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Chapter 1 

Introduction 

 

The Global Positioning System (GPS) is a worldwide, satellite-based navigation 

system. It is being funded and operated by the U.S. Department of Defense (DOD). The 

concept of GPS started in the early 1970’s, and it was originally intended for military 

applications. Later, the U.S. government made the system available for civilian use. The 

increased performance of GPS has fuelled the continued growth of the GPS market (El-

Rabbany, 2002 and Pace, 1995). It has been used in agriculture (Bauer, 1994), mining 

(Flinn, 1999 and Jensen, 1992), transportation (Drane, 1998), surveying (Leick, 1995), 

land (Hada, 2000), marine (Trimble, 1998), airborne navigation (Hayward, 1998) and 

many other applications (Parkinson, vol. II, 1996).  

GPS provides specially coded satellite signals that can be processed in a GPS 

receiver. A receiver measures the elapsed time between the emission and the reception of 

the GPS signal. This time is then multiplied by the speed of light to obtain the distance 

between the satellite and the receiver, which is referred to as pseudorange, not range 

(Langley, 1993), because the measurements contain errors and biases coming from the 

synchronization error between the satellite and receiver clocks, multipath errors and other 

error  sources.  GPS  provides  the  pseudorange  and  carrier phase measurements. While  
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GPS signal acquisition gives coarse estimates of these measurements, carrier phase 

tracking provides a precise measurement of change in the satellite user pseudorange over 

a time interval, and the estimates of its instantaneous rate, or Doppler. Estimations of 

position and velocity are based on these measurements (Braasch, 1999 and Ward, 1995). 

A minimum of four measurements made on four different satellites can precisely 

determine position, velocity, and time (Kaplan, 1990). 

The GPS satellites transmit two carrier frequencies: L1 (1575.42 MHz) and L2 

(1227.60 MHz). The pseudorandom noise (PRN) codes (Misra, 2001) and navigation data 

message are added to the carriers as binary phase modulations (Rappaport, 1995).  The 

navigation data message is a 50 bits/second digital data stream, which contains GPS 

satellite coordinates, the satellite health status, the satellite clock correction, the satellite 

almanac, and other satellite system parameters (Kaplan, 1990). The PRN codes include 

C/A (coarse acquisition) code on L1 carrier and P (precise) code on L1 and L2 carriers. 

The codes are called chips instead of bits to emphasize they do not carry data. Compared 

with the C/A code, which is 1023 chips long and is broadcast at 1.023 Mega-chips per 

second, the P-code is much longer (seven days) with a faster chipping rate 10.23 MHz, 

offering much higher accuracy (Misra, 1999 and Hoffmann-Wellenhof, 1994). The P-

code is encrypted and the resulting code is called P(Y)-code. The encrypted P(Y)-code is 

for use only by authorized users with cryptographic keys.  

Every GPS receiver design involves GPS signal acquisition, code tracking loop, 

and carrier tracking loop circuit design (Kaplan, 1990). The acquisition circuit searches  
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over a three-parameter space: satellite PRN code, code phase, and carrier frequency to 

acquire the signal. Acquisition can provide a “coarse” estimation of the pseudorange. The 

code tracking loop tracks the locally generated PRN code to be synchronized with the 

received code in order to despread the signal, derive navigation data and timing 

information.  

Traditionally, the GPS receiver locks onto the C/A code to extract the navigation 

data message. The Hand-over-word (HOW) is the second word in each subframe/page of 

a navigation message. A HOW occurs every six seconds in the data frame (ICD-GPS-

200, 1991). It provides the necessary timing information to tell where the P(Y) code 

pattern is in its whole sequence.  

Then, starting from the HOW, acquisition is transferred to the P-code acquisition 

part. As a result, P-code acquisition relies on the hand over from an acquired C/A code 

(Lin, 1999). This is because the C/A code repeats every millisecond so that synchronizing 

to the C/A code is easy. A brute force chip-by-chip search of P-code is formidable in 

terms of the number of search trials and the time required to carry it out. But if the 

receiver can accurately predict the satellite signal transmit time and the satellite location, 

direct P(Y)-code acquisition is faster than handover from the C/A code search. During 

certain military operations, the C/A-code signal could be degraded so that the use of the 

open Standard Positioning Service to adversaries is denied and the use of the encrypted 

P(Y)-code is still sustained. Consequently, direct acquisition of the P code is the only 

option available. Newer designs attempt to achieve acquisition without first acquiring the  
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C/A code and use the P(Y)-code for direct acquisition. 

The direct P (Y)-code acquisition potential is a more robust functionality for GPS 

receivers to provide the ability to acquire the P(Y)-code without the aid of the C/A code 

(Zyfer, 2002). Application of P(Y)-code rate sequences can also be used on pseudolites 

that implement wideband code formats. In situations with limited or no visibility of the 

GPS satellites, ground transmitters that emulate the signal structure of the GPS satellites 

(pseudolites) (Cobb, 1998) can be used as additional or replacement signal sources 

(Wang, 2000 and Stone, 1999). Pseudolites are useful for a variety of applications, 

including differential GPS implementation in aircraft precision approach in the Category 

II and III for universal availability. Pseudolites have the capability to augment the GPS 

constellation, providing better geometry for enhanced positioning accuracy, reliability, 

availability, continuity, and integrity monitoring. In addition they can be used to speed up 

integer ambiguity resolution in differential carrier phase applications, due to the large 

geometry change possible with the pseudolite signal (Ndili 1994). 

The overall objective of this dissertation is to implement the direct GPS P-code 

acquisition algorithm using FPGA (Field Programmable Gate Array) technology. The 

challenges are how to reduce the code phase search time for the extremely long period of 

the P-code, how to avoid large size Fast Fourier Transform (FFT), and how to design the 

P-code generator, which can rapidly produce the P-code at any specific time of a GPS 

week. The exploration of the direct GPS P-code acquisition algorithm presents a good 

starting  point  for  meeting  these  objectives.  To  produce  a  local  code,  which  can  
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continuously duplicate the incoming GPS signal code phase, the initial unknown code 

phase has to be determined by searching through a set of possible phases around an initial 

time estimate. If a search over 10 ms is needed, this can be translated into a location 

uncertainty of 3×106 meters. This location uncertainty may be caused by the uncertainty 

of the satellite location, the satellite clock offset, the receiver clock offset or other 

uncertainty factors from the time of transmission to the time of reception. The fast P-code 

phase search using the direct average and overlap average method proposed in this 

dissertation may be a tradeoff of the carrier to noise ratio performance. In addition, the 

proposed methods use a small size FFT/IFFT, which greatly facilitates the FPGA 

hardware design.  

After the direct P-code acquisition algorithm is proposed and simulated, it is 

possible to have a hardware design to map the algorithm. A FPGA is a good choice to do 

hardware design. FPGA offers the advantage of short design cycles, rich resources, and 

programmability (Trimberger, 1994). In the past, FPGAs were primarily used for 

prototyping and lower volume applications. Custom ASICs were used for high volume, 

cost sensitive designs. Today's deep submicron fabrication technologies enable design 

engineers to implement an impressive number of components like microprocessors, 

memories, and interfaces in a single microchip (Langen, 2002). With today’s deep sub-

micron technology, it is possible to deliver over several millions usable system gates 

(Xilinx White Paper, 2002) and system speeds up to several hundreds MHz in an FPGA. 

In addition, the average ASIC design operating at 50-100 MHz can be implemented in an  
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FPGA using the same RTL (Register-Transfer-Logic) synthesis design methodology as 

ASICs. As device densities keep increasing, not only new levels of systems are integrated 

onto a single chip, but also a wide variety of features and capabilities are allowed for 

reprogrammable technology. Moreover, several companies, such as LSI Logic 

(Matsumoto, 1999), ADI (Ohr, 2000),  Lucent (Lucent, 2000),  QuickLogic (Merritt, 

2000),  Actel (Tanurhan, 2001), some startup companies (Matsumoto, 2000) and so on, 

already provide pre-designed and pre-verified blocks, often called cores or intellectual  

property (IP) blocks (Wilton, 2001).   Fixed hardware designs called hardcores are 

incorporated  into  the  FPGA  architecture such as PowerPC/ARM processor cores, 

Booth multipliers for DSP (Digital Signal Processing) data paths,  serial transceivers and 

so on (Xilnix, 2003). On the other hand, softcores are flexible IP building blocks that take 

full advantage of an efficient and flexible implementation in the FPGA including PCI-

cores for I/O busses, processor cores, Viterbi  decoders  for  DSP  functions  and  many  

other  examples (Hellmich,  2000  and Erdogan, 2003).  These programmable logic cores 

are utilized by other companies and combined onto a single chip, and in a design process 

called System-on-a-Chip methodology (Savage, 2000 and Vladimirova, 2000). 

This dissertation's major objectives are twofold: (1) to develop and analyze a 

direct GPS P-code acquisition algorithm which targets on FPGA design, and (2) to design 

FPGA architecture implementing the proposed algorithm.  

The difficulty of direct GPS P-code acquisition is the extremely long period of the 

P-code, which makes the search for the correct  carrier  frequency  and  code  phase  very  
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slow. The promising methods to improve acquisition speed proposed by other researchers 

focus more on software simulation performance. They require large Fast Fourier 

Transform size. This is prohibiting in FPGA design because of large hardware resource 

requirement and design complexity. As a result, an appropriately scaled direct P-code 

acquisition design algorithm, especially for FPGA implementation would be desirable. 

In addition, the design of a P-code generator is also a challenging task in this 

work. The basic properties of P-code are described in the literature, but there is no 

complete detailed hardware implementation of a P-code generator. Another necessary 

feature will be the availability of a P-code starting from any time of a week. This fits into 

the situation that there is approximate time information so that acquisition starts from 

some specific time range.  

In order to have a successful implementation of the whole direct GPS P-code 

acquisition system in FPGA, Nallatech FPGA board interface and Xilinx VirtexE FPGA 

architecture features must be studied and utilized in the design. The whole system design 

should be partitioned into different processing parts. Each processor must be properly 

designed and the signal flows between different parts must be properly handled. It is very 

beneficial to use the Xilinx 1024-point FFT/IFFT core to achieve a fast system design 

cycle. A controller which is designed to meet the Xilinx 1024-point FFT/IFFT timing 

specification is critical for the integration of the core into the whole design system. A 

exhaustive test is also necessary to see how stable the FFT/IFFT results are and to verify  
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if the controller is right. At last, all synthesizable VHDL codes need to be downloaded on 

the FPGA board. Each partitioned processor must  be  verified.  The final overall results 

should give the right direct P-code acquisition code phase shift and acquired maximum 

correlation information. 

This dissertation is organized as follows. Chapter 2 covers the necessary GPS 

principles of operation. Chapter 3 models the direct GPS P-code acquisition algorithm 

and its modifications. The comparisons of different direct GPS P-code acquisition 

techniques are also made in this chapter. Then,  Chapter  4  presents  the  GPS  P-code 

generator architecture, design strategy and test  results  of  P-code  generator  design. 

Next, Chapter 5 gives details on direct GPS P-code acquisition design implementation. In 

addition, Chapter 6 verifies each step and the overall FPGA designs. At last, Chapter 7 

summarizes the whole dissertation and provides direction for future research. 
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Chapter 2 

GPS Background 

 

This chapter deals with some important concepts of GPS such as GPS signal 

structure, GPS code division multiple access (CDMA) principle, GPS receiver front ends, 

GPS P-code acquisition, software and hardware receivers. GPS signal structure and 

CDMA are the basic underlying components for GPS. A GPS receiver receives GPS 

signals by its front end, processes them in analog domain, and then outputs digital signals 

from an A/D converter for further acquisition process. Both sequential and parallel code 

phase search methods are explained. Furthermore, software and hardware receiver 

implementation are compared. 

 

2.1 GPS Signal Structure 

 

Each GPS satellite transmits a unique navigational signal centered on two L-band 

frequencies of the electromagnetic spectrum: L1 at 1575.42 MHz and L2 at 1227.60 

MHz. PRN codes and navigation message modulate the L1 and/or L2 carrier phase using 

the binary phase shift keying (BPSK) modulation technique (Kaplan, 1990). The binary 

codes are directly multiplied with the carrier, which results in a 180-degree phase shift of      
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the carrier every time the code changes its state. A BPSK diagram is shown in Figure 2.1. 

 

 

Figure 2.1  BPSK diagram (Braasch, 1999) 

 

The C/A code is a repeating 1.023 MHz PRN code. There is a different C/A code 

PRN for each satellite. C/A sequences belong to Gold codes, which have very good 

autocorrelation and cross correlation properties. The P-code is a very long (seven days) 

10.23 MHz PRN code. In the Anti-Spoofing (AS) mode of operation, the P-code is 

encrypted into the P(Y)-code. The encrypted P(Y)-code requires a classified AS module 

for each receiver channel and is used only by authorized users with cryptographic keys.  

The C/A code is the basis for Standard Positioning Service (SPS) and the P-code offers 

Precise Positioning Service (PPS). According to the 1999 Federal Radio Navigation Plan, 

the SPS predictable accuracy is around 100-meter horizontal accuracy, 156-meter vertical 

accuracy and 340-nanosecond time accuracy. The PPS predictable accuracy is around 22-

meter horizontal accuracy, 27.7-meter vertical accuracy and 200- nanosecond time accuracy. 

The L1 signal is modulated by both the C/A code and the P(Y)-code, which are at  
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90 degrees to each other, so that one is in phase and the other is in quadrature. The L2 

signal is modulated by the P(Y)-code. 

The navigation message modulates both the L1 and L2 signals. The GPS 

navigation message contains parameters that describe the location of the GPS satellites, 

their clock offsets, and various other system parameters. Each satellite transmits a 

navigation message at 50 bits per second. The navigation message is composed of five 

subframes. Each subframe contains 10 words of 30 bits. 

Figure 2.2 shows the GPS signal structure modeled in equation (2.1).  

( ) ( ) ( ) ( ) ( ) ( ) ( )tftDtGAtftDtPAtS LicLipiL 111 2cos2sin ππ +=  

( ) ( ) ( ) ( )tftDtPBtS LipiL 22 2sin π=          (2.1) 

where Ap, Ac and Bp are signal amplitudes 

Pi (t)  is the P code for satellite i 

Gi (t) is the C/A code for satellite i 

D (t)  is the navigation data for satellite i 

fL1   is the L1 carrier frequency equal to 1575.42 MHz 

fL2   is the L2 carrier frequency equal to 1227.60 MHz. 
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Figure 2.2 GPS signal structure (Kaplan, 1990) 

 

2.2 GPS CDMA Principle 

 

CDMA is a form of spread-spectrum, a digital communication technique that has 

been used in military applications for many years. Now it is one of the driving forces 

behind the rapidly advancing personal communications industry. CDMA uses unique 

noise-like spreading codes to spread the baseband data before transmission (Glisic, 1997 

and Prasad, 1996). The signal can then be transmitted in a channel below the noise level. 

The receiver uses a correlator to despread the signal.  One type of  CDMA  technique is  
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direct sequence spread spectrum (DSSS) (Viterbi, 1995). GPS uses the BPSK DSSS 

technique. When the user receives the GPS signals, the receiver will mix the received 

signal with a locally generated PRN-code. The locally generated PRN-code must be 

synchronous with that generated from the satellite. After the receiver is fully correlated 

with the GPS data, a correlation peak is generated. Because GPS signals have very wide 

spread spectrum, they are transmitted at a much lower spectral power density than 

narrowband transmitters (Braasch, 1999). 

One important signal quality parameter is the signal-to-noise ratio (SNR), which 

is a measure of the signal strength relative to background noise. The ratio is usually 

measured in decibels (dB) for a specified bandwidth. The noise can be approximated by 

BkTN E=          (2.2) 

where   k  is Boltzmann’s constant ( 123103806.1 −−× JK ) 

B  is the bandwidth in Hz 

ET   is the effective noise temperature in Kelvin. 

A normalized SNR to a 1-Hz bandwidth is called carrier-to-noise density ratio 

( oNC / ). It is bandwidth-independent. The oNC /  is defined as equation 2.3. 

])[)((/ HzratioBSNRNC o −=        (2.3) 

where SNR   is signal to noise ratio at certain stage of a receiver 

     B   is the bandwidth of a receiver at the same stage. 

The received satellite signal power varies with the user antenna gain, the satellite  
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elevation angle, and the satellite age. The typical oNC /  value is from 35 to 55 dB-Hz 

(Braasch, 1999). 

 

2.3 GPS Receiver Front Ends 

 

The input to the GPS receiver is the analog GPS signal from an antenna via a low-

noise pre-amplifier (LNA). The GPS signals are down converted by the radio frequency 

into the intermediate frequency (IF) signals, which are further converted by an A/D 

converter into the digital signals. These digital signals are taken by the GPS channels for 

the subsequent GPS acquisition and tracking process. 

The RF front ends deal with the analog signal processing including filtering, 

amplification,   and   down   conversion   (Shaeffer, 1998).   The   main   design parameters 

that have to be taken into consideration are antenna gain, LNA gain, LNA 

intermodulation, noise figure (NF), and power consumption (Shahani, 1997, and Piazza, 

1998). Sharp cutoff filters must suppress out-of-band interference. Hard-limiting     

architecture (1-bit A/D conversion) results in slightly degraded performance compared to 

that of a multibit converter, but it allows the design of a simpler, lower power receiver 

without employing automatic gain control. Downconversion is performed either in single 

or multiple stages (Braasch, 1999). Multistage architectures allow for adequate image 

suppression and general bandpass filtering with the final IF placed close to the baseband  
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single-stage. The final conversion to baseband involves converting the IF signal to the in-

phase and quadrature components of the signal envelope (Dierendonck, 1996). 

 

2.4 GPS P-code Acquisition 

 

A GPS receiver performs a three-dimensional search to acquire a GPS satellite 

signal: the GPS satellite PRN code, code phase, and carrier frequency offset (Parkinson, 

vol. I, 1996). If one has no knowledge on which satellites are in space, the acquisition 

must be performed on all satellites. However, usually there is information on the rough 

location and the approximate time of day, so acquisition is only necessary for those 

satellites which are known to be available to receivers. For each satellite, a two 

dimensional search must be performed: code phase and carrier frequency.  

In Figure 2.3, δτ is typically 1/2 code chip and δf is Doppler bin. Carrier 

frequency uncertainties are due to unknown Doppler shift and local oscillator drift. The 

span of code phase to be searched depends on uncertainties in indicated clock time and 

receiver position (Brown, 2001). Due to the extremely long period of the P-code, a search 

over a one-week long P-code is challenging. The FPGA design requirement in this 

dissertation is to search the P-code code phase over 10 ms. In realistic stand-alone 

receivers, the usual search is within 1 s. Satellite induced Doppler frequency uncertainty 

is less than 10 Hz, and stationary receiver oscillator frequency offset is within 1 kHz.  
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 Figure 2.3  GPS signal acquisition two-dimensional searching area 

 

In situations with limited or no visibility of the GPS satellites, ground transmitters 

that emulate the signal structure of the GPS satellites (pseudolites) (Cobb, 1998) can be 

used as additional or replacement signal sources (Wang, 2000 and Stone, 1999). In 

pseudolite application, satellite introduced Doppler is less than 1 Hz, and the receiver 

oscillator frequency offset is less than 10 Hz if a Rubidium oscillator is used. 

Traditionally, a C/A code can be quickly and easily acquired, and is used as a 

hand over which provides accurate time-tick information for P-code acquisition. Direct 

P-code acquisition is desirable when a C/A code is not available under jamming 

conditions but it is still possible to acquire P(Y)-code. 
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2.4.1 Sequential Search 

 

In Figure 2.4, the acquisition is based on a measurement of the correlator output. 

The correlators provide a measurement of the total I and Q channel correlation energy 

over the integration time. The In-phase and Quadrature components I and Q respectively 

are formed by stripping off the reference code and the carrier from the received signal. 

When the replica and reference signals are aligned with the incoming signal, the 

amplitude of the recovered correlation energy is at a maximum.  The amplitude is 

compared with a   threshold. When the amplitude is at or above the threshold (Brown, 

GPS Solutions 2000), it is detected as the presence of the signal. In the presence of noise, 

one must set the threshold based upon an acceptable probability that a noisy measurement 

that does not contain the signal will appear to match the replica (Kaplan, 1996).   

 

   Input Signal 
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Figure 2.4  Sequential search direct GPS P-code acquisition diagram 
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2.4.2 Parallel Code Phase Search 

 

In time domain, a massive parallel P-code generator with 1,024 or even 2,048 

correlator channels searching for a code match has been reported (Trimble, 2002).  

General GPS acquisition parallel search techniques include the parallel frequency 

space search, and the parallel code-phase search.  They limit the search space to carrier 

frequency space and code phase space respectively. When the number of Doppler bins to 

be searched is far less than that of the code phases, the parallel code-phase search is the 

most efficient approach. 

In Figure 2.5, the GPS acquisition scheme is shown implemented in the digital 

storage receiver using frequency domain correlation.  In this architecture, the GPS signals 

are first buffered in memory to allow them to be accessed by hardware for processing.  

Since the GPS signals do not have to be processed in real-time, enhanced signal 

processing algorithms can be applied that allow the digital signals to be optimally 

reprocessed, maximizing the probability of acquiring the GPS signals in a challenging 

environment.  
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Figure 2.5  Parallel code phase search direct GPS P-code acquisition diagram 

 

This approach takes advantage of the Fourier Transform correlation theorem 

which states that the frequency transform of the correlation function in the time domain is 

the product of the signals’ transforms in the frequency domain. The FFT algorithm 

provides a convenient and computationally efficient method of performing correlations in 

the digital storage receiver architecture. 

 

2.5 Software and Hardware Receiver   

 

Development and operation of advanced GPS systems are provided through a 

variety of software (Brown, ION 2000 and Psiaki, 2001) and hardware solutions (BAE,  
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1998 and McCullagh, 1999). Except for the RF front ends, the software receiver 

implements the other receiver functions in software in a microprocessor (Kelley, 2002 

and Krumvieda, 2001). The software based implementation of the receiver blocks allows 

the new acquisition architecture, improved tracking loops and other new features to be 

implemented, tested and simulated. New frequencies and new PRN codes can be used 

simply by making software changes. The software based approach can be used for the 

simulation of hardware receiver design and development. 

Usually, the software receiver depends on a host processor that has limited 

capability to provide real time performance for GPS systems because of a required high 

dynamic range, a large bandwidth, and a large computation load.  However, the use of   

pre-processors such as FPGA or DSP correlators (for correlation processing), FPGA or 

DSP processors for FFT processing (Masella, 1999 and Gerein, 2001) are available and 

provide real time capabilities.  
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Chapter 3 

Direct GPS P-code Acquisition Modeling 

 

3.1 Introduction 

 

In order to have a good direct P-code acquisition hardware design, a good 

understanding of P-code acquisition property and a good searching algorithm are needed. 

The efficiency of a searching algorithm greatly affects the P-code acquisition time. 

Although the general parallel code-phase search is used due to its efficient searching 

speed, it is necessary to explore the advanced searching algorithm because of the 

extremely long period of P-code. Even just searching a segment of the P-code for several 

ms or 1 s, the searching task is still huge. A good acquisition algorithm is absolutely 

necessary by limiting the searching segment to several ms or 1 s, the searching task is 

still huge. A good acquisition algorithm is absolutely necessary.  

In this chapter, new algorithms are introduced in this dissertation called direct 

average and overlap average methods. The performance of new algorithms is analyzed. 

The P-code property is studied. In addition, different acquisition techniques reported by 

researchers are compared.  
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3.2 P-Code Property 

 

Each satellite uses unique P-codes to implement the CDMA technique. The 

autocorrelation function (Proakis, 2000) of a P-code is  

( ) ( ) ( )dttPtPR iiP ∫
∞

∞−

+= ττ         (3.1) 

where iP  is the P-code from the ith  satellite and τ  is the time phase shift of the P-code.  

The correlation peaks repeat after one P-code period of one week. The property of 

the autocorrelation function is used to synchronize the receiver-replicated code with the 

received signal. It is important that the cross-correlation of any two P-codes is minimum 

for any phase or Doppler shift over the entire code period. The ideal cross-correlation is 

defined by  

( ) ( ) ( ) 0=+= ∫
∞

∞−

dttPtPR jiij ττ        (3.2) 

where iP  is the P-code from the ith satellite and jP  from the jth  satellite and ji ≠ .  

The autocorrelation plot in Figure 3.1 has a big peak value. The plot has relatively 

small side lobes.  
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Figure 3.1  P-code Autocorrelation over 50 ms 

 

First, we define the correlation peak in Figure 3.1 as the largest correlation peak.  

Then a terminology of acquisition margin can be defined as the ratio of the largest 

correlation peak divided by the second largest correlation peak 

PEAKNCORRELATIOLARGESTSECOND
PEAKNCORRELATIOLARGESTMARGINNACQUISITIO =      (3.3) 

Of course, the bigger the acquisition margin value, the better. As for the long 

period P-code,  a  careful  statistical  analysis  is  necessary.  Suppose  the  IF  for  P-code  
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acquisition is 12.5 MHz, and the GPS signal is up sampled to 65.536 MHz. The signal is 

finally converted to the base band. Figure 3.2 shows the autocorrelation result of the up 

sampled P-code in 1 ms and Figure 3.3 illustrates the acquisition margin distribution in 1 

s. 
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Figure 3.2  Direct acquisition autocorrelation in 1 ms  
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Figure 3.3  Direct acquisition: acquisition margin distribution over 1 s 

 

  In Figure 3.3, the mean value of the acquisition margin is 25.954 and the 

standard deviation is 1.841. So statistically, the acquisition margin value is stable when 

doing direct acquisition. From Figures 3.1, 3.2, and 3.3, it is interesting to observe that 

segments of the P-codes or up sampled P-codes are essentially orthogonal to each other. 

This is the basis for the direct average and the overlap average methods described later. 

This orthogonal property can be further tested if P-codes at any time interval of a week 

are available. One efficient way to generate the P-code will be described in Chapter 5. 
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3.3 FFT Search and Zero Padding 

 

The linear correlation of periodic code can be performed by circularly shifting the 

replica code (Tsui, 2000). This resembles the circular convolution, which is a 

multiplication in the frequency domain.  It can be expressed as  

[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]( )( )*1
1

0
* nxFnxFFnxnxmnxnxmR

L

n
•=−⊗=+= −

−

=
∑      (3.4) 

The Discrete Fourier Transform (DFT) and its inverse are used to calculate the 

correlation value R in the above equation. The incoming signal in-phase and quadrature 

components are used as the real and imaginary inputs when calculating the DFT. The 

result is multiplied by the complex conjugate of the DFT of the periodic code. The FFT 

algorithm (Brigham, 1974) is used to implement the DFT and the IDFT, which greatly 

reduce computation compared with the serial search method (van Nee, 1991).  

For non-periodic codes, such as a segment of the P-code, the above calculation 

method won’t give correct correlation results. A zero padding method is used to solve 

this problem. 

First, construct signal A by taking the 1st ms of P-codes and pad the 2nd ms with 

zeros. Then, get signal B by taking the 1st and the 2nd ms of P-codes. Next, calculate 

correlation according to the following equation: 

[ ] [ ]( ) [ ]( )( )*1 nAFnBFFmR •= −         (3.5) 

 

 



 

27 

Finally, the first half of the correlation results are kept while the second half are 

discarded. The final correlation results correspond to the correlation of the 1st ms P-codes 

with the 1st ms of incoming signal. 

 

3.4 Comparison of Different Acquisition Methods 

 

The direct P-code acquisition in the time domain needs massive physical 

correlators in parallel for code search (Wolfert, 1998), which require a significant amount 

of resources for hardware implementation. Other attempts on direct P-code acquisition 

using a software radio algorithm are described below. 

A. Circular correlation by partition and zero padding (Lin, 2000) 

When doing circular correlation, two blocks of signals are taken. One block of 

reference is taken with another block padded by zeros. Then, take only the first half 

circular correlation results and discard the other half. Such design considers the almost 

non-periodic property of the P-code. In addition, the frequency search can be done by 

performing a FFT on the corresponding correlation results from several different blocks. 

The number of blocks used for frequency search corresponds to the frequency range 

covered. 

B. Circular correlation by partition and superposition (Lin, 2000) 

Similar to method A. Method B adds two neighboring blocks into one. 

 



 

28 

C. Non-coherent circular correlation by partition (Lin, 1998) 

Similar to method A. Method C adds amplitude of correlation results from 

different blocks to find the initial code phase. Then, do FFT to find the carrier frequency. 

D. Delay and multiplication (Lin, 1998) 

Multiply the input signals with delayed signals. Do the same operation on local 

codes. Then correlate them to find the initial code phase. Next, do FFT to find frequency. 

Delay should be properly designed so that 2πfsτ ≈ π, where fs is the sampling frequency, 

and τ is the time delay. 

E. Extended replica folding (Yang, 1999 and Yang 2000) 

First, in order to implement Doppler removal, the incoming signal spectrum is 

shifted by a given number of frequency bins along the frequency axis. Then do circular 

correlation with a locally extended replica folded reference, which covers the entire time 

uncertainty interval. At last, the folded correlations are coherently integrated over time 

with several consecutive incoming signal segments in the same way. A more detailed 

sequential block search technique is illustrated in other research (Yang, 2001).  

Table 3.1 gives the performance comparison of different acquisition methods. As 

illustrated in Table 3.1, methods A~C need larger size FFT than method E for direct P- 

code acquisition, so they consume more hardware resources. Method D needs huge size 

FFT, so it is good for hardware design. Method E only uses small size FFT, but it 

requires a larger size of data.  
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Table 3.1  Performance comparison of different acquisition methods 
 

Speed  A(1ms) B(1ms) C(1ms) D(10ms) E(16ms) 
Multiplication 
(×10^7) 

7.517 3.781 0.478 1.665 0.26 

Addition 
(×10^7) 

15.021 7.445 0.786 3.133 0.49 

Bandwidth 1kHz 1kHz 1kHz 100Hz 1kHz 
FFT size 8192 4096 4096 655360 1024 

 

Table 3.2 compares different acquisition methods when acquisition probabilities 

are the same for all methods at around 90%. Methods A, C and D have better 

performance than methods B and E. 

 

Table 3.2  C/No ratio for different acquisition methods with acquisition detection 
probability of around 90% 

 
Methods A 

(1ms)
B 

(1ms)
C 

(1ms) 
D 

(10ms) 
E 

(16ms) 
C/No (dB/Hz) 41 44 42 41 47 

 

From the above comparisons, when a large size FFT/IFFT hardware design is 

available, and also very good carrier to noise ratio performance is required, methods A 

and C are recommended for hardware design. When only a small size FFT/IFFT is 

available, also a fast acquisition is a major concern, method E is better for hardware 

design when GPS signals have a high carrier to noise ratio. 
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3.5 Direct Average Method 

 

Due to the long period of the P-code, a fast correlation method has to be found. 

An average method can speed up the correlation procedure. First, let’s see how the direct 

average method affects the autocorrelation function. 

Step 1: There are 131,072 P-code samples in 2 ms if a sampling frequency is 

65.536 MHz and suppose an IF of 12.5 MHz.  Average every 128 samples to generate 

1024 samples every 2 ms, and call them target 1. 

Step 2: Pick up the first 512 points from target 1, pad them with 512 point zeros at 

the end to generate target 2 signals. 

Step 3: Calculate the conjugate of 1024-point FFT for target 2 signals. 

Step 4: Calculate 1024-point FFT for target 1 signals. 

Step 5: Multiply the results from Step 3 and Step 4, and then do 1024-point IFFT. 

Step 6: Select the first 512 elements from the results of Step 5,  and  discard  the other 

512 elements. The final results correspond to the autocorrelation function of the 1st ms P-

code up samples. 

Step 7: Shift the P-code samples  by  65,536  samples, repeat  Steps 1 to 6, get  the 

autocorrelation function of the 2nd  ms. 

Step 8: Similarly, get all autocorrelation functions of 15 ms and sum all 

correlation results in 15 ms.  
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Figure 3.4 shows that averaged chunks of data are basically orthogonal to each 

other. 
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Figure 3.4  Direct average autocorrelation result for P-code 
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In Figure 3.5, the acquisition margin for a well aligned signal and reference over 1 

s is calculated. The mean value is around 26.882 and the variation value is 2.676. As a 

result, the direct average method is statistically valid for segments of P-code up samples 

in different milliseconds. Compared with the direct acquisition margin, which is equal to 

25.954 when no average is used for acquisition, the direct average method has the similar 

acquisition margin. This is the case when there is no noise added. However, the direct 

average method avoids using the extremely large size FFT hardware for 50 ms samples. 
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Figure 3.5  Direct average method: acquisition margin distribution over 1s 
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Based on the results from Figure 3.4 and Figure 3.5, the direct average method 

can be used to reduce the time for acquiring P-code signals. The block processing 

technique (Haag, 1999) can be used to suppress noise by processing correlations in 

several blocks and then adding them together. After GPS signals are demodulated, the 

further acquisition procedure is given as follows: 

Step 1 to Step 8 are similar to those described above for autocorrelation 

calculation except the target 1 reference is locally generated P-code samples rather than 

incoming signals. 

Step 9: If a correlation peak is not detected, shift P-code samples by another 1 ms 

as reference. Repeat Steps 1 to 9 until a correlation peak is acquired. 

Step 10: If a correlation peak is detected at location m, the peak location has a 

code phase resolution of 128 samples. If a more accurate peak location is needed, go to 

step 11. 

Step 11: Shift the demodulated GPS signals by (m-1)*128 samples. Then use the 

first 1024 signal samples to do a 1024-point FFT.  

Step 12: Take the first 512 samples from the reference and pad them with 512 

zeros. Obtain the conjugate of a 1024-point FFT for this new reference. 

Step 13: Multiply results from Steps 11 and 12, and then do a 1024-point IFFT. 

Step 14: Select the first 512 elements from the results of Step 13, and discard the 

other 128 elements. The final results should show the correlation peak location at n. Then 

use (m*128+n-128) to get the exact sample location.  
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Example 1: GPS signals are 42 samples in advance of reference. This example is 

given to show the simulation results using the above acquisition procedure.  
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Sampling frequency: 65.536 MHz 
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Figure 3.6  Direct average acquisition example 

 

Figure 3.6 is a result of Step 1 to Step 8 in the above acquisition procedures using 

the direct average method. The acquisition correlation peak is located in the zero shift 

position, which is within the 128-sample resolution. 
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The result of Step 9 to Step 12 is illustrated in Figure 3.7. The correlation peak is 

located at the 86-sample shift position. Since (0*128+86-128) is equal to -42, the 

acquired location is 42 samples in advance of the reference. 
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Figure 3.7  Correlation resolution improvement 
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3.6 Effect of Code Phase Shift 

 

The acquisition results are optimum when the reference samples have a zero code 

phase shift relative to the incoming signal samples.  Obviously, it is very important to 

study how the code phase shift affects the maximum correlation peak value and the 

acquisition margin. Figures 3.8 and 3.9 correspond to a code phase shift of 64 samples. 
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Figure 3.8   Direct average method: correlation results  
with a code phase shift of 64 samples 
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Figure 3.9   Direct average method: acquisition margin distribution  
over 1s with a code phase shift of 64 samples 

 

Compared with Figures 3.4 and 3.5, the correlation peak value and the acquisition 

margin decrease a lot as can be observed from Figures 3.8 and 3.9. The mean of Figure 

3.9 is 14.042, and the standard deviation is 1.424.  

Figure 3.10 is a two dimensional plot of the relation between the correlation peak value 

and the code phase shift in samples. The correlation peak decreases almost linearly within 

the 128-sample shift. When there is a shift of 64 samples, there is almost a half correlation 

peak value loss, or a 3 dB loss. 
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Figure 3.10  Direct average method: detected correlation 

 peak value change, case 1 
 

The triangle in Figure 3.11 repeats for 1 ms with a cycle of 128 samples, which 

means that if reference codes are hidden inside the first half of the 2 ms searching 

window, correlation peak can always detected.  
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Figure 3.11  Direct average method: detected correlation peak  
                                    value change, case 2 
 

In order to make up the correlation energy loss in the dip region in the above 

figures, a new algorithm is presented in the next section to improve the acquisition 

performance. 

 

3.7 Overlap Average Method 

 

Since the detected correlation peak value changes almost linearly within the 128- 

sample shift range, a linear combination algorithm may gain more correlation energy and 
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make Figures 3.10 and 3.11 as flat as possible. Those are the goals of the overlap average 

method. The basic operation of this method is similar to the direct average method except 

the reference is different. Here, a second reference is used which is overlapped with the 

old reference by 64 P-code up samples. Averaging two reference codes will produce the 

new reference used as the first experiment in the overlap average method. In Figures 3.12 

to 3.15, the correlation value and the statistical acquisition margin distribution are 

calculated without a code phase shift and with a code phase shift of 64 samples. 
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Figure 3.12  Correlation result using overlap average method 

 

When there is no code phase shift, the optimum correlation value and acquisition 

margin value are achieved. Figures 3.13 and 3.14 show that the overlap average method 
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has a small decrease of these values. The mean of Figure 3.13 is 23.596, and the standard 

deviation is 2.653. 
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Figure 3.13  Statistical acquisition margin result for overlap average method 

 

The advantage of the overlap average method shows up when there is a code 

phase shift. Figure 3.14 illustrates a worse case with a code phase shift of 64 P-code up 

samples. The correlation value remains similar to that without the code phase shift. 
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Figure 3.14  Correlation result for overlap average method  
with a code phase shift of 64 samples 

 

In Figure 3.15 the acquisition margin in case of a code phase shift of 64 P-code up 

samples remains similar to the results without the code phase shift. The energy 

compensation is around 2 to 3 dB compared with the direct average method. The mean of 

Figure 3.15 is 23.885, and the standard deviation is 2.487. 
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Figure 3.15  Statistical acquisition margin result for overlap  
       average method  with a code phase shift of 64 samples 

 

In addition, the detected correlation peak changes are shown in Figures 3.16 and 

3.17. As can be seen, the maximum correlation value curve becomes relatively flat and 

correlation energy loss, in the worse case, is decreased. The flat parts in Figures 3.16 and 

3.17 prove the linear combination really works. In order to find out why there are still 

dips in Figure 3.17, it’s necessary to explore the correlation peak location detection 

difference by using two different references. 
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Figure 3.16  Overlap average method: two reference overlap, case 1 
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Figure 3.17  Overlap average method: two reference overlap, case 2 
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Suppose grouping the signal by 128 samples. In Figure 3.18, when the code phase 

shift is between 0 to 64 samples, reference 1 detects the correlation peak location in the 

1st group, but reference 2 indicates the 2nd group. As a result, two correlation peaks don’t 

have a chance to be added up. That’s why dips happen in Figure 3.16. However, when the 

code phase shift is between 64 to 128 samples, two references detect the same correlation 

peak location so that the two correlation peaks are summed up into a bigger value, which 

results in the flat part in Figure 3.17. 
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              Figure 3.18  Peak correlation location detection difference  
                                         using two different references 
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Theoretically, since actually we only utilize the positive part of linear correlation 

peak curve property, the negative part is not used. We can also use the cycling property 

showed in Figure 3.11. Accordingly, a new procedure is described next. 

First, let’s take two new references. One has a shift of 64 samples, and another 

one has a shift of 128 samples. These two references will shift the pattern in Figure 3.18 

right by 64 samples as illustrated in Figure 3.19. Next combine these two into a new 

reference, and then the corresponding curve in Figure 3.17 will also shift right by 64 

samples to generate a new curve showed in Figure 3.20.  
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Figure 3.19  Peak correlation location detection pattern change 
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Figure 3.20  Overlap average method: two reference overlap case 3 

 

Suppose the reference is within the signal searching window. Then the correlation 

peak value satisfies the following equation: 

 

]}4/)(*)[(max{ 12864640128 yyyyxxpeakncorrelatio mm ++++∑= +   

}4/])(*2[max{ 128128012812864128640 yxyxyxyxyxyx mmmmmm +++ +++++∑=  

}4/)]()(*2)[(max{ 128128012864128641280 yxyxyxyxyxyx mmmmmm +++ +++++∑=  

}4/]*2[max{ 000000 yxyxyx ++∑=  

)max( 00 yx∑=             (3.6) 
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where 0x  is the original signal without any shift, mx and 128+mx  are the signals with 

a shift of m samples and (m+128) samples; 0y , 64y  and 128y  are the references with zero 

shift, 64-sample shift and 128-sample shift relative to signal 0x  respectively.  

There are pairs in Equation 3.6, which complement each other on correlation peak 

values. These pairs are ),(),,(),,( 128128012864128641280 yxyxandyxyxyxyx mmmmmm +++ . As a 

result, the maximum correlation peak value has no relation with the shift variable m and it 

should be the maximum correlation peak value. The correlation peak curve in Figure 3.21 

has values a little less than the maximum value because the linear relationship described 

before is not perfect.  
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Figure 3.21  Overlap average method by using three references 
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Actually the final overlap average method uses three references. The first 

reference has no code phase shift, the second has a code phase shift of 64 samples, and 

the third has a code phase shift of 128 samples. Add one copy of the first reference, two 

copies of the second reference, and one copy of the third reference, and then average 

them to get a new reference. Also add incoming signals with signals having 128-sample 

code phase shift to obtain new signals. At last, correlate new signals with the new 

reference. In this way, almost optimum acquisition performance can be achieved. 

 

3.8 Noise Effect 

 

The above simulation results are ideal since noise is not considered. Table 3.3 

lists characteristics of different acquisition schemes without noise added. Case 1 

corresponds to the best situation and case 2 to the worse situation.  

First, the direct acquisition has a big mean acquisition margin. But it needs a huge 

size FFT, which is almost impossible in the hardware design currently. Second, in the 

best case, the direct average method has a big correlation peak and mean acquisition 

margin. However, when there is a relative code phase shift such as 64 samples, the 

correlation peak value decreases a lot and the 2nd peak value doesn’t change. As a result, 

the mean acquisition margin becomes much lower. Compared with the direct average 

method, the  overlap  average  method  is  not  so  sensitive  to  the  code  phase  shift.  In   
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conclusion, the overlap average method has overall good performance in different 

situations. Also a small size FFT is available by averaging and it is good for hardware 

implementation.  

 

Table 3.3   Correlation and acquisition margin characteristics  
using different schemes without noise 

 
No Noise 

Direct Average Overlap Average 

*Case 1: no shift 

*Case 2: a relative shift 

of 64 samples 

Direct 

Case 1 Case 2 Case 1 Case 2 

True Peak 6.5536*10^4 382.848 194.477 288.662 285.549Correlation 

(1 ms) Second 

Peak 

2.6500*10^3 13.919 14.824 13.452 13.178 

Mean 25.954 26.882 14.042 23.596 23.885 Acquisition 

Margin Standard 

Deviation 

1.841 2.676 1.424 2.653 2.487 

 

In the real world, noise always exists in GPS signals. So it is important to analyze 

the above algorithms with noise added. 
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In Figure 3.22, when noise is added, the noise floor increases a lot in direct 

acquisition. 
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Figure 3.22  Noise effect on direct autocorrelation result of P-code  

                                 up samples over 1 ms 
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In Figure 3.23, when noise is added, the mean acquisition margin decreases.  
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Figure 3.23  Direct acquisition: noise effect on acquisition margin result 

 

 

 

 

 

 

 

 



 

53 

As illustrated in Figure 3.24, the direct average method doesn’t perform well 

when there’s a relative big code phase shift such as 64 samples when noise is added. The 

detected correlation peak value decreases a lot. 
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Figure 3.24  Direct average method: correlation result with added Gaussian noise 
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When there’s a relative big code phase shift such as 64 samples, Figure 3.25 

shows the acquisition margin decrease a lot in case of added noise. 
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Figure 3.25  Direct average method: noise effect on acquisition margin 
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Figure 3.26 shows that the detected correlation peak still decreases almost linearly 

with code phase shift in case of added noise using the direct average method. 
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Figure 3.26  Direct average method: noise effect on detected  
 correlation peak change with code phase shift 
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When noise is added, the overlap average method doesn’t decrease detected 

correlation peak and acquisition margin much in Figures 3.27~3.29. So it performs much 

better than the  direct average method. If reference codes are within the searching signal 

window, the detected correlation peak value curve keeps relatively flat with different 

code shifts.  
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Figure 3.27  Overlap average method: correlation result  
                                          with added Gaussian noise 
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Figure 3.28  Overlap average method: noise effect on acquisition margin 
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Figure 3.29  Overlap average method: noise effect on detected  
                                           correlation peak value  
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Table 3.4 quantifies the correlation and acquisition margin using different 

acquisition schemes when noise is added. 

 

Table 3.4 Correlation and acquisition margin characteristics 
using different schemes with added noise 

 
Added Gaussian Noise (carrier to noise ratio=45dB-Hz) 

Direct Average Overlap Average 

*Case 1: no shift 

*Case 2: a relative shift 

of 64 samples 

Direct 

Case 1 Case 2 Case 1 Case 2 

True Peak 6.125 *10^4 358.04 162.18 350.258 358.696 Correlation 

Second 

Peak 

2.726 *10^4 140.89 142.00 162.963 168.395 

Mean 2.308 2.722 1.364 2.186 1.897 Acquisition 

Margin Standard 

Deviation 

0.255 0.409 0.341 0.409 0.366 

 

Furthermore, 16 ms signals are taken to do acquisition using the direct average 

and the overlap average method with the same misdetection probability but a different 

carrier to noise ratio.  The direct average method requires around a 3 dB-Hz less carrier to 

noise ratio compared with the overlap average method according to Figures 3.30 and 3.31.  

In these figures, although the carrier to noise ratio using both methods is relatively 

high, these two methods have the advantages  of  reducing  the  time  for  the  code  phase 
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search and using a small size FFT. So there is a tradeoff between the code phase search 

speed and the carrier to noise ratio. 

 

 

38 40 42 44 46 48 50
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

M
is

de
te

ct
io

n 
pr

ob
ab

ilit
y 

Carrier to noise ratio (dB-Hz)  
 

Figure 3.30  Direct average method: misdetection probability with different carrier 
                             to noise ratio when the signal code phase shift is 64 samples 
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Figure 3.31  Overlap average method: misdetection probability with different  

        carrier to noise ratio when the signal code phase shift is 64 samples 
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A statistical analysis was made to compare two acquisition methods. A study of 

the misdetection probability statistical distribution in 1 s using the direct average method 

illustrated in Figure 3.32 indicates that the midsection probability has a mean of 0.5318 

and a standard deviation of 0.055 when the carrier to noise ratio is equal to 42 dB-Hz. 
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Figure 3.32  Direct average method misdetection probability  
distribution in 1 s with carrier to noise ratio equal to 42 dB-Hz 
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In case of using the overlap average method illustrated in Figure 3.33, the 

misdetection probability has a mean of 0.5658 and a standard deviation of 0.0512 when 

the carrier to noise ratio is equal to 39 dB-Hz. So with the almost the same misdetection 

probability, the overlap average method has a gain of around a 3 dB-Hz carrier to noise 

ratio higher than the direct average method statistically. In conclusion, the overlap 

average method has overall good performance with or without noise added. 
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               Figure 3.33  Overlap average method misdetection probability distribution 
      in 1 s with carrier to noise ratio equal to 39 dB-Hz 
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3.9 Example 

 

Example: Suppose reference codes are within 2 ms searching signal window. The 

relative code phase shift between signal and reference is 61,746 samples. 

Both direct average and overlap average methods detect the correlation peak at a 

code phase shift equal to 482 in Figures 3.34 and 3.35. The result has a resolution equal to 

128 samples. Searching at least 256 samples near the correlation peak location can refine 

the resolution. Since a 1024-point FFT is used, 1024 samples are taken for the searching 

purpose. 
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Figure 3.34  Acquisition by the direct average method 
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Figure 3.35  Acquisition by the overlap average method 

 

Shift 2ms-signals by 481*128 samples. Then take the first 1024 points to do a 

1024-point FFT. Next take the first 512 points from reference and pad them with 512 

zeros to get a new reference. Use the new reference to get the conjugate of the 1024-point 

FFT, and multiply them with previous 1024-point FFT results. Then do a 1024-point 

IFFT. At last, keep the first 512 results from the IFFT and discard the other half. 

The final results are illustrated in Figure 3.36. The peak location has a shift of 178 

samples. 
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Figure 3.36  Resolution improvement by correlating 128 samples 

 

As a result, the final shift is located at 482*128+178-128 = 61,746 samples in 

advance of reference.  

 

3.10 Conclusion 

 

The P-code or even segments of the P-code have good autocorrelation and cross-

correlation properties. Because a segment of the P-code is considered as nonperiodic, its 

correlation function is computed  by  the  FFT  search  and  zero  padding  method.  Many  
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reported direct P-code acquisition algorithms listed in this dissertation need a large size 

FFT/IFFT, which requires large hardware resources and adds hardware design 

complexity. In this chapter, the direct average method is proposed to reduce the direct P-

code acquisition code phase searching time using 1024-point FFT/IFFT. This method is 

based on the symmetrical linear P-code correlation curve discovered by using averaging.  

Statistical analysis was performed to show the validness of the direct average 

method. Another overlap average method was described in this chapter to make up the 

correlation energy loss when there is a large code phase shift between the GPS incoming 

signals and the locally generated reference. Even with the added Gaussian noise, the 

overlap average method has better carrier to noise ratio performance than the direct 

average method statistically when the reference has a code phase offset relative to the 

GPS signal.  Finally, one example is provided to illustrate how to use both methods.  
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Chapter 4 

GPS P-code Generation  

 

The P-code generator as shown in Figure 4.1 is a critical component in P-code 

acquisition. A clear understanding of the P-code generator architecture is important for a 

proper design implementation. In addition, a good design strategy is necessary due to the 

extremely long P-code period.  

In this chapter, the GPS P-code generator tuning model is developed to facilitate 

the generation of the P-code from any specific time of a week in a FPGA chip using 

hardware description language (HDL).  The model is used to determine the initial vector 

for each linear feedback shift register (LFSR), the initial value of the z-counter, and the 

initial values for different division circuits in the P-code generator. 

The P-code sequences listed in ICD-GPS-200 are considered as truth and 

reference in this dissertation. The successful verification of each single LFSR design in 

the P-code generator is deducted. The LFSR halting phenomena at the end of each LFSR 

short cycle and at the end of a GPS week are verified successfully. All of these results are 

consistent with those listed in ICD-GPS-200.  
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Figure 4.1  GPS P-Code Signal Generator (ICD-GPS-200, 1991) 
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4.1 P-code Generator Architecture 

 

In the P-code generator, the main clock frequency is 10.23 MHz. As shown in 

Figure 4.1, there are four 12-stage linear feedback shift registers (LFSRs), which are 

X1A, X1B, X2A and X2B. X1A and X2A are each shorted to 4092 chips. X1B and X2B 

are each shorted to 4093 chips. X1 is generated by the Modulo-2 sum of the outputs of 

X1A and X1B. X2 sequence is produced by the Modulo-2 sum of the outputs of X2A and 

X2B, and then it is delayed by a selected integer number of chips, i, ranging from 1 to 37, 

which results in the X2i sequences. Each Pi(t) is the Modulo-2 sum of X1 and X2i (ICD-

GPS-200, 1991).  When the X1B short cycles are counted to 3749, X1B LFSR is halted.  

After X1A short cycles are counted to 3750, the X1 epoch is generated and it resumes 

X1B LFSR. Similarly, when the X2B short cycles are counted to 3749, X2B LFSR is 

halted. The difference is that after X2A short cycles are counted to 3750, X2B LFSR 

needs additional 37 clock cycles to be resumed. Then X2 epoch is generated, which 

accumulates 37 clock cycle delays for each epoch compared with X1 Epoch. At the 

beginning of the GPS weekly period, X1A, X1B, X2A and X2B shift registers are 

initialized to produce the first chip of the GPS week.  
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The precessing of the shift registers with respect to X1A continues until the last 

X1A period of the GPS week interval. During this particular X1A period, X1B, X2A and 

X2B are held when reaching the last state of their respective cycles until X1A cycle is 

completed.  At this point, all four shift registers are initialized and provide the first chip 

of the new GPS week. 

The polynomials for X1A, X1B, X2A and X2B LFSRs can be written as: 

1211861:1 XXXXAX ++++           (4.1) 

121110985211:1 XXXXXXXXBX ++++++++        (4.2) 

1211109875431:2 XXXXXXXXXXAX ++++++++++      (4.3) 

12984321:2 XXXXXXBX ++++++         (4.4) 

The block diagrams of the four LFSRs are illustrated in Figures 4.2 to 4.5. 

                                              

 
 

Figure 4.2  X1A LFSR Diagram 

 

                                        

 
 

Figure 4.3  X1B LFSR Diagram 
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Figure 4.4  X2A LFSR Diagram 

 

                                        

 
 

Figure 4.5  X2B LFSR Diagram 

 

4.2 GPS P-Code Generator Tuning Model 

 

HDL offers a very short and efficient design cycle involving simulation, synthesis 

and testing (Chang 1997 and Navambi 1993). They are increasingly replacing schematic 

oriented design entry methods. From the synthesis perspective, the most appealing 

benefits of using HDLs are the ability to parameterize modules in which designs can be 

created in the technology independent manner (Klupsch, 2002). The customizing module  

parameter method is convenient and powerful for designers to save design effort (Luk, 
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1998 and Mencer, 2003). This concept is used in this dissertation. The following 

describes the tuning model development details.  

After 4092 chips, X1A finishes a cycle and generates a pulse called setx1aepoch. 

X1B needs to produce 4093 chips in a cycle to generate a pulse called setx1bepoch. After 

3749 X1B cycles, X1B is halted and it will be resumed when X1A reaches 3750 clock 

cycles. At that time, another pulse is generated called x1epoch. So totally X1B is halted 

by X1A for (4092-3749)=343 chip in one x1epoch cycle. X2A has similar relationship 

corresponding to X2B as that of X1A versus X1B. The difference is that X2A and X2B 

are halted 37 extra chips in each x2epoch (Kaplan, 1996). The last week final halting is 

specified in ICD200 table. At any specific time during a week, the number of chips 

generated by X1A generator can be easily calculated because the clock frequency is equal 

to 10.23 MHz.  Then the number of chips can be described as Equation 4.5.   

[MHz] 10.23*[s] Time=N         (4.5) 

In order to initialize the P-code generator in a specific time during a week, 

integer y1a is used to load the z-counter. Integers x1a and x2a are used to load the 3750 

division counters in X1A and X2A blocks. Integers x1b and x2b are used to load the 

3749 division counters in X1B and X2B blocks. Integers z1a, z1b, z2a and z2b are used 

to initialize four linear feedback shift registers. Integer dv  is used to load the delay by 

37 chips block. Integers y2a and m are only needed to compute register values. In 

addition, two constants are defined as  
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3750*40921 =C          (4.6) 

3749*40932 =C         (4.7) 

Several equations involving the chip number can be formulated to relate those 

integers. For instance, z1a, x1a and y1a can be obtained from  

azaxayCN 11*40921*1 ++=        (4.8) 

where  

]4092mod[1 NREMaz =        (4.9) 

}3750mod]4092/)1[(1 azNREMax −=      (4.10) 

1/)1*40921(1 CaxazNay −−=        (4.11) 

Similarly, 

bzbxayCN 11*40921*1 ++=        (4.12) 

dvazaxayCN ++++= 22*40922*)371(      (4.13) 

bzbxayCN 22*40932*)371( +++=       (4.14) 

The solutions of equations (4.12), (4.13) and (4.14) are listed in the following 

equations. 

otherwiseayCNREM
CayCNwhenbz

],4093mod)1*1[(
,2)1*1(40921

−=
≥−=

    (4.15) 

otherwiseayCbzN
CayCNwhenbx

,4093/)1*11(
,2)1*1(37481

−−=
≥−=

     (4.16) 

])371(mod[ += CNREMm        (4.17) 
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])371/()(2 +−= CmNay        (4.18) 

otherwise
CmwhenCmdv

,0
11

=
≥−=

       (4.19) 

]4092mod)[(2 dvmREMaz −=        (4.20) 

otherwisebzm
Cmwhenbx
,4093/)2(

237482
−=

≥=
       (4.21) 

One example is given below using the above tuning model. 

Example 1:  Suppose the required P-code starting time is Monday 11:30 a.m. of a GPS 

week. 

Time in equation (4.5) is computed with reference to the beginning of every GPS 

week, which starts on Sunday at 0:00 a.m. The number of chips N can be computed by 

using 1 day 11 hours and 30 minutes with the clock frequency 10.23 MHz. 

N   = 10.23*10^6 * (24*3600 + 11*3600 + 30*60) 

                      = 1.289,000,000,000 * 10^12      (4.22) 

Then use the GPS P-code generator tuning model to solve x1a, z1a, y1a, x1b, z1b, 

y2a, z2a, x2b, z2b, and dv. The solutions and the corresponding P-code generator 

initialization set up are in Table 4.1. 
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Table 4.1  Solution table for example 1 

 
 

According to ICD-GPS-200, the x1epoch pulse appears every 1.5 s. At the end of 

every 1.5 s, X1A LFSR generates its last vector in its short cycle and X1B LFSR is held 

in its last vector. On Monday 11:30 a.m., time is (24*3600 + 11*3600 + 30*60) = 127800 

seconds and 127800/1.5= 85200. This also means 85200 x1epoch pulses are generated. 

 In the above solutions, y1a=85200. y1a is used to set up the z-counter to count 

the pulses of x1epoch. z1a=0 and z1b=0 mean X1A LFSR and X1B LFSR are in their 

last states. As a result, X1A LFSR is loaded with its 4092nd vector in its short cycle. X1B 

LFSR is loaded with its 4093rd vector correspondingly.  In conclusion, the P-code 

generator set up solutions for the z-counter, X1A LFSR, X1B LFSR, and their 

corresponding division blocks are correct. 

Again, according to ICD-GPS-200, each x2epoch pulse has an extra 37-chip delay 

relative to each x1epoch pulse.  So we know that x2epoch will happen after additional 

85200*37=3152400 chips are generated. Also both X2A LFSR and  X2B  LFSR  will  be 

 

 LFSR Division by 3750  

or 3749 block 

Division by 

37 block 

z-counter 

X1A 4092nd vector (z1a=0) 0  (x1a=0) 

X1B 4093rd vector (z1b=0) 0  (x1b=0) 

X2A 2569th vector  (z2a=2569) 2979 (x2a=2979) 

X2B 3683rd vector  (z2b=3683) 2978 (x2b=2978) 

0 

(dv=0) 

85200 

(y1a=85200) 
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in their last states of their short cycles, which correspond to x2a=0, z2a=0, x2b=0, and 

z2b=0.   This will happen after 3152400/(10.23*10^6)=0.3082 second. So the resulting 

time for a new x2epoch pulse is Monday 11’oclock 30 minutes 0.3082 seconds in the 

morning.   New solutions for the variables in the GPS P-Code generator tuning model can 

be solved using the new time. The following solutions are obtained: 

x1a = 770, z1a=1560, y1a=85200, x1b=770, z1b=790, x2a=0, z2a=0, y2a=85200, 

x2b=0, and z2b=0. 

y2a corresponds to the x2epoch pulse.  The result shows exactly 85200 x2epoch 

pulses are generated. The solutions of x2a, z2a, x2b, and z2b are the same with the 

expectation. So the solutions are in agreement with the ICD-GPS-200 document. 

 

4.3 P-code Generator Design Verification 

 

In order to verify the P-code generator design, apply the input vectors to generate 

the 1st chip, then observe the 4091st, 4092nd or 4093rd output vectors and compare them 

with those in Table 4.2. 
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Table 4.2  P-Code Vector States (ICD-GPS-200, 1991) 
 

Code Chip Number Vector State (HEX) Vector State for 1st Chip  

following Epoch (HEX) 

4091 100010010010 (892) X1A 

4092 000100100100 (124) 

001001001000 (248) 

4092 100101010101 (955) X1B 

4093   001010101010 (2AA) 

010101010100 (554) 

4091 111001001001 (E49) X2A 

4092 110010010010 (C92) 

100100100101 (925) 

4092 000101010101 (155) X2B 

4093  001010101010 (2AA) 

010101010100 (554) 

 

The verification of each single LFSR design satisfies the above table. Other 

verification concerns are the halting and the resuming of X1B, X2A and X2B at each 

epoch and also the chip generation at the end of a GPS week. They are verified in the 

following two cases. 

Case 1: Verification of code halting after one cycle of X1A, X1B, X2A and X2B. 

Assume y1a=0, y2a=0, x1b = 3748 and z1b = 4092.  

Use the algorithm described  before  to  solve  tuning  models.  The solutions are 

x1a=3749,  z1a=3748,  x2a=3749,  z2a=3748,  x2b=3748,  and  z2b=4092.  Use  these 
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parameters to setup the P-code generator as that shown in Table 4.3. 

After one cycle of X1A, X1B, X2A and X2B, the simulation should show that 

X2AQ is halted for 37 chips, X1BQ is halted for 343 chips, and X2BQ is halted for 380 

chips. X1AQ, X1BQ, X2AQ, and X2BQ are the 12th bit of the output vectors of X1A, 

X1B, X2A, and X2B LFSR. 

 

Table 4.3  Case 1 P-code generator initialization table 
 

 LFSR Division by 3750  

or 3749 block 

Division by 

37 block 

z-counter 

X1A 3748th vector 3749 

X1B 4092nd vector 3748 

X2A 3748th vector 3749 

X2B 4092nd vector 3748 

0 0 

 

Case 2: Verification of code halting at the end of the GPS week. 

At the end of the GPS week, assume y1a=403199, x1a=3748, and z1a=3022.  

Solve tuning models to get x1b=3747, z1b=3367, x2a=102, z2a=4091, x2b=102, 

dv=0 and z2b=3989. Use these parameters to setup the P-code generator as those in Table 

4.4. 
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Table 4.4  Case 2 P-code generator initialization Table 
 

 LFSR Division by 3750  

or 3749 block 

Division by 

37 block 

z-counter 

X1A 3022nd vector 3748 

X1B 3367th vector 3747 

X2A 4091st vector 102 

X2B 3989th vector 102 

0 403199 

 

The waveforms in Figure 4.6 show the simulation results. 10 ns clock period is 

used for the functional verification. Signals X1ADIVINIT, X1BDIVINIT, X2ADIVINIT, 

and X2BDIVINIT are initialized with values 3748, 3747, 102, and 102 respectively for 

each division by 3750 or 3749 block in four LFSRs. z-counter is initialized with signal 

ZNTINIT equal to 403198 because it starts counting from zero. Signals  ENDWEEK  and  

STWEEK represent the end and the start of the GPS week. According to the timing 

shown   in   Figure  4.6, the ENDWEEK pulse  occupies  the  time  interval  between  two 

SETX1AEPOCH pulses at the end of the GPS week. The STWEEK pulse occupies the 

time interval between two SETX1AEPOCH pulses at the start of the new GPS week. 

Signals X1AQ, X1BQ, X2AQ and X2BQ correspond to the outputs of four LFSRs.  
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Figure 4.6  Case 2 simulation waveform 

 

Figures 4.7, 4.8 and 4.9 show the timing of signals X2AQ, X1BQ, and X2BQ at the end 

of the GPS week. At 40.925 us, the X2A LFSR generates its 4092nd chip, and then it is 

halted. At 48.185 us, the X1B LFSR generates its 4093rd chip, and then it is halted.  

Similarly, at 51.625 us, the X2B LFSR generates its 4092nd chip, and then it is halted. As 

a result, at the end of the GPS week, the signal X1BQ holds a heximal value 2AA, the 

signal X2AQ holds a heximal value C92, and the signal X2BQ holds a heximal value 

2AA. These values agree with those values listed in Table 4.1.  
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Figure 4.7  The final X2AQ chip generation at the end of a GPS week 

 

 

Figure 4.8  The final X1BQ chip generation at the end of a GPS week 
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Figure 4.9  Resume of X1AQ, X1BQ, X2AQ and X2BQ at the start of a GPS week 

 

From the above simulations, at the end of the GPS week, X1BQ is halted for 

(51625-48185)/10 – 1 = 343 chips; X2AQ is halted for (51625 - 40925)/10-1 = 1069 

chips, and X2BQ is halted for (51625-41965)/10-1=965 chips. 

Table 4.5 lists the timing sequence generated at the end of the GPS week 

according to ICD-GPS-200. It shows that when the X1A LFSR generates the 3022nd chip, 

the X1B LFSR, the X2A LFSR and the X2B LFSR generates the 3367th, the 4091st and 

the 3989th chip respectively. Consequently, the signal X1BQ is halted for (4092-3749) = 

343 chips, the signal X2AQ is halted for (4092-3023) = 1069 chips, and the signal X2BQ 

is halted for (4092-3127) = 965 chips. In conclusion, the simulation results are the same 

with those expected from Table 4.5. 
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Table 4.5  P-code Reset Timing at the end of a GPS week (ICD-GPS-200, 1991) 
 

Code Chip  

X1A-Code X1B-Code X2A-Code X2B-Code 

1 345 1070 967 

… … … … 

3023 3367 4092 3989 

… … … … 

3127 3471 4092 4093 

… … … … 

3749 4093 4092 4093 

… … … … 

 

Time 

4092 4093 4092 4093 

 

 

 

 

 

 

 

 

 



 

84 

Chapter 5 

Direct GPS P-code Acquisition Design 

Implementation 

 

5.1 Introduction 

 

The architecture of a direct GPS P-code acquisition processor is presented in this 

chapter. The operation of each sub block is explained. Important diagrams are illustrated 

with some critical signals listed. The assumption made here is that the GPS signals have 

been demodulated first. 

Great efforts have been spent on the modeling of the direct GPS P-code 

acquisition algorithm, and on the correct use of the Nallatech platform (Nallatech, 2002) 

and the Xilinx 1024-point FFT/IFFT core (Xilinx, 2000).  A stable FFT/IFFT core 

controller has been written after numerous experiments and has been tested one-million 

times with stable output results. The Xilinx 1024-point transform engine employs a 

Cooley-Tukey radix-4 decimation-in-frequency (DIF) FFT (Cooley, 1965) to compute 

the DFT of a complex sequence.  It uses the successive dragonfly with the proper scaling 

to accommodate the dynamic range expansion in each dragonfly pass. A full explanation  
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of scaling strategies and their implications can be found in literature (Knight, 1979 and 

Rabiner, 1975).   

In addition, different features of Xilinx VirtexE FPGA are studied thoroughly 

(Xilinx, 2002). In the FPGA design, the direct average method is used. Only one block of 

the local P-code reference is averaged and processed for the code phase search in  each 

loop.  

 

5.2 Architecture of Direct GPS P-code Acquisition 

Processor 

 

Some preprocessing procedures are done by the PC first. Averaging and FFT are 

taken on 2 ms demodulated GPS signals in the PC. These preprocessed data sequences 

are then sent to an FPGA board. The local generated P-code reference sequences are the 

averaged binary P-code. The FFT is taken on the averaged local reference block data. 

Then the GPS signal FFT results are multiplied by the complex conjugate of the local 

reference FFT results. This is called the complex multiplication in this dissertation. Next, 

the IFFT is taken to get the complex correlation results. Then the square of the correlation 

amplitude is calculated. The peak of the correlation amplitude square and the peak 

location are searched in each block. This procedure continues until 10-ms data sequences 

have been processed.  The  maximum  and  the  second  largest  peak  and  peak  location   
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values are  the outputs of the whole processing hardware design shown in Figure 5.1. 

 

Complex conjugate multiplier   Mixer 

              Implemented on FPGA 

 

     GPS signal 

 

 

 

 

 

 

 

Figure 5.1  Direct GPS P-code Acquisition Processor 

 

In Figure 5.1, the GPS P-code acquisition processor architecture consists of a 

local reference generation unit, a local reference FFT processor, a complex conjugate 

multiplication processor, an IFFT processor, a correlation amplitude square unit, a 

correlation peak unit, a correlation peak location unit, and a maximum selection unit.   
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5.3 Local Reference Generation Unit 

 

The local reference generation unit consists of a P-code generator, a P-code 

binary converter, an AVERAGE unit, a state machine PCODE_MACH, and a RAM 

address generator.  

First, a RAM is preloaded with zeros and then its address is initialized to zero. 

After FFT results of the GPS signal are sent from the PC to the FPGA, the P-code 

generator is started to generate unary P-code in “0” and “1” format in each clock cycle. 

Then the P-code is converted to “-1” and “1” format by the binary converter. Next, every 

20 chips of P-code are averaged into 1 chip by the AVERAGE unit. The averaged result 

is saved in a RAM. After 1 ms P-code generation, 10220 chips are averaged by 20 and 

saved in the RAM. The last 10 chips at the end of every 1 ms are averaged by 10 and 

saved in the RAM. As a result, 10230 chips in 1 ms are averaged into 512 points. The 

other 512 points are zeros which are preloaded into the RAM. As a result, 1024 averaged 

points are prepared for further FFT processing. At last, the RAM address is set to zero 

again. This process is repeated. The controller is the state machine PCODE_MACH. 

In Figure 5.2, the signal rst goes low when the FPGA chip is reset. All RAMs and 

Registers are cleared with zeros. The common clock and rst signals are used for different 

blocks  in  the Local  Reference  Generation  Unit  to  synchronize  the clock  control  and   

the reset operation. After the results of the PC preprocessed GPS  signals  are  completely 
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Figure 5.2  Local Reference generation unit diagram 

 

 

 

 

 

 

 

clk    
rst 
p ram1_doa 

 
P-CODE BINARY 
    CONVERTER 

ce  qout 
 
clk   
rst 
 AVERAGE 
stengine 
 
end1ms  clr_res 
A 

      ram1_web 
rst     start_pcode 
data_ld 
        PCODE_MACH 
clk        start_avg 
     ram1_addrb

rst          p
 

PCODE 
start_pcode 
 
clk 

rst         clk     ram1_web
 

RAM1_REA_PROC 
 

 

rst clk         
       ram2_addrb 
 
RAM2_ADDRB_PROC 
 
ram2_web 



 

89 

sent into one RAM on the FPGA board, the signal data_ld is logically low. This triggers a 

state machine PCODE_MACH to generate a logic high control signal start_pcode. Then 

the P-code generation is started by a component PCODE. The P-code signal p is 

converted into a signal ram1_doa with -1 and 1 format by a component P-CODE 

BINARY CONVERTER. In addition, the start_avg pulse is also generated by the state 

machine PCODE_MACH, which is used to activate the AVERAGE block. The signal 

ram1_doa is averaged and scaled up by 2048 in the AVERAGE block. The resulting 

signal is Qtt. Scaling is necessary for the FFT operation, which will be explained in the 

later section. The signal end1ms pulse is produced after every 10230 chips of P-code 

have been generated, and then the AVERAGE block is cyclically cleared after every 512 

averaging points are produced. A twenty-clock cycle waveform signal clr_res is used in 

the averaging process. Furthermore, the RAM address signal ram2_addrb and RAM write 

enable signal ram2_web are controlled by the controller PCODE_MACH in order to load 

the averaged results into a RAM for FFT processing. 
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5.4 Local Reference FFT Processor 

 

The local reference FFT processor in Figure 5.3 consists of a RAM saving the 

sequentially averaged P-code signal Qtt value, a RAM loading the FFT intermediate 

results, a 1024-point FFT/IFFT core doing the forward FFT, a loop counter for debugging 

FFT results use, and the whole process controller is implemented by a state machine 

FFT_MACH. 

When the signal end1ms is logically high, the averaged and scaled signal Qtt has 

been loaded into a RAM called RAM2_COMP.  At this point, a controller FFT_MACH 

sets the clock enable signal ce to be logically high. Next, it sets the data write strobe 

signal mwr high for one clock cycle. A 1024-point FFT/IFFT core is in the forward FFT 

mode when the signal fwd_inv is equal to logic ‘1’. Signals io_mode0 and io_mode1 are 

set to ‘0’ and ‘1’ respectively in this dissertation. This indicates single memory 

configuration mode is used, which means one memory block RAM_FFT_COMP is 

necessary for loading input data into the FFT core sequentially and also for saving the 

intermediate results during the FFT computation process. The final FFT results can be 

read out from the FFT core sequentially. The FFT core operation timing sequence is 

specified by Xilinx company. The signal addrr_x and the signal io are generated by the 

FFT core to control the RAM port B address signal addrb and the RAM port B write 

enable  signal  web  of  RAM_FFT_COMP.  The  data  output  from  RAM2_COMP  is  
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Figure 5.3  Local reference FFT processor diagram 
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connected with the port B data bus of RAM_FFT_COMP. 1024 clock cycles are needed 

to load the complex data sequences into RAM_FFT_COMP completely. The port B 

complex data outputs of RAM_FFT_COMP are connected with the FFT core data bus 

signals di_r and di_i.  After the data loading process is finished, the FFT processing 

strobe signal start is set by the controller FFT_MACH to be logic high for one clock 

cycle. Then the FFT computation is started. When FFT computation process is 

completed, the FFT results are in the interleaving order. At the same time, the signal done 

is set by the FFT core to be logic high for one clock cycle, which triggers the controller 

FFT_MACH to set FFT result read strobe signal mrd  logically high for one clock cycle. 

Consequently, after another 1024 clock cycles, all 1024 complex FFT results are 

available on the data bus signal di_r and di_i sequentially in the correct order. The signal 

loop_cnt is used to count how many FFT loops have been completed.  

Since the next step after FFT operation is the complex conjugate multiplication, 

three additional control signals ram_mult_full, mult_prod_a_ce and ram_mult_rea are 

generated by the controller FFT_MACH.  When the PC preprocessing GPS results are 

completely loaded into a RAM on the FPGA board, the signal ram_mult_full is logic 

high. These results are used in the complex conjugate multiplication processor. Signals 

mult_prod_a_ce and ram_mult_rea are the clock enable signal and the read enable signal 

for the RAM used on complex multiplication respectively.   
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5.4.1 Xilinx 1024-Point FFT/IFFT Core 

 

When migrating between technologies, the intellectual property (IP) technology 

can be more easily used and reused among designers to help reduce critical development 

time in the production cycle. In this dissertation, a Xilinx 1024-point FFT/IFFT core is 

used. 

The Xilinx FFT/IFFT Core computes a 1024-point complex forward FFT or 

inverse FFT (IFFT). The input data sequences are 1024 complex values represented as 

16-bit 2’s complement numbers – 16 bits for each of the real and imaginary component 

of a data sample. The 1024 output elements include 16-bit real and 16-bit imaginary 

parts. The final output sequences are scaled by a factor 1/1024 when a control signal 

SCALE_MODE is equal to ‘0’ and 1/2048 when SCALE_MODE is equal to ‘1’. 

The general DFT is defined by Equation 5.1. 

1,...,0,)()(
1

0

/2 −== ∑
−

=

− NkenxkX
N

n

Njnk π        (5.1) 

where N is the transform size. 

The single-memory-space configuration provides the simplest memory and I/O 

interface to the FFT/IFFT core. A diagram of this configuration is shown in Figure 5.4. 
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Figure 5.4  Xilinx 1024-point FFT/IFFT core single 
                     memory space configuration (Xilinx, 2000) 

 

In Figure 5.4, the Xilinx 1024-point FFT/IFFT core needs three-stage processing: 

the input vector loading, the FFT computation, and the result unloading. The input 

loading requires 1024 clock cycles. After that, the signal start needs to be asserted in 

order to start the FFT computation. The first FFT output sample is written to memory 

3121 clock cycles after the signal start is asserted. The final sample is written to memory 

4145 clock cycles following the start pulse. The result unload operation also requires 

1024 clock cycles.  
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5.4.2 Controller FFT_MACH 

 

FFT_MACH is a finite state machine, which has 9 states: ft_pc_ld, ft_rst, ft_init, 

ft_load, ft_wadr, ft_calc, ft_wait1, ft_wait2, ft_rdfft. Three additional states can be added 

for debugging after the state ft_rdfft: ft_dbg, ft_rd, and ft_stop. The functions of all states 

are described in detail next. 

1). State ft_pc_ld:  load the preprocessed GPS signal from PC to the FPGA board. 

A design bit file is downloaded on the FPGA board. The reset signal rst has a 

short pulse, which is used to set all signals to their initial values in this dissertation, and 

then trigger the state machine to enter the first state ft_pc_ld. The state machine stays at 

this state until a signal RAM_MULT_FULL triggers it to the next state ft_rst. The signal 

RAM_MULT_FULL is set to logic high when all of the preprocessed GPS signals are 

loaded into a RAM. 

2). State ft_rst: implement zero padding. 

The zero padding technique is needed in the P-code correlation process as 

described earlier. It is implemented by feeding a RAM (RAM2 in this dissertation) with 

1024 zeros. After RAM2 is filled with all zeros, the state machine comes to the state 

ft_init. 

3). State ft_init: wait until 512 points of the averaged P-code are available. 

Twenty clock cycles are needed to obtain one averaged point. 512 averaged points 
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are produced and saved in RAM2. The other 512 points are zeros saved in RAM2 in 

advance. After 512 points are available, the signal end1ms will be logically high to 

activate the FFT/IFFT core clock enable signal ce. In addition, the signal mwr is asserted. 

Then the state machine is transferred to the state ft_load. 

4). State ft_load: read data out of RAM2 port A into FFT/IFFT core continuously. 

The port A of RAM2 is set to the read mode. The RAM2 port A address is 

continuously increased. After all 1024 points are read out of the RAM2 port A, the 

RAM2 port A is disabled from the reading mode. The state machine is then transferred to 

the state ft_wadr. 

5). State ft_wadr: assert signal start after the FFT loading process is done. 

When all 1024 points are loaded into the FFT/IFFT core, the FFT/IFFT core 

Block RAM read address bus addrr_x is equal to a heximal value 3ff. The signal start is 

asserted by the state machine. Next, the state machine is transferred to the state ft_calc. 

6). State ft_calc:  calculate FFT.  

The state machine is kept in this state until the FFT calculation is finished. When 

the signal done is logically high, the state machine will be transferred to the state 

ft_wait1. 

7). State ft_wait1: assert signal mrd to start reading FFT/IFFT results. 

The signal mrd is asserted for one clock cycle, and then the state machine is 

transferred to the next state ft_wait2. 

8). State ft_wait2: assert signal RAM_MULT_REA in order  to start  reading  ram 
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RAM_MULT. 

RAM_MULT saves the FFT results of. The averaged demodulated GPS signals 

are saved in RAM_MULT. The signal RAM_MULT_REA is set to high so that 

RAM_MULT port A is in the reading mode. The data saved in address zero is 

immediately available. Since the FFT/IFFT core results are read out one clock cycle after 

signal mrd is asserted, two reading process are synchronized in this way. This state lasts 

only for one clock cycle. The next state is the state ft_rdfft. 

9). State ft_rdfft: wait until FFT/IFFT core results reading is complete. 

The signal MULT_PROD_A_CE is set to logic high to enable the complex 

multiplier. When FFT/IFFT core reading is completed, the signal addrr_x is equal to a 

heximal value 3ff. Then RAM_MULT reading mode is disabled and the state machine is 

transferred to the 3rd state ft_init to start a new loop. 

 

5.4.3 Loop Counter 

 

The loop counter is activated after the signal start_pcode is logic high. Since the signal 

mwr is only valid once for one clock cycle in a whole FFT process, it can be used to 

count how many FFT processes have been implemented. The counter value is saved in 

signal loop_cnt. This signal is useful when designers want to stop the FFT state machine 

after some FFT processes have been done. 
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5.4.4 RAM2 and RAM_FFT 

 

RAM2 is used to provide the input data for the FFT/IFFT core. RAM2 contains 

512 averaged P-code points and the other 512 points are zeros. Zeros are loaded first into 

the port A of RAM2 controlled by the sate machine FFT_MACH. Later, averaged P-code 

signal Qtt values are written into the port B of RAM2. At last, all results are read out 

from the port A of RAM2 and loaded into the FFT/IFFT core. 

RAM_FFT is used to save the intermediate results from the FFT/IFFT core.  So 

most of its input ports are controlled by the FFT/IFFT core output signals. The final FFT 

results are available from the port B of RAM_FFT. The real part is signal di_r, and the 

imaginary part is signal di_i. 

 

5.4.5 Debug Setup 

 

For debugging purpose, when FFT results are read out of the FFT/IFFT core, 

three additional states can be added. Also the state ft_rdfft has to be modified 

accordingly. 

9). State ft_rdfft: wait until FFT/IFFT core results reading is completed. 
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When the FFT/IFFT core reading is completed, the signal addrr_x is equal to a 

heximal value 3ff. Then, the RAM_MULT is disabled from the reading mode.  The state 

machine is transferred to the next state ft_dbg. 

10). State ft_dbg: make decision on whether to enter debugging mode or not 

The signal loop_cnt is used to count how many FFTs have been processed. If the 

signal loop_cnt is equal to a preset value, then the state machine will be transferred to the 

next state ft_rd and the RAM3 port A will be set to the read enable mode. Otherwise, it 

will be transferred to the state ft_init. 

11). State ft_rd: read out values saved in RAM3. 

The signal RAM4_WEB is asserted so that the RAM4 port B is set to the write 

mode. Data streams are read out of the port A of RAM3 into the port B of RAM4. When 

reading is completed, the state machine is transferred to the last state ft_stop. 

12). State ft_stop: stop the state machine. 

All necessary signals are set to their initial state. The debug values are saved in 

RAM4. 

Figure 5.5 is a block diagram of two RAMs used for debugging. 
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Figure 5.5  Block RAMs for debugging use 

 

 

5.5 Complex Conjugate Multiplication Processor 

 

The complex conjugate multiplication processor consists of a ram called 

RAM_MULT, a RAM_MULT address generators, several registers, three 16-bit by 16-

bit multipliers, a summer and a subtractor.  

The general complex conjugate multiplication of two complex numbers 

( )aijar ⋅+  and ( )dijdr ⋅+  is done in the following equation: 

( ) ( ) )( diardraijdiaidrardijdraijar ⋅−⋅⋅+⋅+⋅=⋅+⋅⋅+ ∗       (5.2) 
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Here, four multiplications, one subtraction and two additions are needed to 

implement one normal complex conjugate multiplication. 

The complex conjugate multiplication can also be modified in another way: 

( ) draiarA ⋅+=0         (5.2) 

( ) aididrA ⋅−=1         (5.3) 

( ) diaraiA ⋅−=2         (5.4) 

aidiardrAA ⋅+⋅=− 10        (5.5) 

ardiaidrAA ⋅−⋅=+ 21        (5.6) 

In the above calculations, three multiplications, two additions, and three 

subtractions are needed. Since multiplications are expensive for FPGA design, which use 

much more hardware resources than additions and subtractions, the modified complex 

conjugate multiplication is better than the normal one. 

In Figure 5.6, the signal write_en is first set by the PC to be logically high to 

enable the loading of the input data D into RAM_MULT port B. These are 1024 FFT 

results for the demodulated and the averaged GPS signals. When all of them are written 

into RAM_MULT, the signal ram_mult_full is switched low to trigger the state machine 

FFT_MACH to go to the next state. After FPGA FFT/IFFT core finishes the FFT 

calculation, the FFT results real and imaginary parts are available as the signal di_r and 

the signal di_i. In addition, the signal RAM_MULT_REA is set by the state machine 

FFT_MACH to be logic high, and data values saved in RAM_MULT are read out from 

the port A of RAM_MULT.   
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Figure 5.6  Complex conjugate multiplication processor (part 1) 
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Figure 5.7  Complex conjugate multiplication processor (part 2) 

 

In Figure 5.7, the signal mult_prod_a_ce is controlled by the state machine 

FFT_MACH. It is high only after the FFT process is finished and the final FFT results 

are available. Next, the complex multiplication is implemented according to equations 

5.2 to 5.6. When the multiplication results are available, the signal mult_prod_a_web is 

high. The real and imaginary parts of the complex conjugate multiplication results are the 

signal ram2_doa_dubr and the signal ram2_doa_dubi respectively. 
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A brief description of the important signals and ports used in the complex 

conjugate multiplication processor is given below. 

write_en:  write enable 

ram_mult_rea: RAM_MULT read enable 

D:   data written into RAM_MULT port B 

ram_mult_full: low when RAM_MULT is full 

di_r:  FFT/IFFT core final output data real component 

di_i:   FFT/IFFT core final output data imaginary component 

reg_dr_di:  registers value (dr-di) at the rising edge of clock 

reg_di:  registered value di at the rising edge of clock 

reg_dr:  registered value dr at the rising edge of clock 

reg_ai_ar:  registered value (ai-ar) at the rising edge of clock 

reg_ai:  registered value ai at the rising edge of clock 

reg_arai:  registered value (ar+ai) at the rising edge of clock 

mult_prod_a_ce: high when multiplicands are available 

mult_prod_a_web: high when multiplication result is available 

ram2_doa_dubi: complex conjugate multiplication result imaginary part 

ram2_doa_dubr: complex conjugate multiplication result real part 
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5.6 IFFT Processor 

 

The IFFT processor consists of a 1024-point FFT/IFFT core to do the IFFT, a 

loop counter for debugging the IFFT results, a RAM called RAM_IFFT saving IFFT 

intermediate results and the whole process is controlled by a state machine IFFT_MACH. 

The core also uses the single memory configuration mode. Since the FFT/IFFT core has 

the same interface timing control except signal fwd_inv is switched to logic ‘0’ value, the 

whole IFFT processing architecture is similar to that of the FFT process. Here, the 

controller IFFT_MACH outputs more control signals than the controller used in the FFT 

processor, such as signals max_en, cnt_eni, and mult_prod_a_ce in Figure 5.8.  This is 

because IFFT_MACH also needs to control the complex conjugate multiplication and the 

correlation peak search which are implemented after the IFFT process.  

A brief description of the important signals and ports used by the IFFT processor 

in Figure 5.8 is given below. 

max_en:  when this signal is high, correlation peak searching block will be 

enabled 

io_mode0, io_mode1: when io_mode0=’0’ and io_mode1=’1’, the type of memory 

interface is in the single memory space configuration 

fwd_inv:  low when FFT/IFFT core is set to inverse FFT mode 

ram2_doa_dubi: complex conjugate multiplication result imaginary part 
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   Figure 5.8  IFFT processor diagram 
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ram2_doa_dubr: complex conjugate multiplication result real part 

ifft_di_r:  IFFT real component of the input data vector 

ifft_di_i:  IFFT imaginary component of the input data vector 

mult_abs_ce:          multiplication enable signal 

ram3_max_rea:      ram3_max port A read enable 

ram4_max_web:    ram4_max port B write enable 

cnt_eni:                  clock enable signal used in correlation peak processor 

ram3_max_addra:  ram3_max port A address 

mult_prod_a_ce:   clock enable for the RAM used on complex multiplication  

cmp_flag:              high when the comparison is finished 

Here, RAM3_MAX and RAM4_MAX are used for debug. They function similar 

with those two RAMs used in section 5.4.5. 
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5.6.1 Controller IFFT_MACH 

 

IFFT_MACH is a finite state machine, which has 13 states: ifft_init, ifft_load, 

ifft_wadr, ifft_calc, ifft_wait1, ifft_wait2, ifft_rdfft, ifft_wait3, ifft_dbg, ifft_cmp, 

ifft_loop_db, ifft_rd, and ifft_stop. 

Compared with the FFT state machine FFT_MACH, IFFT_MACH doesn’t need 

to control any data loading from the PC to the FPGA. So it saves the first two states that 

are in FFT_MACH. But IFFT_MACH has extra states ifft_wait3 and ifft_cmp to assert 

signal max_en, cnt_eni, and loc_eni. When signal max_en is high, the correlation peak 

searching process is started. Signals cnt_eni and loc_eni are used to enable the correlation 

absolute value square unit, correlation peak comparison process and the peak location 

searching process.  

The flow chart for the controller IFFT_MACH is illustrated in the Figure 5.9 and 

the controller IFFT_MACH interface FFT/IFFT core diagram is shown in Figure 5.10.  
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Figure 5.9  The controller IFFT_MACH flow chart 
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Figure 5.10  Controller IFFT_MACH interface FFT/IFFT core diagram 
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5.7 Correlation Amplitude Square Unit 

 

The correlation results are complex numbers. Suppose there is a complex number   

bja ⋅+ , then 

bbaababja ⋅+⋅=+=⋅+ 222         (5.7) 

The design diagram of this unit is in Figure 5.11.  
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Figure 5.11  Correlation amplitude square unit diagram 
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available and they are latched by two registers at the rising edge of the clock. Next 

multiplications are done by two mult16x16 blocks. Their outputs are added together to 

generate the square of the correlation amplitude, which is signal ram2_max_doa_dub. 

When signal mult_abs_web is high, it indicates multiplication results are available.  

 

5.8 Correlation Peak and Peak Location Processor 

 

The correlation peak and peak location processor consists of a peak-processing 

unit, a peak location-processing unit, and a maximum selection unit. The recorder unit 

provides the result of the largest correlation peak, the 2nd largest correlation peak and 

their locations.  

In Figure 5.12, after one IFFT loop, correlation amplitude square values obtained 

as signal ram2_max_doa_dub are sequentially sent to the port A of a comparator CMP32. 

Since only the first half of the IFFT results are kept for the peak searching processing, 

only 512 comparisons are made in one loop. The correlation amplitude square peak and 

peak location results in one loop are in two registers: PEAK_PROC and 

PEAK_LOC_PROC.  

The above procedures continue in loops. There are new peak and peak location 

results from other new loops. The peak and peak location results from different loops are 

always sent to the maximum selection unit PEAK_LOC12 for further comparison. As a 
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Figure 5.12  Correlation peak and peak location processor diagram 
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result, the biggest correlation amplitude square peak and peak location are the outputs of 

PEAK_LOC12. 

 

5.8.1 Correlation Peak Processor 

 

The correlation peak processor is used to find a maximum value among 512 

correlation amplitude square results. In Figure 5.12, when the signal cnt_eni is valid, the 

correlation results ram2_max_doa_dub are available. The peak searching process is 

similar to “bubble up.” The peak value is saved in a D flip flop as a signal CMPQ. The 

signal CMPQ is initialized with value zero. Then it is compared with a new signal value 

ram2_max_doa_dub. A comparator compares the value of ram2_max_doa_dub and 

CMPQ. The comparison logic result is represented by a signal a_gt_b. Next, a 

multiplexer selects the bigger one as the input to the D flip-flop. At the rising edge of the 

next clock cycle, the signal CMPQ keeps the bigger value of the comparison results. 

After 512 clock cycles, the signal CMPQ has the largest correlation peak square results in 

one loop. 

 

5.8.2 Correlation Peak Location Processor 

 

The correlation peak location processor is used to find a maximum value location  
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among 512 correlation amplitude square results. In Figure 5.12, the peak value location is 

saved in a D flip flop as a signal locq. First, the signal locq is initialized with value zero. 

Then it is compared with a sequential counter value loc_cnt. The location counter is 

started at the same time when the peak value comparison process is being implemented.  

The comparison result signal a_gt_b is used as a selector for a multiplexer to select the 

signal loc_cnt or the signal locq as an input for the D flip flop. As a result, after 1024 

clock cycles, the signal locq will have the largest correlation peak square location result. 

The important signals and ports used in the Figure 5.12 are given below. 

ram2_max_doa_dub: correlation amplitude square value 

cnt_eni: clock enable signal, and logically low when it is active 

max_en: clock enable signal for component PEAK_LOC12 

peak_loc: a correlation peak location in every 1024 points being processed 

peak: a correlation amplitude square peak value in every 1024 points processed 

a_gt_b: high when the comparator CMP32 input signal value a is greater than b 

q1, q1_loc: the largest correlation amplitude square peak value and its location among all 

data points being processed 

q2, q2_loc: the second largest correlation amplitude square peak value and its location 

among all data points being processed 

cmp_flag:   high when the comparison is finished 
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5.9 Maximum Selection Unit 

 

The maximum selection unit is PEAK_LOC12 block in Figure 5.12. The detailed 

design diagram is drawn in Figure 5.13. The initial values of the maximum, the second 

and the third maximum correlation results are zeros. The signal max1 keeps track of the 

previous maximum comparison result. Signals max2 and max3 correspond to the old 

second and the third maximum comparison results. Signals max1_loc, max2_loc and 

max3_loc are corresponding correlation peak locations. When the signal max_en is high, 

a new value of the signal peak is available and the comparison process is started by the 

maximum selection unit. The values of max3 and max3_loc are updated by the values of 

peak and peak_loc respectively. Next, the values of max1 and max2 are compared with 

the value peak. If the signal max31_gt is high, the signal peak will have a bigger value 

than the signal max1. If the signal max32_gt is high, the signal peak will have a bigger 

value than the signal max2. These comparison results affect the values of max_ind and 

mid_ind, which are used to select the maximum and the 2nd maximum values among the 

values of peak, old max1 and old max2. Then the selected new values are used to replace 

the values of max1 and max2. Their locations are also switched correspondingly. The 

results are registered as signals cp1, cp2, cp1_loc and cp2_loc respectively. A state 

machine called MAX12_PROC is used to control  the  whole  procedure.  The  maximum 

and  the second maximum correlation peak amplitude square values and their locations  
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are the final outputs of the maximum selection unit. The signal cmp_flag is high when 

the comparison is finished.  The signal done_cmp is high when the comparison is 

finished or the comparison is not started yet.  
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Figure 5.13  Maximum selection unit diagram 
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5.10  Hardware Design Cost 

 

The architecture is implemented on a Xilinx FPGA VirtexE xcv1600E chip. The 

implementation cost is listed in Table 5.1. 

 

Table 5.1  VirtexE FPGA design cost 
 

 1 2 3 4 5 6 7 8 

CLB slices 68* 182 25 1866 1866 559 386 55 

Block Rams 0 0 0 16 16 0 0 0 

 

Note:                                               

1. NCO     2. P-code generator      3. Average         4. FFT       5. IFFT 

6. Complex conjugate multiplication 

7. Correlation amplitude square 

8. Peak selection and decision logic 

Total available CLB slices:   15552 

Total available Block Rams: 144 

*:  Cost Estimation 
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The preprocessing of the demodulated GPS signals on the PC includes 

averaging the demodulated GPS signals and taking FFT on them. The design 

implemented in this dissertation uses one P-code generator, one average unit, one FFT 

unit, one IFFT unit, one complex conjugate square unit, one correlation amplitude 

square unit, one peak selection and decision unit listed in Table 5.1. The total cost is a 

little more than one third of the FPGA hardware resources.  

 

5.11 Conclusion 

 

The direct GPS P-Code acquisition architecture presented in this chapter consists 

of eight units: the local reference generation unit, the local reference FFT processor, the 

complex conjugate multiplication processor, the IFFT processor, the correlation 

amplitude square unit, the correlation peak unit, the correlation peak location unit, and 

the maximum selection unit. The block diagram and major signal flows in each unit are 

illustrated in different sections of this chapter. The necessary design flow chart is also 

given. The design technical details are described. The implemented VirtexE FPGA 

design cost is estimated. Since only a little more than one third of the FPGA hardware 

resources is consumed, this is good for routing the final design successfully. 

The whole design has a sequential architecture. Two FFT/IFFT cores are used. 

One is for the forward FFT and  another  one  is  for  the  inverse  FFT. Another  possible 
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architecture for acquisition speedup may exist for more parallel P-Code generators. But 

this also means more FFT/IFFT cores are needed. The upper limit is set by the hardware 

resources available on one FPGA chip.  
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Chapter 6 

FPGA Design Verification 

 

6.1 Introduction 

 

In this chapter, all hardware design steps are verified for 10 ms GPS P-code 

acquisition processing. The same data sets are used both by FPGA and Matlab for the 

verification of each design step. Then the differences between them are compared. 

Comparison follows the order of the P-code average with scaling, FFT, complex 

multiplication, IFFT, correlation peak square, maximum peak, noise floor and their code 

phase shift. 

Four cases are tested. One is for GPS signals without either noise or code phase 

shift relative to the reference signals. The second is for GPS signals without noise but 

with code phase shift. The third and the fourth cases correspond to GPS signals having no 

code phase shift and having code phase shifts. Moreover, noise is added into GPS signals. 

The C/No is 55 dB-Hz. The Matlab FFT and IFFT results are rounded before 

comparisons are made because FPGA works only with integer numbers. 

First, a one second GPS P-code is generated using a C program based on the 

behavior of the GPS P-code generator. The results are saved and then used by Matlab  
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programs. The FPGA generated results can be read from FPGA to the PC. Next, the 

comparisons can be made. The comparisons show very promising results. Most 

comparisons give zero errors. Both FFT and IFFT operations have real part and 

imaginary part differences within a –3 to 3 range. This is only the difference of integer 

data and rounded floating data used. The final results illustrate exactly the same code 

phase shift and approximately similar maximum peak and noise floor values. 

 

6.2 Verification of P-code Average With Scaling 

 

GPS P-code chips with 0 or 1 values are first generated by the FPGA chip. Then 

these values are converted to the binary format with values equal to 1 or -1. Every 20 

chips are added together for 10220 chips. The the last 10 chips are added. So totally 512 

averaged points are generated for each ms GPS P-code reference. These results are 

padded with 512 zeros to obtain 1024 input data for the further FFT processing. The FFT 

core requires the input data width of 16 bits. The absolute summation value is not greater 

than 32. In this dissertation, the 1024 input data values are scaled up by 2048. This is 

equivalent to shift the input data value left by 11 bits in the binary operation. The results 

are within the 16-bit range. These results are read back from the FPGA to the PC and 

they are scaled down by 2048 before they are compared with the Matlab summation 

results. The results are illustrated in Figure 6.1. 
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Figure 6.1  The 2nd ms GPS binary P-code averaging results 

 

The Figure 6.1 shows that  the  Matlab simulation results are the same with that of 

the FPGA design.  

 

6.3 Verification of FFT  

 

The  FPGA  results   from  the   verification   in   Section  6.2  correspond   to   the   
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scaled summation results. These are used by the Matlab function fft, which does the 

floating point operation internally. The FFT results are scaled by 1/1024 and then 

rounded for comparison with the FPGA FFT results. The FPGA FFT results are shown in 

Figures 6.2 and 6.3. The comparisons between FPGA and Matlab results are made in 

Figures 6.4 and 6.5. 
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Figure 6.2  FPGA FFT real part values in the 2nd ms 
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Figure 6.3  FPGA FFT imaginary part values in the 2nd ms 
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Figure 6.4  FPGA and Matlab FFT real part difference in the 2nd ms 
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Figure 6.5  FPGA and Matlab FFT imaginary part difference in the 2nd ms 

 

The results in Figures 6.4 and 6.5 show the small amount of random difference 

between –3 to 3 exists on the real and the imaginary part of the FFT operation. 
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6.4 Verification of Complex Conjugate Multiplication  

 

The 2ms GPS signal FFT results are precalculated using Matlab. The results are 

rounded and sent to the FPGA board for the complex multiplication. The GPS signal 

sampling rate is 65.536 MHz used in Figures 6.6 and 6.7. The complex multiplication, 

the real and imaginary part data value ranges are set to less than 16 bits, every 128 GPS 

signals are averaged and Matlab function fft is called. The FPGA results from Section 6.3 

are used to do complex conjugate multiplication for the verification in this section. 
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Figure 6.6  The FPGA complex conjugate multiplication real part in the 2nd ms 
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Figure 6.7  The FPGA complex conjugate multiplication imaginary part in the 2nd ms 

 

The FPGA and Matlab complex conjugate multiplication results have no 

difference. From Figures 6.6 and 6.7, we can see the real and the imaginary part data 

values are within 16-bit range including the sign bit. These are specially chosen for the 

correlation square calculation in the next section. 
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6.5 Verification of IFFT  

 

The Xilinx 1024-point FFT/IFFT core doesn’t scale the IFFT results. So the 

Matlab program only needs to call function ifft and then do rounding. Figures 6.8 and 6.9 

illustrate the FPGA IFFT results real and imaginary components in the 2nd ms. 
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Figure 6.8  FPGA IFFT real part in the 2nd ms 
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Figure 6.9  FPGA IFFT imaginary part in the 2nd ms 

 

Although 1024 values are displayed in Figures 6.8 and 6.9, only the first half is 

useful. The 2nd half is discarded in the further correlation peak amplitude square 

calculation process.  

Figures 6.10 and 6.11 illustrate the real and imaginary part difference between the 

FPGA and Matlab IFFT results in the 2nd ms. The real parts have big absolute values and 

the imaginary parts have small absolute values. 
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Figure 6.10  FPGA and Matlab IFFT real part difference in the 2nd ms 
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Figure 6.11  FPGA and Matlab IFFT imaginary part difference in the 2nd ms 

 

In both Figures 6.10 and 6.11, the difference is still within a -3 to +3 range. So the 

conclusion is that the difference is not dependent on the magnitude of the absolute values. 

The difference is caused by the truncation of floating point data into integer values.  
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6.6 Verification of Correlation Square 

 

The previous FPGA complex multiplication results are used as inputs to the 

Matlab program to calculate the correlation square values. Then the Matlab and the 

FPGA correlation square output values are compared. They are the same. Both FPGA 

and Matlab generate exactly the same results. Figure 6.12 only takes the first half of the 

correlation square values. The other half values are discarded as a result of the 

noncircular correlation calculation using the FFT and the zero padding method. 
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Figure 6.12  FPGA correlation square values in the 2nd ms 
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6.7 Final Verification Results  

 

Case 1: GPS signals have no noise and no code phase shift relative to the 

reference. 

Table 6.1 Correlation square peak and code phase shift  
      over 10 ms in the verification of case 1 

 
 1st ms 

 
2nd ms 

 
3rd ms 

 
4th ms 

 
5th ms 

 
Correlation square peak 

 
556516 30276 17161 21316 19044 

Code phase shift  
 

0 218 280 455 301 

 6th ms 
 

7th ms 
 

8th ms 
 

9th ms 
 

10th ms 
 

Correlation square peak 
 

22500 15129 21904 25281 19881 

Code phase shift 335 367 99 489 246 and 
258 

 

In Table 6.1, the code phase shift of case 1 corresponds to 128-sample code phase 

shift due to the averaging operation. 

The maximum correlation square value of 556,516 with a code phase shift of 0 is 

obtained from the Matlab simulation. The second maximum correlation square value is 

30,276 with code phase shift of 218. FPGA shows the maximum correlation square value 

550,568 with a code phase shift of 0 is obtained from the FPGA design. The second 

maximum peak value is 30,277 with a code phase shift of 218. FPGA and Matlab have 

the similar maximum and the second maximum correlation square values with the same 
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code phase shift values. This conclusion is true for all following three cases. 

Case 2: GPS signals have no noise, but with a code phase shift of (1 + 65536*7 - 

128*8 + 10) samples relative to the reference in Table 6.2. 

 

Table 6.2 Correlation square peak and code phase shift  
       over 10 ms in the verification of case 2 

 
Matlab Results 

 
 1st ms 

 
2nd ms 

 
3rd ms 

 
4th ms 

 
5th ms 

 
Correlation square peak 

 
16129 17689 19321 41209 21316 

Code phase shift  
 

133 177 21 39 413 

 6th ms 
 

7th ms 
 

8th ms 
 

9th ms 
 

10th ms 
 

Correlation square peak 
 

29929 24336 763876 24336 30976 

Code phase shift  
 

270 273 8 286 366 

FPGA Results 
 

 Maximum 
 

Second maximum 
 

Correlation square 
 

760388    42026 

Code phase shift 
 

8 39 
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Case 3: GPS signals with added noise: C/No ratio 55 dB-Hz. There is no code 

phase shift relative to the reference in Table 6.3. 

 

Table 6.3 Correlation square peak and code phase shift  
      over 10 ms in the verification of case 3 

 
Matlab Results 

 
 1st ms 

 
2nd ms 

 
3rd ms 

 
4th ms 

 
5th ms 

 
Correlation square 
peak 

702244 270400 301401 173889 208849 

Code phase shift in 
each ms 

0 369 444 383 77 

 6th ms 
 

7th ms 
 

8th ms 
 

9th ms 
 

10th ms 
 

Correlation square 
peak 

330625 389376 248004 201601 216225 

Code phase shift in 
each ms 

196 500 485 416 260 

FPGA Results 
 

 Maximum 
 

Second maximum 
 

Correlation square 
 

700570 390626 

Code phase shift 
 

0 500 
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Case 4: GPS signals with added noise: C/No ratio 55 dB-Hz. There is a code phase 

shift relative to the reference of ( 1 + 65536*5 – 128 * 8 + 10 ) samples in Table 6.4. 

 

Table 6.4 Correlation square peak and code phase shift  
      over 10 ms in the verification of case 4 

 
Matlab Results 

 
 1st ms 

 
2nd ms 

 
3rd ms 

 
4th ms 

 
5th ms 

 
Correlation square 
peak 

233289 142129 177241 272484 231361 

Code phase shift in 
each ms 

238 304 418 51 267 

 6th ms 
 

7th ms 
 

8th ms 
 

9th ms 
 

10th ms 
 

Correlation square 
peak 

824464 179776 245025 254016 263169 

Code phase shift in 
each ms 

8 367 13 11 496 

FPGA Results 
 

 Maximum 
 

Second maximum 
 

Correlation square 
 

822650 274585 

Code phase shift 
 

8 51 
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6.8 Conclusion  

 

Verification is an important procedure in FPGA design. The Nallatech FPGA 

design platform provides the facility for designers to communicate between the PC and 

the FPGA board. This is very convenient for designers to test their work.  A strategy in 

this dissertation is to insert some debugging RAMs in different parts of the design for 

verification. The design is partitioned into blocks which can be tested sequentially. Other 

systematic tools, such as Microsoft C++, Matlab, Aldec HDL and so on, can be used for 

the functional simulation to be compared with the FPGA design results. In this 

dissertation, it is guaranteed that the Matlab simulation results are the same with the 

FPGA design blocks whenever integer operations are used in 10 ms verification. For the 

FFT/IFFT operations, floating point operations are done by Matlab. The difference 

between Matlab and FPGA results for FFT/IFFT is within a -3 to +3 range. Xilinx 

provides the 1024-point FFT/IFFT behavioral library which uses the integer operation. 

The behavioral simulation using Xilinx library yielded exactly the same results as the 

FPGA hardware design results. In conclusion, the FPGA designs for this dissertation are 

successfully verified.  
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Chapter 7 

Summary and Future Work 

 

7.1 Summary 

 

The GPS P-code has higher chipping rate, better accuracy and anti-jamming 

property than the C/A code. Traditionally, GPS P-code acquisition depends on a 

handover from the C/A code. The P-code modulates both GPS L1 and L2 carrier 

frequencies. When L1 carrier signal is not available, direct GPS P-code acquisition is the 

only acquisition method that can be used. The acquisition techniques described in this 

dissertation can also be expanded to the pseudolite application. Pseudolite only 

broadcasts the wideband code, which is similar to the P-code.  

The major objectives of this dissertation are to propose a direct GPS P-code 

acquisition algorithm and implement the direct GPS P-Code acquisition code phase 

search on the Xilinx FPGA chip. The direct GPS P-Code acquisition algorithm was 

proposed and its FPGA hardware design and verification issues were analyzed.  The 

obstacles faced by researchers in dealing with extremely long period of P-code were also 

highlighted. The major contributions of this dissertation are described below. 

First, the P-Code correlation property was studied and the acquisition margin was 
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defined.  FFT with the zero padding method was presented to calculate the correlation 

function of non-periodic code such as a segment of the P-code. 

Then, different direct GPS P-code acquisition methods recently reported by other 

researchers were compared. The strength and weakness of different methods were 

pointed out. Most of them need a large size FFT which is difficult for hardware 

implementation.  

Next, the direct average method was proposed in this dissertation to achieve fast 

direct GPS P-code acquisition code phase search. The symmetrical and linear correlation 

curve as the effect of averaging was discovered. Furthermore, the overlap average 

method was presented to make up the correlation energy loss during the process of direct 

averaging.  

The methods proposed in this dissertation achieve fast code phase search. They 

use small size FFT, which is good for hardware implementation, especially for FPGA 

prototyping. This meets the objective of algorithmic study set for this dissertation. 

Another aspect not studied in this dissertation is frequency search. The acquisition 

process implemented in this dissertation assumed the GPS signals were first demodulated 

before doing code phase search for acquisition. 

In hardware design, mathematical equations were developed to design the GPS P-

code generator to facilitate P-code generation starting from any time of a week. This 

yields  an  important  facilitation  of  P-code  acquisition  when  there is knowledge of the 

approximate  time  information.  The  P-code  generator  simulation  results  matched  the 
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ICD-GPS-200 descriptions. 

The whole direct GPS P-code acquisition hardware design architecture was 

partitioned into eight units. All these units were sequentially linked. The interface and 

signal flows between different units were designed. Besides, efforts were spent on the 

study of the Nallatech FPGA board and Xilinx VirtexE FPGA features. Especially, the 

Xilinx 1024-point FFT/IFFT core was integrated into the system design for this 

dissertation. A controller was designed to satisfy the timing specification of Xilinx 

datasheet. The FFT/IFFT controller design passed a million times verification 

successfully. The whole design was downloaded on FPGA and the results were read back 

by the PC. Each major unit in the whole architecture was verified successfully. The final 

FPGA acquisition correlation peak and code phase were correct in a 10 ms search 

process. A 10 ms search process can be transferred to a position uncertainty of 3×106 

meters. This uncertainty can be resolved in 0.333 ms by using a 33 MHz P-code 

generator as implemented in this dissertation. 

This work is challenging due to the extremely long period of the P-code. The 

proposed overlap average method needs large hardware storing resource, so it was not 

implemented in this dissertation. Instead, the direct average algorithm was implemented 

on FPGA design successfully. Since there are lots of applications related to GPS P-code, 

the work reported in this dissertation is meaningful for future research, especially after a 

connection of my design with GPS P-code acquisition RF front end, which is now being 

developed by the Ohio University Avionics Engineering Center. 
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7.2 Future Work 

 

The direct average, overlap average model and FPGA design developed in this 

work are useful and versatile tools for direct GPS P-code acquisition research. While the 

focus of this research has been on the direct average code-phase search of GPS P-code 

acquisition FPGA design, an extension of this work is to the field of carrier phase search. 

The carrier phase search usually consists of a NCO (Numerically Controlled Oscillator) 

whose operation principle is well known. It is important to choose an accurate oscillator 

available on the market, which fits into NCO carrier immediate frequency design with a 

small round off error. The overlap average method requires larger storing hardware 

resources. Although this can be achieved by using the ZBTRAM resource on the 

Nallatech board, more efforts are still needed to develop a ZBTRAM controller.  

One potential use of this work is to connect the design with GPS P-code 

acquisition front end. Another possible extension is to add a tracking loop to get a full 

receiver design. A faster acquisition speed can be achieved using the parallel P-Code 

generators for parallel processing. The design techniques used in this dissertation can also 

be applied to the acquisition of pulsed pseudolites that transmit wideband (shifted P-

code) signals. 
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Appendix A 

The FPGA Board 

 

 

In this Appendix, the introduction of the Strathnuey FPGA board is presented. 

Nallatech is a technology leader in the design of reconfigurable computers. Based on 

Nallatech's award-winning Dime standard, its Strathnuey motherboard is an FPGA-

centric modular systems platform used for DSP, imaging, telecommunication and 

aerospace applications. This Strathnuey card features two Xilinx FPGAs and one DIME 

module expansion slot. FPGAs contain a Xilinx PCI Logic Core interface together with 

Nallatech’s own PCI Bridge interface.  This bridge provides the FPGA designer with a 

method to implement registers and blocks of memory that are easily accessible by the PC. 

The Spartan-II PCI FPGA is supplied pre-configured with Nallatech firmware for PCI 

interfacing/board control.  The VirtexE FPGA is available exclusively for user design and 

applications. Besides, it has three on-board programmable clock sources, A/D converter, 

D/A converter, status LEDs, and JTAG configuration headers. It also has a 32 bit PCI 

connector. Moreover, the DIME Software DLL Library facilitates user with high level 

functions.  
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The internal structure of a Xilinx VirtexE is a Configurable Logic Block (CLB) 

matrix surround by Input/Output Blocks. Each CLB has two SLICEs. Each VirtexE 

SLICE has two 4 input lookup tables and two flip-flops. There are also carry logics for 

the fast carry line. CLBs are connected through Generic Routing Matrix (GRM). There 

are three-state buffers associated with each CLB that drive dedicated segmentable 

horizontal routing resources. There are dedicated block memories of 4096 bits each. 

Moreover, there are clock DLLs for clock-distribution delay compensation. 
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Figure A-1 Strathnuey FPGA board architecture 
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Conventional P-code acquisition relies on the hand over from an acquired C/A 

code because the amount of search from a C/A code is finite and bounded. When the C/A 

code is not available, direct acquisition of P(Y)-code is the only option available. The 

GPS P(Y)-code offers improved cross-correlation property and higher precision than C/A 

code. The direct P(Y)-code acquisition improves the robustness of the GPS receiver. The 

design techniques used for direct P(Y)-code acquisition can also be applied to the 

acquisition of pulsed pseudolites that transmit wideband (shifted P-code) signals. 

In order to achieve a fast acquisition code phase search, the direct average method 

was proposed.  Both of them use a small size FFT and IFFT to facilitate the hardware 

design in FPGA. Due to averaging, the signal detection probability is decreased. Both 

methods require high carrier to noise ratio. The code phase search of 10 s signals only 

needs around 3 s.  
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A group of mathematical equations were presented to initialize the different 

registers and counters in the P-Code generator, which was capable to start P-Code 

generation at any time of a week. This is very useful when there is approximate time and 

satellite location information. 

      The synthesizable design direct GPS P-Code acquisition design was downloaded 

to the Xilinx VirtexE chip on the Nallatech FPGA board. The design results were 

verified. The final FPGA results showed the correct correlation peak amplitude value and 

code phase shift result. 
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