks with different pre-wiring were

generated. As shown in Figure 8-13, these nine networks were assumed working in

parallel, and a final majority voting was performed. Table 8-10 demonstrates the

result of each network while Table 8-11 shows the result of the average performance

after the majority voting.

 97

Figure 8-13 Majority Voting with Parallel SOLARs

Table 8-10 Performance of Each SOLAR

 SOLAR Number
 N1 N2 N3 N4 N5 N6 N7 N8 N9
Mean 0.8609 0.8609 0.8594 0.8565 0.8580 0.8551 0.8261 0.8696 0.8594
SD 0.0717 0.1025 0.0820 0.0922 0.0717 0.0717 0.3689 0.0820 0.0820
Min 0.7971 0.7971 0.7971 0.7826 0.7971 0.7971 0.4203 0.8116 0.7971
Max 0.8986 0.9420 0.9130 0.9130 0.8986 0.8986 0.9420 0.9275 0.9130

Table 8-11 Average Performance after Majority Voting (Credit Card)

Mean 0.8638
SD 0.0820
Min 0.7971
Max 0.9130

 98

Setting different values to the voting threshold can help to optimize the voting result.

Figure 8-14 and Table 8-12 demonstrate the process of searching for the optimized

voting threshold value for this particular dataset.

Table 8-12 Voting Thresholds and Error Rates (Credit Card)

Voting
Threshold

0.1 0.15 0.2 0.5 0.9

Error Rate 0.1420 0.1333 0.1362 0.1377 0.1362

Figure 8-14 Voting Threshold Searching (Credit Card)

 99

Figure 8-15 illustrates the self-organized SOLAR for this credit card problem. The

confusion matrix of the better result (voting value = 0.15) is shown in Table 8-13.

This result is compared with other algorithms, and Table 8-14 shows the comparison.

SOLAR performed fairly well among all the algorithms. Although it does not

compete with the decision tree algorithm CAL5, it has the best performance among all

artificial neural networks, which are highlighted in Table 8-14.

Figure 8-15 Self-Organized Network Structure for Credit Card Problem

 100

Table 8-13 Probabilities of Classification (Credit Card)

 Data Classified as
 Class 1 Class 2
Data from Class 1 0.9349 0.0651
Data from Class 2 0.1880 0.8120

Table 8-14 Comparison Result for Credit Card Approval Dataset

Algorithm Error Rate
Cal5 0.131

SOLAR 0.1333
Itrule 0.137

Discrim 0.141
Logdisc 0.141

DIPOL92 0.141
CART 0.145
RBF 0.145

CASTLE 0.148
NaiveBay 0.151
IndCART 0.152
Backprop 0.154

C4.5 0.155
SMART 0.158
Baytree 0.171
k-NN 0.181

NewID 0.181
AC2 0.181
LVQ 0.197

ALLOC80 0.201
CN2 0.204

Quadisc 0.207
Default 0.440

Kohonen Failed

 101

8.3 Adult Income Dataset

Besides credit card approval, potential customer analysis is an example of another real

world application to which banks or financial companies can apply artificial neural

networks. These analyses help companies understand their current or potential

customers and to react properly. Personal income certainly is one of the information a

company is interested to investigate. According to The Hong Kong and Shanghai

Banking Corporation Limited (HSBC) 2001 annual review, their new mortgage loans

increased by 56 percent in value in UK while there was a 46 percent new mortgage

business volume increase in Hong Kong, most of which were related to refinancing.

Knowing the income information for current or potential customers can help banks or

financial companies to provide “right” loan packages to target customers before other

competitors do.

8.3.1 Dataset Background

This adult income dataset (Adult Database) was obtained from the University of

California at Irvine (ICS, UCI, 1995, December). The dataset contains two sets of

data. One is training data, which has 32561 instances while another one is testing

data, which has 16281 instances. Both have 15 features including class attribute, and

they are also divided into 2 classes. The dataset contains both symbolic values such as

gender, race, etc., and missing data. The content of the dataset is described in Table 8-

15.

 102

Table 8-15 Adult Income Dataset Information

Number of instances
(Training data)

32561

Number of instances
(Testing data)

16281

Number of attributes 14 + Class attribute
Number of missing
values

7%

Attribute information
Age Continuous values (17-90)
Work-Class Symbolic values (8)
Fnlwgt Continuous values (12285-

1490400)
Education Symbolic values (16)
Education-Num Continuous values (1-16)
Marital-Status Symbolic values (7)
Occupation Symbolic values (14)
Relationship Symbolic values (6)
Race Symbolic values (5)
Sex Symbolic values (2)
Capital-Gain Continuous values (0-99999)
Capital-Loss Continuous values (0-4356)
Hours-Per-week Continuous values (1-99)
Native-Country Symbolic values (41)
Class >50K, <=50K (Class attribute)

Class distribution
>50K 23.93%
<=50K 76.07%

The ranges of numerical values are listed in Table 8-15, and their distributions are

illustrated in Figure 8-16. All features are plotted with all samples in their original

scales except for Capital-Gain and Capital-Loss. Because the majority (more than

40,000) samples of both features are zero, only non-zeros samples are shown in order

to obtain better representations of their distributions.

 103

Figure 8-16 Numerical Values Distributions of Adult Income Dataset

 104

8.3.2 Missing Data and Symbolic Values

There are missing data and symbolic values present in this adult income dataset due to

the nature of the dataset. These data and values must be replaced by meaningful

numerical values so that SOLAR can perform transformation functions on the data.

The replacement values can be obtained by applying the methods discussed in section

4.3.1.1 and 4.3.1.2. The result of symbolic values assignment is shown in Table 8-16.

Table 8-16 Symbolic Values Assignment for Adult Income Dataset

Work-Class Private,
Self-emp-not-inc,
Self-emp-inc,
Federal-gov, Local-gov,
State-gov, Without-pay,
Never-worked

1.0000,
1.1865,
1.4286,
1.3889, 1.2063,
1.2778, 20.5992,
33.7778

Education Bachelors, Some-college,
11th, HS-grad,
Prof-school, Assoc-acdm,
Assoc-voc, 9th,
7th-8th, 12th,
Masters, 1st-4th,
10th, Doctorate,
5th-6th, Preschool

1.0000, 0.7691,
0.5385, 0.6924,
1.1538, 0.9232,
0.8462, 0.3847,
0.3076, 0.6153,
1.0771, 0.1538,
0.4615, 1.2309,
0.2309, 0.0771

Marital-
Status

Married-civ-spouse,
Divorced, Never-married,
Separated, Widowed,
Married-spouse-absent,
Married-AF-spouse

1.0000,
0.9977, 0.8499,
1.0271, 1.1443,
1.1865,
5.1813

Occupation Tech-support,
Craft-repair,
Other-service, Sales,
Exec-managerial,
Prof-specialty,
Handlers-cleaners,
Machine-op-inspct,
Adm-clerical,

1.0000,
0.8775,
0.8076, 0.9156,
1.0025,
1.0432,
0.8216,
0.8483,
0.8908,

 105

Farming-fishing,
Transport-moving,
Priv-house-serv,
Protective-serv,
Armed-Forces

0.9086,
0.8971,
1.0025,
0.9829,
5.4006

Relationship Wife, Own-child,
Husband, Not-in-family,
Other-relative,
Unmarried

1.0000, 0.7693,
0.9608, 0.9157,
0.9106,
0.9177

Race White,
Asian-Pac-Islander,
Amer-Indian-Eskimo,
Other, Black

1.0000,
1.2086,
1.4746,
1.5877, 1.0382

Sex Female, Male 1.0000, 1.0300
Native-
country

United-States, Cambodia,
England, Puerto-Rico,
Canada, Germany,
Outlying-US(Guam-USVI-
etc), India, Japan,
Greece, South,
China, Cuba,
Iran, Honduras,
Philippines, Italy,
Poland, Jamaica,
Vietnam, Mexico,
Portugal, Ireland,
France,
Dominican-Republic,
Laos, Ecuador,
Taiwan, Haiti,
Columbia, Hungary,
Guatemala, Nicaragua,
Scotland, Thailand,
Yugoslavia, El-Salvador,
Trinadad&Tobago, Peru,
Hong, Holand-Netherlands

1.0000, 2.1185,
1.3416, 1.0854,
1.2397, 1.2066,
2.4105,
1.3058, 1.4160,
1.6804, 1.3554,
1.3196, 1.2810,
1.7052, 2.3471,
1.1157, 1.2727,
1.3802, 1.2672,
1.2617, 0.8788,
1.2893, 1.7934,
2.0551,
1.1653,
2.3085, 1.6171,
1.7355, 1.3361,
1.3471, 2.9614,
1.1212, 1.5758,
2.6198, 2.1625,
2.2948, 1.0083,
2.0606, 1.6804,
2.0799, 25.4160

 106

8.3.3 Network Parameters

Almost all parameters are set the same as in the two-dimensions problem discussed in

section 8.1 except number of layers, number of neurons per layer, and number of TCI

connections. Different numbers of layers with two numbers of TCI are chosen to

demonstrate different performances of SOLAR. All parameters are shown as follows:

• Input parameters:

1. Number of input(s) from the nearest neighbors = 1

2. Number of input(s) from the next nearest neighbors = 1

3. Number of input(s) from remote neighbors = 1

• Number of connection(s) to TCI = 3 and 5

• Voting Threshold = 0.9

• Subspace selection probability = 0.1

• Information deficiency threshold = 0.1

• Number of layers = 16, 30, 50, and 70.

• Number of neurons per layer = 14

8.3.4 Simulation Results

Since SOLAR is a self-organizing network, each network with different pre-wiring

can result in a different performance. In order to observe and estimate the average

performance of SOLAR, nine identical networks with different pre-wiring were

 107

generated. As shown in Figure 8-11, these nine networks were assumed working in

parallel, and final majority voting was performed. Table 8-17 demonstrates the result

of each network while Table 8-18 shows the result of average performance after the

majority voting.

Table 8-17 Performance of Each SOLAR

TCI = 3

 16 Layers 30 Layers 50 Layers 70 Layers
N1 0.7877 0.7777 0.8178 0.8270
N2 0.8012 0.8300 0.7952 0.8399
N3 0.8199 0.8304 0.8230 0.8357
N4 0.8030 0.8309 0.8082 0.8248
N5 0.8055 0.7925 0.8434 0.8300
N6 0.7925 0.8207 0.8366 0.8142
N8 0.8027 0.8194 0.8058 0.8318
N8 0.8070 0.8176 0.8379 0.8203
N9 0.8111 0.8296 0.8313 0.8292

TCI = 5

 16 Layers 30 Layers 50 Layers 70 Layers
N1 0.8031 0.8241 0.8073 0.8304
N2 0.8025 0.8110 0.8272 0.8318
N3 0.8027 0.8242 0.8181 0.8388
N4 0.8054 0.8360 0.8065 0.8369
N5 0.8012 0.8229 0.8423 0.8297
N6 0.8022 0.8311 0.8439 0.8119
N8 0.8098 0.8045 0.8388 0.8249
N8 0.8028 0.8071 0.8165 0.8159
N9 0.8125 0.8273 0.8125 0.8371

 108

Table 8-18 Average Performance after Majority Voting (Adult Income)

TCI = 3
16 Layers 30 Layers 50 Layers 70 Layers

0.8036 0.8206 0.8294 0.8297

TCI = 5
16 Layers 30 Layers 50 Layers 70 Layers

0.8040 0.8225 0.8313 0.8331

The result in Figure 8-17 suggests that SOLAR with more layers performs better. In

fact, SOLAR with more layers and more TCI inputs results in a classification

improvement for this particular dataset. These outcomes are expected since increasing

number of neurons raises the chance of applying different transformations on the

inputs. Moreover, with more TCI inputs, a neuron can check more subspaces and

select the one in which the neuron has a better reduction of information deficiency. In

addition, Figure 8-16 also suggests that little improvement is gained as the number of

layers keeps increasing after 50 layers while the number of TCI inputs remains the

same.

 109

Figure 8-17 Error Rate Comparison with Number of Layers and TCI Inputs

Setting different values to the voting threshold can optimize the voting result. Figure

8-18 and Table 8-19 demonstrate the process of searching for the optimized voting

threshold value with only 17 layers of neurons for this particular dataset.

Table 8-19 Voting Thresholds and Error Rates (Adult Income)

Voting
Threshold

0.1 0.15 0.2 0.3 0.5 0.9

Error Rate 0.1671 0.1482 0.1514 0.1537 0.1665 0.1964

 110

Figure 8-18 Voting Threshold Searching (Adult Income)

 111

Figure 8-19 illustrates the self-organized SOLAR with 17 layers for this adult income

problem. The confusion matrix of the better result is shown in Table 8-20. This result

is compared with other algorithms and Table 8-21 shows the comparison. Although

SOLAR does not perform as well as the best algorithms, it is the only artificial neural

network on the list, and it was not designed for any specific classification and

recognition tasks.

Figure 8-19 Self-Organized Network Structure for Credit Card Problem

 112

Table 8-20 Probabilities of Classification (Adult Income)

 Data Classified as
 Class 1 Class 2
Data from Class 1 0.5785 0.4215
Data from Class 2 0.0637 0.9363

Table 8-21 Comparison Result for Adult Income Dataset

Algorithm Error Rate
FSS Naïve Bayes 0.1405

NBTree 0.1410
C4.5-auto 0.1446

IDTM (Decision table) 0.1446
HOODG / SOLAR 0.1482

C4.5 rules 0.1494
OC1 0.1504
C4.5 0.1554

Voted ID3 (0.6) 0.1564
CN2 0.1600

Naïve-Bayes 0.1612
Voted ID3 (0.8) 0.1647

T2 0.1687
1R 0.1954

Nearest-neighbor (3) 0.2035
Nearest-neighbor (1) 0.2142

Pebls Crashed

 113

Chapter 9
9. Conclusion and Future Work

9.1 Conclusion

This thesis demonstrates the MATLAB software simulation of Self-Organizing

Learning Array (SOLAR), which introduces a new method in machine learning

design. This software design is aimed for future hardware realization, which will be

eventually implemented in a Very Large Scale Integration (VLSI) circuit. It is mainly

used to test and design the future hardware structure.

The first part of the thesis explains the biological neural network structure, where

processing cells are usually locally connected. This idea was implemented in SOLAR

organization and pre-wiring. Then, different inputs and outputs were discussed, and

threshold clock input (TCI) was introduced. Methods for computing missing data and

symbolic values were presented. Potential arithmetic operations were shown and also

demonstrated graphically. Applying multiple functions was suggested since it could

result in a more complicated cutting of the input space. Learning and self-organizing

principles were then illustrated by introducing information index. This was followed

by the final voting with a weight function. SOLAR was simulated with two real world

 114

problems, credit card approval and adult income analysis. Although SOLAR did not

perform the best among all algorithms, it shows its abilities in classifying while it was

not designed particularly for any classification or recognition, and has better

performances compared to all other artificial neural network algorithms. In summary,

the performance of SOLAR was satisfactory, and this thesis demonstrated its ability to

self organize and learn.

9.2 Future Work

The implemented weighting function was based on the estimation of probability of

correct classification (7-1). This estimates true values of probabilities with the

confidence interval which is a function of the number of training samples in a given

subspace. When the number of points in a subspace is small, the error resulting from

the confidence interval is large, and the weighting function may wrongly select a less

reliable result. Another weighting function based on interval analysis should be

investigated as an alternative to (7-1). Additional discussion of this issue is on

Appendix A.

This thesis only covers the MATLAB software design and simulation of SOLAR. The

SOLAR project will be carried on to the next level, which is Very High Speed

Integrated Circuit Hardware Description Language (VHDL) simulation and hardware

realization. Before any further hardware implementation is done, SOLAR must be

 115

simulated using VHDL in order to address hardware design problems and other

difficulties. It then can be downloaded on FPGA chips for further simulation and

prototyping. Since resources of a single FPGA chip are limited, an FPGA machine,

which is specially designed and built with multi-FPGA chips, may be required so that

enough resources are guarantied. VLSI circuit design of SOLAR and chip fabrication

will be the last state of the project.

 116

Reference

1. Cichocki, A., and Unbehauen, R., (1993), Neural Networks for

Optimization and Signal Processing, John Wiley & Sons, Inc., New York.

2. Dayhoff, J. E. (1990), Neural Network Architectures : An Introduction,

Van Nostrand Reinhold, New York.

3. Dowling, J. E. (1998), Creating Mind : How the Brain Works,

W.W.Norton & Company, Inc., New York.

4. Ennett, C. M., Frize, M., and Walker, C. R. (2001), “Influence of Missing

Values on Artificial Neural Network Performance”, Medinfo, Vol. 10, pp.

449-53.

5. Fraser, N. (1998, September), The Biological Neuron, Available

http://vv.carleton.ca/~neil/neural/neuron-a.html

6. Hassoun, M. H. (1995), Fundamentals of Artificial Neural Networks, The

Massachusetts Institute of Technology Press, Massachusetts.

7. Information & Computer Science (ICS), University of California at Irvine

(UCI). (1995, December), Machine Learning Repository, Available

FTP: Hostname: ftp.ics.uci.edu Directory: /pub/machine-learning-

databases/

 117

8. Mahalanobis, P. C. (1936), “On the generalized distance in statistics”,

Proceedings National Institute of Science of India, 2, 49-55.

9. Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (1994), Machine

Learning, Neural and Statistical Classification, Ellis Horwood Limited,

London, U.K.

10. Newcombe, R. (1998), “Two-Sided Confidence Intervals for the Single

Proportion: Comparison of Seven Methods”, Statistics In Medicine, Vol.

17, pp. 857-872.

11. Purves, D. (1994), Neural Activity and the Growth of the Brain, Cambridge

University Press, Cambridge, Great Britain.

12. Starzyk, J. (2000), SOLAR Project, Available

http://www.ent.ohiou.edu/%7Ewebcad/proj/solar/index.html

13. Stone, M. (1974), “Cross-validatory choice and assessment of statistical

predictions”, Journal of the Royal Statistical Society, 36, 111-147.

 118

Appendix A

Confidence Interval Discussion

When the number of points in a subspace is small, the error resulting from the

confidence interval is large, and the weighting function may wrongly select a less

reliable result. Confidence interval calculation should be introduced to improve the

reliability of the weighting results. The following example illustrates how confidence

interval analysis improves the correct classification result by calculating the mean

value of the interval and using this value to decide to which class a particular

incoming data belongs.

Let us denote the true class probability of a voting neuron by Px. This probability is an

unknown, and it is estimated based on proportion Pc. In order to estimate the

unknown probability Px under the observation Pc, a statistical experiment was

conducted. In the experiment, probability Px was set to a specified value and 10 points

were generated 2000 times. A class Ax with probability Px contained all uniformly

generated points from [0,1] interval whose values were larger than 1-Px. At each run

(of 2000), the number of points out of 10 points that were generated and belonged to

the class Ax was counted. If the count was equal to Pc (in this case 9), then the count

 119

nx|c was increased by one. Px value was iterated from 0 to 1 using 100 steps (s in

general). The probability density function for Px under observation Pc was then

estimated as follows:

ws
n

s
ipdf cx

*
|=







 ,
s
ix =

where w was chosen such that ∑
=

=






s

i s
ipdf

0
1

Figure A-1 shows the probability density function of P(Px | Pc) where Pc is set to 0.9.

After setting the confidence level to 95%, the Low and High limits are obtained as

0.59 and 0.98. The area under the curve between the low limit and high limit is equal

to 0.95 (a constant). Based on pdf(x), the mean value of Px in this interval is 0.86.

Thus, probability of correct classification 0.9 under observed proportion should be

replaced by 0.86 in the voting procedure.

(A-1)

 120

Figure A-1 Probability Density Function of P(Px | Pc) – pdf(x)

 121

However, it is expensive to obtain the real density function if an estimated probability

density function produces a reasonable result. The estimated probability density

function is obtained using only three points, which are the Low limit, the Pc, and the

High limit, to calculate the mean value of the unit triangle. In this case, High and Low

limits were obtained from the estimation of the proportion confidence interval from

literature (Newcombe, 1998).

Low Limit =
()()

()2

22
2/

2
142

Zn
PnPZZZnP ccc

+
−+−+ α

High Limit =
()()

()2

22
2/

2
142

Zn
PnPZZZnP ccc

+
−+++ α

where n = total number of samples

 Zα/2 = value Z > 0 so that the area to the right of Z under the standard

 normal distribution (with zero mean and unit standard deviation) is α/2

(A-2)

(A-3)

 122

After setting confidence level to 95%, Zα/2 was obtained as 1.96. The Low and High

limits of confidence interval were calculated using (A-2) to (A-3) as 0.5958 and

0.9821. The calculated results agree with the results of the experiment extremely well.

Since Pc (0.9) is greater than 0.5*(High-Low), the mean value is calculated using

equation (A-4). The result is 0.8382, which is very close to the experiment result 0.86.

 ()() LowLowHighLowPMean c +−−=
2
1 , for

2
LowHighPc

−≥

()()LowHighPHighHighMean c −−−=
2
1 , for

2
LowHighPc

−<

Figure A-2 Estimated Probability Density Function of P(Px | Pc)

(A-4)

(A-5)

 123

The following example demonstrates how interval analysis improves the correct

classification result. Suppose there are two classes, and six voting neurons. The

probability of correct classification, number of samples in the subspace, and limits of

95% confidence interval are listed in Table A-1.

Table A-1 Probabilities of Correct Classification and Calculated Mean Value

 Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6
Number

of
Samples

1 205 10 5 200 300

Pc for
Class 1

1.00 0.60 0.71 0.08 0.12 0.25

Low
Limit for
Class 1

0.2065 0.5317 0.4057 0.007 0.0820 0.2044

High
Limit for
Class 1

1.00 0.6646 0.8978 0.5180 0.1723 0.3020

Calculated
Mean for
Class 1

0.7676 0.5991 0.6793 0.1835 0.1237 0.2516

Pc for
Class 2

0.00 0.40 0.29 0.92 0.88 0.75

Low
Limit for
Class 2

0.00 0.3354 0.1022 0.4820 0.8277 0.6980

High
Limit for
Class 2

0.7935 0.4683 0.5943 0.9930 0.9180 0.7956

Calculated
Mean for
Class 2

0.2324 0.4009 0.3207

0.8165 0.8763 0.7484

 124

Table A-2 contains two conditions for calculating the weighting function (7-3).

Condition A uses only the probability of correct classification estimated directly from

proportion to obtain the result using (7-3). Condition B uses the mean value of class

probability each neuron calculated by equation (A-4) or (A-5) estimate probability of

correct classification using (7-3). While under condition A, class 1 will be declared.

Under condition B, the classification result points toward Class 2.

Table A-2 Weights Comparison

 Condition A Condition B
Weight of Class 1 0.9999 0.8851
Weight of Class 2 0.9605 0.9454

In conclusion, the final result obtained from the weight function (7-3) using estimates

for correct classification probabilities based on proportions can be not reliable when

the number of input points is small. Therefore, applying the confidence interval

analysis can improve the reliability for the final classification.

 125

Appendix B

 Matlab Code for Missing Data Recovery

%%%%%%%%%%%%%%%%%%%
%Name: Tsun-Ho Liu
%Date: 15th Sep. 2002
%
%This is a missing data recovery program
%It takes the KNOWN data to recover the UNKNOWN
%by calculating the Mahalanobis Distance
%
%"features" is an NxM input matrix.
%N is the number of features.
%M is the number of of input data.
%"classid" is a vector of classes describing the input matrix.
%(it should contain M elements)
%
%This program is designed for any number of classes!
%%%%%%%%%%%%%%%%%%%

clear all

%loading a file containing "features" and "classid" (Singular)
load missing_ill.mat

[Frow,Fcol]=size(features); %determine the size of the input matrix

%%%%%%%%%%%%%%%%%%%
%this loop searches for locations of missing values
TempB=[];
for(i=1:Frow)

TempA=find(features(i,:)==0);
if (size(TempA,2)~=0)

TempB=[TempB TempA];
end

end

%%%%%%%%%%%%%%%%%%%
%since one input-data can contain more than one missing value
%this loop deletes unnecessary information
stick=size(TempB,2);
stickP=TempB(1);

 126

for(ck=2:stick)
P=TempB(ck);
if (size(find(stickP==P))<1)

stickP=[stickP P];
end

end

%%%%%%%%%%%%%%%%%%%
%Check if the input matrix is singular or not
%by applying QR Factorization
checkQR=features;
checkQR(:,stickP)=[]; %take all the input data with missing values

%out from matrix
[q,r,p]=qr(checkQR');

r(find(r< 1e-6 & r >-1e-6))=0; %make those very small values to zero.

[r_row r_col]=size(r);
r_state=0;
for(i=1:r_col)

tempZero=size(find(r(:,i)==0),1);
numOFr=(r_row-tempZero);
if(numOFr>r_state)

r_state=numOFr;
end

end

%%%%%%%%%%%%%%%%%%%
%if the input matrix is singular, set flag = 1, otherwise flag = 0
if(r_state==r_col)

flag=0;
else

flag=1;
end

%%%%%%%%%%%%%%%%%%%
%determine which feature is dependent and take it out
if(flag==1)

R1=r(1:r_state,1:r_state);
R2=r(1:r_state,r_state+1:r_col);
R1=inv(R1);

delCol=p(:,r_state+1:r_col);
del_loc=[];
for(i=1:(r_col-r_state))

temp_del=find(p(:,r_state+i)==1);
del_loc=[del_loc temp_del];

end

features(del_loc,:)=[];
end

 127

trainingdata=features;
cid=classid;

stick=size(stickP,2)

trainingdata(:,stickP)=[]; %take all the input data with missing
%values out from matrix

classid(:,stickP)=[];

classid=classid';
trainingdata=trainingdata';

col=size(trainingdata,2);
row=size(trainingdata,1);
maxcid=max(classid); %check how many classes are included in matrix

%%%%%%%%%%%%%%%%%%%
%this loop picks up all the input-data with missing values
test=[];
cid_test=[];
for (k=1:stick)

F=features(:,stickP(k));
F=F';
test=[test;F];
cid_test=[cid_test cid(stickP(k))];

end

%Calculating the Mahalanobis Distance
for(classSearch=1:maxcid)

c_loc=find(classid==classSearch)'; %search for locations for this
%class

meanc=mean(trainingdata(c_loc,:))'; %calculate the mean of KNOWN
%values for this class

classified=trainingdata(c_loc,:); %find the KNOWN values for this
%class

for i=1:stick
NOW=i;
CLASSNOW=cid_test(NOW);
if (CLASSNOW==classSearch)

tempClass=classified;
A=find(test(NOW,:)==0); %find all the missing values

%location for this particular
% input data

S=size(A,2);

T=size(test,2);

tempClassA=tempClass(:,A);
tempClass(:,A)=[];

 128

tempClass=[tempClass tempClassA]; %remove all the KNOWN
%features based on the
%missing values location
%to the end of the KNOWN
%matrix

cc=cov(tempClass); %take the reverse covariance matrix
dc=cc^-1;

dcmm=dc(T-S+1:T,T-S+1:T);
dcmk=dc(T-S+1:T,1:T-S);
mc=meanc;

m2=[mc(A)];
m=mc;
m(A)=[];

HERE=test(NOW,:);
HERE(A)=[];
ANSWER=abs((-(HERE-m')*dcmk'*dcmm^-1)+m2')%the calculated

%missing values
aaa=size(ANSWER’,1);
for(x=1:aaa)

features(A(x),stickP(i))=ANSWER(x);%put the
%calculated
%missing values
%back to the
%input matrix

end
end

end
end

%If the input matrix is singular
%recover the depentant features
if(flag==1)

tempF=features;
[temp_row,temp_col]=size(tempF);
features=zeros(Frow,Fcol);
addRow=size(del_loc,2);
org_del_loc=del_loc;
del_loc=sort(del_loc);

j=1;
k=1;
for (i=1:Frow)

if(i==del_loc(j))

 129

add_here=zeros(1,Fcol);
if(j<addRow)

j=j+1;
end

else
add_here=tempF(k,:);
if(k<temp_row)

k=k+1;
end

end
features(i,:)=add_here;

end

R=R1*R2;
[r_row, r_col]=size(R);
R(find(R< 1e-6 & R >-1e-6))=0; %make those very small values

%to zero.
for(i=1:r_col)

find_row_on_p=find(R(:,i)~=0);
SizeDepen=size(find_row_on_p,1);
row=[];
for(z=1:SizeDepen)

take_row=find(p(:,find_row_on_p(z))==1);
value=R(find_row_on_p(z),i);
row=[row; features(take_row,:)*value];

end
row=sum(row);
features(org_del_loc(i),:)=row;

end
end

 130

Appendix C

Matlab Code for Symbolic Value Assignment

clear all

% define numerical and symbolic columns
numcols=[1 3];
symcols=[2];

% define maximum number of symbols in any coordinate
syms a b c d e;

% read the mixed type data matrix
% it contains both numeric and symbolic values
% each column of data matrix is uniform and contains only numeric
% or symbolic data
data=[1 e 1;2 a 2;4 a 2; 3 b 0; 4 b 4; . . .

8 d 2;9 d -4;8 c 2; 9 c 2;10 c -1]
% number of samples in the data array
nsamples=size(data,1);

% matrix of numerical values
ndata=data(:,numcols);

% solve symbolic value assignment one symbolic vector at a time
for k=1:size(symcols,2)

sdata=data(:,symcols(k));

% vector of symbolic values
symvector=[a b c d e];
symnum=size(symvector,2);

% get numerical values matrix
C=eval(ndata);

% formulate symbolic location matrix
A=zeros(symnum,nsamples);
for i=1:symnum

loc=find(sdata==symvector(i));
A(i,loc)=1;

end;

 131

% A=[0 1 1 0 0 0 0 0 0 0;
% 0 0 0 1 1 0 0 0 0 0;
% 0 0 0 0 0 0 0 1 1 1;
% 0 0 0 0 0 1 1 0 0 0;
% 1 0 0 0 0 0 0 0 0 0];

A=A';

%special case if C is a single numerical column
%and this is the answer
coord1=pinv(A)*C

%if C is non-single numerical column
%Find B and divide B into B1 and Br
B=[A'*A A'*C;C'*A C'*C];
B1=[A'*A; C'*A];
Br=[A'*C; C'*C];

%Perform QR factorization
%x=Q
%y=R
[x y]=qr(Br);
x=x';

%make those very small values to zero.
y(find(y< 1e-6 & y >-1e-6))=0;

%Search for independent columns
[r_row r_col]=size(y);
r_state=0;
for(i=1:r_col)

tempZero=size(find(y(:,i)==0),1);
numOFr=(r_row-tempZero);
if(numOFr>r_state)

r_state=numOFr;
end

end

%Find Q2 base on numbers of dependent columns
q2=x(r_state+1:r_row,:);

%Find C1 and Cs
%Perform pseudoinverse of Cs and calculate answers
Bx=q2*B1;
c1=Bx(:,1);
cs=Bx(:,2:size(B1,2));
ar=-pinv(cs)*c1;
ar=[1; ar];

end

	ACKNOWLEDGEMENT
	ACKNOWLEDGEMENT	iii
	Table 4-1 Original and Recovered Data Comparison	24
	1. Introduction
	1.1 Research Objective
	1.2 Thesis Organization

	2. Overview of the Biological Neural Networks
	2.1 Living Neuron Structure and Function
	2.2 Biological Neuron Organization

	3. Structure of Self-Organizing Learning Array
	3.1 Neural Network Organization
	3.2 Initial Wiring

	4. Neurons’ Inputs and Outputs
	4.1 Basic Operation of a Neuron
	4.2 Neurons’ Clock Inputs and Outputs
	4.3 Neurons’ Signal Inputs
	Neurons’ Input Data
	4.3.1.1 Missing Data
	4.3.1.1.1 Illustration of Missing Data Recovery
	4.3.1.2 Symbolic Values
	4.3.1.2.1 Illustration of Symbolic Values Assignment
	4.3.1.3 Other Approach for Missing and Symbolic Data

	4.4 Neurons’ Output

	5. Arithmetic Operations
	5.1 Basic Arithmetic Operations
	5.2 Multiple functions

	6. Self-Organization Principles
	6.1 Neuron Self-Organizing and Learning
	6.2 Subspace Learning
	6.2.1 Termination of Learning

	7. Final Classifications
	7.1 Voting Neurons
	7.2 Weighting Function
	7.2.1 Example of Weighting Function Calculation

	8. Software Simulations
	8.1 Two Dimensional Data Illustration
	8.1.1 Network Parameters
	8.1.2 Initial Wiring
	8.1.3 Functions
	8.1.4 Neuron Learning
	8.1.4.1 Local Space
	8.1.4.2 Original Space

	8.1.5 Neuron Testing

	8.2 Credit Card Dataset
	8.2.1 Dataset Background
	8.2.2 Missing Data and Symbolic Values
	8.2.3 Network Parameters
	8.2.4 Simulation Results

	8.3 Adult Income Dataset
	8.3.1 Dataset Background
	8.3.2 Missing Data and Symbolic Values
	8.3.3 Network Parameters
	8.3.4 Simulation Results

	9. Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	Reference
	Appendix A
	
	
	
	Confidence Interval Discussion

	Appendix B
	
	
	
	Matlab Code for Missing Data Recovery

	Appendix C
	
	
	
	Matlab Code for Symbolic Value Assignment

