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Chapter 1.  
1. Introduction 
 
 
 
 
 
In the recent computational history, problems have been analyzed and solved by 

powerful computational machines in order to achieve a good result in a short time 

interval.  Although the performance of digital processors double yearly, solving more 

complex problems may still require more powerful machines and more complex 

software.  In addition, our daily problems are usually presented by a relationship that 

is not well defined.  Therefore, biologically inspired networks, which do not require 

software to operate, have been introduced.   

 

One type of these networks is called the Artificial Neural Networks.  Unlike the digital 

computer that is extremely effective at producing accurate answers to well-defined 

problems, the artificial neural network, which is modeled after the structure of the 

human brain, splits an ill-defined problem into many small pieces allowing each 

neuron in the network to solve its own task and gives an approximate output.  It may 

perform better than other methods, especially in categorization and pattern 

recognition.  Such a system classifies an object and processes it as one of the possible 

categories, which may result in a recommendation of an action.  The processing speed 

of each neuron is not the main factor in the network since effective performance can 
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be achieved with parallel processing for real-time applications.  This is an advantage 

with which no software based learning algorithms can compete, especially with a large 

dimensional training dataset.  Due to their good performance, artificial neural 

networks have been adopted in many practical applications such as credit card 

approvals, potential customer analysis and pattern recognition.  However, many 

existing artificial neural network designs require a huge number of connections 

between inputs, neurons, and outputs (Dayhoff, 1990, p. 3).  It causes the area 

consumed by interconnections to be far greater than that of the processing units.  This 

can result in an expensive hardware implementation, and ineffective Very Large Scale 

Integration (VLSI) circuit design.  Thus, new artificial neural network design with less 

interconnections and better organization can result in a more effective network to 

solve complicated problems. 

 

1.1   Research Objective 
 
This thesis focuses on Future Hardware Realization of Self-Organizing Learning 

Array (SOLAR) and its Software Simulation.  The structure of this network is similar 

to programmable arrays such as Field Programmable Gate Arrays (FPGA). The basic 

fabric of SOLAR is a fixed lattice of processing units acting as single neurons with 

programmable interconnections between them.  In this thesis, a software version of 

SOLAR architecture is considered with the lattice size based on the number of inputs.  

The network is designed for nonspecific classification and for future hardware 
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realization.  In SOLAR, a set of preprocessed training data, which well represents the 

learning space, is given to the network for learning.  The network can then determine 

and self-organize the interconnections between inputs and outputs during the learning 

process.  Each neuron can also select the best transformation function and threshold 

value for later classification using information index.  After learning, SOLAR is 

prepared for any classification within the learning space. 

 

1.2   Thesis Organization 
 
The thesis is structured as follows: 

Chapter 2 gives an overview of the biological neural networks.  Architecture, 

functionalities, and organization of living neurons are discussed. 

Chapter 3 discusses the organization of Self-Organizing Learning Array (SOLAR).  

Different artificial neural network organizations are described in this chapter.  SOLAR 

organization and wiring concept are explained. 

Chapter 4 explains the inputs and outputs of neurons.  The basic structure of SOLAR 

neuron is shown, and details of inputs and outputs of SOLAR are discussed.  Data pre-

processing methods for missing data and symbolic values are also introduced. 

Chapter 5 deals with the arithmetic operations.  Possible operations are listed and 

demonstrated graphically. 
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Chapter 6 shows the self-organization principles.  In this chapter, SOLAR self-

organization and learning principles are demonstrated both verbally and graphically.  

In addition, information index calculation is explained in this chapter. 

Chapter 7 shows final classification and voting.  Weight function is introduced for 

each neuron participating in the final voting. 

Chapter 8 demonstrates the software simulation.  In this chapter, a two-dimensional 

sample data is used to illustrate the performance of SOLAR.  Besides, two real world 

problems are used to compare the SOLAR performance to other algorithms. 

Chapter 9 is the conclusion of this thesis.  It concludes the SOLAR software project 

and gives the prospects for future works. 
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Chapter 2. 
2. Overview of the Biological Neural 
Networks 
 
 
 
 
 
In order to create an artificial neural network, one must study the structure and 

behavior of living neurons.  Glia and neuron are the basic elements of the brain.  Glias 

are supporting cells while the decision making processes are done within neurons.  

Jobs of neurons are receiving, integrating, and transmitting information.  Organization 

of neurons is not homogeneous.  Neurons located in different regions of the brain are 

shaped differently due to their responsibility and functions.  However, each of them 

has the same basic elements. 

 

2.1   Living Neuron Structure and Function 
 
The structure of a neuron, shown in Figure 2-1, includes three basic elements: a 

nucleus, dendrites, and an axon.  Dendrites act as receivers of a neuron while an axon 

acts as the transmitter.  When a neuron communicates with another neuron, chemicals 

are fired from the axon terminals.  These chemicals travel through a small synaptic 

gap and arrive at receptor sites of the dendrites.  Dendrites are excited by the 

chemicals, and the potential of positively charged ions increases.  When the potential 
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exceeds the threshold, the neuron fires to thousands of other neurons.  This process is 

repeated throughout the network. 

 

 

Figure 2-1 Structure of a Biological Neuron 
(Fraser, 1998, September) 

 
 
 
2.2   Biological Neuron Organization 
 
Neurons, in general, can be classified into two categories: long-axon cells and short-

axon cells (Dowling, 1998, p. 15).  Long-axon cells are responsible for carrying 

information from one side of the brain to another.  They have long axons and tend to 

communicate with neurons further away.  Short-axon cells, on the other hand, are 

interconnected only with local neurons.  They are mainly involved in integrating and 

processing information.  In some regions of the brain, neurons function in continuous 

layers rather than in a random network.  This layer organization is illustrated in Figure 
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2-2.  In general, short-axon neurons tend to interact with neighboring neurons locally 

while long-axon neurons pass information from one local neighborhood to another.  

 

 

Figure 2-2 Neurons Organization in Groups and Layers 
(Dowling, 1998, p. 17) 

 

In addition, some neurons in some parts of the brain can grow quicker than other parts.  

When a person grows up, during learning, new branches are expanded from one 

neuron to another to form new connections.  However, it is suggested that initial 

connections may be broken during development (Dowling, 1998, p. 133).  Most 

synapses move away from less useful neurons (Purves, 1994, p. 60).  These are the 

reasons neurons can self-organize to achieve a better performance. 

 

The Self-Organizing Learning Array discussed in this thesis uses these distinct 

features of biological neural networks: local pseudo-random interconnections, 

selection of control and input signals by each neuron and parallel processing in 
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training and recognition.  This work is based on the self-organizing learning array 

project developed at the Ohio University by Dr. Starzyk and partially described at 

http://www.ent.ohiou.edu/%7Ewebcad/proj/solar/index.html (Starzyk, 2000) 
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 Chapter 3. 
3. Structure of Self-Organizing 
Learning Array 
 
 
 
 
 
SOLAR is simply an electronic model based on the biological brain structure.  It has 

the capability to solve and analyze problems, such as pattern recognition and 

classification, which may be impossible for traditional digital computers.  SOLAR 

includes three main components which are the inputs, process layers, and outputs.  

Just like the biological brain that can solve and analyze more complicated problems 

after years of learning, SOLAR requires learning before it can be put to any test.  

Before learning can take place, initial wiring is required.  This wiring will be modified 

during the learning process. 

 

Biological neural networks are constructed in three-dimensions from microscopic 

components.  Billions of neuron interconnections can be broken or developed to 

achieve a better performance.  This is not true for artificial neural networks built with 

integrated circuits on silicon.  Artificial neural networks are limited to a two-

dimensional plane whose hard-wiring interconnections cannot be replaced or changed 

once they are constructed.  In addition to the inert, space on an integrated circuit is 
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limited.  Artificial neurons can only learn within these limited conditions. Therefore, 

neurons organization and initial wiring are extremely important for a good 

performance. 

 

3.1   Neural Network Organization 
 
Most of the existing artificial neural network organizations can be classified into three 

main categories: cellular neural network (CNN), feed backward neural network 

(FBNN) and feed forward neural network (FFNN) (Cichocki & Unbehauen, 1993, p. 

65). 

 

CNN includes many identical cells (or processing units) that have local 

interconnections among each other, and only the nearest neighbors are connected.  The 

neighboring cells can interact directly with each other, while other cells, not directly 

connected together, may still be affected indirectly due to the propagation effects from 

the dynamics of CNN.  Applications of CNN are mainly in image processing, where 

they show a great performance in solving many complex image-processing tasks that 

cannot be solved using conventional approaches. 

 

In FBNN organization, neurons are generated in parallel.  Output of each neuron in the 

network can be connected backward or forward as inputs to other neurons.  Networks 

having FBNN organization may become unstable if a positive feedback causes the 
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increase in the input signal values.  One must ensure that the mean of the output of any 

neuron in the network must be less or equal to the mean of all the inputs. 

 

In FFNN organization, on the other hand, structure of the network is constructed under 

the condition that all inputs of each neuron are connected to the input layer or the 

existing neuron outputs.  Neurons are generated in parallel.  The size of the network 

increases when new neurons are added.  As a result, growing number of outputs from 

existing neurons can be used as inputs for new neurons generated at later stages.  

Outputs of subsequently generated neurons cannot be used as inputs for those neurons 

already generated in feed forward organized neuron network, so that the network is 

always stable.  Therefore, feed forward organization is chosen for SOLAR. 

 

3.2   Initial Wiring 
 
Since this is a software simulation version of SOLAR, it can take any number of 

inputs.  Based on the size of input, numbers of neurons are generated.  It is assumed 

that a fixed number of neurons are added per each layer.  Each neuron is then 

identified by its location, row and column as shown in Figure 3-1.  Although this 

organization is not a requirement of SOLAR, it is better suited for VLSI design of 

SOLAR, where neurons are organized in a regular array to best utilize the available 

silicon area. 
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Figure 3-1 Basic SOLAR Structure 
 
 
 
It is believed that a large number of biological neurons, which are responsible for 

processing information, tend to have local connections.  There is a higher probability 

that one neuron should have connections to close neighboring neurons.  Therefore, 

statistically determined Mahalanobis distance (Mahalanobis, 1936) is introduced in the 

determination of the initial wiring.  With the feed-forward structure, new neurons are 

connected only to the previously generated neurons.  As shown in Figure 3-2, the 

neuron located at a given row and column should always be connected to the one at 

the same row and the previous column.  The next nearest neurons are those located at 
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two neurons away from the connecting neuron and so on.  Similar to the short-axon 

cells, although local connecting is highly preferred, some random and further 

connections may also be allowed with smaller probability in the pre-wiring stage.  

This pseudorandom wiring organization applies to both the neuron’s input signals as 

well as the neuron’s control (input clock), which come from logical output (output 

clock) of other neurons. 

 

        

Figure 3-2 Example of Neurons’ Initial Wiring 
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Chapter 4. 

4. Neurons’ Inputs and Outputs 
 
 
 
 
 
The process layers are where the processing neurons are located.  Preprocessed data is 

sent to different neurons through pre-wired interconnections.  Self-organizing neural 

network is very similar to living neurons in terms of architecture.  A neuron has many 

parallel inputs but only a single output, which may feed many other neurons as their 

inputs as shown in Figure 4-1. 

 

 

Figure 4-1 Neuron’s Input and Output Signals 
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4.1   Basic Operation of a Neuron 
 
Figure 4-2 shows all necessary inputs and outputs of a neuron.  All input data are 

rescaled so that they are always within a specified range (for instance 0-255 for 8-bit 

digital hardware representation).  Each neuron is able to select any inputs (or a single 

input) and perform different transformation operations.  During the learning process, 

neurons learn in parallel one layer at a time.  A neuron calculates the information 

index and selects a threshold for a combination of inputs (or a single input), a 

transformation function, and an input clock.  Information index indicates the quality of 

learning, and it is discussed in detail in Chapter 6 Self-Organization Principles.   

 

With the highest information index, the input combination, transformation function 

and threshold are stored and fixed in the neuron for later use during testing.  The 

values of the output information deficiency indicate how much the selected subspace 

has been learned, and this is also described in details in Chapter 6 Self-Organization 

Principles. These output information deficiency values are saved.  Calculated output 

(system output) is passed to other neurons as inputs.  Output clocks are also generated 

and passed to other connected neurons with their output information deficiency. 
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Figure 4-2 Neuron Inputs and Outputs 

 

4.2   Neurons’ Clock Inputs and Outputs 
 
Similar to all sequential machines, every neuron has an input clock control.  At each 

clock cycle, an input data is expected to arrive from the previous neurons or initial 

inputs.  There is one more clock input in SOLAR called threshold-control-input (TCI).  

This particular clock is designed to control neuron operation, and it is obtained by 

multiplexing the output clocks.  A neuron tries to learn more about a particular space 

based on the selected TCI.  There are three types of output clocks per neuron, and they 

are listed as follows: 

 

1. Threshold-control-output (TCO) is the original TCI of this neuron. 
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2. Threshold-control-output-thresholded (TCOT) is the original TCI multiplied 

with the logic value indication that the transformed data points passes the 

threshold.  It can be done with an AND operation as shown in Figure 4-3. 

 

 
 

Figure 4-3 TCOT 

 
 

Figure 4-4 TCOTI 
 
 
  

3. Threshold-control-output-thresholded-inverted (TCOTI) is the original TCI 

multiplied with the logic value indication that the transformed data points do 

not pass the threshold.  It can be implemented with an inverse operation of 

TCOT as shown in Figure 4-4. 

 

There can be more than one TCI for a neuron.  One always connects to the output 

clock from the closest neuron (the one located at the same row and previous column) 

since local interconnection is believed to result in a better performance.  Other TCIs 

can be selected with lower probability from other previously generated neurons.  

These n TCIs can be selected by a n-to-1 muliplexer by each neuron. 
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4.3   Neurons’ Signal Inputs 
 
Each neuron has more than one input pre-wired from the initial inputs or from outputs 

of previous neurons.  One or two of these will be selected to perform arithmetic 

operation and to produce a system output that may be used as an input by other 

neurons.  Similar to TCI, these n inputs can be selected by a n-to-1 or a n-to-2 

muliplexers for each neuron based on the transformation function, its threshold value, 

and a selected information index.  In general, neuron inputs are normalized to provide 

sufficient resolution for input-output functions. 

 

4.3.1 Neurons’ Input Data 
 
Input data is presented to SOLAR as n dimensional feature vectors.  Each feature 

represents one dimension of the whole input space.  At each clock cycle, one set of n 

dimensional data is buffered to the input layer.  The jth input data with n features can 

be represented by a vector: Xj=[xj
1, xj

2 … xj
n].  As a result, the whole set of input data 

can be described by a matrix in (4-1). 
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where t is the length of the whole input data set. 

(4-1)
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The problem of databases containing missing data and symbolic values is very 

common.  These incomplete data can cause problems for neuron operations that only 

take numerical inputs.  Therefore, blanks and symbols must be replaced by meaningful 

numerical values with some transformations, which are discussed in 4.3.1.1 and 

4.3.1.2. 

 

4.3.1.1   Missing Data 
 
There are three approaches to the missing values datasets (Ennett, Frize & Walker, 

2001).  First approach is to simply delete all cases with missing values.  This can 

result in losing potential important information of the cases.  Second approach is to 

find the mean value.  Although it is easy to calculate, it can bias the dataset.  The last 

approach is to replace missing data with statistically unbiased estimates that can 

improve the network performance.  Mahalanobis distance is used in the procedure 

developed to normalize the missing values. 

 

To define the Mahalanobis distance, mean value vector for a given class µc and 

covariance matrix for all training data from this class Cc are needed.  Then, a given 

vector of training data X ∈  Χ  with missing coordinates is represented as X=[Xk, Xm] 

where Xk are known coordinates while the missing values Xm are 
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The inverse of the covariance matrix Cc is divided according to partition of X into 

known and missing values parts. 
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As a result vector Xm can be obtained from  

 

( ) cmck µµ +−−= mm
-1

kmkm DDXX  

where µck is the part in µc corresponding to Xk while µcm represents the part 

corresponding to Xm. 

 

If the matrix Y = Χ  – µc does not have the full column rank, Y can be first factorized 

using QR factorization. 

 









==ΥΕ ΥΥ

ΥΥΥ 00
21 RR

QRQ  

where E is the permutation matrix, and RY1 is upper triangular.  Therefore, Y can be 

represented as 

 

[ ] [ ] [ ]2
1
11~21~21 Υ

−
ΥΥΥΥΥΥ Ι==ΥΥ=Υ RRRQRRQ  

where Υ~Q  contains columns of ΥQ  which are multiplied by 1ΥR  in (4-7) 

 

Y2 can be expressed as a linear combination of Y1 

 

( ) rCRR 12
1
112 Υ=Υ=Υ Υ

−
Υ  

 

(4-6)

(4-7) 

(4-8) 

(4-9) 
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Only elements of the matrix Y1 need to be determined for the missing data.  The 

reduced covariance matrix, which is based on the matrix Y1 only, is defined as 

 

kkkRC 11 ΥΥ⊥= Τ  

where 








Υ
Υ

=Υ
m

k

1

1
1  and 









ΥΥ
ΥΥ

=Υ
mm

kk

21

21  

 

The reduced Mahalanobis distance for vector X is 

 

( ) ( ) ( )Τ− −Χ−Χ=Χ 11
1

11 cRc Cd µµ  

where X = [X1 X2] and mc = [µc1 µc2] according to partition of matrix Y = [Y1 Y2] 

 

Following derivation (4-3) to (4-6), missing data result can be generated as follows 

 

( ) 1mmR
-1

kmR1k1m1 DDXX cmck µµ +−−=  

where 







=−

mmRmkR

kmRkkR1
R D,D

D,D
C  

 

 

 

(4-10) 

(4-11) 

(4-12) 
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After missing data is recovered, the result can be obtained and pasted back to vector 

X1. 

 

X1 = [Xk1 Xm1] 

 

After vector X1 is obtained, X2 can be determined from 

 

( )2
1
11112 Υ

−
ΥΧ=Χ=Χ RRC  

 
 
Thus, all missing data (independent and dependent) are recovered.  This operation can 

be repeated sequentially for each data vector X with missing data or performed 

concurrently on all vectors with some missing data.  However, separation of matrix Χ  

into missing and known values may be difficult or impossible. 

 

4.3.1.1.1 Illustration of Missing Data Recovery  
 
The following two examples are used to show the missing data recovery by applying 

Mahalanobis distance.  The dataset (Abalone Database) of the first example was 

obtained from the University of California at Irvine (ICS, UCI, 1995, December).  

This dataset contains information from 4177 input data with 29 classes.  In order to 

demonstrate the performance in a 2 dimensional plane, only two features, which are 

“height” and “weight”, are used.   

(4-13) 

(4-14) 
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In this example, class 9 is chosen.  There are 689 data points that belong to this class.  

Ten of them in feature “weight” have been randomly chosen, removed and become the 

missing data.  Then, these data were recovered by the missing data recovery algorithm 

using the Mahalanobis distance.  As the results shown in Table 4-1 and Figure 4-5, the 

recovered missing data are replaced with reasonable numerical values based on the 

distribution of this particular class. 

 

Table 4-1 Original and Recovered Data Comparison 

Original Weight Recovered Weight 
0.2800 0.4818 
1.5100 1.4995 
1.2945 1.1037 
0.6995 0.7079 
0.6880 0.8776 
1.1000 0.9907 
0.5780 0.9907 
0.9070 0.7645 
0.9615 0.8210 
1.2960 0.9341 
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Figure 4-5 Missing Data Recovery Illustration 
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Sometimes, a dataset contains dependent information.  This dependent features have to 

be identified and taken out when recovering the missing data because error can occur 

when the inverse covariance matrix is calculated during the process of missing data 

recovery.  Dependent features can be calculated after the independent part of the 

dataset is recovered.  The following example illustrates how singular matrix is 

handled.  An input matrix with 2 classes is shown in Table 4-2, which contains 21 data 

points with 11 features.  Two of the features in the input matrix are dependent, and the 

relationship is: 

 

Row 1 = Row 2 * 1.03 + Row 4 * 1.02 

Row 8 = Row 11 * 1.10 - Row 5 * 1.05 



 27

Table 4-2 Singular Input Matrix with Missing Data 
#1 #2 #3 #4 #5 #6 #7 

Class 1 Class 2 Class 2 Class 1 Class 1 Class 2 Class 1 
579.2 ? 5699.7 577.0 534.4 5708.9 538.5 
184.0 ? 1827.0 177.0 194.0 1727.0 193.0 
294.0 2749.0 2843.0 255.0 223.0 2213.0 283.0 
382.0 ? 3743.0 387.0 328.0 3853.0 333.0 
494.0 4360.0 4321.0 439.0 485.0 4996.0 442.0 
578.0 5700.0 5495.0 523.0 596.0 5323.0 510.0 
623.0 6210.0 6723.0 663.0 688.0 6232.0 693.0 
518.6 5682.8 5718.3 564.3 494.0 4788.4 574.3 
743.0 7410.0 7239.0 732.0 723.0 7221.0 734.0 
842.0 8318.0 8372.0 898.0 839.0 8843.0 833.0 
943.0 9328.0 9323.0 932.0 912.0 9122.0 944.0 

 
#8 #9 #10 #11 #12 #13 #14 

Class 1 Class 1 Class 2 Class 2 Class 2 Class 1 Class 1 
431.4 ? 5905.6 4636.7 4555.4 516.3 523.8 
101.9 ? 1923.0 1101.0 1231.0 121.0 154.0 
240.0 291.0 2938.0 2302.0 2943.0 254.0 298.0 
320.0 380.0 3848.0 3434.0 3223.0 384.0 358.0 

? 490.0 4858.0 4324.0 4211.0 432.0 475.0 
530.0 580.0 5959.0 5483.0 5321.0 549.0 552.0 
639.0 619.0 6835.0 6859.0 6948.0 684.0 671.0 

? 518.4 5263.3 5891.1 6101.0 583.7 593.6 
853.0 ? 7122.0 7473.0 7484.0 723.0 718.0 
821.0 840.0 8235.0 8243.0 8873.0 824.0 892.0 

? 939.0 9422.0 9483.0 9566.0 943.0 993.0 
 

#15 #16 #17 #18 #19 #20 #21 
Class 1 Class 1 Class 1 Class 2 Class 2 Class 1 Class 1 
466.2 513.2 532.1 5865.5 5724.2 433.8 582.2 
112.0 111.0 172.0 1983.0 1837.0 101.3 183.0 
238.0 219.0 232.0 2837.0 2744.0 243.0 254.0 
344.0 391.0 348.0 3748.0 3757.0 323.0 386.0 
483.0 438.0 495.0 4983.0 4372.0 443.0 493.0 
594.0 512.0 538.0 5848.0 5748.0 535.0 573.0 
673.0 611.0 695.0 6382.0 6223.0 646.0 654.0 
541.2 567.5 568.2 4912.0 56746 550.2 497.7 
732.0 739.0 724.0 7223.0 7434.0 754.0 786.0 
844.0 800.0 832.0 8332.0 8321.0 823.0 834.0 
953.0 934.0 989.0 9222.0 9332.0 923.0 923.0 
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After missing data of the independent feature is recovered with equation (4-12), 

dependent part of the missing data can be generated by equation (4-14).  Results are 

demonstrated in Table 4-3.  Recovered data seems reasonable and fits in the whole 

matrix. 

 

Table 4-3 Result of a Singular Input Matrix with Missing Data 
#2 #8 #9 

Class 2 Class 1 Class 1 
5772.1 431.4 555.3 
1919.9 101.9 162.2 
2749.0 240.0 291.0 
3720.2 320.0 380.6 
4360.0 454.7 490.0 
5700.0 530.0 580.0 
6210.0 639.0 619.0 
4447.2 491.7 499.8 
7410.0 853.0 757.3 
8318.0 821.0 840.0 
9328.0 881.1 939.0 

 



 29

4.3.1.2   Symbolic Values 
 
If the input matrix Χ  contains symbolic (non-numerical) data, this data can be 

assigned a numerical value so that they are best correlated to the existing data.  This 

can be accomplished with minimization of the determinant of the resulting covariance 

matrix. 

 

nt
sr

×





 ΧΧ=Χ
~

 

where s
~
Χ is a sub-matrix or a vector with all symbolic values 

rΧ is a sub-matrix or a vector with all numerical values 

  t is the number of samples 

  n is the number of features 

 

In order to minimize ( )[ ]ΧCovdet , value Xs can be selected to minimize the rank of 

Χ .  First, one should consider a single symbolic vector s
~
Χ  to which numerical values 

should be assigned so that the numerical vector Xs is a linear combination of vectors 

Xr. 

 

α∗Χ=Χ rs    ,   ss Χ∈Χ ~  

where α is a nonzero linear combination vector. 

(4-15) 

(4-16) 
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Since this problem may not have an exact solution, the norm of error vector E is 

minimized, where 

 

α∗Χ−Χ= rsE  

 

Xs can be replaced by the product of a binary matrix A and a vector of all symbols H.   

 

ΑΗ=Χ s  

 

A final form of the error vector is obtained. 

 

αrE Χ−ΑΗ=  

 

Since the objective is to minimize the error (E=0), values of H can be obtained 

applying pseudo-inverse of A 

 

( ) αrpinv ΧΑ=Η  

 

This is a desired solution with α=1 if Xr has only a single column.  If Xr has more than 

one column, H can be achieved by minimizing the norm of the error function and 

setting its derivatives to zero. 

(4-17) 

(4-18) 

(4-19) 

(4-20) 
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02 ≥= Τ EEE  

[ ] 0
2

=








−
Η

ΑΧΑ=
Η∂
Ε∂ Τ

αr  

[ ] 0
2

=








−
Η

ΑΧΧ=
∂
Ε∂ Τ

αα r  

 

Let us define matrix B as below and partition it into symbolic and numerical parts Bs 

and Br. 

 

[ ] [ ]rs
rrr

r
r

r

ΒΒ=








ΧΧΑΧ
ΧΑΑΑ

=ΑΧ












Χ

Α
=Β ΤΤ

ΤΤ

Τ

Τ

 

 

The minimum error norm is obtained by solving the following equation 

 

[ ] 0=








−
Η
αrs BB  

 

Br can be factorized by using QR factorization and its orthogonal matrix Q will be 

divided according to the rank of its upper triangular matrix R.  

 

[ ] 







==Β

00
21

21

RR
QQQRr  

(4-21) 

(4-22) 

(4-23) 

(4-24) 

(4-25) 

(4-26)
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



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−
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Equation (4-25) will change to and can be separated to two equations (4-28) and (4-

29). 

 

[ ]








=ΗΒ

=







+ΗΒ

Τ

Τ

0

0

2

2

1
211

s

s

Q

RRQ
α
α

 

 

Values of H can be solved by using equation (4-29) since it does not depend on α.  

However, H is always zero if QT
2Bs is a full rank matrix.  A single variable in H has to 

be set, such as H1=1   

 

( ) [ ] 0
1

~
~1

~

1
2 =









Η
=









Η
Η

ΒΤ

s
s

s
s CCQ  

where C1 is the first column of QT
2 Bs 

 

and s~Η  can be determined from 

 

1~~ CC ss −=Η  

 

(4-27) 

(4-28) 

(4-29) 

(4-30) 

(4-31) 
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After applying pseudo-inverse of sC~ , H can be solved as follows. 

 

( ) 








−
=Η

1~

1
CCpinv s

 

 

Equation (4-32) requires that sC~  has full column rank.  If it does not, it can be divided 

into independent and dependent parts as follows 

 

[ ] [ ]2
1

1
1

2~1~~
0

RR
R

QCCC sss
−Ι








==  

where 1~sC  and 2~sC  can be determined using QR factorization of sC~ . 

 

s~Η  is partitioned accordingly to [ ]2~1~~ sss ΗΗ=Η .  Instead of (4-31), the following 

equation will be solved. 

 

( ) 12~2
1

11~1~ CRRC sss −=Η+Η −  

 

Instead of solving for parameters of H, a combined vector Hc can be solved as follows 

 

( ) 11~2~2
1

11~ CCpinvRR sssc −=Η+Η=Η −  

(4-32) 

(4-33) 

(4-34) 

(4-35) 
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Since 1~sΗ  and 2~sΗ  cannot be uniquely defined, one can either set 2~sΗ  to zero and 

1~sΗ =Hc or introduce another constraint for elements of 1~sΗ  and 2~sΗ , for instance 

minimize the norm of H under constraint defined by (4-35).  The constraint 

minimization problem can be formulated using a Lagrangian function.  The objective 

function is: 

 

∑
Η∈

=
sish

ishF
~~

2
~  

 

with constraints  

 

( ) 011~2~1~ =+Η+Η= CCpinvDe sss  

where 2
1

1 RRD −=  

 

The Lagrangian function is defined as follows: 

 

( ) ∑
Η

=

−=Η
c

j
jjs eFL

1
~ , λλ   eej ∈  

where cΗ  is the cardinality of Hc 

 

(4-36) 

(4-37) 

(4-38)
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In order to locate the optimum of the constrained minimization of || s~Η || the 

derivatives of L( s~Η ,λ) with respect to H and λ are set to zero as shown in (4-39) and 

(4-40). 

0
~

=Ν−∇=
∂
∂ λF
h
L

is

 

( ) 0~ =Η−=
∂
∂

sjeL
λ

 

where 
















=∇

ns

s

h

h
F

~

1~

...2  and [ ] 






 Ι
=∇∇=Ν ΤΗ D

ee
c

...1    ,   n = sΗ  

 

After determining derivatives of L( s~Η ,λ), equation (4-41) is obtained from (4-39). 

 

02
2~

1~
=







 Ι
−









Η
Η

Τ λ
Ds

s
 

 

Equations (4-42) and (4-43) are obtained from (4-41). 

 

02 1~ =−Η λs  

02 2~ =−Η ΤλDs  

 

 

(4-39) 

(4-40) 

(4-41) 

(4-42) 

(4-43)
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λ  and 2~sΗ  are solved from (4-42) and (4-43) and shown as the follows: 

 

1~2 sΗ=λ  

1~2~ ss D Η=Η Τ  

 

After substituting (4-45) in (4-37), a new equation is obtained as follows: 

 

( ) 011~1~1~ =+Η+Η Τ CCpinvDD sss  

 

From which a unique solution for 1~sΗ  can be obtained 

 

( ) ( ) 11~
1

1~ 1 CCpinvDD ss
−Τ+−=Η  

 

Thus, the minimum norm solution of (4-35) is 

 










Η
Η

=Η Τ
1~

1~

s

s
s D

 

 

 

 

(4-44) 

(4-45) 

(4-46)

(4-47) 

(4-48) 
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4.3.1.2.1   Illustration of Symbolic Values Assignment  

The following two examples are used to show the symbolic values assignment 

performance.  An example is for input matrix containing only one feature vector of 

numerical values while the second has more than one column of numerical values. 

 

The following example illustrates the assignment of symbolic values when numerical 

sub-matrix Xr is a vector.  The input matrix is given as Χ , 

 
 

Τ









=Χ

cccddbbaae
10989843421

 

 
 
 
The norm of the error vector in equation (4-19) must be minimized.  To do so, a binary 

matrix A, which locates the symbolic values in Χ , is obtained first.  

 

Τ























=Α

0000000001
0001100000
1110000000
0000011000
0000000110

 

 

Xr can be obtained from Χ  by removing the symbolic values.  

 
[ ]T

r 10989843421=Χ  

(4-49) 

(4-50)

(4-51) 
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Since Xr has only one column, H can be computed by applying equation (4-20).  The 

results are shown in (4-52), and symbolic values Xs can be replaced by numerical 

values by multiplying matrix A and H as shown in (4-53).   

 

[ ]Τ=Η 0.15.80.95.30.3  

 

 

Xs = AH = [1.0   3.0  

 

The correlation coefficient betwee

calculated using (4-54).   

 

where ΗΧ r
σ  is covariance betw

deviations of Xr and H. 

 

The calculated correlation coeffic

the solution values H are well 

correlation coefficient is 

(4-52)

e
a       b       c      d       
 3.0   3.5   3.5   8.5   8.5   9.0   9.0   9.0]T 

n numerical values and evaluated symbolic values is 

Hr

rr
σσ

σ

Χ

ΗΧ=  

een the two vectors and (
rΧσ , Hσ ) are standard 

ient, shown in (4-55), and Figure 4-6 illustrate that 

correlated with the numerical values.  Calculated 

r = 0.9746 

(4-54) 

(4-55) 

(4-53) 
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Figure 4-6 Graphical Illustration of Symbolic Values Assignment 

 
 
 
The following is another example illustrating the assignment of symbolic values when 

numerical sub-matrix Xr has more than one row.  The input matrix is given as Χ , 

 

Τ

















−−
=Χ

1224240221

10989843421
cccddbbaae  

 

(4-56) 
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A binary matrix A which represents symbolic values in Χ  and Xr which contains all 

numerical values are 

 

Τ























=Α

0000000001
0001100000
1110000000
0000011000
0000000110

 

and 

Τ










−−
=Χ

1224240221
10989843421

r  

 

Since Xr has more than one column, H can be determined by minimizing the norm of 

the error function and setting its derivatives to zero as shown in equation (4-22) to (4-

23).  To minimize the error norm, the matrix B can be obtained as defined in (4-24). 

 





























−

−=Β

543312344
334361172776
1110000
21702000

32700300
4700020
4600002

 

 Bs Br

(4-57)

(4-58)

(4-59) 
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Then, Τ
2Q is obtained using QR factorization on Br and sQ ΒΤ

2  is equal to  

 























−
−

−−−
−−

−−−−

=ΒΤ

0731.01345.04663.05848.11332.0
0704.00064.03389.05709.06685.1
9825.00224.00704.01062.00766.0
0184.01191.10066.10747.00893.0
0735.09888.03394.14929.05359.0

2 sQ  

 
 

H, the normalized vector of symbolic values, c

pseudo-inverse of sC~  (4-32). 

 

[=Η 27683.21495.10000.1

 

To compare the previous result, H is scaled by m

becomes 

 

[=Η 8840.72738.38480.2

 

 

 

 

  1C  

(4-60) 
an be now computed by applying 

]Τ3511.05424.  

ultiplying all values by 
3511.0
1 , H 

]Τ0000.12406.7  

sC~

(4-61) 

(4-62) 
 
a       b         c d   e
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Symbolic values Xs can be replaced by numerical values by multiplying matrix A and 

H as shown in (4-63). 

 

    Xs = [1.0   2.85   2.85   3.274   3.274   7.241   7.241   7.884   7.884   7.884]T 

 

The correlation coefficients between different columns of numerical values and the 

evaluated symbolic values are calculated using (4-54).  The calculated correlation 

coefficients are shown in Table 4-4. 

 

Table 4-4 Correlation Coefficient Between Numerical and Symbolic Values 

Symbolic values are correlated with Correlation coefficient  (r) 
the 1st column of Xr 0.9739 
the 2nd column of Xr -0.3102 

 
 
 
The calculated correlation coefficient results, and Figures 4-7 and 4-8 illustrate that 

the solution values H are well correlated with the first column of numerical values 

while they are not well correlated with the second column of Xr.  It suggests that this 

set of symbolic values have much more dependence on the first column of numerical 

values than the second one. 

 

(4-63) 
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Figure 4-7 Symbolic Values Assignment Using 1st Column of Numerical Values  

 
 
 

 
Figure 4-8 Symbolic Values Assignment Using 2nd Column of Numerical Values  
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Figure 4-9 gives an overview of how well the features are correlated in a three 

dimensional space.  Although the calculated symbolic values do not have much 

dependence on the 2nd column of Xr alone, all features fit well in a three dimensional 

space.  

 

 
Figure 4-9 Symbolic Values Assignment in a Three-Dimensional Space 

 
 
 
The following illustrates that evaluated symbolic values with better representation can 

be achieved using all numerical values rather than taking only one vector of numerical 

values.  The comparison is done by obtaining determinants of the resulting covariance 
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matrixes of Χ  in (4-56).  If symbolic values assignments of matrix Χ  are obtained by 

applying equation (4-20) and by selecting one vector of numerical values at a time, 

two solutions are produced as shown in Table 4-5.  The correlation coefficients 

between different columns of numerical values and their evaluated symbolic values 

are calculated using (4-54).  The calculated correlation coefficients are illustrated in 

Table 4-6, and the symbolic values assignment corresponding to the highest 

correlation coefficient is selected. 

 

Table 4-5 Two Sets of Evaluated Symbolic Values 

the 1st column of Xr the 2nd column of Xr 
3.0000 2.0000 
3.5000 2.0000 
9.0000 1.0000 
8.5000 -1.0000 
1.0000 1.0000 

 
 

 

Table 4-6 Correlation Coefficient Between Numerical and Symbolic Values 

the 1st column of Xr the 2nd column of Xr 
0.9746 0.5222 

 
 
 
Since the solution obtained from the 1st column of Xr has the larger correlation 

coefficient, it is used to replace all symbolic values.  Therefore, the matrix Χ  (4-56) 

becomes aΧ  (4-64) where the calculated symbolic values are obtained from only one 
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vector of numerical values, and becomes bΧ  (4-65) when the symbolic values are 

obtained from all numerical values. 

 

Τ

















−−
=Χ

1224240221
9995.85.85.35.3331

10989843421

a  

 

 

Τ

















−−
=Χ

1224240221
88.788.788.724.724.727.327.385.285.21

10989843421

b  

 

(4-64) 

(4-65) 
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The covariance is defined as the average of the products of the deviations of feature 

values from their means in a closed sphere.  This sphere can be normalized to obtain a 

unit volume, and each element of the covariance matrix can be correspondingly 

multiplied by (n-1), where (n x n) is the size of the covariance matrix.  Determinant of 

such normalized covariance matrix gives an overview of how well all features are 

correlated within a matrix in a multidimensional space.  Ideally, the determinant of 

such normalized covariance Dc is one if all features in the matrix are totally 

independent, and it is zero if all features are perfectly correlated.  Determinants of 

resulting covariance matrices of aΧ  and bΧ  are shown in Table 4-7.  The evaluated 

symbolic values obtained with all numerical values give a better representation since 

the determinant is smaller. 

 

Table 4-7 Determinants of Resulting Covariance Matrices 

 Determinant of Covariance of aΧ  Determinant of Covariance of bΧ  
Dc 0.3455 0.3444 
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The following example illustrates how H is obtained if sC~  does not have full rank.  

Suppose that the coefficient matrix sC~  and 1C  are as follows: 

 























−−−
−

−−−
−−

−−−

=

1982.18946.147.058.1
3015.09077.034.057.0

0645.01771.007.011.0
4631.13469.00.107.0
0913.20621.034.149.0

~sC  























−
−
−
−

=

13.0
67.1
08.0
09.0
54.0

1C  

 

If a straightforward solution is used with equation (4-35) by setting 2~sΗ  = 0, 1~sΗ  

becomes 

 

( ) 








−
−

=−=Η
5741.0
5256.0

11~1~ CCpinv ss  

 

and its norm is 

 

7784.01~ =Η s  

 

(4-66) 

(4-67) 

(4-68) 

(4-69) 
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However, if 1~sΗ  is calculated using equation (4-47), it becomes 

 

( ) ( ) 







=+−=Η −Τ

1698.0
1761.0

1 11~
1

1~ CCpinvDD ss  

where 








−
== −

44.144.0
33.033.1

2
1

1 RRD  

 

Instead of setting 2~sΗ  to zero, it can be calculated using equation (4-45). 

 










−
=Η=Η Τ

1864.0
309.0

1~2~ ss D  

 

The resulting symbolic vector Hs = [ ]ΤΤΤ ΗΗ 2~
1~ ss

= [0.1761   0.1698   0.309   –0.1864]T, 

which has the norm ||Hs|| = 0.4360.  Obviously, the obtained solution satisfies equation 

(4-37) with the minimum norm. 

 

(4-70) 

(4-71) 
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4.3.1.3   Other Approach for Missing and Symbolic Data 
 
Instead of using the same covariance matrix for all points from a given class, local 

covariance matrixes obtained from clusters of points in a given class should be used.  

A clustering algorithm has to be used first to obtain these clusters and their covariance 

matrixes.  Then, their missing and symbolic values problems can be solved.  When a 

combination of symbolic and missing data exists, then the symbolic values problem 

should be solved first using samples without missing data, after which all missing data 

should be recovered. 

 

4.4   Neurons’ Output 
 
In a process layer, after a neuron has selected inputs (or a single input), transformation 

function, threshold value, and the TCI, the neuron’s output is generated.  This output 

will become an input to other neurons which are wired to the present neuron.  These 

outputs are combined with the results of the transformation functions from previous 

layers of neurons with neuron’s own transformation creating complex partitions of the 

input space.  Final, logical outputs are generated based on the threshold separation 

results from the process layers. 
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Chapter 5. 
5. Arithmetic Operations 
 
 
 
 
 
Each neuron processes its input data by selecting one of the operations.  Since 

artificial neuron networks are designed for real time processing, operations must be 

simple in order to result a small physical area and fast processing time.  Moreover, 

neurons are capable to perform liner and nonlinear mathematical operations.  The 

processor performing these operations is a reduced instruction-set processor (RISP).  

This processor is able to select one of the operations and perform it on the inputs.  It is 

assumed that the processor is designed to work with 8-bit input data. 

 

All linear and nonlinear transformations can be derived from adding, subtracting, 

averaging, and shifting.  Nonnegative results and inputs are expected.  All results from 

arithmetic operations must be scaled to full range from 0 – 255 for the 8-bit numbers 

in order to maintain the full resolution.   
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5.1   Basic Arithmetic Operations 
 
Since both linear and nonlinear arithmetic operations can be obtained using add, 

subtract, compare, and shift, the RISP processor only needs to perform such 

operations.  In addition, two single bit operations are defined in Table 5-1 and Table 5-

2: 

L(a) returns the location (starting from 0) of the most significant bit position of its 

argument a, while E(a) is the inverse of L(a). 

 

Table 5-1 L(a) Function 

a 0 1 2 4 8 16 32 64 128 
L(a) 0 1 2 3 4 5 6 7 8 

 
 
 

Table 5-2 E(a) Function 

a 0 1 2 3 4 5 6 7 8 
E(a) 0 1 2 4 8 16 32 64 128 

 
 
 

The property which relates L(a) and E(a) is follows: 

 

( )[ ] ( )[ ] aaLEaEL ==  

 

 

 

(5-1)
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Potential transformation operations within 0-255 are defined in Table 5-3. 

 
 

Table 5-3 Simple Arithmetic Operations 

 
Identical (X): X 

 

Half (X): 
2
Χ  

 

Addition (a, b): ( )
2

ba +  

 

 

Subtraction (a, b): 


 −
0

ba
 
if
if

ba
ba

<
>  

 
 
Multiplication (a, b): 

( ) ( )[ ]{ }BbLaLSubE ,+  
 

 
Exponent (a): ( ) ( )[ ]{ }32, LaLSubEE  
 

 

Square root (a): ( )






 +

22
BaLE  

 

 
Inverse (a): ( )[ ]{ }aLBSubE ,  
 

 
Square (a): ( )[ ]{ }BaLSubE ,*2  
 

 
Logarithm (a): ( )[ ]{ }5+aLLE  
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Figure 5-1 shows the behaviors of one-argument operations: exponent, square, square 

root, logarithm, and inverse functions in an 8-bits space. 

 

X feature input array = 1, 2, 3, … 255 

Y feature output array = 1, 2, 3, … 255 

 

 
Figure 5-1 Exponent, Square, Square root, Logarithm, and Inverse Function 
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5.2   Multiple functions 
 
Besides regular operations, multiple functions, which combine the different arithmetic 

operations, can also be used to generate more complicated expressions.  These 

functions are useful in separating different classes from the local input space.  In fact, 

with these operations, more complex transformation functions corresponding to the 

original input space grow along with increasing numbers of neuron’s layers.  After 

several layers, a neuron may be able to generate a complex transformation function 

based on its own basic operations with input data that may have been processed with 

many prior operations.  Figure 5-2 demonstrates how multiple simple functions 

combined together become a complex function as the one described by equation (5-1). 

 

X feature input array = 1, 2, 3, … 255 

Y feature input array = 1, 2, 3, … 255 

 

( ) ( ) ( ) 374.424log
8
log2log =Χ−




 Υ+Χ−Υ  

where 424.374 was the equivalent threshold value in the input space. 

 

(5-1) 
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Figure 5-2 Combination of Multiple Functions 
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Chapter 6 
6. Self-Organization Principles 
 
 
 
 
 
Once a network has been designed, it is ready for training.  There are two types of 

learning approaches in artificial neural network design: supervised and unsupervised 

(Hassoun, 1995, p. 57).  Supervised learning requires desired outputs and inputs.  

Outputs of the network are compared with the desired outputs, and the differences are 

propagated back to the system.  The network has to adjust its weights to match the 

network outputs.  This process continues until the network is able to produce output 

similar to the desired one.  However, if the network cannot solve the problem, all the 

parameters, such as weights, connections, number of layers, etc, must be revised and 

adjusted. 

 

The other approach is called unsupervised learning.  With such learning, only the input 

signal is provided to the network with no other influence.  Unsupervised learning in 

literature refers almost exclusively to self-organization of the training data.  It helps 

with clustering and data representation. 

 

In this thesis, self-organization is applied to the learning hardware and, in general, can 

be either supervised or unsupervised.  However, the examples illustrating its use in 
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this thesis are based on the supervised training.  Unlike neural networks which have 

well defined organization of interconnection and neuron functions, SOLAR involves 

its connections, neuron control, the transformation function, and the threshold value to 

achieve the best performance during the learning phase.  Since it does not require an 

outside help and is able to organize itself, it is also referred to as self-organizing 

network.  

 

6.1   Neuron Self-Organizing and Learning 
 
During learning, a neuron counts the total amount of training data nt.  This can be done 

simply by counting the impulses of its system clock input.  Similar to any sequential 

machines, each neuron performs an operation on the selected inputs (or single input) at 

the rising edge of the system clock.  The result may become the system output or an 

input to other neurons.  If the TCI associated with a particular input data is high, the 

result of this operation is compared against a set threshold value.  This means that this 

input data is within the subspace where the current neuron is learning.  If TCI is zero, 

on the other hand, no comparison takes place since this particular input data is outside 

of the subspace where the neuron is learning.  Counters in each neuron controlled by 

its TCI count three sets of numbers. 

 

•  Amount of data that satisfy the threshold value: ns 

•  Amount of data belonging to a class that satisfy the threshold value: nsc 
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•  Amount of data belonging to a class that does not satisfy the threshold value: 

nsic 

 

By doing so, threshold value divides the neuron’s input space into two subspaces.  The 

quality of learning of each neuron can be calculated statistically by computing the 

information index. 

 

In order to calculate information index, finding the probabilities of training data which 

fall into each subspace is required. 

•  Probability of a class satisfying threshold: 
t

sc
sc n

n
=Ρ  

•  Probability of a class not satisfying threshold: 
t

sic
sic n

n
=Ρ  

•  Subspace probability (pass threshold): 
t

s
s n

n
=Ρ  

•  Complementary subspace probability  

      (does not pass threshold): ssi Ρ−=Ρ 1  

•  Class probability – 
t

c
c n

n
=Ρ  

(6-1)

(6-2)

(6-3)

(6-4)

(6-5)
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With these calculated probabilities, information index can be obtained from (6-6). 

 

( ) ( ) ( ) ( )

( )c
c

c

sisi
sic

sicsicss
sc

scsc
s

ΡΡ








 ΡΡ−ΡΡ+






 ΡΡ−ΡΡ
−=

Ε
∆Ε

−=Ι
∑

∑∑

log

loglogloglog
11

max

 

 

Different combinations of inputs, transformation operations and TCI can result in 

different information index values.  Neurons perform information index calculation for 

different combinations, and the maximized result is obtained in order to provide an 

optimum separation of the input training data.  When the index value becomes “1”, it 

indicates that the neuron has solved its problem completely.  However, it does not 

mean that any test data can be classified correctly all the time. 

 

Figure 6-1 and Figure 6-2 show that different transformation functions can result in 

the different information index values.  These graphs show the information index 

computation by using addition and multiplication.  Having the same inputs and TCI, 

multiplication of neuron’s inputs can produce a higher information index than 

addition.  If the value remains the highest among all combinations, multiplication is 

selected by this neuron as its transformation function.  These input connections (or 

single connection) and threshold value are also stored.   

 

(6-6)
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Figure 6-1 Finding Information Index Using Addition 

 
 
 

 
Figure 6-2 Finding Information Index Using Multiplication 
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Threshold value is used to separate the input space.  Figure 6-3 shows how subtraction 

with a threshold divides a space into two subspaces and separates the two classes. 

 

  
Figure 6-3 Input space Separation Using Subtraction  
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6.2   Subspace Learning 
 
Information deficiency is simply a normalized relative subspace entropy.  It indicates 

the amount of knowledge that must be learned to solve a classification problem in a 

given subspace.  Subspace s information deficiency is defined in equation (6-7). 

  

( ) ( )

( )c
c

c

ss
sc

scsc
s

s ΡΡ

ΡΡ−ΡΡ
=

Ε
∆Ε

=
∑

∑

log

loglog

max
δ  

 

One space can be divided into many subspaces during learning.  At the first layer of 

neurons, it is assumed that the input information deficiency is one.  The relationship of 

the information index and the information deficiencies are shown in equation (6-8) 

 

∑=Ι−
s

sδ1  

 

Each subspace can be learned by minimizing the information deficiency.  If the 

information deficiency becomes zero, it means that there is nothing left to be learned 

by a neuron.  The frequency of subdividing a subspace is based on the probability of 

each neuron selecting a TCOT or TCOTI as its TCI.  If TCI of a neuron is connected 

to TCO from the previous neurons, it has a greater chance in subdividing an input 

subspace. 

 

(6-7)

(6-8)
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Once local features are selected based on the maximum local information index, 

output information deficiencies for TCOT and TCOTI are obtained, which are defined 

as the product of subspace information deficiencies and input information deficiency.  

On the other hand, the information deficiency for TCO remains the same as its input 

information deficiency.  These output information deficiencies are carried out to the 

neurons where they are connected to the threshold-control-clock (TCO, TCOTI, 

TCOT) for the next stage of learning and become the input information deficiencies of 

the next stage neurons.   

 

6.2.1   Termination of Learning  

The computed output information deficiency allows the next neuron to know if its 

corresponding selected subspace has been learned enough.  If the incoming 

information deficiency is less than or equal to the chosen information deficiency 

threshold (IDT), it indicates that not much information can be gained by further 

dividing the selected input space.  This neuron stops learning the selected subspace 

and moves on to other selected subspaces.  If the incoming information deficiencies 

are all low enough, this neuron stops learning and will not participate in voting during 

the testing stage. 
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Chapter 7. 
7. Final Classifications 
 
 
 
 
 
Data which needs to be classified is sent to the network, and each neuron performs 

classification based on their learning results.  Finally during the voting process, all 

participating neurons vote for the class to which they believe the data is categorized.  

The voting layer gathers all the information and decides which class the input really 

belongs to using a weighting function. 

 

7.1   Voting Neurons 
 
Each neuron identifies itself whether it is qualified to participate in the final 

classification after training.  This identification is done by comparing neurons’ output 

information deficiencies of TCOT and TCOTI with the voting threshold.  There are 

two flags in each neuron.  One flag is select-output-passed threshold (SOT) which 

indicates that the neuron is capable to vote when its calculated output passes its 

threshold.  It is set only if the neuron’s output information deficiency of TCOT is less 

than or equal to a voting threshold.  The other flag, select-output-passed threshold-

inverse (SOTI), indicates that the neuron is qualified to participate in voting when the 

transformed output does not pass its threshold.  This flag is set if the neuron’s output 
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information deficiency of TCOTI is smaller than or equal to a voting threshold.  If 

both flags are set, a neuron can vote for either its transformed output data passes its 

threshold or fails it.  Table 7-1 shows all the conditions for setting flags SOT and 

SOTI required for a neuron to vote. 

 

Table 7-1 SOT and SOTI Flag Set Condition 

SOT SOTI δoutput of TCOT δoutput of TCOTI 
0 0 > (1-DIT) > (1-DIT) 
0 1 > (1-DIT) <= (1-DIT) 
1 0 <= (1-DIT) > (1-DIT) 
1 1 <= (1-DIT) <= (1-DIT) 

 
 
 
7.2   Weighting Function 
 
Unlike other artificial neural networks using the “winner takes all” approach, a neuron 

having more knowledge about an input data is weighted heavier, while other neurons 

weights are lower and have less influence in the final voting.  Neurons of SOLAR first 

check whether they are capable to vote by checking their flags for a given input.  

Then, they internally stored probabilities of correct classification, based on whether 

the input data passes or does not pass threshold values, are used to calculate the 

weighting function which determines the classification of input data. 

 

During learning, each neuron counts and stores three numbers.  One is the total 

amount of data that satisfies threshold ns, another is the total number of data belonging 
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to a class that satisfies threshold nsc and finally an amount of data belonging to a class 

that does not satisfy threshold nsic. 

 

The probability of correct classification Pcc can be computed as follows: 

•  Probability of correct classification: 
b

a
cc n

n
=Ρ  

where 




=
sic

sc
a n

n
n  

 




=
si

s
b n

n
n  

nsi = nt - ns 

ns =  amount of data that satisfy the threshold value 

nsc = amount of data belonging to a class that satisfy the threshold value 

nsic = mount of data belonging to a class that does not satisfy the threshold 

value 

nt = total among training data 

 

After the transformed signals are calculated and checked against threshold, neurons set 

their self-organizing neural network output (SONNO) to notify the voting layer if they 

are voting for this incoming data.  Their classification probabilities are also sent to the 

voting layer for final classification calculation. 

 

(7-1)

(pass threshold) 
(does not pass threshold)

(pass threshold) 
(does not pass threshold)
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Once the voting layer receives the information from all participating neurons, it 

performs a final classification calculation using a weight function which is described 

in equation (7-3). 
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where 
MAXccΡ  = maximum ccΡ  of all SONNOs’ “voting” for class c 

 
iccΡ  = ccΡ of each “vote” for class c 

 n = number of “votes” for class c 

 ε = small number preventing division by zero 

 
 

(7-3)
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7.2.1   Example of Weighting Function Calculation 
 

In order to illustrate the property of this weight function, an example is provided.  

Assume that there are five neurons participating in voting for a particular input data 

with three classes, and that the correct classification probabilities of each neuron 

corresponding to the threshold value are shown in Table 7-2.  This information is 

obtained from each neuron after a learning process. 

 

Table 7-2 Probabilities of Correct Classification  

  Neuron Number   
 1 2 3 4 5 

Class 1 0 0.293 0.179 0.671 0.015 
Class 2 0.833 0.632 0.325 0.329 0.985 
Class 3 0.167 0.075 0.496 0 0 

 
 
 
As ε = 0.001, the weights of different classes for this particular input data are 

calculated with equation (7-3), and they are shown in Table 7-3.  Class 2 is classified 

by the network for this particular input data since it has the largest weight value. 

 

Table 7-3 Voting Weight for Different Classes 

Class 1 Class 2 Class 3 
0.7478 0.9863 0.5774 
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Chapter 8 

8. Software Simulations 
 
 
 
 
 
In order to show the results of the network learning, two sets of real datasets are 

selected from the University of California at Irvine (ICS, UCI, 1995, December) and 

fed to SOLAR as inputs.  These datasets represent real world application problems.  

One is a credit card approval problem from Australia, and the other one is a personal 

income classification.  In addition, a two-dimensional data example, based on 

synthetic data, is used to illustrate the SOLAR performance.  Figure 8-1 and Figure 8-

2 are flow charts indicating the logic flow of SOLAR simulation program during 

learning and testing. 
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Figure 8-1 Flow Chart of SOLAR Software Program in Learning 
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Figure 8-2 Flow Chart of SOLAR Software Program in Testing 
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8.1   Two Dimensional Data Illustration 
 
This two-dimensional training dataset was statistically generated, and it is not a real-

world application dataset.  There are five classes in this training dataset as shown in 

Table 8-1 and Figure 8-3. 

 

Table 8-1 Classes of Two Dimensional Training Data 

 Class 1 Class2 Class 3 Class 4 Class 5 
Number of 

points 
503 429 190 682 542 

 
 
 

 
Figure 8-3 Two Dimensional Input Space 
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8.1.1   Network Parameters 
 
Before generating the network, design parameters are required to be set.  These 

parameters determine the size of the input, input control clock, probability of selecting 

a subspace, and information deficiency threshold.  For example, majority of the TCI 

(90%) is connected to the TCO while 5% of the TCI connects to either TCOT or 

TCOTI randomly, when the subspace selection probability is set to 0.1.  These 

parameters are important because they can have significant effect on the network 

performance. 

 

•  Input parameters: 

1. Number of input(s) from the nearest neighbors = 1 

2. Number of input(s) from the next nearest neighbors = 1 

3. Number of input(s) from remote neighbors = 1 

•  Number of connection(s) to TCI = 3 

•  Voting threshold = 0.9 

•  Subspace selection probability = 0.1 

•  Information deficiency threshold = 0.1 

•  Number of layers = 15 

•  Number of neurons per layer = 2 
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8.1.2   Initial Wiring 
 
As discussed in Chapter 3, statistically generated Mahalanobis Distance is applied in 

initial wiring for neurons’ inputs.  According to the design parameter setting, there are 

three inputs for each neuron.  The nearest neuron, which is located at the previous 

column and the same row, is always connected.   Since more than one neuron are 

considered as the next nearest, one of them is connected based on a random generator.  

The last input is connected totally based on the random generator. 

 

After wiring the input signals, threshold-control-inputs (TCI) are connected.  Because 

local learning is believed to result in a better performance, one of the TCI is always 

connected to the nearest neuron while the other two are connected to the previous 

neurons based on the random generator.  The final initial wiring of the network is 

shown in Figure 8-4. 
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Figure 8-4 Initial Wiring of SOLAR for Two Dimensional Dataset 

 

 

8.1.3   Functions 
 
Each neuron in SOLAR has pre-defined set of operations, and they are all the same for 

each neuron throughout the network.  For faster operation, few simple operations are 

included in each neuron.  These operations (discussed in Chapter 5 – Arithmetic 

Operations) can be classified into two groups.  One group is called “unary kernels ” 

while another one is called “binary kernels”. 
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“Unary kernels” include operations such as identity, half, logarithm and exponential. 

•  Identity function: Y = IDENT (X) = X 

•  Half function: Y = HALF (X) = 
2
Χ  

•  Logarithm function: Y = NLOG2 (X) = ( )[ ]{ }52log2log2 +Χ  

•  Exponential function: Y = NEXP2 (X) = 







 Χ
322  

 

“Binary kernels” include operations such as addition and subtraction. 

•  Addition function: Y = NADD (X, Y) = 
2

Υ+Χ  

•  Subtraction function: Y = NSUB (X, Y) = X – Y 

 

A combination of  “unary kernels” and “binary kernels” operation is encouraged since 

multiple transformation functions can result in a more complicated curve that may be 

used in dividing local input space. 

(8-1)

(8-2)

(8-3)

(8-4)

(8-5)

(8-6)
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8.1.4   Neuron Learning 
 
 

 
Figure 8-5 Wiring of SOLAR after Learning Process 

 

 

Figure 8-5 shows the wiring of the network after learning.  Each neuron connects to a 

maximum of two inputs, and only one output clock is selected for its TCI.    Neurons, 

in Figure 8-5 which have no wires connected, do not have any effect on the final 

classification since they did not learn during the training process.  It is because there is 

nothing left for this neuron to learn from the input space.   
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8.1.4.1   Local Space 
 
Figure 8-6 and Figure 8-7 are examples showing a neuron (28) that divides a local 

input space by applying a combination of “unary kernels” and “binary kernels” 

operations.  The combination is: 

 

Output = NADD [NHALF (X), NLOG2 (Y)] 

 

 
Figure 8-6 Neuron Dividing Local Input Space 

(8-7)
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Figure 8-7 Neuron Dividing Local Input Space (Zoom In) 

 
 
 

Since both information deficiencies of neuron (28) are less than voting threshold as 

shown in Table 8-2, both SOT and SOTI are set.  This neuron is qualified to 

participate in the final classification for a testing data which either passes or fails its 

threshold.  Probabilities of the correct classification are calculated, and they are shown 

in Table 8-3. 

 

Table 8-2 Output Information Deficiencies of Neuron (28) 

Output Information Deficiency 
(Passing Threshold) 

Output Information Deficiency 
(Not Passing Threshold) 

0.1425 0.0017 
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Table 8-3 Correct Classification Probabilities of Neuron (28) 
 Class 1 Class 2 Class 3 Class 4 Class 5 

Pass Threshold 0.0253 0.0013 0.2527 0 0.7207 
Does Not Pass 

Threshold 
0 0.9950 0 0.0050 0 

 
 
 
Table 8-2 and Table 8-3 illustrate the close relationship between an output information 

deficiencies and the probabilities of correct classification.  As the output information 

deficiency decreases, it indicates how much this neuron knows about its local input 

space.  For neuron (28), the output information deficiency of data that did not pass 

threshold is 0.0017, and it has 0.995 probability of a correct classification for Class 2.  

This is also demonstrated graphically in Figure 8-6 and Figure 8-7 where Class 2 is 

efficiently separated from the rest of the classes by the neuron’s threshold line.  

Therefore, at later testing classification, a data, which belongs to neuron (28)’s local 

input space and does not satisfy its threshold value, is voted with high probability as 

being Class 2. 
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8.1.4.2   Original Space 
 
 

 
Figure 8-8 Cutting the Original Input Space 

 
 
 

More and more complex transformation functions grow along with the increasing 

layers of neurons.  As discussed in Chapter 5, a neuron applies its different 

transformation functions to the local input space.  These inputs may have been 

subjected to many transformations of the original input space after several neurons 

processing.  For example, neuron (28) cuts the original space as shown in Figure 8-8.  

It basically makes the transformation function more complicated which corresponds to 
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the original space by applying its own operation on the two inputs.  The relationship 

between final transformation of this neuron and the original space at Figure 8-8 can be 

obtained by tracing back all the operations that have been applied to the local inputs 

(or a single input).  The output of neuron (28) expressed by input variables in the 

original space is as follows: 

 

Output (28) = ( )






 Χ+Υ+Χ+Χ−Χ

32
exp82log

4
exp  

 

(8-7)
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Figures 8-9 and 8-10 show that having help from another neuron, most of Class 2 can 

be divided from the rest of the classes.  Classification is achieved if all neurons work 

together. 

 

 
Figure 8-9 Two Neurons Separating Class 2 
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Figure 8-10 Two Neurons Separating Class 2 (Zoom In) 
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8.1.5   Neuron Testing 
 
After learning, SOLAR is prepared to classify any data that is within the learning 

space.  A testing data is chosen from the training data to demonstrate how the network 

performs the final classification based on their probabilities of correct classification.  

The chosen test data is one of the training data from Class 2.  Values of its input 

features are 

 

X = 097  

Y = 138 

 

According to the TCI, SOT, and SOTI, neurons that participate in voting are 

 

Neuron (1) 

Neuron (2) 

Neuron (3) 

Neuron (4) 

Neuron (5) 

Neuron (8) 

Neuron (10) 

Neuron (16) 

Neuron (21) 

Neuron (24) 

Neuron (28) 
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Correct classification probabilities of each neuron corresponding to their threshold 

values are illustrated in Table 8-4. 

 

Table 8-4 Probabilities of Correct Classification 

  Neuron  Number   
 1 2 3 4 5 8 
Class 1 0.0352 0.0055 0.2399 0.0199 0 0 
Class 2 0.1586 0.3341 0.2809 0.2109 0.9850 0.6073 
Class 3 0.2093 0.1480 0 0.1994 0 0.3897 
Class 4 0 0.0903 0.4792 0.0010 0.0150 0.0030 
Class 5 0.5969 0.4221 0 0.5687 0 0 

 
  Neuron  Number  

 10 16 21 24 28 
Class 1 0 0.0012 0.0073 0 0 
Class 2 0.5106 0.2442 0.7806 0.9850 0.9950 
Class 3 0.4894 0.0948 0 0 0 
Class 4 0 0.0012 0.2121 0.0150 0.0050 
Class 5 0 0.6586 0 0 0 
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As discussed in Chapter 7 – Final Classification, probability of being a class of a 

testing data can be calculated with a weight function as described in equation (8-8). 
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where 
MAXccΡ  = maximum ccΡ  of all SONNOs’ “voting” for class c 

 
iccΡ  = ccΡ of each “vote” for class c 

 n = number of “votes” for class c 

 ε = small number preventing division by zero 

 

As ε = 0.001, the weights of different classes for this particular testing data are 

calculated; and they are shown in Table 8-5.  The final voting result suggests that this 

testing data belongs to Class 2, which is a correct classification. 

 

Table 8-5 Probability Estimates for Different Classes 

Class 1 Class 2 Class 3 Class 4 Class 5 
0.2645 0.9967 0.6018 0.5206 0.7780 

 

(8-8)
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As all the training data were used to test the performance of SOLAR, probabilities of 

classification for different classes are shown in Table 8-6.  Table 8-6 suggests that 

SOLAR is more confident to classify Class 2, Class 3, and Class 5 compared to others.   

 

Table 8-6 Probabilities of Classification 

  Data Classified as  
 Class 1 Class 2 Class 3 Class 4 Class 5 

Data from Class 1 0.8171 0 0.0040 0.1769 0.0020 
Data from Class 2 0 0.9977 0.0023 0 0 
Data from Class 3 0 0 0.9263 0 0.0737 
Data from Class 4 0.1481 0.0103 0 0.8416 0 
Data from Class 5 0 0 0 0 1 

 
 
 
The reason SOLAR has inefficient performance in classifying Class 1 and Class 4 is 

because Class 1 has large overlapping area with Class 4 as illustrated in Figure 8-11.  

Information deficiency calculation can result in a good separation between two 

groups.  After a few layers of neurons, different classes should be identified by the 

network.  However, if a large number of different members from different classes 

overlap, SOLAR can never accurately classify these members even with many layers 

of neurons because they are statically non-separable, and the probabilities of correct 

classification of these classes are always low.  The algorithm performance in such case 

is limited by Bayesian probabilities. 
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Figure 8-11 Overlapping Classes 
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8.2   Credit Card Dataset 
 
Credit cards have been widely used and have become very popular around the world.  

According to Master Card International, the number of credit cards in Asia/Pacific 

region alone grew from 30.9 million to 72.6 million between 1990 and 1998.  The 

increasing number of applications create a huge task for processing them, which is 

impossible to handle by hand.  Artificial neural networks can be used to facilitate this 

task. 

 

8.2.1   Dataset Background 
 
The credit card approval data in Australia (Credit Screening Database) was acquired 

from the University of California at Irvine (ICS, UCI, 1995, December).  The dataset 

has 690 instances, 16 features including class attribute, and it is divided into 2 classes, 

which are approve and reject represented by “+” and “–”.  The dataset contains 

numbers of credit card applications, which feature names and values have been 

replaced by symbols to protect the individuals’ privacy of the data.  The content of the 

dataset is described in Table 8-7.  Missing values and class distribution are presented 

in Table 8-8.   
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Table 8-7 Credit Card Dataset Information 

Number of instances 690
Number of attributes 15 + Class attribute

Attribute information
Attribute 1 b,a
Attribute 2 Continuous values (13.75-80.25)
Attribute 3 Continuous values (0-28)
Attribute 4 u,y,l,t
Attribute 5 g,p,gg
Attribute 6 c,d,cc,i,j,k,m,r,q,w,x,e,aa,ff
Attribute 7 v,h,bb,j,n,z,dd,ff,o
Attribute 8 Continuous values (0-28.5)
Attribute 9 t,f
Attribute 10 t,f
Attribute 11 Continuous values (0-67)
Attribute 12 t,f
Attribute 13 g,p,s
Attribute 14 Continuous values (0-2000)
Attribute 15 Continuous values (0-100000)
Attribute 16 +,- (Class attribute)

 
 
 

Table 8-8 Missing Data and Class Distribution of Credit Card Dataset 

Missing attribute 37 cases (5%) has one or more
missing values

Attribute 1 12
Attribute 2 12
Attribute 4 6
Attribute 5 6
Attribute 6 9
Attribute 7 9
Attribute 14 13

Class distribution
+ 307 (44.5%)
- 383 (55.5%)
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The ranges of numerical values are listed in Table 8-7, and their distributions are 

shown in Figure 8-12.  All plots are illustrated in their original scales except for 

Attribute 15 because the majority of its samples are extremely small.  Applying 

logarithm scale helps to present its distribution. 

 

 
Figure 8-12 Numerical Values Distributions of Credit Card Dataset 
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8.2.2   Missing Data and Symbolic Values 
 
There are missing data and symbolic values presented in this credit card dataset due to 

the protection of privacy of the individuals and the nature of the dataset.  These data 

and values must be replaced by meaningful numerical values so that SOLAR can 

perform transformation functions on the data.  The replacement values can be obtained 

by applying the methods discussed in section 4.3.1.1 and 4.3.1.2.  The result of 

assigning numerical values to symbolic values are shown in Table 8-9. 

 

Table 8-9 Symbolic Values Assignment for Credit Card Dataset 

b, a 0.9189, 1.0000
u, y, l, t 1.0000, 1.0081, 12.6678, 0
g, p, gg 0.0784, 1.0081, 12.6678
c, d, cc,
i, j, k,
m, r, q,
w, x, e,
aa, ff

1.0000, 1.1453, 1.1053,
1.1479, 1.4554, 1.1103
1.2030, 2.1342, 1.0121,
1.0602, 1.2539, 1.5053,
1.0444, 1.3118

v, h, bb,
j, n, z,
dd, ff, o

1.0000, 1.0997, 1.3572,
1.6518, 1.8488, 2.9303,
1.6381, 1.3340, 6.2384

t, f 1.0000, 0.8646
t, f 1.0000, 0.8520
t, f 1.0000, 0.9135
g, p, s 1.0000, 15.7278, 1.2447
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8.2.3   Network Parameters 
 
All parameters are set the same as for the two-dimensional problem discussed in 

section 8.1 except number of neurons per layer and the number of layers since this 

problem has more input features.  Since the increased number of features raises the 

complexity of the problem, more neurons are required in generating a reliable result.  

All parameters are shown as follows: 

•  Input parameters: 

1. Number of input(s) from the nearest neighbors = 1 

2. Number of input(s) from the next nearest neighbors = 1 

3. Number of input(s) from remote neighbors = 1 

•  Number of connection(s) to TCI = 3 

•  Voting threshold = 0.9 

•  Subspace selection probability = 0.1 

•  Information deficiency threshold = 0.1 

•  Number of layers = 17 

•  Number of neurons per layer = 15 
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8.2.4   Simulation Results 
 
In order to compare a result from SOLAR with previous works, the same experimental 

setup as used in previous experiments (Michie, Spiegelhalter & Taylor, 1994) was 

introduced in this simulation.  The setup of the previous experiments used cross-

validation technique (Ston, 1974) to divide the dataset randomly into n mutually 

exclusive data groups with equal size.  The number of times of training and testing 

process is based on the number of data groups n.  During each training and testing 

process, one of the groups is selected as testing data, while the rest (n-1) of the groups 

are training data.  The same testing group will not be selected as testing data again if it 

has been chosen before, and each data group will be selected as testing data group 

only once.  The error rate is the average error rate of the n groups.  This can eliminate 

the statistical biases, and the error rate can be estimated efficiently.  Similar to the 

previous experiments, n was set to 10 in this simulation. 

 

Since SOLAR is a self-organizing network, each network with different pre-wiring 

can result in a different performance.  In order to observe and estimate the average 

performance of SOLAR, nine identical networks with different pre-wiring were 

generated.  As shown in Figure 8-13, these nine networks were assumed working in 

parallel, and a final majority voting was performed.  Table 8-10 demonstrates the 

result of each network while Table 8-11 shows the result of the average performance 

after the majority voting. 
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Figure 8-13 Majority Voting with Parallel SOLARs 

 
 
 

Table 8-10 Performance of Each SOLAR 

 SOLAR    Number 
 N1 N2 N3 N4 N5 N6 N7 N8 N9 
Mean 0.8609 0.8609 0.8594 0.8565 0.8580 0.8551 0.8261 0.8696 0.8594 
SD 0.0717 0.1025 0.0820 0.0922 0.0717 0.0717 0.3689 0.0820 0.0820 
Min 0.7971 0.7971 0.7971 0.7826 0.7971 0.7971 0.4203 0.8116 0.7971 
Max 0.8986 0.9420 0.9130 0.9130 0.8986 0.8986 0.9420 0.9275 0.9130 

 
 
 

Table 8-11 Average Performance after Majority Voting (Credit Card) 

Mean 0.8638 
SD 0.0820 
Min 0.7971 
Max 0.9130 
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Setting different values to the voting threshold can help to optimize the voting result.  

Figure 8-14 and Table 8-12 demonstrate the process of searching for the optimized 

voting threshold value for this particular dataset. 

 

Table 8-12 Voting Thresholds and Error Rates (Credit Card) 

Voting 
Threshold 

0.1 0.15 0.2 0.5 0.9 

Error Rate 0.1420 0.1333 0.1362 0.1377 0.1362 
 
 
 

 
Figure 8-14 Voting Threshold Searching (Credit Card) 
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Figure 8-15 illustrates the self-organized SOLAR for this credit card problem.  The 

confusion matrix of the better result (voting value = 0.15) is shown in Table 8-13.  

This result is compared with other algorithms, and Table 8-14 shows the comparison.  

SOLAR performed fairly well among all the algorithms.  Although it does not 

compete with the decision tree algorithm CAL5, it has the best performance among all 

artificial neural networks, which are highlighted in Table 8-14. 

 

 
Figure 8-15 Self-Organized Network Structure for Credit Card Problem 
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Table 8-13 Probabilities of Classification (Credit Card) 

 Data Classified as 
 Class 1 Class 2 
Data from Class 1 0.9349 0.0651 
Data from Class 2 0.1880 0.8120 

 
 
 

Table 8-14 Comparison Result for Credit Card Approval Dataset 

Algorithm Error Rate 
Cal5 0.131 

SOLAR 0.1333 
Itrule 0.137 

Discrim 0.141 
Logdisc 0.141 

DIPOL92 0.141 
CART 0.145 
RBF 0.145 

CASTLE 0.148 
NaiveBay 0.151 
IndCART 0.152 
Backprop 0.154 

C4.5 0.155 
SMART 0.158 
Baytree 0.171 
k-NN 0.181 

NewID 0.181 
AC2 0.181 
LVQ 0.197 

ALLOC80 0.201 
CN2 0.204 

Quadisc 0.207 
Default 0.440 

Kohonen Failed 
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8.3   Adult Income Dataset 
 
Besides credit card approval, potential customer analysis is an example of another real 

world application to which banks or financial companies can apply artificial neural 

networks.  These analyses help companies understand their current or potential 

customers and to react properly.  Personal income certainly is one of the information a 

company is interested to investigate.  According to The Hong Kong and Shanghai 

Banking Corporation Limited (HSBC) 2001 annual review, their new mortgage loans 

increased by 56 percent in value in UK while there was a 46 percent new mortgage 

business volume increase in Hong Kong, most of which were related to refinancing.  

Knowing the income information for current or potential customers can help banks or 

financial companies to provide “right” loan packages to target customers before other 

competitors do. 

 

8.3.1   Dataset Background 
 
This adult income dataset (Adult Database) was obtained from the University of 

California at Irvine (ICS, UCI, 1995, December).  The dataset contains two sets of 

data.  One is training data, which has 32561 instances while another one is testing 

data, which has 16281 instances.  Both have 15 features including class attribute, and 

they are also divided into 2 classes.  The dataset contains both symbolic values such as 

gender, race, etc., and missing data.  The content of the dataset is described in Table 8-

15.   
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Table 8-15 Adult Income Dataset Information 

Number of instances
(Training data)

32561

Number of instances
(Testing data)

16281

Number of attributes 14 + Class attribute
Number of missing
values

7%

Attribute information
Age Continuous values (17-90)
Work-Class Symbolic values (8)
Fnlwgt Continuous values (12285-

1490400)
Education Symbolic values (16)
Education-Num Continuous values (1-16)
Marital-Status Symbolic values (7)
Occupation Symbolic values (14)
Relationship Symbolic values (6)
Race Symbolic values (5)
Sex Symbolic values (2)
Capital-Gain Continuous values (0-99999)
Capital-Loss Continuous values (0-4356)
Hours-Per-week Continuous values (1-99)
Native-Country Symbolic values (41)
Class >50K, <=50K (Class attribute)

Class distribution
>50K 23.93%
<=50K 76.07%

 
 
 
The ranges of numerical values are listed in Table 8-15, and their distributions are 

illustrated in Figure 8-16.  All features are plotted with all samples in their original 

scales except for Capital-Gain and Capital-Loss.  Because the majority (more than 

40,000) samples of both features are zero, only non-zeros samples are shown in order 

to obtain better representations of their distributions. 
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Figure 8-16 Numerical Values Distributions of Adult Income Dataset 
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8.3.2   Missing Data and Symbolic Values 
 
There are missing data and symbolic values present in this adult income dataset due to 

the nature of the dataset.  These data and values must be replaced by meaningful 

numerical values so that SOLAR can perform transformation functions on the data.  

The replacement values can be obtained by applying the methods discussed in section 

4.3.1.1 and 4.3.1.2.  The result of symbolic values assignment is shown in Table 8-16. 

 

Table 8-16 Symbolic Values Assignment for Adult Income Dataset 

Work-Class Private,
Self-emp-not-inc,
Self-emp-inc,
Federal-gov, Local-gov,
State-gov, Without-pay,
Never-worked

1.0000,
1.1865,
1.4286,
1.3889, 1.2063,
1.2778, 20.5992,
33.7778

Education Bachelors, Some-college,
11th, HS-grad,
Prof-school, Assoc-acdm,
Assoc-voc, 9th,
7th-8th, 12th,
Masters, 1st-4th,
10th, Doctorate,
5th-6th, Preschool

1.0000, 0.7691,
0.5385, 0.6924,
1.1538, 0.9232,
0.8462, 0.3847,
0.3076, 0.6153,
1.0771, 0.1538,
0.4615, 1.2309,
0.2309, 0.0771

Marital-
Status

Married-civ-spouse,
Divorced, Never-married,
Separated, Widowed,
Married-spouse-absent,
Married-AF-spouse

1.0000,
0.9977, 0.8499,
1.0271, 1.1443,
1.1865,
5.1813

Occupation Tech-support,
Craft-repair,
Other-service, Sales,
Exec-managerial,
Prof-specialty,
Handlers-cleaners,
Machine-op-inspct,
Adm-clerical,

1.0000,
0.8775,
0.8076, 0.9156,
1.0025,
1.0432,
0.8216,
0.8483,
0.8908,
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Farming-fishing,
Transport-moving,
Priv-house-serv,
Protective-serv,
Armed-Forces

0.9086,
0.8971,
1.0025,
0.9829,
5.4006

Relationship Wife, Own-child,
Husband, Not-in-family,
Other-relative,
Unmarried

1.0000, 0.7693,
0.9608, 0.9157,
0.9106,
0.9177

Race White,
Asian-Pac-Islander,
Amer-Indian-Eskimo,
Other, Black

1.0000,
1.2086,
1.4746,
1.5877, 1.0382

Sex Female, Male 1.0000, 1.0300
Native-
country

United-States, Cambodia,
England, Puerto-Rico,
Canada, Germany,
Outlying-US(Guam-USVI-
etc), India, Japan,
Greece, South,
China, Cuba,
Iran, Honduras,
Philippines, Italy,
Poland, Jamaica,
Vietnam, Mexico,
Portugal, Ireland,
France,
Dominican-Republic,
Laos, Ecuador,
Taiwan, Haiti,
Columbia, Hungary,
Guatemala, Nicaragua,
Scotland, Thailand,
Yugoslavia, El-Salvador,
Trinadad&Tobago, Peru,
Hong, Holand-Netherlands

1.0000, 2.1185,
1.3416, 1.0854,
1.2397, 1.2066,
2.4105,
1.3058, 1.4160,
1.6804, 1.3554,
1.3196, 1.2810,
1.7052, 2.3471,
1.1157, 1.2727,
1.3802, 1.2672,
1.2617, 0.8788,
1.2893, 1.7934,
2.0551,
1.1653,
2.3085, 1.6171,
1.7355, 1.3361,
1.3471, 2.9614,
1.1212, 1.5758,
2.6198, 2.1625,
2.2948, 1.0083,
2.0606, 1.6804,
2.0799, 25.4160
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8.3.3   Network Parameters 

Almost all parameters are set the same as in the two-dimensions problem discussed in 

section 8.1 except number of layers, number of neurons per layer, and number of TCI 

connections.  Different numbers of layers with two numbers of TCI are chosen to 

demonstrate different performances of SOLAR.  All parameters are shown as follows: 

•  Input parameters: 

1.   Number of input(s) from the nearest neighbors = 1 

2.   Number of input(s) from the next nearest neighbors = 1 

3.   Number of input(s) from remote neighbors = 1 

•  Number of connection(s) to TCI = 3 and 5 

•  Voting Threshold = 0.9 

•  Subspace selection probability = 0.1 

•  Information deficiency threshold = 0.1 

•  Number of layers = 16, 30, 50, and 70. 

•  Number of neurons per layer = 14 

 

8.3.4   Simulation Results 
 
Since SOLAR is a self-organizing network, each network with different pre-wiring 

can result in a different performance.  In order to observe and estimate the average 

performance of SOLAR, nine identical networks with different pre-wiring were 
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generated.  As shown in Figure 8-11, these nine networks were assumed working in 

parallel, and final majority voting was performed.  Table 8-17 demonstrates the result 

of each network while Table 8-18 shows the result of average performance after the 

majority voting. 

 

Table 8-17 Performance of Each SOLAR 

 
TCI = 3 

 16 Layers 30 Layers 50 Layers 70 Layers 
N1 0.7877 0.7777 0.8178 0.8270 
N2 0.8012 0.8300 0.7952 0.8399 
N3 0.8199 0.8304 0.8230 0.8357 
N4 0.8030 0.8309 0.8082 0.8248 
N5 0.8055 0.7925 0.8434 0.8300 
N6 0.7925 0.8207 0.8366 0.8142 
N8 0.8027 0.8194 0.8058 0.8318 
N8 0.8070 0.8176 0.8379 0.8203 
N9 0.8111 0.8296 0.8313 0.8292 

 
TCI = 5 

 16 Layers 30 Layers 50 Layers 70 Layers 
N1 0.8031 0.8241 0.8073 0.8304 
N2 0.8025 0.8110 0.8272 0.8318 
N3 0.8027 0.8242 0.8181 0.8388 
N4 0.8054 0.8360 0.8065 0.8369 
N5 0.8012 0.8229 0.8423 0.8297 
N6 0.8022 0.8311 0.8439 0.8119 
N8 0.8098 0.8045 0.8388 0.8249 
N8 0.8028 0.8071 0.8165 0.8159 
N9 0.8125 0.8273 0.8125 0.8371 
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Table 8-18 Average Performance after Majority Voting (Adult Income) 

TCI = 3 
16 Layers 30 Layers 50 Layers 70 Layers 

0.8036 0.8206 0.8294 0.8297 
 

TCI = 5 
16 Layers 30 Layers 50 Layers 70 Layers 

0.8040 0.8225 0.8313 0.8331 
 
 
 
The result in Figure 8-17 suggests that SOLAR with more layers performs better.  In 

fact, SOLAR with more layers and more TCI inputs results in a classification 

improvement for this particular dataset.  These outcomes are expected since increasing 

number of neurons raises the chance of applying different transformations on the 

inputs.  Moreover, with more TCI inputs, a neuron can check more subspaces and 

select the one in which the neuron has a better reduction of information deficiency.  In 

addition, Figure 8-16 also suggests that little improvement is gained as the number of 

layers keeps increasing after 50 layers while the number of TCI inputs remains the 

same.   
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Figure 8-17 Error Rate Comparison with Number of Layers and TCI Inputs 

 
 
 
Setting different values to the voting threshold can optimize the voting result.  Figure 

8-18 and Table 8-19 demonstrate the process of searching for the optimized voting 

threshold value with only 17 layers of neurons for this particular dataset. 

 

Table 8-19 Voting Thresholds and Error Rates (Adult Income) 

Voting 
Threshold 

0.1 0.15 0.2 0.3 0.5 0.9 

Error Rate 0.1671 0.1482 0.1514 0.1537 0.1665 0.1964 
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Figure 8-18 Voting Threshold Searching (Adult Income) 
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Figure 8-19 illustrates the self-organized SOLAR with 17 layers for this adult income 

problem.  The confusion matrix of the better result is shown in Table 8-20.  This result 

is compared with other algorithms and Table 8-21 shows the comparison.  Although 

SOLAR does not perform as well as the best algorithms, it is the only artificial neural 

network on the list, and it was not designed for any specific classification and 

recognition tasks. 

 

 
Figure 8-19 Self-Organized Network Structure for Credit Card Problem 
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Table 8-20 Probabilities of Classification (Adult Income) 

 Data Classified as 
 Class 1 Class 2 
Data from Class 1 0.5785 0.4215 
Data from Class 2 0.0637 0.9363 

 
 
 

Table 8-21 Comparison Result for Adult Income Dataset 

Algorithm Error Rate 
FSS Naïve Bayes 0.1405 

NBTree 0.1410 
C4.5-auto 0.1446 

IDTM (Decision table) 0.1446 
HOODG / SOLAR 0.1482 

C4.5 rules 0.1494 
OC1 0.1504 
C4.5 0.1554 

Voted ID3 (0.6) 0.1564 
CN2 0.1600 

Naïve-Bayes 0.1612 
Voted ID3 (0.8) 0.1647 

T2 0.1687 
1R 0.1954 

Nearest-neighbor (3) 0.2035 
Nearest-neighbor (1) 0.2142 

Pebls Crashed 
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Chapter 9 
9. Conclusion and Future Work 
 
 
 
 
 
9.1   Conclusion 
 
This thesis demonstrates the MATLAB software simulation of Self-Organizing 

Learning Array (SOLAR), which introduces a new method in machine learning 

design.  This software design is aimed for future hardware realization, which will be 

eventually implemented in a Very Large Scale Integration (VLSI) circuit.  It is mainly 

used to test and design the future hardware structure. 

 

The first part of the thesis explains the biological neural network structure, where 

processing cells are usually locally connected.  This idea was implemented in SOLAR 

organization and pre-wiring.  Then, different inputs and outputs were discussed, and 

threshold clock input (TCI) was introduced.  Methods for computing missing data and 

symbolic values were presented.  Potential arithmetic operations were shown and also 

demonstrated graphically.  Applying multiple functions was suggested since it could 

result in a more complicated cutting of the input space.  Learning and self-organizing 

principles were then illustrated by introducing information index.  This was followed 

by the final voting with a weight function.  SOLAR was simulated with two real world 
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problems, credit card approval and adult income analysis.  Although SOLAR did not 

perform the best among all algorithms, it shows its abilities in classifying while it was 

not designed particularly for any classification or recognition, and has better 

performances compared to all other artificial neural network algorithms.  In summary, 

the performance of SOLAR was satisfactory, and this thesis demonstrated its ability to 

self organize and learn. 

 

9.2   Future Work 
 
The implemented weighting function was based on the estimation of probability of 

correct classification (7-1).  This estimates true values of probabilities with the 

confidence interval which is a function of the number of training samples in a given 

subspace.  When the number of points in a subspace is small, the error resulting from 

the confidence interval is large, and the weighting function may wrongly select a less 

reliable result.  Another weighting function based on interval analysis should be 

investigated as an alternative to (7-1).  Additional discussion of this issue is on 

Appendix A. 

 

This thesis only covers the MATLAB software design and simulation of SOLAR.  The 

SOLAR project will be carried on to the next level, which is Very High Speed 

Integrated Circuit Hardware Description Language (VHDL) simulation and hardware 

realization.  Before any further hardware implementation is done, SOLAR must be 
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simulated using VHDL in order to address hardware design problems and other 

difficulties.  It then can be downloaded on FPGA chips for further simulation and 

prototyping.  Since resources of a single FPGA chip are limited, an FPGA machine, 

which is specially designed and built with multi-FPGA chips, may be required so that 

enough resources are guarantied.  VLSI circuit design of SOLAR and chip fabrication 

will be the last state of the project. 
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Appendix A 
 
 
 
 
 
Confidence Interval Discussion 
 

When the number of points in a subspace is small, the error resulting from the 

confidence interval is large, and the weighting function may wrongly select a less 

reliable result.  Confidence interval calculation should be introduced to improve the 

reliability of the weighting results.  The following example illustrates how confidence 

interval analysis improves the correct classification result by calculating the mean 

value of the interval and using this value to decide to which class a particular 

incoming data belongs. 

 

Let us denote the true class probability of a voting neuron by Px.  This probability is an 

unknown, and it is estimated based on proportion Pc.  In order to estimate the 

unknown probability Px under the observation Pc, a statistical experiment was 

conducted.  In the experiment, probability Px was set to a specified value and 10 points 

were generated 2000 times.  A class Ax with probability Px contained all uniformly 

generated points from [0,1] interval whose values were larger than 1-Px.  At each run 

(of 2000), the number of points out of 10 points that were generated and belonged to 

the class Ax was counted.  If the count was equal to Pc (in this case 9), then the count 
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nx|c was increased by one.  Px value was iterated from 0 to 1 using 100 steps (s in 

general).  The probability density function for Px under observation Pc was then 

estimated as follows: 

ws
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Figure A-1 shows the probability density function of P(Px | Pc) where Pc is set to 0.9.  

After setting the confidence level to 95%, the Low and High limits are obtained as 

0.59 and 0.98.  The area under the curve between the low limit and high limit is equal 

to 0.95 (a constant).  Based on pdf(x), the mean value of Px in this interval is 0.86.  

Thus, probability of correct classification 0.9 under observed proportion should be 

replaced by 0.86 in the voting procedure.  

 

(A-1)
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Figure A-1 Probability Density Function of P(Px | Pc) – pdf(x) 
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However, it is expensive to obtain the real density function if an estimated probability 

density function produces a reasonable result.  The estimated probability density 

function is obtained using only three points, which are the Low limit, the Pc, and the 

High limit, to calculate the mean value of the unit triangle.  In this case, High and Low 

limits were obtained from the estimation of the proportion confidence interval from 

literature (Newcombe, 1998).   

 

Low Limit = 
( )( )

( )2

22
2/

2
142

Zn
PnPZZZnP ccc

+
−+−+ α  

High Limit = 
( )( )

( )2

22
2/

2
142

Zn
PnPZZZnP ccc

+
−+++ α  

where n = total number of samples 

          Zα/2 = value Z > 0 so that the area to the right of Z under the standard 

          normal distribution (with zero mean and unit standard deviation) is α/2 

 

(A-2)

(A-3)
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After setting confidence level to 95%, Zα/2 was obtained as 1.96.  The Low and High 

limits of confidence interval were calculated using (A-2) to (A-3) as 0.5958 and 

0.9821.  The calculated results agree with the results of the experiment extremely well.  

Since Pc (0.9) is greater than 0.5*(High-Low), the mean value is calculated using 

equation (A-4).  The result is 0.8382, which is very close to the experiment result 0.86. 

 

 ( )( ) LowLowHighLowPMean c +−−=
2
1     ,   for 

2
LowHighPc

−≥  

( )( )LowHighPHighHighMean c −−−=
2
1   ,   for 

2
LowHighPc

−<  

 

 
Figure A-2 Estimated Probability Density Function of P(Px | Pc) 

(A-4)

(A-5)
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The following example demonstrates how interval analysis improves the correct 

classification result.  Suppose there are two classes, and six voting neurons.  The 

probability of correct classification, number of samples in the subspace, and limits of 

95% confidence interval are listed in Table A-1.   

 

Table A-1 Probabilities of Correct Classification and Calculated Mean Value 

 Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6
Number 

of 
Samples 

1 205 10 5 200 300 

Pc for 
Class 1 

1.00 0.60 0.71 0.08 0.12 0.25 

Low 
Limit for 
Class 1 

0.2065 0.5317 0.4057 0.007 0.0820 0.2044 

High 
Limit for 
Class 1 

1.00 0.6646 0.8978 0.5180 0.1723 0.3020 

Calculated 
Mean for 
Class 1 

0.7676 0.5991 0.6793 0.1835 0.1237 0.2516 

Pc for 
Class 2 

0.00 0.40 0.29 0.92 0.88 0.75 

Low 
Limit for 
Class 2 

0.00 0.3354 0.1022 0.4820 0.8277 0.6980 

High 
Limit for 
Class 2 

0.7935 0.4683 0.5943 0.9930 0.9180 0.7956 

Calculated 
Mean for 
Class 2 

0.2324 0.4009 0.3207 
  

0.8165 0.8763 0.7484 
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Table A-2 contains two conditions for calculating the weighting function (7-3).  

Condition A uses only the probability of correct classification estimated directly from 

proportion to obtain the result using (7-3).  Condition B uses the mean value of class 

probability each neuron calculated by equation (A-4) or (A-5) estimate probability of 

correct classification using (7-3).  While under condition A, class 1 will be declared. 

Under condition B, the classification result points toward Class 2. 

 

Table A-2 Weights Comparison  

 Condition A Condition B 
Weight of Class 1 0.9999 0.8851 
Weight of Class 2 0.9605 0.9454 

 
 
 
In conclusion, the final result obtained from the weight function (7-3) using estimates 

for correct classification probabilities based on proportions can be not reliable when 

the number of input points is small.  Therefore, applying the confidence interval 

analysis can improve the reliability for the final classification. 
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Appendix B 
 
 
 
 
 
 Matlab Code for Missing Data Recovery 
 
 
%%%%%%%%%%%%%%%%%%%
%Name: Tsun-Ho Liu
%Date: 15th Sep. 2002
%
%This is a missing data recovery program
%It takes the KNOWN data to recover the UNKNOWN
%by calculating the Mahalanobis Distance
%
%"features" is an NxM input matrix.
%N is the number of features.
%M is the number of of input data.
%"classid" is a vector of classes describing the input matrix.
%(it should contain M elements)
%
%This program is designed for any number of classes!
%%%%%%%%%%%%%%%%%%%

clear all

%loading a file containing "features" and "classid" (Singular)
load missing_ill.mat

[Frow,Fcol]=size(features); %determine the size of the input matrix

%%%%%%%%%%%%%%%%%%%
%this loop searches for locations of missing values
TempB=[];
for(i=1:Frow)

TempA=find(features(i,:)==0);
if (size(TempA,2)~=0)

TempB=[TempB TempA];
end

end

%%%%%%%%%%%%%%%%%%%
%since one input-data can contain more than one missing value
%this loop deletes unnecessary information
stick=size(TempB,2);
stickP=TempB(1);
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for(ck=2:stick)
P=TempB(ck);
if (size(find(stickP==P))<1)

stickP=[stickP P];
end

end

%%%%%%%%%%%%%%%%%%%
%Check if the input matrix is singular or not
%by applying QR Factorization
checkQR=features;
checkQR(:,stickP)=[]; %take all the input data with missing values

%out from matrix
[q,r,p]=qr(checkQR');

r(find(r< 1e-6 & r >-1e-6))=0; %make those very small values to zero.

[r_row r_col]=size(r);
r_state=0;
for(i=1:r_col)

tempZero=size(find(r(:,i)==0),1);
numOFr=(r_row-tempZero);
if(numOFr>r_state)

r_state=numOFr;
end

end

%%%%%%%%%%%%%%%%%%%
%if the input matrix is singular, set flag = 1, otherwise flag = 0
if(r_state==r_col)

flag=0;
else

flag=1;
end

%%%%%%%%%%%%%%%%%%%
%determine which feature is dependent and take it out
if(flag==1)

R1=r(1:r_state,1:r_state);
R2=r(1:r_state,r_state+1:r_col);
R1=inv(R1);

delCol=p(:,r_state+1:r_col);
del_loc=[];
for(i=1:(r_col-r_state))

temp_del=find(p(:,r_state+i)==1);
del_loc=[del_loc temp_del];

end

features(del_loc,:)=[];
end
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trainingdata=features;
cid=classid;

stick=size(stickP,2)

trainingdata(:,stickP)=[]; %take all the input data with missing
%values out from matrix

classid(:,stickP)=[];

classid=classid';
trainingdata=trainingdata';

col=size(trainingdata,2);
row=size(trainingdata,1);
maxcid=max(classid); %check how many classes are included in matrix

%%%%%%%%%%%%%%%%%%%
%this loop picks up all the input-data with missing values
test=[];
cid_test=[];
for (k=1:stick)

F=features(:,stickP(k));
F=F';
test=[test;F];
cid_test=[cid_test cid(stickP(k))];

end

%Calculating the Mahalanobis Distance
for(classSearch=1:maxcid)

c_loc=find(classid==classSearch)'; %search for locations for this
%class

meanc=mean(trainingdata(c_loc,:))'; %calculate the mean of KNOWN
%values for this class

classified=trainingdata(c_loc,:); %find the KNOWN values for this
%class

for i=1:stick
NOW=i;
CLASSNOW=cid_test(NOW);
if (CLASSNOW==classSearch)

tempClass=classified;
A=find(test(NOW,:)==0); %find all the missing values

%location for this particular
% input data

S=size(A,2);

T=size(test,2);

tempClassA=tempClass(:,A);
tempClass(:,A)=[];
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tempClass=[tempClass tempClassA]; %remove all the KNOWN
%features based on the
%missing values location
%to the end of the KNOWN
%matrix

cc=cov(tempClass); %take the reverse covariance matrix
dc=cc^-1;

dcmm=dc(T-S+1:T,T-S+1:T);
dcmk=dc(T-S+1:T,1:T-S);
mc=meanc;

m2=[mc(A)];
m=mc;
m(A)=[];

HERE=test(NOW,:);
HERE(A)=[];
ANSWER=abs((-(HERE-m')*dcmk'*dcmm^-1)+m2')%the calculated

%missing values
aaa=size(ANSWER’,1);
for(x=1:aaa)

features(A(x),stickP(i))=ANSWER(x);%put the
%calculated
%missing values
%back to the
%input matrix

end
end

end
end

%If the input matrix is singular
%recover the depentant features
if(flag==1)

tempF=features;
[temp_row,temp_col]=size(tempF);
features=zeros(Frow,Fcol);
addRow=size(del_loc,2);
org_del_loc=del_loc;
del_loc=sort(del_loc);

j=1;
k=1;
for (i=1:Frow)

if(i==del_loc(j))
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add_here=zeros(1,Fcol);
if(j<addRow)

j=j+1;
end

else
add_here=tempF(k,:);
if(k<temp_row)

k=k+1;
end

end
features(i,:)=add_here;

end

R=R1*R2;
[r_row, r_col]=size(R);
R(find(R< 1e-6 & R >-1e-6))=0; %make those very small values

%to zero.
for(i=1:r_col)

find_row_on_p=find(R(:,i)~=0);
SizeDepen=size(find_row_on_p,1);
row=[];
for(z=1:SizeDepen)

take_row=find(p(:,find_row_on_p(z))==1);
value=R(find_row_on_p(z),i);
row=[row; features(take_row,:)*value];

end
row=sum(row);
features(org_del_loc(i),:)=row;

end
end
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Appendix C 
 
 
 
 
 
Matlab Code for Symbolic Value Assignment 
 
 
clear all

% define numerical and symbolic columns
numcols=[1 3];
symcols=[2];

% define maximum number of symbols in any coordinate
syms a b c d e;

% read the mixed type data matrix
% it contains both numeric and symbolic values
% each column of data matrix is uniform and contains only numeric
% or symbolic data
data=[1 e 1;2 a 2;4 a 2; 3 b 0; 4 b 4; . . .

8 d 2;9 d -4;8 c 2; 9 c 2;10 c -1]
% number of samples in the data array
nsamples=size(data,1);

% matrix of numerical values
ndata=data(:,numcols);

% solve symbolic value assignment one symbolic vector at a time
for k=1:size(symcols,2)

sdata=data(:,symcols(k));

% vector of symbolic values
symvector=[a b c d e];
symnum=size(symvector,2);

% get numerical values matrix
C=eval(ndata);

% formulate symbolic location matrix
A=zeros(symnum,nsamples);
for i=1:symnum

loc=find(sdata==symvector(i));
A(i,loc)=1;

end;
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% A=[0 1 1 0 0 0 0 0 0 0;
% 0 0 0 1 1 0 0 0 0 0;
% 0 0 0 0 0 0 0 1 1 1;
% 0 0 0 0 0 1 1 0 0 0;
% 1 0 0 0 0 0 0 0 0 0];

A=A';

%special case if C is a single numerical column
%and this is the answer
coord1=pinv(A)*C

%if C is non-single numerical column
%Find B and divide B into B1 and Br
B=[A'*A A'*C;C'*A C'*C];
B1=[A'*A; C'*A];
Br=[A'*C; C'*C];

%Perform QR factorization
%x=Q
%y=R
[x y]=qr(Br);
x=x';

%make those very small values to zero.
y(find(y< 1e-6 & y >-1e-6))=0;

%Search for independent columns
[r_row r_col]=size(y);
r_state=0;
for(i=1:r_col)

tempZero=size(find(y(:,i)==0),1);
numOFr=(r_row-tempZero);
if(numOFr>r_state)

r_state=numOFr;
end

end

%Find Q2 base on numbers of dependent columns
q2=x(r_state+1:r_row,:);

%Find C1 and Cs
%Perform pseudoinverse of Cs and calculate answers
Bx=q2*B1;
c1=Bx(:,1);
cs=Bx(:,2:size(B1,2));
ar=-pinv(cs)*c1;
ar=[1; ar];

end
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