

DIRECT GLOBAL POSITIONING SYSTEM P-CODE ACQUISITION

FIELD PROGRAMMABLE GATE ARRAY PROTOTYPING

A Dissertation Presented to the Faculty of the

Fritz J. and Dolores H. Russ

College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirement for the Degree

Doctor of Philosophy

by

Jing Pang

August, 2003

THIS DISSERTATION ENTITLED

“DIRECT GLOBAL POSITIONING SYSTEM P-CODE ACQUISITION

FIELD PROGRAMMABLE GATE ARRAY PROTOTYPING”

by Jing Pang

has been approved

for the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology

Janusz Starzyk, Professor

School of Electrical Engineering and Computer Science

Dennis Irwin, Dean

Fritz J. and Dolores H. Russ

College of Engineering and Technology

iii

ACKOWLEDGEMENTS

First of all, I would like to express my gratitude to my advisor, Dr. Janusz

Starzyk, for his support, patience, encouragement throughout my graduate studies, and

his invaluable advice during the whole work with this dissertation. He also has taught me

innumerable lessons and insights on the workings of academic research in general.

Special thanks to Dr. Frank Van Graas, for his financial support of my graduate

study, his inspiring and encouraging way to guide me to a deeper understanding of GPS

research.

I would like to thank the rest of my dissertation committee: Dr. Chris G. Bartone

offered much-appreciated advice to start this dissertation research work. Dr. Robert

Curtis helped me on electronics when I worked on interfacing FPGA with other

hardware. Dr. Surender Jain spent his valuable time to attend my presentation, read my

dissertation draft, and gave valuable comments.

I am very grateful to all students in VLSI and software radio research groups. I

appreciate all their friendships and their collective encouragement to finish this

dissertation. I specially thank Abdulqadir A. Alaqeeli and Sanjeev Gunawardena for

sharing their technical wisdom and research ideas.

Furthermore, I would like to acknowledge the rich blessings of my sister, and my

parents. Their love is instrumental for me to complete this dissertation.

iv

TABLE OF CONTENTS

Acknowledgement…………………………………………………………………..iii

Table of Contents…………………………………………………………………... iv

List of Tables……………………………………………………………………....viii

List of Figures………………………………………………………………….........x

List of Abbreviations……………………………………………………………….xv

Chapter 1…………………………………………………………………….................1

 Introduction…………………………………………………………………............1

Chapter 2………………………………………………………………….....................9

 GPS Background …………………………………………………….......................9

2.1 GPS Signal Structure……………………………………….......................9

2.2 GPS CDMA Principle…………………………….....................................12

2.3 GPS Receiver Front Ends………………………………….......................14

2.4 GPS P-code Acquisition…………………………………….…………....15

2.4.1 Sequential Search………………………………………………17

2.4.2 Parallel Code Phase Search…………………………………….18

2.5 Software and Hardware Receiver………………………………………...19

Chapter 3 ………………………………………...21

 Direct GPS P-code Acquisition Modeling………………………………………….21

3.1 Introduction……………………………………………………………….21

3.2 P-code Property.…………………………………………………………..22

 v

3.3 FFT Search and Zero Padding…………………………………………....26

3.4 Comparison of Different Acquisition Methods…………………………..27

3.5 Direct Average Method…………………………………………………..30

3.6 Effect of Code Phase Shift……………………………………………….36

3.7 Overlap Average Method………………………………………………...39

3.8 Noise Effect………………………………………………………………49

3.9 Example…………………………………………………………………..63

3.10 Conclusion………………………………………………………………..65

Chapter 4………………………………………………………………………………67

GPS P-code Generator Architecture……………………………………………….67

4.1 P-code Generator Architecture…………………………………………..69

4.2 GPS P-code Generator Tuning Model…………………………………...71

4.3 P-code Generator Design Verification…………………………………..76

Chapter 5………………………………………………………………………………84

 Direct GPS P-code Acquisition Design……………………………………………84

5.1 Introduction………………………………………………………………84

5.2 Architecture of Direct GPS P-code Acquisition Processor………………85

5.3 Local Reference Generation Unit………………………………………...87

5.4 Local Reference FFT Processor………………………………………….90

5.4.1 Xilinx 1024-Point FFT/IFFT Core……………………………..93

5.4.2 Controller FFT_MACH………………………………………..95

5.4.3 Loop Counter…………………………………………………..97

5.4.4 RAM2 and RAM_FFT…………………………………………98

5.4.5 Debug Setup……………………………………………………98

5.5 Complex Conjugate Multiplication Processor………………………….100

vi

5.6 IFFT Processor……………………………..……………………………105

5.6.1 Controller IFFT_MACH…..………………………………….108

5.7 Correlation Amplitude Square Unit …………………………………….111

5.8 Correlation Peak and Peak Location Processor………………………....112

5.8.1 Correlation Peak Processor…………………………………....114

5.8.2 Correlation Peak Location Processor………………………….114

5.9 Maximum Selection Unit………………………………………………..116

5.10 Hardware Design Cost…………………………………………………..118

5.11 Conclusion………………………………………………………………119

Chapter 6……………………………………………………………………………..121

 FPGA Design Verification………………………………………………………..121

6.1 Introduction……………………………………………………………..121

6.2 Verification of P-code Average With Scaling…………………….…….122

6.3 Verification of FFT……………………………………………….…….123

6.4 Verification of Complex Conjugate Multiplication………..…….……..128

6.5 Verification of IFFT……………………………………………….…....130

6.6 Verification of Correlation Square………………………………..…….134

6.7 Final Verification Results ……………..……………………………….135

6.8 Conclusion……………..…………………………….………………....139

Chapter 7…………………………………………………………………………….140

 Summary and Future Work……………………………………………………....140

7.1 Summary………………….………………………………………….…...140

7.2 Future Work………………….…………………………………………...143

vii

References………………….…………………………………………………………144

Appendix A………………….…………………………………………………….....154

The Strathnuey Card….………………………………………………….……..154

Abstract….………………………………………………….………………………...156

viii

LIST OF TABLES

Table 3.1 Performance comparison of different acquisition methods………………….29

Table 3.2 C/No ratio for different acquisition methods with acquisition detection

 probability of around 90%.........................…………………………………..29

Table 3.3 Correlation and acquisition margin characteristics using different schemes

 without noise…………………………………..…………………………….50

Table 3.4 Correlation and acquisition margin characteristic using different schemes

 with added noise……………………………………………………………..58

Table 4.1 Solution table for example 1………………………………………………...75

Table 4.2 P-code Vector States [ICD-GPS-200]……………………………………....77

Table 4.3 Case 1 P-code generator initialization table………………………………....78

Table 4.4 Case 2 P-code generator initialization table………………………………....79

Table 4.5 P-code Reset Timing at the end of a week………………………………......83

Table 5.1 VirtexE FPGA design cost………………………………………………….118

Table 6.1 Correlation square peak and code phase shift over 10 ms in verification

 of case 1…………………………………………………………………......135

Table 6.2 Correlation square peak and code phase shift over 10 ms in verification

 of case 2…………………………………………………..............................136

ix

Table 6.3 Correlation square peak and code phase shift over 10 ms in verification of

 case 3……………………...………………………………………………....137

Table 6.4 Correlation square peak and code phase shift over 10 ms in verification of

 case 4………………………………………………………………………...138

x

LIST OF FIGURES

Figure 2.1 BPSK diagram………………………………………………………………10

Figure 2.2 GPS signal structure………………………………………………………...12

Figure 2.3 GPS signal acquisition two-dimensional searching area…………………...16

Figure 2.4 Sequential search direct GPS P-code acquisition diagram………………....17

Figure 2.5 Parallel code phase search direct GPS P-code acquisition diagram………..19

Figure 3.1 Autocorrelation of P-code over 50 ms……………………………………...23

Figure 3.2 Direct acquisition autocorrelation in 1ms…………………………………..24

Figure 3.3 Direct acquisition: acquisition margin distribution over 1s………………...25

Figure 3.4 Direct average autocorrelation result……………………………………….31

Figure 3.5 Direct average method: acquisition margin distribution over 1s…………...32

Figure 3.6 Direct average acquisition example………………………………………...34

Figure 3.7 Correlation resolution improvement………………………………………..35

Figure 3.8 Direct average method: correlation results with a code phase shift of 64

 samples………………………………………….…………………………..36

Figure 3.9 Direct average method: acquisition margin distribution over 1s with a

 code phase shift of 64 samples……………………………………………..37

Figure 3.10 Direct average method: detected correlation peak value change, case 1.…38

Figure 3.11 Direct average method: detected correlation peak value change, case 1.…39

xi

Figure 3.12 Correlation result using overlap average method…………………………..40

Figure 3.13 Statistical acquisition margin result for overlap average method…….…....41

Figure 3.14 Correlation result for overlap average method with a code phase shift of

 64 samples…………………………………………….………………........42

Figure 3.15 Statistical acquisition margin result for overlap average method with a

 code phase shift of 64 samples………………………………......................43

Figure 3.16 Overlap average method: two reference overlap, case 1……..…….……...44

Figure 3.17 Overlap average method: two reference overlap, case 2…………….…….44

Figure 3.18 Peak correlation location detection difference using two different

 references……….………………….………………….……….………….45

Figure 3.19 Peak correlation location detection pattern change………………….…....46

Figure 3.20 Overlap average method: two reference overlap, case 3……..………..….47

Figure 3.21 Overlap average method by using three references…………………..…...48

Figure 3.22 Noise effect on direct autocorrelation result of p-code up samples over

 1 ms……………………………………………………..………………...51

Figure 3.23 Direct acquisition: noise effect on acquisition margin result…………..…52

Figure 3.24 Direct average method: correlation result with added Gaussian noise……53

Figure 3.25 Direct average method: noise effect on acquisition margin……………….54

xii

Figure 3.26 Direct average method: noise effect on detected correlation peak change

 with code phase shift…………..…………………………………………..55

Figure 3.27 Overlap average method: correlation result with added Gaussian noise…..56

Figure 3.28 Overlap average method: noise effect on acquisition margin……………...57

Figure 3.29 Overlap average method: noise effect on detected correlation peak change

 with code phase shift……………………………………………………….57

Figure 3.30 Direct average method: misdetection probability with different carrier

 to noise ratio when signal code phase shift is 64 samples………………….59

Figure 3.31 Overlap average method: misdetection probability with different carrier

 to noise ratio when signal code phase shift is 64 samples…..……………...60

Figure 3.32 Direct average method misdetection probability distribution in 1 s with

 carrier to noise ratio equal to 39 dB………………………………………...61

Figure 3.33 Overlap average method misdetection probability distribution in 1 s with

carrier to noise ratio equal to 39 dB……………………….…...62

Figure 3.34 Acquisition by direct average method………………………………..…....63

Figure 3.35 Acquisition by overlap average method…………………………………...64

Figure 3.36 Resolution improvement by correlating 128 samples……………………..65

xiii

Figure 4.1 GPS P-code Signal Generator……………………..…………………….…..68

Figure 4.2 X1A LFSR Diagram……………………..……………………………….…70

Figure 4.3 X1B LFSR Diagram……………………..……………………………….…70

Figure 4.4 X2A LFSR Diagram……………………..…………………………….……71

Figure 4.5 X2B LFSR Diagram……………………..…………………………….……71

Figure 4.6 Case 2 simulation waveform……………………..…………………….……80

Figure 4.7 The final X2AQ chip generation at the end of a week…………………..…..81

Figure 4.8 The final X1BQ chip generation at the end of a week………………….…...81

Figure 4.9 Resume of X1AQ, X1BQ, X2AQ and X2BQ at the start of week……….....82

Figure 5.1 Direct GPS P-code Acquisition Processor…………………………….….....86

Figure 5.2 Local Reference generation unit diagram……………………………….…..88

Figure 5.3 Local reference FFT processor diagram………………………………….....91

Figure 5.4 Xilinx 1024-point FFT/IFFT core single memory space configuration…….94

Figure 5.5 Debug Use Block RAM diagram……………………………………….….100

Figure 5.6 Complex conjugate multiplication processor (part 1)……….…………......102

Figure 5.7 Complex conjugate multiplication processor (part 2)……….…………......103

Figure 5.8 IFFT processor diagram…………………………………………………....106

Figure 5.9 The controller IFFT_MACH flow chart…………………………………..109

Figure 5.10 Controller IFFT_MACH interface FFT/IFFT core diagram………..…….110

Figure 5.11 Correlation amplitude square unit diagram…………...…………………..111

Figure 5.12 Correlation peak and peak location processor diagram…………………..113

xiv

Figure 5.13 Maximum selection unit diagram………………………………………....117

Figure 6.1 2nd ms GPS binary P-code average result………………………………....123

Figure 6.2 FPGA FFT real part values in the 2nd ms……………………………….….124

Figure 6.3 FPGA FFT imaginary part values in the 2nd ms……………………….…...125

Figure 6.4 FPGA and Matlab FFT real part difference in the 2nd ms……………….…126

Figure 6.5 FPGA and Matlab FFT imaginary part difference in the 2nd ms……….…..127

Figure 6.6 FPGA complex multiplication real part in the 2nd ms………………….…..128

Figure 6.7 FPGA complex multiplication imaginary part in the 2nd ms…………….…129

Figure 6.8 FPGA IFFT real part in the 2nd ms………………………………………....130

Figure 6.9 FPGA IFFT imaginary part in the 2nd ms.……………………………….…131

Figure 6.10 FPGA and Matlab IFFT real part difference in the 2nd ms…………….….132

Figure 6.11 FPGA and Matlab IFFT imaginary part difference in the 2nd ms………...133

Figure 6.12 FPGA correlation square values in the 2nd ms……………………………134

Figure A-1 Strathnuey FPGA board architecture……………………………………...155

xv

LIST OF ABBREVIATIONS

ADC: Analog to Digital Converter

AS: Anti-Spoofing

ASIC: Application Specific Integrated Circuits

BPSK: Binary Phase Shift Keying

C/A: Coarse Acquisition

CDMA: Code Division Multiple Access

CLB: Configurable Logic Block

C/No: Carrier-to-Noise Density Ratio

DFT: Discrete Fourier Transform

DIF: Decimation-In-Frequency

DOD: Department of Defense

DSP: Digital Signal Processing

DSSS: Direct Sequence Spread Spectrum

FFT: Fast Fourier Transform

FPGA: Field Programmable Gate Array

GPS: Global Position System

GRM: Generic Routing Matrix

HDL: Hardware Description Language

xvi

HOW: Hand-Over-Word

IDFT: Inverse Discrete Fourier Transform

IF: Intermediate Frequency

IFFT: Inverse Fast Fourier Transform

IOB: Input/Output Block

IP: Intellectual Property

LFSR: Linear Feedback Shift Registers

LNA: Low Noise Amplifier

NF: Noise Figure

NCO: Numerically Controlled Oscillator

P-code: Precision Code

PPS: Precise Positioning Service

PRN: Pseudorandom Noise

RF: Radio Frequency

RTL: Register-Transfer-Level

SNR: Signal-to-Noise Ratio

SPS: Standard Positioning Service

Y-code: Encrypted P-code

1

Chapter 1

Introduction

The Global Positioning System (GPS) is a worldwide, satellite-based navigation

system. It is being funded and operated by the U.S. Department of Defense (DOD). The

concept of GPS started in the early 1970’s, and it was originally intended for military

applications. Later, the U.S. government made the system available for civilian use. The

increased performance of GPS has fuelled the continued growth of the GPS market (El-

Rabbany, 2002 and Pace, 1995). It has been used in agriculture (Bauer, 1994), mining

(Flinn, 1999 and Jensen, 1992), transportation (Drane, 1998), surveying (Leick, 1995),

land (Hada, 2000), marine (Trimble, 1998), airborne navigation (Hayward, 1998) and

many other applications (Parkinson, vol. II, 1996).

GPS provides specially coded satellite signals that can be processed in a GPS

receiver. A receiver measures the elapsed time between the emission and the reception of

the GPS signal. This time is then multiplied by the speed of light to obtain the distance

between the satellite and the receiver, which is referred to as pseudorange, not range

(Langley, 1993), because the measurements contain errors and biases coming from the

synchronization error between the satellite and receiver clocks, multipath errors and other

error sources. GPS provides the pseudorange and carrier phase measurements. While

2

GPS signal acquisition gives coarse estimates of these measurements, carrier phase

tracking provides a precise measurement of change in the satellite user pseudorange over

a time interval, and the estimates of its instantaneous rate, or Doppler. Estimations of

position and velocity are based on these measurements (Braasch, 1999 and Ward, 1995).

A minimum of four measurements made on four different satellites can precisely

determine position, velocity, and time (Kaplan, 1990).

The GPS satellites transmit two carrier frequencies: L1 (1575.42 MHz) and L2

(1227.60 MHz). The pseudorandom noise (PRN) codes (Misra, 2001) and navigation data

message are added to the carriers as binary phase modulations (Rappaport, 1995). The

navigation data message is a 50 bits/second digital data stream, which contains GPS

satellite coordinates, the satellite health status, the satellite clock correction, the satellite

almanac, and other satellite system parameters (Kaplan, 1990). The PRN codes include

C/A (coarse acquisition) code on L1 carrier and P (precise) code on L1 and L2 carriers.

The codes are called chips instead of bits to emphasize they do not carry data. Compared

with the C/A code, which is 1023 chips long and is broadcast at 1.023 Mega-chips per

second, the P-code is much longer (seven days) with a faster chipping rate 10.23 MHz,

offering much higher accuracy (Misra, 1999 and Hoffmann-Wellenhof, 1994). The P-

code is encrypted and the resulting code is called P(Y)-code. The encrypted P(Y)-code is

for use only by authorized users with cryptographic keys.

Every GPS receiver design involves GPS signal acquisition, code tracking loop,

and carrier tracking loop circuit design (Kaplan, 1990). The acquisition circuit searches

3

over a three-parameter space: satellite PRN code, code phase, and carrier frequency to

acquire the signal. Acquisition can provide a “coarse” estimation of the pseudorange. The

code tracking loop tracks the locally generated PRN code to be synchronized with the

received code in order to despread the signal, derive navigation data and timing

information.

Traditionally, the GPS receiver locks onto the C/A code to extract the navigation

data message. The Hand-over-word (HOW) is the second word in each subframe/page of

a navigation message. A HOW occurs every six seconds in the data frame (ICD-GPS-

200, 1991). It provides the necessary timing information to tell where the P(Y) code

pattern is in its whole sequence.

Then, starting from the HOW, acquisition is transferred to the P-code acquisition

part. As a result, P-code acquisition relies on the hand over from an acquired C/A code

(Lin, 1999). This is because the C/A code repeats every millisecond so that synchronizing

to the C/A code is easy. A brute force chip-by-chip search of P-code is formidable in

terms of the number of search trials and the time required to carry it out. But if the

receiver can accurately predict the satellite signal transmit time and the satellite location,

direct P(Y)-code acquisition is faster than handover from the C/A code search. During

certain military operations, the C/A-code signal could be degraded so that the use of the

open Standard Positioning Service to adversaries is denied and the use of the encrypted

P(Y)-code is still sustained. Consequently, direct acquisition of the P code is the only

option available. Newer designs attempt to achieve acquisition without first acquiring the

4

C/A code and use the P(Y)-code for direct acquisition.

The direct P (Y)-code acquisition potential is a more robust functionality for GPS

receivers to provide the ability to acquire the P(Y)-code without the aid of the C/A code

(Zyfer, 2002). Application of P(Y)-code rate sequences can also be used on pseudolites

that implement wideband code formats. In situations with limited or no visibility of the

GPS satellites, ground transmitters that emulate the signal structure of the GPS satellites

(pseudolites) (Cobb, 1998) can be used as additional or replacement signal sources

(Wang, 2000 and Stone, 1999). Pseudolites are useful for a variety of applications,

including differential GPS implementation in aircraft precision approach in the Category

II and III for universal availability. Pseudolites have the capability to augment the GPS

constellation, providing better geometry for enhanced positioning accuracy, reliability,

availability, continuity, and integrity monitoring. In addition they can be used to speed up

integer ambiguity resolution in differential carrier phase applications, due to the large

geometry change possible with the pseudolite signal (Ndili 1994).

The overall objective of this dissertation is to implement the direct GPS P-code

acquisition algorithm using FPGA (Field Programmable Gate Array) technology. The

challenges are how to reduce the code phase search time for the extremely long period of

the P-code, how to avoid large size Fast Fourier Transform (FFT), and how to design the

P-code generator, which can rapidly produce the P-code at any specific time of a GPS

week. The exploration of the direct GPS P-code acquisition algorithm presents a good

starting point for meeting these objectives. To produce a local code, which can

5

continuously duplicate the incoming GPS signal code phase, the initial unknown code

phase has to be determined by searching through a set of possible phases around an initial

time estimate. If a search over 10 ms is needed, this can be translated into a location

uncertainty of 3×106 meters. This location uncertainty may be caused by the uncertainty

of the satellite location, the satellite clock offset, the receiver clock offset or other

uncertainty factors from the time of transmission to the time of reception. The fast P-code

phase search using the direct average and overlap average method proposed in this

dissertation may be a tradeoff of the carrier to noise ratio performance. In addition, the

proposed methods use a small size FFT/IFFT, which greatly facilitates the FPGA

hardware design.

After the direct P-code acquisition algorithm is proposed and simulated, it is

possible to have a hardware design to map the algorithm. A FPGA is a good choice to do

hardware design. FPGA offers the advantage of short design cycles, rich resources, and

programmability (Trimberger, 1994). In the past, FPGAs were primarily used for

prototyping and lower volume applications. Custom ASICs were used for high volume,

cost sensitive designs. Today's deep submicron fabrication technologies enable design

engineers to implement an impressive number of components like microprocessors,

memories, and interfaces in a single microchip (Langen, 2002). With today’s deep sub-

micron technology, it is possible to deliver over several millions usable system gates

(Xilinx White Paper, 2002) and system speeds up to several hundreds MHz in an FPGA.

In addition, the average ASIC design operating at 50-100 MHz can be implemented in an

6

FPGA using the same RTL (Register-Transfer-Logic) synthesis design methodology as

ASICs. As device densities keep increasing, not only new levels of systems are integrated

onto a single chip, but also a wide variety of features and capabilities are allowed for

reprogrammable technology. Moreover, several companies, such as LSI Logic

(Matsumoto, 1999), ADI (Ohr, 2000), Lucent (Lucent, 2000), QuickLogic (Merritt,

2000), Actel (Tanurhan, 2001), some startup companies (Matsumoto, 2000) and so on,

already provide pre-designed and pre-verified blocks, often called cores or intellectual

property (IP) blocks (Wilton, 2001). Fixed hardware designs called hardcores are

incorporated into the FPGA architecture such as PowerPC/ARM processor cores,

Booth multipliers for DSP (Digital Signal Processing) data paths, serial transceivers and

so on (Xilnix, 2003). On the other hand, softcores are flexible IP building blocks that take

full advantage of an efficient and flexible implementation in the FPGA including PCI-

cores for I/O busses, processor cores, Viterbi decoders for DSP functions and many

other examples (Hellmich, 2000 and Erdogan, 2003). These programmable logic cores

are utilized by other companies and combined onto a single chip, and in a design process

called System-on-a-Chip methodology (Savage, 2000 and Vladimirova, 2000).

This dissertation's major objectives are twofold: (1) to develop and analyze a

direct GPS P-code acquisition algorithm which targets on FPGA design, and (2) to design

FPGA architecture implementing the proposed algorithm.

The difficulty of direct GPS P-code acquisition is the extremely long period of the

P-code, which makes the search for the correct carrier frequency and code phase very

7

slow. The promising methods to improve acquisition speed proposed by other researchers

focus more on software simulation performance. They require large Fast Fourier

Transform size. This is prohibiting in FPGA design because of large hardware resource

requirement and design complexity. As a result, an appropriately scaled direct P-code

acquisition design algorithm, especially for FPGA implementation would be desirable.

In addition, the design of a P-code generator is also a challenging task in this

work. The basic properties of P-code are described in the literature, but there is no

complete detailed hardware implementation of a P-code generator. Another necessary

feature will be the availability of a P-code starting from any time of a week. This fits into

the situation that there is approximate time information so that acquisition starts from

some specific time range.

In order to have a successful implementation of the whole direct GPS P-code

acquisition system in FPGA, Nallatech FPGA board interface and Xilinx VirtexE FPGA

architecture features must be studied and utilized in the design. The whole system design

should be partitioned into different processing parts. Each processor must be properly

designed and the signal flows between different parts must be properly handled. It is very

beneficial to use the Xilinx 1024-point FFT/IFFT core to achieve a fast system design

cycle. A controller which is designed to meet the Xilinx 1024-point FFT/IFFT timing

specification is critical for the integration of the core into the whole design system. A

exhaustive test is also necessary to see how stable the FFT/IFFT results are and to verify

8

if the controller is right. At last, all synthesizable VHDL codes need to be downloaded on

the FPGA board. Each partitioned processor must be verified. The final overall results

should give the right direct P-code acquisition code phase shift and acquired maximum

correlation information.

This dissertation is organized as follows. Chapter 2 covers the necessary GPS

principles of operation. Chapter 3 models the direct GPS P-code acquisition algorithm

and its modifications. The comparisons of different direct GPS P-code acquisition

techniques are also made in this chapter. Then, Chapter 4 presents the GPS P-code

generator architecture, design strategy and test results of P-code generator design.

Next, Chapter 5 gives details on direct GPS P-code acquisition design implementation. In

addition, Chapter 6 verifies each step and the overall FPGA designs. At last, Chapter 7

summarizes the whole dissertation and provides direction for future research.

9

Chapter 2

GPS Background

This chapter deals with some important concepts of GPS such as GPS signal

structure, GPS code division multiple access (CDMA) principle, GPS receiver front ends,

GPS P-code acquisition, software and hardware receivers. GPS signal structure and

CDMA are the basic underlying components for GPS. A GPS receiver receives GPS

signals by its front end, processes them in analog domain, and then outputs digital signals

from an A/D converter for further acquisition process. Both sequential and parallel code

phase search methods are explained. Furthermore, software and hardware receiver

implementation are compared.

2.1 GPS Signal Structure

Each GPS satellite transmits a unique navigational signal centered on two L-band

frequencies of the electromagnetic spectrum: L1 at 1575.42 MHz and L2 at 1227.60

MHz. PRN codes and navigation message modulate the L1 and/or L2 carrier phase using

the binary phase shift keying (BPSK) modulation technique (Kaplan, 1990). The binary

codes are directly multiplied with the carrier, which results in a 180-degree phase shift of

10

the carrier every time the code changes its state. A BPSK diagram is shown in Figure 2.1.

Figure 2.1 BPSK diagram (Braasch, 1999)

The C/A code is a repeating 1.023 MHz PRN code. There is a different C/A code

PRN for each satellite. C/A sequences belong to Gold codes, which have very good

autocorrelation and cross correlation properties. The P-code is a very long (seven days)

10.23 MHz PRN code. In the Anti-Spoofing (AS) mode of operation, the P-code is

encrypted into the P(Y)-code. The encrypted P(Y)-code requires a classified AS module

for each receiver channel and is used only by authorized users with cryptographic keys.

The C/A code is the basis for Standard Positioning Service (SPS) and the P-code offers

Precise Positioning Service (PPS). According to the 1999 Federal Radio Navigation Plan,

the SPS predictable accuracy is around 100-meter horizontal accuracy, 156-meter vertical

accuracy and 340-nanosecond time accuracy. The PPS predictable accuracy is around 22-

meter horizontal accuracy, 27.7-meter vertical accuracy and 200- nanosecond time accuracy.

The L1 signal is modulated by both the C/A code and the P(Y)-code, which are at

11

90 degrees to each other, so that one is in phase and the other is in quadrature. The L2

signal is modulated by the P(Y)-code.

The navigation message modulates both the L1 and L2 signals. The GPS

navigation message contains parameters that describe the location of the GPS satellites,

their clock offsets, and various other system parameters. Each satellite transmits a

navigation message at 50 bits per second. The navigation message is composed of five

subframes. Each subframe contains 10 words of 30 bits.

Figure 2.2 shows the GPS signal structure modeled in equation (2.1).

() () () () () () ()tftDtGAtftDtPAtS LicLipiL 111 2cos2sin ππ +=

() () () ()tftDtPBtS LipiL 22 2sin π= (2.1)

where Ap, Ac and Bp are signal amplitudes

Pi (t) is the P code for satellite i

Gi (t) is the C/A code for satellite i

D (t) is the navigation data for satellite i

fL1 is the L1 carrier frequency equal to 1575.42 MHz

fL2 is the L2 carrier frequency equal to 1227.60 MHz.

12

 Modulo-2 summation Mixer

 Summation

 Antenna

 P(Y)

Figure 2.2 GPS signal structure (Kaplan, 1990)

2.2 GPS CDMA Principle

CDMA is a form of spread-spectrum, a digital communication technique that has

been used in military applications for many years. Now it is one of the driving forces

behind the rapidly advancing personal communications industry. CDMA uses unique

noise-like spreading codes to spread the baseband data before transmission (Glisic, 1997

and Prasad, 1996). The signal can then be transmitted in a channel below the noise level.

The receiver uses a correlator to despread the signal. One type of CDMA technique is

Σ

P-code
10.23 MHz

L2 carrier
1.22760 GHz

L1 carrier
1.57542 GHz

C/A code
1.023 MHz

Navigation message
50 Hz Σ

π/2

Σ

Encryption

13

direct sequence spread spectrum (DSSS) (Viterbi, 1995). GPS uses the BPSK DSSS

technique. When the user receives the GPS signals, the receiver will mix the received

signal with a locally generated PRN-code. The locally generated PRN-code must be

synchronous with that generated from the satellite. After the receiver is fully correlated

with the GPS data, a correlation peak is generated. Because GPS signals have very wide

spread spectrum, they are transmitted at a much lower spectral power density than

narrowband transmitters (Braasch, 1999).

One important signal quality parameter is the signal-to-noise ratio (SNR), which

is a measure of the signal strength relative to background noise. The ratio is usually

measured in decibels (dB) for a specified bandwidth. The noise can be approximated by

BkTN E= (2.2)

where k is Boltzmann’s constant (123103806.1 −−× JK)

B is the bandwidth in Hz

ET is the effective noise temperature in Kelvin.

A normalized SNR to a 1-Hz bandwidth is called carrier-to-noise density ratio

(oNC /). It is bandwidth-independent. The oNC / is defined as equation 2.3.

])[)((/ HzratioBSNRNC o −= (2.3)

where SNR is signal to noise ratio at certain stage of a receiver

 B is the bandwidth of a receiver at the same stage.

The received satellite signal power varies with the user antenna gain, the satellite

14

elevation angle, and the satellite age. The typical oNC / value is from 35 to 55 dB-Hz

(Braasch, 1999).

2.3 GPS Receiver Front Ends

The input to the GPS receiver is the analog GPS signal from an antenna via a low-

noise pre-amplifier (LNA). The GPS signals are down converted by the radio frequency

into the intermediate frequency (IF) signals, which are further converted by an A/D

converter into the digital signals. These digital signals are taken by the GPS channels for

the subsequent GPS acquisition and tracking process.

The RF front ends deal with the analog signal processing including filtering,

amplification, and down conversion (Shaeffer, 1998). The main design parameters

that have to be taken into consideration are antenna gain, LNA gain, LNA

intermodulation, noise figure (NF), and power consumption (Shahani, 1997, and Piazza,

1998). Sharp cutoff filters must suppress out-of-band interference. Hard-limiting

architecture (1-bit A/D conversion) results in slightly degraded performance compared to

that of a multibit converter, but it allows the design of a simpler, lower power receiver

without employing automatic gain control. Downconversion is performed either in single

or multiple stages (Braasch, 1999). Multistage architectures allow for adequate image

suppression and general bandpass filtering with the final IF placed close to the baseband

15

single-stage. The final conversion to baseband involves converting the IF signal to the in-

phase and quadrature components of the signal envelope (Dierendonck, 1996).

2.4 GPS P-code Acquisition

A GPS receiver performs a three-dimensional search to acquire a GPS satellite

signal: the GPS satellite PRN code, code phase, and carrier frequency offset (Parkinson,

vol. I, 1996). If one has no knowledge on which satellites are in space, the acquisition

must be performed on all satellites. However, usually there is information on the rough

location and the approximate time of day, so acquisition is only necessary for those

satellites which are known to be available to receivers. For each satellite, a two

dimensional search must be performed: code phase and carrier frequency.

In Figure 2.3, δτ is typically 1/2 code chip and δf is Doppler bin. Carrier

frequency uncertainties are due to unknown Doppler shift and local oscillator drift. The

span of code phase to be searched depends on uncertainties in indicated clock time and

receiver position (Brown, 2001). Due to the extremely long period of the P-code, a search

over a one-week long P-code is challenging. The FPGA design requirement in this

dissertation is to search the P-code code phase over 10 ms. In realistic stand-alone

receivers, the usual search is within 1 s. Satellite induced Doppler frequency uncertainty

is less than 10 Hz, and stationary receiver oscillator frequency offset is within 1 kHz.

16

 Code phase uncertainties

 δf

 δτ

C
ar

rie
r f

re
qu

en
cy

 u
nc

er
ta

in
tie

s

 One searching cell

 Figure 2.3 GPS signal acquisition two-dimensional searching area

In situations with limited or no visibility of the GPS satellites, ground transmitters

that emulate the signal structure of the GPS satellites (pseudolites) (Cobb, 1998) can be

used as additional or replacement signal sources (Wang, 2000 and Stone, 1999). In

pseudolite application, satellite introduced Doppler is less than 1 Hz, and the receiver

oscillator frequency offset is less than 10 Hz if a Rubidium oscillator is used.

Traditionally, a C/A code can be quickly and easily acquired, and is used as a

hand over which provides accurate time-tick information for P-code acquisition. Direct

P-code acquisition is desirable when a C/A code is not available under jamming

conditions but it is still possible to acquire P(Y)-code.

17

2.4.1 Sequential Search

In Figure 2.4, the acquisition is based on a measurement of the correlator output.

The correlators provide a measurement of the total I and Q channel correlation energy

over the integration time. The In-phase and Quadrature components I and Q respectively

are formed by stripping off the reference code and the carrier from the received signal.

When the replica and reference signals are aligned with the incoming signal, the

amplitude of the recovered correlation energy is at a maximum. The amplitude is

compared with a threshold. When the amplitude is at or above the threshold (Brown,

GPS Solutions 2000), it is detected as the presence of the signal. In the presence of noise,

one must set the threshold based upon an acceptable probability that a noisy measurement

that does not contain the signal will appear to match the replica (Kaplan, 1996).

 Input Signal

 Threshold

Figure 2.4 Sequential search direct GPS P-code acquisition diagram

Control
Logic

P-Code
generator sine cosine

 NCO

Compare >
 <

Average
& dump

Average
& dump

(.)2

(.)2

18

2.4.2 Parallel Code Phase Search

In time domain, a massive parallel P-code generator with 1,024 or even 2,048

correlator channels searching for a code match has been reported (Trimble, 2002).

General GPS acquisition parallel search techniques include the parallel frequency

space search, and the parallel code-phase search. They limit the search space to carrier

frequency space and code phase space respectively. When the number of Doppler bins to

be searched is far less than that of the code phases, the parallel code-phase search is the

most efficient approach.

In Figure 2.5, the GPS acquisition scheme is shown implemented in the digital

storage receiver using frequency domain correlation. In this architecture, the GPS signals

are first buffered in memory to allow them to be accessed by hardware for processing.

Since the GPS signals do not have to be processed in real-time, enhanced signal

processing algorithms can be applied that allow the digital signals to be optimally

reprocessed, maximizing the probability of acquiring the GPS signals in a challenging

environment.

19

 Incoming signal

 Threshold

Figure 2.5 Parallel code phase search direct GPS P-code acquisition diagram

This approach takes advantage of the Fourier Transform correlation theorem

which states that the frequency transform of the correlation function in the time domain is

the product of the signals’ transforms in the frequency domain. The FFT algorithm

provides a convenient and computationally efficient method of performing correlations in

the digital storage receiver architecture.

2.5 Software and Hardware Receiver

Development and operation of advanced GPS systems are provided through a

variety of software (Brown, ION 2000 and Psiaki, 2001) and hardware solutions (BAE,

Control
Logic

P-Code
generator

 FFT

> Compare
<

Storage

∑ + 22 QI

conj
Carrier &
Doppler
Removal

FFT

IFFT

20

1998 and McCullagh, 1999). Except for the RF front ends, the software receiver

implements the other receiver functions in software in a microprocessor (Kelley, 2002

and Krumvieda, 2001). The software based implementation of the receiver blocks allows

the new acquisition architecture, improved tracking loops and other new features to be

implemented, tested and simulated. New frequencies and new PRN codes can be used

simply by making software changes. The software based approach can be used for the

simulation of hardware receiver design and development.

Usually, the software receiver depends on a host processor that has limited

capability to provide real time performance for GPS systems because of a required high

dynamic range, a large bandwidth, and a large computation load. However, the use of

pre-processors such as FPGA or DSP correlators (for correlation processing), FPGA or

DSP processors for FFT processing (Masella, 1999 and Gerein, 2001) are available and

provide real time capabilities.

21

Chapter 3

Direct GPS P-code Acquisition Modeling

3.1 Introduction

In order to have a good direct P-code acquisition hardware design, a good

understanding of P-code acquisition property and a good searching algorithm are needed.

The efficiency of a searching algorithm greatly affects the P-code acquisition time.

Although the general parallel code-phase search is used due to its efficient searching

speed, it is necessary to explore the advanced searching algorithm because of the

extremely long period of P-code. Even just searching a segment of the P-code for several

ms or 1 s, the searching task is still huge. A good acquisition algorithm is absolutely

necessary by limiting the searching segment to several ms or 1 s, the searching task is

still huge. A good acquisition algorithm is absolutely necessary.

In this chapter, new algorithms are introduced in this dissertation called direct

average and overlap average methods. The performance of new algorithms is analyzed.

The P-code property is studied. In addition, different acquisition techniques reported by

researchers are compared.

22

3.2 P-Code Property

Each satellite uses unique P-codes to implement the CDMA technique. The

autocorrelation function (Proakis, 2000) of a P-code is

() () ()dttPtPR iiP ∫
∞

∞−

+= ττ (3.1)

where iP is the P-code from the ith satellite and τ is the time phase shift of the P-code.

The correlation peaks repeat after one P-code period of one week. The property of

the autocorrelation function is used to synchronize the receiver-replicated code with the

received signal. It is important that the cross-correlation of any two P-codes is minimum

for any phase or Doppler shift over the entire code period. The ideal cross-correlation is

defined by

() () () 0=+= ∫
∞

∞−

dttPtPR jiij ττ (3.2)

where iP is the P-code from the ith satellite and jP from the jth satellite and ji ≠ .

The autocorrelation plot in Figure 3.1 has a big peak value. The plot has relatively

small side lobes.

23

0 1 2 3 4 5 6
x 10(sample)

5

0

1

2

3

4

5

6 x 10 5
Au

to
co

rr
el

at
io

n

Figure 3.1 P-code Autocorrelation over 50 ms

First, we define the correlation peak in Figure 3.1 as the largest correlation peak.

Then a terminology of acquisition margin can be defined as the ratio of the largest

correlation peak divided by the second largest correlation peak

PEAKNCORRELATIOLARGESTSECOND
PEAKNCORRELATIOLARGESTMARGINNACQUISITIO = (3.3)

Of course, the bigger the acquisition margin value, the better. As for the long

period P-code, a careful statistical analysis is necessary. Suppose the IF for P-code

24

acquisition is 12.5 MHz, and the GPS signal is up sampled to 65.536 MHz. The signal is

finally converted to the base band. Figure 3.2 shows the autocorrelation result of the up

sampled P-code in 1 ms and Figure 3.3 illustrates the acquisition margin distribution in 1

s.

0 1 2 3 4 5 6 7
x 10 (sample)

4

0

1

2

3

4

5

6

7 x 10 4

Au
to

co
rr

el
at

io
n

Sampling frequency: 65.536 MHz

Figure 3.2 Direct acquisition autocorrelation in 1 ms

25

0 100 200 300 400 500 600 700 800 900 1000
18

20

22

24

26

28

30

32

Time (ms)

A
cq

ui
si

tio
n

m
ar

gi
n

Figure 3.3 Direct acquisition: acquisition margin distribution over 1 s

 In Figure 3.3, the mean value of the acquisition margin is 25.954 and the

standard deviation is 1.841. So statistically, the acquisition margin value is stable when

doing direct acquisition. From Figures 3.1, 3.2, and 3.3, it is interesting to observe that

segments of the P-codes or up sampled P-codes are essentially orthogonal to each other.

This is the basis for the direct average and the overlap average methods described later.

This orthogonal property can be further tested if P-codes at any time interval of a week

are available. One efficient way to generate the P-code will be described in Chapter 5.

26

3.3 FFT Search and Zero Padding

The linear correlation of periodic code can be performed by circularly shifting the

replica code (Tsui, 2000). This resembles the circular convolution, which is a

multiplication in the frequency domain. It can be expressed as

[] [] [] [] [] []() []()()*1
1

0
* nxFnxFFnxnxmnxnxmR

L

n
•=−⊗=+= −

−

=
∑ (3.4)

The Discrete Fourier Transform (DFT) and its inverse are used to calculate the

correlation value R in the above equation. The incoming signal in-phase and quadrature

components are used as the real and imaginary inputs when calculating the DFT. The

result is multiplied by the complex conjugate of the DFT of the periodic code. The FFT

algorithm (Brigham, 1974) is used to implement the DFT and the IDFT, which greatly

reduce computation compared with the serial search method (van Nee, 1991).

For non-periodic codes, such as a segment of the P-code, the above calculation

method won’t give correct correlation results. A zero padding method is used to solve

this problem.

First, construct signal A by taking the 1st ms of P-codes and pad the 2nd ms with

zeros. Then, get signal B by taking the 1st and the 2nd ms of P-codes. Next, calculate

correlation according to the following equation:

[] []() []()()*1 nAFnBFFmR •= − (3.5)

27

Finally, the first half of the correlation results are kept while the second half are

discarded. The final correlation results correspond to the correlation of the 1st ms P-codes

with the 1st ms of incoming signal.

3.4 Comparison of Different Acquisition Methods

The direct P-code acquisition in the time domain needs massive physical

correlators in parallel for code search (Wolfert, 1998), which require a significant amount

of resources for hardware implementation. Other attempts on direct P-code acquisition

using a software radio algorithm are described below.

A. Circular correlation by partition and zero padding (Lin, 2000)

When doing circular correlation, two blocks of signals are taken. One block of

reference is taken with another block padded by zeros. Then, take only the first half

circular correlation results and discard the other half. Such design considers the almost

non-periodic property of the P-code. In addition, the frequency search can be done by

performing a FFT on the corresponding correlation results from several different blocks.

The number of blocks used for frequency search corresponds to the frequency range

covered.

B. Circular correlation by partition and superposition (Lin, 2000)

Similar to method A. Method B adds two neighboring blocks into one.

28

C. Non-coherent circular correlation by partition (Lin, 1998)

Similar to method A. Method C adds amplitude of correlation results from

different blocks to find the initial code phase. Then, do FFT to find the carrier frequency.

D. Delay and multiplication (Lin, 1998)

Multiply the input signals with delayed signals. Do the same operation on local

codes. Then correlate them to find the initial code phase. Next, do FFT to find frequency.

Delay should be properly designed so that 2πfsτ ≈ π, where fs is the sampling frequency,

and τ is the time delay.

E. Extended replica folding (Yang, 1999 and Yang 2000)

First, in order to implement Doppler removal, the incoming signal spectrum is

shifted by a given number of frequency bins along the frequency axis. Then do circular

correlation with a locally extended replica folded reference, which covers the entire time

uncertainty interval. At last, the folded correlations are coherently integrated over time

with several consecutive incoming signal segments in the same way. A more detailed

sequential block search technique is illustrated in other research (Yang, 2001).

Table 3.1 gives the performance comparison of different acquisition methods. As

illustrated in Table 3.1, methods A~C need larger size FFT than method E for direct P-

code acquisition, so they consume more hardware resources. Method D needs huge size

FFT, so it is good for hardware design. Method E only uses small size FFT, but it

requires a larger size of data.

29

Table 3.1 Performance comparison of different acquisition methods

Speed A(1ms) B(1ms) C(1ms) D(10ms) E(16ms)
Multiplication
(×10^7)

7.517 3.781 0.478 1.665 0.26

Addition
(×10^7)

15.021 7.445 0.786 3.133 0.49

Bandwidth 1kHz 1kHz 1kHz 100Hz 1kHz
FFT size 8192 4096 4096 655360 1024

Table 3.2 compares different acquisition methods when acquisition probabilities

are the same for all methods at around 90%. Methods A, C and D have better

performance than methods B and E.

Table 3.2 C/No ratio for different acquisition methods with acquisition detection
probability of around 90%

Methods A

(1ms)
B

(1ms)
C

(1ms)
D

(10ms)
E

(16ms)
C/No (dB/Hz) 41 44 42 41 47

From the above comparisons, when a large size FFT/IFFT hardware design is

available, and also very good carrier to noise ratio performance is required, methods A

and C are recommended for hardware design. When only a small size FFT/IFFT is

available, also a fast acquisition is a major concern, method E is better for hardware

design when GPS signals have a high carrier to noise ratio.

30

3.5 Direct Average Method

Due to the long period of the P-code, a fast correlation method has to be found.

An average method can speed up the correlation procedure. First, let’s see how the direct

average method affects the autocorrelation function.

Step 1: There are 131,072 P-code samples in 2 ms if a sampling frequency is

65.536 MHz and suppose an IF of 12.5 MHz. Average every 128 samples to generate

1024 samples every 2 ms, and call them target 1.

Step 2: Pick up the first 512 points from target 1, pad them with 512 point zeros at

the end to generate target 2 signals.

Step 3: Calculate the conjugate of 1024-point FFT for target 2 signals.

Step 4: Calculate 1024-point FFT for target 1 signals.

Step 5: Multiply the results from Step 3 and Step 4, and then do 1024-point IFFT.

Step 6: Select the first 512 elements from the results of Step 5, and discard the other

512 elements. The final results correspond to the autocorrelation function of the 1st ms P-

code up samples.

Step 7: Shift the P-code samples by 65,536 samples, repeat Steps 1 to 6, get the

autocorrelation function of the 2nd ms.

Step 8: Similarly, get all autocorrelation functions of 15 ms and sum all

correlation results in 15 ms.

31

Figure 3.4 shows that averaged chunks of data are basically orthogonal to each

other.

0 100 200 300 400 500 600

0
50

100
150
200
250
300
350
400

Au
to

co
rr

el
at

io
n

Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.4 Direct average autocorrelation result for P-code

32

In Figure 3.5, the acquisition margin for a well aligned signal and reference over 1

s is calculated. The mean value is around 26.882 and the variation value is 2.676. As a

result, the direct average method is statistically valid for segments of P-code up samples

in different milliseconds. Compared with the direct acquisition margin, which is equal to

25.954 when no average is used for acquisition, the direct average method has the similar

acquisition margin. This is the case when there is no noise added. However, the direct

average method avoids using the extremely large size FFT hardware for 50 ms samples.

0 200 400 600 800 1000
10

15

20

25

30

35

40

A
cq

ui
si

tio
n

m
ar

gi
n

Time (ms)

Code phase shift: 0

Sampling frequency: 65.536 MHz

Figure 3.5 Direct average method: acquisition margin distribution over 1s

33

Based on the results from Figure 3.4 and Figure 3.5, the direct average method

can be used to reduce the time for acquiring P-code signals. The block processing

technique (Haag, 1999) can be used to suppress noise by processing correlations in

several blocks and then adding them together. After GPS signals are demodulated, the

further acquisition procedure is given as follows:

Step 1 to Step 8 are similar to those described above for autocorrelation

calculation except the target 1 reference is locally generated P-code samples rather than

incoming signals.

Step 9: If a correlation peak is not detected, shift P-code samples by another 1 ms

as reference. Repeat Steps 1 to 9 until a correlation peak is acquired.

Step 10: If a correlation peak is detected at location m, the peak location has a

code phase resolution of 128 samples. If a more accurate peak location is needed, go to

step 11.

Step 11: Shift the demodulated GPS signals by (m-1)*128 samples. Then use the

first 1024 signal samples to do a 1024-point FFT.

Step 12: Take the first 512 samples from the reference and pad them with 512

zeros. Obtain the conjugate of a 1024-point FFT for this new reference.

Step 13: Multiply results from Steps 11 and 12, and then do a 1024-point IFFT.

Step 14: Select the first 512 elements from the results of Step 13, and discard the

other 128 elements. The final results should show the correlation peak location at n. Then

use (m*128+n-128) to get the exact sample location.

34

Example 1: GPS signals are 42 samples in advance of reference. This example is

given to show the simulation results using the above acquisition procedure.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

C
or

re
la

tio
n

(D
ire

ct
 A

ve
ra

ge
 M

et
ho

d)

Sampling frequency: 65.536 MHz

Averaged Sample

Figure 3.6 Direct average acquisition example

Figure 3.6 is a result of Step 1 to Step 8 in the above acquisition procedures using

the direct average method. The acquisition correlation peak is located in the zero shift

position, which is within the 128-sample resolution.

35

The result of Step 9 to Step 12 is illustrated in Figure 3.7. The correlation peak is

located at the 86-sample shift position. Since (0*128+86-128) is equal to -42, the

acquired location is 42 samples in advance of the reference.

0 100 200 300 400 500 600
0

100

200

300

400

500

600

C
or

re
la

tio
n

Averaged sample

Figure 3.7 Correlation resolution improvement

36

3.6 Effect of Code Phase Shift

The acquisition results are optimum when the reference samples have a zero code

phase shift relative to the incoming signal samples. Obviously, it is very important to

study how the code phase shift affects the maximum correlation peak value and the

acquisition margin. Figures 3.8 and 3.9 correspond to a code phase shift of 64 samples.

0 100 200 300 400 500 600

0

20

40

60

80

100

120

140

160

180

200

C
or

re
la

tio
n

Code phase shift: 64 samples
Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.8 Direct average method: correlation results
with a code phase shift of 64 samples

37

0 200 400 600 800 1000
5

10

15

20

25

A
cq

ui
si

tio
n

m
ar

gi
n

Time (ms)

Code phase shift: 64 samples
Sampling frequency: 65.536 MHz

Figure 3.9 Direct average method: acquisition margin distribution
over 1s with a code phase shift of 64 samples

Compared with Figures 3.4 and 3.5, the correlation peak value and the acquisition

margin decrease a lot as can be observed from Figures 3.8 and 3.9. The mean of Figure

3.9 is 14.042, and the standard deviation is 1.424.

Figure 3.10 is a two dimensional plot of the relation between the correlation peak value

and the code phase shift in samples. The correlation peak decreases almost linearly within

the 128-sample shift. When there is a shift of 64 samples, there is almost a half correlation

peak value loss, or a 3 dB loss.

38

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

400
D

et
ec

te
d

co
rre

la
tio

n
pe

ak
 v

al
ue

Code phase shift (Sample)

Reference codes overlap with searching signal window

Figure 3.10 Direct average method: detected correlation

 peak value change, case 1

The triangle in Figure 3.11 repeats for 1 ms with a cycle of 128 samples, which

means that if reference codes are hidden inside the first half of the 2 ms searching

window, correlation peak can always detected.

39

0 100 200 300 400 500 600
100

150

200

250

300

350

400

450

500

D
et

ec
te

d
co

rr
el

at
io

n
pe

ak
 v

al
ue

Signal shift relative to reference (Sample)

Reference codes within searching signal window

Figure 3.11 Direct average method: detected correlation peak
 value change, case 2

In order to make up the correlation energy loss in the dip region in the above

figures, a new algorithm is presented in the next section to improve the acquisition

performance.

3.7 Overlap Average Method

Since the detected correlation peak value changes almost linearly within the 128-

sample shift range, a linear combination algorithm may gain more correlation energy and

40

make Figures 3.10 and 3.11 as flat as possible. Those are the goals of the overlap average

method. The basic operation of this method is similar to the direct average method except

the reference is different. Here, a second reference is used which is overlapped with the

old reference by 64 P-code up samples. Averaging two reference codes will produce the

new reference used as the first experiment in the overlap average method. In Figures 3.12

to 3.15, the correlation value and the statistical acquisition margin distribution are

calculated without a code phase shift and with a code phase shift of 64 samples.

0 100 200 300 400 500 600
0

50

100

150

200

250

300

C
or

re
la

tio
n

Code phase shift: 0

Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.12 Correlation result using overlap average method

When there is no code phase shift, the optimum correlation value and acquisition

margin value are achieved. Figures 3.13 and 3.14 show that the overlap average method

41

has a small decrease of these values. The mean of Figure 3.13 is 23.596, and the standard

deviation is 2.653.

0 200 400 600 800 1000
10

15

20

25

30

35

40

Time (ms)

A
cq

ui
si

tio
n

m
ar

gi
n

Code phase shift: 0
Sampling frequency: 65.536 MHz

Figure 3.13 Statistical acquisition margin result for overlap average method

The advantage of the overlap average method shows up when there is a code

phase shift. Figure 3.14 illustrates a worse case with a code phase shift of 64 P-code up

samples. The correlation value remains similar to that without the code phase shift.

42

0 100 200 300 400 500 600

0

50

100

150

200

250

300
C

or
re

la
tio

n
Code phase shift: 64 samples
Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.14 Correlation result for overlap average method
with a code phase shift of 64 samples

In Figure 3.15 the acquisition margin in case of a code phase shift of 64 P-code up

samples remains similar to the results without the code phase shift. The energy

compensation is around 2 to 3 dB compared with the direct average method. The mean of

Figure 3.15 is 23.885, and the standard deviation is 2.487.

43

0 200 400 600 800 1000
10

15

20

25

30

35

40

A
cq

ui
si

tio
n

m
ar

gi
n

Time (ms)

Code phase shift: 64 samples

Sampling frequency: 65.536 MHz

Figure 3.15 Statistical acquisition margin result for overlap
 average method with a code phase shift of 64 samples

In addition, the detected correlation peak changes are shown in Figures 3.16 and

3.17. As can be seen, the maximum correlation value curve becomes relatively flat and

correlation energy loss, in the worse case, is decreased. The flat parts in Figures 3.16 and

3.17 prove the linear combination really works. In order to find out why there are still

dips in Figure 3.17, it’s necessary to explore the correlation peak location detection

difference by using two different references.

44

0 100 200 300 400 500 600 0

50

100

150

200

250

300

D
et

ec
te

d
co

rre
la

tio
n

pe
ak

 v
al

ue

Code phase shift (Sample)

Reference codes overlap with
Searching signal window

Figure 3.16 Overlap average method: two reference overlap, case 1

0 100 200 300 400 500 600 100

150

200

250

300

350

D
et

ec
te

d
co

rr
el

at
io

n
pe

ak
 v

al
ue

Signal shift relative to reference (Sample)

Reference codes within searching signal window

Figure 3.17 Overlap average method: two reference overlap, case 2

45

Suppose grouping the signal by 128 samples. In Figure 3.18, when the code phase

shift is between 0 to 64 samples, reference 1 detects the correlation peak location in the

1st group, but reference 2 indicates the 2nd group. As a result, two correlation peaks don’t

have a chance to be added up. That’s why dips happen in Figure 3.16. However, when the

code phase shift is between 64 to 128 samples, two references detect the same correlation

peak location so that the two correlation peaks are summed up into a bigger value, which

results in the flat part in Figure 3.17.

0 100 200 300 400 500 600
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

Code phase shift (Sample)

D
et

ec
te

d
co

rr
el

at
io

n
pe

ak
 lo

ca
tio

n

Reference codes within searching signal window

<--Old reference 1

Reference 2 (shift by 64 samples) -->

 Figure 3.18 Peak correlation location detection difference
 using two different references

46

Theoretically, since actually we only utilize the positive part of linear correlation

peak curve property, the negative part is not used. We can also use the cycling property

showed in Figure 3.11. Accordingly, a new procedure is described next.

First, let’s take two new references. One has a shift of 64 samples, and another

one has a shift of 128 samples. These two references will shift the pattern in Figure 3.18

right by 64 samples as illustrated in Figure 3.19. Next combine these two into a new

reference, and then the corresponding curve in Figure 3.17 will also shift right by 64

samples to generate a new curve showed in Figure 3.20.

0 100 200 300 400 500 600
2

2.5
3

3.5
4

4.5
5

5.5
6

<--Reference 1(shift by 64 samples)

Reference 2 (shift by 128 samples) -->

Reference codes within searching signal window

Code phase shift (sample)

D
et

ec
te

d
co

rr
el

at
io

n
pe

ak
 lo

ca
tio

n

Figure 3.19 Peak correlation location detection pattern change

47

0 100 200 300 400 500 600
100

150

200

250

300

350

D
et

ec
te

d
co

rre
la

tio
n

pe
ak

 v
al

ue

Signal shift relative to reference (Sample)

Reference codes within searching signal window

Figure 3.20 Overlap average method: two reference overlap case 3

Suppose the reference is within the signal searching window. Then the correlation

peak value satisfies the following equation:

]}4/)(*)[(max{ 12864640128 yyyyxxpeakncorrelatio mm ++++∑= +

}4/])(*2[max{ 128128012812864128640 yxyxyxyxyxyx mmmmmm +++ +++++∑=

}4/)]()(*2)[(max{ 128128012864128641280 yxyxyxyxyxyx mmmmmm +++ +++++∑=

}4/]*2[max{ 000000 yxyxyx ++∑=

)max(00 yx∑= (3.6)

48

where 0x is the original signal without any shift, mx and 128+mx are the signals with

a shift of m samples and (m+128) samples; 0y , 64y and 128y are the references with zero

shift, 64-sample shift and 128-sample shift relative to signal 0x respectively.

There are pairs in Equation 3.6, which complement each other on correlation peak

values. These pairs are),(),,(),,(128128012864128641280 yxyxandyxyxyxyx mmmmmm +++ . As a

result, the maximum correlation peak value has no relation with the shift variable m and it

should be the maximum correlation peak value. The correlation peak curve in Figure 3.21

has values a little less than the maximum value because the linear relationship described

before is not perfect.

0 100 200 300 400 500 600 100
150
200
250
300
350
400
450

D
et

ec
te

d
co

rr
el

at
io

n
pe

ak
 v

al
ue

Signal shift relative to reference (Sample)

Reference codes within searching signal window

Figure 3.21 Overlap average method by using three references

49

Actually the final overlap average method uses three references. The first

reference has no code phase shift, the second has a code phase shift of 64 samples, and

the third has a code phase shift of 128 samples. Add one copy of the first reference, two

copies of the second reference, and one copy of the third reference, and then average

them to get a new reference. Also add incoming signals with signals having 128-sample

code phase shift to obtain new signals. At last, correlate new signals with the new

reference. In this way, almost optimum acquisition performance can be achieved.

3.8 Noise Effect

The above simulation results are ideal since noise is not considered. Table 3.3

lists characteristics of different acquisition schemes without noise added. Case 1

corresponds to the best situation and case 2 to the worse situation.

First, the direct acquisition has a big mean acquisition margin. But it needs a huge

size FFT, which is almost impossible in the hardware design currently. Second, in the

best case, the direct average method has a big correlation peak and mean acquisition

margin. However, when there is a relative code phase shift such as 64 samples, the

correlation peak value decreases a lot and the 2nd peak value doesn’t change. As a result,

the mean acquisition margin becomes much lower. Compared with the direct average

method, the overlap average method is not so sensitive to the code phase shift. In

50

conclusion, the overlap average method has overall good performance in different

situations. Also a small size FFT is available by averaging and it is good for hardware

implementation.

Table 3.3 Correlation and acquisition margin characteristics
using different schemes without noise

No Noise

Direct Average Overlap Average

*Case 1: no shift

*Case 2: a relative shift

of 64 samples

Direct

Case 1 Case 2 Case 1 Case 2

True Peak 6.5536*10^4 382.848 194.477 288.662 285.549Correlation

(1 ms) Second

Peak

2.6500*10^3 13.919 14.824 13.452 13.178

Mean 25.954 26.882 14.042 23.596 23.885 Acquisition

Margin Standard

Deviation

1.841 2.676 1.424 2.653 2.487

In the real world, noise always exists in GPS signals. So it is important to analyze

the above algorithms with noise added.

51

In Figure 3.22, when noise is added, the noise floor increases a lot in direct

acquisition.

0 1 2 3 4 5 6 7

x 10 (Sample)
4

0

1

2

3

4

5

6

7 x 10 4
Au

to
co

rr
el

at
io

n

Carrier to noise ratio: 45 dB-Hz
Sampling frequency: 65.536 MHz

Figure 3.22 Noise effect on direct autocorrelation result of P-code

 up samples over 1 ms

52

In Figure 3.23, when noise is added, the mean acquisition margin decreases.

0 100 200 300 400 500 600 700 800 900 1000 1

1.5

2

2.5

3

3.5

4

Time (ms)

Ac
qu

is
iti

on
 m

ar
gi

n
Carrier to noise ratio: 45 dB-Hz

Figure 3.23 Direct acquisition: noise effect on acquisition margin result

53

As illustrated in Figure 3.24, the direct average method doesn’t perform well

when there’s a relative big code phase shift such as 64 samples when noise is added. The

detected correlation peak value decreases a lot.

0 100 200 300 400 500 600

0

50

100

150

200

250

C
or

re
la

tio
n

Code phase shift: 64 samples
Carrier to noise ratio: 45dB-Hz
Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.24 Direct average method: correlation result with added Gaussian noise

54

When there’s a relative big code phase shift such as 64 samples, Figure 3.25

shows the acquisition margin decrease a lot in case of added noise.

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3
Code phase shift: 64 samples
Carrier to noise ratio: 45 dB-Hz

Ac
qu

is
iti

on
 m

ar
gi

n

Time (ms)

Figure 3.25 Direct average method: noise effect on acquisition margin

55

Figure 3.26 shows that the detected correlation peak still decreases almost linearly

with code phase shift in case of added noise using the direct average method.

0 100 200 300 400 500 600
100

150

200

250

300

350

400

D
et

ec
te

d
co

rre
la

tio
n

pe
ak

 v
al

ue

Code phase shift (Sample)

Carrier to noise ratio: 45dB-Hz
Sampling frequency: 65.536 MHz

Figure 3.26 Direct average method: noise effect on detected
 correlation peak change with code phase shift

56

When noise is added, the overlap average method doesn’t decrease detected

correlation peak and acquisition margin much in Figures 3.27~3.29. So it performs much

better than the direct average method. If reference codes are within the searching signal

window, the detected correlation peak value curve keeps relatively flat with different

code shifts.

0 100 200 300 400 500 600

0
50

100
150
200
250
300
350
400

C
or

re
la

tio
n

Code phase shift: 64 samples
Carrier to noise ratio: 45dB-Hz
Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.27 Overlap average method: correlation result
 with added Gaussian noise

57

0 200 400 600 800 1000
0

0.5
1

1.5
2

2.5
3

3.5
4

Ac
qu

is
iti

on
 m

ar
gi

n

Time (ms)

Code phase shift: 64 samples
Carrier to noise ratio: 45dB-Hz

Figure 3.28 Overlap average method: noise effect on acquisition margin

0 100 200 300 400 500 600
200

250

300

350

400

450

D
et

ec
te

d
co

rr
el

at
io

n
pe

ak
 v

al
ue

Code phase shift (Sample)

Carrier to noise ratio: 45dB-Hz

Reference codes within searching signal window

Figure 3.29 Overlap average method: noise effect on detected
 correlation peak value

58

Table 3.4 quantifies the correlation and acquisition margin using different

acquisition schemes when noise is added.

Table 3.4 Correlation and acquisition margin characteristics
using different schemes with added noise

Added Gaussian Noise (carrier to noise ratio=45dB-Hz)

Direct Average Overlap Average

*Case 1: no shift

*Case 2: a relative shift

of 64 samples

Direct

Case 1 Case 2 Case 1 Case 2

True Peak 6.125 *10^4 358.04 162.18 350.258 358.696 Correlation

Second

Peak

2.726 *10^4 140.89 142.00 162.963 168.395

Mean 2.308 2.722 1.364 2.186 1.897 Acquisition

Margin Standard

Deviation

0.255 0.409 0.341 0.409 0.366

Furthermore, 16 ms signals are taken to do acquisition using the direct average

and the overlap average method with the same misdetection probability but a different

carrier to noise ratio. The direct average method requires around a 3 dB-Hz less carrier to

noise ratio compared with the overlap average method according to Figures 3.30 and 3.31.

In these figures, although the carrier to noise ratio using both methods is relatively

high, these two methods have the advantages of reducing the time for the code phase

59

search and using a small size FFT. So there is a tradeoff between the code phase search

speed and the carrier to noise ratio.

38 40 42 44 46 48 50
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
is

de
te

ct
io

n
pr

ob
ab

ilit
y

Carrier to noise ratio (dB-Hz)

Figure 3.30 Direct average method: misdetection probability with different carrier
 to noise ratio when the signal code phase shift is 64 samples

60

38 40 42 44 46 48 50
0
0.1

0.2
0.3

0.4
0.5

0.6

0.7
M

is
de

te
ct

io
n

pr
ob

ab
ilit

y

Carrier to noise ratio (dB-Hz)

Figure 3.31 Overlap average method: misdetection probability with different

 carrier to noise ratio when the signal code phase shift is 64 samples

61

A statistical analysis was made to compare two acquisition methods. A study of

the misdetection probability statistical distribution in 1 s using the direct average method

illustrated in Figure 3.32 indicates that the midsection probability has a mean of 0.5318

and a standard deviation of 0.055 when the carrier to noise ratio is equal to 42 dB-Hz.

0 200 400 600 800 1000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
is

de
te

ct
io

n
pr

ob
ab

ilit
y

Time (ms)

Carrier to noise ratio: 42 dB-Hz

Figure 3.32 Direct average method misdetection probability
distribution in 1 s with carrier to noise ratio equal to 42 dB-Hz

62

In case of using the overlap average method illustrated in Figure 3.33, the

misdetection probability has a mean of 0.5658 and a standard deviation of 0.0512 when

the carrier to noise ratio is equal to 39 dB-Hz. So with the almost the same misdetection

probability, the overlap average method has a gain of around a 3 dB-Hz carrier to noise

ratio higher than the direct average method statistically. In conclusion, the overlap

average method has overall good performance with or without noise added.

0 200 400 600 800 1000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
is

de
te

ct
io

n
pr

ob
ab

ilit
y

Time (ms)

carrier to noise ratio: 39 dB-Hz

 Figure 3.33 Overlap average method misdetection probability distribution
 in 1 s with carrier to noise ratio equal to 39 dB-Hz

63

3.9 Example

Example: Suppose reference codes are within 2 ms searching signal window. The

relative code phase shift between signal and reference is 61,746 samples.

Both direct average and overlap average methods detect the correlation peak at a

code phase shift equal to 482 in Figures 3.34 and 3.35. The result has a resolution equal to

128 samples. Searching at least 256 samples near the correlation peak location can refine

the resolution. Since a 1024-point FFT is used, 1024 samples are taken for the searching

purpose.

0 100 200 300 400 500 600

0

50

100

150

200

250

300

C
or

re
la

tio
n

(D
ire

ct
 A

ve
ra

ge
 M

et
ho

d)
 Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.34 Acquisition by the direct average method

64

0 100 200 300 400 500 600

0
50

100
150
200
250
300
350
400

C
or

re
la

tio
n(

D
ire

ct
 A

ve
ra

ge
 M

et
ho

d)

Sampling frequency: 65.536 MHz

Averaged sample

Figure 3.35 Acquisition by the overlap average method

Shift 2ms-signals by 481*128 samples. Then take the first 1024 points to do a

1024-point FFT. Next take the first 512 points from reference and pad them with 512

zeros to get a new reference. Use the new reference to get the conjugate of the 1024-point

FFT, and multiply them with previous 1024-point FFT results. Then do a 1024-point

IFFT. At last, keep the first 512 results from the IFFT and discard the other half.

The final results are illustrated in Figure 3.36. The peak location has a shift of 178

samples.

65

0 100 200 300 400 500 600
0

100

200

300

400

500

600

C
or

re
la

tio
n

Sampling frequency: 65.536 MHz

Sample

Figure 3.36 Resolution improvement by correlating 128 samples

As a result, the final shift is located at 482*128+178-128 = 61,746 samples in

advance of reference.

3.10 Conclusion

The P-code or even segments of the P-code have good autocorrelation and cross-

correlation properties. Because a segment of the P-code is considered as nonperiodic, its

correlation function is computed by the FFT search and zero padding method. Many

66

reported direct P-code acquisition algorithms listed in this dissertation need a large size

FFT/IFFT, which requires large hardware resources and adds hardware design

complexity. In this chapter, the direct average method is proposed to reduce the direct P-

code acquisition code phase searching time using 1024-point FFT/IFFT. This method is

based on the symmetrical linear P-code correlation curve discovered by using averaging.

Statistical analysis was performed to show the validness of the direct average

method. Another overlap average method was described in this chapter to make up the

correlation energy loss when there is a large code phase shift between the GPS incoming

signals and the locally generated reference. Even with the added Gaussian noise, the

overlap average method has better carrier to noise ratio performance than the direct

average method statistically when the reference has a code phase offset relative to the

GPS signal. Finally, one example is provided to illustrate how to use both methods.

67

Chapter 4

GPS P-code Generation

The P-code generator as shown in Figure 4.1 is a critical component in P-code

acquisition. A clear understanding of the P-code generator architecture is important for a

proper design implementation. In addition, a good design strategy is necessary due to the

extremely long P-code period.

In this chapter, the GPS P-code generator tuning model is developed to facilitate

the generation of the P-code from any specific time of a week in a FPGA chip using

hardware description language (HDL). The model is used to determine the initial vector

for each linear feedback shift register (LFSR), the initial value of the z-counter, and the

initial values for different division circuits in the P-code generator.

The P-code sequences listed in ICD-GPS-200 are considered as truth and

reference in this dissertation. The successful verification of each single LFSR design in

the P-code generator is deducted. The LFSR halting phenomena at the end of each LFSR

short cycle and at the end of a GPS week are verified successfully. All of these results are

consistent with those listed in ICD-GPS-200.

68

 10.23 MHz SETX1AEPOCH

 X1

 EPOCH

 RESUME

 HALT

 SETX1BEPOCH

 HALT ENDWEEK

 SETX2AEPOCH

 RESUME STARTWEEK X1

 X2EPOCH ENABLE

 ENDWEEK Pi

 HALT X2i

 SETX2BEPOCH

 1 i 37

 X2

Figure 4.1 GPS P-Code Signal Generator (ICD-GPS-200, 1991)

A

C X1A R
I REGISTER
 1 6 12

6, 8, 11, 12

 4092
DECODE

÷ 3750

C X1B R
I REGISTER
 1 12

 4093
DECODE

÷ 3749

B

 1,2,5,8,
9,10,11,12

 CLOCK
CONTROL

Z-COUNTER
 ÷ 403,200

7 DAY
RESET

C X2A R
I REGISTER
 1 12

÷ 3750

÷ 37

 4092
DECODE

C

 CLOCK
CONTROL

1,3,4,5,7,8,
9,10,11,12

 4093
DECODE

 CLOCK
CONTROL

2,3,4,
8,9,12

C X2B R
I REGISTER
 1 2 12

÷ 3749

C

 SHIFT
REGISTER

B

A

 REGISTERE
 INPUTS

C: CLOCK
I: INPUT
R: RESET TO
 INITIAL
 CONDITIONS
 ON NEXT
 CLOCK

69

4.1 P-code Generator Architecture

In the P-code generator, the main clock frequency is 10.23 MHz. As shown in

Figure 4.1, there are four 12-stage linear feedback shift registers (LFSRs), which are

X1A, X1B, X2A and X2B. X1A and X2A are each shorted to 4092 chips. X1B and X2B

are each shorted to 4093 chips. X1 is generated by the Modulo-2 sum of the outputs of

X1A and X1B. X2 sequence is produced by the Modulo-2 sum of the outputs of X2A and

X2B, and then it is delayed by a selected integer number of chips, i, ranging from 1 to 37,

which results in the X2i sequences. Each Pi(t) is the Modulo-2 sum of X1 and X2i (ICD-

GPS-200, 1991). When the X1B short cycles are counted to 3749, X1B LFSR is halted.

After X1A short cycles are counted to 3750, the X1 epoch is generated and it resumes

X1B LFSR. Similarly, when the X2B short cycles are counted to 3749, X2B LFSR is

halted. The difference is that after X2A short cycles are counted to 3750, X2B LFSR

needs additional 37 clock cycles to be resumed. Then X2 epoch is generated, which

accumulates 37 clock cycle delays for each epoch compared with X1 Epoch. At the

beginning of the GPS weekly period, X1A, X1B, X2A and X2B shift registers are

initialized to produce the first chip of the GPS week.

70

The precessing of the shift registers with respect to X1A continues until the last

X1A period of the GPS week interval. During this particular X1A period, X1B, X2A and

X2B are held when reaching the last state of their respective cycles until X1A cycle is

completed. At this point, all four shift registers are initialized and provide the first chip

of the new GPS week.

The polynomials for X1A, X1B, X2A and X2B LFSRs can be written as:

1211861:1 XXXXAX ++++ (4.1)

121110985211:1 XXXXXXXXBX ++++++++ (4.2)

1211109875431:2 XXXXXXXXXXAX ++++++++++ (4.3)

12984321:2 XXXXXXBX ++++++ (4.4)

The block diagrams of the four LFSRs are illustrated in Figures 4.2 to 4.5.

Figure 4.2 X1A LFSR Diagram

Figure 4.3 X1B LFSR Diagram

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

71

Figure 4.4 X2A LFSR Diagram

Figure 4.5 X2B LFSR Diagram

4.2 GPS P-Code Generator Tuning Model

HDL offers a very short and efficient design cycle involving simulation, synthesis

and testing (Chang 1997 and Navambi 1993). They are increasingly replacing schematic

oriented design entry methods. From the synthesis perspective, the most appealing

benefits of using HDLs are the ability to parameterize modules in which designs can be

created in the technology independent manner (Klupsch, 2002). The customizing module

parameter method is convenient and powerful for designers to save design effort (Luk,

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

72

1998 and Mencer, 2003). This concept is used in this dissertation. The following

describes the tuning model development details.

After 4092 chips, X1A finishes a cycle and generates a pulse called setx1aepoch.

X1B needs to produce 4093 chips in a cycle to generate a pulse called setx1bepoch. After

3749 X1B cycles, X1B is halted and it will be resumed when X1A reaches 3750 clock

cycles. At that time, another pulse is generated called x1epoch. So totally X1B is halted

by X1A for (4092-3749)=343 chip in one x1epoch cycle. X2A has similar relationship

corresponding to X2B as that of X1A versus X1B. The difference is that X2A and X2B

are halted 37 extra chips in each x2epoch (Kaplan, 1996). The last week final halting is

specified in ICD200 table. At any specific time during a week, the number of chips

generated by X1A generator can be easily calculated because the clock frequency is equal

to 10.23 MHz. Then the number of chips can be described as Equation 4.5.

[MHz] 10.23*[s] Time=N (4.5)

In order to initialize the P-code generator in a specific time during a week,

integer y1a is used to load the z-counter. Integers x1a and x2a are used to load the 3750

division counters in X1A and X2A blocks. Integers x1b and x2b are used to load the

3749 division counters in X1B and X2B blocks. Integers z1a, z1b, z2a and z2b are used

to initialize four linear feedback shift registers. Integer dv is used to load the delay by

37 chips block. Integers y2a and m are only needed to compute register values. In

addition, two constants are defined as

73

3750*40921 =C (4.6)

3749*40932 =C (4.7)

Several equations involving the chip number can be formulated to relate those

integers. For instance, z1a, x1a and y1a can be obtained from

azaxayCN 11*40921*1 ++= (4.8)

where

]4092mod[1 NREMaz = (4.9)

}3750mod]4092/)1[(1 azNREMax −= (4.10)

1/)1*40921(1 CaxazNay −−= (4.11)

Similarly,

bzbxayCN 11*40921*1 ++= (4.12)

dvazaxayCN ++++= 22*40922*)371((4.13)

bzbxayCN 22*40932*)371(+++= (4.14)

The solutions of equations (4.12), (4.13) and (4.14) are listed in the following

equations.

otherwiseayCNREM
CayCNwhenbz

],4093mod)1*1[(
,2)1*1(40921

−=
≥−=

 (4.15)

otherwiseayCbzN
CayCNwhenbx

,4093/)1*11(
,2)1*1(37481

−−=
≥−=

 (4.16)

])371(mod[+= CNREMm (4.17)

74

])371/()(2 +−= CmNay (4.18)

otherwise
CmwhenCmdv

,0
11

=
≥−=

 (4.19)

]4092mod)[(2 dvmREMaz −= (4.20)

otherwisebzm
Cmwhenbx
,4093/)2(

237482
−=

≥=
 (4.21)

One example is given below using the above tuning model.

Example 1: Suppose the required P-code starting time is Monday 11:30 a.m. of a GPS

week.

Time in equation (4.5) is computed with reference to the beginning of every GPS

week, which starts on Sunday at 0:00 a.m. The number of chips N can be computed by

using 1 day 11 hours and 30 minutes with the clock frequency 10.23 MHz.

N = 10.23*10^6 * (24*3600 + 11*3600 + 30*60)

 = 1.289,000,000,000 * 10^12 (4.22)

Then use the GPS P-code generator tuning model to solve x1a, z1a, y1a, x1b, z1b,

y2a, z2a, x2b, z2b, and dv. The solutions and the corresponding P-code generator

initialization set up are in Table 4.1.

75

Table 4.1 Solution table for example 1

According to ICD-GPS-200, the x1epoch pulse appears every 1.5 s. At the end of

every 1.5 s, X1A LFSR generates its last vector in its short cycle and X1B LFSR is held

in its last vector. On Monday 11:30 a.m., time is (24*3600 + 11*3600 + 30*60) = 127800

seconds and 127800/1.5= 85200. This also means 85200 x1epoch pulses are generated.

 In the above solutions, y1a=85200. y1a is used to set up the z-counter to count

the pulses of x1epoch. z1a=0 and z1b=0 mean X1A LFSR and X1B LFSR are in their

last states. As a result, X1A LFSR is loaded with its 4092nd vector in its short cycle. X1B

LFSR is loaded with its 4093rd vector correspondingly. In conclusion, the P-code

generator set up solutions for the z-counter, X1A LFSR, X1B LFSR, and their

corresponding division blocks are correct.

Again, according to ICD-GPS-200, each x2epoch pulse has an extra 37-chip delay

relative to each x1epoch pulse. So we know that x2epoch will happen after additional

85200*37=3152400 chips are generated. Also both X2A LFSR and X2B LFSR will be

 LFSR Division by 3750

or 3749 block

Division by

37 block

z-counter

X1A 4092nd vector (z1a=0) 0 (x1a=0)

X1B 4093rd vector (z1b=0) 0 (x1b=0)

X2A 2569th vector (z2a=2569) 2979 (x2a=2979)

X2B 3683rd vector (z2b=3683) 2978 (x2b=2978)

0

(dv=0)

85200

(y1a=85200)

76

in their last states of their short cycles, which correspond to x2a=0, z2a=0, x2b=0, and

z2b=0. This will happen after 3152400/(10.23*10^6)=0.3082 second. So the resulting

time for a new x2epoch pulse is Monday 11’oclock 30 minutes 0.3082 seconds in the

morning. New solutions for the variables in the GPS P-Code generator tuning model can

be solved using the new time. The following solutions are obtained:

x1a = 770, z1a=1560, y1a=85200, x1b=770, z1b=790, x2a=0, z2a=0, y2a=85200,

x2b=0, and z2b=0.

y2a corresponds to the x2epoch pulse. The result shows exactly 85200 x2epoch

pulses are generated. The solutions of x2a, z2a, x2b, and z2b are the same with the

expectation. So the solutions are in agreement with the ICD-GPS-200 document.

4.3 P-code Generator Design Verification

In order to verify the P-code generator design, apply the input vectors to generate

the 1st chip, then observe the 4091st, 4092nd or 4093rd output vectors and compare them

with those in Table 4.2.

77

Table 4.2 P-Code Vector States (ICD-GPS-200, 1991)

Code Chip Number Vector State (HEX) Vector State for 1st Chip

following Epoch (HEX)

4091 100010010010 (892) X1A

4092 000100100100 (124)

001001001000 (248)

4092 100101010101 (955) X1B

4093 001010101010 (2AA)

010101010100 (554)

4091 111001001001 (E49) X2A

4092 110010010010 (C92)

100100100101 (925)

4092 000101010101 (155) X2B

4093 001010101010 (2AA)

010101010100 (554)

The verification of each single LFSR design satisfies the above table. Other

verification concerns are the halting and the resuming of X1B, X2A and X2B at each

epoch and also the chip generation at the end of a GPS week. They are verified in the

following two cases.

Case 1: Verification of code halting after one cycle of X1A, X1B, X2A and X2B.

Assume y1a=0, y2a=0, x1b = 3748 and z1b = 4092.

Use the algorithm described before to solve tuning models. The solutions are

x1a=3749, z1a=3748, x2a=3749, z2a=3748, x2b=3748, and z2b=4092. Use these

78

parameters to setup the P-code generator as that shown in Table 4.3.

After one cycle of X1A, X1B, X2A and X2B, the simulation should show that

X2AQ is halted for 37 chips, X1BQ is halted for 343 chips, and X2BQ is halted for 380

chips. X1AQ, X1BQ, X2AQ, and X2BQ are the 12th bit of the output vectors of X1A,

X1B, X2A, and X2B LFSR.

Table 4.3 Case 1 P-code generator initialization table

 LFSR Division by 3750

or 3749 block

Division by

37 block

z-counter

X1A 3748th vector 3749

X1B 4092nd vector 3748

X2A 3748th vector 3749

X2B 4092nd vector 3748

0 0

Case 2: Verification of code halting at the end of the GPS week.

At the end of the GPS week, assume y1a=403199, x1a=3748, and z1a=3022.

Solve tuning models to get x1b=3747, z1b=3367, x2a=102, z2a=4091, x2b=102,

dv=0 and z2b=3989. Use these parameters to setup the P-code generator as those in Table

4.4.

79

Table 4.4 Case 2 P-code generator initialization Table

 LFSR Division by 3750

or 3749 block

Division by

37 block

z-counter

X1A 3022nd vector 3748

X1B 3367th vector 3747

X2A 4091st vector 102

X2B 3989th vector 102

0 403199

The waveforms in Figure 4.6 show the simulation results. 10 ns clock period is

used for the functional verification. Signals X1ADIVINIT, X1BDIVINIT, X2ADIVINIT,

and X2BDIVINIT are initialized with values 3748, 3747, 102, and 102 respectively for

each division by 3750 or 3749 block in four LFSRs. z-counter is initialized with signal

ZNTINIT equal to 403198 because it starts counting from zero. Signals ENDWEEK and

STWEEK represent the end and the start of the GPS week. According to the timing

shown in Figure 4.6, the ENDWEEK pulse occupies the time interval between two

SETX1AEPOCH pulses at the end of the GPS week. The STWEEK pulse occupies the

time interval between two SETX1AEPOCH pulses at the start of the new GPS week.

Signals X1AQ, X1BQ, X2AQ and X2BQ correspond to the outputs of four LFSRs.

80

Figure 4.6 Case 2 simulation waveform

Figures 4.7, 4.8 and 4.9 show the timing of signals X2AQ, X1BQ, and X2BQ at the end

of the GPS week. At 40.925 us, the X2A LFSR generates its 4092nd chip, and then it is

halted. At 48.185 us, the X1B LFSR generates its 4093rd chip, and then it is halted.

Similarly, at 51.625 us, the X2B LFSR generates its 4092nd chip, and then it is halted. As

a result, at the end of the GPS week, the signal X1BQ holds a heximal value 2AA, the

signal X2AQ holds a heximal value C92, and the signal X2BQ holds a heximal value

2AA. These values agree with those values listed in Table 4.1.

81

Figure 4.7 The final X2AQ chip generation at the end of a GPS week

Figure 4.8 The final X1BQ chip generation at the end of a GPS week

82

Figure 4.9 Resume of X1AQ, X1BQ, X2AQ and X2BQ at the start of a GPS week

From the above simulations, at the end of the GPS week, X1BQ is halted for

(51625-48185)/10 – 1 = 343 chips; X2AQ is halted for (51625 - 40925)/10-1 = 1069

chips, and X2BQ is halted for (51625-41965)/10-1=965 chips.

Table 4.5 lists the timing sequence generated at the end of the GPS week

according to ICD-GPS-200. It shows that when the X1A LFSR generates the 3022nd chip,

the X1B LFSR, the X2A LFSR and the X2B LFSR generates the 3367th, the 4091st and

the 3989th chip respectively. Consequently, the signal X1BQ is halted for (4092-3749) =

343 chips, the signal X2AQ is halted for (4092-3023) = 1069 chips, and the signal X2BQ

is halted for (4092-3127) = 965 chips. In conclusion, the simulation results are the same

with those expected from Table 4.5.

83

Table 4.5 P-code Reset Timing at the end of a GPS week (ICD-GPS-200, 1991)

Code Chip

X1A-Code X1B-Code X2A-Code X2B-Code

1 345 1070 967

… … … …

3023 3367 4092 3989

… … … …

3127 3471 4092 4093

… … … …

3749 4093 4092 4093

… … … …

Time

4092 4093 4092 4093

84

Chapter 5

Direct GPS P-code Acquisition Design

Implementation

5.1 Introduction

The architecture of a direct GPS P-code acquisition processor is presented in this

chapter. The operation of each sub block is explained. Important diagrams are illustrated

with some critical signals listed. The assumption made here is that the GPS signals have

been demodulated first.

Great efforts have been spent on the modeling of the direct GPS P-code

acquisition algorithm, and on the correct use of the Nallatech platform (Nallatech, 2002)

and the Xilinx 1024-point FFT/IFFT core (Xilinx, 2000). A stable FFT/IFFT core

controller has been written after numerous experiments and has been tested one-million

times with stable output results. The Xilinx 1024-point transform engine employs a

Cooley-Tukey radix-4 decimation-in-frequency (DIF) FFT (Cooley, 1965) to compute

the DFT of a complex sequence. It uses the successive dragonfly with the proper scaling

to accommodate the dynamic range expansion in each dragonfly pass. A full explanation

85

of scaling strategies and their implications can be found in literature (Knight, 1979 and

Rabiner, 1975).

In addition, different features of Xilinx VirtexE FPGA are studied thoroughly

(Xilinx, 2002). In the FPGA design, the direct average method is used. Only one block of

the local P-code reference is averaged and processed for the code phase search in each

loop.

5.2 Architecture of Direct GPS P-code Acquisition

Processor

Some preprocessing procedures are done by the PC first. Averaging and FFT are

taken on 2 ms demodulated GPS signals in the PC. These preprocessed data sequences

are then sent to an FPGA board. The local generated P-code reference sequences are the

averaged binary P-code. The FFT is taken on the averaged local reference block data.

Then the GPS signal FFT results are multiplied by the complex conjugate of the local

reference FFT results. This is called the complex multiplication in this dissertation. Next,

the IFFT is taken to get the complex correlation results. Then the square of the correlation

amplitude is calculated. The peak of the correlation amplitude square and the peak

location are searched in each block. This procedure continues until 10-ms data sequences

have been processed. The maximum and the second largest peak and peak location

86

values are the outputs of the whole processing hardware design shown in Figure 5.1.

Complex conjugate multiplier Mixer

 Implemented on FPGA

 GPS signal

Figure 5.1 Direct GPS P-code Acquisition Processor

In Figure 5.1, the GPS P-code acquisition processor architecture consists of a

local reference generation unit, a local reference FFT processor, a complex conjugate

multiplication processor, an IFFT processor, a correlation amplitude square unit, a

correlation peak unit, a correlation peak location unit, and a maximum selection unit.

Correlation Peak & Peak Location
Maximum Selection

Other Control & Decision Logic

Local Reference
Generation Unit

Local
Oscillator

Local Reference
FFT Processor

IFFT
Processor

2

Average

Average

Fourier
Transform

87

5.3 Local Reference Generation Unit

The local reference generation unit consists of a P-code generator, a P-code

binary converter, an AVERAGE unit, a state machine PCODE_MACH, and a RAM

address generator.

First, a RAM is preloaded with zeros and then its address is initialized to zero.

After FFT results of the GPS signal are sent from the PC to the FPGA, the P-code

generator is started to generate unary P-code in “0” and “1” format in each clock cycle.

Then the P-code is converted to “-1” and “1” format by the binary converter. Next, every

20 chips of P-code are averaged into 1 chip by the AVERAGE unit. The averaged result

is saved in a RAM. After 1 ms P-code generation, 10220 chips are averaged by 20 and

saved in the RAM. The last 10 chips at the end of every 1 ms are averaged by 10 and

saved in the RAM. As a result, 10230 chips in 1 ms are averaged into 512 points. The

other 512 points are zeros which are preloaded into the RAM. As a result, 1024 averaged

points are prepared for further FFT processing. At last, the RAM address is set to zero

again. This process is repeated. The controller is the state machine PCODE_MACH.

In Figure 5.2, the signal rst goes low when the FPGA chip is reset. All RAMs and

Registers are cleared with zeros. The common clock and rst signals are used for different

blocks in the Local Reference Generation Unit to synchronize the clock control and

the reset operation. After the results of the PC preprocessed GPS signals are completely

88

 Qtt

clk
rst end1ms clr_res

data_ld

 ram1_addrb

 ram2_addrb

clr_res

Figure 5.2 Local Reference generation unit diagram

clk
rst
p ram1_doa

P-CODE BINARY
 CONVERTER

ce qout

clk
rst
 AVERAGE
stengine

end1ms clr_res
A

 ram1_web
rst start_pcode
data_ld
 PCODE_MACH
clk start_avg
 ram1_addrb

rst p

PCODE
start_pcode

clk

rst clk ram1_web

RAM1_REA_PROC

rst clk
 ram2_addrb

RAM2_ADDRB_PROC

ram2_web

89

sent into one RAM on the FPGA board, the signal data_ld is logically low. This triggers a

state machine PCODE_MACH to generate a logic high control signal start_pcode. Then

the P-code generation is started by a component PCODE. The P-code signal p is

converted into a signal ram1_doa with -1 and 1 format by a component P-CODE

BINARY CONVERTER. In addition, the start_avg pulse is also generated by the state

machine PCODE_MACH, which is used to activate the AVERAGE block. The signal

ram1_doa is averaged and scaled up by 2048 in the AVERAGE block. The resulting

signal is Qtt. Scaling is necessary for the FFT operation, which will be explained in the

later section. The signal end1ms pulse is produced after every 10230 chips of P-code

have been generated, and then the AVERAGE block is cyclically cleared after every 512

averaging points are produced. A twenty-clock cycle waveform signal clr_res is used in

the averaging process. Furthermore, the RAM address signal ram2_addrb and RAM write

enable signal ram2_web are controlled by the controller PCODE_MACH in order to load

the averaged results into a RAM for FFT processing.

90

5.4 Local Reference FFT Processor

The local reference FFT processor in Figure 5.3 consists of a RAM saving the

sequentially averaged P-code signal Qtt value, a RAM loading the FFT intermediate

results, a 1024-point FFT/IFFT core doing the forward FFT, a loop counter for debugging

FFT results use, and the whole process controller is implemented by a state machine

FFT_MACH.

When the signal end1ms is logically high, the averaged and scaled signal Qtt has

been loaded into a RAM called RAM2_COMP. At this point, a controller FFT_MACH

sets the clock enable signal ce to be logically high. Next, it sets the data write strobe

signal mwr high for one clock cycle. A 1024-point FFT/IFFT core is in the forward FFT

mode when the signal fwd_inv is equal to logic ‘1’. Signals io_mode0 and io_mode1 are

set to ‘0’ and ‘1’ respectively in this dissertation. This indicates single memory

configuration mode is used, which means one memory block RAM_FFT_COMP is

necessary for loading input data into the FFT core sequentially and also for saving the

intermediate results during the FFT computation process. The final FFT results can be

read out from the FFT core sequentially. The FFT core operation timing sequence is

specified by Xilinx company. The signal addrr_x and the signal io are generated by the

FFT core to control the RAM port B address signal addrb and the RAM port B write

enable signal web of RAM_FFT_COMP. The data output from RAM2_COMP is

91

 loop_cnt ram2_web ‘1’ ram2_addrb
clk

rst

end1ms

 DZEROS
ram_mult
_full data_ld Qtt

 ram_mult_rea
 mult_prod_a_ce

 ‘0’
 di_r ‘1’

 di_i

 ‘1’
 ‘0’

 ‘1’

 dzeros

rst loop_cnt
clk
mwr

start_pcode

Figure 5.3 Local reference FFT processor diagram

loop_cnt ram2_wea
clk ram2_rea
 ram2_addra
rst mwr

mrd
end1ms start
 ce

FFT_MACH
ram_mult_full data_ld
addrr_x ram_mult_rea
 mult_prod_a_ce

done

 web enb addrb
rclk
wclk
wea
ena
RAM2_COMP
addra diar
 dibr

doar

rclk
wclk
wea
ena
web dobr
enb dobi

RAM_FFT_COMP
addra
addrb
diar
diai
dibr
dibi

ce start mrd mwr
clk wea
rst done
scale_mode io
di_r
di_i VFFT1024
fwd_inv addrw_x
io_mode0 addrr_x

 xk_r
 io_mode1 xk_i

rst loop_cnt
clk
mwr
start_pcode
LOOP_CNT_PROC

92

connected with the port B data bus of RAM_FFT_COMP. 1024 clock cycles are needed

to load the complex data sequences into RAM_FFT_COMP completely. The port B

complex data outputs of RAM_FFT_COMP are connected with the FFT core data bus

signals di_r and di_i. After the data loading process is finished, the FFT processing

strobe signal start is set by the controller FFT_MACH to be logic high for one clock

cycle. Then the FFT computation is started. When FFT computation process is

completed, the FFT results are in the interleaving order. At the same time, the signal done

is set by the FFT core to be logic high for one clock cycle, which triggers the controller

FFT_MACH to set FFT result read strobe signal mrd logically high for one clock cycle.

Consequently, after another 1024 clock cycles, all 1024 complex FFT results are

available on the data bus signal di_r and di_i sequentially in the correct order. The signal

loop_cnt is used to count how many FFT loops have been completed.

Since the next step after FFT operation is the complex conjugate multiplication,

three additional control signals ram_mult_full, mult_prod_a_ce and ram_mult_rea are

generated by the controller FFT_MACH. When the PC preprocessing GPS results are

completely loaded into a RAM on the FPGA board, the signal ram_mult_full is logic

high. These results are used in the complex conjugate multiplication processor. Signals

mult_prod_a_ce and ram_mult_rea are the clock enable signal and the read enable signal

for the RAM used on complex multiplication respectively.

93

5.4.1 Xilinx 1024-Point FFT/IFFT Core

When migrating between technologies, the intellectual property (IP) technology

can be more easily used and reused among designers to help reduce critical development

time in the production cycle. In this dissertation, a Xilinx 1024-point FFT/IFFT core is

used.

The Xilinx FFT/IFFT Core computes a 1024-point complex forward FFT or

inverse FFT (IFFT). The input data sequences are 1024 complex values represented as

16-bit 2’s complement numbers – 16 bits for each of the real and imaginary component

of a data sample. The 1024 output elements include 16-bit real and 16-bit imaginary

parts. The final output sequences are scaled by a factor 1/1024 when a control signal

SCALE_MODE is equal to ‘0’ and 1/2048 when SCALE_MODE is equal to ‘1’.

The general DFT is defined by Equation 5.1.

1,...,0,)()(
1

0

/2 −== ∑
−

=

− NkenxkX
N

n

Njnk π (5.1)

where N is the transform size.

The single-memory-space configuration provides the simplest memory and I/O

interface to the FFT/IFFT core. A diagram of this configuration is shown in Figure 5.4.

94

Figure 5.4 Xilinx 1024-point FFT/IFFT core single
 memory space configuration (Xilinx, 2000)

In Figure 5.4, the Xilinx 1024-point FFT/IFFT core needs three-stage processing:

the input vector loading, the FFT computation, and the result unloading. The input

loading requires 1024 clock cycles. After that, the signal start needs to be asserted in

order to start the FFT computation. The first FFT output sample is written to memory

3121 clock cycles after the signal start is asserted. The final sample is written to memory

4145 clock cycles following the start pulse. The result unload operation also requires

1024 clock cycles.

95

5.4.2 Controller FFT_MACH

FFT_MACH is a finite state machine, which has 9 states: ft_pc_ld, ft_rst, ft_init,

ft_load, ft_wadr, ft_calc, ft_wait1, ft_wait2, ft_rdfft. Three additional states can be added

for debugging after the state ft_rdfft: ft_dbg, ft_rd, and ft_stop. The functions of all states

are described in detail next.

1). State ft_pc_ld: load the preprocessed GPS signal from PC to the FPGA board.

A design bit file is downloaded on the FPGA board. The reset signal rst has a

short pulse, which is used to set all signals to their initial values in this dissertation, and

then trigger the state machine to enter the first state ft_pc_ld. The state machine stays at

this state until a signal RAM_MULT_FULL triggers it to the next state ft_rst. The signal

RAM_MULT_FULL is set to logic high when all of the preprocessed GPS signals are

loaded into a RAM.

2). State ft_rst: implement zero padding.

The zero padding technique is needed in the P-code correlation process as

described earlier. It is implemented by feeding a RAM (RAM2 in this dissertation) with

1024 zeros. After RAM2 is filled with all zeros, the state machine comes to the state

ft_init.

3). State ft_init: wait until 512 points of the averaged P-code are available.

Twenty clock cycles are needed to obtain one averaged point. 512 averaged points

96

are produced and saved in RAM2. The other 512 points are zeros saved in RAM2 in

advance. After 512 points are available, the signal end1ms will be logically high to

activate the FFT/IFFT core clock enable signal ce. In addition, the signal mwr is asserted.

Then the state machine is transferred to the state ft_load.

4). State ft_load: read data out of RAM2 port A into FFT/IFFT core continuously.

The port A of RAM2 is set to the read mode. The RAM2 port A address is

continuously increased. After all 1024 points are read out of the RAM2 port A, the

RAM2 port A is disabled from the reading mode. The state machine is then transferred to

the state ft_wadr.

5). State ft_wadr: assert signal start after the FFT loading process is done.

When all 1024 points are loaded into the FFT/IFFT core, the FFT/IFFT core

Block RAM read address bus addrr_x is equal to a heximal value 3ff. The signal start is

asserted by the state machine. Next, the state machine is transferred to the state ft_calc.

6). State ft_calc: calculate FFT.

The state machine is kept in this state until the FFT calculation is finished. When

the signal done is logically high, the state machine will be transferred to the state

ft_wait1.

7). State ft_wait1: assert signal mrd to start reading FFT/IFFT results.

The signal mrd is asserted for one clock cycle, and then the state machine is

transferred to the next state ft_wait2.

8). State ft_wait2: assert signal RAM_MULT_REA in order to start reading ram

97

RAM_MULT.

RAM_MULT saves the FFT results of. The averaged demodulated GPS signals

are saved in RAM_MULT. The signal RAM_MULT_REA is set to high so that

RAM_MULT port A is in the reading mode. The data saved in address zero is

immediately available. Since the FFT/IFFT core results are read out one clock cycle after

signal mrd is asserted, two reading process are synchronized in this way. This state lasts

only for one clock cycle. The next state is the state ft_rdfft.

9). State ft_rdfft: wait until FFT/IFFT core results reading is complete.

The signal MULT_PROD_A_CE is set to logic high to enable the complex

multiplier. When FFT/IFFT core reading is completed, the signal addrr_x is equal to a

heximal value 3ff. Then RAM_MULT reading mode is disabled and the state machine is

transferred to the 3rd state ft_init to start a new loop.

5.4.3 Loop Counter

The loop counter is activated after the signal start_pcode is logic high. Since the signal

mwr is only valid once for one clock cycle in a whole FFT process, it can be used to

count how many FFT processes have been implemented. The counter value is saved in

signal loop_cnt. This signal is useful when designers want to stop the FFT state machine

after some FFT processes have been done.

98

5.4.4 RAM2 and RAM_FFT

RAM2 is used to provide the input data for the FFT/IFFT core. RAM2 contains

512 averaged P-code points and the other 512 points are zeros. Zeros are loaded first into

the port A of RAM2 controlled by the sate machine FFT_MACH. Later, averaged P-code

signal Qtt values are written into the port B of RAM2. At last, all results are read out

from the port A of RAM2 and loaded into the FFT/IFFT core.

RAM_FFT is used to save the intermediate results from the FFT/IFFT core. So

most of its input ports are controlled by the FFT/IFFT core output signals. The final FFT

results are available from the port B of RAM_FFT. The real part is signal di_r, and the

imaginary part is signal di_i.

5.4.5 Debug Setup

For debugging purpose, when FFT results are read out of the FFT/IFFT core,

three additional states can be added. Also the state ft_rdfft has to be modified

accordingly.

9). State ft_rdfft: wait until FFT/IFFT core results reading is completed.

99

When the FFT/IFFT core reading is completed, the signal addrr_x is equal to a

heximal value 3ff. Then, the RAM_MULT is disabled from the reading mode. The state

machine is transferred to the next state ft_dbg.

10). State ft_dbg: make decision on whether to enter debugging mode or not

The signal loop_cnt is used to count how many FFTs have been processed. If the

signal loop_cnt is equal to a preset value, then the state machine will be transferred to the

next state ft_rd and the RAM3 port A will be set to the read enable mode. Otherwise, it

will be transferred to the state ft_init.

11). State ft_rd: read out values saved in RAM3.

The signal RAM4_WEB is asserted so that the RAM4 port B is set to the write

mode. Data streams are read out of the port A of RAM3 into the port B of RAM4. When

reading is completed, the state machine is transferred to the last state ft_stop.

12). State ft_stop: stop the state machine.

All necessary signals are set to their initial state. The debug values are saved in

RAM4.

Figure 5.5 is a block diagram of two RAMs used for debugging.

100

clk ram4_doa
‘0’ ‘0’ ‘0’
ram3_rea ram4_rea
mult_prod_a_web ram4_web
‘1’ ‘1’ ‘1’

ram3_addra ram4_addra
ram3_addrb ram4_addrb

 double_zeros

Figure 5.5 Block RAMs for debugging use

5.5 Complex Conjugate Multiplication Processor

The complex conjugate multiplication processor consists of a ram called

RAM_MULT, a RAM_MULT address generators, several registers, three 16-bit by 16-

bit multipliers, a summer and a subtractor.

The general complex conjugate multiplication of two complex numbers

()aijar ⋅+ and ()dijdr ⋅+ is done in the following equation:

() ())(diardraijdiaidrardijdraijar ⋅−⋅⋅+⋅+⋅=⋅+⋅⋅+ ∗ (5.2)

clk
wea
ena
web doa
enb

RAM3_COMP

addra
addrb

dib

dia

clk doa
 wea
 ena

dib web
 enb

RAM4_COMP

 addra
 addrb
 dia

101

Here, four multiplications, one subtraction and two additions are needed to

implement one normal complex conjugate multiplication.

The complex conjugate multiplication can also be modified in another way:

() draiarA ⋅+=0 (5.2)

() aididrA ⋅−=1 (5.3)

() diaraiA ⋅−=2 (5.4)

aidiardrAA ⋅+⋅=− 10 (5.5)

ardiaidrAA ⋅−⋅=+ 21 (5.6)

In the above calculations, three multiplications, two additions, and three

subtractions are needed. Since multiplications are expensive for FPGA design, which use

much more hardware resources than additions and subtractions, the modified complex

conjugate multiplication is better than the normal one.

In Figure 5.6, the signal write_en is first set by the PC to be logically high to

enable the loading of the input data D into RAM_MULT port B. These are 1024 FFT

results for the demodulated and the averaged GPS signals. When all of them are written

into RAM_MULT, the signal ram_mult_full is switched low to trigger the state machine

FFT_MACH to go to the next state. After FPGA FFT/IFFT core finishes the FFT

calculation, the FFT results real and imaginary parts are available as the signal di_r and

the signal di_i. In addition, the signal RAM_MULT_REA is set by the state machine

FFT_MACH to be logic high, and data values saved in RAM_MULT are read out from

the port A of RAM_MULT.

102

clk
rst write_en
ram_mult_rea

clk ram_mult_full
‘0’ ar

ram_mult_rea
write_en ai

‘1’

double_zeros

D

 reg_dr_di reg_ai_ar
di_r

di_i

clk

 reg_ai
 reg_di

 reg_arai
 reg_dr

Figure 5.6 Complex conjugate multiplication processor (part 1)

ain bout
clk

REG2

ain bout
clk

REG2

a1 bout
REG1

a2
clk

addra addrb
clk
wea
ena doa(15..0)
web
enb doa(31..16)

dia
dib

RAM_MULT

a1 bout
REG1

a2
clk

ain bout
clk

REG2

a1 bout
a2
clk

REG3

 rst clk ram_mult_rea
RAM_MULT_ADDRA_PROC

ram_mult_addra

 rst clk write_en
RAM_MULT_ADDRB_PROC
ram_mult_addrb ram_mult_full

103

 mult_prod_a2
clk A0
reg_di + S ram2_doa_dubi
reg_ai_ar mult_prod_a_web
mult_prod_a_ce A1

 mult_prod_a1
clk
reg_dr_di
reg_ai

 A1
 − S ram2_doa_dubr
 mult_prod_a0
 A0
reg_dr
reg_arai

Figure 5.7 Complex conjugate multiplication processor (part 2)

In Figure 5.7, the signal mult_prod_a_ce is controlled by the state machine

FFT_MACH. It is high only after the FFT process is finished and the final FFT results

are available. Next, the complex multiplication is implemented according to equations

5.2 to 5.6. When the multiplication results are available, the signal mult_prod_a_web is

high. The real and imaginary parts of the complex conjugate multiplication results are the

signal ram2_doa_dubr and the signal ram2_doa_dubi respectively.

clk q
a rdy
b

nd
MULT16x16

clk q
a
b
nd

MULT16x16

clk q
a
b
nd

MULT16x16

104

A brief description of the important signals and ports used in the complex

conjugate multiplication processor is given below.

write_en: write enable

ram_mult_rea: RAM_MULT read enable

D: data written into RAM_MULT port B

ram_mult_full: low when RAM_MULT is full

di_r: FFT/IFFT core final output data real component

di_i: FFT/IFFT core final output data imaginary component

reg_dr_di: registers value (dr-di) at the rising edge of clock

reg_di: registered value di at the rising edge of clock

reg_dr: registered value dr at the rising edge of clock

reg_ai_ar: registered value (ai-ar) at the rising edge of clock

reg_ai: registered value ai at the rising edge of clock

reg_arai: registered value (ar+ai) at the rising edge of clock

mult_prod_a_ce: high when multiplicands are available

mult_prod_a_web: high when multiplication result is available

ram2_doa_dubi: complex conjugate multiplication result imaginary part

ram2_doa_dubr: complex conjugate multiplication result real part

105

5.6 IFFT Processor

The IFFT processor consists of a 1024-point FFT/IFFT core to do the IFFT, a

loop counter for debugging the IFFT results, a RAM called RAM_IFFT saving IFFT

intermediate results and the whole process is controlled by a state machine IFFT_MACH.

The core also uses the single memory configuration mode. Since the FFT/IFFT core has

the same interface timing control except signal fwd_inv is switched to logic ‘0’ value, the

whole IFFT processing architecture is similar to that of the FFT process. Here, the

controller IFFT_MACH outputs more control signals than the controller used in the FFT

processor, such as signals max_en, cnt_eni, and mult_prod_a_ce in Figure 5.8. This is

because IFFT_MACH also needs to control the complex conjugate multiplication and the

correlation peak search which are implemented after the IFFT process.

A brief description of the important signals and ports used by the IFFT processor

in Figure 5.8 is given below.

max_en: when this signal is high, correlation peak searching block will be

enabled

io_mode0, io_mode1: when io_mode0=’0’ and io_mode1=’1’, the type of memory

interface is in the single memory space configuration

fwd_inv: low when FFT/IFFT core is set to inverse FFT mode

ram2_doa_dubi: complex conjugate multiplication result imaginary part

106

 ram3_max_web
clk double_zeros

 ‘0’ cmpq
cmp_flag

rst ram3_max_doa
 cnt_eni ‘1’

 max_en

 ram2_doa_dubi
 ram2_doa_dubr

 ‘0’

 ‘1’ ifft_di_r
 ‘0’
 ‘0’ ifft_di_i

 ‘1’

 ifft_di_r ifft_di_i mult_abs_web

 ram3_max_web

 Figure 5.8 IFFT processor diagram

clk mult_abs_ce
cmp_flag ram3_max_rea
rst ram4_max_web
 cnt_eni

 ram3_max_addra
 mult_prod_a_ce
ifft_addrr_x

IFFT_MACH
ifft_done max_en

 ifft_loop_cnt
 ifft_ce
ifft_start ifft_mrd ifft_mwr

 dibr dibi
rclk
wclk
wea
ena
web
enb dobr
addra dobi
addrb

diar
diai

RAM_IFFT

ce start mrd mwr
rst clk
 VFFT1024 done
scale_mode wea
 io

fwd_inv addrw_x
io_mode0 addrr_x
io_mode1 xk_r
 xk_i
di_r di_i

rclk
wclk dia
wea dib
ena
web doa
enb
addra addrb

RAM3 MAX

clk mult_abs_web
REG4

ram3_max_web

ifft_loop_cnt
rst
ifft_mwr
clk

CNT

rst clk
 RAM3_MAX_WEB_PROC
ram3_max_addrb ram3_max_web

107

ram2_doa_dubr: complex conjugate multiplication result real part

ifft_di_r: IFFT real component of the input data vector

ifft_di_i: IFFT imaginary component of the input data vector

mult_abs_ce: multiplication enable signal

ram3_max_rea: ram3_max port A read enable

ram4_max_web: ram4_max port B write enable

cnt_eni: clock enable signal used in correlation peak processor

ram3_max_addra: ram3_max port A address

mult_prod_a_ce: clock enable for the RAM used on complex multiplication

cmp_flag: high when the comparison is finished

Here, RAM3_MAX and RAM4_MAX are used for debug. They function similar

with those two RAMs used in section 5.4.5.

108

5.6.1 Controller IFFT_MACH

IFFT_MACH is a finite state machine, which has 13 states: ifft_init, ifft_load,

ifft_wadr, ifft_calc, ifft_wait1, ifft_wait2, ifft_rdfft, ifft_wait3, ifft_dbg, ifft_cmp,

ifft_loop_db, ifft_rd, and ifft_stop.

Compared with the FFT state machine FFT_MACH, IFFT_MACH doesn’t need

to control any data loading from the PC to the FPGA. So it saves the first two states that

are in FFT_MACH. But IFFT_MACH has extra states ifft_wait3 and ifft_cmp to assert

signal max_en, cnt_eni, and loc_eni. When signal max_en is high, the correlation peak

searching process is started. Signals cnt_eni and loc_eni are used to enable the correlation

absolute value square unit, correlation peak comparison process and the peak location

searching process.

The flow chart for the controller IFFT_MACH is illustrated in the Figure 5.9 and

the controller IFFT_MACH interface FFT/IFFT core diagram is shown in Figure 5.10.

109

Figure 5.9 The controller IFFT_MACH flow chart

Assert the clock enable signals
max_en and loc_eni for correlation

peak and peak location searching

Wait for PC to read correlation
peak and peak location results

RAM_MULT
Full?

N

IFFT data loading

Y

1024 clock
cycles?

N

Start IFFT
calculation

IFFT computation

done=‘1’?
N

Y

Set IFFT core the
result reading mode

Y

Enable the port A of
RAM_IFFT for reading

IFFT result reading

1024 clock
cycles?

2

1 2

N

Y

Debug
mode?

1
N

Assert clock enable cnt_eni for
correlation absolute square unit

Y

PC reading
completed?

N

Y

Stop

Initialization

110

clk

 mult_abs_ce
cmp_flag ram3_max_rea
rst ram4_max_web
 cnt_eni
 ram3_max_addra
 mult_prod_a_ce
 loc_eni

 max_en

 ram2_doa_dubi
 ram2_doa_dubr

 ‘0’

 ‘1’
‘0’
‘0’

‘1’

 ifft_di_i

 ifft_di_r

Figure 5.10 Controller IFFT_MACH interface FFT/IFFT core diagram

clk mult_abs_ce
cmp_flag ram3_max_rea
rst ram4_max_web
 cnt_eni

 ram3_max_addra
 mult_prod_a_ce

ifft_addrr_x loc_eni
IFFT_MACH

ifft_done max_en

 ifft_loop_cnt
 ifft_ce
ifft_start ifft_mrd ifft_mwr

 dibr dibi
rclk
wclk
wea
ena
web
enb dobr
addra dobi
addrb
diar
diai

RAM_IFFT

ce start mrd mwr
 clk
rst done
scale_mode wea
di_r io
di_i addrw_x
fwd_inv addrr_x
io_mode0 xk_r
io_mode1 xk_i

FFT1024

ifft_loop_cnt
rst
ifft_mwr
clk

CNT

111

5.7 Correlation Amplitude Square Unit

The correlation results are complex numbers. Suppose there is a complex number

bja ⋅+ , then

bbaababja ⋅+⋅=+=⋅+ 222 (5.7)

The design diagram of this unit is in Figure 5.11.

clk
 mult_abs_web
rst

cnt_eni
ifft_di_r A0 ram2_max_doa_dub
 +

 A1

mult_abs_ce

ifft_di_i

Figure 5.11 Correlation amplitude square unit diagram

In Figure 5.11, signals ifft_di_r and ifft_di_i are real and imaginary parts of

correlation complex results. The signal cnt_eni is controlled by the IFFT process state

machine IFFT_MACH. When the signal cnt_eni is high, the correlation results are

rst
clk reg_ain
cnt_eni
ifft_di_r

REG5

rst
clk reg_bin
cnt_eni
ifft_di_i

REG5

clk rdy
a
b q
nd

MULT16x16

clk
a q
b
nd

MULT16x16

112

available and they are latched by two registers at the rising edge of the clock. Next

multiplications are done by two mult16x16 blocks. Their outputs are added together to

generate the square of the correlation amplitude, which is signal ram2_max_doa_dub.

When signal mult_abs_web is high, it indicates multiplication results are available.

5.8 Correlation Peak and Peak Location Processor

The correlation peak and peak location processor consists of a peak-processing

unit, a peak location-processing unit, and a maximum selection unit. The recorder unit

provides the result of the largest correlation peak, the 2nd largest correlation peak and

their locations.

In Figure 5.12, after one IFFT loop, correlation amplitude square values obtained

as signal ram2_max_doa_dub are sequentially sent to the port A of a comparator CMP32.

Since only the first half of the IFFT results are kept for the peak searching processing,

only 512 comparisons are made in one loop. The correlation amplitude square peak and

peak location results in one loop are in two registers: PEAK_PROC and

PEAK_LOC_PROC.

The above procedures continue in loops. There are new peak and peak location

results from other new loops. The peak and peak location results from different loops are

always sent to the maximum selection unit PEAK_LOC12 for further comparison. As a

113

ram2_max_doa_dub

 rst
 0 1
 MUX clk
 sel
 a_gt_b out

cnt_eni

 peak

 locq

 0
 MUX
 1 out
 sel
 a_gt_b

max_en

 q1
 q2
 q1_loc
 q2_loc
 cmp_flag

Figure 5.12 Correlation peak and peak location processor diagram

cnt_eni
 peak_loc_wei
clk

REG6

clk rst cmpq
peak_eni peak

PEAK_PROC

clk cnt_eni
 rst
 locq
locd

DFF2

rst
clk
cnt_eni loc_cnt
LOC_CNT_PROC

clk locq
rst
peak_loc_wei
peak_loc

PEAK_LOC_PROC

clk peak
rst

 peak_loc
max_en

q1
q2

 q1_loc
 q2_loc

 cmp_flag

PEAK_LOC12

a b

 a_gt_b

CMP32

rst

cnt_eni clk
 cmpq

DFF1
cmpd

114

result, the biggest correlation amplitude square peak and peak location are the outputs of

PEAK_LOC12.

5.8.1 Correlation Peak Processor

The correlation peak processor is used to find a maximum value among 512

correlation amplitude square results. In Figure 5.12, when the signal cnt_eni is valid, the

correlation results ram2_max_doa_dub are available. The peak searching process is

similar to “bubble up.” The peak value is saved in a D flip flop as a signal CMPQ. The

signal CMPQ is initialized with value zero. Then it is compared with a new signal value

ram2_max_doa_dub. A comparator compares the value of ram2_max_doa_dub and

CMPQ. The comparison logic result is represented by a signal a_gt_b. Next, a

multiplexer selects the bigger one as the input to the D flip-flop. At the rising edge of the

next clock cycle, the signal CMPQ keeps the bigger value of the comparison results.

After 512 clock cycles, the signal CMPQ has the largest correlation peak square results in

one loop.

5.8.2 Correlation Peak Location Processor

The correlation peak location processor is used to find a maximum value location

115

among 512 correlation amplitude square results. In Figure 5.12, the peak value location is

saved in a D flip flop as a signal locq. First, the signal locq is initialized with value zero.

Then it is compared with a sequential counter value loc_cnt. The location counter is

started at the same time when the peak value comparison process is being implemented.

The comparison result signal a_gt_b is used as a selector for a multiplexer to select the

signal loc_cnt or the signal locq as an input for the D flip flop. As a result, after 1024

clock cycles, the signal locq will have the largest correlation peak square location result.

The important signals and ports used in the Figure 5.12 are given below.

ram2_max_doa_dub: correlation amplitude square value

cnt_eni: clock enable signal, and logically low when it is active

max_en: clock enable signal for component PEAK_LOC12

peak_loc: a correlation peak location in every 1024 points being processed

peak: a correlation amplitude square peak value in every 1024 points processed

a_gt_b: high when the comparator CMP32 input signal value a is greater than b

q1, q1_loc: the largest correlation amplitude square peak value and its location among all

data points being processed

q2, q2_loc: the second largest correlation amplitude square peak value and its location

among all data points being processed

cmp_flag: high when the comparison is finished

116

5.9 Maximum Selection Unit

The maximum selection unit is PEAK_LOC12 block in Figure 5.12. The detailed

design diagram is drawn in Figure 5.13. The initial values of the maximum, the second

and the third maximum correlation results are zeros. The signal max1 keeps track of the

previous maximum comparison result. Signals max2 and max3 correspond to the old

second and the third maximum comparison results. Signals max1_loc, max2_loc and

max3_loc are corresponding correlation peak locations. When the signal max_en is high,

a new value of the signal peak is available and the comparison process is started by the

maximum selection unit. The values of max3 and max3_loc are updated by the values of

peak and peak_loc respectively. Next, the values of max1 and max2 are compared with

the value peak. If the signal max31_gt is high, the signal peak will have a bigger value

than the signal max1. If the signal max32_gt is high, the signal peak will have a bigger

value than the signal max2. These comparison results affect the values of max_ind and

mid_ind, which are used to select the maximum and the 2nd maximum values among the

values of peak, old max1 and old max2. Then the selected new values are used to replace

the values of max1 and max2. Their locations are also switched correspondingly. The

results are registered as signals cp1, cp2, cp1_loc and cp2_loc respectively. A state

machine called MAX12_PROC is used to control the whole procedure. The maximum

and the second maximum correlation peak amplitude square values and their locations

117

are the final outputs of the maximum selection unit. The signal cmp_flag is high when

the comparison is finished. The signal done_cmp is high when the comparison is

finished or the comparison is not started yet.

 clk

 peak

 max_en

 peak_loc
 rst
max1 a max1
max2 b out
max3 c sel max1_loc

 max_ind

max1_loc a sel cmp_flag
max2_loc b out
max3_loc c

 peak max3

 max3_loc

max1 a sel max2
max2 b out
max3 c max2_loc

 mid_ind

max1_loc a sel
max2_loc b out
max3_loc c

Figure 5.13 Maximum selection unit diagram

max31_gt

 max_en
rst peak_loc
clk

cp1 max1
cp1_loc max1_loc

done_cmp

 cmp_flag

max32_gt
 max3
 max3_loc

MAX12_PROC

cp2 max2
cp2_loc max2_loc

rst clk
 done_cmp
D Q
 Qloc
Dloc

DCMP_PROC

rst clk
 done_cmp
D Q
 Qloc
Dloc

DCMP_PROC

A A_GT_B
B

cmp32

A A_GT_B
B

cmp32

118

5.10 Hardware Design Cost

The architecture is implemented on a Xilinx FPGA VirtexE xcv1600E chip. The

implementation cost is listed in Table 5.1.

Table 5.1 VirtexE FPGA design cost

 1 2 3 4 5 6 7 8

CLB slices 68* 182 25 1866 1866 559 386 55

Block Rams 0 0 0 16 16 0 0 0

Note:

1. NCO 2. P-code generator 3. Average 4. FFT 5. IFFT

6. Complex conjugate multiplication

7. Correlation amplitude square

8. Peak selection and decision logic

Total available CLB slices: 15552

Total available Block Rams: 144

*: Cost Estimation

119

The preprocessing of the demodulated GPS signals on the PC includes

averaging the demodulated GPS signals and taking FFT on them. The design

implemented in this dissertation uses one P-code generator, one average unit, one FFT

unit, one IFFT unit, one complex conjugate square unit, one correlation amplitude

square unit, one peak selection and decision unit listed in Table 5.1. The total cost is a

little more than one third of the FPGA hardware resources.

5.11 Conclusion

The direct GPS P-Code acquisition architecture presented in this chapter consists

of eight units: the local reference generation unit, the local reference FFT processor, the

complex conjugate multiplication processor, the IFFT processor, the correlation

amplitude square unit, the correlation peak unit, the correlation peak location unit, and

the maximum selection unit. The block diagram and major signal flows in each unit are

illustrated in different sections of this chapter. The necessary design flow chart is also

given. The design technical details are described. The implemented VirtexE FPGA

design cost is estimated. Since only a little more than one third of the FPGA hardware

resources is consumed, this is good for routing the final design successfully.

The whole design has a sequential architecture. Two FFT/IFFT cores are used.

One is for the forward FFT and another one is for the inverse FFT. Another possible

120

architecture for acquisition speedup may exist for more parallel P-Code generators. But

this also means more FFT/IFFT cores are needed. The upper limit is set by the hardware

resources available on one FPGA chip.

121

Chapter 6

FPGA Design Verification

6.1 Introduction

In this chapter, all hardware design steps are verified for 10 ms GPS P-code

acquisition processing. The same data sets are used both by FPGA and Matlab for the

verification of each design step. Then the differences between them are compared.

Comparison follows the order of the P-code average with scaling, FFT, complex

multiplication, IFFT, correlation peak square, maximum peak, noise floor and their code

phase shift.

Four cases are tested. One is for GPS signals without either noise or code phase

shift relative to the reference signals. The second is for GPS signals without noise but

with code phase shift. The third and the fourth cases correspond to GPS signals having no

code phase shift and having code phase shifts. Moreover, noise is added into GPS signals.

The C/No is 55 dB-Hz. The Matlab FFT and IFFT results are rounded before

comparisons are made because FPGA works only with integer numbers.

First, a one second GPS P-code is generated using a C program based on the

behavior of the GPS P-code generator. The results are saved and then used by Matlab

122

programs. The FPGA generated results can be read from FPGA to the PC. Next, the

comparisons can be made. The comparisons show very promising results. Most

comparisons give zero errors. Both FFT and IFFT operations have real part and

imaginary part differences within a –3 to 3 range. This is only the difference of integer

data and rounded floating data used. The final results illustrate exactly the same code

phase shift and approximately similar maximum peak and noise floor values.

6.2 Verification of P-code Average With Scaling

GPS P-code chips with 0 or 1 values are first generated by the FPGA chip. Then

these values are converted to the binary format with values equal to 1 or -1. Every 20

chips are added together for 10220 chips. The the last 10 chips are added. So totally 512

averaged points are generated for each ms GPS P-code reference. These results are

padded with 512 zeros to obtain 1024 input data for the further FFT processing. The FFT

core requires the input data width of 16 bits. The absolute summation value is not greater

than 32. In this dissertation, the 1024 input data values are scaled up by 2048. This is

equivalent to shift the input data value left by 11 bits in the binary operation. The results

are within the 16-bit range. These results are read back from the FPGA to the PC and

they are scaled down by 2048 before they are compared with the Matlab summation

results. The results are illustrated in Figure 6.1.

123

0 5 10 15 20 25 30 35 40 45 50
-8

-6

-4

-2

0

2

4

6

8

10
su

m
m

at
io

n
va

lu
es

FPGA
Matlab

Figure 6.1 The 2nd ms GPS binary P-code averaging results

The Figure 6.1 shows that the Matlab simulation results are the same with that of

the FPGA design.

6.3 Verification of FFT

The FPGA results from the verification in Section 6.2 correspond to the

124

scaled summation results. These are used by the Matlab function fft, which does the

floating point operation internally. The FFT results are scaled by 1/1024 and then

rounded for comparison with the FPGA FFT results. The FPGA FFT results are shown in

Figures 6.2 and 6.3. The comparisons between FPGA and Matlab results are made in

Figures 6.4 and 6.5.

0 200 400 600 800 1000 1200
-500

-400

-300

-200

-100

0

100

200

300

400

500

F
F

T
re

al
 p

ar
t

va
lu

es

Figure 6.2 FPGA FFT real part values in the 2nd ms

125

0 200 400 600 800 1000 1200
-500

-400

-300

-200

-100

0

100

200

300

400

500
F

F
T

im
ag

in
ar

y
pa

rt
 v

al
ue

s

Figure 6.3 FPGA FFT imaginary part values in the 2nd ms

126

0 200 400 600 800 1000 1200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
R

ea
l p

ar
t

di
ffe

re
nc

e

Figure 6.4 FPGA and Matlab FFT real part difference in the 2nd ms

127

0 200 400 600 800 1000 1200
-2

-1.5

-1

-0.5

0

0.5

1
Im

ag
in

ar
y

pa
rt

 d
iff

er
en

ce

Figure 6.5 FPGA and Matlab FFT imaginary part difference in the 2nd ms

The results in Figures 6.4 and 6.5 show the small amount of random difference

between –3 to 3 exists on the real and the imaginary part of the FFT operation.

128

6.4 Verification of Complex Conjugate Multiplication

The 2ms GPS signal FFT results are precalculated using Matlab. The results are

rounded and sent to the FPGA board for the complex multiplication. The GPS signal

sampling rate is 65.536 MHz used in Figures 6.6 and 6.7. The complex multiplication,

the real and imaginary part data value ranges are set to less than 16 bits, every 128 GPS

signals are averaged and Matlab function fft is called. The FPGA results from Section 6.3

are used to do complex conjugate multiplication for the verification in this section.

0 200 400 600 800 1000 1200
-2

-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4

F
P

G
A

 r
ea

l p
ar

t
va

lu
e

Figure 6.6 The FPGA complex conjugate multiplication real part in the 2nd ms

129

0 200 400 600 800 1000 1200
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

4
F

P
G

A
 im

ag
in

ar
y

pa
rt

 v
al

ue

Figure 6.7 The FPGA complex conjugate multiplication imaginary part in the 2nd ms

The FPGA and Matlab complex conjugate multiplication results have no

difference. From Figures 6.6 and 6.7, we can see the real and the imaginary part data

values are within 16-bit range including the sign bit. These are specially chosen for the

correlation square calculation in the next section.

130

6.5 Verification of IFFT

The Xilinx 1024-point FFT/IFFT core doesn’t scale the IFFT results. So the

Matlab program only needs to call function ifft and then do rounding. Figures 6.8 and 6.9

illustrate the FPGA IFFT results real and imaginary components in the 2nd ms.

0 200 400 600 800 1000 1200
-600

-400

-200

0

200

400

600

800

1000

1200

IF
F

T
re

al
 p

ar
t

va
lu

e

Figure 6.8 FPGA IFFT real part in the 2nd ms

131

0 200 400 600 800 1000 1200
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
IF

F
T

im
ag

in
ar

y
pa

rt
 v

al
ue

Figure 6.9 FPGA IFFT imaginary part in the 2nd ms

Although 1024 values are displayed in Figures 6.8 and 6.9, only the first half is

useful. The 2nd half is discarded in the further correlation peak amplitude square

calculation process.

Figures 6.10 and 6.11 illustrate the real and imaginary part difference between the

FPGA and Matlab IFFT results in the 2nd ms. The real parts have big absolute values and

the imaginary parts have small absolute values.

132

0 200 400 600 800 1000 1200
-1

-0.5

0

0.5

1

1.5

2

2.5

3
IF

F
T

re
al

 p
ar

t
di

ffe
re

nc
e

Figure 6.10 FPGA and Matlab IFFT real part difference in the 2nd ms

133

0 200 400 600 800 1000 1200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
IF

F
T

im
ag

in
ar

y
pa

rt
 d

iff
er

en
ce

Figure 6.11 FPGA and Matlab IFFT imaginary part difference in the 2nd ms

In both Figures 6.10 and 6.11, the difference is still within a -3 to +3 range. So the

conclusion is that the difference is not dependent on the magnitude of the absolute values.

The difference is caused by the truncation of floating point data into integer values.

134

6.6 Verification of Correlation Square

The previous FPGA complex multiplication results are used as inputs to the

Matlab program to calculate the correlation square values. Then the Matlab and the

FPGA correlation square output values are compared. They are the same. Both FPGA

and Matlab generate exactly the same results. Figure 6.12 only takes the first half of the

correlation square values. The other half values are discarded as a result of the

noncircular correlation calculation using the FFT and the zero padding method.

0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18
x 10

4

co
rr

el
at

io
n

sq
ua

re
 v

al
ue

Figure 6.12 FPGA correlation square values in the 2nd ms

135

6.7 Final Verification Results

Case 1: GPS signals have no noise and no code phase shift relative to the

reference.

Table 6.1 Correlation square peak and code phase shift
 over 10 ms in the verification of case 1

 1st ms

2nd ms

3rd ms

4th ms

5th ms

Correlation square peak

556516 30276 17161 21316 19044

Code phase shift

0 218 280 455 301

 6th ms

7th ms

8th ms

9th ms

10th ms

Correlation square peak

22500 15129 21904 25281 19881

Code phase shift 335 367 99 489 246 and
258

In Table 6.1, the code phase shift of case 1 corresponds to 128-sample code phase

shift due to the averaging operation.

The maximum correlation square value of 556,516 with a code phase shift of 0 is

obtained from the Matlab simulation. The second maximum correlation square value is

30,276 with code phase shift of 218. FPGA shows the maximum correlation square value

550,568 with a code phase shift of 0 is obtained from the FPGA design. The second

maximum peak value is 30,277 with a code phase shift of 218. FPGA and Matlab have

the similar maximum and the second maximum correlation square values with the same

136

code phase shift values. This conclusion is true for all following three cases.

Case 2: GPS signals have no noise, but with a code phase shift of (1 + 65536*7 -

128*8 + 10) samples relative to the reference in Table 6.2.

Table 6.2 Correlation square peak and code phase shift
 over 10 ms in the verification of case 2

Matlab Results

 1st ms

2nd ms

3rd ms

4th ms

5th ms

Correlation square peak

16129 17689 19321 41209 21316

Code phase shift

133 177 21 39 413

 6th ms

7th ms

8th ms

9th ms

10th ms

Correlation square peak

29929 24336 763876 24336 30976

Code phase shift

270 273 8 286 366

FPGA Results

 Maximum

Second maximum

Correlation square

760388 42026

Code phase shift

8 39

137

Case 3: GPS signals with added noise: C/No ratio 55 dB-Hz. There is no code

phase shift relative to the reference in Table 6.3.

Table 6.3 Correlation square peak and code phase shift
 over 10 ms in the verification of case 3

Matlab Results

 1st ms

2nd ms

3rd ms

4th ms

5th ms

Correlation square
peak

702244 270400 301401 173889 208849

Code phase shift in
each ms

0 369 444 383 77

 6th ms

7th ms

8th ms

9th ms

10th ms

Correlation square
peak

330625 389376 248004 201601 216225

Code phase shift in
each ms

196 500 485 416 260

FPGA Results

 Maximum

Second maximum

Correlation square

700570 390626

Code phase shift

0 500

138

Case 4: GPS signals with added noise: C/No ratio 55 dB-Hz. There is a code phase

shift relative to the reference of (1 + 65536*5 – 128 * 8 + 10) samples in Table 6.4.

Table 6.4 Correlation square peak and code phase shift
 over 10 ms in the verification of case 4

Matlab Results

 1st ms

2nd ms

3rd ms

4th ms

5th ms

Correlation square
peak

233289 142129 177241 272484 231361

Code phase shift in
each ms

238 304 418 51 267

 6th ms

7th ms

8th ms

9th ms

10th ms

Correlation square
peak

824464 179776 245025 254016 263169

Code phase shift in
each ms

8 367 13 11 496

FPGA Results

 Maximum

Second maximum

Correlation square

822650 274585

Code phase shift

8 51

139

6.8 Conclusion

Verification is an important procedure in FPGA design. The Nallatech FPGA

design platform provides the facility for designers to communicate between the PC and

the FPGA board. This is very convenient for designers to test their work. A strategy in

this dissertation is to insert some debugging RAMs in different parts of the design for

verification. The design is partitioned into blocks which can be tested sequentially. Other

systematic tools, such as Microsoft C++, Matlab, Aldec HDL and so on, can be used for

the functional simulation to be compared with the FPGA design results. In this

dissertation, it is guaranteed that the Matlab simulation results are the same with the

FPGA design blocks whenever integer operations are used in 10 ms verification. For the

FFT/IFFT operations, floating point operations are done by Matlab. The difference

between Matlab and FPGA results for FFT/IFFT is within a -3 to +3 range. Xilinx

provides the 1024-point FFT/IFFT behavioral library which uses the integer operation.

The behavioral simulation using Xilinx library yielded exactly the same results as the

FPGA hardware design results. In conclusion, the FPGA designs for this dissertation are

successfully verified.

140

Chapter 7

Summary and Future Work

7.1 Summary

The GPS P-code has higher chipping rate, better accuracy and anti-jamming

property than the C/A code. Traditionally, GPS P-code acquisition depends on a

handover from the C/A code. The P-code modulates both GPS L1 and L2 carrier

frequencies. When L1 carrier signal is not available, direct GPS P-code acquisition is the

only acquisition method that can be used. The acquisition techniques described in this

dissertation can also be expanded to the pseudolite application. Pseudolite only

broadcasts the wideband code, which is similar to the P-code.

The major objectives of this dissertation are to propose a direct GPS P-code

acquisition algorithm and implement the direct GPS P-Code acquisition code phase

search on the Xilinx FPGA chip. The direct GPS P-Code acquisition algorithm was

proposed and its FPGA hardware design and verification issues were analyzed. The

obstacles faced by researchers in dealing with extremely long period of P-code were also

highlighted. The major contributions of this dissertation are described below.

First, the P-Code correlation property was studied and the acquisition margin was

141

defined. FFT with the zero padding method was presented to calculate the correlation

function of non-periodic code such as a segment of the P-code.

Then, different direct GPS P-code acquisition methods recently reported by other

researchers were compared. The strength and weakness of different methods were

pointed out. Most of them need a large size FFT which is difficult for hardware

implementation.

Next, the direct average method was proposed in this dissertation to achieve fast

direct GPS P-code acquisition code phase search. The symmetrical and linear correlation

curve as the effect of averaging was discovered. Furthermore, the overlap average

method was presented to make up the correlation energy loss during the process of direct

averaging.

The methods proposed in this dissertation achieve fast code phase search. They

use small size FFT, which is good for hardware implementation, especially for FPGA

prototyping. This meets the objective of algorithmic study set for this dissertation.

Another aspect not studied in this dissertation is frequency search. The acquisition

process implemented in this dissertation assumed the GPS signals were first demodulated

before doing code phase search for acquisition.

In hardware design, mathematical equations were developed to design the GPS P-

code generator to facilitate P-code generation starting from any time of a week. This

yields an important facilitation of P-code acquisition when there is knowledge of the

approximate time information. The P-code generator simulation results matched the

142

ICD-GPS-200 descriptions.

The whole direct GPS P-code acquisition hardware design architecture was

partitioned into eight units. All these units were sequentially linked. The interface and

signal flows between different units were designed. Besides, efforts were spent on the

study of the Nallatech FPGA board and Xilinx VirtexE FPGA features. Especially, the

Xilinx 1024-point FFT/IFFT core was integrated into the system design for this

dissertation. A controller was designed to satisfy the timing specification of Xilinx

datasheet. The FFT/IFFT controller design passed a million times verification

successfully. The whole design was downloaded on FPGA and the results were read back

by the PC. Each major unit in the whole architecture was verified successfully. The final

FPGA acquisition correlation peak and code phase were correct in a 10 ms search

process. A 10 ms search process can be transferred to a position uncertainty of 3×106

meters. This uncertainty can be resolved in 0.333 ms by using a 33 MHz P-code

generator as implemented in this dissertation.

This work is challenging due to the extremely long period of the P-code. The

proposed overlap average method needs large hardware storing resource, so it was not

implemented in this dissertation. Instead, the direct average algorithm was implemented

on FPGA design successfully. Since there are lots of applications related to GPS P-code,

the work reported in this dissertation is meaningful for future research, especially after a

connection of my design with GPS P-code acquisition RF front end, which is now being

developed by the Ohio University Avionics Engineering Center.

143

7.2 Future Work

The direct average, overlap average model and FPGA design developed in this

work are useful and versatile tools for direct GPS P-code acquisition research. While the

focus of this research has been on the direct average code-phase search of GPS P-code

acquisition FPGA design, an extension of this work is to the field of carrier phase search.

The carrier phase search usually consists of a NCO (Numerically Controlled Oscillator)

whose operation principle is well known. It is important to choose an accurate oscillator

available on the market, which fits into NCO carrier immediate frequency design with a

small round off error. The overlap average method requires larger storing hardware

resources. Although this can be achieved by using the ZBTRAM resource on the

Nallatech board, more efforts are still needed to develop a ZBTRAM controller.

One potential use of this work is to connect the design with GPS P-code

acquisition front end. Another possible extension is to add a tracking loop to get a full

receiver design. A faster acquisition speed can be achieved using the parallel P-Code

generators for parallel processing. The design techniques used in this dissertation can also

be applied to the acquisition of pulsed pseudolites that transmit wideband (shifted P-

code) signals.

144

REFERENCES

[BAE, 1998] Precision Landing System Receiver PLSR AN/ARN-155, BAE SYSTEMS’

CNI Division product datasheet, 1998.

[Bauer, 1994] Bauer, W. D., and M. Schefcik, “Using Differential GPS to Improve Crop

Yields”, GPS World, Vol. 5, No. 2, February 1994.

[Braasch, 1999] Braasch M. and Van Dierendonck A., “GPS Receiver Architectures and

Measurements”, Proc. of the IEEE, Vol. 87, No.1, January 1999.

[Brigham, 1974] Brigham, E. Oran, The Fast Fourier Transform, Prentice-Hall,

Englewood Cliffs, NJ, 1974.

[Brown, GPS Solutions 2000] Brown A., May M., and Tanju B., “Benefits of Software

GPS Receivers for Enhanced Signal Processing”, GPS Solutions, 4(1) Summer, 2000.

[Brown, ION 2000] Brown A., Neil Gerein, and Keith Taylor, “Modeling and Simulation

of GPS Using Software Signal Generation and Digital signal Reconstruction”, Proc. of

ION Technical Meeting, Anaheim, CA, January 2000.

[Brown, 2001] Brown A. and Gerein N., “Direct P(Y) Code Acquisition Using An

Electro-Optic Correlator”, Proc. of ION National Technical Meeting 2001, Long Beach,

CA, January 2001.

[Chang 1997] Chang K., Digital Systems Design with VHDL and Synthesis, IEEE

Computer Society Press, 1997.

145

[Cobb, 1998] Cobb, S., and M. O’Connor, “Pseudolites: Enhancing GPS with Ground-

Based Transmitters”, GPS World, Vol. 9, No. 3, March 1998, pp. 55-60.

[Cooley, 1965] Cooley J. and Tukey J., “An Algorithm for the Machine Calculation of

Complex Fourier Series”, Mathematics of Computation, Vol. 10, pp. 297-301, April

1965.

[Dierendonck, 1996] Dierendonck A., “GPS receivers”, in Global Positioning System:

Theory and Application, vol. I, B. W. Parkinson and J. J. Spilker, Jr., Eds. Washington,

DC: American Institute of Aeronautics and Astronautics, 1996, ch. 8, pp. 329–407.

[Drane, 1998] Drane, C., and Rizos C., Positioning Systems in Intelligent

Transportation Systems, Norwood, MA, Artech House, 1998.

[El-Rabbany, 2002] El-Rabbany A., Introduction to GPS: the Global Positioning

System, Artech House, 2002.

[Erdogan, 2003] Erdogan A. and Arslan T., “Low Power Block-based FIR Filtering

Cores”, 2003 IEEE International Symposium on Circuits and Systems (ISCAS 2003),

Bangkok, Thailand, May 2003.

[Flinn, 1999] Flinn, J. A., Waddell C., and Lowery M. A., “Practical Aspects of GPS

Implementation at the Morenci Copper Mine”, Proc. of ION GPS 1999, Nashville, TN,

September, 1999, pp. 915-919.

[Gerein, 2001] Gerein N. and Brown A., “Modular GPS Software Radio Architecture”,

Proc. of ION GPS 2001, Salt Lake City, UT, September 2001.

146

[Glisic, 1997] Glisic S., Vucetic B., Spread Spectrum CDMA Systems for Wireless

Communications, Artech House, March 1997.

[Haag, 1999] Haag M., “An Investigation Into the Application of Block Processing

Techniques For the Global Positioning System”, Dissertation, August 1999.

[Hada, 2000] Hada, H., et al., “The Internet, Cars, and DGPS: Bringing Mobile Sensors

and Global Correction Services On Line”, GPS World, Vol. 11, No. 5, May 2000, pp. 38-

43.

[Hayward, 1998] Hayward R. C., Gebre-Egziabher and D., Powell J. D., “GPS-Based

Attitude For Aircraft”, The Int. Conf. on Integrated Navigation Systems in St. Petersburg

Russia, May 1998.

[Hellmich, 2000] Hellmich H., Erdogan A. and Arslan T., “Re-Usable Low Power DSP

IP Embedded in an ARM based SoC Architecture”, IEE Coloquim on Intelectual

Property, Edinburgh, UK, Jully 2000.

[Hoffmann-Wellenhof, 1994] Hoffmann-Wellenhof, B., Lichtenegger H., and Collins J.,

Global Positioning System: Theory and Practice, 3rd ed., New York, Springer-Verlag,

1994.

[ICD-GPS-200, 1991] ICD-GPS-200, NAVSTAR GPS Space Segment/Navigation User

Interfaces (Public Release Version), ARINC Research Corporation, Fountain Valley CA,

1991.

[Jensen, 1992] Jensen, M. H., “Quality Control for Differential GPS in Offshore Oil and

Gas Exploration”, GPS World, Vol. 3, No. 8, September 1992, pp. 36-48.

147

[Kaplan, 1990] Kaplan, E., Understanding GPS: Principles and Applications,

Norwood, MA, Artech House, 1990.

[Kelley, 2002] Kelley, C., Cheng, J., and Barnes, J., “Open source software for learning

about GPS”, 15th Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of

Navigation, Portland, Oregon, 24-27 September, 2002.

[Klupsch, 2002] Klupsch St., Ernst M., Huss SA, Rumpf M., and Strzodka R., “Real

Time Image Processing based on Reconfigurable Hardware Acceleration”, Proc.

Workshop on Heterogeneous reconfigurable Systems on Chip, April 2002.

[Knight, 1979] Knight W. and Kaiser R., “A Simple Fixed-Point Error Bound for the Fast

Fourier Transform”, IEEE Trans. Acoustics, Speech and Signal Proc., Vol. 27, No. 6, pp.

615-620, December, 1979.

[Krumvieda, 2001] Krumvieda, K., Cloman C., Olson E., Thomas J., Kober W., Madhani

P., and Axelrad P., “A Complete IF Software GPS Receiver: A Tutorial About the

Details”, ION GPS-2001, Salt Lake City, UT, pp. 789-829, September 2001.

[Langen, 2002] Langen D., et al., “Implementation of a RISC Processor Core for SoC

Designs – FPGA Prototype vs. ASIC Implementation”, Proc. of the IEEE-Workshop:

Heterogeneous reconfigurable Systems on Chip (SoC), Hamburg, Germany, April 2002.

[Langley, 1993] Langley, R. B., “The GPS Observables”, GPS World, Vol. 4, No. 4,

April 1993, pp.52-59.

[Leick, 1995] Leick, A., GPS Satellite Surveying, 2nd ed., New York, Wiley, 1995.

148

[Lin, 1998] Lin D. and Tsui J., “Acquisition Schemes for Software GPS Receiver”, Proc.

of ION GPS’98, Part 1, pp. 317-326, September 1998.

[Lin, 1999] Lin D., Tsui J., Howell D., “Direct P(Y)-Code Acquisition Algorithm for

Software GPS Receivers”, The Proc. of ION International Technical Meeting 1999,

Nashville, Tennessee, September 1999.

[Lin, 2000] Lin D., and Tsui J., “Comparison of Acquisition Methods for Software GPS

Receiver”, Proc. of ION GPS, 2000.

[Lucent, 2000] “Lucent Technologies introduces hybrid systems-on-a-chip for 10

Gigabit Ethernet over optical networks”, Lucent Technologies, November 2000.

[Luk, 1998] Luk W., P. Andreou, Derbyshire A., Dupont-De-Dinechin F., Rice J., Shirazi

N., and Siganos D., “A Reconfigurable Engine for Real-Time Video Processing”, in

Field-Programmable Logic and Applications 1998, Tallinn, Estonia, pp. 169-178.

[Masella, 1999] Masella, E. , “Achieving 20cm positioning accuracy in real time using

GPS - the Global Positioning System”, GEC Review, 14(1), pp. 20-28, 1999.

[Matsumoto, 1999] Matsumoto C., “LSI Logic ASICs to add Programmable Logic

Cores”, E.E. Times, August 29, 1999.

[Matsumoto, 2000] C. Matsumoto, “Startup Puts a Fresh Spin on Programmable Cores”,

E.E. Times, September 15, 2000.

[McCullagh, 1999] McCullagh M., “A Single Chip Silicon Bipolar Receiver for

GPS/GLONASS Applications”, IEEE International Solid-State Circuits Conference, 1999.

149

[Mencer, 2003] Mencer O. and Luk W., Parameterized High Throughput Function

Evaluation for FPGAs, The Journal of VLSI Signal Processing, Special Issue on

Reconfigurable Computing, Kluwer 2003.

[Misra, 1999] Misra P., Burke B., and Pratt M., “GPS Performance in Navigation”, Proc.

of the IEEE, Vol. 87, No.1, January 1999, pp. 65–85.

[Merritt, 2000] Merritt R., “QuickLogic Steps up Merger of FPGA with IP Cores – DSP

First Target” , E.E. Times, August 9, 2000.

[Misra, 2001] Misra P. and Enge P., Global Positioning System: Signals,

Measurements, and Performance, Lincoln, Mass., Ganga-Jamuna Press, 2001.

[Nallatech, 2002] Strathnuey PCI Card User Guide, NT 107-0076, Issue 9, Nallatech

datasheet, 2002.

[Navambi, 1993] Navambi Z., VHDL Analysis and Modeling of Digital Systems, Mc.

Graw Hill, 1993.

[Ndili, 1994] Ndili A., “GPS Pseudolite Signal Design”, Proc. of ION GPS 1994, Salt

Lake City, Utah, September 1994.

[Ohr, 2000] Ohr S., “ADI Taps Systolix Processor Array”, E.E. Times, April 21, 2000.

[Pace, 1995] Pace S., Frost G., et al., The global positioning system: assessing

national policies, Santa Monica, CA, RAND, 1995.

[Parkinson, vol. I, 1996] Parkinson B. and Spilker J., Global Positioning System:

Theory and Applications, volume I, of Progress in Aeronautics and Astronautics,

AIAA, 1996.

150

[Parkinson, vol. II, 1996] Parkinson B. and Spilker J., Global Positioning System:

Theory and Applications, Volume II, American Institute of Aeronautics and

Astronautics, 1996.

[Piazza, 1998] Piazza F. and Huang Q., “A 1.57-GHz RF Front-End for Triple

Conversion GPS Receiver”, IEEE Journal of Solid-State Circuits, Vol. 33, No. 2,

February 1998.

[Prasad, 1996] Prasad R., CDMA for Wireless Personal Communications, Boston,

Artech House, 1996.

[Proakis, 2000] Proakis J., Digital Communications, Fourth Edition, McGraw Hill,

2000.

[Psiaki, 2001] Psiaki M., “Smoother-Based GPS Signal Tracking in a Software

Receiver”, Proc. of ION GPS, Long Beach, California, 2001.

[Rabiner, 1975] Rabiner L. and Gold B., Theory and Application of Digital Signal

Processing, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1975.

[Rappaport, 1995] Rappaport T., Wireless Communications: Principles & Practice,

Prentice Hall, 1995.

[Savage, 2000] Savage W., Chilton J., and Camposano R., “IP Reuse in the System on a Chip

Era”, 13th International Symposium on System Synthesis (ISSS'00), Madrid, Spain,

September 2000.

151

[Shaeffer, 1998] Shaeffer D., Shahani A., Mohan S., et al., “A 115-mW, 0.5-um CMOS

GPS Receiver with Wide Dynamic-Range Active Filters”, IEEE Journal of Solid-State

Circuits, Vol. 33, No. 12, December 1998.

[Shahani, 1997] Shahani A., Shaeffer D., and Lee T., “A 12mW Wide Dynamic Range

CMOS Front-End for a Portable GPS Receiver”, Proc. IEEE Int. Solid-State Circuits

Conf., vol. 40, pp. 368-69, February 1997.

[Stone, 1999] Stone J., LeMaster E., Powell J., and Rock S., “GPS Pseudolite

Transceivers and their Applications”, Proc. of ION National Technical Meeting 1999,

San Diego, CA.

[Tanurhan , 2001] Tanurhan Y., “SOCs and Embedded Reprogrammable Logic”, E.E.

Times, March 29, 2001.

[Trimberger, 1994] Trimberger S., Field-Programmable Gate Array Technology,

Kluwer Academic Publishers, 1994.

[Trimble, 1998] MS750 Dual-Frequency RTK Receiver for Marine Applications,

Trimble Navigation Limited Corporation product data sheet, 1998.

[Trimble, 2002] GRAM compliant, SAASM based Force™ 22 Miniature Ruggedized

Unit (MRU), Trimble Navigation Limited Corporate Product Data sheet, 2002.

[Tsui, 2000] Tsui J., Fundamentals of Global Positioning System Receivers, A

Software Approach, John Wiley & Sons Publishers, 2000.

152

[van Nee, 1991] van Nee, D. J. R., Coenen, A. J. R. M., “New fast GPS code acquisition

technique using FFT”, Electronics Letters, vol.27, pp. 158-160, January 1991.

 [Viterbi, 1995] Viterbi A., CDMA: principles of spread spectrum communication,

Addison-Wesley Pub Co, 1995.

 [Vladimirova, 2000] Vladimirova T., Tiggeler H., and Zheng D., “A System-on-a-chip

for Small Satellite Data Processing and Control”, The 3rd annual Military and Aerospace

Programmable Logic Device International Conference (MAPLD), Maryland, September,

2000.

[Wang, 2000] Wang, J., et al., “Integrating GPS and Pseudolite Signals for Position and

Attitude Determination: Theoretical Analysis and Experiment Results”, Proc. of ION

GPS 2000, Salt Lake City, UT, September, 2000, pp. 2252-2262.

[Ward, 1995] Ward P., “The natural measurements of a GPS receiver”, Proc. ION 51st

Annual Meeting, 1995, pp. 67–85.

[Wilton, 2001] Wilton S. and Saleh R., “Programmable Logic IP Cores in SoC Design:

Opportunities and Challenges”, the 2001 IEEE Custom Integrated Circuits Conference,

San Diego, CA, May 2001.

[Wolfert, 1998] Wolfert R., Chen S., Kohli S., Leimer D., and Lascody J., “Rapid Direct

P(Y)-Code Acquisition In a Hostile Environment”, Proc. of IEEE PLANS, April 1998.

[Xilinx, 2000] High-Performance 1024-Point Complex FFT/IFFT V1.0.5, Xilinx Product

Specification datasheet, July 2000.

153

[Xilinx, 2002] Virtex™-E 1.8 V Field Programmable Gate Arrays, DS022-1 (v2.3),

Xilinx Product Specification, July 2002.

[Xilinx White Paper, 2002] IBM Licenses Embedded FPGA Cores from Xilinx for Use in

SoC ASICs (v1.0), Xilinx White Paper, June 2002.

 [Xilnix, 2003] Virtex-II Pro Datasheet, Xilinx Databook, 2003.

[Yang, 2000] Yang C., Chaffee J., Abel J., and Vasquez J., “Extended Replica Folding

for Direct Acquisition of GPS P-Code and Its Performance Analysis”, Proc. of ION GPS

2000, Salt Lake City, Utah.

[Yang, 1999] Yang C., Vasquez J., and Chaffee J., “Fast Direct P(Y)-Code Acquisition

Using XFAST”, Proc. of ION GPS, 1999.

[Yang, 2001] Yang C., “Sequential Block Search for Direct Acquisition of Long Codes

under Large Uncertainty”, ION NTM 2001, January 2001, Long Beach, CA.

[Zyfer, 2002] “SAASM and Direct P(Y) signal acquisition, a better way of life for the

military GPS user”, Zyfer Inc. SAASM GPS White Paper, Anaheim, CA, April 2002.

154

Appendix A

The FPGA Board

In this Appendix, the introduction of the Strathnuey FPGA board is presented.

Nallatech is a technology leader in the design of reconfigurable computers. Based on

Nallatech's award-winning Dime standard, its Strathnuey motherboard is an FPGA-

centric modular systems platform used for DSP, imaging, telecommunication and

aerospace applications. This Strathnuey card features two Xilinx FPGAs and one DIME

module expansion slot. FPGAs contain a Xilinx PCI Logic Core interface together with

Nallatech’s own PCI Bridge interface. This bridge provides the FPGA designer with a

method to implement registers and blocks of memory that are easily accessible by the PC.

The Spartan-II PCI FPGA is supplied pre-configured with Nallatech firmware for PCI

interfacing/board control. The VirtexE FPGA is available exclusively for user design and

applications. Besides, it has three on-board programmable clock sources, A/D converter,

D/A converter, status LEDs, and JTAG configuration headers. It also has a 32 bit PCI

connector. Moreover, the DIME Software DLL Library facilitates user with high level

functions.

155

The internal structure of a Xilinx VirtexE is a Configurable Logic Block (CLB)

matrix surround by Input/Output Blocks. Each CLB has two SLICEs. Each VirtexE

SLICE has two 4 input lookup tables and two flip-flops. There are also carry logics for

the fast carry line. CLBs are connected through Generic Routing Matrix (GRM). There

are three-state buffers associated with each CLB that drive dedicated segmentable

horizontal routing resources. There are dedicated block memories of 4096 bits each.

Moreover, there are clock DLLs for clock-distribution delay compensation.

 Status LEDs

 data General I/O

 lines

 System Bus

 JTAG Chain

Figure A-1 Strathnuey FPGA board architecture

DIME

Module

Slot

PCI Interface

Spartan-II FPGA

PCI Connector

User FPGA

 VirtexE

ADC DAC

Backplate Connector

JTAG Connector

156

ABSTRACT

Jing Pang. Ph.D. August 2003

Electrical Engineering and Computer Science

Direct Global Positioning System P-Code Acquisition FPGA Prototyping (157 pp.)

Director of Dissertation: Professor Janusz Starzyk

Conventional P-code acquisition relies on the hand over from an acquired C/A

code because the amount of search from a C/A code is finite and bounded. When the C/A

code is not available, direct acquisition of P(Y)-code is the only option available. The

GPS P(Y)-code offers improved cross-correlation property and higher precision than C/A

code. The direct P(Y)-code acquisition improves the robustness of the GPS receiver. The

design techniques used for direct P(Y)-code acquisition can also be applied to the

acquisition of pulsed pseudolites that transmit wideband (shifted P-code) signals.

In order to achieve a fast acquisition code phase search, the direct average method

was proposed. Both of them use a small size FFT and IFFT to facilitate the hardware

design in FPGA. Due to averaging, the signal detection probability is decreased. Both

methods require high carrier to noise ratio. The code phase search of 10 s signals only

needs around 3 s.

157

A group of mathematical equations were presented to initialize the different

registers and counters in the P-Code generator, which was capable to start P-Code

generation at any time of a week. This is very useful when there is approximate time and

satellite location information.

 The synthesizable design direct GPS P-Code acquisition design was downloaded

to the Xilinx VirtexE chip on the Nallatech FPGA board. The design results were

verified. The final FPGA results showed the correct correlation peak amplitude value and

code phase shift result.

Approved:

