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CHAPTER 1 INTRODUCTION 

 

Analog and mixed-signal test and fault diagnosis play an essential role in circuit 

design, device production, and instrumentation maintenance. It is the most challenging 

area in electronic s test for academic researchers and industrial engineers [1-4]. The 

purpose of test and fault diagnosis is to obtain useful information about the Circuit-

Under-Test (CUT) based on limited excitations and measurements on CUT. The resulting 

information benefits not only testing engineers and instrumentation operators, but also 

design engineers and field engineers who could correct their design or manufacturing 

process, thus reducing Time-To-Market (TTM) and Time-To-Volume (TTV), increasing 

production yield, and reducing system cost. Generally speaking, analog and mixed-signal 

test and fault diagnosis consist of three tasks. The first task is fault detection which is to 

check if the CUT is faulty by comparing its responses with responses of a fault- free 

circuit (gold circuit) under the same excitations. This task is a go/not-go operation, which 

is usually called test in industry. In this task, excitations and measurements as few as 

possible are required to cover as ma ny as possible faults. If the CUT is judged faulty, the 

second task is fault location to find out where the faulty parameters are within this faulty 

circuit. This task is dominant for analog and mixed-signal test and fault diagnosis, and 

distinct methodologies were developed to address this problem. Based on the results of 

fault location, the final task is parameter evaluation to compute how much the faulty 

parameters are deviated from their nominal values, and how much deviation can be 

observed among other circuit parameters such as nodal voltages and branch currents. 
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1.1. History 

 
Analog and mixed-signal test and fault diagnosis always accompany design, 

manufacture, and maintenance of analog circuits. In the era of discrete analog 

components, the task of test and fault diagnosis is simple and easy, mostly depending 

upon the testing engineers’ detailed knowledge about analog circuit’s operational 

characteristics and their experiences in analog test and fault diagnosis. In the 1960s, 

research on this topic was rare, not a systematic exploration. With volume production and 

widespread application of commercial analog integration circuits (IC), research on analog 

and mixed-signal test and fault diagnosis became an important area in the 1970s. 

Numerous methodologies have been designed to meet distinct requirements for analog 

circuits’ specification, model, function, and structure. Several good periodical reviews on 

this topic appeared in 1979 [1], 1985 [2], 1991 [3] and 1998 [4], respectively. 

Recently, with astounding achievements of semiconductor integration and 

computer-aided software technologies, there is an urgent need for effective, highly 

automated, systematic solutions to analog and mixed-signal test and fault diagnosis. It is 

not surprising to observe that there is a steady growth in the number of journal articles 

and conference/workshop papers addressing problems in analog test and fault diagnosis.  

More and more professional workshops and special journal issues are also devoted to this 

area. The papers [5-30] are examples of research efforts since 1997. Review of these 

papers is in later chapter of this dissertation. 
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1.2. Significance 

 
After researchers and engineers have paid more attention to digital test during the 

past three decades, the ir focus recently switches more to analog and mixed-signal test and 

fault diagnosis. The driving forces behind this change of focus came from economic 

considerations and modern technology advances.  Economic consideration is the most 

important factor influencing the motivations for analog and mixed-signal test and fault 

diagnosis. Like digital test, test cost is a large fraction of the whole cost for design, 

manufacture and maintenance. Without effective, systematic techniques for analog test 

and diagnosis, analog test cost could be a dominant fraction of test cost for the whole 

system. This is even true when analog parts only occup y a small portion of mixed-signal 

system. Eventually, disproportionate product failure and yield losses will result. 

Simultaneously, more and more strict requirements to reduce time-to-market and time-to-

volume also urge the development of fast and efficient test algorithms to reduce test time. 

Driven by these economic considerations, mostly from industry, research efforts to look 

for effective methodologies of analog and mixed-signal test and fault diagnosis are being 

actively developed now. 

Another motivation is coming from modern technology advances. First, it is the 

development of semiconductor technology that results in such products with high 

integration density as analog VLSI chips, large scale mixed-signal systems, and System-

on-Chip (SoC) solutions. Due to the unbeatable advantages of high speed, analog VLSI 

chip is the most promising candidate for any area in which the speed is the dominant 

design specification such as front-end RF circuits in communication, wireless 
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networking, internet, GPS navigation, real-time control systems, multimedia, artificial 

intelligence (AI) and information technology (IT). A newly deve loped technology, 

system-on-chip, is obtaining popularity in academia and industry. It integrates the whole 

system (processor, memory and peripherals) into one chip which includes electronic parts 

(analog and digital hybrid parts), mechanical parts, and even embedded software. As a 

consequence, the design, manufacture, and maintenance of such systems require 

corresponding techniques for testing and fault diagnosis. New challenges such as 

increased complexity, increased die size and reduced accessibility are posed on the 

problems of analog and mixed-signal test and fault diagnosis. 

Secondly, development of computer-aided design tools allowed designers to 

design more and more complicated circuits. However, corresponding test and diagnosis 

techniques for analog parts did not improve at the same level. The commercial software 

devoted to analog circuits still stays on the simulation level such as PSpice, Saber, 

Smash, etc. The available commercial design and simulation software could satisfy test 

and diagnosis requirement to some extend by systematic checks and verification of the 

design process. But insufficient development of test and diagnosis tools (relative to 

automated design tools) obviously hampers further development of advanced electronic 

products. Without specialized effective testing and fault diagnosis techniques for analog 

circuits, the system implementation, time-to-market, and time-to-volume of such products 

are in significant jeopardy. 

Thirdly, digital test can be concluded as successful and mature comparing with 

analog test and fault diagnosis. Fault models such as stuck-at-1 and stuck-at-0 models 

which represent the most fault mechanisms encountered in digital circuits have been 
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widely accepted for a long period. Test strategies, test buses or standards such as Design-

for-Testability (DFT) and Built-In-Self-Test (BIST) were proven effective in terms of 

circuit area, test time, and test cost. Particularly, the IEEE 1149.1 standard for digital 

boundary-scan test gains more and more supports from industry, so that most of digital 

products could be effectively tested based on this standard. Computer-aided digital 

testing software is available commercially and digital Automated Test Equipment (ATE) 

is widely utilized in manufacturing process of digital products. It is the significant 

success of digital test that transfers the problem of mixed-signal test to be dominated by 

the problems of analog test and diagnosis, while digital portions within a mixed-signal 

system can be easily tested by their domain specific technologies. Based on such 

assumption, the research focus in this dissertation is on analog test and fault diagnosis. 

All of these advances in the techniques for semiconductor integration, automated 

design, and digital test, together with economic considerations reluctantly witness the 

falling behind of the analog and mixed-signal test and fault diagnosis. The significant 

improvement in the automation level of analog and mixed-signal design, test, and fault 

diagnosis are expected to bridge  the gaps with the techniques for digital design, 

integration and test. In 1998, IEEE proposed the 1149.4 standard for mixed-signal test 

bus, in order to standardize the process of analog and mixed-signal test and fault 

diagnosis. But it is only one of attempts to address the problem of analog and mixed-

signal test and fault diagnosis, and has not yet gained enough support from industry. 

Different voices can also be heard from academia about this standard. It does not enjoy 

the similar success level like its counterpart – IEEE 1149.1 standard for boundary scan in 

digital test area. There is still a long way for the emergence of a widely accepted standard 
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or strategy in analog test and fault diagnosis. In general, there is an urgent and growing 

need to develop methodologies and software tools for analog test and fault diagnosis. 

 

1.3. Objectives of the Dissertation 

 
Based on the assumption that mixed-signal system is decomposed into separated 

analog, digital and software blocks, the scope of this dissertation is in the area of analog 

test and fault diagnosis. 

Facing up the fact that there is no general paradigm in analog test and diagnosis, 

the primary objective of the dissertation research is exploring a computer-aided test and 

diagnosis methodology or strategy applicable to general analog systems. The challenging 

test problems happened in most of analog systems including ambiguities, complexity, 

accessibility, catastrophic faults and model building are on the top list of the dissertation 

research. The computer-aided solution to analog test and fault diagnosis is to improve the 

efficacy and automation level of the test methodologies. Thus, the research results could 

be programmed and embedded into simulator or ATE test program. 

The subject is a continuous-time, time- invariant, analog system under stable state.  

Independent measurements are limited, so that an obvious identification of faults cannot 

be guaranteed. The primary task in dissertation research is to address ambiguities 

problem in analog fault diagnosis. Firstly, the analog system can be described in matrix 

format by circuit analysis and measurement. Hence this system description matrix is 

determined by parameter values, parameter locations (or circuit topology) and 

measurements. When faults occur, the value changes of faulty parameters and their 
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corresponding locations must be reflected in system description matrix in terms of 

dependency/independency, and/or consistency/inconsistency relations among matrix 

elements. Then, the dissertation research is to find out an approach to efficiently extract 

the ambiguities hidden in system description matrix to identify the faults and implement 

the aims of analog test and diagnosis. 

The other tasks in dissertation work include exploring complexity and 

accessibility problems through decomposing large system into smaller subsystems, and 

considering special test cases – catastrophic faults location. The significance of this 

dissertation work is to provide a efficient and systematic paradigm for general-

background analog test and fault diagnosis. 

 

1.4. Classification 

 
The existing techniques for analog and mixed-signal test and fault diagnosis come 

from different research efforts with distinct goals to satisfy the requirements for 

specification, function, or model. The most straightforward technique is to ensure that the 

circuit meets all the specification requirements provide by the design engineers. This is 

called specification-based test technique . The test inputs are generated directly from the 

specifications. Thus, a circuit passing test process will surely meet the specifications. 

However, this technique is extremely expensive because the number of specifications is 

usually huge even for small analog circuits. 

Another technique is to verify that the circuit meets the desired functional 

requirements. This is called functional-based test technique [4, 50]. It is very effective for 
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digital test since digital circuits satisfying desired function will meet the performance 

requirements. But most of specifications of analog circuits are not function-based. It is 

possible for an analog circuit to function correctly without meeting performance 

specifications. This is one of the peculiarities of analog circuits which result from its 

highly nonlinear behavior. 

One idea is to build models for specific faults encountered in the process of 

design, manufacture and operation. This is called model-based technique [3-4, 50]. Since 

until now no effective fault model can cover most of fault mechanisms, no direct relation 

between fault coverage and specification satisfaction can be established. Therefore, this 

technique is only effective for specific faults, not for the faults not covered by the fault  

model. 

Analog and mixed-signal test and fault diagnosis can also be divided into two 

categories according to the number of faults: single fault and multiple- fault [2-4]. Single 

fault is the most common case occurred in practice. Multiple-fault case usually happens 

as a consequence of a serious single fault. For example, a short-circuit fault may result  in 

a strong current and cause the failure of othe r circuit components. Multiple-fault is more 

difficult to model and detect, particularly in the presence of tolerance or a measurement 

noise. In addition, in a multiple- fault situation, one fault’s effect on the circuit could be 

masked by the effects of other faults. The research in this dissertation addresses a 

multiple-faults diagnosis. 

In this dissertation, a popular classification proposed by Bandler [2] is used, 

which categorizes the analog and mixed-signal test and fault diagnosis according to the 

stage in testing process at which simulation of the tested circuit occurs: Simulation-
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Before-Test (SBT) and Simulation-After-Test (SAT) approach. Fig. 1.1 illustrates the 

different techniques according to this classification in [2]. 

 

 

 

Figure 1.1 Classification of analog test and fault diagnosis [2] 

 

Fault dictionary technique is the most popular methodology under the Simulation-

Before-Test approach. It has wide applications in digital test, in which the responses of 

circuit under test are compared with a set of pre-stored outputs on the ATE. Similarly, 

analog circuits are analyzed and most likely faults are collected into the look-up table, or 

a dictionary. Then the circuit for each case of specific faults is simulated with chosen 

stimuli, and the corresponding responses are also stored in the dictionary. To achieve the 

required degree of diagnosability, optimum measurements are selected. In the process of 

testing, responses of the CUT are compared with signatures stored in the dictionary. Fault 

location is implemented by criteria based on pattern recognition methods. There are three 

Fault Location Technique  

Simulation-before-test approach 

Fault Dictionary 
Techniques 

Probabilistic 
Techniques 

Simulation-after-test approach 

Limited Measurement 
Techniques 

Sufficient Measurement 
Techniques 

Parameter Identification 
Techniques 

Fault Verification 
Techniques 

Optimization 
Based Techniques 

Approximation 
Techniques 
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dominant methods in constructing a fault dictionary for analog circuits: DC, frequency 

domain, and time domain approaches. Efficient fault simulation and optimum selection of 

measurements play very important role in the dictionary method. 

Approximation technique is based on the optimization theory. Although a limited 

number of measurements is needed, on- line simulation (and thus extensive on- line 

computation) is required for fault location. The most likely fault parameters are located 

according to certain fault locating criteria. Due to the nature of this technique, the exact 

solution to fault location and parameter evaluation cannot be obtained. Therefore the 

application of such kind method is limited. 

Fault verification technique  is a practical and promising solution to the problems 

of analog test and fault diagnosis. When the number of faults is limited and the number of 

independent measurements is greater than the number of faults, verification techniques 

are effective based on known information such as circuit topology, nominal circuit 

parameters and nodal voltage measurements. 

The most attractive feature of parameter identification technique is that it can 

provide solution to the values of all circuit parameters within faulty circuit. The faulty 

parameters are consequently located by checking which circuit parameters are beyond the 

design tolerance margins. Circuit topology and nominal values of all circuit parameters 

are assumed known. Only a part of the circuit nodes is accessible for measurement. The 

necessary condition for parameter identification technique  is that enough independent 

measurements must be used. This leads to an unavoidable disadvantage for this 

technique: too many accessible nodes are required for independent measurements, which 

is not practical for analog circuits with high integration density and limited accessibility. 



 
 
  11 

  

Considering both advantages and disadvantage of above four techniques, fault 

dictionary and fault verification techniques are the most promising solutions to practical 

problems in analog test and fault diagnosis. Most of research efforts from industry and 

academia are located within dictionary and verification categories. In this dissertation, 

techniques of fault dictionary, fault verification including decomposition methods are 

involved to address the problems in analog test and diagnosis. 

 
 

1.5. Problems in Analog Test and Fault Diagnosis 

 

Fig. 1.2 is a typical diagram of analog and mixed-signal system. Most of tasks are 

processed by digital units. This is a trend in today’s market of mixed-signal products. 

Although analog units are relatively less numerous than digital in modern electronics, 

they cannot be completely replaced by digital units completely because the real world is 

talking in analog signals. Analog units such as filter, sample-and-hold (S&H), analog-to- 

 

 

Figure 1.2 Diagram of analog and mixed-signal system 
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digital converter (ADC), digital-to-analog converter (DAC), and phase- locked- loop 

(PLL) are utilized as interfaces between digital processing units and the real world. High 

frequency communication signals, radio transmitters, TV broadcast, etc, are using 

modulated analog signals for transmission, perhaps transmitting digital information. 

In order to test an individual analog unit within such a mixed-signal system, all 

available information about circuit-under-test is collected. Circuit topology and nominal 

circuit parameters can be obtained from manuals or design engineers. Excitations and 

responses can be measured. Based on these known information, the task of test and fault 

diagnosis is to obtain useful information about faults by different circuit analysis and 

information extraction techniques (Fig. 1.3). 

 

 

Figure 1.3 Diagram of analog and mixed-signal test and fault diagnosis 

 

The difficulties of analog test and fault diagnosis lie in inherited features of 

analog circuits. The first challenging problem is ambiguities which prevent accurate 

measurement and accurate computation. Examples of ambiguities include circuit 

parameter tolerance, limited measurements and non- linearity of analog circuits. Even for 

a linear circuit, the deviation of circuit parameters from their nominal values will lead to 

the nonlinear relationship between the circuit responses and changes in the component 
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values. With the popularity of SoC, circuit complexity is significantly increased while 

accessibility is relatively reduced. Universally accepted, effective analog fault model to 

establish a relation between fault coverage and circuit performance is still lacking.  Fast 

and efficient computation algorithms are also greatly needed for analog simulation and 

building up analog models. 

Due to above difficulties in analog test and fault diagnosis, analog test cost is 

significantly increasing. Table 1.1 is the average cost for one ATE according to statistical 

data in 2000: $ 4.272 M to buy one ATE and $ 1.439 M to operate this ATE [31]. 

 
 

Table 1.1 Cost of manufacturing testing in 2000AD [31] 

 
 

§ 0.5-1.0GHz, analog instruments,1,024 digital pins: 

              ATE purchase price 

      = $1.2M + 1,024 x $3,000 = $4.272M  

§ Running cost (five-year linear depreciation)  

= Depreciation + Maintenance + Operation 

= $0.854M + $0.085M + $0.5M 

= $1.439M/year 

§ Test cost (24 hour ATE operation)  

= $1.439M/(365 x 24 x 3,600) 

= 4.5 cents/second 
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Table 1.2 shows the developing trends of IC fabrication [32]. ATE is becoming 

more and more expensive because semiconductor products will become more and more 

complicated in terms of circuit complexity, pin number, clock rate, power consumption, 

etc. 

Table 1.2 Current and future development of IC fabrication [32] 

 
 1997 -2001 2003 - 2006 2009-2012 

Feature size (micron) 0.25 - 0.15 0.13 - 0.10 0.07-0.05 

Transistors/sq. cm 4 - 10M 18 - 39M 84-180M 

Pin count 100 - 900 160 - 1475 260-2690 

Clock rate (MHz) 200 - 730 530 - 1100 840-1830 

Power (Watts) 1.2 - 61 2 - 96 2.8-109 

 

In this dissertation, all above problems are touched on and at least one solution 

facing general background analog systems is provided for each problem. Fault 

verification based on ambiguity group locating technique is described in Chapter 2 to 

address the problem of ambiguities resulting from limited measurement for the purpose 

of accurate computation. To reduce complexity, Chapter 3 illustrates how to decompose a 

large scale system into smaller sub-systems in order to reduce system complexity. 

Simultaneously, nodal voltages on some specific inaccessible nodes can be calculated. 

Thus, accessibility to its systems is relatively increased. Based on a stuck fault model, a 

multiple-stuck- fault location technique is implemented in Chapter 4 to eliminate the 

requirement for repetitive simulations in traditio nal stuck-fault location techniques.  

Conclusions are given in Chapter 5. 
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CHAPTER 2 FAULT VERIFICATION FOR ACCURATE 

COMPUTATION 

 

2.1. Ambiguity and Verification 

 
One of the reasons for ambiguities in analog test and fault diagnosis is a limited 

number of independent measurements. Fault verification technique is effective for 

accurate computation to address the problem of limited measurements. As stated in 

Section 1.4, fault dictionary and fault verification techniques are the most utilized 

approaches in analog fault diagnosis. Dictionary techniques require huge simulation 

works [5-7] before test because a complete fault dictionary containing all feasible fault 

examples cannot obviously be generated due to the continuous nature of the analog 

parametric faults. That is why dictionary technique usually test and diagnose the single-

fault case and catastrophic faults, but not effective for multiple-fault case or parametric 

faults. Neural network through learning and training processes can supplement this 

incompleteness problem by sampling the fault space or recognizing the fault patterns [8-

10]. As a consequence, the accuracy of fault location and parameter evaluation is limited 

by those optimization approaches. 

Fault verification is a promising solution to solve limited measurements and 

computation accuracy problems in analog test and fault diagnosis. The basic requirement 

is that a few parameters are faulty while the remaining parameters are within design 

tolerance specifications. Specifically speaking, the number of measurements required is 

less than the number of circuit nodes or circuit parameters, but greater than the number of 
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faults in a faulty circuit. The circuit topology is assumed known, thus the graph theory 

can be utilized to locate faulty parameters. The nominal values of circuit parameters are 

also supposed known to facilitate the application of network theory and mathematical 

methods in the fault location. Only the voltage measurements are needed, which reduces 

the error introduced by measurement instrumentation. All of these requirements are easily 

satisfied in practice. The idea behind fault verification technique is to check the 

consistency of certain equations which are invariant to the changes in faulty parameters. 

Since this technique checks whether a certain subset of circuit parameters can be faulty or 

not based on the assumption that the circuit is faulty, it is referred to as a verification 

technique. 

In [11-12], a verification technique was developed for single-fault diagnosis in 

piecewise linear analog circuits based on homotopy approach and on bilinear 

transformation.  Another verification approach was proposed in [13] for parametric fault 

diagnosis in linear and non- linear circuits, but its performance is weak when the values of 

deviations are large.  Large change sensitivity analysis was utilized by some researchers 

[14, 33] in analog fault diagnosis when there are large deviation values of parametric 

faults. To address the problems of computation round-off and large amount of 

computations, symbolic analysis was utilized [15-17]. To efficiently recognize the 

ambiguity groups hidden within the fault diagnosis equation, different ambiguity group 

locating techniques were proposed for fault verification [18-20, 34]: symbolic analysis 

was utilized in [18], numerical analysis in [19, 34] and decomposition analysis in [20]. 

In [21], a fault verification method was proposed for single fault diagnosis in 

linear analog circuits. Multiple excitations are required and Woodbury formula in matrix 
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theory is applied to locate the faulty parameter. This method was also applied to multiple 

fault diagnosis by decomposition technique assuming that each sub -circuit contains at  

most a single faulty parameter. In this chapter, the fault verification method developed in 

[21] is generalized and extended to multiple fault diagnosis of linear analog circuits in 

frequency domain.  Ambiguity group determination based on numerical analysis in [19] is 

modified and used for fault location. Large parametric deviations and open/short faults 

are considered. 

In Section 2.2, Kirchhoff current law (KCL) is applied to each circuit node, 

together with the constitutive equations for all circuit parameters without admittance 

description, to obtain the modified nodal equation. Circuit topology is comprehensively 

described by two structural matrices, and the Woodbury formula is used to construct the 

fault diagnosis equation. In Section 2.3, a newly developed technique for minimum size 

ambiguity group locating technique based on QR factorization is applied to detect and 

identify the multiple faults directly . Only one node is needed for voltage measurement, 

but multiple excitations and corresponding measurements on this node are required for 

fault identification. Parameter evaluation is to calculate the exact solution to the deviated 

values of faulty parameters. Section 2.4 provides example circuits to demonstrate the 

developed technique . The results are compared with those obtained by the method in 

[21]. The demonstrated methodology is generalized in Section 2.5 and applied to develop 

two new techniques for multiple fault diagnosis. Simultaneously, an advanced research 

on this verification technique is explored in order to remove Gaussian elimination and 

swapping operations based on multiple excitations and multiple measurements. Example 
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circuit is used to verify this approach. In Section 2.6, the developed techniques are 

summarized. 

 

2.2. Woodbury Fault Verification Technique 

 

Generally, circuit topology as well as its parameters’ nominal values are known. 

Consider a continuous-time, time-invariant, strongly connected, linear circuit with n+1 

nodes and p parameters. The (n+1)th node , denoted by zero, is assigned to be the 

grounded reference node while the remaining n nodes are ungrounded. All p parameters 

are divided into two categories: one contains parameters which have admittance 

description such as conductance, capacitor and voltage-controlled-current source, another 

contains  parameters which have no admittance description such as impedance, inductor, 

current-controlled-source, operational amplifier, etc. 

Applying the KCL to each circuit node, one can obtain n equations with 

variables being nodal voltages and parameter currents. Constitutive equations in terms 

of nodal voltages and parameter currents, which define the characteristics of all 

parameters without admittance description, are appended to the above n KCL-based 

equations, thus the system’s equations are constructed in the following form: 

ggg WXT =        (2.1) 

where Tg is a gxg coefficient matrix consisting of circuit parameters, Xg is a gx1 

solution vector of node voltage and parameter currents, and Wg is a gx1 excitation 

vector composed of independent current and voltage sources, and initial conditions of 
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capacitors and inductors. The first n rows in Tg, Xg and Wg correspond to n nodes. The 

resulting system equation (2.1) is called the modified nodal equation in [35]. Note that 

g=n for normal nodal analysis of a circuit in which all parameters have admittance 

description, and g>n for modified nodal analysis of a circuit in which some parameters 

have non-admittance description. Provided that the circuit functions in a stable state, 

the parametric values of nodal voltages and parameter currents are finite and unique. 

The coefficient matrix Tg is non-singular since the circuit is a strongly connected 

network. 

 

 

Figure 2.1 Model of parameter location 

 

One important fact about circuit topology is that each circuit parameter, say 

),...,2,1( pvhv = , can be located by at most 4 circuit nodes as indicated in Fig. 2.1: 2 

input nodes vk  and vl , and 2 output nodes vi  and vj . The current orientations are also 

indicated in Fig. 2.1. For 2-terminal parameters such as resistor and capacitor, the input 

nodes will be the same as the output nodes: νikv =  and νjlv = . Based on this fact, the 
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circuit topology can be completely described by two gxp structural matrices P and Q 

which are defined as follows: 

[ ]
[ ] ]...[...

]...[...

2211

2211

21

21

pp

pp

lklklkp

jijijip

eeeeeeqqqQ

eeeeeepppP

−−−==

−−−==
 (2.2) 

where νe  represents a gx1 vector of zeros except for the vth entry, which is equal to one, 

and νp  and νq  represent gx1 vectors describing the locations of output nodes and input 

nodes, respectively. Matrices P and Q are only determined by the locations, not the 

values of the circuit parameters. The columns of matrix P correspond to the locations of 

the output nodes of circuit parameters while the columns of matrix Q correspond to the 

locations of the input nodes of circuit parameters. 

Another important fact is that most parameters in linear circuits will enter the 

coefficient matrix Tg in the symbolic form 









−

−

νν

νν

ν

ν

νν

hh

hh

j

i

lk

    (2.3) 

with the equivalent algebraic representation being 

( ) ( ) TT
lkji qhpeehee νννν νννν

=−−    (2.4) 

where superscript T denotes transpose of a matrix or a vector. For any grounded node, the 

corresponding row or column in the symbolic form will be removed together with the 

corresponding unit vector νe  in the algebraic form. Resistor, inductor, capacitor, 
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dependent sources, and operational amplifier with its negative inverse gain being a 

parameter are examples of circuit devices described in this way. In this chapter, all faulty 

parameters are restricted to such type of circuit devices. 

Apply (2.1) to fault- free and faulty circuit, respectively, with the same excitation 

sources to get 

000 WXT =        (2.5) 

000 )()( WXXTTTX =∆+∆+=    (2.6) 

where  

TTT ∆+= 0        (2.7) 

XXX ∆+= 0        (2.8) 

Suppose that the first f of p parameters are faulty and are changed from their 

nominal values 02010 ,...,, fhhh  to the new values ,...,, 22021101 δδ +=+= hhhh  

fff hh δ+= 0 , where fδδδ ,...,, 21  are the parameter deviations and the deviation 

vector δ  is an fx1 vector: 

T
f ]...[ 21 δδδδ =       (2.9) 

Define F as the faulty parameter set, and assume that each faulty parameter 

),...,2,1( fvFv =  is located on intersection of the corresponding rows vi  and vj  

and columns vk  and vl  of the coefficient matrix T. The deviation of the coefficient 

matrices now has the following form: 
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T
ff

f
T

v QdiagPqpT )(
1

δδ
ν

νν ==∆ ∑
=

  (2.10) 

where )(δdiag  is an fxf  diagonal matrix and Pf and Qf are gxf matrices which contain 0 

and 1±  entries: 

[ ]
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lklklkff
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 (2.11) 

Note that Pf and Qf are sub-matrices of P and Q respectively. They can be 

constructed from P and Q by selecting all columns in P and Q corresponding to faulty 

parameters. 

The solution vector for fault-free circuit is  

T
gxxxX ]...[ 0,0,20,10 =      (2.12) 

where subscript 0 indicates that the denoted parameters are for fault- free circuit. Hence 

the product of Qf
T and X0 can be written as 

T
lklklk

T
lklklk

T
lklklk

T
f

ff

ff

ff

xxx

xxxxxx

XeeeeeeXQ

]...[

]...[

]...[

0,0,0,

0,0,0,0,0,0,

00

2211
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2211

=

−−−=

−−−=

 (2.13) 

and it has the physical interpretation of controlling nominal signal values (e.g. voltages) 

on faulty parameter input terminals. Applying the Woodbury formula [36] in matrix 

theory 

( ) ( ) 1111111 −−−−−−− +−=+ VAPVASPAAVPSA  (2.14) 
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to (2.7) and (2.10) with A=T0, )(1 δdiagS =− , P=Pf and T
fQV = , the inverse of 

coefficient matrix T has the following form: 

( )
( ) 1

0

11
0

11
0

1
0

1

0
1

)(

)(

−−−−−−

−−

+−=

+=

TQPTQdiagPTT

QdiagPTT

T
ff

T
ff

T
ff

δ

δ
 (2.15a) 

The value of ),...,2,1( f=νδν  cannot be zero or infinity to meet the 

requirements of inverting restrictions in the Woodbury formula. Since νδ  being zero 

means fault-free parameter, and only faulty parameters will be identified by following 

fault diagnosis algorithm, only one restriction is resulted: νδ  cannot be infinite, which 

corresponds to the case of open admittance or short impedance. But open or short faults 

can be dealt with by ideal switch introduced in modified nodal analysis [35]. Therefore, 

the proposed method can handle open and short faults as well. 

Let us define 

f
T

f

f
T

n

PTQ

PT
1
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1
021 ]...[
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=

==

γ

ββββ
   (2.16) 

then (2.15a) has following form 

( ) 1
0

111
0

1 )( −−−−− +−= TQdiagTT T
fγδβ   (2.15b) 

Since the coefficient matrices T0 and T are non-singular, the solution vector for 

faulty circuit X is then obtained using (2.6) and considering (2.15b) and (2.5): 
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Thus, the deviation vector X∆  can be obtained by (2.8) considering (2.17) and 

(2.13): 

( )( )









































=

+−=

−=∆
−−

0,

0,

0,

21

22221

11211

0
11

0

...

...

......

...

...

22

11

ff lk

lk

lk

gfgg

f

f

T
f

x

x

x

XQdiag

XXX

ααα

ααα

ααα

γδβ
  (2.18) 

where 
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Usually, voltage measurements are easier to carry out and are less invasive to 

analog circuit properties than current measurement s. Therefore, only nodal voltage 

measurements are used in this technique. Suppose the ith node is accessible for 

measurement, then by (2.18): 

T
lklklkifiii ff

xxxX ]...[]...[ 0,0,0,21 2211
ααα=∆  (2.20) 

According to definition of gxf matrix α  in (2.19) and (2.16), matrix α  does not 

dependent on the location of the excitation sources. Thus matrix α  is invariant when 

applying the multiple excitation method, i.e., the same coefficients ijα  link deviation of 
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measurements iX∆  and nominal signal values at the location of faulty parameter jjlkx  

independently on the excitation vector applied. After measuring the corresponding nodal 

voltages at the ith node with m independent excitation vectors ),...,2,1( meWe = , 

following equations are then obtained 
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or in a matrix form 
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where superscript M denotes the set of multiple excitations and m is the number of these 

excitations. Since each single measurement node can be one of the nodes used for 

multiple excitation method, then the total number of accessible nodes should be m. 

Assume that pmf ≤−≤ 1 , then the coefficient matrix MF
bX  has more rows than 

columns which is necessary to guarantee the uniqueness of solution to (2.22) with test 

verification. This ability to verify results of fault diagnosis is unique for the fault 

verification techniques (hence their names). In addition, fault verification techniques give 
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exact solutions even with large (catastrophic) faults, which is also unique in analog fault 

diagnosis. Equation (2.22) establishes a linear relationship between the measured 

responses of the faulty circuit M
iX∆  and the faulty parameter deviations δ  (since 

according to (2.19), vector iα  is a linear function of δ  ) Therefore (2.22) is called 

Woodbury fault diagnosis equation, and the coefficient matrix MF
bX  is called 

Woodbury fault diagnosis matrix . 

 

2.3. Fault Diagnosis in Woodbury Fault Verification Technique 

 

Testability is not the focus of this dissertation. Therefore an assumption is made 

that the given measurement set can give at least one finite solution to circuit parameters. 

 

2.3.1. Fault Detection 

 

As the first stage of fault diagnosis, fault detection is easily implemented. If the 

measurement deviation vector M
iX∆  in the fault diagnosis equation is a zero vector, then 

the CUT is judged as fault- free for the given excitation and measurement sets. Otherwise, 

at least one fault is judged detected by the given measurement set. 

 

2.3.2. Fault Identification 

 

To identify the faulty parameters, first let us analyze the fault diagnosis equation. 

The left-side of (2.22) is a known vector from measurements, the right side is the product 
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of an unknown coefficient matrix 
MF

bX  and an unknown solution vector iα . 

According to (2.13), matrix 
MF

bX  is determined by faulty parameter locations and X0, is 

a solution vector for fault-free circuit. Hence the columns in MF
bX  represent the 

differences between the nominal values of nodal voltages or parameter currents across the 

2 input nodes of the faulty parameters. Although matrix 
MF

bX  is unknown, but all of the 

nodal voltages and parameter currents in fault- free circuit are really known! Similar as in 

(2.13), a new mxp matrix 
MP

bX  is constructed as follows 
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where superscript P denotes the set of all circuit parameters. Each column of 
MP

bX  

corresponds to one circuit parameter. Apparently, fault diagnosis matrix 
MF

bX  is a sub-

matrix of 
MP

bX , which can be constructed by collecting all columns in 
MP

bX  
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corresponding to the faulty parameters. Matrix 
MF

bX  has more rows than columns 

whereas 
MP

bX  has less rows than columns due to the restriction pmf ≤−≤ 1 . 

For the purpose of fault identification, it is necessary to find out which set or sets 

of columns in MP
bX  can satisfy the fault diagnosis equation, i.e., find the dependency 

between M
iX∆  and the desired set(s) of columns in MP

bX . It is very possible that 

there are more than one qualifying sets, so it is regulated in this chapter that the minimum 

size of the column set satisfying fault diagnosis equation will be the desired coefficient 

matrix in fault diagnosis equation. One obvious way is to have a combinatorial search 

through all columns in MP
bX , which is the traditional way in fault verification technique 

[2] and requires the number of operations 














∑
f

i
p

O
1

 for limited faults among p 

parameters, thus it is computationally costly. More efficient method for fault 

identification is expected to reduce the computational cost. Our idea is to transform fault 

identification problem into a mathematical problem: locating the minimum size 

ambiguity group which satisfy the fault diagnosis equation. Ambiguity group is defined 

as a set of parameters corresponding to linearly dependent columns of 
MP

bX  which, in 

general case, does not give a unique solution in fault identification. However, in this 

work it will be shown how the set of faulty parameters can be identified by finding 

ambiguity groups. 

In [19], a method was developed to locate the minimum size ambiguity groups by 

using a linear combination matrix C (which will be introduced later) with minimum 
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number of non-zero entries. In this chapter, the method in [19] is modified to identify 

dependence of the measurement vector M
iX∆  on a subset of columns from MP

bX . 

Gaussian elimination step is introduced, and a minimum size ambiguity group is located 

by identifying the column with minimum number of non-zero entries in the linear 

combination matrix C. The three steps, Gaussian elimination, QR factorization and 

swapping performance are detailed next. 

 

2.3.2.1. Gaussian Elimination  

 
First let us denote an augmented mx(p+1) matrix BS as the concatenation of the 

vector M
iX∆  and the matrix 

MP
bX : 

][ MP
b

M
iS XXB ∆=      (2.25) 

Then the first column of matrix BS will be normalized to have a unit in its first 

row, 

....,,2,1,
)1,1(
)1,(

)1,(ˆ mi
B

iB
iB

S

S
S ==    (2.26) 

If the first entry of matrix Bs, Bs(1,1) happens to be zero, just permute the rows of  

Bs so that the first entry Bs(1, 1) is non-zero. Such a nonzero entry must exist since 

M
iX∆ is a non-zero vector for a faulty circuit. Eliminate the remaining entries in the 

first row of matrix BS by performing a similar operation to Gaussian elimination as 

follows: 
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Finally, an mx(p+1) matrix SB̂  is obtained in the following form: 
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where the superscript represents the size of a vector or a matrix. Matrix B is obtained 

from 
MP

bX  after elimination the dependence on 
M

iX∆  and is called a fault verification 

matrix. The dependency among columns of matrix B surely indicate the dependency 

between M
iX∆  and corresponding columns of matrix MP

bX . Thus the research efforts 

can only concentrate on the dependencies among the columns of the verification matrix 

B. The fault verification matrix will be used to identify faulty parameters and find their 

deviations from the nominal values, thus providing us with a fault diagnosis mechanism. 

 

2.3.2.2. QR Factorization 

 
The rank of B determines a maximum number of faults that can be uniquely 

identified by solving the fault diagnosis equation. Because m-1<p, B can be decomposed 

into two linearly dependent sub-matrices as follows 

[ ] [ ]CIBBBB 121 ==      (2.29) 

CBB 12 =        (2.30) 

where (m-1)xr matrix B1 has the full column rank equal to the rank r of the matrix B, and 

)( rpr −×  matrix C is called a linear combination matrix  whose columns expand a set 
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of basis columns from B1 into the corresponding columns of B2. Note that the selection of 

independent columns of B1 is not unique, which is an important issue in solving the fault 

diagnosis equation in the presence of ambiguities. Different partitions define different 

linear combination matrices C. 

Since an ambiguity group is a set of circuit parameters corresponding to linearly 

dependent columns of B, a canonical ambiguity group is defined as a minimal set of 

parameters corresponding to linearly dependent columns of B. It means that if any single 

parameter is removed from the canonical ambiguity group, the remaining set corresponds 

to independent columns of B and is uniquely solvable. A combination of canonical 

ambiguity groups with at least one common element was defined as ambiguity cluster. 

To efficiently deal with the fault verification problem, it is necessary to look for a 

partition (2.29) with the matrix C in a minimum form, which is defined as such a matrix 

that one or several of its columns have the maximum number of entries equal to zero. 

Thus, the minimum number of columns in MP
bX  satisfying the fault diagnosis equation 

(2.22) can be got. The corresponding partition (2.29) is called a canonical form of the 

fault diagnosis equation. Notice that according to fault verification principles [2] it is 

enough to find a single entry in one column of C equal to zero to solve the fault diagnosis 

equation. This column and all rows with non-zero entries will correspond to the faulty 

parameters indicated by the element of co-basis B2 and elements of basis B1, respectively. 

In this dissertation, a numerically robust algorithm based on the QR factorization 

[19] will be referred to find a numerically stable solution of over determined sys tem of 

linear equations that minimizes the least square error. Fault diagnosis equation uses more 
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measurements than the number of unknown variables in order to be able to find a unique 

solution as well as to compensate for the measurement errors and noise of the 

measurement equipment. At least one extra measurement is needed to verify the fault 

selection hypothesis. As a result of the QR factorization of (m-1)xp verification matrix B, 

the following equation can be obtained: 

BE = QR       (2.31) 

where E is pxp column selection matrix, Q is (m-1)x(m-1) orthogonal matrix, and R is (m-

1)xp upper triangular matrix. Each column of matrix E has only one nonzero entry, which 

is equal to one. Matrix product BE represents a permutation of the original columns of the 

verification matrix B. Matrix R has its rank equal to the rank of matrix B. Since R is an 

upper triangular matrix and m-1<p, R can be written as 









=

00
21 RR

R       (2.32) 

where R1 is rr ×  upper triangular and has its rank equal to the rank of the verification 

matrix B. 

The following theorem in [19] provides a basis for a numerically efficient 

approach to finding the ambiguity groups. 

 
 

Theorem: 

A linear combination matrix C can be numerically obtained from the QR 

factorization of the verification matrix B using 

2
1

1 RRC −=       (2.33) 
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2.3.2.3. Element Swapping 

 
A single QR run cannot guarantee that the matrix C will be obtained with one or 

several of its columns having the maximum number of zero entries unless the proper 

basis is selected. To find a minimum form partition, it is necessary to swap one parameter 

of the basis with one parameter of the co-basis in the ambiguity cluster in order to 

increase the number of nonzero entries in C. Note that swapping parameters of the basis 

and the co-basis can be performed independently in different ambiguity clusters, since 

different clusters have mutually disjoint sets of parameters. 

 
Lemma 1 [19]: 

The necessary condition for swapping to increase the number of zero entries in C 

is that the columns of basis and co-basis to be swapped have a singular 2x2 sub-matrix of 

nonzero entries. 

 
 Let us consider a linear combination matrix C with a 2x2 singular sub-matrix 
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 with all nonzero entries. If the jth element of the basis is swapped with k th 

element of the co-basis, then after swapping, the k th column of C changes to  
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In addition, all other columns of matrix C will be equal to 
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such that all zero locations in the k th column of C will remain zero as they were in the 

original C. However, as can be deducted from (2.34), a nonzero location imc  in row i 

and column m will become zero. Let us analyze this column m with at least one zero 

entry. The circuit parameter in the basis corresponding to such a column m is selected 

first, then the circuit parameters in the co-basis corresponding to all non-zero entries in 

column m are selected. An ambiguity group F is formed by combining the selected basis 

parameter with the co-basis parameters. Any column of C with zero entries form an 

ambiguity group F and has to be consider for further processing. Since ambiguities may 

exist in the original matrix 
MP

bX  then F contains all faults in the CUT only if the 

corresponding columns in 
MP

bX  are independent. Hence the following lemma can be 

formulated : 

 
Lemma 2: 

A necessary condition for an ambiguity group F of the linear combination matrix 

C to contain the set of all faults in the tested circuit is that the rank of the corresponding 

columns in matrix MP
bX  is equal to the cardinality of F. 

)()( FcardXrank MP
b =      (2.36) 

Thus, according to Lemma 2, any ambiguity group of the verification matrix 

which do satisfy (2.36) needs to be verified. 

The purpose of column swapping is to find out at least one ambiguity group of a 

minimum size. It is possible to locate several different ambiguity groups with minimum 

size and all of them will satisfy Lemma 2. The last step of fault location is to check 
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whether the sub-matrix of MP
bX  corresponding to such an ambiguity group can satisfy 

fault diagnosis equation or not. If yes, the circuit parameters corresponding to such a 

minimum size ambiguity group are concluded as a set of faulty parameters, F. Hence, the 

coefficient matrix MF
bX  is also determined. 

The number of operations required for Gaussian elimination step is )( 2pO , 

)( 3pO  operations are needed for QR factorization and ))(( 3rpO −  for column 

swapping, so the computational cost of the developed technique is )( 3pO . It is more 

efficient than comprehensive search whose number of operations is 
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Figure 2.2 Complexity comparison: comprehensive search vs. ambiguity group locating 

 

Fig. 2.2 illustrates the complexity comparison between comprehensive search and 

ambiguity group location technique. Suppose that the number of faults, f, is equal to 10, 
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the number of circuit parameters is 20, 50, 100, 200, 500, 800 and 1000 respectively. The 

ambiguity group locating technique requires fewer operations, especially when the 

number of parameters is large. 

 

2.3.3. Parameter Evaluation 

 

After location of the faulty parameters (and determination of MF
bX ), the invariant 

vector iα  can be uniquely solved from (2.22): 

( )( ) ( ) M
i

TMF
b

MF
b

TMF
bi XXXX ∆=

− 1
α   (2.37) 

Then, the parameter deviation vector δ  can be exactly computed by 

( )γαβαδ iii rdivide −−=     (2.38) 

where rdivide is an element-by-element division of two vectors. Additionally, the other 

variables in the faulty circuit can be obtained from the construction process of fault  

diagnosis equation. For example, the entire deviation vector X∆  can be obtained by 

using (2.18) and considering (2.16). Then the solution vector for faulty circuit X can be 

obtained from (2.8). Alternatively, vector X can be solved from (2.6) by inverting its 

coefficient matrix T, obtained by (2.7) and (2.10). In one word, everything about the 

faulty circuit can be known. 
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2.3.4. Algorithm for Fault Diagnosis 

 

A flow diagram of a computer program which implements the fault diagnosis 

discussed above is shown in Fig. 2.3. Since most of the phases of the algorithm are self-

evident from the flow diagram, only some phases are detailed in this section. 

In Phase 1, since nominal values of circuit parameters are known and all nodal 

voltages in fault- free circuit can be solved by (2.5), only the nodal voltages of the ith 

node in the CUT under multiple excitation method is needed for measurement to obtain 

measurement deviation vector M
iX∆ . 

In Phase 5, F denotes one suspicious fault set and min(size(F)) represents a 

scalar which is equal to the minimum size of all suspicious fault sets. 

In Phase 6, if several suspicious fault sets have the same minimum size, min(size(F)), 

select one of them arbitrarily for analysis. Only one parameter in the selected F is from 

the co-basis and the remaining parameters from the basis. Swap that co-basis parameter 

which corresponds to column k in matrix C with one of basis parameters which 

corresponds to row j in the matrix C. By (2.34) and (2.35), all zero entries in the 

column k of matrix C will be maintained after swapping while new zero-entry will 

appear in another column of new matrix C, thus the new value of min(size(F)) will be 

equal to, or less than the old value before swapping. 
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Figure 2.3 Algorithm for fault verification technique [39] 
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There are two rules for swapping. One is that, according to Lemma 1, row j is 

selected with nonzero cjk on the intersection of row j and column k of matrix C. Another 

rule is that if one parameter in the current basis has been swapped into the basis by the 

previous swapping operation, then this element will not be considered during the later 

swapping operation. Usually m-1 is far less than p, and the rank of rx(p-r) matrix C, r is 

not greater than m-1 , thus there are far less basis parameters than co-basis parameters. 

The comprehensive swapping between the co-basis parameter k and the basis 

parameters are very limited, as a result of the two swapping principles. 

Phases 12 through 15B are used for verification. One or several suspicious fault 

sets with minimum size are used to compute the deviation vector X∆ . If a computed 

vector matches the real measured vector 
M

iX∆ , the corresponding fault set F is our 

final solution to faulty parameters. Otherwise, this set is discarded, and turn to the 

adjoint suspicious fault sets recorded in Phase 9. Verification in this phase continues 

until finding out at least one qualified solution to faulty parameters. Otherwise, the 

CUT is concluded as un-solvable because the restriction 1−≤ mf  discussed in Section 

2.2 is not satisfied. 

 

2.4. Example Circuits 

 
Example 2.1: The example circuit 4 in [21] is used here (Fig. 2.4) in order to 

demonstrate the improvement in efficacy by the method proposed in this paper. There are 

6+1 nodes, 11 conductances, 2 voltage -controlled-current sources in the CUT, where 
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G1=1S, G2=1S, G3=2S, G4=1S, G5=0.5S, G6=2S, G7=1S, G8=0.5S, G9=2S, G2=1S, 

G11=0.5S, is=1A. 

 

Figure 2.4 Example circuit in [21] 

 

Suppose that G3 and G9 have deviations SG 13 −=∆  and SG 29 =∆ , 

respectively. Node {1} is the single measurement node. The single current source is is 

applied between ground and three accessible nodes {1, 3, 6} respectively under multiple 

excitation method. Thus, n=6, p=13, m=3, f=2 and pmf ≤−≤ 1 . The measurement 

deviation in Phase 1 of algorithm is 
















=∆

1.2544- 
2.1536-

0.2248  
M

iX  

In Phase 4, verification matrix B is obtained after Gaussian elimination as 









=

2.0988    1.3580-   0.2469-   1.3580-   0.7407    0.9877-   1.1111    0.2469-   1.3580    0.1728    1.1852    2.1975-   3.3827
1.0988    0.6420    0.2469-   0.3580-   0.7407    0.9877-   0.1111    0.7531    0.6420-   1.8272-   1.1852    4.1975-   5.3827

B

 

and the linear combination matrix C is obtained as  
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=

0.7995    1.0000-   0.0521-   0.6432-   0.1562    0.2083-   0.5911    0.4089-   0.2500    0.7500    0.2500

0.2995    0         0.0521-   0.1432-   0.1563    0.2083-   0.0911    0.0911    0.7500-   0.2500-   0.2500
C

 

with permutation vector E={1, 5, 3, 4, 2, 6, 7, 8, 9, 10, 11, 12, 13}. Thus the basis 

parameters are {1, 5} and co-basis parameters are {3, 4, 2, 6, 7, 8, 9, 10, 11, 12, 13}. 

There is only one column, the 10th column of C, with zero entry. The corresponding 

ambiguity group (or suspicious fault set) is {5, 12}, but it does not satisfy Lemma 2. 

 Swapping the first basis parameter {1} with the first co-basis parameter {3}, the 

new matrix C is obtained as 

 









=

0.5000    1.0000-   0.0000    0.5000-   0.0000-   0.0000    0.5000    0.5000-   1.0000    1.0000    1.0000- 
1.1979    0         0.2083-   0.5729-   0.6250    0.8333-   0.3646    0.3646    3.0000-   1.0000-   4.0000  

C  

 

Totally there are three suspicious fault sets {3, 8}, {3, 9} and {3, 11}, and 

min(size(F))=2. Note that the suspicious fault set {5, 12} has already been excluded by 

Lemma 2 in former analysis. Since min(size(F)) cannot been reduced any more by 

swapping, it is concluded that these three fault sets are our candidates for verification in 

Phase 13 through 15B. 

 For the fault set {3, 8}, the fault diagnosis equation is 

iα















=

















4.8696-   1.9130    

7.6522-   2.4348    

0.6957    0.1304-   

1.2544-   

2.1536-   

0.2248   
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with its unique solution vector by (2.37) [ ]Ti 0.3830    0.3191=α . By (2.38), the 

deviations of G3 and G8 are 









=








∆
∆

0.2647 
1.0000-

8

3

G
G

 

The computed nodal voltage deviations on node {1} is  
















=∆

1.2544-   
2.1536-   

0.2248   
computed

iX  

which is equal to the measured vector M
iX∆ . Thus, it is concluded that fault parameters 

are G3 and G8 with SG 13 −=∆  and SG 2647.08 =∆  respectively. 

For fault set {3, 9}, the fault diagnosis equation is 

iα















=

















3.6522    1.9130  
5.7391    2.4348 
0.5217-   0.1304-

1.2544-   
2.1536-   
0.2248   

 

with the deviations of G3 and G9 are equal to 









=








∆

∆

2.0000 
1.0000-

9

3

G

G
 

The computed vector of nodal voltage deviations on node {1} is also equal to the 

measured vector M
iX∆ . It is concluded that fault parameters are G3 and G9 with 

SG 13 −=∆  and SG 0000.29 =∆  respectively. 
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For fault set {3, 11}, similar conclusion is made that fault parameters are G3 and 

G11 with SG 13 −=∆  and SG 6364.111 =∆  respectively. 

Totally three solutions to the faulty parameters for the given measurements are 

obtained. To exactly identify the faulty parameters in the CUT, more measurements are 

needed, which will be demonstrated in next example. 

 The accessible nodes are reduced to 3 (nodes 1, 3, and 6) in the developed 

Woodbury fault verification technique comparing with at least 4 accessible nodes in [21]: 

nodes {1, 6} for multiple excitations and nodes {3, 4} for measurements of the branch 

voltages at G6. The selection and assumption of one fault- free parameter with 

corresponding measurement of its branch voltage used in decomposition method in [21] 

is removed, which is a notable improvement. 

 

Example 2.2: An active low-pass filter [37] is provided as one example to 

illustrate the approach described in Section 2.3. The example circuit has 20 nodes and 22 

resistors, 4 capacitors, and 8 amplifiers with the following nominal values (all resistors in 

Ωk  and capacitors in Fµ ): R1=0.182, C2=0.01, R3=1.57, R5=2.64, R6=10.0, R7=10.0, 

R9=100.0, R10=11.1, R11=2.64, C12=0.01, R14=5.41, R15=1.0, R17=1.0, C18=0.01, 

R19=4.84, R21=2.32, R22=10.0, R23=10.0, R25=500.0, R26=111.1, R27=1.14, R28=2.32, 

C29=0.01, R31=72.4, R32=10.0, R34=10.0. The current source 

is ( ) Attj 2000cos0.1)( = .  
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The filter is shown in Fig. 2.5 and all the operational amplifiers are modeled by 

the circuit in Fig. 2.6. 

 

Figure 2.5 Active low pass analog filter 

 

 

Figure 2.6 Model for operational amplifier 

 

Assume that the faulty parameters are R6 which was changed from 10.0 Ωk  to 

20.0 Ωk  and R26 changed from 111.1 Ωk  to 75.0 Ωk . The corresponding admittance 

deviations are Ω×−=−=∆ − /0.510000/120000/16 5eG  and  111100/175000/126 −=∆G  

Ω×= − /3324.4 6e . The single measurement node is node {2}, and the single current 

source is applied between ground and nodes {1, 2, 7, 17, 19}, respectively. Thus n=19, 
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p=42, f=2, m=5 and the restriction pmf ≤−≤ 1  is satisfied. The measured deviation 

vector in Laplace domain is 

























××

××

××

××

××

=∆

ie1.3729+ e3.5511-

ie2.1975+ e5.1196-

ie7.0256+ e2.6940  

ie1.3729+ e3.5511-

ie1.3508+ e3.4938-

2-3-

13-14-

2-1-

2-3-

-2-3

M
iX  

In Phase 4, a 4x38 linear combination matrix C is obtained after Gaussian 

elimination and QR factorization with the basis parameters {3, 30, 7, 17, 5} and co-basis 

parameters {6, 1, 8, 9, 10, 11, 12, 13, 14, 15, 16, 4, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 

28, 29, 2, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42}. By Lemma 2, two suspicious 

fault sets are identified {5, 17} and {4, 17} with min(size(F))=2. 

Since no swapping can reduce min(size(F)) any more, two suspicious fault sets 

{5, 17}, and {4, 17} are obtained. 

Fault set {4, 17}, corresponds to parameters {R6, R26} in the CUT. The fault 

diagnosis equation is 

iα

























=

























××

××

××

××

××

i5.0614e- 5.4183e- i1.3388e+ 1.1225e- 

i6.4128e+ 1.0101e  i1.0790e+ 9.0468e- 

i5.6622e- 9.4639e- i2.2562e+  2.6279e  

i5.0614e- 5.4184e- i1.3388e+ 1.1225e- 

i4.9887e- 5.5322e- i1.3172e+ 1.1044e- 

ie1.3729+ e3.5511- 

ie2.1975+ e5.1196- 

ie7.0256+ e2.6940  

ie1.3729+ e3.5511- 

ie1.3508+ e3.4938-

1+2+2+1+

11-09-11-

1+2+2+3+

1+2+2+1+

+1+2+2+1

2-3-

13-14-

2-1-

2-3-

-2-3

 

 

with [ ]T
i ie1.0800- e2.2349- ie1.7802- e1.0404 13-14-5-4- ××××=α . By (2.38), the 

deviations of G6 and G26 are 
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×

×−
≈













××

××
=








∆

∆
−

−

6

5

12-6-

-21-5

26

6

3324.4

0000.5

ie3.6403+ e4.3324  

ie6.3277+ e5.0000-

e

e
G

G  

The computed vector of nodal voltage deviations on node {2} is also equal to the 

measured vector M
iX∆ . G6 and G26 are concluded as the faulty parameters with 

SeG 5
6 5 −×−=∆  and SeG 6

26 3324.4 −×=∆ . 

Fault set {5, 17} corresponds to parameters {R7, R26} in the CUT. By (2.38), the 

deviations of G7 and G26 are 













××

××
=








∆
∆

ie3.9789+ e7.7897-

 ie1.5686- e9.9075
12-13-

-7-5

26

7

G
G

 

Obviously, R7 should not have imaginary part even in the faulty condition. Thus, 

this fault set is discarded. 

In conclusion, only one faulty parameter set {R6, R26} is identified with their 

deviations in the CUT, which is the exact faulty condition in the CUT. Thus by 

increasing the number of measurements, the suspicious faulty parameter sets are reduced 

to a unique solution set which matches the real condition. 

 

2.5. Generalized Applications 

 
Comparing with the research in [21], multiple excitations and Woodbury formula 

are also required for fault identification in my work [38-39]. A recently developed 

ambiguity group locating technique is modified and applied for fault identification which 
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reduces computational cost of test method. Multiple faults can be located directly and 

efficiently, thus eliminating the requirement for decomposition and the corresponding 

restrictions  in [21]. 

The mechanism demonstrated in the described  technique  can be generalized as 

follows. First, construct the fault diagnosis equation based on circuit analysis and 

measurements to relate the limited measured circuit responses with the faulty parameters 

in a linear way, then apply the ambiguity group locating technique to identify the faulty 

parameters through three steps: Gaussian elimination, QR factorization and column 

swapping. Finally evaluate all parameter values of the faulty circuit based on the analysis 

of the fault diagnosis equation. Two new fault verification techniques sharing the same 

mechanism were proposed for multiple fault diagnosis in linear analog circuits. 

Simultaneously, an advanced technique to eliminate Gaussian elimination and column 

swapping in general ambiguity group locating technique is described at the end of this 

chapter to reduce more computation cost. 

 

2.5.1. Nominal Fault Verification Technique  

 
This technique is described in detail in [40]. It is called nominal fault 

verification technique  in this dissertation, since its fault diagnosis equation uses the 

inverse of the nominal coefficient matrix.  Starting from (2.5) and (2.6), following 

equation can be obtained 

XTXT ∆−=∆0       (2.39) 

Then X∆  is computed by 
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XTTX ∆−=∆ −1
0       (2.40) 

Let us denote 

XTW ∆−=∆       (2.41) 

where gx1 vector W∆  represents the changes in excitations caused by faulty parameters. 

And it is called the faulty excitations in this dissertation.  The corresponding nodes or 

parameters are faulty. Similarly, nodes or parameters with zero faulty excitations are 

fault- free. The equation (2.40) is simplified as 

WTX ∆=∆ − 1
0       (2.42) 

Since only a few parameters are faulty, in which case W∆  has the form 

















∆=∆

0

0
FWW       (2.43) 

Assuming that the first m elements of X can be measured, following equation is obtained 

















∆=








∆

∆ −
−

0

0
1

0
F

MG

M

WT
X

X     (2.44) 

where G indicates the set of all equations, M the set of measurements. Hence, the nominal 

fault diagnosis equation is obtained as: 

F
MF

M WBX ∆=∆      (2.45) 

where 









=

−−−

−

2,,1,

211

MNFMNMN

MMFM

BBB

BBB
T    (2.46) 

[ ]21 MMFMM BBBB =     (2.47) 
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So, the fault diagnosis matrix BMF is a sub-matrix of the nominal coefficient matrix 

inverse. 

The nominal fault diagnosis equation (2.45) has to be satisfied when the set F 

includes all circuit excitations associated with faulty parameters in the faulty circuit. The 

columns in BMF correspond to faulty nodes or faulty parameters in the circuit. Our aim is 

to find out the sets of columns in matrix BM that satisfy equation (2.45) with the 

minimum number of faults, that is, vector FW∆  has the minimum number of nonzero 

values. 

The same ambiguity group locating technique discussed in Section 2.3.2 can be 

applied to identify the minimum form ambiguity group after constructing a mx(g+1) 

matrix Bs as follows. 

][ M
M

S BXB ∆=       (2.48) 

After location of faulty excitations, the deviation of the faulty excitation vector 

can be derived by solving (2.45), 

( ) MT
MFMF

T
MF

F XBBBW ∆=∆
−1

   (2.49) 

Then, the deviation of the excitation vector can be obtained by filling out the 

remaining elements with zeros to get W∆  in (2.43). The deviation of the solution vector 

X∆ can be obtained by (2.42), and the solution vector for faulty circuit X can be obtained 

by (2.8). Combining (2.10) into (2.41),  

δδ inc
T
ff XXQdiagPXTW =−=∆−=∆ )(   (2.50) 

where 
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)( XQdiagPX T
ffinc −=     (2.51) 

Assuming that k of p parameters are faulty and the resulting f of g excitations are 

faulty, k is no greater than f because some parameters may be located between two 

ungrounded nodes. Re-arrange the equation (2.50) as follows: 

 
fkpkpf

inc
kkf

inc WXX )(0,, ∆=+ −−δ   (2.52a) 

 
fnkpkpfn

inc
kkfn

inc XX −−−−− =+ 00,, δ   (2.52b) 

 
Here the superscript indicates the size of the matrix or vector. The equation 

(2.52b) is worth consideration. Obviously with nonzero values of 
kδ , 

kfn
incX ,−

 must be 

kfn ,0 −
 with probability equal to 1.  The position of faulty elements kδ  can be obtained 

from the solution of equation (2.52b) as follows: 

 
Lemma 3: 

The k faulty parameters are included in the parameter set whose corresponding 

columns have all zero entries in the matrix
pfn

incX ,−
. 

 
The deviations of faulty parameters then can be derived by solving (2.52a) 

 

( )( ) fTkf
inc

kf
inc

Tkf
inc WXXX )()( ,

1
., ∆=

−

δ   (2.53) 
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2.5.2. Adjoint Fault Verification Technique 

This technique is discussed in details in [41]. Similar as in the technique described 

in this chapter, but without Woodbury formula, combining (2.10) into (2.6), following 

equation is resulted 

( )( ) 000 )( WXXQdiagPT T
ff =∆++ δ   (2.54) 

After substituting (2.5) into (2.54), the following equation is established, 

XQdiagPTX T
ff )(1

0 δ−−=∆    (2.55) 

Let us denote a gxg matrix S0 as follows 

1
0210 ]...[ −−== TsssS g     (2.56) 

where X  and ),...,2,1( gvs v =  are gx1 vectors. Thus the products of S0 and Pf, Qf
T 

and X can be written as 

T
lklklk

T
lklklk

T
f

jijiji

jijijifGF

ff

ff

ff

ff

xxxxxx

XeeeeeeXQ

ssssss

eeeeeeSPSS

]...[

]...[

]...[

]...[

2211

2211

2211

221100

−−−=

−−−=

−−−=

−−−==

 (2.57) 

where G  indicates the set of all modified nodal equations and the fault set F represents 

the set of all the faulty parameters. 

Denote an fx1 vector 

XQdiag T
fF )(δλ =      (2.58) 

and consider (2.9) and (2.57) to get 
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T
lkflklk

T
lklklk

T
fF

ff

ff

xxxxxx

xxxxxxdiag

XQdiag

)](...)()([

]...[)(

)(

2211

2211

21 −−−=

−−−=

=

δδδ

δ

δλ

 (2.59) 

Thus (2.55) can be re-written as 

FGFSX λ=∆       (2.60) 

Assume that the first m elements of X∆  can be measured and pmf ≤−≤ 1 , 

following equation is resulted 

F
FMG

MF

MG

M

S

S

X

X
λ








=









∆

∆

−
−

,
    (2.61) 

where M represents the set of measurements. Hence, following fault diagnosis 

equation is obtained: 

FMF
M SX λ=∆       (2.62) 

Here the fault diagnosis matrix MFS  is an mxf matrix whose columns correspond to the 

faulty parameters in the circuit. Similarly MPS  is an mxp matrix whose columns 

correspond to all of the parameters in the circuit, which is constructed by selecting all the 

rows corresponding to measurements selected from the following matrix SGP, 

]...[

]...[

2211

221100

pp

pp

jijiji

jijijiGP

ssssss

eeeeeeSPSS

−−−=

−−−==
  (2.63) 

Notice that the elements of each column of the fault diagnosis matrix are the 

transfer functions from the location of a faulty element to all system nodes, or solutions 
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of the adjoint system with the output set at the location of the faulty element. For this 

reason, this technique is called adjoint fault verification technique.   

Construct a mx(p+1) matrix Bs as follows, 

][ MP
M

S SXB ∆=       (2.64) 

Then apply the ambiguity group locating technique from Section 2.3.2 to identify the 

minimum form ambiguity group. After location of ambiguity groups in fault diagnosis 

equation, it is known which parameters in the CUT are faulty. Vector Fλ  is then 

obtained by solving (2.62): 

( ) MT
MFMF

T
MFF XSSS ∆=

−1
λ     (2.65) 

The full vector X∆  can be computed by (2.60), since matrix SGF and vector Fλ  

are known now. The solution vector X is consequently determined by (2.8). Finally the 

parameter deviations δ  can be obtained by solving (2.59): 

T

kk

f

lklk ff
xxxxxx 












−−−
=

λλλ
δ ...

2211

21   (2.66) 

 

2.5.3. Tableau Fault Verification Technique 

 
Another fault verification technique developed in [42] is based on both multiple-

excitation and multiple-measurement for the purpose of utilizing limited test accessibility 

to its full extend. The most significant highlight for this technique is that Gaussian 

elimination and swapping operations required by former verification techniques are 

eliminated, thus computational cost is further reduced. 
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There is a difference in circuit assumption: CUT has n+1 nodes and p parameters 

in the impedance form ),...,2,1( pvZ v = .  Such a circuit parameter Zv can still be 

described by two-port like model in Fig. 2.1. 

Suppose that there are e different excitations to the fault-free and faulty circuits. 

Apply KCL to fault-free circuit: 

JPI b =0        (2.67) 

where Ib0 is a pxe matrix of branch currents and J  is a nxe matrix of independent branch 

current excitations (i.e. current sources located at individual parameters positions).  

Apply Kirchhoff voltage law to the fault-free circuit: 

000 =− bn
T ZIVQ       (2.68) 

where Vn0 is a nxe matrix of nodal voltages which correspond to independent current 

excitations at all accessible nodes, Z is a pxp diagonal matrix of nominal parameter  

impedances: 

Z=diag(Zv)       (2.69) 

Combining (2.67) and (2.68), following equation is resulted 









=
















− 0

0

0

0 J
I
V

ZQ

P

b

n
T     (2.70) 

Assume that there are f of p faulty parameters in the faulty circuit with ef ≤ . 

Correspondingly, the equation for the faulty circuit is as follows: 









=


















∆
∆

+

























∆

+








− 00
000

0

0 J
I
V

I
V

ZZQ

P

b

n

b

n
T

 (2.71) 
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where Z∆  is a pxp diagonal matrix of parameter deviations, nV∆  is a nxe matrix of nodal 

voltage deviations, and bI∆  is a pxe matrix of branch current deviations. 

Denote  









∆
∆

+







=









b

n

b

n

b

n

I
V

I
V

I
V

0

0      (2.72) 

Equation (2.71) can be simplified after considering (2.70): 









∆−

=







∆
∆









− bb

n

T IZI
V

ZQ

P 00
    (2.73) 

Suppose that m nodal voltages are measured with e<m, then (2.73) can be 

decomposed as follows: 









∆−

=



















∆
∆

∆










−
−

b
b

MN
n

M
n

TT IZ
I
V

V

ZQQ

P 000

21
   (2.74) 

where Q1 is a nxm matrix and Q2 is a nx(p-m) matrix. 

Move the measured part to the right of (2.74) to obtain following form: 










∆−
+








∆−

=








∆
∆










−

−

M
n

T
bb

MN
n

T VQIZI
V

ZQ

P

12

000
 (2.75) 

Fault diagnosis equation (2.75) relates the measured responses deviations M
nV∆  with 

faulty parameter deviations Z∆ . The left-hand side (n+p)x(n+p-m) coefficient matrix of 

(2.75) can be constructed from the circuit topology and nominal values of circuit 

parameters. The solution matrix of (2.75) has a size of (n+p-m)xe. The right side of 

(2.75) is a (n+p)xe matrix with fxe unknow entries due to faulty parameters. Thus, (n+p-



 
 
  56 

  

f)xe linear equations with (n+p-m)xe variables can be obtained from (2.75). Since m>f, 

solution to (2.75) can be uniquely determined. 

Construct a (n+p+e-m)x(n+p) new matrix by appending the coefficient matrix of 

(2.75) to the second item of the right side of (2.75): 

T

TM
n

TS
ZQVQ

P
B 









−∆−
=

21

00
    (2.76) 

The columns of matrix BS correspond to the combination of circuit nodes and parameters.  

Now execute QR factorization described in Section 2.3.2.2 which results in a 

linear combination matrix C. Notice that there is no Gaussian elimination here, so the QR 

factorization is carrying out on verification matrix B in Woodbury verification technique 

(Section 2.3.2.2) while it is carrying out on matrix BS here. 

Fault diagnosis equation (2.75) is a very unusual equation. It contains unknown 

matrix of voltage and current deviations on the left-hand side and partly unknown right-

hand side. The matrix BS has the rank equal to n+p+e-m (where mef <≤ ), however, 

the rank of 










−
=

ZQ

P
S

T
2

0  

is equal to n+p-m. So, the increase in the rank of matrix BS over the rank of matrix S is 

(n+p+e-m)-(n+p-m)=e. This rank increase is due to the presence of faulty parameters, 

which make part of the right-hand side of (2.75) independent on rows of matrix S. 

Therefore, all columns of matrix BS which correspond to faulty parameters will be forced 

to the basis and (very important!) rows of matrix S which are not in the basis will be 

independent from these columns. This independency relation must be reflected in linear 
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combination matrix C by a row with all zero entries! Hence the following Lemma is 

resulted: 

 
Lemma 4: 

If all of the faulty parameters are included in the basis, then the circuit 

parameters corresponding to zero rows in the linear combination matrix C are faulty. 

 
Since ef ≤  and faulty parameters are independent from each other, all of the 

faulty parameters are guaranteed to be included in the basis. Therefore by applying 

Lemma 4 to linear combination matrix C, the faulty elements can be identified directly 

(No search for minimum size ambiguity group by column swapping at all!). In fact, the 

rows of linear combination matrix C are corresponding to a combination of circuit 

parameters and nodes.  Some nodes associated with faulty excitations defined in Section 

2.5.1 will be reflected in linear combination matrix C and may be located by Lemma 4. 

Tableau verification technique is to directly locate faulty parameters, so that these 

identified faulty excitation nodes could be used for verification or just discard them. 

After location of faulty parameters, (2.75) can be decomposed according to 

positions of faulty parameters: 
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 (2.77) 

or   
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and 

[ ] [ ] [ ]M
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1222  (2.79) 

Here the matr ices Q1, Q2, Z, and Z∆  are decomposed into two parts: the first part 

corresponds to fault-free parameters, while the second one  corresponds to faulty 

parameters. 

The solution to (2.78) can be uniquely determined by 

( )( ) ( ) 
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where    
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Then, the values of branch currents in faulty circuit Ib can be obtained by (2.72). 

Re-arranging (2.79)  
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∆
∆

−−=∆
−

 (2.81) 

To reduce the computational efforts, one may select only one column Ib1 from 

matrix Ib and only one column S21 from matrix S2. The faulty parameter deviations can be 

exactly computed by solving (2.81): 

121 bf IrdivideSZ =∆      (2.82) 

where rdivide is an element-by-element division performance of two vectors. As an 

alternative, and to reduce effects of round-off errors, equation (2.81) could be solved by 

dividing S2 by Ib element by element and taking row average to obtain fZ∆ . 
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Comparing with the other verification techniques described in this chapter, 

tableau verification technique locates faulty parameters directly without Gaussian 

elimination step and without swapping operations, thus reducing the computational cost. 

 

 

Figure 2.7 Resistive network example 

 

Example circuit 2.3: The circuit shown in Fig. 2.7 with 21 nodes and 39 resistors 

is used to demonstrate the advanced verification technique. Nominal values of circuit 

parameters are as follows (all resistors in Ω ):  

R1=2.125, R2=3.6, R3=4.7, R4=11.5, R5=12.6, R6=21.2, R7=3.7, R8=0.54, 

R9=3.54, R10=3.125, R11=6.6, R12=5.7, R13=19.5, R14=12.8, R15=12.2, R16=3.2, 

R17=1.54, R18=8.7, R19=2.27, R20=3.16, R21=41.7, R22=31.5, R23=22.6, R24=51.2, 

R25=13.7, R26=3.44, R27=13.4, R28=31.9, R29=16.1, R30=11.7, R31=11.5, R32=17.8, 

R33=22.2, R34=23.2, R35=11.4, R36=18.7, R37=3.12, R38=33.2, R39=8.67. The current 

source AJ 1=  is applied to nodes {0, 2}, {0, 16} respectively. Note that current source 

is applied to nodes {0, 1} in Fig. 2.6. 
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Assume that there are two faulty parameters: R9 is changed from 3.54 Ω  to 7.9Ω  

and R37 is changed from 3.12 Ω  to 2.8 Ω . The corresponding impedance deviations are 

Ω=∆ 36.49Z  and Ω−=∆ 32.037Z . The nodal voltages at nodes {2, 4, 15, 16, 17} 

are measured. Thus n=20, p=39, e=2, f=2, m=5 and mef <≤ . The measured 

changes of nodal voltage under two distinct excitations are: 

























××

××

××

××

××

=∆

2-2-

1-2-

2-2-

2-1-

-2-1

e7.2593- e3.8445  

e1.3351- e3.2306  

e7.6708- e3.6510  

e3.3316  e9.1400  

e3.2306  e8.9005  

M
nV  

which indicates the fault(s) detected inside the circuit. 

Apply the QR factorization to the fault diagnosis equation. A 56x3 matrix C is 

obtained with rank of r=56. By analyzing permutation matrix E, co-basis includes only 

three circuit nodes {4, 15, 17} and the remaining 17 nodes and 39 parameters are 

included in the basis. 

Analyzing 56x3 matrix C, three zero rows are found which correspond to 

parameters {9, 37} and node {1} respectively. According to Lemma 4, since all the 

circuit parameters are included in the basis, parameters {9, 37} are concluded as faulty 

parameters which are the exact solution for the given circuit. In fact, node {1} is a node 

associated with faulty excitatio ns defined in Section 2.5.1. It verifies that parameter {9} 

is faulty. 
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The deviations of nodal voltages and branch currents can be obtained by (2.80). 

The branch currents and the nodal voltages in the faulty circuit can be obtained by (2.72). 

Finally, the deviations of faulty parameters are exactly evaluated using (2.82): 









=








∆
∆

0.3200-  
4.3600

37

9

Z
Z

 

which are the exact deviation values of the faulty elements R9 and R37. 

 

2.5.4. Comparisons of Four Fault Verification Techniques 

 

Table 2.1 Comparison among four  verification techniques 

 

 
Faulty 

Parameter 
Identification 

Excitation Voltage 
Measurement Circuit Analysis  

Gaussian 
Elimination & 

Swapping 

Woodbury 
Verification 

direct multiple  single Woodbury & 
modified nodal 

yes 

Nominal 
Verification 

indirect single multiple  
faulty excitations & 

modified nodal yes 

Adjoint 
Verification 

direct single multiple  adjoint analysis yes 

Tableau 
Verification 

direct multiple  multiple  tableau analysis no 

 

The dominant feature of these four  techniques is that all of them share the same 

mechanism discussed in Section 2.5. The differences among the techniques are in fault 

parameter location, circuit analysis  tools, excitations, and measurements methods and are 

given in Table 2.1. Distinct fault diagnosis equations are constructed. As a consequence, 

distinct parameter evaluations are designed for each technique. There is no need for 



 
 
  62 

  

Gaussian elimination and swapping operations for tableau verification technique 

comparing with other three verification techniques. All of these techniques belong to the 

same category of multiple fault verification in dynamic analog circuits and all of them 

benefit from efficient ambiguity groups location technique. 

 

2.6. Conclusions 

 

In this chapter, a generalized fault verification technique for dynamic analog 

circuits was discussed to accurately calculate faulty parameter deviations to address the 

ambiguity problem caused by limited measurements, and the intend of fault verification 

techniques is to obtain the information about the faulty circuit based on the limited 

measured responses of faulty circuit. There are two easily implemented prerequisites: one 

is that circuit topology and nominal values of circuit parameters should be known, 

another is that the number of measurements is greater than the number of faulty 

parameters. A new technique in this chapter is used to detect, and locate the multiple 

faults in a linear analog circuit in frequency domain, then to exactly calculate the faulty 

parameter deviations. For instance,  applying the Woodbury formula to the modified 

nodal analysis, fault diagnosis equation is constructed to establish the relationship 

between the measured responses and the faulty parameter deviations in a linear way. 

Recently developed numerically robust approach for location of the minimum size 

ambiguity groups has been modified to fit in this chapter’s condition to implement fault 

location. Specifically a fault diagnosis equation is analyzed using QR factorization and 
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possibly column swapping. Parameter evaluation is then performed using results of 

analysis of the fault diagnosis equation. 

One node for voltage measurement is sufficient for the developed technique, 

although multiple excitations are required for fault location. Although faulty parameter 

deviation cannot be infinity, open or short condition can be dealt with well by switches in 

modified nodal analysis. Therefore, the faults can be parametric or catastrophic. The 

developed technique  is extremely effective for large parameter deviations and a very 

limited number of accessible nodes used for excitations and measurements. The 

computation cost for fault location is on the order of )( 3pO , and compares favorably 

with the combinatorial search traditionally used in fault verification techniques which 

requires the number of operations 















∑
f

i
p

O
1

. A single fault diagnosis technique 

recently reported in [21] can be seen as a special case of the developed technique. 

Example circuits are used to illustrate the developed techniq ue and improvement in the 

efficacy as compared with [21] is evident. Additionally, two new techniques for multiple 

fault diagnosis based on the same methodology are discussed. Finally, an advanced 

tableau verification technique is described to eliminate the requirements for Gaussian 

elimination and swapping operations by using multiple-excitation and multiple-

measurement. The dominant differences among these techniques are the distinct fault 

diagnosis equations resulting from distinct circuit analysis methods and distinct excitation 

and measurement methods. 

The technique  described in this chapter can be classified under the category of 

Simulation-after-Test (SAT) [2], which can provide the exact solution to circuit 
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parameters and can be applied to detect lar ge parameter changes when the number of 

independent measurements are greater than the number of faults in the CUT. It is very 

effective for limited accessibility cases. 



 
 
  65 

  

CHAPTER 3 LARGE SCALE SYSTEM DECOMPOSITION 
 

3.1. Complexity, Accessibility and Decomposition 

 
Increased complexity and reduced accessibility are the most apparent in large 

scale mixed-signal systems and SoC products. Traditionally, testing of mixed-signal 

system and SoCs adopt the decomposition technique to partition the whole system into 

mechanical, software, analog, and digital subsystems in order to apply their domain 

specific test techniques. Finally system level test and interconnection test are applied to 

fulfill the testing task for the whole system. Among these subsystem testings, analog 

testing is the bottleneck as stated in Chapter 1. To address the practical problem of 

increasing scale of today’s analog systems, design verification based on decomposition 

technique is the best candidate for verification of large-scale analog systems. Analog 

system decomposition was comprehensively explored in the 1980s by Bandler [43-44] to 

facilitate large scale analog test and fault diagnosis when computer resources were 

limited. With the astounding development of computation resources such as CPU and 

memory since the 1980s, research interests on analog decomposition diminished because 

it was not necessary to use decomposition in analog test and fault diagnosis. So that it is 

not surprising to see that there is limited literature on analog fault diagnosis by 

decomposition [22-23, 45, 46] although the idea of decomposition gained widespread 

application in test-related areas such as in test generation [24], fault model [47] and 

neural network-based fault diagnosis [48 ]. The most dominant approach in fault diagnosis 

was to combine decomposition technique with other test techniques, that is, first  
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decompose large scale system into smaller pieces and then to apply other techniques to 

test those subsystems. 

The most promising advantage of the decomposition technique is that there is no 

upper bound to the number of faulty components in the system unlike in verification 

techniques. Another advantage is to reduce the test cost for large  scale system because of 

one important fact: only very limited number of faults occurs in practice. After 

decomposition, fault- free sub systems usually occupy a large portion of the complete 

system. Therefore the entire testing effort can be devoted to the faulty subsystems. 

In [22], decomposition approach was combined with modeling approach for 

board-level fault identification. After decomposition, regression models of the 

decomposed subsystems are tested. However, hundreds of circuit simulations are required 

to complete the fault diagnosis. Another decomposition method made use of the self-test 

algorithm and the component-connection model [23]. The so-called hierarchical 

components have to be determined before fault diagnosis. Hence, fault coverage is 

limited because not all circuit components are defined as hierarchical components. In 

decomposition method described in [43-44], faults are localized to within the smallest 

possible subsystems according to hierarchical decomposition structure. The current 

consistency of internal nodes is checked to locate faults. Based on work in [43-44], a 

method was designed in [45] to identify faulty subsystems under a nodal decomposition 

strategy. It is based on checking the voltage consistency of internal nodes in analyzed 

subsystems. Another decomposition approach was derived from [43-44] and presented in 

[46] to apply decomposition approach for parameter identification techniques [2]. All  

methods in [43-46] have a strict requirement: all decomposition nodes have to be 



 
 
  67 

  

accessible to measurement. Thus, many accessible nodes are needed in order to locate 

faulty components or faulty regions within the small subsystems. Simultaneously, the fact 

that only accessible nodes could be the decomposition nodes restricts decomposition 

flexibility. Such requirement is not acceptable for today’s analog networks whose scale is 

steadily increasing while the accessibility of the network nodes is decreasing. To achieve 

more information about the faulty components or faulty regions, there must be a 

compromise between the number of accessible nodes and the subsystems size. 

A new technique is developed in this chapter [49] to alleviate this problem in 

order to face up to today’s practice. Traditional decomposition technique is generalized to 

include subsystems not explicitly testable. Based on the network topology and checking 

consistency of KCL equations, nodal voltages of some specific inaccessible nodes under 

faulty conditions could be computed. Hence, these computed nodal voltages can be 

treated as measurements and subsequently be used for decomposition. For analog systems 

with sufficient accessibility, this technique can reduce the measurement cost. For analog 

systems with limited accessibility, this technique  can create more decomposition nodes 

and can increase decomposition flexibility. This generalized decomposition can be 

applied to linear or non-linear systems. In Section 3.2, restriction on decomposition nodes 

is removed by selecting some specific inaccessible nodes based on location of fault- free 

systems and location of faulty subsystems. An efficient solution to location of fault- free 

nodes and verification of decomposed subsystems is also provided in Section 3.3 as one 

of choices when testing faulty subsystems. It is based on QR factorization technique for 

finding ambiguity groups and solving ambiguous equations. An example circuit is 
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provided in Section 3.4 to illustrate the efficiency of the developed technique. In Section 

3.5, a summary is given. 

 

3.2. Location of Fault-Free Subsystems and Faulty Subsystems 

 
There are two assumptions for the generalized decomposition. The first one is that 

network topology and nominal values of network parameters are known, thus all the 

nodal voltages, branch currents and parameters information are known before testing and 

such computations can be carried out off- line. The second one is that all of the partitioned 

subsystems should be mutual coupling free. Let us begin with an important assumption 

used by decomposition technique presented in [43] which will be alleviated by the 

generalized decomposition in this chapter: all the decomposition nodes should be 

accessible to voltage measurements. For the system-under-test, some subsystems are 

fault- free, some are faulty. It is easier to locate fault- free subsystems than faulty 

subsystems according to Lemma 1-3 in [43]. The first step of generalized decomposition 

is to locate as many as possible fault-free subsystems based on the following corollary 

which is derived from Lemma 2 in [43].  Fig. 3.1 is the illustration of a common code. In 

 

Figure 3.1 Illustration of a common node 

 

I2 I3 

In 
I1 
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this dissertation, a common node is defined as a node incident to several subsystems in 

decomposed systems or a voltage measurement node. 

 

Corollary 1: 

Suppose that a common node c is connecting k subsystems Si (i=1, 2, …, k). If all 

the currents incident to the common node c computed by the measured voltages and the 

nominal parameter values satisfy the KCL equations, i.e.,  

tI
k

i

i
c ∀=∑

=

0
1

      (3.1) 

 

( )0),( i
MM

c
i
c tvhI ii φ=     (3.2) 

 
where i

cI  is the current incident to node c from subsystems Si, Mi is the measurement set 

consisting of measurement nodes, iMv  are the measured nodal voltages in subsystem Si, 

0
iφ are the nominal component values of subsystem Si, then all subsystems Si (i=1, 2, …, 

k) are fault-free. 

 
  Such a common node is called a fault-free node . If equation (3.1) is not satisfied, 

then at least one subsystem Si is faulty. In this corollary, all decomposition nodes are 

measurement nodes. 

  Suppose now that one decomposition node x in subsystem Si is inaccessible, i.e., 

the node x is still the decomposition node but its nodal voltage Vx is unknown. Thus, the 

decomposed subsystem topology remains unchanged, while the measurement set of Si is 
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changed by removing node x. i
cI  in (3.2) can still be computed by changing the 

measurement set as above. The Corollary 1 is still valid to locate the fault- free 

subsystems.  

 
Corollary 2: 

Suppose a subsystem Si has two fault-free nodes y and z and one of the voltages Vx 

in this subsystem is unknown. If the currents incident to these common nodes satisfy the 

KCL equations, i.e.,  

),(0
1

zyctI
ck

i

i
c ∈∀=∑

=
     (3.3) 

 

( )0),( i
XMXM

c
i
c tvhI ii φ++=     (3.4) 

 
where kc is the number of subsystems incident to common node c, then all subsystems 

incident to nodes y and z are fault- free. 

  Here, the measurement set Mi is appended by node x. Since there is only one 

unknown variable Vx in (3.4), Vx can be determined uniquely because it is known that  

such solution exists in system-under-test. As a generalization of Corollary 2 the following 

lemma can be formulated. 

 

Lemma 5: 

Consider a subset of fault-free nodes in subsystem Si with p inaccessible 

decomposition nodes. All p nodes are appended to the measurement set, thus leading to p 
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unknown variables Vx1, Vx2, …, Vxp. If there are m fault-free nodes and pm ≥ , then by 

using m KCL equations  

tmxI
xk

i

i
x ∀==∑

=

...,,2,10
1

    (3.5) 

 

( )0),( i
PMPM

x
i
x tvhI ii φ++=    (3.6) 

 
where kx is the number of subsystems incident to node x, all the voltages Vx1, Vx2, …, Vxp 

can be determined and all the subsystems incident to fault-free nodes can be verified as  

fault-free.  

 

  Using Corollaries 1 and 2 and Lemma 5, fault-free subsystems can be sequentially 

verified and internal voltages determined. The system in Fig. 3.2 is used to illustrate the 

process. 

 

Example 3.1 

 
 
 

 

 

 

Figure 3.2 Decomposed system for example 3.1 
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The system shown in Fig. 3.2 is decomposed into 4 subsystems S1, S2, S3, and S4. 

Assume that S4 (illustrated by the hashed area) is the only faulty subsystem. Thus, nodes 

{1, 2, 3, 5, x6, x8, x10} are fault-free nodes. Nodes {1, 2, 3, 4, 5} are accessible nodes 

whose node indexes are circled in Fig. 3.2 and nodes {x6, x 7, x8, x9, x10} are inaccessible. 

Apply (3.3) to nodes 3 and 5 to compute the currents IS1: 

 

( )0
1

11
3

1
3 ),(11

S
XMXM

node
S
node tvhI SS φ++=    (3.7) 

 

( )0
1

11
5

1
5 ),(11

S
XMXM

node
S
node tvhI SS φ++=    (3.8) 

 
where the measurement set is Ms1 =[node1, node3, node4, node5]. Currents computed 

from (3.7) and (3.8) should be either zero or equal to external current excitations at these 

nodes.  Then S1 is concluded as fault- free by Corollary 2 and internal voltage Vx6 is 

calculated. 

Subsequently by applying Lemma 5 to fault-free nodes in subsystems S2 and S3, 

{nodes 1, 2, x6,  x8,  x10} with inaccessible decomposition nodes x7, x8, x9, and x10, 5 

equations are obtained with 4 unknown voltages. The unknown voltages Vx7, Vx8, Vx9, and 

Vx10 can be determined and S2 and S3 can be verified as fault-free.  

The results obtained by using Lemma 5 is based on assumption that the fault- free 

nodes are known, since only KCL equations in these nodes can be used to formulate the 

verification equations.  Instead of this ad-hoc approach in Example 3.1, subsystem 

verification can proceed efficiently using newly developed technique described in next 

section for finding ambiguity groups and solving ambiguous equations. 
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3.3. Location of Fault-Free Nodes and Verification 

 
A method for fault-free nodes location and their verification for a linear system 

with N nodes, M measurement nodes and F faulty nodes is described here. Assume that 

M>F. The system of nodal equations can be formulated as follows 

 

[ ] [ ]F
X

M WW
V
V

T +=







00      (3.9) 

 
where T0 is the nominal multi-terminal matrix of the decomposed system (size equal to 

the number of decomposition nodes) , VM  and VX are voltages of measurement nodes and 

unknown decomposition nodes respectively, W0 is a known excitation vector,  and WF is 

an unknown vector of faulty sources at faulty nodes. 

Since, in general, location of fault- free nodes is unknown, it is needed to 

determine the unknown voltages, identify fault- free nodes and verify the fault- free 

equations.  To this end, let us first modify (3.9) as follows 

[ ] [ ]FXM WWVTVT +=+ 021      (3.10) 

   [ ]210 TTT =        (3.11) 

and move the first term from the left-hand side to the right-hand side and combine it with 

the right-hand side vector to get 

[ ] [ ]FoX WWVT += ˆ
2      (3.12) 

where 

[ ] [ ] Mo VTWW 10
ˆ −=       (3.13) 
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is a known vector. Let us formulate the ambiguity group matrix 

[ ]02 ŴTB =       (3.14) 

This matrix has N rows and N-M+1 columns. 

  Since the entries in vector WF corresponding to faulty nodes are nonzero while the 

entries corresponding to fault- free nodes are zeroes, N-F equations can be obtained from 

(3.12) with N-M unknowns if the exact location of the faulty nodes is known. Hence, the 

unique solution to all VX can be determined. To avoid a combinatorial search for faulty 

nodes, the ambiguity groups locating technique in Section 2.3.2 can also be utilized here 

to efficiently locate all fault-free nodes. It is based on QR factorization to find a 

numerically stable solution of over determined system. The primary idea is to find 

dependent relationship among the rows of matrix B, that is, to identify the ambiguity 

groups in (3.12) with the maximum size. The QR factorization and swapping is applied 

together with corresponding theoretical results described in Section 2.3.2. A new lemma 

is developed below to locate the maximum number fault- free nodes. 

 
Lemma 6: 

If M>F and matrix B has full column rank ambiguity group, then the row indices 

of the sub-matrix which form this ambiguity group are fault-free nodes, and all the 

subsystems incident to these nodes are fault free. 

 

Example 3.2 

Example 3.2 is provided to illustrate the location of fault- free nodes. The system 

has 6+1 nodes with one of nodes being reference. The measurements are taken on nodes 
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{1, 3, 6} whose node indexes are circled in Figure 3.3 and the fault-free nodes are nodes 

{1, 4, 5, 6} which are points filled in black. The parameters are as below: 
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Figure 3.3 Fault-free nodes location for example 3.2 

 
   

By (3.14), 6x4 matrix B is obtained for analysis. Applying ambiguity group 

locating techniques in Section 2.3.2, a 4x2 linear combination matrix C is obtained after 

QR factorization and column swapping as follows 

 



















=

0.0000    0.6667    
1.7143    2.5357    

4.0714-   4.8869-   
1.0000-   1.7500-   

C  

with its basis including nodes {5, 1, 4, 3} and co-basis nodes {2, 6}. The unique zero 

entry in C indicates that the ambiguity group {5, 1, 4, 6} is located. According to Lemma 

6, this group contains fault- free nodes. 
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The above method to locate fault- free nodes is based on linear nodal analysis, thus 

is only applicable to linear system. For nonlinear network, Lemma 6 can be used to 

implement the location of fault-free nodes with incident current i
cI  computed by (3.2). 

Note that in a nonlinear system only measurement nodes should partition the nonlinear 

systems.  

  After location of fault-free nodes and faulty subsystems, computation efforts 

required by faulty parameter location are limited. Since there is no strict requirement for 

computer memory and testing time in today’s medium or small scale analog test, the 

choice for faulty parameter location techniques inside faulty subsystem is versatile such 

as the techniques provided in part V of [43] or the techniques provided by other 

references for linear analog networks [21, 39] and for nonlinear analog networks [13]. 

  For the linear network, equation (30) in [43] can be utilized to compute external 

currents. For the network with faulty nonlinear parameters, fault model of nonlinear 

components can be utilized to locate faulty nonlinear parameters. For the network with 

faulty linear parameters and fault-free nonlinear parameters, utilize nonlinear system 

solver such as Pspice to locate the faults. 

 

3.4. Example Circuit 

 
To illustrate the efficiency of the developed  approach and to compare the 

developed approach and the method in [43], Example 5 in [43] is selected. Figure 3.4 is 

the first stage of analog filter benchmark circuit. The equivalent circuit for operational 

amplifier is outlined in Figure 2.6. The nominal circuit component values are the same as 



 
 
  77 

  

 

Figure 3.4 Active low-pass filter 

 

that illustrated in Figure 9 of [43]: (all resistors in Ωk  and capacitors in Fµ ): R1=0.182, 

C2=0.01, R3=1.57, R5=2.64, R6=10.0, R7=10.0, R9=100.0, R10=11.1, R11=2.64, 

C12=0.01, R14=5.41, R15=1.0, R17=1.0, C18=0.01, R19=4.84, R21=2.32, R22=10.0, 

R23=10.0, R25=500.0, R26=111.1, R27=1.14, R28=2.32, C29=0.01, R31=72.4, R32=10.0, 

R34=10.0. The decomposed subsystems and the corresponding indexes of subsystems are 

also the same as those in Figure 9 of [43]. For convenience, the decomposed structure is 

shown in Fig. 3.5 here. 

 The faulty components are R15=0.2kΩ, R17=2.0kΩ, R27=11.14 kΩ, and 

C18=0.1µF which lead to faulty nodes {8, 9, 10, 11, 12}. The measurement se t contains 

nodes {1, 3, 5, 10, 14, 17, 19, 37} which are filled black points. The unknown nodal 
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Figure 3.5 Decomposed subsystems 

 

voltages at nodes {6, 8, 12, 15} which are red cross are to be solved by the developed 

approach and fault- free nodes determined. Hence, N=37, M=8, F=5 and M>F. The 

sinusoidal current source to node 1 is ( ) Attj 2000cos01.0)( = . Notice that with these 

limited measurements, the method presented in [43] would not apply since there is no 

single fault-free node with all incident subsystem voltages measured. 

The first step is to locate the fault- free nodes by the techniques in Section 3.3. The 

37x31 matrix B is constructed by circuit nominal values and measurement vector VM. 

After QR factorization and swapping operations, a 31x6 linear combination matrix C is 

obtained. The ambiguity group located is {1—7, 13—37} which matches the fault- free 

nodes in real case. The second step is to decompose the system into subsystems by 

measurement nodes plus nodes {6, 8, 12, 15}. 

Applying Lemma 5 to fault-free nodes {1, 3, 5}, 3 equations with 2 variables V6 

and V8 can be obtained as follows 
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After solving and verifying, the solution vector is  

 
[ ] [ ]i0.54964+ 6.5672-i2.0362+ 24.329-86 =VV  

 
  Similarly, by applying Lemma 5 to fault-free nodes {14, 17, 19}, 3 equations with 

2 variables V12 and V15 can be obtained and the solution vector is  

 
[ ] [ ]ie1.522- 1.429e6.629+ 3-6.912e   -1-2

1512 ××=VV  

 
According to Lemma 5, subsystems {S9, S16} are declared as faulty. To locate and 

verify the faulty parameters, techniques in Section 2.3.2 is utilized. The faulty parameters 

are declared as {R15, R17, R27, C18} which are the exact answer.  

 

3.5. Conclusion 

 
To address the increased complexity and reduced accessibility problems in large-

scale analog testing that dominate the market of mixed-signal systems or SoC products in 
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recent years, fault location by decomposition technique  is generalized in this chapter. The 

system topology and the nominal parameter values are ava ilable before testing. The 

decomposition of the whole system into subsystems is implemented and ambiguity group 

finding technique is used to locate fault- free decomposition nodes. While in the 

traditional decomposition techniques only the accessible nodes can be decomposition 

nodes, in this chapter some inaccessible nodes can also be used as the decomposition 

nodes.  A new approach developed in this chapter calculates inaccessible nodes nodal 

voltages under faulty condition. The benefits resulting from this work include reduction 

of test requirements for the number of accessible nodes and increase in the flexibility of 

decomposition. By checking the consistency of KCL equations for the decomposition 

nodes, faulty subsystems and subsequently faulty parameters can be located. Testing 

conditions are independent of the system and excitation types, thus this approach is 

applicable to both linear and nonlinear systems, and to both time domain and frequency 

domain. The developed technique is particularly effective for large-scale analog systems 

with limited accessibility. The same example circuit as that in classic decomposition 

research is utilized to demonstrate the efficiency of the developed  technique with positive 

results. 
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CHAPTER 4 LOCATING CATASTROPHIC FAULTS 
 

4.1. Stuck Fault Model and Catastrophic Fault Location 

 

Lack of effective fault model is another problem for analog test and fault 

diagnosis. Simultaneously, digital test is much more developed than analog test. 

Conceivably, some analog test researchers and test engineers tried to apply some 

successful digital fault models to the area of analog test. This is a promising strategy 

because Design- for-Testability (DFT) and Built-in-Self-Test (BIST) in analog and mixed 

signal test are two obvious and successful examples that utilize the working paradigms 

used in digital test. As the most widely used fault model in digital test, stuck-at-1/0 model 

combined with output logic level monitoring can also find its counterpart in analog test. 

In digital stuck-at 1/0 model, it is assumed that all failure mechanisms manifest 

themselves as a single node stuck at logic 0 or 1. Based on this model, many digital test 

algorithms and techniques were developed [50]. 

There are two kinds of faults in the test area: parametric (soft fault) and 

catastrophic (hard) faults. When circuit parameter is deviated from its nominal value 

more than its allowed tolerance, it is called a parametric fault. The techniques discussed 

in former chapters are very effective to test and diagnose those parametric faults. 

Catastrophic faults such as open circuit and short circuit are serious faults, and most of 

faults occurring in reality are catastrophic faults. Fig. 4.1 illustrates a broken signal line 

in CMOS circuit manufacturing. In Fig. 4.2, a signal line is open, connected with another 

signal line (bridging fault), or shorted to the ground. 
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Figure 4.1 Broken signal line in analog manufacturing 

 

 

Figure 4.2 Open fault, bridging fault , and short-to-ground fault 

 

Since analog manufacturing and digital manufacturing process are almost the 

same, stuck-at 1/0, bridging, and stuck-open faults also happen in analog manufacturing 

process, especially with today’s increased complexity and increased die size of analog 

chips originated from different short, bridging or open failure mechanisms. The models 

of stuck-at, bridging and stuck-open faults have been reported in [4, 25-28, 51] and their 

applications are from analog fault simulation [4, 52], test generation [4, 52], to fault 

detection [53]. To test and diagnose these faults, the primary tactics of these fault-based 
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approaches are to utilize a dictionary approach through a comprehensive simulation on 

the circuit with inserted fault model before the test. Fault detection and location is 

determined by the comparison between measured signature and the signature 

precompiled and stored in the fault dictionary. Hence it requires many simulations and 

extensive fault dictionary. 

In this chapter, an ideal switch is utilized to model those catastrophic faults and a 

new approach is developed to locate multiple stuck-at 1/0, bridging and stuck-open faults 

by verification approach without repetitive simulation needed for fault dictionary [54]. 

An ideal open switch is inserted between the potential faulty nodes under fault- free 

condition. The switch is closed to connect two different circuit nodes together to model 

bridging fault (Fig. 4.3). A switch is inserted between the potential faulty node and the 

potential fault source – voltage source or ground. It is closed under faulty state to model 

stuck-at-1/0 fault (Fig. 4.4). To model a stuck-open fault, a switch is inserted in series 

with a line or a component. It is open when stuck-open fault occurs (Fig. 4.5). 

Simultaneously, such a serial switch together with an unknown-value admittance 

component can model the parametric faults. 

In Section 4.2, constitutive equations of ideal switches derived from the KCL are 

combined with the other constitutive equations of circuit parameters to construct 

modified nodal equations for the newly resulting circuit. Note that the ideal switches do 

not exist physically in the circuits. The ambiguity group locating technique in Section 

2.3.2 for multiple analog fault diagnosis is utilized to detect and locate all these faults 

exactly based on the limited measurements of circuit responses in Section 4.3. There is no 
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need for repetitive simulation comparing with other catastrophic faults location 

techniques such as fault dictionary approach. The effect of locating stuck-at, bridging and 

stuck-open faults is modeled with full precision of resulting test conditions. In Section 

4.4, an analog IC - µA741 is given as an example. Conclusions are drawn in Section 4.5. 

 

Figure 4.3 Bridging fault 

 

 

Figure 4.4 Stuck-at-0 fault 

 

 

 

Figure 4.5 Stuck-open fault 

 

4.2. Application of Stuck-at, Bridging and Stuck-Open Model 

 
Based on the same assumptions as those in Chapter 2, applying KCL to each node 

of the CUT and all circuit parameters that do not have an admittance description, the 
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same modified nodal equations as the one in Chapter 2 (Equation 2.1) is obtained. It is re-

written as follows for convenience: 

ggg WXT =        (4.1) 

Assume that research interests are only focusing on s potentially stuck faults in 

the CUT: ss of s are stuck-at and bridging faults and so of s are stuck-open 

faults(s=ss+so). The ideal open switch vSW (v=1, 2, … ss) is inserted between each pair 

of nodes vi  and vj  which has a potential for a bridging fault. Nodes vi  or vj  is 

connected to voltage source for stuck-at-1 fault, or ground for stuck-at-0 fault. Current 

vI  flows from node vi  to node vj  [Fig. 4.6]. For stuck-open fault, a shorted switch 

SWv (v=1, 2, …, so) is between iv and a newly created node jv. 

 

 

Figure 4.6 A model of ideal open switch 

 
 

According to KCL, the constitutive equation to describe the ideal switch vSW  is 

as follows: 

0)1()( =−+− vji IFVVF
vv

    (4.2) 

where variable F is 0 for the open switch and 1 for the closed switch [35]. Totally, s such 

equations are obtained. 
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Simultaneously, current vI  is added to KCL equation at node vi  while vI  is 

subtracted from KCL equation at the node vj . Therefore, the coefficient matrix of the 

modified nodal equations is augmented by one ideal switch vSW  [Fig. 4.7]. 

 

 

 

 

Figure 4.7 Modified coefficient matrix with an inserted switch 

 

The resulted modified nodal equation with all s switches is as follows: 
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where Isxs is a sxs unit matrix, and 0sx1 is a sx1 zero vector. 

Let us define an gxs matrix A which is to describe the locations of ideal switches 

in the circuit: 

[ ]
ss jijiji eeeeeeA −−−= …

2211
    (4.4) 

And let F be a diagonal sxs matrix of switch values 
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Hence, the coefficient matrix in (4.3) has the following form 













− sxs
T

g

IFFA

AT

)1(
 

For fault- free circuit, all switches in stuck-at and bridging models are open, i.e., 

F=0. For faulty circuit, only switches corresponding to stuck-at and bridging faults are 

closed, i.e., Fk=1, while the remaining switches are still open. This observation is 

reversed for the stuck-open models. 

  For simplicity, all switches in stuck-at and bridging models are separated with all 

switches in stuck-open models in modified nodal equation (4.3), which can be 

implemented by matrix permutation. Hence, matrix A is separated as 

[ ]soss AAA =       (4.5) 

Applying (4.3) to fault- free circuit, we will obtain 

000 WXT =        (4.6) 

where X0 is an (g+s)x1 solution vector, W0 is an (g+s)x1 excitation vector, and 

(g+s)x(g+s) coefficient matrix  
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  Suppose that only f of s stuck faults really occurred in the faulty circuit. Among f 

faults, there are fs of ss stuck-at and bridging faults and fo of so stuck-open faults 

(f=fs+fo). Therefore, only fs of ss switches in stuck-at and bridging models are closed 

while the remaining ss-fs switches are still open. Similarly, fo of so switches in stuck-

open models are open, while the remaining so-fo switches are closed. Assume that 

excitations for faulty circuit are the same as those of fault-free circuit, and all f switches 

are permuted for simplicity such that all fs and fo switches are ordered first among ss and 

so switches, respectively. The modified nodal equation for faulty circuit is: 

 

000 )()( WXXTTTX =∆+∆+=     (4.7) 

TTT ∆+= 0        (4.8) 

XXX ∆+= 0       (4.9) 

where 
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[ ])()( fosogxgxfofsssgxgxfs AAAAA −−=    (4.11b) 
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In (4.10), [Aso | Afo] denotes removing sub-matrix Afo from the matrix Aso. Define 

two (g+s)xf matrices Pf and Qf as follows: 
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then T∆  is the matrix product of Pf and Qf
T: 

T
ff QPT =∆        (4.15) 

and (4.7) can be re-written as 

000 )()( WXXQPT T
ff =∆++     (4.16) 

After substituting (4.6) into (4.16), X∆  can be solved by 
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XQPTX T
ff

1
0
−−=∆       (4.17) 

Denote an (l+s)x(l+s) matrix S0 as follows 

1
0210 ]...[ −

+ −== TsssS sg      (4.18) 

and rewrite vector X in a scalar form: 

T
sg IIIxxxX ]......[ 2121=     (4.19) 

where ),...,2,1( sgvs v +=  is an (g+s)xg vector while ),...,2,1( gvx v =  and 

),...,2,1( svI v =  are numbers. 

Denote the matrix product of S0 and Pf as SF, and product of Qf
T and X as Fλ : 
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where the faulty set F represents the set of all the stuck faults and SF is an (g+s)xf 

matrix while Fλ  is an fx1 vector. 

Now (17) can be re-written as 

FFSX λ=∆       (4.21) 

The remaining work is to analyze this equation by limited measurements of circuit 

responses. Assume that the first m elements of X∆  can be measured and smf <<+ 1 , 

following equation can be obtained 
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Thus, the following test equation is obtained by only considering the first part of the 

above equation: 

M
FMF XS ∆=λ       (4.23) 

Here MFS  is an mxf matrix whose columns correspond to stuck faults in the CUT. 

Similarly MSS  is an mxs matrix whose columns correspond to all of the potential stuck 

faults in the CUT, where S indicates the set of all potential faults, i.e., all ideal 

switches. The test equation (4.23) plays an important role in relating the limited circuit 

output measurements with the stuck faults in a linear way. 

 

4.3. Stuck Fault Location 

 
To locate stuck faults in the CUT, let us analyze the test equation. The right-hand 

side of (4.23) is a known vector and the left-hand side is the product of an unknown 

coefficient matrix MFS  and an unknown solution vector Fλ . Note that matrix MFS  is 

the set of selected columns of the known matrix MSS . The columns of MFS  correspond to 

the locations of switches, i.e., stuck faults while the columns of MSS  correspond to the 

locations of all inserted switches. And matrix MSS  has more columns than rows since 

m<s by restriction in Section 4.2. The idea in this work to identify the faults is to identify 

the minimum size ambiguity group in test equation by finding the minimum number of 

independent columns in matrix MSS  that satisfy test equation. The numerically efficient 
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ambiguity group locating technique in Section 2.3.2 to multiple analog fault location is 

utilized here to identify stuck faults. 

An important observation is that the  process derived in Section 4.2 only considers 

stuck-at, bridging and stuck-open faults ignoring circuit parametric deviations for 

simplicity. Hence, parameter verification is omitted and only fault detection and location 

in fault diagnosis are discussed here.  However, the developed approach can be applied to 

the mixed fault condition – multiple stuck-at, bridging, stuck-open faults and multiple 

parametric faults. Test equation (4.23) still holds while only the structural matrices A, Af 

must be expanded to include the parametric faults. Consequently, parameter verification 

is required after the fault location. 

 

4.4. Example Circuit 

 

The classical Fairchild µA741 operational amplifier is selected to demonstrate the 

developed approach. A simplified schematic of µA741 is shown in Fig. 4.8 [35]. The 

negative feedback configuration is the circuit under test [Fig. 4.9] with a small signal 

voltage input ttV in π120sin01.0)( = . The small signal model of bipolar junction 

transistors (BJT) in Fig. 4.10 is applied to all 18 BJTs for simplicity. There are 21 nodes, 

48 resistors, and 18 voltage-controlled-current sources in the CUT. The nominal values of 

circuit parameters are indicated in figures. Note that the external potentiometer REXT in 

Fig. 4.8 is equally divided into two resistors with a value of 5kΩ. 
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Figure 4.8 A overall schematic of the Fairchild µA741 operational amplifier 

 

Figure 4.9 Negative feedback configuration of µA741 

 

 

Figure 4.10 The small signal model of BJT 
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For simplicity, only 5 suspicious stuck-at-0 faults are considered that are located 

between node pairs {9, 0}, {12, 0}, {13, 0}, {15, 0}, {17, 0}. Thus 5 open ideal switches 

are inserted between these nodes pairs. The first two ideal switches are supposed to be 

closed in the faulty circuit. Nodal voltages are measured at nodes {3, 6, 14, 16}. Hence, 

n=20, f=2, s=5, m=4 and f+1<m<s. The measured nodal voltage deviations are 
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which obviously is not a zero vector indicating that faults are detected. 

Applying ambiguity group locating technique to test equation, a 3x2 matrix C is 

obtained after Gaussian elimination and QR factorization with column permutation {3, 2, 

4, 1, 5}: 
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C  

Thus the basis of ambiguity group is {3, 2, 4} which correspond to the 3rd,  2nd, and 4th 

switches respectively. The co-basis is {1, 5} corresponding to the 1st and 5th switches. 

By analyzing matrix C, there is only one suspicious ambiguity group {1, 2}. 

According to the algorithm in Fig. 2.3, this is the minimum size ambiguity group. The 

conclusion is drawn that switches {1, 2} are closed, i.e., there are two stuck-at-0 faults on 

nodes pairs {9, 0} and {12, 0}, which are the exact solutions for this CUT. 
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4.5. Conclusions 

 

Because  analog and mixed signal test and fault diagnosis are less advanced than 

digital test, conceivably, digital test techniques greatly influence the analog test. As a 

widely used paradigm in digital test, stuck-at model together with the output monitoring 

have been applied to analog area to model open, bridging or short failure mechanisms. 

These fault models are increasingly important for today’s SoC solutions with increased 

complexity and increased die size of analog and mixed signal designs. In this chapter, 

such models are utilized to locate faults by verification approach rather than by dictionary 

approach typically used in such case. With the known circuit topology, ideal switches are 

inserted to connect the suspicious circuit nodes. Under normal conditions, all ideal 

switches are open (closed) while some of them are closed (open) under faulty conditions. 

The circuit topology is modified by inserted switches and new modified nodal equation is 

established based on KCL equations. A newly developed approach to multiple fault 

diagnosis is applied to identify the faults. 

Avoiding the combinatorial search of suspicious stuck-at and stuck-open faults 

reduces computation cost of multiple fault location. The developed approach can also be 

applied to the mixed faults condition – multiple stuck-at, bridging, and stuck-open faults 

together with multiple parametric faults. Finally, a commercial analog IC is provided as 

an example to demonstrate the developed approach. 
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CHAPTER 5 CONCLUSIONS 
 

5.1. Summary of the Research Results 

 

With fast development in mixed-signal systems and System-on-Chip products, 

there is an urgent need to develop effective, highly automated and systematic paradigms 

for analog and mixed-signal test and fault diagnosis. One driving force which stems from 

economic considerations is to reduce test cost and time. Another one stems from the fact 

that in today’s analog test area: analog test lags far behind digital test and the computer-

aided test software is less developed than the design software. So that the ratio of analog 

test cost to system test cost is disproportionally higher than the ratio of analog area to the 

whole system. The significance of the research in this area is to keep a reasonable balance 

for different blocks tests within a complex system. Analog test is also beneficial to 

correcting design flaws, reducing time-to-market, increasing manufacturing yield, and 

reducing a system cost. There are several challenging problems in analog and mixed-

signal test and fault diagnosis.  Ambiguities such as tolerance, nonlinearity and limited 

measurements prevent us from accurate computation and accurate measurement. 

Increased complexity and  reduced accessibility exist in today’s highly integrated systems. 

There is no effective analog fault model to relate fault coverage with performance. 

Finally, an increased analog test cost is becoming the bottleneck for mixed-signal system 

development. 

All analog test problems mentioned above are explored in this dissertation 

[Chapter 2-4]. Based on the ambiguity group locating technique, a verification technique 
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is developed in Chapter 2 to address the ambiguity problem for the purpose of accurate 

computation. Circuit topology and nominal circuit parameters are known before test.  

Different methodologies in exc itation, measurement, mathematical tools, and network 

theory are utilized to establish a fault diagnosis equation to relate the limited 

measurements with faulty parameters in a linear way. Ambiguity group locating 

technique is developed to efficiently search for a minimum size ambiguity group. This 

group can satisfy the fault diagnosis equation and is critical for the final solution of faulty 

parameters. After location of a minimum ambiguity group, deviations and other 

parameters under faulty case can be accurately computed and verified. Simultaneously, 

an advanced technique to eliminate the Gaussian elimination and swapping operations in 

the ambiguity group locating technique is developed to reduce more computational cost. 

It is based on multiple excitations and multiple measurements approaches. The 

experiments on example circuits are positive for those verification techniques. 

Verification techniques developed in Chapter 2 can accurately compute parameter 

deviations. They are extremely effective for analog circuit with very limited accessible 

nodes. Comparing with combinatorial search in traditional fault verification approaches, 

computation cost is greatly reduced. 

To address the problems of complexity and accessibility, a large scale system is 

decomposed into smaller subsystems. In a typical decomposition approach, all 

decomposition nodes have to be accessible for voltage measurement. This restriction on 

accessibility is removed in Chapter 3, so that some specific inaccessible nodes can be 

used as decomposition nodes by computing their nodal voltages. Fault- free nodes among 

decomposition nodes are first located by ambiguity group finding technique. Then, faulty 
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subsystems and subsequently faulty parameters can be located by checking consistency 

of KCL equations on the decomposition nodes. New lemmas and corollaries are proposed 

to calculate nodal voltages of inaccessible nodes  under faulty condition if the 

lemma/corollary conditions are satisfied.  

The contribution of this work lies in the fact that test requirements for 

accessibility is relieved and that the decomposition flexibility is increased. The developed 

technique is particularly effective for large-scale analog systems with limited 

accessibility. It can be applied to linear and nonlinear systems in both time domain and 

frequency domains. The same benchmark circuit as that in traditional decomposition 

approach is utilized to illustrate the efficiency and improvement of the generalized 

decomposition over traditional decomposition. 

Digital stuck-at-1/0 model is successful in modeling catastrophic faults in digital 

test. In Chapter 4, ideal switch is used in stuck fault model for analog catastrophic faults 

such as open, short and bridging. These fault mechanisms are frequently encountered in 

mixed-signal system and SoC market. For each faulty case, one switch is inserted. It is 

open or close corresponding to faulty or fault-free condition. The system equation is 

expanded by appending to it all switches’ constitutive equations. To locate multiple 

analog catastrophic faults, a location approach by verification is designed eliminating 

repetitive simulation requirement among traditional stuck faults location techniques – for 

instance in a dictionary approach. The developed approach can also be applied to the 

mixed faults condition – multiple stuck-at, bridging, and stuck-open faults, together with 

multiple parametric faults. Simulation experiment on a commercial analog IC 

successfully locates all the stuck faults. 
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Significant increasing cost and time is absolutely the most critical problem in 

analog test. How to reduce test time and reduce one of the test cost, computational cost, is 

present in all the research efforts in this dissertation. The repeating pattern in all research 

works is to develop computer-aided techniques for fast and computationally efficient 

testing [55]. 

 

5.2. Recommended Future Work 

 

In this dissertation, most analog test problems are explored. Due to the time 

limits, some problems are not on the research list. 

Examples of ambiguities problems consist of limited measurement, tolerance and 

non-linearity. Verification techniques are to address the problem of limited 

measurements, but the problems of tolerance and non- linearity are left out. The future 

research to find out some solutions to these two ambiguity problems is expected. 

Although the stuck fault model can represent the catastrophic faults in analog 

manufacturing, some researchers pointed out that the real catastrophic fault mechanism in 

analog circuits is much more complicated [4]. Until now, the  researchers do not have a 

full understanding about the analog catastrophic fault mechanism. More explorations are 

needed in future and  a new analog fault model is strongly needed. 
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Analog and mixed-signal test and fault diagnosis play an essential role in circuit 
design, device production, and instrumentation maintenance. The driving forces for this 
research consist of economic factors such as time/cost consideration, and the fact that 
analog test and diagnosis lags far behind digital test. The benefits include correcting 
design flaws, reducing time-to-market, increasing manufacturing yield, and reducing the 
system cost. Fault diagnosis has three tasks: fault detection to find the faulty systems, 
fault location to identify the faulty parameters, and parameter evaluation to calculate 
deviations. The difficulties for analog and mixed-signal test and fault diagnosis are 
coming from ambiguities, increased complexity, reduced accessibility, lack of effective 
fault models, and increasing test cost.  

In this dissertation, above problems are explored. A verification technique based 
on the ambiguity group locating technique is developed to address the ambiguity 
problem. Deviations can be accurately computed and fault location is computationally 
efficient. 

To decrease complexity and increase accessibility, a large scale system is 
decomposed into smaller subsystems. A restriction on accessibility in traditional 
decomposition is removed, so that some specific inaccessible nodes can be computed for 
their nodal voltages. 

An ideal switch is used to model catastrophic faults. To locate multiple analog 
catastrophic faults, an analog stuck fault location approach is designed eliminating 
repetitive simulation requirement among traditional stuck fault location techniques. 

The significance of the dissertation research is that efficient and systematic 
solutions are provided for analog test and multiple fault diagnosis, which are applicable 
to the general background analog systems. 

 
 
 
 
 
 
Approved: _______________________________________________ 

   Signature of Director 



 

  

 

 


