FUTURE HARDWARE REALIZATION

OF SELF-ORGANIZING LEARNING ARRAY

AND ITS SOFTWARE SIMULATION

A Thesis Presented to
The Faculty of the
Fritz J. and Dolores H. Russ
College of Engineering Technology

Ohio University

In Partial Fulfillment
of the Requirement for the Degree

Master of Science

By
Tsun-Ho Liu

November, 2002



THIS THESIS ENTITLED

“FUTURE HARDWARE REALIZATION

OF SELF-ORGANIZING LEARNING ARRAY

AND ITS SOFTWARE SIMULATION"

by Tsun-Ho Liu

has been approved

for the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology

Janusz Starzyk, Professor

School of Electrical Engineering and Computer Science

Dennis Irwin, Dean
Fritz J. and Dolores H. Russ

College of Engineering and Technology



ACKNOWLEDGEMENT

First, | like to thank my parents who have been standing behind me through these

years. This work will never be completed without their support.

| like to thank many of my friends. A special thank you to Zhen Zhu and Mingwei
Ding for their valuable ideas and suggestions to my works. Thank you to lvan Chang

who helped us in developing the software code.

Finally, I think my advisor, Dr. Janusz. A. Starzyk, who proposed this self-organizing
learning structure and gave me the opportunity to develop it. During this time, not

only was he an advisor, but a friend. Thank you for teaching me how to play tennis.



CONTENTS
IACKNOWLEDGEMENT .......oooooocoocoovcoooeoeeeeeeeeeeseeeseeseeeseeeseeeseeeseeeseeseeeeeeeeeeeees i
[IEIST OF TABLES......oooooooooooooocoooosooeosooseooeeeeeeemeeeeeeeereeeesseeeeeeeeeeereeeerseeereece |
[ JLIST OF ILLUSTRATIONS ..ottt s st sessees s eeses s sesensesessnsenans X|
[ L INErOTUCTION 1.ttt ettt neneaerenas 1]
[ [L.1 RESEAICH ODJECHIVE ...ttt s et rses s e sesenseseseas 2|
[ [L.2 ThesiS Organization.............c.cevevereivereieueiireriisresisieteeieresereseseessesessssesnsserenna, 3|
[ R. Overview of the Biological Neural Networks..............c.ccccveveeoveeioiiciieinarennn. 5|
[ P.1 Living Neuron Structure and FUNCEION...........c.coveveueeveueererereeneieerereteevsienerarnana, 5|
| 2.2 Biological Neuron Organization ................c.ccoeooeeevoseeeiennssseeniseseeeenenens 6|
[ B. Structure of Self-Organizing Learning ArTaY .............ooooeeeeeeeeeeeseerrseeeereenrennes 9|
B.1 Neural Network Organization ..................ccccoceeviveiireeinereinseeerereinseinsreresnanes 10

P 11]




K. Neurons’ INPUts and OULDULS. ........iveieieieitieisesieseseseisesesesesesesssnessssssssessnssessssssas 14]
B.1 Basic Operation 0f @ NEUION ...........coveveveveeiereeeeereeeerseeeieeenseeseieeeensieessrereana, 15|
#.2 Neurons’ Clock INputs and OUIPULS ..........ceveveriveriiieriieieieieceieeeeeee e 16|
.3 Neurons’ SIGNal INPULS ..........ceiieiiiiiieiieisc e 18|

#.3.1 Neurons’ INPUE DAtA ..........cvevvevereiiieiercicieieeeteeeene e, 18|
RN e 19|

[ 14.3.1.1.1 Illustration of Missing Data RECOVEIY .........c.ceveveeveverevererrerarennn. 23|
.3.1.2 SYMDONIC ValUBS.......cocvoveeeireriieeeeeeeee e 29|

[ 4.3.1.2.1 Tlustration of Symbolic Values Assignment...............cc.c.cccuev.... 37|
#.3.1.3 Other Approach for Missing and Symbolic Data............................... 50|

.4 INEUIONS OULDUL ...vseeeeeeeeeeeeseeeseesesereeseenseeesaesneesneeseneneeesneesreneseenes 50|

O o 1 51|
b.1 Basic Arithmetic OPErationS ............c.c.ceevereeirerierereisieriirereieeieserereinsiessrerenna, 52|
B.2 MUIHIPIE TUNCHIONS ... 55|

. Self-Organization PrinCIPIES ........c..oouviiiiiiiiiiccieceece e 57|

6 g

6.1 Neuron Self-Organizing and LEAINING ............cooeveeeeeeseeeeereeeeseersevrsesreensenens 58|

6.2 SUDSPACE LEAINING .....vovevveeeeeveteeeteeeeeeeeteeeteteensieesereteensieeserereensteessrereanas 63|




B.2.1 Termination OF LEAINING.............coveeeeeeeeeereeeereeseeeereeerseserensreeesreesseseeeesnencas 64|

I S o o T — 65|
[7.1 VOUNG NEBUIONS ...ttt et resnerenereresnanes 65|
[7.2 WEIGNTING FUNCHION ...t 66|
[7.2.1 Example of Weighting Function Calculation...............c.ccccoeeervenenenene. 69|

8. SOFtWAIE SIMUIATIONS ....vieieieieieieiieieieieeseieseeesessessesesssessensssesssesssneseresssssnsssarans 70|
B.1 Two Dimensional Data HUSLIAtION ............coovoveeviverireriersieneerereeensteenereenennes 73|
B.1.1 NEtWOrk Parameters ............ccoviveiivereiereiiretiiieteisieeeretesseesieresnerenenenens 74
B.1.2 INIHIAL WIFING ..o 75|
B.1.3  FUNCLIONS ...ttt en e 76|
B.1.4 NEUION LOAIMING. ....oeoovoeeeeeeeeeeeeeeeeeeseerseseenseeenseseeensnessreeeseseeesneecas 78|
B.1.4.1 LOCAI SPACE ...voveevveeieeeveeeeeeeet e es ettt e s eeeeerereensreenans 79|
B.1.4.2 Original SPACE ........cvvviveriieriieeieietieieeie et eneiens 82|

B.1.5 NEUION TESTING ...t 86|

B.2 Credit Card DAtASEE ..........c.ovvveverieeeiieietetceieeieteteteeeietee sttt eeenenerererenas 91]
B8.2.1 Dataset BaCKGIOUNG .........oo.oveeeeeeeeeeeeeieeeeeeeeseeeeseeeseveeesreeesesenseseensncecas 91|
B.2.2 Missing Data and SYmbolic ValUES .............coovceeverevereeeenierirenersrrnnne, 94|
8.2.3  NEIWOIK PAraMELErS ......c.i.vvveeeeeiiiieieieeieieieieieeesieisereensesieiereesnsesnerenes 95|

B.2.4  SIMUIAtION RESUIS........ooviiiiiici e 96|




[ 8.3 AdUIt INCOME DALASEL .......c.cooeveeeeeeseeseeeseeeseeeseeeeeeseeeseeenseneensreneseseeneane 101]

[ 18.3.1 Dataset BACKGIrOUNG ...........coovivevivererieeerereteeretesetereerseesereesensseeserereensnas 101]

[ 18.3.2 Missing Data and Symbolic ValUes ..............cccverereivcrcniiciircineennae 104|

[ 18.3.3 NEtWOrK Parameters ...........coouiveiiiiiiiiiiiiieeeeece s 106|

[ 18.3.4 Simulation RESUILS............ccovvevereeiiireretieieeieeteeeee et 106

| 9. Conclusion and FULUrE WOIK .......ccouiuiiiiiiiiseieiisesesssssesessssssesssesssesssnesssessssnas 113]
T IV T T 113]

[ 0.2 FULUIE WOTK ..ot 114]

[ JRETEIENCE ...t 116|
e [ 118
N = N 125|

[ JADDENAIX C ettt s e e n s s e ses et sesessesesnsesassesesas 130




viii

LIST OF TABLES

[Tlable 4-1 Original and Recovered Data COMPAriSON .............ccocveveveververereverernsnarennnn 24|
[Table 4-2 Singular Input Matrix with Missing Data ..............cccccvvveivieieiviisciarnnnn 27|
[Table 4-3 Result of a Singular Input Matrix with Missing Data.................................. 28|
[Table 4-4 Correlation Coefficient Between Numerical and Symbolic Values. ............ 42|
[Table 4-5 Two Sets of Evaluated Symbolic Values..............cocoveevevvonsveresenenrenn. 45|
[Table 4-6 Correlation Coefficient Between Numerical and Symbolic Values. ............ 45|
[Table 4-7 Determinants of Resulting Covariance MatriCes ...........c..coccoveererierrernanns 47|
[Table 5-1 L(2) FUNCHION ......vovvevvieeeeeceeeeeeeeeeeeee st teenerete s teessnareensrens 52|
[Table 5-2 E(8) FUNCHION ...t 52|
[Table 5-3 Simple Arithmetic OPEIratioNS ..............ccoueveeeueeveeereesrerseersessersssseserenseees 53|
[Table 7-1 SOT and SOTI Flag Set Condition ...............ccccvceovvvevirereireerieieeerevenan 66|
[Table 7-2 Probabilities of Correct ClassifiCation ..............o.cooeeeeeeeeeeeerseveereenseseenes 69|
[Table 7-3 Voting Weight for Different CIasses ............ococovevevereeeveevererererenensrennans 69|
[Table 8-1 Classes of Two Dimensional Training Data ..............ccocvviovesecvrnnnnnen. 73|
[Table 8-2 Output Information Deficiencies of Neuron (28) .........c.cocvevvevevvennnn. 80|
[Table 8-4 Probabilities of Correct Classification .................ccocevoveveivireeinieinsiareinarenns 87|
[Table 8-5 Probability Estimates for Different Classes...........ooooeoeeeeeveeeevenrerernn 88|

[Table 8-6 Probabilities of Classification...........ccccoiiuiiiveiiiiiiiccceieciee e 89|




[Table 8-7 Credit Card Dataset INfOrMatioN.............c.oweeeereeeeeeeeeseeeeereeeerreenresereene 92|
[Table 8-8 Missing Data and Class Distribution of Credit Card Datasét ...................... 92|
[Table 8-9 Symbolic Values Assignment for Credit Card Dataset................................ 94|
[Table 8-10 Performance of EaCh SOLAR...........cccouviiiiieiiiiicieeees 97|
[Table 8-11 Average Performance after Majority VVoting (Credit Card)....................... 97|
[Table 8-12 Voting Thresholds and Error Rates (Credit Card) ..........ccoveveueveuener.. 98|
| [Table 8-13 Probabilities of Classification (Credit Card)...........c.cccvevvveverevererrnnnnnes. 100
| [Table 8-14 Comparison Result for Credit Card Approval Datasét ............................ 100
| [Table 8-15 Adult Income Dataset INFOrmMation ...............ccoovveoineiniiiiiieinicnen 102
| [Table 8-16 Symbolic Values Assignment for Adult Income Dataset ........................ 104
| [Table 8-17 Performance of EACh SOLAR .........cooweeeeeeeeeeeeeeeseeesseeeseenresneeseeenas 107
| [Table 8-18 Average Performance after Majority VVoting (Adult Income) ................. 108
| [Table 8-19 Voting Thresholds and Error Rates (Adult Income)................................ 109
| [Table 8-20 Probabilities of Classification (Adult INCOME) ............ccovevvevriiinnnnn. 112
| [Table 8-21 Comparison Result for Adult Income Dataset ..............c.cccveveverevernnnene.. 112

| [Table A-1 Probabilities of Correct Classification and Calculated Mean Value......... 123

| [Table A-2 Weights COMPAIISON........c...cveviveerereriereteriieeeereteensereerereesseeserereesseeneserens 124|




LIST OF ILLUSTRATIONS

| JFigure 2-1 Structure of a Biological NEUIrON..............ccovoveivveeiieeiieeieeieieeee e 6|
[ Figure 2-2 Neurons Organization in Groups and Layers ............cc.coeevveverveivserrennnnn 7|
[Figure 3-1 BasiC SOLAR STIUCIUIE..........c.cveveveerereeiersteerereeeereteensieeereteensieesseernenssenans 12|
[Figure 3-2 Example of Neurons’ Initial Wiring..............cccceeveveeivseeereineeeenevennan 13
[Figure 4-1 Neuron’s Input and OULPUL SIGNAIS ..........ccevveeeevieereeieenieeresseeseenssernae 14|
[Figure 4-2 Neuron Inputs and OQULPULS..............cvivereveveiiiereiereieieeeieteseieeeieeaeiennans 16|
FIQUIE 4-3 TOOT ..ottt er e aeeneaes 17|
FTQUIE A8 TOOTT cooooooooooooooseeeseeeeeseeeeeeereeeseeeneeseeeeseeeseeereeeseesseeeeeeeeeeeeeeeee 17]
[Figure 4-5 Missing Data Recovery HHUstration................ccccceeereeiniceerceiecseerennn 25|
[Figure 4-6 Graphical Illustration of Symbolic Values Assignment............................. 39|
[Figure 4-7 Symbolic Values Assignment Using 1™ Column of Numerical Values...... 43|

[Figure 4-8 Symbolic Values Assignment Using 2" Column of Numerical Values .... 43|

[Figure 4-9 Symbolic Values Assignment in a Three-Dimensional Space.................... 44
[Figure 5-1 Exponent, Square, Square root, Logarithm, and Inverse Function............. 54|
[Figure 5-2 Combination of Multiple FUNCEIONS ........ccoiieriiiiicieier i 56|
[Figure 6-1 Finding Information Index Using Addition.................cccooceeveevecnrnennnn. 61]
[Figure 6-2 Finding Information Index Using Multiplication ...................coceuun...... 61|

[Figure 6-3 Input space Separation Using SUBtraction................c.cceeveveverereeverernensnnnnne. 62|




[Figure 8-1 Flow Chart of SOLAR Software Program in Learning.............................. 71|
[Figure 8-2 Flow Chart of SOLAR Software Program in Testing ...............c....c........... 72|
[Figure 8-3 Two Dimensional INPUt SPACE ...........cceveveiireriiereieeieeeeeeeee e 73|
[Figure 8-4 Initial Wiring of SOLAR for Two Dimensional Dataset .......................... 76|
[Figure 8-5 Wiring of SOLAR after Learning ProCess............cvovovevcveuevevererererenenenanens 78|
[Figure 8-6 Neuron Dividing LOCal INPUE SPACE .......o.eeeeeeeeeeeeeeeeeereeeseeeserenene 79|
[Figure 8-7 Neuron Dividing Local Input Space (Z00m IN) ..........cccovvererveverenennnnne. 80|
[Figure 8-8 Cutting the Original INPUt SPACE ..........coviveriiveriiiieiireieieeeeeeeeeee e 82
fFigure 8-9 Two Neurons Separating Class 2............cccovoviiineinineiiiiieeceeeecins 84|
[Figure 8-10 Two Neurons Separating Class 2 (Z00m In) ...........ccccvveverererererennnann. 85|
Figure 8-11 OVErlapping CIASSES ..........cooweeeoeeeeeeeeeeeseeeesereeeeseeenseseeeesneesesneeesneeesesnenes 90|
[Figure 8-12 Numerical Values Distributions of Credit Card Datasét .......................... 93|
[Figure 8-13 Majority Voting with Parallel SOLARS .............c.ccccoeoviciiriiricirarnn. 97|
[Figure 8-14 Voting Threshold Searching (Credit Card) ..........cccccoovoviivvncoicicnnene 98|
[Figure 8-15 Self-Organized Network Structure for Credit Card Problem.................... 99|
| [Figure 8-16 Numerical VValues Distributions of Adult Income Dataset...................... 103
| [Figure 8-17 Error Rate Comparison with Number of Layers and TCI Inputs............ 109
| Figure 8-18 Voting Threshold Searching (Adult INCOME) ............cccvevrverevirerennnen, 110
| Figure 8-19 Self-Organized Network Structure for Credit Card Problem.................. 111
| [Figure A-1 Probability Density Function of P(Px | Pc) — pdf(X)........cccccoeveveverenenen... 120|

| [Figure A-2 Estimated Probability Density Function of P(PX | PC).........cccouer....... 122|




Chapter 1.

1. Introduction

In the recent computational history, problems have been analyzed and solved by
powerful computational machines in order to achieve a good result in a short time
interval. Although the performance of digital processors double yearly, solving more
complex problems may still require more powerful machines and more complex
software. In addition, our daily problems are usually presented by a relationship that
is not well defined. Therefore, biologically inspired networks, which do not require

software to operate, have been introduced.

One type of these networks is called the Artificial Neural Networks. Unlike the digital
computer that is extremely effective at producing accurate answers to well-defined
problems, the artificial neural network, which is modeled after the structure of the
human brain, splits an ill-defined problem into many small pieces allowing each
neuron in the network to solve its own task and gives an approximate output. It may
perform better than other methods, especially in categorization and pattern
recognition. Such a system classifies an object and processes it as one of the possible
categories, which may result in a recommendation of an action. The processing speed

of each neuron is not the main factor in the network since effective performance can
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be achieved with parallel processing for real-time applications. This is an advantage
with which no software based learning algorithms can compete, especially with a large
dimensional training dataset. Due to their good performance, artificial neural
networks have been adopted in many practical applications such as credit card
approvals, potential customer analysis and pattern recognition. However, many
existing artificial neural network designs require a huge number of connections
between inputs, neurons, and outputs (Dayhoff, 1990, p. 3). It causes the area
consumed by interconnections to be far greater than that of the processing units. This
can result in an expensive hardware implementation, and ineffective Very Large Scale
Integration (\VLSI) circuit design. Thus, new artificial neural network design with less
interconnections and better organization can result in a more effective network to

solve complicated problems.

1.1 Research Objective

This thesis focuses on Future Hardware Realization of Self-Organizing Learning
Array (SOLAR) and its Software Simulation. The structure of this network is similar
to programmable arrays such as Field Programmable Gate Arrays (FPGA). The basic
fabric of SOLAR is a fixed lattice of processing units acting as single neurons with
programmable interconnections between them. In this thesis, a software version of
SOLAR architecture is considered with the lattice size based on the number of inputs.

The network is designed for nonspecific classification and for future hardware



3
realization. In SOLAR, a set of preprocessed training data, which well represents the
learning space, is given to the network for learning. The network can then determine
and self-organize the interconnections between inputs and outputs during the learning
process. Each neuron can also select the best transformation function and threshold
value for later classification using information index. After learning, SOLAR is

prepared for any classification within the learning space.

1.2 Thesis Organization

The thesis is structured as follows:

Chapter 2 gives an overview of the biological neural networks. Architecture,
functionalities, and organization of living neurons are discussed.

Chapter 3 discusses the organization of Self-Organizing Learning Array (SOLAR).
Different artificial neural network organizations are described in this chapter. SOLAR
organization and wiring concept are explained.

Chapter 4 explains the inputs and outputs of neurons. The basic structure of SOLAR
neuron is shown, and details of inputs and outputs of SOLAR are discussed. Data pre-
processing methods for missing data and symbolic values are also introduced.

Chapter 5 deals with the arithmetic operations. Possible operations are listed and

demonstrated graphically.
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Chapter 6 shows the self-organization principles. In this chapter, SOLAR self-
organization and learning principles are demonstrated both verbally and graphically.
In addition, information index calculation is explained in this chapter.

Chapter 7 shows final classification and voting. Weight function is introduced for
each neuron participating in the final voting.

Chapter 8 demonstrates the software simulation. In this chapter, a two-dimensional
sample data is used to illustrate the performance of SOLAR. Besides, two real world
problems are used to compare the SOLAR performance to other algorithms.

Chapter 9 is the conclusion of this thesis. It concludes the SOLAR software project

and gives the prospects for future works.



Chapter 2.

2. Overview of the Biological Neural
Networks

In order to create an artificial neural network, one must study the structure and
behavior of living neurons. Glia and neuron are the basic elements of the brain. Glias
are supporting cells while the decision making processes are done within neurons.
Jobs of neurons are receiving, integrating, and transmitting information. Organization
of neurons is not homogeneous. Neurons located in different regions of the brain are
shaped differently due to their responsibility and functions. However, each of them

has the same basic elements.

2.1 Living Neuron Structure and Function

The structure of a neuron, shown in Figure 2-1, includes three basic elements: a
nucleus, dendrites, and an axon. Dendrites act as receivers of a neuron while an axon
acts as the transmitter. When a neuron communicates with another neuron, chemicals
are fired from the axon terminals. These chemicals travel through a small synaptic
gap and arrive at receptor sites of the dendrites. Dendrites are excited by the

chemicals, and the potential of positively charged ions increases. When the potential
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exceeds the threshold, the neuron fires to thousands of other neurons. This process is

repeated throughout the network.
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Figure 2-1 Structure of a Biological Neuron
(Fraser, 1998, September)

2.2 Biological Neuron Organization

Neurons, in general, can be classified into two categories: long-axon cells and short-
axon cells (Dowling, 1998, p. 15). Long-axon cells are responsible for carrying
information from one side of the brain to another. They have long axons and tend to
communicate with neurons further away. Short-axon cells, on the other hand, are
interconnected only with local neurons. They are mainly involved in integrating and
processing information. In some regions of the brain, neurons function in continuous

layers rather than in a random network. This layer organization is illustrated in Figure
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2-2. In general, short-axon neurons tend to interact with neighboring neurons locally

while long-axon neurons pass information from one local neighborhood to another.
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Figure 2-2 Neurons Organization in Groups and Layers
(Dowling, 1998, p. 17)

In addition, some neurons in some parts of the brain can grow quicker than other parts.
When a person grows up, during learning, new branches are expanded from one
neuron to another to form new connections. However, it is suggested that initial
connections may be broken during development (Dowling, 1998, p. 133). Most
synapses move away from less useful neurons (Purves, 1994, p. 60). These are the

reasons neurons can self-organize to achieve a better performance.

The Self-Organizing Learning Array discussed in this thesis uses these distinct
features of biological neural networks: local pseudo-random interconnections,

selection of control and input signals by each neuron and parallel processing in
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training and recognition. This work is based on the self-organizing learning array
project developed at the Ohio University by Dr. Starzyk and partially described at

http://www.ent.ohiou.edu/%7Ewebcad/proj/solar/index.html (Starzyk, 2000)



Chapter 3.

3. Structure of Self-Organizing
Learning Array

SOLAR is simply an electronic model based on the biological brain structure. It has
the capability to solve and analyze problems, such as pattern recognition and
classification, which may be impossible for traditional digital computers. SOLAR
includes three main components which are the inputs, process layers, and outputs.
Just like the biological brain that can solve and analyze more complicated problems
after years of learning, SOLAR requires learning before it can be put to any test.
Before learning can take place, initial wiring is required. This wiring will be modified

during the learning process.

Biological neural networks are constructed in three-dimensions from microscopic
components. Billions of neuron interconnections can be broken or developed to
achieve a better performance. This is not true for artificial neural networks built with
integrated circuits on silicon. Artificial neural networks are limited to a two-
dimensional plane whose hard-wiring interconnections cannot be replaced or changed

once they are constructed. In addition to the inert, space on an integrated circuit is
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limited. Artificial neurons can only learn within these limited conditions. Therefore,
neurons organization and initial wiring are extremely important for a good

performance.

3.1 Neural Network Organization

Most of the existing artificial neural network organizations can be classified into three
main categories: cellular neural network (CNN), feed backward neural network
(FBNN) and feed forward neural network (FFNN) (Cichocki & Unbehauen, 1993, p.

65).

CNN includes many identical cells (or processing units) that have local
interconnections among each other, and only the nearest neighbors are connected. The
neighboring cells can interact directly with each other, while other cells, not directly
connected together, may still be affected indirectly due to the propagation effects from
the dynamics of CNN. Applications of CNN are mainly in image processing, where
they show a great performance in solving many complex image-processing tasks that

cannot be solved using conventional approaches.

In FBNN organization, neurons are generated in parallel. Output of each neuron in the
network can be connected backward or forward as inputs to other neurons. Networks

having FBNN organization may become unstable if a positive feedback causes the
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increase in the input signal values. One must ensure that the mean of the output of any

neuron in the network must be less or equal to the mean of all the inputs.

In FFNN organization, on the other hand, structure of the network is constructed under
the condition that all inputs of each neuron are connected to the input layer or the
existing neuron outputs. Neurons are generated in parallel. The size of the network
increases when new neurons are added. As a result, growing number of outputs from
existing neurons can be used as inputs for new neurons generated at later stages.
Outputs of subsequently generated neurons cannot be used as inputs for those neurons
already generated in feed forward organized neuron network, so that the network is

always stable. Therefore, feed forward organization is chosen for SOLAR.

3.2 Initial Wiring

Since this is a software simulation version of SOLAR, it can take any number of
inputs. Based on the size of input, numbers of neurons are generated. It is assumed
that a fixed number of neurons are added per each layer. Each neuron is then
identified by its location, row and column as shown in Figure 3-1. Although this
organization is not a requirement of SOLAR, it is better suited for VLSI design of
SOLAR, where neurons are organized in a regular array to best utilize the available

silicon area.
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Figure 3-1 Basic SOLAR Structure

It is believed that a large number of biological neurons, which are responsible for
processing information, tend to have local connections. There is a higher probability
that one neuron should have connections to close neighboring neurons. Therefore,
statistically determined Mahalanobis distance (Mahalanobis, 1936) is introduced in the
determination of the initial wiring. With the feed-forward structure, new neurons are
connected only to the previously generated neurons. As shown in Figure 3-2, the
neuron located at a given row and column should always be connected to the one at

the same row and the previous column. The next nearest neurons are those located at
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two neurons away from the connecting neuron and so on. Similar to the short-axon
cells, although local connecting is highly preferred, some random and further
connections may also be allowed with smaller probability in the pre-wiring stage.
This pseudorandom wiring organization applies to both the neuron’s input signals as
well as the neuron’s control (input clock), which come from logical output (output

clock) of other neurons.
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Figure 3-2 Example of Neurons’ Initial Wiring



14

Chapter 4.

4. Neurons’ Inputs and Outputs

The process layers are where the processing neurons are located. Preprocessed data is
sent to different neurons through pre-wired interconnections. Self-organizing neural
network is very similar to living neurons in terms of architecture. A neuron has many
parallel inputs but only a single output, which may feed many other neurons as their

inputs as shown in Figure 4-1.

Inputs

Connections
to other

neurons

Figure 4-1 Neuron’s Input and Output Signals
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4.1 Basic Operation of a Neuron

Figure 4-2 shows all necessary inputs and outputs of a neuron. All input data are
rescaled so that they are always within a specified range (for instance 0-255 for 8-bit
digital hardware representation). Each neuron is able to select any inputs (or a single
input) and perform different transformation operations. During the learning process,
neurons learn in parallel one layer at a time. A neuron calculates the information
index and selects a threshold for a combination of inputs (or a single input), a
transformation function, and an input clock. Information index indicates the quality of

learning, and it is discussed in detail in Chapter 6 Self-Organization Principles.

With the highest information index, the input combination, transformation function
and threshold are stored and fixed in the neuron for later use during testing. The
values of the output information deficiency indicate how much the selected subspace
has been learned, and this is also described in details in Chapter 6 Self-Organization
Principles. These output information deficiency values are saved. Calculated output
(system output) is passed to other neurons as inputs. Output clocks are also generated

and passed to other connected neurons with their output information deficiency.
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Figure 4-2 Neuron Inputs and Outputs

4.2 Neurons’ Clock Inputs and Outputs

Similar to all sequential machines, every neuron has an input clock control. At each
clock cycle, an input data is expected to arrive from the previous neurons or initial
inputs. There is one more clock input in SOLAR called threshold-control-input (TCI).
This particular clock is designed to control neuron operation, and it is obtained by
multiplexing the output clocks. A neuron tries to learn more about a particular space
based on the selected TCI. There are three types of output clocks per neuron, and they

are listed as follows:

1. Threshold-control-output (TCO) is the original TCI of this neuron.
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2. Threshold-control-output-thresholded (TCOT) is the original TCI multiplied
with the logic value indication that the transformed data points passes the

threshold. It can be done with an AND operation as shown in Figure 4-3.

TCI

—
31 TCOT TCOT
B —

—

Data Points :

Passes Threshold

Figure 4-3 TCOT Figure 4-4 TCOTI

3. Threshold-control-output-thresholded-inverted (TCOTI) is the original TCI
multiplied with the logic value indication that the transformed data points do
not pass the threshold. It can be implemented with an inverse operation of

TCOT as shown in Figure 4-4.

There can be more than one TCI for a neuron. One always connects to the output
clock from the closest neuron (the one located at the same row and previous column)
since local interconnection is believed to result in a better performance. Other TCls
can be selected with lower probability from other previously generated neurons.

These n TClIs can be selected by a n-to-1 muliplexer by each neuron.
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4.3 Neurons’ Signal Inputs

Each neuron has more than one input pre-wired from the initial inputs or from outputs
of previous neurons. One or two of these will be selected to perform arithmetic
operation and to produce a system output that may be used as an input by other
neurons. Similar to TCI, these n inputs can be selected by a n-to-1 or a n-to-2
muliplexers for each neuron based on the transformation function, its threshold value,
and a selected information index. In general, neuron inputs are normalized to provide

sufficient resolution for input-output functions.

4.3.1 Neurons’ Input Data

Input data is presented to SOLAR as n dimensional feature vectors. Each feature
represents one dimension of the whole input space. At each clock cycle, one set of n
dimensional data is buffered to the input layer. The j* input data with n features can
be represented by a vector: X)=[x);, x), ... x},]. As a result, the whole set of input data

can be described by a matrix in (4-1).

XX X5 X
X=| .. |=|.. (4-1)
XU xtxt..x

where t is the length of the whole input data set.
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The problem of databases containing missing data and symbolic values is very
common. These incomplete data can cause problems for neuron operations that only
take numerical inputs. Therefore, blanks and symbols must be replaced by meaningful
numerical values with some transformations, which are discussed in 4.3.1.1 and

4.3.1.2.

4.3.1.1 Missing Data

There are three approaches to the missing values datasets (Ennett, Frize & Walker,
2001). First approach is to simply delete all cases with missing values. This can
result in losing potential important information of the cases. Second approach is to
find the mean value. Although it is easy to calculate, it can bias the dataset. The last
approach is to replace missing data with statistically unbiased estimates that can
improve the network performance. Mahalanobis distance is used in the procedure

developed to normalize the missing values.

To define the Mahalanobis distance, mean value vector for a given class . and
covariance matrix for all training data from this class C. are needed. Then, a given
vector of training data X 0 X with missing coordinates is represented as X=[X, Xn]

where X, are known coordinates while the missing values X, are
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X :{km :d(x}J =dmm}

where d(X)= (X -z, )CA(X = 1.)

(4-2)

Since d(X) is a quadratic form of the unknown values X, the minimum can be

obtained by setting its derivative to zero.

=0 (4-3)

The inverse of the covariance matrix C; is divided according to partition of X into

known and missing values parts.

D..D
C—1:D — kk * = km _
=D, [D 5 (4-4)

mk ? = mm

Since C, is symmetrical D, =D "« and

ad  ad D Dim
| =2AIx, X |- = (4-5)
2 el - g | o
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As a result vector X, can be obtained from

Xm = _(Xk — H )kaD_lmm +/’lcm (4-6)
where He is the part in pe corresponding to Xy while pem represents the part

corresponding to Xp,.

If the matrix Y = X — L does not have the full column rank, Y can be first factorized

using QR factorization.

R R
YE=Q,R, =Q\{ 51 52} (4-7)

where E is the permutation matrix, and Ry; is upper triangular. Therefore, Y can be

represented as

Y = [Yl Yz] :Q\?[va RYZ.I :Q\? val_l R\?i Ry, (4-8)

where Q; contains columns of Q, which are multiplied by Ry, in (4-7)

Y, can be expressed as a linear combination of Y,

Y, =Y, (R\ﬁ sz) =Y,C, (4-9)
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Only elements of the matrix Y need to be determined for the missing data. The

reduced covariance matrix, which is based on the matrix Y; only, is defined as

Ce = DYLY,, (4-10)

Y. Y, Y
where Y, :{Y“‘} and Y = [Ylk 2"}

Im Im 2m

The reduced Mahalanobis distance for vector X is

d(X) = (X1 _:ucl)CR_’l(Xl _:ucl)T (4-11)

where X = [X3 Xz] and m¢ = [Me1 Hez] according to partition of matrix Y =[Y; Y3]
Following derivation (4-3) to (4-6), missing data result can be generated as follows

><ml = _(X < /'Ickl)kaR D_lmmR + Hem (4_12)

, [Dye:D,,
where CRlz[ KR DKR}

mkR * = mmR
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After missing data is recovered, the result can be obtained and pasted back to vector

X1.

X1 = [Xix Xmi] (4-13)

After vector Xy is obtained, X, can be determined from

X, =X.C, =X, (Rt Ry,) (4-14)

Thus, all missing data (independent and dependent) are recovered. This operation can
be repeated sequentially for each data vector X with missing data or performed
concurrently on all vectors with some missing data. However, separation of matrix X

into missing and known values may be difficult or impossible.

4.3.1.1.1 Hlustration of Missing Data Recovery

The following two examples are used to show the missing data recovery by applying
Mahalanobis distance. The dataset (Abalone Database) of the first example was
obtained from the University of California at Irvine (ICS, UCI, 1995, December).
This dataset contains information from 4177 input data with 29 classes. In order to
demonstrate the performance in a 2 dimensional plane, only two features, which are

“height” and “weight”, are used.
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In this example, class 9 is chosen. There are 689 data points that belong to this class.
Ten of them in feature “weight” have been randomly chosen, removed and become the
missing data. Then, these data were recovered by the missing data recovery algorithm
using the Mahalanobis distance. As the results shown in Table 4-1 and Figure 4-5, the
recovered missing data are replaced with reasonable numerical values based on the

distribution of this particular class.

Table 4-1 Original and Recovered Data Comparison

Original Weight Recovered Weight
0.2800 0.4818
1.5100 1.4995
1.2945 1.1037
0.6995 0.7079
0.6880 0.8776
1.1000 0.9907
0.5780 0.9907
0.9070 0.7645
0.9615 0.8210
1.2960 0.9341
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Sometimes, a dataset contains dependent information. This dependent features have to
be identified and taken out when recovering the missing data because error can occur
when the inverse covariance matrix is calculated during the process of missing data
recovery. Dependent features can be calculated after the independent part of the
dataset is recovered. The following example illustrates how singular matrix is
handled. An input matrix with 2 classes is shown in Table 4-2, which contains 21 data
points with 11 features. Two of the features in the input matrix are dependent, and the

relationship is:

Row 1 =Row 2 * 1.03 + Row 4 * 1.02

Row 8 = Row 11 * 1.10 - Row 5 * 1.05



Table 4-2 Singular Input Matrix with Missing Data

#1 #2 #3 #4 #5 #6 #7
Class 1 Class 2 Class 2 Class 1 Class 1 Class 2 Class 1
579.2 ? 5699.7 577.0 534.4 5708.9 538.5
184.0 ? 1827.0 177.0 194.0 1727.0 193.0
294.0 2749.0 2843.0 255.0 223.0 2213.0 283.0
382.0 ? 3743.0 387.0 328.0 3853.0 333.0
494.0 4360.0 4321.0 439.0 485.0 4996.0 442.0
578.0 5700.0 5495.0 523.0 596.0 5323.0 510.0
623.0 6210.0 6723.0 663.0 688.0 6232.0 693.0
518.6 5682.8 5718.3 564.3 494.0 4788.4 574.3
743.0 7410.0 7239.0 732.0 723.0 7221.0 734.0
842.0 8318.0 8372.0 898.0 839.0 8843.0 833.0
943.0 9328.0 9323.0 932.0 912.0 9122.0 944.0
#8 #9 #10 #11 #12 #13 #14
Class 1 Class 1 Class 2 Class 2 Class 2 Class 1 Class 1
431.4 ? 5905.6 4636.7 45554 516.3 523.8
101.9 ? 1923.0 1101.0 1231.0 121.0 154.0
240.0 291.0 2938.0 2302.0 2943.0 254.0 298.0
320.0 380.0 3848.0 3434.0 3223.0 384.0 358.0

? 490.0 4858.0 4324.0 4211.0 432.0 475.0
530.0 580.0 5959.0 5483.0 5321.0 549.0 552.0
639.0 619.0 6835.0 6859.0 6948.0 684.0 671.0

? 518.4 5263.3 5891.1 6101.0 583.7 593.6
853.0 ? 7122.0 7473.0 7484.0 723.0 718.0
821.0 840.0 8235.0 8243.0 8873.0 824.0 892.0

? 939.0 9422.0 9483.0 9566.0 943.0 993.0

#15 #16 #17 #18 #19 #20 #21

Class 1 Class 1 Class 1 Class 2 Class 2 Class 1 Class 1

466.2 513.2 532.1 5865.5 5724.2 433.8 582.2
112.0 111.0 172.0 1983.0 1837.0 101.3 183.0
238.0 219.0 232.0 2837.0 2744.0 243.0 254.0
344.0 391.0 348.0 3748.0 3757.0 323.0 386.0
483.0 438.0 495.0 4983.0 4372.0 443.0 493.0
594.0 512.0 538.0 5848.0 5748.0 535.0 573.0
673.0 611.0 695.0 6382.0 6223.0 646.0 654.0
541.2 567.5 568.2 4912.0 56746 550.2 497.7
732.0 739.0 724.0 7223.0 7434.0 754.0 786.0
844.0 800.0 832.0 8332.0 8321.0 823.0 834.0
953.0 934.0 989.0 9222.0 9332.0 923.0 923.0

27
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After missing data of the independent feature is recovered with equation (4-12),
dependent part of the missing data can be generated by equation (4-14). Results are
demonstrated in Table 4-3. Recovered data seems reasonable and fits in the whole

matrix.

Table 4-3 Result of a Singular Input Matrix with Missing Data

#2 #8 #9
Class 2 Class 1 Class 1
5772.1 431.4 555.3
1919.9 101.9 162.2
2749.0 240.0 291.0
3720.2 320.0 380.6
4360.0 454.7 490.0
5700.0 530.0 580.0
6210.0 639.0 619.0
4447 .2 491.7 499.8
7410.0 853.0 757.3
8318.0 821.0 840.0
9328.0 881.1 939.0
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4.3.1.2 Symbolic Values

If the input matrix X contains symbolic (non-numerical) data, this data can be
assigned a numerical value so that they are best correlated to the existing data. This
can be accomplished with minimization of the determinant of the resulting covariance

matrix.

xz[x x;} (4-15)

where X is a sub-matrix or a vector with all symbolic values
X, is a sub-matrix or a vector with all numerical values

t is the number of samples

n is the number of features

In order to minimize det[Cov(Y)], value X can be selected to minimize the rank of

X . First, one should consider a single symbolic vector X to which numerical values
should be assigned so that the numerical vector Xs is a linear combination of vectors

Xr.

X, =X, 0o , X,OX (4-16)

S S

where a is a nonzero linear combination vector.
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Since this problem may not have an exact solution, the norm of error vector E is

minimized, where

E=X,-X, Oa (4-17)

Xs can be replaced by the product of a binary matrix A and a vector of all symbols H.

X. = AH (4-18)

A final form of the error vector is obtained.

E=AH-X.a (4-19)

Since the objective is to minimize the error (E=0), values of H can be obtained

applying pseudo-inverse of A

H = pinv(A)X ,a (4-20)

This is a desired solution with a=1 if X, has only a single column. If X; has more than

one column, H can be achieved by minimizing the norm of the error function and

setting its derivatives to zero.
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[E[=E"E >0 (4-21)
) o
G(LLHI ~ AT[Ax ] ?a =0 (4-22)
) o
o XT[AX,] 1 l=0 (4-23)
oa —a|

Let us define matrix B as below and partition it into symbolic and numerical parts Bs

and B,

B:{AT} [Axr]:{ATA ATXr}:[BS 8] (4-24)

B, B] {H }:o (4-25)

B; can be factorized by using QR factorization and its orthogonal matrix Q will be

divided according to the rank of its upper triangular matrix R.

Rl RZ
B, =QR=[Q, Qz][o }

0 (4-26)
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Equation (4-25) will change to and can be separated to two equations (4-28) and (4-

29).

al
Q/BH+[R, R, { }=0 (4-28)

Q,BH=0 (4-29)
Values of H can be solved by using equation (4-29) since it does not depend on a.

However, H is always zero if Q",Bs is a full rank matrix. A single variable in H has to

be set, such as Hi=1

@ B [:1}:[01 C, [1 }o (4-30)

where C; is the first column of Q', Bs

and H; can be determined from

H, =C, (4-31)
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After applying pseudo-inverse of C;, H can be solved as follows.

H{ ! }
- pinv(C; )C, (4-32)

Equation (4-32) requires that C; has full column rank. If it does not, it can be divided

into independent and dependent parts as follows

c;=[c, C”]:Qm | R* R 39

where C;, and C;, can be determined using QR factorization of C;.

H: is partitioned accordingly to H; :[H o Hgz,|. Instead of (4-31), the following

S

equation will be solved.
Cy (H at Rl_l R,Hs, ) =-C, (4-34)
Instead of solving for parameters of H, a combined vector H, can be solved as follows

H.=Hg + R1_1R2H§2 = _pinV(C§1)C1 (4-35)
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Since H;, and H, cannot be uniquely defined, one can either set H., to zero and
H:,=Hc or introduce another constraint for elements of H,, and H,, for instance

minimize the norm of H under constraint defined by (4-35). The constraint
minimization problem can be formulated using a Lagrangian function. The objective

function is:

F= S (4-36)

5i0Hg
with constraints

e =H_, + DH,, + pinv(C,,)C, =0 (4-37)

where D =R 'R,

The Lagrangian function is defined as follows:

ﬁC
L(Hs, A)=F => Ae, e; Oe (4-38)
j=L

where H_ is the cardinality of H,
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In order to locate the optimum of the constrained minimization of ||H:| the

derivatives of L(H ,A) with respect to H and A are set to zero as shown in (4-39) and

(4-40).
oL —OF-NA=0 (4-39)
oh,,
oL
— =—-.lH-)=0 -
=5 = o (H:) (4-40)

hsy

S I _
where OF =2| ... | and N =|Oe, ... DeHC]={ } , N=H,

h§n

After determining derivatives of L(H¢ ,A), equation (4-41) is obtained from (4-39).

{H“]{IJA:O (4-41)
H.,| | D

Equations (4-42) and (4-43) are obtained from (4-41).

2H;,-1=0 (4-42)

2H.,-D"A =0 (4-43)



A and Hg, are solved from (4-42) and (4-43) and shown as the follows:

After substituting (4-45) in (4-37), a new equation is obtained as follows:

H,, + DD"H,, + pinv(C,,)C, =0

From which a unique solution for H, can be obtained

H,, = {1+ DD"]" pinv(C,,)C,

Thus, the minimum norm solution of (4-35) is

36

(4-44)

(4-45)

(4-46)

(4-47)

(4-48)
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4.3.1.2.1 lllustration of Symbolic Values Assignment

The following two examples are used to show the symbolic values assignment
performance. An example is for input matrix containing only one feature vector of

numerical values while the second has more than one column of numerical values.

The following example illustrates the assignment of symbolic values when numerical

sub-matrix X, is a vector. The input matrix is given as X,

Y_12434898910T (4-49)
e aabbddcecc

The norm of the error vector in equation (4-19) must be minimized. To do so, a binary

matrix A, which locates the symbolic values in X, is obtained first.

(4-50)

>

1
R O O O O
o O O O =
O O O O -
O O O+~ O
O O O+~ O
O B O O O
O B, O O O
o O O O
o O O O
o O O O

X; can be obtained from X by removing the symbolic values.

X,=[L 2 4 3 489 8 9 10 (4-51)
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Since X, has only one column, H can be computed by applying equation (4-20). The
results are shown in (4-52), and symbolic values Xs can be replaced by numerical

values by multiplying matrix A and H as shown in (4-53).

H=[30 35 9.0 85 1.0 (4-52)

a b ¢ d e

X;=AH=[1.0 30 30 35 35 85 85 90 9.0 90]" (453

The correlation coefficient between numerical values and evaluated symbolic values is

calculated using (4-54).

r= (4-54)

where o, , is covariance between the two vectors and (o, , 0,,) are standard

deviations of X, and H.

The calculated correlation coefficient, shown in (4-55), and Figure 4-6 illustrate that
the solution values H are well correlated with the numerical values. Calculated
correlation coefficient is

r=0.9746 (4-55)
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Graphical llustration of Symbolic Yalues Assignment
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Figure 4-6 Graphical Illustration of Symbolic Values Assignment

The following is another example illustrating the assignment of symbolic values when

numerical sub-matrix X, has more than one row. The input matrix is given as X,

12 4348 9 89 10]
X=le aabbd d cc ¢ 456
12 20 4 2 -4 2 2 -1 (4-56)
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A binary matrix A which represents symbolic values in X and X, which contains all

numerical values are

0110000000
0001100000

A=|0 000 0O0O0T1T11 (4-57)
0000011000
1 00000000 O]

and

.

(124348 9 80910 (4-59)
"1 220 42 -4 2 2 -1

Since X; has more than one column, H can be determined by minimizing the norm of
the error function and setting its derivatives to zero as shown in equation (4-22) to (4-

23). To minimize the error norm, the matrix B can be obtained as defined in (4-24).

20 0 0 0:6 4
020 0 0 7 4
00 3 0 0 27 3
B=(0 0 0 2 0 17 -2 (4-59)
000 0 1 1 1
6 7 27 17 1 436 33
4 4 3 -2 133 54

Bs Br
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Then, Q, is obtained using QR factorization on B, and Q , B, isequal to

[-0.5359 | —0.4929 1.3394 -—0.9888 -0.0735]
-0.0893 . 0.0747 -1.0066 1.1191  0.0184
QJB,=|-0.0766  -0.1062 —0.0704 0.0224  0.9825 (4-60)
-1.6685 05709 0.3389  0.0064  0.0704
| 0.1332  -15848 0.4663 0.1345 0.0731

C, C-

S

H, the normalized vector of symbolic values, can be now computed by applying

pseudo-inverse of C. (4-32).

H=[1.0000 11495 2.7683 2.5424 0.3511]" (4-61)

To compare the previous result, H is scaled by multiplying all values by ﬁ H

becomes

H=[2.8480 3.2738 7.8840 7.2406 1.0000]" (4-62)

a b C d e
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Symbolic values X can be replaced by numerical values by multiplying matrix A and

H as shown in (4-63).
Xs=[1.0 285 2.85 3.274 3.274 7.241 7.241 7.884 7.884 7.884]T (4-63)
The correlation coefficients between different columns of numerical values and the

evaluated symbolic values are calculated using (4-54). The calculated correlation

coefficients are shown in Table 4-4.

Table 4-4 Correlation Coefficient Between Numerical and Symbolic Values

Symbolic values are correlated with Correlation coefficient (r)
the 1% column of X, 0.9739
the 2" column of X, -0.3102

The calculated correlation coefficient results, and Figures 4-7 and 4-8 illustrate that
the solution values H are well correlated with the first column of numerical values
while they are not well correlated with the second column of X,. It suggests that this
set of symbolic values have much more dependence on the first column of numerical

values than the second one.



Figure 4-7 Symbolic Values Assignment Using 1°

Figure 4-8 Symbolic Values Assignment Using 2™
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Figure 4-9 gives an overview of how well the features are correlated in a three
dimensional space. Although the calculated symbolic values do not have much

dependence on the 2" column of X, alone, all features fit well in a three dimensional

,,,,,,,

space.
aymbolic Yalues Assignment llustration in a Three-Dimensional Space
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Figure 4-9 Symbolic Values Assignment in a Three-Dimensional Space

The following illustrates that evaluated symbolic values with better representation can
be achieved using all numerical values rather than taking only one vector of numerical

values. The comparison is done by obtaining determinants of the resulting covariance
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matrixes of X in (4-56). If symbolic values assignments of matrix X are obtained by
applying equation (4-20) and by selecting one vector of numerical values at a time,
two solutions are produced as shown in Table 4-5. The correlation coefficients
between different columns of numerical values and their evaluated symbolic values
are calculated using (4-54). The calculated correlation coefficients are illustrated in
Table 4-6, and the symbolic values assignment corresponding to the highest

correlation coefficient is selected.

Table 4-5 Two Sets of Evaluated Symbolic Values

the 1% column of X; the 2" column of X,
3.0000 2.0000
3.5000 2.0000
9.0000 1.0000
8.5000 -1.0000
1.0000 1.0000

Table 4-6 Correlation Coefficient Between Numerical and Symbolic Values

the 1% column of X, the 2" column of X,
0.9746 0.5222

Since the solution obtained from the 1% column of X, has the larger correlation
coefficient, it is used to replace all symbolic values. Therefore, the matrix X (4-56)

becomes X, (4-64) where the calculated symbolic values are obtained from only one
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vector of numerical values, and becomes X, (4-65) when the symbolic values are

obtained from all numerical values.

12 4 3 4 8 9 89 107
X,=|1 3 3 35 35 85 85 9 9 9 (4-64)
122 0 4 2 -4 2 2 -1

T

1 2 4 3 4 8 9 8 9 10
X, =|1 2.85 285 3.27 327 7.24 7.24 7.88 7.88 7.88

(4-65)
1 2 2 0 4 2 -4 2 2 -1
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The covariance is defined as the average of the products of the deviations of feature
values from their means in a closed sphere. This sphere can be normalized to obtain a
unit volume, and each element of the covariance matrix can be correspondingly
multiplied by (n-1), where (n x n) is the size of the covariance matrix. Determinant of
such normalized covariance matrix gives an overview of how well all features are
correlated within a matrix in a multidimensional space. Ideally, the determinant of
such normalized covariance D is one if all features in the matrix are totally

independent, and it is zero if all features are perfectly correlated. Determinants of
resulting covariance matrices of X, and X, are shown in Table 4-7. The evaluated

symbolic values obtained with all numerical values give a better representation since

the determinant is smaller.

Table 4-7 Determinants of Resulting Covariance Matrices

Determinant of Covariance of X, | Determinant of Covariance of X,

D 0.3455 0.3444
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The following example illustrates how H is obtained if C; does not have full rank.

Suppose that the coefficient matrix C; and C, are as follows:

[-0.49 134 -0.0621 -2.0913]
007 -1.0 -0.3469 1.4631
C.=|/-011 -0.07 -0.1771 0.0645 (4-66)
057 034 0.9077 -0.3015
|-158 047 -1.8946 -1.1982

2

[—0.54]
-0.09
C,=[-0.08
-1.67
| 0.13 |

(4-67)

If a straightforward solution is used with equation (4-35) by setting H;, = 0, Hg,

becomes

. —-0.5256
Hg = - pmV(C§1)C1 = _05741 (4-68)

and its norm is

|Hs,| =0.7784 (4-69)
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However, if H, is calculated using equation (4-47), it becomes

_ 0.1761
H., =-{L+DD")" pinv(C,,)C, = (4-70)
w=-broo7) pindco e = 0100
4 133 0.33
where D=R 'R, =
044 -1.44
Instead of setting H;, to zero, it can be calculated using equation (4-45).
0.309
H., =D'H = 4-71
° ot [— 0.1864} (4-71)

The resulting symbolic vector Hs = [HT  HL,|'=[0.1761 0.1698 0309 —-0.1864]",

which has the norm ||Hs|| = 0.4360. Obviously, the obtained solution satisfies equation

(4-37) with the minimum norm.



50

4.3.1.3 Other Approach for Missing and Symbolic Data

Instead of using the same covariance matrix for all points from a given class, local
covariance matrixes obtained from clusters of points in a given class should be used.
A clustering algorithm has to be used first to obtain these clusters and their covariance
matrixes. Then, their missing and symbolic values problems can be solved. When a
combination of symbolic and missing data exists, then the symbolic values problem
should be solved first using samples without missing data, after which all missing data

should be recovered.

4.4 Neurons’ Output

In a process layer, after a neuron has selected inputs (or a single input), transformation
function, threshold value, and the TCI, the neuron’s output is generated. This output
will become an input to other neurons which are wired to the present neuron. These
outputs are combined with the results of the transformation functions from previous
layers of neurons with neuron’s own transformation creating complex partitions of the
input space. Final, logical outputs are generated based on the threshold separation

results from the process layers.
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Chapter 5.

5. Arithmetic Operations

Each neuron processes its input data by selecting one of the operations. Since
artificial neuron networks are designed for real time processing, operations must be
simple in order to result a small physical area and fast processing time. Moreover,
neurons are capable to perform liner and nonlinear mathematical operations. The
processor performing these operations is a reduced instruction-set processor (RISP).
This processor is able to select one of the operations and perform it on the inputs. It is

assumed that the processor is designed to work with 8-bit input data.

All linear and nonlinear transformations can be derived from adding, subtracting,
averaging, and shifting. Nonnegative results and inputs are expected. All results from
arithmetic operations must be scaled to full range from 0 — 255 for the 8-bit numbers

in order to maintain the full resolution.
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5.1 Basic Arithmetic Operations

Since both linear and nonlinear arithmetic operations can be obtained using add,
subtract, compare, and shift, the RISP processor only needs to perform such
operations. In addition, two single bit operations are defined in Table 5-1 and Table 5-
2:

L(a) returns the location (starting from 0) of the most significant bit position of its

argument a, while E(a) is the inverse of L(a).

Table 5-1 L(a) Function

a 0 1 2 4 8 16 32 64 128

L@@ |0 1 2 3 4 5 6 7 8

Table 5-2 E(a) Function

a 0 1 2 3 4 5 6 7 8

E@ |0 1 2 4 8 16 32 64 128

The property which relates L(a) and E(a) is follows:

L[E(a)] =E[L(a)] =a (5-1)



Potential transformation operations within 0-255 are defined in Table 5-3.

Table 5-3 Simple Arithmetic Operations

53

Identical (X): X Half (X): X
2
. a+b -b if
Addition (a, b): ( ) Subtraction (a, b): {a I a>b
0 if a<b
Multiplication @, b): | Exponent (a): E(E{Sub[L(a),L(32)})

E{sub[L(a)+ L(b), B}

Square root (a): E{# + %}

Inverse (a): E{Sub[B, L(a)}l

Square (a): E{Sub[2*L(a), B}

Logarithm (a): E{L[L(a)] +3




54

Figure 5-1 shows the behaviors of one-argument operations: exponent, square, square

root, logarithm, and inverse functions in an 8-bits space.

X feature input array =1, 2, 3, ... 255

Y feature output array =1, 2, 3, ... 255

Y Feature

Figure 5-1 Exponent, Square, Square root, Logarithm, and Inverse Function

300

250

200

150

100

a0
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- —  lnwerse
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Exponent
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# Feature

300
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5.2 Multiple functions

Besides regular operations, multiple functions, which combine the different arithmetic
operations, can also be used to generate more complicated expressions. These
functions are useful in separating different classes from the local input space. In fact,
with these operations, more complex transformation functions corresponding to the
original input space grow along with increasing numbers of neuron’s layers. After
several layers, a neuron may be able to generate a complex transformation function
based on its own basic operations with input data that may have been processed with
many prior operations. Figure 5-2 demonstrates how multiple simple functions

combined together become a complex function as the one described by equation (5-1).

X feature input array =1, 2, 3, ... 255

Y feature inputarray =1, 2, 3, ... 255

Iog(Y)—{%og(Y)} —~log(X) = 424.374 (5-1)

where 424.374 was the equivalent threshold value in the input space.
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Figure 5-2 Combination of Multiple Functions
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Chapter 6

6. Self-Organization Principles

Once a network has been designed, it is ready for training. There are two types of
learning approaches in artificial neural network design: supervised and unsupervised
(Hassoun, 1995, p. 57). Supervised learning requires desired outputs and inputs.
Outputs of the network are compared with the desired outputs, and the differences are
propagated back to the system. The network has to adjust its weights to match the
network outputs. This process continues until the network is able to produce output
similar to the desired one. However, if the network cannot solve the problem, all the
parameters, such as weights, connections, number of layers, etc, must be revised and

adjusted.

The other approach is called unsupervised learning. With such learning, only the input
signal is provided to the network with no other influence. Unsupervised learning in
literature refers almost exclusively to self-organization of the training data. It helps

with clustering and data representation.

In this thesis, self-organization is applied to the learning hardware and, in general, can

be either supervised or unsupervised. However, the examples illustrating its use in
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this thesis are based on the supervised training. Unlike neural networks which have
well defined organization of interconnection and neuron functions, SOLAR involves
its connections, neuron control, the transformation function, and the threshold value to
achieve the best performance during the learning phase. Since it does not require an
outside help and is able to organize itself, it is also referred to as self-organizing

network.

6.1 Neuron Self-Organizing and Learning

During learning, a neuron counts the total amount of training data n;. This can be done
simply by counting the impulses of its system clock input. Similar to any sequential
machines, each neuron performs an operation on the selected inputs (or single input) at
the rising edge of the system clock. The result may become the system output or an
input to other neurons. If the TCI associated with a particular input data is high, the
result of this operation is compared against a set threshold value. This means that this
input data is within the subspace where the current neuron is learning. If TCI is zero,
on the other hand, no comparison takes place since this particular input data is outside
of the subspace where the neuron is learning. Counters in each neuron controlled by

its TCI count three sets of numbers.

* Amount of data that satisfy the threshold value: ng

* Amount of data belonging to a class that satisfy the threshold value: ng
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* Amount of data belonging to a class that does not satisfy the threshold value:

Nsic

By doing so, threshold value divides the neuron’s input space into two subspaces. The
quality of learning of each neuron can be calculated statistically by computing the

information index.

In order to calculate information index, finding the probabilities of training data which

fall into each subspace is required.

«  Probability of a class satisfying threshold: P, = (6-1)
nt
* Probability of a class not satisfying threshold: P, = nri“ (6-2)
t
» Subspace probability (pass threshold): P, =0 (6-3)
t
» Complementary subspace probability
(does not pass threshold): P, =1-P, (6-4)
«  Class probability - P, =
p y-RE (6-5)
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With these calculated probabilities, information index can be obtained from (6-6).

P, log(P, )P, log(P. )} . {z P 10g(P..)~P, log(P, )}

|:1—AES :1_|:sc sic

E_ > P.log(R.)

(6-6)

Different combinations of inputs, transformation operations and TCI can result in
different information index values. Neurons perform information index calculation for
different combinations, and the maximized result is obtained in order to provide an
optimum separation of the input training data. When the index value becomes “1”, it
indicates that the neuron has solved its problem completely. However, it does not

mean that any test data can be classified correctly all the time.

Figure 6-1 and Figure 6-2 show that different transformation functions can result in
the different information index values. These graphs show the information index
computation by using addition and multiplication. Having the same inputs and TCI,
multiplication of neuron’s inputs can produce a higher information index than
addition. If the value remains the highest among all combinations, multiplication is
selected by this neuron as its transformation function. These input connections (or

single connection) and threshold value are also stored.
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Threshold value is used to separate the input space. Figure 6-3 shows how subtraction

with a threshold divides a space into two subspaces and separates the two classes.

Y Feature
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100
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B0
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Two Classes Input Space Separation With Subtraction

o

]

1 1 1 1 1 1
all 100 120 140 160 180 200
# Feature

Figure 6-3 Input space Separation Using Subtraction

|
220
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6.2 Subspace Learning
Information deficiency is simply a normalized relative subspace entropy. It indicates
the amount of knowledge that must be learned to solve a classification problem in a

given subspace. Subspace s information deficiency is defined in equation (6-7).

AE z Psc Iog(Psc ) - Ps Iog(Ps )

* “Emax >'P. log(P.) 67

One space can be divided into many subspaces during learning. At the first layer of
neurons, it is assumed that the input information deficiency is one. The relationship of

the information index and the information deficiencies are shown in equation (6-8)

1-1=)0, (6-8)

Each subspace can be learned by minimizing the information deficiency. If the
information deficiency becomes zero, it means that there is nothing left to be learned
by a neuron. The frequency of subdividing a subspace is based on the probability of
each neuron selecting a TCOT or TCOTI as its TCI. If TCI of a neuron is connected
to TCO from the previous neurons, it has a greater chance in subdividing an input

subspace.
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Once local features are selected based on the maximum local information index,
output information deficiencies for TCOT and TCOTI are obtained, which are defined
as the product of subspace information deficiencies and input information deficiency.
On the other hand, the information deficiency for TCO remains the same as its input
information deficiency. These output information deficiencies are carried out to the
neurons where they are connected to the threshold-control-clock (TCO, TCOTI,
TCOT) for the next stage of learning and become the input information deficiencies of

the next stage neurons.

6.2.1 Termination of Learning

The computed output information deficiency allows the next neuron to know if its
corresponding selected subspace has been learned enough. If the incoming
information deficiency is less than or equal to the chosen information deficiency
threshold (IDT), it indicates that not much information can be gained by further
dividing the selected input space. This neuron stops learning the selected subspace
and moves on to other selected subspaces. If the incoming information deficiencies
are all low enough, this neuron stops learning and will not participate in voting during

the testing stage.
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Chapter 7.

7. Final Classifications

Data which needs to be classified is sent to the network, and each neuron performs
classification based on their learning results. Finally during the voting process, all
participating neurons vote for the class to which they believe the data is categorized.
The voting layer gathers all the information and decides which class the input really

belongs to using a weighting function.

7.1 Voting Neurons

Each neuron identifies itself whether it is qualified to participate in the final
classification after training. This identification is done by comparing neurons’ output
information deficiencies of TCOT and TCOTI with the voting threshold. There are
two flags in each neuron. One flag is select-output-passed threshold (SOT) which
indicates that the neuron is capable to vote when its calculated output passes its
threshold. It is set only if the neuron’s output information deficiency of TCOT is less
than or equal to a voting threshold. The other flag, select-output-passed threshold-
inverse (SOTI), indicates that the neuron is qualified to participate in voting when the

transformed output does not pass its threshold. This flag is set if the neuron’s output



66

information deficiency of TCOTI is smaller than or equal to a voting threshold. If

both flags are set, a neuron can vote for either its transformed output data passes its

threshold or fails it.

Table 7-1 shows all the conditions for setting flags SOT and

SOTI required for a neuron to vote.

Table 7-1 SOT and SOTI Flag Set Condition

SOT SOTI Soutput OF TCOT Soutput OF TCOTI
0 0 > (1-DIT) > (1-DIT)
0 1 > (1-DIT) <= (1-DIT)
1 0 <= (1-DIT) > (1-DIT)
1 1 <= (1-DIT) <= (1-DIT)

7.2 Weighting Function

Unlike other artificial neural networks using the “winner takes all” approach, a neuron
having more knowledge about an input data is weighted heavier, while other neurons
weights are lower and have less influence in the final voting. Neurons of SOLAR first
check whether they are capable to vote by checking their flags for a given input.
Then, they internally stored probabilities of correct classification, based on whether
the input data passes or does not pass threshold values, are used to calculate the

weighting function which determines the classification of input data.

During learning, each neuron counts and stores three numbers. One is the total

amount of data that satisfies threshold ns another is the total number of data belonging
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to a class that satisfies threshold ng and finally an amount of data belonging to a class

that does not satisfy threshold ng;c.

The probability of correct classification P.; can be computed as follows:

- Probability of correct classification: P, == (7-1)
nb

where n, = {”sc (pass threshold)
Ng.  (does not pass threshold)

n, = {ns (pass threshold)
si. (does not pass threshold)

Nsi = Nt - Ns

ns = amount of data that satisfy the threshold value

nsc = amount of data belonging to a class that satisfy the threshold value

nsic = mount of data belonging to a class that does not satisfy the threshold
value

n; = total among training data

After the transformed signals are calculated and checked against threshold, neurons set
their self-organizing neural network output (SONNO) to notify the voting layer if they
are voting for this incoming data. Their classification probabilities are also sent to the

voting layer for final classification calculation.
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Once the voting layer receives the information from all participating neurons, it

performs a final classification calculation using a weight function which is described

in equation (7-3).

(7-3)

where P, ~=maximum B, of all SONNOs’ “voting” for class ¢

P, = P, of each “vote” for class ¢

CC;
n = number of “votes” for class ¢

€ = small number preventing division by zero



69
7.2.1 Example of Weighting Function Calculation

In order to illustrate the property of this weight function, an example is provided.
Assume that there are five neurons participating in voting for a particular input data
with three classes, and that the correct classification probabilities of each neuron
corresponding to the threshold value are shown in Table 7-2. This information is

obtained from each neuron after a learning process.

Table 7-2 Probabilities of Correct Classification

Neuron Number
1 2 3 4 5
Class 1 0 0.293 0.179 0.671 0.015
Class 2 0.833 0.632 0.325 0.329 0.985
Class 3 0.167 0.075 0.496 0 0

As ¢ = 0.001, the weights of different classes for this particular input data are

calculated with equation (7-3), and they are shown in Table 7-3. Class 2 is classified

by the network for this particular input data since it has the largest weight value.

Table 7-3 Voting Weight for Different Classes

Class 1

Class 2

Class 3

0.7478

0.9863

0.5774
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Chapter 8

8. Software Simulations

In order to show the results of the network learning, two sets of real datasets are
selected from the University of California at Irvine (ICS, UCI, 1995, December) and
fed to SOLAR as inputs. These datasets represent real world application problems.
One is a credit card approval problem from Australia, and the other one is a personal
income classification. In addition, a two-dimensional data example, based on
synthetic data, is used to illustrate the SOLAR performance. Figure 8-1 and Figure 8-
2 are flow charts indicating the logic flow of SOLAR simulation program during

learning and testing.
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This two-dimensional training dataset was statistically generated, and it is not a real-

world application dataset. There are five classes in this training dataset as shown in

Table 8-1 and Figure 8-3.

Table 8-1 Classes of Two Dimensional Training Data

Class 1 Class2 Class 3 Class 4 Class 5
Number of 503 429 190 682 542
points
Two Dimensional Input Space
250 - —
PO ¢
wod 9
g s S
200 - —
T 150 - .
L
_—
100 W Class 1 -
o Class 2
Class 3
O Class 4
=0l o Class & |
50 100 180 200 250
* Feature

Figure 8-3 Two Dimensional Input Space
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8.1.1 Network Parameters

Before generating the network, design parameters are required to be set. These
parameters determine the size of the input, input control clock, probability of selecting
a subspace, and information deficiency threshold. For example, majority of the TCI
(90%) is connected to the TCO while 5% of the TCI connects to either TCOT or
TCOTI randomly, when the subspace selection probability is set to 0.1. These
parameters are important because they can have significant effect on the network

performance.

* Input parameters:
1. Number of input(s) from the nearest neighbors = 1
2. Number of input(s) from the next nearest neighbors = 1
3. Number of input(s) from remote neighbors = 1

*  Number of connection(s) to TCI =3

» Voting threshold = 0.9

» Subspace selection probability = 0.1

» Information deficiency threshold = 0.1

*  Number of layers = 15

e Number of neurons per layer = 2
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8.1.2 Initial Wiring

As discussed in Chapter 3, statistically generated Mahalanobis Distance is applied in
initial wiring for neurons’ inputs. According to the design parameter setting, there are
three inputs for each neuron. The nearest neuron, which is located at the previous
column and the same row, is always connected. Since more than one neuron are
considered as the next nearest, one of them is connected based on a random generator.

The last input is connected totally based on the random generator.

After wiring the input signals, threshold-control-inputs (TCI) are connected. Because
local learning is believed to result in a better performance, one of the TCI is always
connected to the nearest neuron while the other two are connected to the previous
neurons based on the random generator. The final initial wiring of the network is

shown in Figure 8-4.
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Figure 8-4 Initial Wiring of SOLAR for Two Dimensional Dataset

8.1.3 Functions
Each neuron in SOLAR has pre-defined set of operations, and they are all the same for
each neuron throughout the network. For faster operation, few simple operations are

included in each neuron. These operations (discussed in Chapter 5 — Arithmetic

Operations) can be classified into two groups. One group is called “unary kernels ”

while another one is called “binary kernels”.
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“Unary kernels” include operations such as identity, half, logarithm and exponential.

» Identity function: Y = IDENT (X) = X (8-1)
. X
» Half function: Y = HALF (X) = > (8-2)
«  Logarithm function: Y = NLOG2 (X) = 2{tca2liea2(x)}+% (8-3)
X
» Exponential function: Y = NEXP2 (X) = 2(32j (8-4)
“Binary kernels” include operations such as addition and subtraction.
* Addition function: Y = NADD (X, Y) = X ;Y (8-5)
» Subtraction function: Y = NSUB (X, Y) =X -Y (8-6)

A combination of “unary kernels” and “binary kernels” operation is encouraged since
multiple transformation functions can result in a more complicated curve that may be

used in dividing local input space.
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8.1.4 Neuron Learning

Initial Wiring after Learning

rd
o
1

R
e
T

—
(]

—
o

Fow of Meurons

—
i

o T

—
e8]

=

DB 1 1 |
0
Column of Meurons

Figure 8-5 Wiring of SOLAR after Learning Process

Figure 8-5 shows the wiring of the network after learning. Each neuron connects to a
maximum of two inputs, and only one output clock is selected for its TCl.  Neurons,
in Figure 8-5 which have no wires connected, do not have any effect on the final
classification since they did not learn during the training process. It is because there is

nothing left for this neuron to learn from the input space.



79

8.1.4.1 Local Space

Figure 8-6 and Figure 8-7 are examples showing a neuron (28) that divides a local

input space by applying a combination of “unary kernels” and “binary kernels

operations. The combination is:

Output = NADD [NHALF (X), NLOG2 (Y)] (8-7)

Meuron Operating on Local Input Space
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Figure 8-6 Neuron Dividing Local Input Space
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Meuron Operating on Local Input Space
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Figure 8-7 Neuron Dividing Local Input Space (Zoom In)

Since both information deficiencies of neuron (28) are less than voting threshold as
shown in Table 8-2, both SOT and SOTI are set. This neuron is qualified to
participate in the final classification for a testing data which either passes or fails its

threshold. Probabilities of the correct classification are calculated, and they are shown

in Table 8-3.
Table 8-2 Output Information Deficiencies of Neuron (28)
Output Information Deficiency Output Information Deficiency
(Passing Threshold) (Not Passing Threshold)

0.1425 0.0017
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Table 8-3 Correct Classification Probabilities of Neuron (28)

Class 1 Class 2 Class 3 Class 4 Class 5
Pass Threshold 0.0253 0.0013 0.2527 0 0.7207
Does Not Pass 0 0.9950 0 0.0050 0
Threshold

Table 8-2 and Table 8-3 illustrate the close relationship between an output information
deficiencies and the probabilities of correct classification. As the output information
deficiency decreases, it indicates how much this neuron knows about its local input
space. For neuron (28), the output information deficiency of data that did not pass
threshold is 0.0017, and it has 0.995 probability of a correct classification for Class 2.
This is also demonstrated graphically in Figure 8-6 and Figure 8-7 where Class 2 is
efficiently separated from the rest of the classes by the neuron’s threshold line.
Therefore, at later testing classification, a data, which belongs to neuron (28)’s local
input space and does not satisfy its threshold value, is voted with high probability as

being Class 2.
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8.1.4.2 Original Space

Meuron Operating on Original Space
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Figure 8-8 Cutting the Original Input Space

More and more complex transformation functions grow along with the increasing
layers of neurons. As discussed in Chapter 5, a neuron applies its different
transformation functions to the local input space. These inputs may have been
subjected to many transformations of the original input space after several neurons
processing. For example, neuron (28) cuts the original space as shown in Figure 8-8.

It basically makes the transformation function more complicated which corresponds to
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the original space by applying its own operation on the two inputs. The relationship
between final transformation of this neuron and the original space at Figure 8-8 can be
obtained by tracing back all the operations that have been applied to the local inputs
(or a single input). The output of neuron (28) expressed by input variables in the

original space is as follows:

Output (28) = —(eXpﬁ)" X4 |og{2>< Y +8€pr} (8-7)

32
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Figures 8-9 and 8-10 show that having help from another neuron, most of Class 2 can

be divided from the rest of the classes. Classification is achieved if all neurons work

together.
Twa Meurons Operating on Original Input Space
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Figure 8-9 Two Neurons Separating Class 2
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8.1.5 Neuron Testing

After learning, SOLAR is prepared to classify any data that is within the learning
space. A testing data is chosen from the training data to demonstrate how the network
performs the final classification based on their probabilities of correct classification.
The chosen test data is one of the training data from Class 2. Values of its input

features are

X =097

Y =138

According to the TCI, SOT, and SOTI, neurons that participate in voting are

Neuron (1) Neuron (10)
Neuron (2) Neuron (16)
Neuron (3) Neuron (21)
Neuron (4) Neuron (24)
Neuron (5) Neuron (28)

Neuron (8)
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Correct classification probabilities of each neuron corresponding to their threshold

values are illustrated in Table 8-4.

Table 8-4 Probabilities of Correct Classification

Neuron Number
2 3 4

Class 1 0.0352 0.0055 0.2399 0.0199 0 0
Class 2 0.1586 0.3341 0.2809 0.2109 0.9850 0.6073
Class 3 0.2093 0.1480 0 0.1994 0 0.3897
Class 4 0 0.0903 0.4792 0.0010 0.0150 0.0030
Class 5 0.5969 0.4221 0 0.5687 0 0

Neuron Number

10 16 21 24 28

Class 1 0 0.0012 0.0073 0 0
Class 2 0.5106 0.2442 0.7806 0.9850 0.9950
Class 3 0.4894 0.0948 0 0 0
Class 4 0 0.0012 0.2121 0.0150 0.0050
Class 5 0 0.6586 0 0 0
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As discussed in Chapter 7 — Final Classification, probability of being a class of a

testing data can be calculated with a weight function as described in equation (8-8).

(8-8)

where P, ~=maximum P, of all SONNOs’ “voting” for class c

P. = P_of each “vote” for class ¢

CC;
n = number of “votes” for class ¢

€ = small number preventing division by zero

As € = 0.001, the weights of different classes for this particular testing data are
calculated; and they are shown in Table 8-5. The final voting result suggests that this

testing data belongs to Class 2, which is a correct classification.

Table 8-5 Probability Estimates for Different Classes

Class 1 Class 2 Class 3 Class 4 Class 5
0.2645 0.9967 0.6018 0.5206 0.7780
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As all the training data were used to test the performance of SOLAR, probabilities of

classification for different classes are shown in Table 8-6. Table 8-6 suggests that

SOLAR is more confident to classify Class 2, Class 3, and Class 5 compared to others.

Table 8-6 Probabilities of Classification

Data Classified as
Class 1 Class 2 Class 3 Class 4 Class 5
Data from Class 1 0.8171 0 0.0040 0.1769 0.0020
Data from Class 2 0 0.9977 0.0023 0 0
Data from Class 3 0 0 0.9263 0 0.0737
Data from Class 4 0.1481 0.0103 0 0.8416 0
Data from Class 5 0 0 0 0 1

The reason SOLAR has inefficient performance in classifying Class 1 and Class 4 is

because Class 1 has large overlapping area with Class 4 as illustrated in Figure 8-11.

Information deficiency calculation can result in a good separation between two

groups. After a few layers of neurons, different classes should be identified by the

network. However, if a large number of different members from different classes

overlap, SOLAR can never accurately classify these members even with many layers

of neurons because they are statically non-separable, and the probabilities of correct

classification of these classes are always low. The algorithm performance in such case

is limited by Bayesian probabilities.
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8.2 Credit Card Dataset

Credit cards have been widely used and have become very popular around the world.
According to Master Card International, the number of credit cards in Asia/Pacific
region alone grew from 30.9 million to 72.6 million between 1990 and 1998. The
increasing number of applications create a huge task for processing them, which is
impossible to handle by hand. Artificial neural networks can be used to facilitate this

task.

8.2.1 Dataset Background

The credit card approval data in Australia (Credit Screening Database) was acquired
from the University of California at Irvine (ICS, UCI, 1995, December). The dataset
has 690 instances, 16 features including class attribute, and it is divided into 2 classes,
which are approve and reject represented by “+” and “-”. The dataset contains
numbers of credit card applications, which feature names and values have been
replaced by symbols to protect the individuals’ privacy of the data. The content of the
dataset is described in Table 8-7. Missing values and class distribution are presented

in Table 8-8.
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Table 8-7 Credit Card Dataset Information

Nunber of i nstances 690

Nunber of attributes 15 + Cass attribute
Attribute infornmation

Attribute 1 b, a

Attribute 2 Conti nuous val ues (13.75-80. 25)
Attribute 3 Conti nuous val ues (0-28)
Attribute 4 u,y,l,t

Attribute 5 g, p, 99

Attribute 6 c,d,cc,i,j,k,mr,q,wXx,e,aa,ff
Attribute 7 v,h,bb,j,n,z,dd, ff,o
Attribute 8 Cont i nuous val ues (0-28.5)
Attribute 9 t,f

Attribute 10 t,f

Attribute 11 Cont i nuous val ues (0-67)
Attribute 12 t,f

Attribute 13 g,p,s

Attribute 14 Conti nuous val ues (0-2000)
Attribute 15 Cont i nuous val ues (0-100000)
Attribute 16 +,- (Cass attribute)

Table 8-8 Missing Data and Class Distribution of Credit Card Dataset

M ssing attribute 37 cases (5% has one or nore
m ssi ng val ues

Attribute 1 12

Attribute 2 12

Attribute 4 6

Attribute 5 6

Attribute 6 9

Attribute 7 9

Attribute 14 13

Cl ass distribution

+ 307 (44.5%

- 383 (55.5%
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The ranges of numerical values are listed in Table 8-7, and their distributions are
shown in Figure 8-12. All plots are illustrated in their original scales except for
Attribute 15 because the majority of its samples are extremely small. Applying

logarithm scale helps to present its distribution.
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Figure 8-12 Numerical Values Distributions of Credit Card Dataset



8.2.2 Missing Data and Symbolic Values

There are missing data and symbolic values presented in this credit card dataset due to
the protection of privacy of the individuals and the nature of the dataset. These data
and values must be replaced by meaningful numerical values so that SOLAR can

perform transformation functions on the data. The replacement values can be obtained

by applying the methods discussed in section 4.3.1.1 and 4.3.1.2. The result of

assigning numerical values to symbolic values are shown in Table 8-9.

Table 8-9 Symbolic Values Assignment for Credit Card Dataset

b, a 0.9189, 1.0000

u, y, I, t 1. 0000, 1.0081, 12.6678, O
g, p, 99 0.0784, 1.0081, 12.6678
c, d, cc, 1. 0000, 1.1453, 1.1053,
i, |, Kk, 1.1479, 1.4554, 1.1103
m r, q, 1.2030, 2.1342, 1.0121,
w, X, e, 1. 0602, 1.2539, 1.5053,
aa, f 1.0444, 1.3118

v, h, bb, 1. 0000, 1.0997, 1.3572,
j, n, z, 1.6518, 1.8488, 2.9303,
dd, ff, o 1.6381, 1.3340, 6.2384
t, f 1. 0000, O0.8646

t, f 1. 0000, 0.8520

t, f 1. 0000, 0.9135

g, p, S 1. 0000, 15.7278, 1.2447
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8.2.3 Network Parameters

All parameters are set the same as for the two-dimensional problem discussed in
section 8.1 except number of neurons per layer and the number of layers since this
problem has more input features. Since the increased number of features raises the
complexity of the problem, more neurons are required in generating a reliable result.
All parameters are shown as follows:
* Input parameters:
1. Number of input(s) from the nearest neighbors = 1
2. Number of input(s) from the next nearest neighbors = 1
3. Number of input(s) from remote neighbors = 1
*  Number of connection(s) to TCI =3
» Voting threshold = 0.9
» Subspace selection probability = 0.1
» Information deficiency threshold = 0.1
*  Number of layers = 17

e Number of neurons per layer = 15
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8.2.4 Simulation Results

In order to compare a result from SOLAR with previous works, the same experimental
setup as used in previous experiments (Michie, Spiegelhalter & Taylor, 1994) was
introduced in this simulation. The setup of the previous experiments used cross-
validation technique (Ston, 1974) to divide the dataset randomly into n mutually
exclusive data groups with equal size. The number of times of training and testing
process is based on the number of data groups n. During each training and testing
process, one of the groups is selected as testing data, while the rest (n-1) of the groups
are training data. The same testing group will not be selected as testing data again if it
has been chosen before, and each data group will be selected as testing data group
only once. The error rate is the average error rate of the n groups. This can eliminate
the statistical biases, and the error rate can be estimated efficiently. Similar to the

previous experiments, n was set to 10 in this simulation.

Since SOLAR is a self-organizing network, each network with different pre-wiring
can result in a different performance. In order to observe and estimate the average
performance of SOLAR, nine identical networks with different pre-wiring were
generated. As shown in Figure 8-13, these nine networks were assumed working in
parallel, and a final majority voting was performed. Table 8-10 demonstrates the
result of each network while Table 8-11 shows the result of the average performance

after the majority voting.



Majority Voting

Figure 8-13 Majority VVoting with Parallel SOLARS

Table 8-10 Performance of Each SOLAR
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SOLAR Number

N1

N2

N3

N4

N5

N6

N7

N8

N9

Mean

0.8609

0.8609

0.8594

0.8565

0.8580

0.8551

0.8261

0.8696

0.8594

SD

0.0717

0.1025

0.0820

0.0922

0.0717

0.0717

0.3689

0.0820

0.0820

Min

0.7971

0.7971

0.7971

0.7826

0.7971

0.7971

0.4203

0.8116

0.7971

Max

0.8986

0.9420

0.9130

0.9130

0.8986

0.8986

0.9420

0.9275

0.9130

Table 8-11 Average Performance after Majority Voting (Credit Card)

Mean 0.8638
SD 0.0820
Min 0.7971
Max 0.9130
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Setting different values to the voting threshold can help to optimize the voting result.

Figure 8-14 and Table 8-12 demonstrate the process of searching for the optimized

voting threshold value for this particular dataset.

Table 8-12 Voting Thresholds and Error Rates (Credit Card)

Voting 0.1 0.15 0.2 0.5 0.9
Threshold
Error Rate 0.1420 0.1333 0.1362 0.1377 0.1362
“oting Threshold Searching
0142+ .

0.14

Error Rate
[}
o
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0.136

0.134
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“alue of Woting Threshold

1 |
0.5 0B
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Figure 8-14 Voting Threshold Searching (Credit Card)
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Figure 8-15 illustrates the self-organized SOLAR for this credit card problem. The
confusion matrix of the better result (voting value = 0.15) is shown in Table 8-13.
This result is compared with other algorithms, and Table 8-14 shows the comparison.
SOLAR performed fairly well among all the algorithms. Although it does not
compete with the decision tree algorithm CALS, it has the best performance among all

artificial neural networks, which are highlighted in Table 8-14.
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Table 8-13 Probabilities of Classification (Credit Card)

Data Classified as

Class 1 Class 2
Data from Class 1 0.9349 0.0651
Data from Class 2 0.1880 0.8120

Table 8-14 Comparison Result for Credit Card Approval Dataset

Algorithm Error Rate
Cal5 0.131
SOLAR 0.1333
Itrule 0.137
Discrim 0.141
Logdisc 0.141
DIPOL92 0.141
CART 0.145
RBF 0.145
CASTLE 0.148
NaiveBay 0.151
INdCART 0.152
Backprop 0.154
C4.5 0.155
SMART 0.158
Baytree 0.171
k-NN 0.181
NewID 0.181
AC’ 0.181
LVQ 0.197
ALLOCS80 0.201
CN2 0.204
Quadisc 0.207
Default 0.440
Kohonen Failed
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8.3 Adult Income Dataset

Besides credit card approval, potential customer analysis is an example of another real
world application to which banks or financial companies can apply artificial neural
networks. These analyses help companies understand their current or potential
customers and to react properly. Personal income certainly is one of the information a
company is interested to investigate. According to The Hong Kong and Shanghai
Banking Corporation Limited (HSBC) 2001 annual review, their new mortgage loans
increased by 56 percent in value in UK while there was a 46 percent new mortgage
business volume increase in Hong Kong, most of which were related to refinancing.
Knowing the income information for current or potential customers can help banks or
financial companies to provide “right” loan packages to target customers before other

competitors do.

8.3.1 Dataset Background

This adult income dataset (Adult Database) was obtained from the University of
California at Irvine (ICS, UCI, 1995, December). The dataset contains two sets of
data. One is training data, which has 32561 instances while another one is testing
data, which has 16281 instances. Both have 15 features including class attribute, and
they are also divided into 2 classes. The dataset contains both symbolic values such as
gender, race, etc., and missing data. The content of the dataset is described in Table 8-

15.
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Table 8-15 Adult Income Dataset Information

Nunmber of instances 32561
(Trai ni ng data)
Nunmber of instances 16281

(Testing data)

Nunmber of attri butes

14 + Class attribute

Nunber of m ssing
val ues

7%

Attribute informtion

Age Conti nuous val ues (17-90)

Wor k- O ass Synbol i ¢ val ues (8)

Fnl wgt Cont i nuous val ues (12285-
1490400)

Educati on Synbol i ¢ val ues (16)

Educat i on- Num

Cont i nuous val ues (1-16)

Mari tal - St at us

Synbol i ¢ val ues (7)

Qccupation Synbol i ¢ val ues (14)
Rel ati onship Synbol i ¢ val ues (6)
Race Synbolic values (5)
Sex Synmbol i ¢ val ues (2)

Capital -Gain

Cont i nuous val ues (0-99999)

Capi tal -Loss

Cont i nuous val ues (0-4356)

Hour s- Per - week

Conti nuous val ues (1-99)

Nati ve- Country

Synbol i ¢ val ues (41)

Cl ass

>50K, <=50K (Class attribute)

Class distribution

>50K

23.93%

<=50K

76. 07%

The ranges of numerical values are listed in Table 8-15, and their distributions are

illustrated in Figure 8-16. All features are plotted with all samples in their original

scales except for Capital-Gain and Capital-Loss. Because the majority (more than

40,000) samples of both features are zero, only non-zeros samples are shown in order

to obtain better representations of their distributions.
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8.3.2 Missing Data and Symbolic Values

There are missing data and symbolic values present in this adult income dataset due to
the nature of the dataset. These data and values must be replaced by meaningful
numerical values so that SOLAR can perform transformation functions on the data.
The replacement values can be obtained by applying the methods discussed in section

4.3.1.1 and 4.3.1.2. The result of symbolic values assignment is shown in Table 8-16.

Table 8-16 Symbolic Values Assignment for Adult Income Dataset

Wor k- C ass Privat e, 1. 0000,
Sel f - enp-not -i nc, 1. 1865,
Sel f - enp-i nc, 1. 4286,
Feder al - gov, Local -gov, 1.3889, 1.2063,
St at e- gov, Wt hout - pay, 1.2778, 20.5992,
Never - wor ked 33.7778
Educati on Bachel ors, Sone-college, |1.0000, 0.7691,
11t h, HS-grad, 0. 5385, 0.6924,
Prof -school, Assoc-acdm |1.1538, 0.9232,
Assoc-voc, 9th, 0. 8462, 0.3847,
7th-8th, 12th, 0. 3076, 0.6153,
Mast ers, 1st-4th, 1.0771, 0.1538,
10t h, Doctorate, 0. 4615, 1.2309,
5t h-6t h, Preschool 0. 2309, 0.0771
Mari tal - Marri ed- ci v- spouse, 1. 0000,
St at us Di vorced, Never-married, |0.9977, 0.8499,
Separ ated, W dowed, 1.0271, 1.1443,
Marri ed- spouse- absent, 1. 1865,
Marri ed- AF- spouse 5.1813
Qccupation Tech- support, 1. 0000,
Craft-repair, 0. 8775,
O her-service, Sales, 0. 8076, 0.9156,
Exec- manageri al , 1. 0025,
Prof - speci al ty, 1.0432,
Handl er s- cl eaners, 0. 8216,
Machi ne- op-i nspct, 0. 8483,
Adm cl eri cal , 0. 8908,
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Far m ng-fi shi ng, 0. 9086,
Transport - novi ng, 0. 8971,
Priv-house-serv, 1. 0025,
Protective-serv, 0. 9829,
Ar med- For ces 5. 4006
Rel ationship |Wfe, Oan-child, 1. 0000, 0.7693,
Husband, Not-in-famly, 0. 9608, 0.9157,
QO her-rel ative, 0. 9106,
Unmarri ed 0.9177
Race Wi te, 1. 0000,
Asi an- Pac- | sl ander, 1. 2086,
Arer - | ndi an- Eski no, 1.4746,
O her, Bl ack 1.5877, 1.0382
Sex Femal e, Mal e 1. 0000, 1.0300
Nat i ve- Uni t ed- St ates, Canbodi a, |1.0000, 2.1185,
country Engl and, Puerto-Ri co, 1. 3416, 1.0854,
Canada, Cernany, 1.2397, 1.2066,
Qut | yi ng- US( Guam USVI - 2. 4105,
etc), India, Japan, 1.3058, 1.4160,
Greece, South, 1.6804, 1.3554,
Chi na, Cuba, 1.3196, 1.2810,
I ran, Hondur as, 1.7052, 2.3471,
Phi li ppi nes, Italy, 1.1157, 1.2727,
Pol and, Janmui ca, 1.3802, 1.2672,
Vi et nam Mexi co, 1.2617, 0.8788,
Portugal , Irel and, 1.2893, 1.7934,
France, 2. 0551,
Doni ni can- Republ i c, 1. 1653,
Laos, Ecuador, 2.3085, 1.6171,
Tai wan, Haiti, 1. 7355, 1.3361,
Col unmbi a, Hungary, 1.3471, 2.9614,
Guat emal a, Ni car agua, 1.1212, 1.5758,
Scot | and, Thai |l and, 2.6198, 2.1625,
Yugosl avi a, El-Sal vador, |2.2948, 1.0083,
Tri nadad&Tobago, Per u, 2.0606, 1.6804,
Hong, Hol and- Net herl ands | 2.0799, 25.4160




106

8.3.3 Network Parameters

Almost all parameters are set the same as in the two-dimensions problem discussed in
section 8.1 except number of layers, number of neurons per layer, and number of TCI
connections. Different numbers of layers with two numbers of TCI are chosen to
demonstrate different performances of SOLAR. All parameters are shown as follows:
* Input parameters:
1. Number of input(s) from the nearest neighbors = 1
2. Number of input(s) from the next nearest neighbors = 1
3. Number of input(s) from remote neighbors =1
* Number of connection(s) to TCI=3and 5
* Voting Threshold = 0.9
» Subspace selection probability = 0.1
» Information deficiency threshold = 0.1
*  Number of layers = 16, 30, 50, and 70.

e Number of neurons per layer = 14

8.3.4 Simulation Results

Since SOLAR is a self-organizing network, each network with different pre-wiring
can result in a different performance. In order to observe and estimate the average

performance of SOLAR, nine identical networks with different pre-wiring were
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generated. As shown in Figure 8-11, these nine networks were assumed working in
parallel, and final majority voting was performed. Table 8-17 demonstrates the result
of each network while Table 8-18 shows the result of average performance after the

majority voting.

Table 8-17 Performance of Each SOLAR

TCl=3
16 Layers 30 Layers 50 Layers 70 Layers
N1 0.7877 0.7777 0.8178 0.8270
N2 0.8012 0.8300 0.7952 0.8399
N3 0.8199 0.8304 0.8230 0.8357
N4 0.8030 0.8309 0.8082 0.8248
N5 0.8055 0.7925 0.8434 0.8300
N6 0.7925 0.8207 0.8366 0.8142
N8 0.8027 0.8194 0.8058 0.8318
N8 0.8070 0.8176 0.8379 0.8203
N9 0.8111 0.8296 0.8313 0.8292
TClI=5
16 Layers 30 Layers 50 Layers 70 Layers
N1 0.8031 0.8241 0.8073 0.8304
N2 0.8025 0.8110 0.8272 0.8318
N3 0.8027 0.8242 0.8181 0.8388
N4 0.8054 0.8360 0.8065 0.8369
N5 0.8012 0.8229 0.8423 0.8297
N6 0.8022 0.8311 0.8439 0.8119
N8 0.8098 0.8045 0.8388 0.8249
N8 0.8028 0.8071 0.8165 0.8159
N9 0.8125 0.8273 0.8125 0.8371
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Table 8-18 Average Performance after Majority VVoting (Adult Income)

TCI=3
16 Layers 30 Layers 50 Layers 70 Layers
0.8036 0.8206 0.8294 0.8297
TCI=5
16 Layers 30 Layers 50 Layers 70 Layers
0.8040 0.8225 0.8313 0.8331

The result in Figure 8-17 suggests that SOLAR with more layers performs better. In

fact, SOLAR with more layers and more TCI inputs results in a classification

improvement for this particular dataset. These outcomes are expected since increasing

number of neurons raises the chance of applying different transformations on the

inputs. Moreover, with more TCI inputs, a neuron can check more subspaces and

select the one in which the neuron has a better reduction of information deficiency. In

addition, Figure 8-16 also suggests that little improvement is gained as the number of

layers keeps increasing after 50 layers while the number of TCI inputs remains the

Same.
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Setting different values to the voting threshold can optimize the voting result. Figure

8-18 and Table 8-19 demonstrate the process of searching for the optimized voting

threshold value with only 17 layers of neurons for this particular dataset.

Table 8-19 Voting Thresholds and Error Rates (Adult Income)

Voting 0.1 0.15 0.2 0.3 0.5 0.9
Threshold
Error Rate 0.1671 0.1482 0.1514 0.1537 0.1665 0.1964
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Figure 8-19 illustrates the self-organized SOLAR with 17 layers for this adult income
problem. The confusion matrix of the better result is shown in Table 8-20. This result
is compared with other algorithms and Table 8-21 shows the comparison. Although
SOLAR does not perform as well as the best algorithms, it is the only artificial neural
network on the list, and it was not designed for any specific classification and

recognition tasks.
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Figure 8-19 Self-Organized Network Structure for Credit Card Problem



Table 8-20 Probabilities of Classification (Adult Income)
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Data Classified as
Class 1 Class 2
Data from Class 1 0.5785 0.4215
Data from Class 2 0.0637 0.9363

Table 8-21 Comparison Result for Adult Income Dataset

Algorithm Error Rate
FSS Naive Bayes 0.1405
NBTree 0.1410
C4.5-auto 0.1446
IDTM (Decision table) 0.1446
HOODG / SOLAR 0.1482
C4.5 rules 0.1494
OC1 0.1504
C4.5 0.1554
Voted ID3 (0.6) 0.1564
CN2 0.1600
Naive-Bayes 0.1612
Voted ID3 (0.8) 0.1647
T2 0.1687
1R 0.1954
Nearest-neighbor (3) 0.2035
Nearest-neighbor (1) 0.2142
Pebls Crashed
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Chapter 9

9. Conclusion and Future Work

9.1 Conclusion

This thesis demonstrates the MATLAB software simulation of Self-Organizing
Learning Array (SOLAR), which introduces a new method in machine learning
design. This software design is aimed for future hardware realization, which will be
eventually implemented in a Very Large Scale Integration (VLSI) circuit. It is mainly

used to test and design the future hardware structure.

The first part of the thesis explains the biological neural network structure, where
processing cells are usually locally connected. This idea was implemented in SOLAR
organization and pre-wiring. Then, different inputs and outputs were discussed, and
threshold clock input (TCI) was introduced. Methods for computing missing data and
symbolic values were presented. Potential arithmetic operations were shown and also
demonstrated graphically. Applying multiple functions was suggested since it could
result in a more complicated cutting of the input space. Learning and self-organizing
principles were then illustrated by introducing information index. This was followed

by the final voting with a weight function. SOLAR was simulated with two real world
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problems, credit card approval and adult income analysis. Although SOLAR did not
perform the best among all algorithms, it shows its abilities in classifying while it was
not designed particularly for any classification or recognition, and has better
performances compared to all other artificial neural network algorithms. In summary,
the performance of SOLAR was satisfactory, and this thesis demonstrated its ability to

self organize and learn.

9.2 Future Work

The implemented weighting function was based on the estimation of probability of
correct classification (7-1). This estimates true values of probabilities with the
confidence interval which is a function of the number of training samples in a given
subspace. When the number of points in a subspace is small, the error resulting from
the confidence interval is large, and the weighting function may wrongly select a less
reliable result. Another weighting function based on interval analysis should be
investigated as an alternative to (7-1). Additional discussion of this issue is on

Appendix A.

This thesis only covers the MATLAB software design and simulation of SOLAR. The
SOLAR project will be carried on to the next level, which is Very High Speed
Integrated Circuit Hardware Description Language (VHDL) simulation and hardware

realization. Before any further hardware implementation is done, SOLAR must be
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simulated using VHDL in order to address hardware design problems and other
difficulties. It then can be downloaded on FPGA chips for further simulation and
prototyping. Since resources of a single FPGA chip are limited, an FPGA machine,
which is specially designed and built with multi-FPGA chips, may be required so that
enough resources are guarantied. VLSI circuit design of SOLAR and chip fabrication

will be the last state of the project.
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Appendix A

Confidence Interval Discussion

When the number of points in a subspace is small, the error resulting from the
confidence interval is large, and the weighting function may wrongly select a less
reliable result. Confidence interval calculation should be introduced to improve the
reliability of the weighting results. The following example illustrates how confidence
interval analysis improves the correct classification result by calculating the mean
value of the interval and using this value to decide to which class a particular

incoming data belongs.

Let us denote the true class probability of a voting neuron by Py. This probability is an
unknown, and it is estimated based on proportion P.. In order to estimate the
unknown probability Py under the observation P, a statistical experiment was
conducted. In the experiment, probability P« was set to a specified value and 10 points
were generated 2000 times. A class Ax with probability Py contained all uniformly
generated points from [0,1] interval whose values were larger than 1-P,. At each run
(of 2000), the number of points out of 10 points that were generated and belonged to

the class A« was counted. If the count was equal to P (in this case 9), then the count
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Nxc Was increased by one. Py value was iterated from 0 to 1 using 100 steps (s in
general). The probability density function for Py under observation P, was then

estimated as follows:

pdf (lJ = X= '
s) s*w s (A1)

where w was chosen such that Z pdf (lj =1
i=0 S

Figure A-1 shows the probability density function of P(Px | Pc) where P is set to 0.9.
After setting the confidence level to 95%, the Low and High limits are obtained as
0.59 and 0.98. The area under the curve between the low limit and high limit is equal
to 0.95 (a constant). Based on pdf(x), the mean value of Py in this interval is 0.86.
Thus, probability of correct classification 0.9 under observed proportion should be

replaced by 0.86 in the voting procedure.
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Figure A-1 Probability Density Function of P(Px | Pc) — pdf(x)



121
However, it is expensive to obtain the real density function if an estimated probability
density function produces a reasonable result. The estimated probability density
function is obtained using only three points, which are the Low limit, the P, and the
High limit, to calculate the mean value of the unit triangle. In this case, High and Low
limits were obtained from the estimation of the proportion confidence interval from

literature (Newcombe, 1998).

Low Limit = 2P, + 2,5 _Z\/(ZZ +4nP (1-P, )) (A-2)
2(n+2z?)

High Limit = 2"7e * Zarz * z4(2” +4nP.(L-P.)) (A-3)
2(n+2?)

where n = total number of samples
Zq2 = value Z > 0 so that the area to the right of Z under the standard

normal distribution (with zero mean and unit standard deviation) is a/2
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After setting confidence level to 95%, Z,/, was obtained as 1.96. The Low and High
limits of confidence interval were calculated using (A-2) to (A-3) as 0.5958 and
0.9821. The calculated results agree with the results of the experiment extremely well.
Since P. (0.9) is greater than 0.5*(High-Low), the mean value is calculated using

equation (A-4). The result is 0.8382, which is very close to the experiment result 0.86.

Mean = \/%(PC — Low)(High - Low) + Low , for P, > w (A-4)

High — Low
2

Mean = High —\/%(High -P, )(High - Low) , for P, < (A-5)

Estimated Frobability Density Function
E T T T T T T T T T

Pdf(P(Px | Pc))

I:I 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fx
Figure A-2 Estimated Probability Density Function of P(Px | Pc)
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The following example demonstrates how interval analysis improves the correct

classification result.

Suppose there are two classes, and six voting neurons.

The

probability of correct classification, number of samples in the subspace, and limits of

95% confidence interval are listed in Table A-1.

Table A-1 Probabilities of Correct Classification and Calculated Mean Value

Neuron 1

Neuron 2

Neuron 3

Neuron 4

Neuron 5

Neuron 6

Number
of
Samples

1

205

10

5

200

300

P. for
Class 1

1.00

0.60

0.71

0.08

0.12

0.25

Low
Limit for
Class 1

0.2065

0.5317

0.4057

0.007

0.0820

0.2044

High
Limit for
Class 1

1.00

0.6646

0.8978

0.5180

0.1723

0.3020

Calculated
Mean for
Class 1

0.7676

0.5991

0.6793

0.1835

0.1237

0.2516

P. for
Class 2

0.00

0.40

0.29

0.92

0.88

0.75

Low
Limit for
Class 2

0.00

0.3354

0.1022

0.4820

0.8277

0.6980

High
Limit for
Class 2

0.7935

0.4683

0.5943

0.9930

0.9180

0.7956

Calculated
Mean for
Class 2

0.2324

0.4009

0.3207

0.8165

0.8763

0.7484
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Table A-2 contains two conditions for calculating the weighting function (7-3).
Condition A uses only the probability of correct classification estimated directly from
proportion to obtain the result using (7-3). Condition B uses the mean value of class
probability each neuron calculated by equation (A-4) or (A-5) estimate probability of
correct classification using (7-3). While under condition A, class 1 will be declared.

Under condition B, the classification result points toward Class 2.

Table A-2 Weights Comparison

Condition A Condition B
Weight of Class 1 0.9999 0.8851
Weight of Class 2 0.9605 0.9454

In conclusion, the final result obtained from the weight function (7-3) using estimates
for correct classification probabilities based on proportions can be not reliable when
the number of input points is small. Therefore, applying the confidence interval

analysis can improve the reliability for the final classification.
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Appendix B

Matlab Code for Missing Data Recovery

9RB8LBBELBBELBBELB80

%Name: Tsun-Ho Liu

%at e: 15th Sep. 2002

%

%his is a missing data recovery program

%Wt takes the KNOM data to recover the UNKNOAN

%y cal cul ati ng the Mahal anobi s Di stance

%

%Wfeatures" is an NxMinput matrix.

%N is the nunber of features.

% is the nunber of of input data.

%classid" is a vector of classes describing the input matrix.
% it should contain M el enents)

%

%his programis designed for any nunber of classes!
9RB8LB88L888L8B888880

clear all

% oading a file containing "features" and "classid" (Singular)
load nmissing_ill. mat

[ Frow, Fcol | =si ze(features); %eterm ne the size of the input matrix

9RBBBBE8L8RBERE08880
% his | oop searches for |ocations of mssing val ues
TenpB=[];
for(i=1:Frow)

TenmpA=f i nd(features(i,:)==0);

if (size(TempA, 2)~=0)

TenmpB=[ TenpB TenpA] ;

end

end

9RBBBEEMLBRBEBE8880

%i nce one input-data can contain nore than one m ssing val ue
% his | oop del etes unnecessary i nformation

sti ck=si ze(TenpB, 2);

sti ckP=TenpB(1);
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for(ck=2:stick)
P=TenpB(ck) ;
if (size(find(stickP==P))<1)
stickP=[stickP P];
end
end

9RB8LB88LBB8LBBEL880

%Check if the input matrix is singular or not

%y applying QR Factorization

checkQR=f eat ur es

checkQR(:,stickP)=[]; %ake all the input data with mi ssing val ues
Y%out frommatrix

[a,r,p]=ar(checkR);
r(find(r< le-6 &r >-1le-6))=0; %rmke those very snall values to zero.

[r_rowr_col]=size(r);
r_state=0;
for(i=1l:r_col)
tenpZero=si ze(find(r(:,i)==0),1);
nunOFr =(r _r owt enpZer o) ;
i f(nunmOFr>r_state)
r _state=nuntFr;
end
end

9RBBBBEMLBRBERE08880
%f the input matrix is singular, set flag = 1, otherwise flag = 0
i f(r_state==r_col)
fl ag=0;
el se
flag=1;
end

%RBEABBELBBELBBE8800
%let erm ne which feature is dependent and take it out
i f(flag==1)
Rl=r(1:r_state,1:r_state);
R2=r(1:r_state,r_state+l:r_col);
R1l=i nv(R1);

del Col =p(:,r_state+l:r_col);

del _loc=[];

for(i=1:(r_col-r_state))
tenp_del =find(p(:,r_state+i)==1);
del | oc=[del | oc tenp_del];

end

features(del loc,:)=[];
end
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trai ni ngdat a=f eat ur es;
ci d=cl assi d;

stick=size(stickP, 2)

trainingdata(:,stickP)=[]; %ake all the input data with m ssing
%val ues out frommatrix
classid(:,stickP)=[];

cl assi d=cl assi d';
trai ni ngdat a=trai ni ngdata';

col =si ze(trai ni ngdat a, 2);
row=si ze(traini ngdat a, 1) ;
maxci d=max(cl assi d); %heck how nmany cl asses are included in matrix

YB88888888888888880
% his |loop picks up all the input-data with m ssing val ues
test=[];
cid test=[];
for (k=1:stick)
F=features(:, stickP(k));
F=F";
test=[test; F];
cid test=[cid test cid(stickP(k))];
end

%Cal cul ati ng the Mahal anobi s Di stance

for(classSearch=1: maxci d)
c_loc=find(classid==classSearch)'; %earch for locations for this

%l ass
meanc=mean(trainingdata(c_loc,:))'; %alculate the mean of KNOWN
%val ues for this class
classified=trainingdata(c_loc,:); %ind the KNOMN val ues for this
%l ass

for i=1:stick
NOWEI
CLASSNOWECT d_t est ( NOW ;
i f (CLASSNOWE=cl| assSear ch)
tenpCl ass=cl assi fi ed;
A=find(test(NOW:)==0); % ind all the m ssing val ues
% ocation for this particular
% i nput data

S=si ze(A 2);
T=si ze(test, 2);

t enpd assA=t enpC ass(:, A);
tenpd ass(:, A =[];
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tenpCl ass=[tenpC ass tenpC assA]; % enove all the KNOMW
% eat ures based on the
% ssi ng val ues | ocation
% o0 the end of the KNOWN
%rat ri x

cc=cov(tenpC ass); % ake the reverse covariance matrix
dc=cc”"- 1;

denmrede(T-S+1: T, T-S+1: T) ;
denk=dc(T-S+1: T,1: T-S);
nc=nmeanc;

nm2=[nc(A)];
nEnT;

m(A) =[1];

HERE=t est (NOW : ) ;

HERE(A) =[] ;

ANSVER=abs( (- (HERE- m ) *dcnk' *dcmmt- 1) +nR' ) % he cal cul at ed

% ssi ng val ues
aaa=si ze( ANSVER , 1);
for(x=1: aaa)
features(A(x), stickP(i))=ANSVER(X) ; %put the

%al cul at ed
% ssi ng val ues
%ack to the
% nput matrix

end

end
end
end

%Wf the input matrix is singular

% ecover the depentant features

i f(flag==1)
t enpF=f eat ur es;
[temp_row, tenp_col ] =size(tenmpF);
f eat ures=zer os( Frow, Fcol ) ;
addRow=si ze(del | oc, 2);
org_del | oc=del | oc;
del | oc=sort(del | oc);

j =1

k=1;
for (i=1:Frow)
i f(i==del_loc(j))



end
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add_here=zeros(1, Fcol);
i f(j<addRow)
j=i+L
end
el se
add_here=t empF(k, :);
i f(k<tenp_row)

k=k+1;
end
end
features(i,:)=add _here;
end
R=R1* R2;

[r_row, r_col]=size(R;
R(find(R< le-6 & R >-1e-6))=0; %mke those very small val ues
% o zero.
for(i=1:r_col)
find_row on_p=find(R(:,i)~=0);
Si zeDepen=si ze(find_row on_p, 1);
row=[];
for(z=1: Si zeDepen)
take_row=find(p(:,find_row on_p(z))==1);
val ue=R(find_row on_p(z),i);
row=[ row; features(take_row,:)*val ue];
end
row=sun(row) ;
features(org_del loc(i),:)=row
end



130

Appendix C

Matlab Code for Symbolic Value Assignment

clear all

% define nunerical and synbolic col ums
nuncol s=[1 3];
syncol s=[ 2] ;

% define maxi mum nunber of synbols in any coordinate
syns a b c d e;

% read the mixed type data matrix
% it contains both nunmeric and synbolic val ues
% each colum of data matrix is uniformand contains only nuneric
% or synbolic data
data=[1 e 1;2 a 2;4 a 2;, 3 b0; 4b4; .
8d2,9d-48¢c 2 9¢c 2,10 ¢ -1]
% nunmber of sanples in the data array
nsanpl es=si ze(dat a, 1) ;

% matrix of nunerical val ues
ndat a=dat a(:, nuntol s);

% solve synbolic value assignment one synbolic vector at a tine
for k=1:size(syntols, 2)
sdat a=dat a(:, synctol s(k));

% vector of synbolic val ues
synvector=[a b c d e];
symmumrsi ze(symvect or, 2);

% get nunerical values matrix
C=eval (ndat a) ;

% fornulate synbolic location matrix
A=zer os(symum nsanpl es) ;
for i=1:symum
| oc=fi nd(sdat a==synvector(i));
A(i, | oc)=1;
end;



end

%A=[0 11000
% 000110
% 000000
000001
100000

%
%

orooOO
coroo
coroo
eeRee

—_

A=A ;

%special case if Cis a single nunerical
%and this is the answer
coordl=pi nv(A)*C

%f Cis non-single nunerical colum
%-ind B and divide Binto Bl and Br
B=[A'*A A*C, C*A C*(;

Bl=[A' *A; C *A];

Br=[A*C, C*(;

o%Perform QR factorization
”"%=Q

% =R

[x yl=qr(Br);

x=x";

%make those very small values to zero.
y(find(y< le-6 & y >-1le-6))=0;

%search for independent columms
[r_rowr_col]=size(y);
r_state=0;
for(i=1l:r_col)
tenpZero=si ze(find(y(:,i)==0),1);
nunOFr =(r _r owt enpZer o) ;
i f(nunmOFr>r_state)
r _state=nunmOFr;
end
end
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col um

%-ind Q2 base on nunbers of dependent col ums

g2=x(r_state+l:r_row,:);

%-ind C1 and Cs

% er f or m pseudoi nverse of Cs and cal cul ate answers

Bx=q2* B1,;

cl=Bx(:,1);

cs=Bx(:, 2:size(B1, 2));
ar=-pi nv(cs)*cl;
ar=[1; ar];
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