

EFFICIENT GENERATION OF REDUCTS AND DISCERNS FOR

CLASSIFICATION

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

James T. Graham

June 2007

This thesis entitled

EFFICIENT GENERATION OF REDUCTS AND DISCERNS FOR

CLASSIFICATION

by

JAMES T. GRAHAM

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Janusz A. Starzyk

Professor of Electrical Engineering and Computer Science

Dennis Irwin

Dean, Russ College of Engineering and Technology

Abstract

GRAHAM, JAMES T., M.S., June 2007, Electrical Engineering and Computer Science

EFFICIENT GENERATION OF REDUCTS AND DISCERNS FOR

CLASSIFICATION (116 pp.)

Director of Thesis: Janusz A. Starzyk

The intent of this thesis is to improve on existing algorithms for determining

classification rules by reducing the computational time to generate the reducts of an

information system. Determining all reducts is an NP (Non-deterministic Polynomial

time) complete problem and, therefore, as the data set grows in size, the time required for

computation rapidly exceeds what is practical. This thesis has been able to significantly

reduce the amount of time it takes to perform these computations. While the problem is

still NP complete, the amount of time required by the methods introduced is less than

other well-known methods provided by other software packages such as Rosetta [Ohr99]

and RSES [RSES2].

Despite the reduct generation time improvements, larger databases still take far

too long for effective reduct determination; therefore, heuristic non-exhaustive methods

were also evaluated. In practical applications of rough sets, it is important that the

obtained reducts retain most of the information about the original problem. In these

applications, reducts of a dataset are used as classifiers to determine the “rules” for

classification. The second half of this thesis proposes a method for rapidly producing

effective classifiers of sufficient quality to get classification results of equal or better

quality compared to exhaustive methods. The proposed method gives results that are at,

or near, the same quality as those obtained from using the exhaustive method in only a

fraction of the computational time.

Approved:

Janusz A. Starzyk

Professor of Electrical Engineering and Computer Science

Acknowledgements

I would like to acknowledge and thank all of the people that have assisted me with my

Master's thesis at Ohio University. This thesis could not have been completed without

their assistance.

First, I would like to thank my advisor Professor Janusz Starzyk for assisting me with my

research. He has spent many hours advising me and has reviewed my work countless

times. The members of my committee, Professor Savas Kaya, Professor Maarten Uijt de

Haag, and Professor Xiaoping Shen, also deserve my thanks for taking the time out of

their schedules to assist me in completing my Masters Degree.

I would also like to thank the Department of Electrical Engineering and Computer

Science for their financial support in the form of a Teaching Assistantship.

Finally, I would like to thank my parents for their help. Their constant interest in my

progress and willingness to read my work for clarity and correctness has been of great

help.

5

Table of Contents

Page

Abstract ... 3

Acknowledgements... 4

List of Tables .. 7

List of Figures ... 8

1. Introduction... 9

1.1 Background... 9

1.2 Research Objective and Thesis Organization ... 12

2. An Improved Exhaustive Reduct Determination Method .. 15

2.1 Introduction... 15

2.2 Prior Research on Reducts .. 15

2.3 Definitions and Notation... 17

2.4 The Reduct Generation Algorithm.. 19

2.5 A Finding Reducts Example ... 23

2.6 A Classification Based Example... 28

2.7 Improvements to the Reduct Generation Algorithm... 36

2.8 Testing of the Reduct Generation Algorithm.. 39

2.9 Discussion of Results.. 41

2.10 Conclusions... 45

3. Generating Rules from Classifiers .. 47

3.1 Introduction... 47

3.2 Rule Generation .. 47

3.3 The Rule Generation Algorithm ... 49

3.4 Examples... 50

6

3.4.1 Random Example... 51
3.4.2 The Iris Example.. 56

3.5 Closing Remarks... 60

4. A Statistical Approach to Discerns in Classification.. 61

4.1 Introduction... 61

4.2 Prior research on partial reducts ... 62
4.2.1 The Genetic Algorithm .. 62
4.2.2 Set Covering Heuristics ... 63
4.2.3 Approximate Hitting Sets .. 64
4.2.4 Dynamic Reducts ... 64
4.2.5 Ensemble Systems ... 65
4.2.6 Other Methods and Research ... 66

4.3 How Reducts Are Found Statistically... 67
4.3.1 Population Sampling.. 70
4.3.2 Reducts and Discerns in the Sampling Method ... 72

4.4 The Hybrid Statistical Reduct Determination Algorithm 77

4.5 Results and Discussion ... 84
4.5.1 Discussion of Classification Results.. 88
4.5.2 Computational Time .. 92
4.5.3 Confidence Level and Confidence Interval Values ... 94

4.6 Comparison of Standard and Hybrid Statistical Methods....................................... 97

4.7 Conclusions... 100

5. Thesis Conclusions ... 102

5.1 Conclusions... 102

5.2 Future Work .. 104

References... 106

Appendix – Full Tables... 113

7

List of Tables

Page

Table 2.1 – Raw pseudo-random data. ..29
Table 2.2 – Labeled data..30
Table 2.3 – Duplicates removed and inconsistencies reclassified.31
Table 2.4 – Discernibility list. ...33
Table 2.5 – Reduced discernibility list – finding the core. ..34
Table 2.6 – After removing rows containing the core feature(s).......................................35
Table 2.7 – Test with 150 instances, 30 features, and 2 classes.38
Table 2.8 – Tested using RSES 2.2 algorithm...40
Table 2.9 – Tested using improved exhaustive algorithm without prioritization..............40
Table 2.10 – Tested using improved exhaustive algorithm with prioritization enabled....41
Table 2.11 – Reduct generation test for larger data sets..44
Table 3.1 – Sorted data for columns 1 & 3..51
Table 3.2 –Set of discovered rules for 1& 3. ...52
Table 3.3 – Set of all possible reduct based rules..53
Table 3.4 – Reduced set of all possible reduct based rules. ..54
Table 3.5 – Rule based vote count...56
Table 3.6 – Iris database rules. ..57
Table 3.7 – Coverage values vs. correct classification of Iris database.............................58
Table 3.8 – Train/Test ratio vs. correct classification of Iris database.59
Table 4.1 – Sampling for reducts...75
Table 4.2 – Test results for wdbc database. ...86
Table 4.3 – Test results for bcwis database. ..86
Table 4.4 – Test results for wpbc database. ...87
Table 4.5 – Test results for mushroom database...87
Table 4.6 – Classification results for varying confidence values.95
Table 4.7 – Standard method test results for mushroom database....................................98
Table A1 – Full test results for the wdbc database. ...113
Table A2 – Full test results for the bcwis database. ..114
Table A3 – Full test results for the wpbc database ..115
Table A4 – Full test results for the mushroom database...116

8

List of Figures

 Page

Figure 2.1 – Reduct algorithm flowchart diagram...22
Figure 2.2 – Computation time results using RSES. ...42
Figure 2.3 – Computation time results using the improved exhaustive algorithm.43
Figure 2.4 – Direct comparison of RSES results vs. the improved algorithm results.43
Figure 4.1 – Column count difference vs. feature selection iteration................................76
Figure 4.2 – Flowchart of changes to the reduct algorithm. ..80
Figure 4.3 – Exhaustive vs. statistical time to completion for wdbc database.92
Figure 4.4 – Exhaustive vs. statistical time to completion for mushroom database.93
Figure 4.5 – Average number of discerns vs. confidence interval.96
Figure 4.6 – Discern generation time for the standard method. ..99

9

1. Introduction

1.1 Background

In today’s world, large volumes of data are routinely generated for various reasons.

Collecting, correlating, and analyzing this data can be a tedious, time consuming, and

complex job. Several methods have been created to streamline the process. Among them,

rough set theory was developed and used in information systems and data mining to

extract features, learn, classify and otherwise characterize the data by reducing the

information necessary for its representation. Rough sets are a parallel concept to better-

known fuzzy sets and are considered to be a better fit for algebraic representations and

computer based discrete analysis. This thesis is focused on the methodology dealing with

rough sets and more specifically, reducts.

During the early 1980s, Professor Zdzislaw Pawlak, the man who is considered to be the

father of Rough Sets, pioneered the rough set concept of set approximation by using

binary relations, based on the concepts of discernibility (ability to distinguish between

objects). By using a rough set approximation, it is possible to build representative models

of data. In simplistic terms, rough sets allow the placement of approximate boundaries

where the actual location of the boundary based on known data is unknown. Consider a

10

solid circle in a painting program, for example. The program cannot display an exact

circle, and when zoomed in enough individual pixels will be noticeable. The exact

boundary of the printed image of a circle cannot be defined, but it can be approximated

by the rough pixilation. Thus, a rough set has a rough boundary. There will be elements

of a data set that are definitely members of the rough set and those that are definitely not.

These are elements on the interior and exterior of the rough set. Their membership

function is crisp (0 or 1) and known. Elements of the rough set boundary have an

unknown membership function value. This is in contrast to fuzzy sets where membership

values are known, but are anywhere from 0 to 1 (fuzzy). [Paw82]

In Rough Set Theory, a reduct is a subset of features of the greater dataset that, while

reduced in size, contains the same information about the data as the full feature set and

can still be used to differentiate every element within the entire data set. Reducts are

useful because each reduct from a feature set provides a completely discernable picture of

the data set. In particular, within the reduct defined subset there are no inconsistencies

between the various data elements despite the reduction in the number of features present.

Multiple reducts can be obtained for a given data set and the process of reduct generation

is NP hard.

A good source for basic information about the underlying rough set theory and reducts is

in Part II of the work by Aleksander Ohrn [Ohr99]. In his thesis he provides explanations

of the benefits of discernibility based methods for analyzing medical data, and covers

11

much of the basics of reducts. As the creator of the Rosetta software, he needed to treat

the work in depth. The work by Dale Nelson [Nel01] provides a good explanation of

rough set theory and the generation of reducts while also applying the theory to

Advanced Target Recognition (ATR). Herbert and Yao [Her05] show how reducts and

other tools can be used for time-series analysis of stock exchanges. The paper is focused

on finding complete sets of reducts as they provide better coverage of the rules that

govern data dependencies and give statistical protection from noise included in the data

set. Bjorvand and Komorowski [Bjo99] describe the use of genetic algorithms as a

method of producing incomplete sets of reducts, and may be useful as a starting point for

those who wish for less time consuming methods or to use larger data sets. A more

thorough examination of reduct generation methods is presented in Section 4.2 of this

thesis.

The majority of past and present work on the generation of reducts focuses on producing

subsets of the set of all reducts in order to produce results in a manageable time frame. It

was decided to go back and apply existing knowledge to the original problem by

generating a complete set of reducts and then see what could be done to make the time

expenditure more palatable. One may wonder why it would be worthwhile to generate an

exhaustive set of reducts; one reason is simply for greater coverage of a set. When

generating reducts the goal is often to use them to help generate rules to classify a

significantly larger set. While it is true that a reduct can discern all the elements of the set

it is related to, if one extracts the rules from that particular reduct the rules may not give

12

the expected coverage to the full data set. By including a greater number of reducts, or in

this case, all of them, more rules relating to the set can be generated allowing for a

subsequently better and more robust classification.

1.2 Research Objective and Thesis Organization

Reducts are commonly used to describe a larger dataset using a subset of the feature set

because reducts contain the same information about the data as the full feature set and

can still be used to differentiate every element within the entire set. The objective of this

thesis is to improve on existing algorithms for determining reducts by reducing the

computational time to generate all the reducts for an information system. The second

objective is to improve upon existing reduct based classification methods. Existing

algorithms are too slow, too computationally intensive, or not accurate enough. By trying

to improve both exhaustive and non-exhaustive reduct generation methods, it is hoped

that significant improvements can be made in both the time needed for reduct generation

and in the accuracy in non-exhaustive reduct generation.

This thesis is organized into four chapters. Chapter 1 provides is the introduction and

provides the reasoning behind this work as well as an outline of the following chapters.

The bulk of this work is divided into two chapters (Chapters 2 and 4) whose overall goal,

in both cases, is to present a simple, yet effective, method for producing good classifiers

for use on databases in a reasonable amount of time. Chapter 2 provides additional

13

background information and some definition and notation relevant to reducts. Chapter 2

also describes an efficient way to determine complete sets of reducts. In this chapter, it is

shown that the initial algorithm presented is successfully able to reduce the amount of

time it takes to perform these computations. Thus, while the problem remains NP

complete, the amount of time required by the developed method is less than the time

required by exhaustive methods provided by others such as the well known Rosetta

[Ohr99] and RSES [RSES2] software. Despite the time improvements, larger databases

still take far too long for effective reduct determination due to the NP complete nature of

the problem.

Unfortunately, simply generating reducts is not very useful; something needs to be done

with the reducts to apply them in data mining problems. Chapter 3 describes methods for

producing classification rules using reducts. It describes in detail the procedure used to

generate the classification results that are presented in the subsequent chapter.

Chapter 4 uses the basic improvements shown in Chapter 2 and expands upon them in

order to produce an even more effective method for the production of classifiers. It

presents a simple, yet effective, method for producing good classifiers in a reasonable

amount of time using the classification method covered in Chapter 3. Chapter 4 searches

for a faster, but still simple method of determining reducts and was approached with the

knowledge that any non-exhaustive method would be able to find only a fraction of the

possible reducts in a reasonable amount of time. The fourth chapter presents a thorough

14

examination of a non-exhaustive method that uses a heuristic statistical approach to

finding classifiers for use on information systems.

In practical applications of rough sets, it is important that the obtained reducts retain most

of the information about the original problem. In Chapter 4, reducts of a dataset were

used as classifiers to determine the “rules” for classification. Thus, not only was it

necessary to find reducts faster, but a check of the results was required to demonstrate

that they retain the same quality as a full set of reducts. Meaning, it was important to

verify that this new method produced results at or near the same quality as the exhaustive

method could. A check of the results from the proposed method shows that it maintains

the quality of the exhaustive methods and yields computational times that are

considerably shorter, even for vary large databases.

Chapter 5 briefly summarizes the major results and conclusions of this paper. It also

suggests ideas to further improve the quality of the results as well as the computational

time.

15

2. An Improved Exhaustive Reduct Determination

Method

2.1 Introduction

In this chapter, the prior research on exhaustive reduct generation, and basic definitions

and notation used in developing the new reduct generation procedure are discussed. This

is followed by an explanation of the reduct generation algorithm, illustrated with a basic

example and followed by a more complex classification based example. Subsequently,

modifications to the basic algorithm and their effects on the algorithm’s performance are

discussed. Statistical testing compares this algorithm’s performance with RSES using

varying database sizes. The final sections of this Chapter present results and conclusions.

2.2 Prior Research on Reducts

By the nature of the problem, there are very few ways to implement an exhaustive reduct

generation algorithm. Furthermore, because of the time needed for most exhaustive

reduct generation problems to compute, the bulk (and all recent) research on reducts has

been in regards to partial reducts (see Section 4.2). However, there remains a great deal

16

of research regarding the background of reduct generation and the more closely related

alternative classification methods.

As previously mentioned Zdzislaw Pawlak pioneered Rough Set theory and introduced

the concept of reducts [Paw82, Paw84, Paw85]. Furthermore, he provided the basic

terminology and methodology for generating classification results from rough sets via

reducts. Later, Skowron [Sko92] introduced the discernibility matrix as a means of

representing an information system. The discernibility matrix is an effective, if somewhat

memory intensive, tool used in finding reducts. Between Pawlak and Skowron most of

the work regarding exhaustive reducts has been covered, and most other work has been

on less thorough reduct generation methods.

However, there remain a few other methods somewhat related to reducts that can be

examined, for example, fuzzy sets. Fuzzy sets, introduced by Zadeh in 1965 [Zad65]

have an even longer history than rough set theory. Consider a grayscale image; the main

difference between rough sets and fuzzy sets is that fuzzy sets focus more on the grayness

of individual pixel, while rough sets focus more on the boundaries. To put it another way,

a fuzzy set problem has a fuzzy imprecisely defined set membership function, while a

rough set problem has imprecise or rough boundaries, hence the rough set. There has

even been some work done combining the two [Dub90]. Other research on reducts

pertaining to the non-exhaustive methods for reduct generation is referenced in Section

4.2.

17

2.3 Definitions and Notation

The following is an overview of the definitions, notation, and vocabulary for the reduct

methods discussed in this thesis, and relies heavily on the notation as presented in some

of Starzyk’s earlier work [Sta99, Sta00].

Consider the information system , where (U, A,D) },...,{ 1 nxxU = is a nonempty finite

set called the universe, and A = {a1,...,am} is a nonempty set within U , while

 is the set of possible decisions that exist for U. The elements ofD = d1,...,dk{ } A , which

are called attributes or features, are functions

ai :U → Vi, (1)

where is the value set of . In a practical rough set system is a discrete and finite

set of values. For this work, a positive integer label over a user-specified range is used,

usually something like Vi ={0, 1, …, 9}. Elements, , of U are called signals (or

objects), thus assigns the value a

iV ia iV

jx

ia i(x j) to the signal . jx

The discernibility matrix, Ddis, of A is the nn × symmetrical matrix, which contains sets,

cij, of attributes that differentiate signal xi from xj (i ≠ j). Ddis is determined by comparing

all “signals” with all other signals i ≠ j . The symbol λ denotes that the particular

comparison need not be considered because xi and xj (i ≠ j) are of the same class.

18

Ddis = cij[], where cij =
{a ∈ A : a(xi) ≠ a(x j)} if ∃ d ∈ D d xi()≠ d x j()[]

λ if ∀ d ∈ D d xi()= d x j()[]
⎧
⎨
⎪

⎩ ⎪
. (2)

Let . The B-indiscernibility relation is AB ⊆

Ind(B) = {(x, y) ∈ U × U : (∀a ∈ B)(a(x) = a(y))} (3)

Essential for the information system are the reducts that describe knowledge represented

in this system. A set is a discern in A if AB ⊆)()(AIndBInd = . A discern is called a

reduct if)(}){()(BIndaBIndBa ⊃−∈∀ , where “⊃” denotes a proper subset relation. The

set of all reducts of A is denoted . Thus, if a set F is a Discern then ∃)(ARed B ∈ Red(A)

and . In addition, if A is a reduct then for each a, B ⊂ F b ∈ A Dis a{ }()≠ Dis b{ }().

In practical applications, a reduct is a subset of features of a dataset that despite being

smaller than the full dataset preserves discernibility over the universe U of the full

dataset. The core of the information system is defined as a set such that AP ⊆

P B
B d A

=
∈Re ()
I (4)

and a set S is a shell if

∃ ∈ ⊂ ⊂B d A P S BRe () (5)

Thus, a shell contains core attributes necessary to make a reduct, yet it does not remove

all inconsistencies. A shell can be considered the intermediate stage on the path toward a

reduct. Because of this, in this work a shell is sometimes referred to as the scan path or

search sequence.

19

This chapter aims at developing a more efficient reduct generation procedure. The reduct

generation procedure developed in [Sta99] is based on the expansion of the discernibility

function into a disjunction of its prime implicants by applying the absorption or

multiplication laws. This procedure is not sufficiently efficient to allow us to use it with

real-world size problems. The approach taken here is to simplify reduct generation by

first appending the core set with attributes that remove most of the inconsistencies left in

the information system until all the inconsistencies are removed to obtain discerns Bm.

This method makes use of a simple discernibility matrix based heuristic feature selection

algorithm and several other minor and major additions that will be discussed further on.

Bi = Bi−1 + ai; card Ind(Bi−1 + ai)()= min
k

card Ind(Bi−1 + ak)() i = 0,...,m

where B0 = P
 (6)

Once a discern is obtained by this method, it is verified as to whether or not it is actually

a reduct. If not, it is simply not added to the set of reducts that have been found.

2.4 The Reduct Generation Algorithm

This section presents an efficient reduct generation algorithm based on discerns derived

from the discernibility matrix. In the following algorithm, the term “search sequence” is

used several times. The search sequence consists of the sorted set of features yet to be

checked as possible reduct elements at the current search position. It is used in a recursive

20

manner to perform a complete search for reducts. In terms of the preceding notation, the

search sequence is the current shell.

Since much of the computation occurring deals directly with the discernibility matrix, it

was decided to modify it into a more computationally viable form. This form is called the

discernibility list or Dlist. The discernibility list performs the same function as the

discernibility matrix, but “flattens” the discernibility matrix into a single column of sets.

Furthermore, to ease computation, the sets represented by cij are transformed into

Boolean rows. For example, a set a1,a3{ } becomes 1 0 1 0{ } when there are 4

features. This has two advantages; first, it simplifies the process of scanning and reducing

the discernibility data and second, it reduces the data structure size. (A discernibility

matrix is a square matrix, but there is no use for the diagonal or the duplicated results that

exist with cij = cji. See the example following this section for an example of the

discernibility list vs. a discernibility matrix.)

The basic steps in the reduct generation algorithm are as follows:

1. Ensure the data set is scaled to the desired range.

2. Remove duplicates and reclassify initial inconsistencies.

3. Generate the discernibility list and find the core feature(s).

4. Remove rows containing the core feature(s) from the discernibility list.

5. Determine reducts by recursively repeating steps 6-12:

6. Reorder search sequence by feature representation in remaining discernibility list.

7. Repeat steps 8-12, n times with k being the current iteration, where n is the size of the

remaining search sequence. The search sequence is: all the features – Core –

21

existing path (features already scanned), and k is used to the current prioritized

feature to be examined.

8. Remove rows containing feature k from the discernibility list. If no rows are removed,

return to step 7 and check the next k.

9. If the discernibility list is empty, i.e. there are no inconsistencies left, a Discern has

been found and it may be a Reduct. Continue to step 10 to verify the reduct,

otherwise go to step 11.

10. If removing any of the earlier features in the present search sequence does not

introduce inconsistencies, then it is not a Reduct. Go to step 12.

11. Since inconsistencies are still present, recursively call from step 5. Pass to Step 5 the

new search sequence and set of features to be examined minus the feature k just

added (Step 7). Continue to step 12 when the recursive call completes.

12. If the Discern was a valid Reduct add it to a Reduct set to be passed back up the

recursive call path. If nk < increment k and go to step 8 as was specified in step

7, otherwise, continue to step 13.

13. Move back up the recursive path. (Return to step 12.)

Using this algorithm provides a significant improvement in time to completion over the

computation provided by RSES [RSES2] and other exhaustive reduct determination

algorithms. The primary reason for this improvement is the use of a discernibility list and

the prioritization of the scanning of features. Figure 2.1 below gives a visual

representation of the algorithm.

22

Figure 2.1 – Reduct algorithm flowchart diagram.

23

2.5 A Finding Reducts Example

To illustrate this approach a simple example is used. Consider the Decision System

 where),,(TAU

U = x1,x2,x3,x4{ }
A = a1,a2,a3,a4{ }

T =

dog white 3 s
cat white 3 s

horse yellow 0 s
cat red 0 s
dog red 3 t

⎛

⎝

⎜
⎜
⎜
⎜
⎜ ⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟ ⎟

U is the universe, A is the set of attributes, T is the decision table (A decision table

contains values vij = a j (xi) as defined in (2)), and Ddis is the discernibility matrix.

Discernibility matrix, Ddis, differentiates between all signal pairs in T as follows:

Ddis =

a1{ } a1,a2,a3{ } a1,a2,a3{ } a2,a4{ }
a1,a2,a3{ } a2,a3{ } a1,a2,a4{ }

a1,a2{ } a1,a2,a3,a4{ }
a1,a3,a4{ }

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Next, let us take the discernibility matrix and transform it into a discernibility list by

removing the redundant empty spaces, flattening the sets into a single column, and

transforming the sets into Boolean representations.

24

Dlist =

1 0 0 0
1 1 1 0
1 1 1 0
0 1 0 1
1 1 1 0
0 1 1 0
1 1 0 1
1 1 0 0
1 1 1 1
1 0 1 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

There are two minimal reducts to be found in this system.

Reduct1 = a1,a3,a4{ }
Reduct2 = a1,a2{ }

The discernibility list is used to generate Discerns. Each time a new attribute/feature

(with a non-zero column in the discernibility list) is selected it resolves some

inconsistencies. This can be represented by removing those rows from the discernibility

list that have a ‘1’ in the columns that correspond to the selected attributes.

A walk-through of the procedure using the steps of the reduct generation algorithm (refer

to Section 2.3):

Step 1: Ensure the data is properly scaled. Each attribute should have a small number of

discrete values. If the attributes are related to integer or real values, they must be

first subdivided into a few disjoint literals.

Table T is already scaled well enough as it does not contain decimal numbers or a

hundred different values.

25

Step 2: Remove duplicates and reclassify initial inconsistencies.

 There are no duplicates or inconsistencies in this data set.

Step 3: Generate the discernibility list and find the core feature(s).

Dlist is the discernibility list. The Core=a1 since row 1 contains only 1 element

and the element is in column 1, thus making column 1 part of the core.

Step 4: Remove rows containing the core feature(s) from the discernibility list.

 If all rows containing a ‘1’ in column 1 are removed, the result is

 ⎥
⎦

⎤
⎢
⎣

⎡
=

0110
1010

listD

Mathematically one can describe this by saying |Dlist,X| = the number of

rows/inconsistencies remaining in the discernibility list after the rows associated

with the selected set of attributes, X, are removed.

 |Dlist,Core| = 2 ≠ 0 so the remaining set of attributes is considered {a2, a3, a4}.

Step 5: Begin recursive reduct determination by repeating steps 6-12:

Step 6: Reorder search sequence by feature representation in remaining discernibility list.

This can be done by simple summing the columns, ending with a 2 for columns 2

and 1’s for the remaining columns. Since this is the existing search sequence

order, nothing will be changed.

Step 7: For k = 1 to n, where n is the size of the remaining search sequence. The search

sequence is: all the features – Core – existing path (features already scanned), and

k points to the current prioritized feature to be examined. In this case, the search

sequence is: {a1, a2, a3, a4} – {a1} – {∅} = { a2, a3, a4}.

 So k=1 to 3. (with k=1 pointing to a2, k=2 pointing to a3, and so on.)

Essentially, Path = P = Core = {a1} and set r = {a2} have been set, where r is the

candidate element for the reduct.

Step 8: Remove rows containing feature k from the discernibility list. If no rows are

removed, return to step 7 and check next k.

Since a2 has a ‘1’ in both rows, both rows are removed from the Dlist matrix.

Then,

26

 Dlist , r{ } = 2 ⇒ min Dlist ,P , Dlist , r{ }()= 2

and

Dlist ,P ∪ r{ } = 0.

Step 9: If the discernibility list is empty, i.e. there are no inconsistencies left, a Discern

has been found and may be a Reduct.

Step 10: Verify Reduct – If removing any of the earlier features in the present search

sequence does not introduce inconsistencies then it is not a Reduct.

 This step takes the matrix from step 4 and removes features earlier in the path to

see if inconsistencies are, or are not, introduced. In this case, a2 is the only non-

core element in the path and its removal will introduce inconsistencies, so it is

verified that {a1,a2} is a reduct. If the Discern is a valid Reduct then go to Step 12.

If the Discern is not a valid Reduct (inconsistencies are not introduced by

removing at least one of the features from the Discern), then go to Step 11.

Step 12: If the Discern was a valid Reduct, add it to a Reduct set to be passed back up the

recursive call path.

 The newly found reduct is added to a set to later be returned up the recursive path.

Step 13: Move back up the recursive path.

 This would be done if the For loop (steps 7-12) were complete, however, k=2 and

k=3 still need to be evaluated. So the calculation moves back to step 8 with k=2

Step 8: (Now evaluating a3) Since a3 has a ‘1’ present in the second row the Dlist matrix

that row is removed. The search sequence is currently: {a1, a2, a3, a4} – {a1} –

{a2} = {a3, a4}.

Dlist = 0 1 0 1[]

Step 9: The discernibility list is not empty so go to step 11.

Step 11: Else – Inconsistencies are still present.

Recursively call from step 5. Pass the new search sequence and set of features to

be examined minus the one just added to the path.

The search sequence to be passed will be {a3}, and the set of features to be

examined will contain only {a4}

27

Step 5: Begin a new recursive level.

Step 6: Reorder the search sequence. Nothing needs to be done here since the path

currently contains only a4.

Step 7: For k=1 to 1, with k=1 pointing to a4. The search sequence is currently:

{a1, a3, a4} – {a1} – {a3} = {a4}. The attribute a2 is missing because it is

not part of the search sequence in the upper level and so is not passed to

subsequent recursions.

Step 8: Since a4 has a ‘1’ present in the only remaining row the Dlist matrix that

row is removed leaving the matrix empty

Step 9: The matrix is empty, therefore go to step 10.

Step 10: Now the reduct is verified {a1 ,a3, a4} by removing features to see if they

introduce inconsistencies. (The core a1 does not need to be verified

because it is already known that removing it will introduce

inconsistencies.) In this case removing a3 will introduce inconsistencies so

this reduct can be considered verified. (a4 does not need to be checked

because it was the last feature added and it is already known that removing

it will introduce inconsistencies.)

Step 12: The discern was valid so it is added to a reduct set.

Step 13: The For-loop is complete, so the result is passed back up the recursion

path.

Step 12: The reduct from the recursion is added to the existing set.

Step 13: Finish the For-loop and examine k=3.

Step 8: (Now evaluating a4). Since a4 has a ‘1’ present in the second row the Dlist matrix

that row is removed. The search sequence is currently: {a1, a2, a3, a4} – {a1} –

{a2, a3} = {a4}.

Dlist = 0 1 1 0[]

Step 9: The discernibility list is not empty so go to step 11.

Step 11. Else – Inconsistencies are still present.

28

Recursively call from step 5. Pass the new search sequence and set of features to

be examined minus the one just added to the path.

However, the set of features to be examined is empty since a4 is now being

observed, and there are no other features in the search sequence.

And as {a1,a4} cannot be a reduct, the step halts at this point. And go to step 13.

Step 13: Move back up the recursive path.

At this point the reduct set contains {a1,a2} & {a1,a3,a4}. Because the recursion is

at the top level, these reducts represent the full set and are passed back to the main

program.

The preceding example illustrates the reduct finding process, but lacks one significant

aspect, classes. In most real-world problems there is some element of classification

applied to the data set. The next, more complex, example illustrates how the algorithm is

actually implemented and how classifications are taken into account.

2.6 A Classification Based Example

In the following example, the creation of a discernibility list is described in detail and the

theory described above is applied to illustrate a reduct determination problem. This

example is larger, contains labeling and data classifications, and is more in line with what

would be expected in a real-world problem. In real-world problems, feature values often

come from continuous functions rather than discrete symbolic categories. Such data may

describe a typical set of samples with multiple attributes and the problem is to classify

these samples based on the observed attribute vales.

29

The first step in determining the reducts of such a dataset is scaling, or as it is sometimes

called, labeling of the data. Data with symbolic values can be labeled directly, although

assigning different numerical labels to symbols results in different data distributions in

multidimensional feature spaces and may affect the complexity of the classification

process. Floating point data needs to be scaled to a specific range to be properly

categorized. Typically, a nonlinear scaling is applied to render the scaled data to a

uniform distribution to facilitate classification. Table 2.1 represents a set of pseudo-

random data. The data for each column can be of any range or type of value, however, for

demonstration’s sake, this simple set of data was created.

Table 2.1 – Raw pseudo-random data.

Sample Feature 1 Feature 2 Feature 3 Feature 4 Classification
1 .123 .625 .901 .321 1
2 .747 .085 .897 .328 1
3 .101 .605 .925 .293 1
4 .585 .256 .511 .876 2
5 .692 .707 .121 .192 2
6 .321 .606 .901 .307 1
7 .295 .600 .935 .295 2
8 .567 .211 .898 .487 1
9 .075 .815 .456 .815 1

10 .469 .406 .488 .907 2

The labeling process may be based on a simple linear scale using generally recognized

units – for instance shoe size, or may be a result of a more complex labeling process - for

30

instance based on data entropy. Table 2.2 displays the data after it has been linearly

scaled and labeled in a range from 1-5. That is, the range 0 to 0.199 is given the scaled

value of 1; the range from 0.2 to 0.399 is given the scaled value of 2 and so forth. This is

not necessarily the best labeling method available, but was used for simplicity’s sake.

Table 2.2 – Labeled data.

Sample Feature 1 Feature 2 Feature 3 Feature 4 Classification
1 1 4 5 2 1
2 4 1 5 2 1
3 1 4 5 2 1
4 3 2 3 5 2
5 4 4 1 1 2
6 2 4 5 2 1
7 2 4 5 2 2
8 3 2 5 3 1
9 1 5 3 5 1

10 3 3 3 5 2

Once the dataset has been scaled, redundant information is removed to reduce

unnecessary computation time. Specifically, duplicate entries are removed, whether they

were caused by scaling or were present in the original data. Furthermore, so that there are

no inconsistencies in the newly scaled data, identical entries with different classes can

either be removed or reclassified to a new, different class. Removing them is simpler, but

at the cost of reducing the resolution of the results. By reclassifying the inconsistencies to

a new class, their impact on the dataset is retained. In Table 2.3, rows 3 and 7 of Table

2.2 are missing. Row 3 was identical to row 1 and was removed. Rows 6 and 7 possess

31

identical features, but different classifications. (This would tend to happen near

“boundaries” within a dataset where values are close, but classifications are different.)

Therefore, row 7 was removed, and row 6 was reclassified to Class=3.

Table 2.3 – Duplicates removed and inconsistencies reclassified.

Sample Feature 1 Feature 2 Feature 3 Feature 4 Classification
1 1 4 5 2 1
2 4 1 5 2 1
4 3 2 3 5 2
5 4 4 1 1 2
6 2 4 5 2 3
8 3 2 5 3 1
9 1 5 3 5 1

10 3 3 3 5 2

The next step is to find the core of the data set. The core consists of the features that are

common to all reducts. Core features are features that cannot be removed from the data

set without introducing new inconsistencies. There are two principal ways to determine

the core. The most straightforward method (in that it is the first method most people

would initially attempt) is to simply remove one feature at a time and check for

inconsistencies. If any inconsistencies show up, the feature is a core feature and must not

be removed to maintain the initial feature set discernibility property. The other method is

to build a discernibility list and determine the core from that matrix by looking for rows

in the discernibility list that contain only 1 element, indicating that this specific element

is the only thing differentiating the two signals represented by the discernibility list. The

32

straightforward method, while obvious, is time consuming as a result of the need to

constantly check for inconsistencies. In contrast, building a discernibility list places all

possible inconsistencies in one location and does not need to be regenerated time and

again.

Because of the way the discernibility list is built, the fact that the maximum number of

rows is n(n −1) 2 is known, or is in this instance, 45. This maximum size matrix results

from comparisons between all signals of the data set. For example, in a 10 signal data set,

signal 1 is compared with signals 2 through 10, signal 2 is compared with signals 3-10,

and so on. The comparison consists of comparing the feature elements of each signal pair

to see if they are equal or not. Since the point of interest is in differences between signals,

different features are indicated by a ‘1’, while equivalent values are indicated by a ‘0’.

This allows a Boolean discernibility list to be built. Using a Boolean matrix saves

memory and allows for operations on the discernibility list to be performed faster than if

the same or equivalent operations were done by another method. Table 2.4 shows the

discernibility list generated based on data from Table 2.3.

Once the discernibility list has been created, it is a simple process to determine the core.

First, in order to speed computations, both now and during future calculations,

comparisons between signals of the same class need to be removed. These comparisons

provide no useful information. With respect to determining the core, they are not relevant

because the lack of a “core feature” in a discernibility list entry will not introduce any

33

inconsistencies in the data set. Nor, for the same reason, is it necessary to make

comparisons between signals of the same class for finding reducts later on. The reduct

determination process is not concerned with differences between signals of the same

class, only between signals of different classes. Thus, all the following comparisons can

be removed: 1-2, 1-8, 1-9, 2-8, 2-9, 4-5, 4-10, 5-10, and 8-9.

Table 2.4 – Discernibility list.

Comparison Feature 1 Feature 2 Feature 3 Feature 4 Same Class?
1-2 1 1 0 0 1
1-4 1 1 1 1 0
1-5 1 0 1 1 0
1-6 1 0 0 0 0
1-8 1 1 0 1 1
1-9 0 1 1 1 1
1-10 1 1 1 1 0
2-4 1 1 1 1 0
2-5 0 1 1 1 0
2-6 1 1 0 0 0
2-8 1 1 0 1 1
2-9 1 1 1 1 1
2-10 1 1 1 1 0
4-5 1 1 1 1 1
4-6 1 1 1 1 0
4-8 0 0 1 1 0
4-9 1 1 0 0 0
4-10 0 1 0 0 1
5-6 1 0 1 1 0
5-8 1 1 1 1 0
5-9 1 1 1 1 0
5-10 1 1 1 1 1
6-8 1 1 0 1 0
6-9 1 1 1 1 0

6-10 1 1 1 1 0
8-9 1 1 1 1 1
8-10 0 1 1 1 0
9-10 1 1 0 0 0

34

The core is found by checking the resulting discernibility list (Table 2.5) for rows that

contain only one difference. In a row with only one difference, the associated feature is a

core feature. It is the only feature that differentiates the two signals of different classes

that were compared to create the entry in the discernibility list. In Table 2.5, the only

such case is with comparison 1-6, Feature 1. Therefore, Feature 1 is the core of the data

set. It should be noted that the more classes are present in a data set, the longer it will

take to process the data set. This is because more classes means there are fewer

comparison between signals of the same class, thus allowing for a discernibility list closer

to the maximum size specified by n(n −1) 2 . It follows then, that the larger the

discernibility list is, the longer a reduct search is likely to take.

Table 2.5 – Reduced discernibility list – finding the core.

Comparison Feature 1 Feature 2 Feature 3 Feature 4
1-4 1 1 1 1
1-5 1 0 1 1
1-6 1 0 0 0
1-10 1 1 1 1
2-4 1 1 1 1
2-5 0 1 1 1
2-6 1 1 0 0

2-10 1 1 1 1
4-6 1 1 1 1
4-8 0 0 1 1
4-9 1 1 0 0
5-6 1 0 1 1
5-8 1 1 1 1
5-9 1 1 1 1
6-8 1 1 0 1
6-9 1 1 1 1

6-10 1 1 1 1
8-10 0 1 1 1
9-10 1 1 0 0

35

Next it is time to find the reducts. It is known that Feature 1 will be present in all of the

reducts, so all rows of the current discernibility list that contain a difference related to

Table 2.1 can be removed, for example rows 1-4 through 2-4. This can be safely done

because each row of the matrix is an individual comparison; selecting any feature of that

row will differentiate the two associated signals, thus ensuring, that there will be no

inconsistencies associated with that particular comparison. Another way to look at the

situation is to see the discernibility list as a list of all possible inconsistencies, which, by

selecting features for reducts, are eliminated bit by bit.

Table 2.6 – After removing rows containing the core feature(s).

Comparison Feature 1 Feature 2 Feature 3 Feature 4
2-5 0 1 1 1
4-8 0 0 1 1
8-10 0 1 1 1

Table 2.6 shows what remains of the discernibility list after all rows representing signal

comparisons with differences at Feature 1 are removed. With only 3 rows remaining, the

set of reducts can easily be determined. Based on Table 2.6, the set of reducts is [{1,3}

{1,4}]. If Feature 2 is selected, then either Feature 3 or 4 can be selected to differentiate

between all signals from different classes. However, they can also be differentiated by

selecting just Feature 3 or 4, therefore, {1,2,3} and {1,2,4} are not reducts. Since both

36

selected reducts are minimal, there are 2 minimal reducts in this set of data. Any one of

these reducts can represent the original dataset without any loss in classification.

2.7 Improvements to the Reduct Generation Algorithm

The introduction of the discernibility list simplified reduct generation compared to direct

use of the decision table. This alone resulted in a significant speed up of calculations

compared to classical reduct generation algorithms (e.g. Rosetta). Several modifications

and improvements to this algorithm speed up the computations even more. The most

significant of these improvements is prioritization of the scanning order.

Modification 1: Prioritization of the search sequence by representation in

discernibility list

This modification was chosen for the simple reason that it was thought that better and

shorter reducts would be generated sooner with less computational overhead. Results

seem to have shown this assumption to be correct. Prioritization is accomplished at the

beginning of the recursive scanning algorithm. After the discernibility list is modified and

the algorithm is called, a representation of each feature in the discernibility list is

calculated by summing the number of 1’s in each column. The results are then sorted, so

that the feature with the highest representation is checked first. This has the effect of not

only choosing the feature that will most likely be present in the majority of reducts, but

also reduces quickly the size of the discernibility list. It improves the results for less

highly represented features, because many unsuccessful trails with these features are

avoided.

37

Modification 2: Reduce recursion when it is not needed.

This modification eliminates recursion when the feature to be added to the search

sequence is represented in all rows of the remaining discernibility list. Otherwise, the

algorithm would reduce the discernibility list to an empty set, then recursively call itself

only to determine what is already known, that because the feature fully covered the

discernibility list it was a discern. This modification has minimal impact on the random

matrixes tested – only very minor improvements were shown. However, it does save

some time and memory by cutting down on unnecessary execution of code.

Modification 3: Early elimination of inconsistencies in the remaining part of

discernibility list.

When scanning, the program checks to see if the column count (sum of all remaining 1’s)

of the discernibility list is greater than or equal to the number of rows of the discernibility

list. If it is not, then it can no longer be possible to find any reducts with the remaining

discernibility list. This check seems to take more time than it saves (at least for the

random sets tested) and for all of the various data set sizes.

Modification 4: Finding empty rows in the discernibility list.

Just before the recursion call stage the program checks if there are any empty rows in the

discernibility list. If so then the row cannot be removed because all features that would

differentiate the pair of signals represented by it have already been examined and cannot

be added to the reduct. Checking for empty rows saves time compared to going through

further recursions to the point only empty rows remain. This is actually a more

computationally intensive version of the Modification 3 that can catch what #3 may miss.

38

Modification 5: Limit the scan depth when searching for a minimum reduct.

This is useful if the objective is primarily to find the minimum size reduct(s) and a rough

size of the selected database’s reducts is known. Limiting the scan depth saves time

because it eliminates larger reducts and longer path searches.

Table 2.7 illustrates the effects on computation time of these modifications to the basic

algorithm. Tests were done on two computers. The first was a PowerMac G5 Dual

2.5GHz machine, while the second was a 2.0 GHz Dell Inspiron 6000. Rows 1-5 show

the results when only a single modification is active per run. It would seem, based on

these results, that modifications 3 & 4 have a detrimental effect when used by

themselves, while modification 1 provides the greatest improvement and modification 2

provides a more modest improvement. Entries in rows 6-9 illustrate the cumulative effect

of enabling one modification at a time until all are present in row 9. Interestingly,

modifications 3 & 4 seem to improve the overall time when working in concert with the

other modifications as seen in the declining times in rows 7 and 8.

Table 2.7 – Test with 150 instances, 30 features, and 2 classes.

Test Code Modification
Enabled

PowerMac G5
Time (secs)

Inspiron 6000
Time (secs)

1 All off 140.46 436.94
2 1 99.54 240.84
3 2 137.62 429.75
4 3 144.89 438.08
5 4 142.2 434.81
6 1&2 97.49 241.281
7 1, 2 & 3 88.98 235.03
8 1, 2, 3, & 4 86.52 234.35
9 1, 2, 3, 4 &5 80.51 230.50

39

Because the most significant effects were found with the first proposed modification,

“Prioritization of scan order by representation in discernibility list”, subsequent efforts

are focused on the improvements resulting from this modification only.

2.8 Testing of the Reduct Generation Algorithm

The following three tables illustrate the performance of the Reduct Generation

Algorithm. All three tables use the same data set: a single data file of 500 rows and 40

columns with integer values of 0-8 for the feature elements. The data set was modified as

needed; columns/rows were removed or classifications were changed, but the same file

was used as the basis for all tests. The data was generated on a 2GHz Dell Inspiron 6000

with 1.25GB of RAM.

Tables 2.8-2.10, show the time to completion and the number of reducts found for

different numbers of instances, classes, and attributes. Table 2.8 shows the time for

calculating reducts using RSES 2.2. RSES was chosen as a standard because it is a well-

known program designed for use with Rough Sets and is considered faster than its

“competitor”, Rossetta. Tables 2.9 and 2.10 contain comparable results generated by the

algorithm presented in this thesis work. (The algorithm had Modification 5 disabled so

that all reducts would be generated to give an accurate comparison to RSES.) Notice that

the results for RSES ran into the tens of thousands of seconds. The times were so large

that Table 2.8 was not completed, because for larger numbers of rows and columns the

40

time to run the algorithm became too great to be useful. For instance, the test with 30

attributes, 75 instances, and 4 classes took 50737 seconds, or roughly 14 hours.

Table 2.8 – Tested using RSES 2.2 algorithm.

 Rows 50 75 100 125 150
Columns

(Attributes) #Classes
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)

 2 19 (1017) 90 (2309) 233 (2680) 449 (2656) 769 (3193)

20 3 39 (1406) 178 (2661) 451 (2651) 982 (4381)
1756

(4655)

 4 68 (1867) 307 (2630) 779 (2884)
1510

(4381)
2692

(6608)

 2 323 (2861)
1912

(6543)
5497

(7186)
11184
(7456)

23350
(10282)

25 3 546 (3892)
3574

(7002)
11566
(7353) N/A N/A

 4 651 (4357)
4110

(7307) N/A N/A N/A

 2
2528

(5723)
23785

(14023) N/A N/A N/A

30 3
5323

(8652)
37300

(15326) N/A N/A N/A

 4
6428

(9851)
50737

(15544) N/A N/A N/A

Table 2.9 – Tested using improved exhaustive algorithm without prioritization.

 Rows 50 75 100 125 150
Columns

(Attributes) #Classes
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)

 2
1.156
(1017)

2.938
(2309)

6.141
(2680)

11.297
(2656)

19.813
(3193)

20 3
1.469
(1406)

4.391
(2661)

9.391
(2651)

18.484
(3175)

33.563
(4655)

 4
2.141
(1867)

6.625
(2630)

14.906
(2884)

30.625
(4381)

54.531
(6608)

 2
2.781
(2861)

8.000
(6543)

18.078
(7186)

38.500
(7456)

72.469
(10282)

25 3
3.469
(3892)

12.375
(7002)

29.547
(7353)

62.016
(9753)

118.594
(15193)

 4
3.875
(4357)

14.297
(7307)

34.875
(7484)

77.453
(11279)

151.063
(18095)

 2
5.453
(5723)

20.688
(14023)

50.266
(15432)

113.016
(18739)

222.594
(29812)

30 3
7.766
(8652)

30.484
(15326)

77.875
(16524)

174.438
(23870)

341.984
(32767)

 4
9.484
(9851)

38.766
(15544)

100.484
(17487)

227.688
(29233)

450.313
(49004)

41

Table 2.10 – Tested using improved exhaustive algorithm with prioritization enabled.

 Rows 50 75 100 125 150
Columns

(Attributes) #Classes
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
Time(s)

(#Reducts)
 2

0.688
(1017)

1.844
(2309)

3.563
(2680)

6.156
(2656)

11.828
(3193)

20 3
0.984
(1406)

2.609
(2661)

5.063
(2651)

10.516
(3175)

21.031
(4655)

 4
1.359
(1867)

3.594
(2630)

8.156
(2884)

18.641
(4381)

36.563
(6608)

 2
1.594
(2861)

4.625
(6543)

9.188
(7186)

18.172
(7456)

38.188
(10282)

25 3
2.234
(3892)

6.547
(7002)

14.250
(7353)

32.531
(9753)

69.484
(15193)

 4
2.516
(4357)

7.422
(7307)

16.781
(7484)

42.891
(11279)

89.797
(18095)

 2
2.938
(5723)

9.906
(14023)

21.063
(15432)

48.906
(18739)

109.703
(29812)

30 3
4.500
(8652)

13.984
(15326)

32.672
(16524)

83.188
(23870)

183.047
(32767)

 4
5.314
(9851)

16.750
(15544)

41.234
(17487)

109.906
(29233)

241.094
(49004)

2.9 Discussion of Results

Comparing the RSES results of Table 2.8 to Table 2.9, at low attribute levels, a reduction

of over 25x in computation time has been achieved. With 30 attributes and 75 instances, a

computation time reduction of about 1:2200 was obtained. Comparing the entries of

Table 2.9 to those of Table 2.10, shows that prioritization further reduced computation

time by more than a factor of two. The number of reducts is shown to illustrate that the

shift in computational method did not lead to errors in the numbers of reducts found.

Figures 2.2-2.4 graphically illustrate the improvement of this algorithm vs. RSES. Figure

2.2 shows results generated using two classes and two different numbers of attributes.

Figure 2.3 similarly shows generated using two classes and four different numbers of

42

attributes. The purpose of Figure 2.4 is to visually compare the first set of RSES results at

20 attributes and 2 classes with the improved algorithms results at 20 & 25 attributes with

2 classes.

50
75

100
125

150

20

25
0

5000

10000

15000

20000

25000

C
o

m
p

u
ta

ti
o

n
 T

im
e
 (

s)

Instances

Attributes

RSES Results

Figure 2.2 – Computation time results using RSES.

43

50
75

100
125

150

20

25

30

40

0

50

100

150

200

250

300

350

400

450

500
C

o
m

p
u

ta
ti

o
n

 T
im

e
 (

s)

Instances

Attributes

Improved Algorithm Results

Figure 2.3 – Computation time results using the improved exhaustive algorithm.

50
75

100
125

150

Imp 20

Imp 25

RSES 20
0

100

200

300

400

500

600

700

800

T
im

e
 (

s)

Instances

Method Used &
Numer of
Attributes

Direct Comparison of Results

Figure 2.4 – Direct comparison of RSES results vs. the improved algorithm results.

44

The computation time for this program never went above a thousand seconds for the data

tested. There are several possible reasons for this rather significant difference. RSES is a

Java program, which may contribute to its lack of speed. However, considering the

magnitude of difference, even a 3x speedup would not bring it up to par with the

algorithm reported here. In order to get a better idea of the level of improvement this

algorithm provides a few additional tests in the 30 & 40 attribute 2 class data sets with

rows extending out to 500 instances were done. Results are as shown in Table 2.11.

Table 2.11 – Reduct generation test for larger data sets.

Attributes 30 40

Instances Time(s)(#reducts) Time(s)(#reducts)

50 2.9375 (5723) 9.2969 (18630)

75 9.9063 (14023) 33.8281 (46825)

100 21.0625 (15432) 77.0313 (54109)

125 48.9063 (18739) 197.3438 (70757)

150 109.7031 (29812) 457.4375 (119554)

200 334.3125 (60707) 1578.3 (271062)

300 1124.0 (73148) 5969.8 (348187)

400 3394.3 (83846) 20639 (465852)

500 9117.3 (153687) 59945 (976120)

At the 500 instances and 40 features point the improved algorithm has a computational

time of 59945 seconds, which is comparable to the 50400 second time that was needed

while using RSES at 75 rows and 30 attributes. This is a significant improvement in

overall performance.

45

2.10 Conclusions

Significant computational time improvements in exhaustive reduct generation have been

accomplished. By using a binary discernibility list with several modifications to the

reduct generation algorithm, a substantial improvement in the time needed to generate all

reducts for a given set was obtained. However, the problem sizes that can be handled by

this method are still small compared with those of practical interest (i.e. large databases).

A more real world problem size of 100 attributes by 10,000 instances, with a time

estimation based on the data that has been collected would yield a computation time in

terms of decades or possibly hundreds of years, too great a time to be practically useful.

A more accurate estimate is not possible since this type of problem has been proven to be

NP-complete. A database of 500 instances with 40 attributes required over 16 hours to

complete, even with the developed improved computational method, so it is no great

stretch to assume that a 100-attribute problem would take significantly longer. For the

generation of larger data set’s reducts to be feasible, either precision must be sacrificed or

much more computational power must be levied against this problem or a still better

reduct generation method developed.

It is known that reducts are useful for generating accurate rule sets for classification; as

such an efficient method for generating reducts for large datasets would be very useful.

Furthermore, the use of discerns instead of reducts should also be considered because of

46

their greater robustness and redundancy. The next chapters continue to investigate means

of reducing computational time while maintaining classification accuracy with the goal of

creating a better classification method for use with large datasets.

47

3. Generating Rules from Classifiers

3.1 Introduction

Up to this point, only the generation of reducts has been discussed. However, to properly

evaluate the quality of the results, it is necessary to find a way to determine the quality

and related classification performance of the generated reducts. This chapter presents an

overview of methods that use reducts to generate classification results, and presents in

detail the algorithm used to produce classification results. In particular, this approach is

needed to test the quality of the statistical reduct generation proposed in Chapter 4 and to

have a fair comparison of the reduct generation method introduced in Chapter 2 to the

method proposed in Chapter 4.

3.2 Rule Generation

For reference, a rule is considered a set of specific feature values that are present in

several instances in the data set and can be used to correctly classify signal instances. The

simplest and most desirable rule consists only of a single feature and its associated value.

Consider the Section 2.6 reduct example. An example of a rule for this data set would be;

when feature 1 equals 1 the classification is set 1. This rule is observed easily enough by

48

looking at Table 2.2 or Table 3.1. A full explanation of how this and the other rules were

extracted for the dataset is presented in Section 3.4.1.

General rules with high set coverage are of the most desirable type because they allow for

the easiest classification/characterization of a data set. They also represent the most

prevalent features that distinguish a given set of data points from the rest. Simpler rules,

in general, capture the dominant characterization of large numbers of data elements,

while complex rules characterize smaller sets of points that require more specific

characterization. This observation follows the Kolmogorov complexity definition

[Gam99] that predicts longer computations for more complex problems. To some degree,

rules that capture the behavior of very few data points correspond to basis functions

approximating local errors. As local errors get smaller after a dominant basis function is

applied to approximate an unknown function value, many more basis functions may be

needed to reduce local errors, which in turn may lead to over fitting. Thus, analyzing

function approximation using too many specific rules that apply to very few data points,

may lead to statistically unstable characterization of the object properties of data points

(like determination of class ID).

There are many possible rule generation algorithms. Chapter 6 in Ohrn’s thesis [Ohr99]

gives a basic introduction to rule generation methods. A good example of a rule

generation algorithm known to produce good results is the a priori based algorithm

discussed along with several other known algorithms in Agrawal’s work on fast

49

generation of association rules [Agr94]. A discussion of the efficient implementation of

the a priori algorithm can be found in Borgelt’s work [Bor03]. The rule generation

algorithm used in this work is not of the quality of many of the alternatives. However, it

has the advantage of being simple and relatively easy to implement, something many of

the alternative algorithms are not. The rule generation algorithm itself is covered in the

following section.

3.3 The Rule Generation Algorithm

In the following demonstration, the method used to determine rules is as follows:

I. Staring with a data set and a set of generated discerns, randomly choose a

discern from the set of known discerns.

II. Using an ascending row sort, sort the discern’s associated data (columns

associated with the discern elements).

III. Scan the reduct/discern for rules.

a. Check for similarities between rows.

b. Start with the simplest rule (i.e. a single feature value) and scan the

sorted rows until there is a discrepancy in the decision value, or the

rule correctly classifies all the data rows it covers.

c. If there is a discrepancy (as determined in b), go back and try a more

complex rule (by adding another feature to the rule).

d. A rule must hold true for a least 5 rows, otherwise, it is considered too

specific, and should be discarded.

50

e. When a rule is discovered, compare it to preexisting rules to ensure

that some other better rule does not already exist to cover it.

IV. After every n (A typical value of n can range from 10 to 100, although, 20

seems to work well.) rules are discovered, resort the rule list with the simplest

rules at the top. This will allow for faster completion of part IIIe. When a new

rule is found that either already exists or is covered by one of the earlier rules, it

will be discovered more quickly when the more general, simple rules are at the

top of the rule list.

V. Rotate the discern columns to generate better rule coverage and repeat Steps II-

IV, i.e. columns {1,2,3,4} become {2,3,4,1}.

VI. Repeat Steps I-V until all discerns are used or rule discovery flattens out.

(Experiments have shown that rule growth is proportional to the square root of

the number of reducts/discerns.)

3.4 Examples

Classification is an important part of many applications from financial analysis to

biomedical scanning applications. As has already been discussed, reducts, and by

association, discerns, can be used to classify data. How this is done, however, has not yet

been discussed. This section will provide a pair of examples illustrating the use on a set

of reducts of the above rule generational algorithm and how the resulting rules are able to

generate classification results.

51

3.4.1 Random Example

In this section, the results from the example in Section 2.5 are taken and expanded upon

to show how the discovered reducts of the original data can be used to generate rules by

which the data can be classified. The reducts associated with the data set from Section 2.5

were & 1,3{ } 1,4{ }. Let us begin with the 1,3{ } reduct. Thus, the first part of this

example illustrates rules based on this reduct only. Next, as stated by Step II, columns 1

& 3 of the previously labeled data (as taken from Table 2.3) are taken and sorted as

shown in Table 3.1 below.

Table 3.1 – Sorted data for columns 1 & 3.

Sample Feature 1 Feature 3 Classification
9 1 3 1
1 1 5 1
6 2 5 3
4 3 3 2

10 3 3 2
8 3 5 1
5 4 1 2
2 4 5 1

Next is the execution of Step III. This is the most important step in that it is the one that

actually extracts rules from the data. In order to “Check for similarities between the

rows,” the process begins at the first row of the sorted data with an assumed initial rule

of: “If Feature 1 equals ‘1’ then the classification is ‘1’. The algorithm must then check to

see if classification is consistent for all such instances where Feature 1 equals ‘1’. Since

that is the case here, the first rule can be considered to be found. The process then

52

continues to the third row, where it is determined that a value of ‘2’ for Feature 1 implies

a classification of ‘3’, and so forth. The minimum coverage rule of step 3-d is currently

being ignored. It is, in fact, a mostly arbitrary setting and is dependent on the desires of

the user. Too large a value may result in too few rules discovered, while too small a value

may results in a large number of rules that apply to only one or two signals. Nevertheless,

the following rules can be derived from the above table:

Table 3.2 –Set of discovered rules for 1& 3.

Rule Feature 1 Feature 2 Feature 3 Feature 4 Classification
1 1 1
2 2 3
3 3 3 2
4 3 5 1
5 4 1 2
6 4 5 1

However, this is not the end of the process; after the first iteration, the reduct is rotated so

that the columns 3 & 1 are observed in the stated order. This is followed by rule

generation based on the second reduct and any resulting rotations thereof. Not all

permutations of longer reducts are examined, since doing so would be computationally

prohibitive. The rotation scheme provides a balance between computation time and

coverage (n operations vs. n! operations). Under normal circumstances when dealing with

a larger database with more features, there would likely be many more than two reducts

to examine. Under those conditions, the process of generating rules would continue until

all the reducts were examined or a plateau was reached in the generation of rules. The set

53

of all possible rules for the data set being examined is displayed below in Table 3.3. The

first six rules are identical to Table 3.2; the next set of 7 rules arise from the rotation of

columns 3 & 1; columns continue to be rotated for longer reducts and for subsequent

reducts until all possible rotations are exhausted or until some stopping criterion has been

reached.

Table 3.3 – Set of all possible reduct based rules.

Rule Feature 1 Feature 3 Feature 4 Classification
1 1 1
2 2 3
3 3 3 2
4 3 5 1
5 4 1 2
6 4 5 1
7 1 2
8 1 3 1
9 3 3 2
10 1 5 1
11 2 5 3
12 3 5 1
13 4 5 1
14 1 1
15 2 3
16 3 3 1
17 3 5 2
18 4 1 2
19 4 2 1
20 4 1 2
21 1 2 1
22 2 2 3
23 4 2 1
24 3 3 1
25 1 5 1
26 3 5 2

54

Now let us eliminate the duplicate and redundant rules. For example, rules 14 and 15 are

duplicates of rules 1 and 2. And rules 11 and 22 are already covered by the simpler rule

2; rule 2 is shorter but equal to rules 11 and 22 for the feature they have in common and

has the same classification value, therefore, rule 2 is said to cover rules 11 and 22

because it would classify the same pieces of data as rules 11 and 22. The resulting set of

rules would be as shown in Table 3.4.

Table 3.4 – Reduced set of all possible reduct based rules.

Rule Feature 1 Feature 3 Feature 4 Classification
1 1 1
2 2 3
3 3 3 2
4 3 5 1
6 4 5 1
7 1 2
16 3 3 1
17 3 5 2
18 4 1 2
19 4 2 1

As can be seen from Table 3.4, the set of all possible rules has been reduced from 26

rules to ten rules. During normal execution of the above algorithm, this reduction of rules

would happen on a continuous basis, as it is more computationally time efficient to

handle rule generation in that manner. For example, Rules 8, 10, 13 & 15 in Table 3.3

would not even be stored in the set of rules since they either already exist in the set or are

already covered by a simpler rule. Rules like Rule 7, however, are by necessity handled

55

differently. Once a rule, for example, Rule 7, is discovered, it is passed off to a separate

function which compares it to other rules to see if it covers any existing rules, as happens

to be the case here with respect to Rule 5. Normally none of these rules would meet the

minimum coverage criteria mentioned earlier, but because of the extremely small size of

this data set, it is necessary to bypass that criterion. Under normal circumstances, there

would be hundreds and even thousands of possible rules and the coverage criterion helps

limit the number of rules to a more useful and manageable number.

Now that the set of rules has been discovered, the rule set needs to be applied to the

original data set. The following table contains the relevant features and the vote count for

each classification based on the application of all the discovered rules. Each time a rule is

satisfied for a particular data point, the vote count is increased for a particular class

associated with this rule. In the example data set each data point was covered by one or

two rules. In this case the testing data is the same as the training data, and while this test

achieved 100% coverage, this won’t necessarily always be the case. Under other

circumstances, the row coverage rule would not be waived and there would likely be

elements that are not covered due to the row coverage limitations.

As seen in Table 3.5, all the results, when compared to their correct classifications, are

correctly classified with no conflicts or incorrect classifications. Under normal

circumstances the entire data set would not be used to discover all the potential rules, thus

resulting in incorrect classifications. This latter situation occurs when rules are developed

56

based on training data and then applied to a different set of testing data. There will be

instances where rules may apply to two or more different classes. In such instances, the

“winner” is typically the class to which the most rules apply, as it is the most statistically

likely case.

Table 3.5 – Rule based vote count.

 Feature values Vote count
Sample Feature

1
Feature 2 Feature 3 Feature 4 Class 1 Class 2 Class 3

1 1 4 5 2 1
2 4 1 5 2 2
4 3 2 3 5 2
5 4 4 1 1 2
6 2 4 5 2 1
8 3 2 5 3 2
9 1 5 3 5 1
10 3 3 3 5 2

3.4.2 The Iris Example

The following example makes use of the well-known Iris database [Fis88] and was

chosen because of its widespread exposure and relative simplicity.

The Iris database has 4 reducts in its non-scaled form. It is considered unnecessary to

scale/label the database because the data is already limited to a relatively few discrete

values. The reducts for the Iris database are: 1,2,3{ }, 1,2,4{ }, 1,3,4{ }, and . 2,3,4{ }

57

To get some idea of the effect of step 3d on the generation of rules and the end

classification results, examine the results using the default value of 5 rows minimum

covered by a rule. Table 3.6 shows all rules discovered using the rule generation

algorithm and the four reducts previously mentioned. Applying the aforementioned rules

against the Iris database results in a correct classification rate of 78.9%. This low

percentage is a result of the database having several rows that are unique enough to

escape coverage by rules that cover a minimum of five rows. It is also a function of the

overall size of the training data set. In this case, 5 data points was 3.4% of the whole

training set.

Table 3.6 – Iris database rules.

Rule Feature 1 Feature 2 Feature 3 Feature 4 Classification
1 0.2 1
2 1.3 2
3 1.4 1
4 1.5 1
5 2.3 3
6 1.3 1
7 1.6 1
8 0.3 1
9 0.4 1

10 1.0 2
11 3.5 1
12 5.6 3
13 2.0 3
14 2.1 3
15 4.0 2
16 4.7 2
17 1.2 2
18 4.5 1.5 2
19 4.8 1

58

Decreasing the coverage minimum will increase the amount of time it takes the rule

generation algorithm to run; however, it will also improve the classification performance.

How much it improves the classification depends largely on the database being tested.

The Iris database for example, did not yield a high “correct classification” at the default

coverage setting of at least 5 rows per rule. The following Table 3.7 shows the effect of a

range of coverage values on classification results for the Iris database.

Table 3.7 – Coverage values vs. correct classification of Iris database.

Minimum Coverage Num or Rules Correct Classification %
1 224 100
2 76 95.92
3 44 93.88
4 27 86.39
5 20 79.59
6 14 72.11
7 10 65.31
8 6 60.54
9 5 55.78
10 5 51.02

The above table makes it apparent that the number of rules found increases rapidly at low

coverage values, which for this database, is at coverage values below five. For the Iris

database the value of using rules is obscured at these low coverage values. At reasonable

coverage values, the correct classification percentage is relatively low. However, for

larger, more complex databases, I have not observed this to be the case. More typically,

59

an appropriate minimum coverage value can be found that gives a reasonable percent

correct classification.

The previous examples dealt with the use of the full dataset for both testing and training

operations. Table 3.8 depicts a series of results using various training/testing percentages

with varying minimum coverage values. In the first instance, for example, ninety percent

of the database is used to train the algorithm (generate reducts and rules), while the

remaining ten percent is tested against the results.

Table 3.8 – Train/Test ratio vs. correct classification of Iris database.

Train/Test Ratio Minimum Coverage Num or Rules Correct Test Class. %
90/10 1 202 86.67
90/10 2 72 80.00
90/10 5 17 73.33
80/20 1 151 86.21
80/20 2 63 75.86
80/20 5 15 65.52
60/40 1 137 91.53
60/40 2 52 81.36
60/40 5 10 66.10

The results of the above table give classification results that are below those seen in table

3.7, but that is expected since not all the database is being used to generate the

classification rules. However, the trends in the classification results of the Table 3.7

remain true in Table 3.8.

60

Another reason to limit the number of rules generated by limiting both the number of

reducts scanned and setting a minimum coverage point is that too many rules can lead to

over training in addition to greater computational time. Over training is undesirable

because it results in diminishing returns. An algorithm becomes too focused/specialized

on the training results so that it is unable to handle new data as well as it did the original

training set. The situation can be said to be similar to over specialization.

3.5 Closing Remarks

As seen by the preceding examples describing the applied rule generation algorithm, it is

a simple, but not the most efficient rule generation. However, its simplicity makes it easy

to implement and its performance is good enough to match better algorithms when

greater time expenditure is acceptable. This rule generation algorithm is used in Chapter

4 for both the exhaustive method for generation of discerns and a statistical method

introduced in Chapter 4 due to its simplicity and ease of implementation.

61

4. A Statistical Approach to Discerns in Classification

4.1 Introduction

This chapter presents a thorough examination of a heuristic statistical approach to finding

classifiers for use on knowledge databases. The exhaustive methods examined in Chapter

2 have proven to be too time consuming as a result of their NP-complete nature. Thus,

this chapter focuses on other less precise, but hopefully just as effective, methods for

producing classifiers. The overall goal of Chapter 4 is to present a simple, yet effective,

method for producing good classifiers in a reasonable amount of time using rough sets. In

the following sections a new statistical method for finding classifiers based on reducts

and discerns will be introduced. The organization of this chapter is as follows: first, is a

short discussion of prior research and other relevant work; second, is an explanation of

the statistical techniques used in this paper and how they are applied; third, is a

discussion of the algorithm used for the presented research; and lastly, the results and the

discussion are presented.

62

4.2 Prior research on partial reducts

In Chapter 2 an accelerated exhaustive reduct determination algorithm was examined,

which, despite being faster than other exhaustive methods examined, was unable to

handle large database problems in an acceptable amount of time. This work reports an

even faster, but less exact method, of finding reducts and discerns for use in

classification. There are several other existing algorithms used to find partial sets of

reducts, one of the best known of which is the genetic algorithm. What follows are a

series of brief explanations of existing methods for generating partial reducts and/or

partial sets of reducts.

4.2.1 The Genetic Algorithm

The genetic algorithm has a history dating back to the 1970’s when it were first

introduced as an algorithmic optimization method by John Holland [Mel96]. Genetic

algorithms are one of the most widespread data mining and extraction algorithms in use,

with applications including reduct generation, floor planning, behavior learning, circuit

design, code breaking, and many more. Wroblewski [Wro95] presents an explanation of

how to use genetic algorithms to find minimal reducts. Vinterbo gives a good explanation

of the genetic algorithm in his thesis work [Vin99], as well as some useful references for

additional information.

63

A genetic algorithm searches the space of all potential reducts, by iteratively refining the

fitness measures of a set of potential solutions (the population). The fitness measure is

defined using the fitness function values of the individuals within the selected population.

The fitness function quantifies the optimality of an individual solution (chromosome in

genetic algorithm terms). The population may be randomly generated or determined

using some heuristics. Populations are refined by “mating” pairs of parents to generate

more viable offspring to replace the parents. If desired, “mutations” or random deviations

in the chromosome can be introduced. In the simplest form of this “mating” operation,

also called a crossover, a random position is chosen in each parent reduct/chromosome

for splitting, and the resulting offspring are assigned one section from each parent. The

simplest form of mutation is implemented by simply flipping a random bit in the

individual. The selection of which parents undergo this operation is stochastic based to

support the propagation of fitter individuals, thus “evolving” more effective results.

4.2.2 Set Covering Heuristics

Set covering heuristics are various heuristic methods than can be used to cover a data set.

Heuristics are best described as rules used for processing information on a rule of thumb.

A heuristic algorithm is one that has a provably good run time with near optimal solution

quality. David Johnson presented the basis for set covering heuristics in his 1974 paper

[Jon74]. Set covering itself is very similar to the process used to find reducts. By

definition, the set covering problem (SCP) consists of several “sets” with some common

64

elements with the goal of selecting a minimum number of sets so that the sets picked

contain all elements that are contained in the input set. It should be clear how similar this

definition is to the reduct generation problem, since it also requires the selection of a

minimum number of features with all the elements from the full set still being

represented. All of the mentioned algorithms make some use of heuristics. In fact, the

algorithms proposed by Hu [Hu03] make use of a feature ranking method very similar to

the prioritization method mentioned in Chapter 2.

4.2.3 Approximate Hitting Sets

A hitting set is a (non-empty) set that intersects with all sets in a collection of sets. An

approximate hitting set is a hitting set that intersects with some fraction r of all the sets.

For approximate hitting sets, Vinterbo’s thesis [Vin99] is a good source of background

and other information. With regards to reducts, r-approximate hitting sets are essentially

identical in practice to approximate reducts. There are also similarities to both dynamic

reducts and genetic algorithms.

4.2.4 Dynamic Reducts

Dynamic reducts have seen significant attention from Bazan with research results

presented in several of his papers. For example, Bazan introduced dynamic reducts as a

way to produce better rules from decision tables [Baz94]. Later, as part of a book on

rough sets, he presented a comparison of dynamic and non-dynamic methods for

65

extracting rules [Baz98]. Dynamic reducts themselves, exist as part of a response to the

sometime chaotic nature of the data under analysis. They provide better accuracy in

situations with noisy and missing data. Because of their flexibility, they can often provide

better results with “unseen” data then do normal static reducts. Dynamic reducts are

typically generated by subdividing the “training” data into several tables and then finding

their associated reducts. The reducts common to these sets are then referred to as

dynamic reducts. A reduct need not be present in all the subsets, but must be in some

suitable number of them. It is thought that since these reducts are common to subsets of

the training data that they will also likely be present in any testing data, thus allowing for

better overall classification.

4.2.5 Ensemble Systems

Ensemble systems are arrangements of two or more classification systems into a single

system. They work by combining the results of individual classifiers to provide more

accurate results. The work by Robi Polikar [Pol06] provides an extensive overview of

ensemble systems, including their background, implementation, and some of the potential

classification systems that can be used to create such a system. According to Polikar, the

process of using an ensemble system is similar to asking several doctors’ opinions and

then weighing the individual results against certain criteria to determine which results to

choose. Within the paper, several well-known ensemble algorithms are discussed,

including bagging and its variations, the AdaBoost algorithm, and other methods. Also

66

discussed is the system by which the ensemble weighs the results from its different

components and tries to choose the best solution.

4.2.6 Other Methods and Research

The methods mentioned in this paper so far only examine the tip of the iceberg. For

example, Ras and Dardzinska [Ras06] presented an efficient algorithm for producing

rules from “incomplete information systems.” In addition, Ras and Im [Im05, Ras07]

have been researching ways of keeping confidential the relationships between data and

the classification results. The relevance of this work is shown with regards to importance

currently placed on keeping records private. To accomplish this, they have devised a

method to decouple the results of a data mining operation from the original data. Another

example of the application of rough set theory via reducts is the work by Tseng et al.

[Tse05] concerning the application of reduct based rule generation to determine rules for

classifiying machined surfaces for quality assurance purposes. Additionally, work has

been done with regards to the characterization of partial reducts and their complexity

[Mos05]. More recently Moshkov et al. [Mos07] have done some work that evaluates the

creation of partial reducts via several different algorithms and looks at the quality and

quantities of partial reducts generated for various algorithm configurations. There exist

many other methods and variations with which to generate and use reducts and rules.

However, to cover these is beyond the scope of this work.

67

4.3 How Reducts Are Found Statistically

As described in Chapter 2, exhaustive reduct determination methods become unusable as

data set sizes grow beyond the small to medium size range. (E.g., Databases with less

than 20 features and 500 instances can be effectively managed using exhaustive reduct

methodology.) Previously, a random dataset with 40 features, 500 instances and 2 classes

was tested. The time to exhaustively find all reducts using that improved algorithm was

59945 seconds or roughly 16.5 hours. Imagine then, knowing that the growth in time is

approximately exponential, how long it would take to analyze a larger database.

The approach reported here uses statistical methods, (e.g. statistical sampling techniques)

to reduce the work needed to find reducts. Thus, the research effort should be

concentrated on finding a few minimal reducts, specifically the reducts that provide the

best information for rule generation. Three possible routes were evaluated. The first

approach was to simply sample the original data set. The second method was to generate

a discernibility matrix and then “sample” it by randomly selecting instance pairs to

compare over the whole dataset. The third approach examined was to create a statistically

sampled version of the full discernibility matrix, determine which features are the most

common discerning features, then remove them to make them core features and reduce

the sampled discernibility matrix size. However, removing features this way creates

discerns rather than reducts. Discerns were introduced by Starzyk [Sta00] and are a

convenient way to express information system properties. In this thesis, they will result

68

from developing reducts on a subset of the binary discernibility matrix. A discern is a

subset of features as is a reduct; however, a discern is not a reduct because in many

instances, it can still be reduced in size and maintain the discernibility relations between

all data elements.

The first method, sampling the dataset, is simple but sacrifices accuracy for speed. It is

the same as running the exhaustive test on a subset of a database as is done later in the

paper for comparison to the hybrid statistical method. These subset tests take a portion of

a dataset for training and use the remaining portion for testing. Using this sampling

method may be satisfactory if high accuracy is not required, but the method presented in

this paper will generate results of near equal quality with the reduced data set even faster.

Furthermore, to get a manageably sized data set from a truly large set would require a

vast reduction in sample set size, thus, sacrificing accuracy as discussed later in the paper

(Section 4.5).

The second method, generating a discernibility matrix and sampling it, also sacrifices

accuracy and would still be too slow. While it would not require the creation of the full

matrix to generate the sampled discernibility matrix, thus side stepping the memory issue

with large discernibility matrices, an accurate representation of the full discernibility

matrix would still take too long to process for reducts because the time needed grows

exponentially with discernibility matrix size. For example, to get 95% ± 0.5% accuracy

69

on a 10,000 element discernibility matrix, the sample matrix would need to be at roughly

7900 elements, a value that would still be too large to process in a reasonable time.

There are two useful ways to implement the third method. One is to rely on a statistically

reduced version of the sampled discernibility matrix to find reducts (or discerns), which

will be referred to as the standard statistical method. The other, referred to as the

hybrid statistical method, generates a reduced discernibility matrix from the sampled

one and uses the features removed to produce a version of the full discernibility matrix of

the approximately desired size.

The standard statistical sampling method, while slightly less accurate, is applicable to all

sizes of databases, while the hybrid method is more costly time wise due to the necessity

in generating a discernibility matrix from the full data set. The faster standard statistical

method would statistically sample the discernibility matrix and determine the most

common differentiating features. Those highly differentiating features would become

core features of any resulting “reducts,” obtained from the reduced sampled discernibility

matrix. The reason to use these new “core” features is reduction of the discernibility

matrix to a manageable size.

The hybrid statistical method, using the same sampled discernibility matrix, also reduces

the sample matrix by selecting the most common differentiating features. However, it

uses the reduction in size to estimate the resulting full discernibility matrix size with the

70

selected feature(s) removed, and continues to remove features until the estimated full

discernibility matrix reaches a desired size. This method then generates the full

discernibility matrix with all rows containing the pre-selected features removed, and has

the advantage of creating a 100% accurate discernibility matrix preserving all the original

data associations. The downside is the time required to process the full discernibility

matrix.

In both statistical sampling methods the generated reducts can not be verified as actual

reducts and must be considered as discerns of the original information system as

previously mentioned. This thesis will focus primarily on the hybrid method for

generating results. However, a comparison between the hybrid and standard statistical

methods will be presented in Section 4.6.

As noted, each method has its pros and cons, but before the selected hybrid statistical

method is discussed in greater depth, it is necessary to describe how the sampling process

works.

4.3.1 Population Sampling

First, it is necessary to determine the size of the sample needed from the “full”

discernibility matrix to get a smaller but accurate representation of the full set. This will

save memory and greatly reduce processing time. Determining the appropriate sample

71

size requires three things: a genuine random sampling of the population, the setting of a

desired confidence level, and the setting of a confidence interval. The confidence level is

the measure of certainty, while the confidence interval describes the range of values in

which the result falls. For example, let us assume that through sampling that it has been

determined that Feature 4 is present in 62% of a given discernibility matrix’s entries. A

confidence level of 95% with a confidence interval of 1% implies a surety of 95% that

the result falls between 61%-63%. Given the confidence level, confidence interval, and

the population size, the following equations are used to determine the sample size needed

to meet the specified confidence values.

Population size refers to the number of signal pairs in discernibility matrix

Psize =
n(n −1)

2
, where n is the number of data points (7)

In statistical determination of features that differentiate signals in the discernibility

matrix, the confidence is level defined as:

ConLev =1−
1
2π

e
−u2

2 du
−∞

Z∫
 (8)

and related confidence interval to determine the minimum required sample size as

follows:

size

size

P

S
11 −

+
=

η
η , where 2

2 25.0

IntCon
Z ∗

=η (9)

72

Example:

Let us consider a 10,000 element discernibility matrix and apply population sampling. To

find the required sample size such that the resulting sampled matrix will match the full

discernibility matrix by at least 99.0%, Ssize is calculated from (7) as follows:

ConLev = 99% ⇒ Z = 2.576, ConInt = 1.0%, Psize =10000, η =
2.5762 ∗0.25

.012 =16587, and

Ssize =
16587

1+ 16587 −1
10000

= 6239

This example shows that given a 10,000 element discernibility matrix, a set of 6,239 of

the full discernibility matrix’s elements need to be sampled to get the required results

with a 99.0% confidence. The resulting set is still fairly large, but it should be noted that

the amount of savings increases exponentially with the size of the sample set. (Z is

calculated from equation 2 or can usually be found in lookup tables.)

4.3.2 Reducts and Discerns in the Sampling Method

Of the three potential methods mentioned above that use sampling, the third method, the

hybrid sampling method, was chosen for this chapter as it was expected to give the

desired combination of low computational time and high accuracy. This method reduces

the size of the discernibility matrix to significantly reduce the search space before finding

reducts, thus reducing the time needed, while maintaining an accurate representation of

the knowledge data. The process occurs as follows:

73

1) Given n data elements calculate the maximum possible discernibility matrix size.

Psize =
n(n −1)

2

2) Randomly select pairs from the data set to create randomly sampled discernibility

entries. (After making sure they are not of the same classification.) Sample the

number of pairs as determined by the Ssize equation (7). For instance, a data set of

 signals, with the same confidence level and interval as the above

example, would result in a maximum discernibility matrix size of 49,995,000

rows. Thus, by the Ssize equation,

n =10,000

49995000
1165871

16587
−

+
=sizeS ,

a 16,582 row sample discernibility matrix would need to be created from

randomly selected pairs of data from the original data set to obtain a 99% accurate

representation of the full discernibility matrix.

3) Count the feature representation throughout all rows of the sample discernibility

matrix and select the most common feature.

4) Remove all elements of the discernibility matrix containing the selected feature.

5) Repeat steps 3-4 until either the maximum number of selected features has been

reached or the estimated discernibility matrix has reached the desired size.

6) Using the selected features, build the “true” discernibility matrix based on the full

data set. With the selected features removed, the resulting discernibility matrix

should be of an easily handled size.

7) Find all possible discerns using the new matrix.

One of the major advantages of the statistical method, aside from the time savings, is that

the sample discernibility matrix size will always be constrained by the η calculation

value. No matter what value the maximum discernibility matrix size, Psize, takes, the

74

sample discernibility matrix size determined by the Ssize, equation will never exceed the

value determined by the calculation of η. Meaning, that in 2), above, Ssize will never

exceed 16,587.

However, the major disadvantage of this statistical method is that it actually generates

discerns as opposed to reducts. In addition, once the features are removed and the

reduced discernibility matrix is built, there is no way to compare the results against the

removed features to see if a discern or a reduct has been generated. Testing each discern

against the full data set, without building a discernibility matrix, requires several O(n2)

operations (up to the number of redundant features). Therefore, the resulting sets are

classified as discerns because it would be too computationally intensive to pick out the

true reducts or to convert discerns into reducts.

Testing of several smaller datasets shows that the quality of the results varies rather

drastically, from 0% actual reducts to 100%, and seems to be dependant both on the size

of the dataset examined and its composition. Table 4.1 illustrates the accuracy of this

method using the mushroom database [Mur90], by showing what percent of the generated

results were actually discerns as opposed to true reducts. For example, the first row

shows results for a trial in which 5% of the mushroom database was used for learning,

meaning the selected fraction is what is used to find the discerns. The program then ran

for the specified number of iterations, and each time the discerns were checked to see if

they could be reduced further to true reducts or were already reducts. The “Average %

75

Reducts” measurement specifies the average percentage of discerns that were true

reducts. Ideally, one would like the “Average % Reducts” to be 100%. The actual

percentage results vary from database to database. The disadvantage of having discerns

instead of reducts is that the subsets are larger than true reducts. On the other hand,

discerns tend to provide greater redundancy and possibly better rules.

Table 4.1 – Sampling for reducts.
Learn/Test

Ratio Iterations
Average %

Reducts
Std Dev %

Reducts
5/95 10 31.32 10.43
10/90 10 39.32 6.55
20/80 10 50.74 23.69
30/70 10 17.43 11.25
40/60 10 21.96 19.81
50/50 10 14.37 16.51
60/40 10 7.38 11.67
70/30 10 7.53 12.20
80/20 10 0 0.00
90/10 10 0 0.00

Figure 4.1, provides some idea of the accuracy in the sampling method by showing how

the sampled results degrade in quality with subsequent feature selections (iterations). The

following graph illustrates the percent difference in the normalized feature counts of the

sampled discernibility matrix vs. the full discernibility matrix. In other words, if Feature

2 is present in 90% of the full discernibility matrix’s entries, and present in 88% of the

sampled discernibility matrix’s entries, there is a 2% percent difference between their

76

normalized feature counts. For each method, three iterations were performed counting

features in the both full and sampled discernibility matrices. To clarify, each iteration

removes a feature, then re-determines the remaining features’ representations within the

sampled and full discernibility matrices, and then determines the differences between the

two sets of results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

1

2
3

0%

5%

10%

15%

20%

25%

30%

%
 D

if
fe

re
n

ce

Attribute Iteration

Average Difference in Ratios Between Full & Statistical Based
Representations

Figure 4.1 – Column count difference vs. feature selection iteration.

The chart shows the percent difference for each feature after each iteration, i.e. the counts

are normalized and the calculation is done by subtracting the statistical percent from the

normalized exhaustive percent. Initially, the difference between the two methods is near

77

zero, but tends to exceed 5% by the third feature selection, meaning that the statistical

representation becomes less accurate as the number of iterations increases (i.e., as more

features are removed). What this means is that as features are selected using the sampled

discernibility matrix and elements are removed, the sampled matrix deviates increasingly

from the full discernibility matrix. If the process continues long enough there will be

instances where a selected feature is present in ~90% of the sampled matrix, but would

only be present ~50% of the full matrix. Such a case would result in longer computational

times later in regard to Step 6 in Section 4.4, because fewer than expected rows would be

removed resulting in a larger matrix and greater computational time. The opposite can

also occur, resulting in too small a matrix and fewer than expected discerns.

4.4 The Hybrid Statistical Reduct Determination Algorithm

This section will give a detailed overview of the full process, paying particular attention

to the parts that differ from the algorithm examined in Chapter 2 (see Figure 2.1). The

actual reduct generation algorithm remains the same with the exception that Step 3 of the

previously mentioned algorithm (Section 2.4) is replaced by Steps 3-6 below. The

additional steps are present because the algorithm is now used for classification and not

just the generation of reducts. Figure 4.2, following the algorithm description, presents a

flowchart of the replacement steps for Step 3 of Figure 2.1 (Discernibility Matrix

Generation), showing how steps 3 through 6 below fit into the original algorithm. Steps 7

78

and 8 summarize steps 4 through 12 of the previous algorithm, while the remaining steps

(9-11) represent the remaining rule generation and classification requirements.

The algorithm operates as follows:

1) Discretize, scale, or label the data as needed.

2) Partition the data by randomly selecting elements for the training/testing sets.

3) Build a randomly sampled discernibility matrix whose size is determined based

on the desired confidence level, confidence interval, and maximum discernibility

matrix (population) size.

4) Determine the most common features, and use them to reduce the discernibility

matrix to a manageable size (usually around 500-1000 rows) or until 15% of the

total features are selected, whichever comes first. This is accomplished by

removing rows of the matrix that contain the selected features. How this was

done was discussed in the previous section on population sampling (section

4.3.1). Figure 4.1 illustrates how the sample Discernability matrix begins to

diverge from the full Discernibility matrix as features are removed.

5) If the data set contains more than a certain number of features, truncate it at a

desired point so that only the most common features are examined.

6) Build the full discernibility matrix with the rows containing the selected features

removed. This should result in a discernibility matrix size of roughly the same

size as was estimated during the feature selection. (During this process, the data

can be examined for any core features that are not already in the selected feature

set.

7) Remove rows from the reduced discernibility matrix that contain any new core

features discovered in Step 6.

8) Find all possible discerns using the reduced discernibility matrix and the selected

features as the core.

79

9) Determine Rules: Randomly selecting discerns, find rules for the data set. (Each

rule must cover a certain number of rows, for example, 5.) To avoid searching all

discerns, stop searching once the rule generation levels out.

10) Apply the discovered rules to the previously generated random test data set, to

determine their classification accuracy.

11) Go to Step 2 for repeated iterations.

Now, the various steps of the algorithm will be examined and additional explanations

given. Step 1 is more complicated than it might seem at a first glance. The preparation of

data is one of the most important parts of the entire algorithm, but can vary greatly

depending on the end application and the results desired. However, whatever the case, the

data needs some form of preparation before it can be used, from a simple linear scaling to

a full statistical analysis and transformation. An extensive guide to data preparation for

use in data mining and similar operations is provided by Pyle [Pyl99].

80

Figure 4.2 – Flowchart of changes to the reduct algorithm.

81

Step 2, manages the partitioning of the data set. When testing it is important to set aside a

portion of data for testing to evaluate how well the algorithm will be able to perform on

newly created data. For very large data sets, several iterations are run with the training

set, which may be as little as 10% of the entire set (a randomly selected 10%). Because

they have few rows, smaller datasets are handled to allow for accurate results while

covering the entire set; specifically, they are partitioned by the number of desired

iterations. The choice of number of iterations is arbitrary, but depends on the size and

properties of the dataset. One partition is set aside for testing, while the remaining

partitions are used for training. The training/testing then commences for the desired

number of iterations, with the partitions being rotated after each iteration (rotation

meaning that the smaller testing set is rotated in and out of the larger partition “pool” that

makes up the training set). The method for handling small data sets is commonly called k-

fold cross validation, where k is the number of partitions [Cro06].

Steps 3 and 4 are self-explanatory. Step 5, however, requires explanation. One may

wonder why, after already having reduced the problem size significantly by reducing the

discernibility matrix size, it is necessary to further reduce the complexity of the problem,

and thus the accuracy of the results. The answer is straightforward. When doing a full

reduct search, all possibilities are examined. This means that a data set of 20 features

with an average reduct size of 4 contains 16! (2.09E13) possibilities to examine. A 50

feature data set with an average reduct size of 7 has 43! (6.04E52) possibilities. One can

imagine how quickly the number of possibilities, and therefore the size of the problem,

82

can grow. Thus, with a large number of features, even a small discernibility matrix can

take a long time to search, making it necessary to restrict the features being examined.

Step 6 can take significant time to execute. It “builds” the entire discernibility matrix

without actually storing it all. To be precise, it compares all rows to all other rows, but

does not actually store the entire matrix. It only stores a discernibility comparison if it

doesn’t contain any of the previously selected features. This method creates a highly

accurate representation of the discernibility matrix, without actually taking up the

potentially massive amount of memory that would otherwise be required and it only

needs to be performed once. Furthermore, because all rows are examined, it is also

possible to check for any additional core elements. Thus, when performing Step 7, the

discernibility matrix can be further reduced in size by any new core features that have

been discovered.

Step 8 finds the reducts (see Chapter 2 for the algorithm), which in general are discerns

of the original information system, because discerns cannot be verified as reducts as a

result of the removal of features from the full discernibility matrix. The removal of rows

in the discernibility matrix containing the selected features, although greatly reducing

computational time, has also removed information necessary to verify the validity of the

resulting reducts. The algorithm is designed to find all reducts when given the full

discernibility matrix. However, without it, it will find a mixture of discerns and

unverifiable reducts.

83

Step 9 determines classification rules based on discerns found in Step 8. For this

demonstration the simple method covered in Chapter 3 was used, since the goal was not

to produce the best classifiers, but rather to quantitatively show that by reducing the

search space, results can be obtained of the same quality as those obtained by the

exhaustive method.

Steps 10 and 11 are straightforward. Once the rule generation is completed, the rules are

applied to the test data. However, since the test data will generally be covered by more

than one rule, it is necessary to implement a mechanism, by which all rules are applied to

the test data, after which, the classification with the greatest number of hits “wins.” In

cases where the rule count is tied, a random selection of the winner class was

implemented.

The preceding algorithm reduces the size of the problem space by several orders of

magnitude by reducing the amount of information to be examined while still maintaining

the data’s integrity. In addition, the algorithm determines the accuracy of the results to

allow for easy comparison to other classification methods. It will be shown that the

results are of the same quality as those obtained from an exhaustive reduct search, or

other methods of reduct based classification.

84

4.5 Results and Discussion

The following tables show results of tests on varying randomly selected portions of

selected databases; three different breast cancer databases and a mushroom database.

These databases were selected because they have relatively large numbers or instances

and/or features compared to smaller databases like the well-known Iris database.

The databases have the following characteristics:

1) The wdbc [Wol96a] database contains 30 features, 569 instances, and 2 classes.

The final decision column contains class information, specifying whether the data

represents a malignant or benign diagnosis. The classifications are split 37.2% for

malignant and 62.8% for benign.

2) The wpbc [Wol96b] database contains 32 features, 198 instances, and 2 classes.

The class distributions are 76.2% nonrecurring and 23.8% recurring.

3) The bcwis [Wol92] database consists of 9 features, 699 instances, and 2 classes.

Its class distributions are 65.5% malignant and 34.5% benign.

4) The mushroom [Mur90] database possesses 22 features, 8124 instances, and 2

classes. Its class distributions are 51.8% edible, and 48.2% poisonous.

The wdbc database, Table 4.2, was originally selected because it has an appropriate (with

regards to computational time for both methods) number of features and instances for the

purpose of testing. The next two tables, Table 4.3 and Table 4.4, depict results using the

bcwis database and the wpbc database respectively. These databases were, like the wdbc

database, selected for the number of instances they contained. The bcwis database, in

particular, was selected because the number of its features were already reduced and pre-

85

scaled, while the wpbc database has more features than many of the other suitable

databases available at the UCI Repository. Table 4.5 is of special interest, largely because

the mushroom database is the largest dataset used in terms of instances, and is, therefore,

a good indicator of time utilization. The classification results discussed in the following

section for the four databases are found in Columns 3 and 6 of Tables 4.2-4.5.

The number of iterations used for each test varies from test to test due to time constraints.

It simply was not practical to continue testing when individual iterations ran past an hour.

Several items were tracked, among which were the averages and standard deviations for:

reduct search time, number or discerns discovered, number of rules found, correct

classification percentage, and total time to completion.

The following tables show the classification results, as well as other information from the

test runs. The “Learn vs. Test %” column shows what percentage of the entire dataset

was used for learning (finding reducts and generating rules) and what percentage was

used for testing. The next three columns show results for the specific database using the

exhaustive method, and the remaining three columns show the results using the statistical

method presented in this chapter. With regards to the statistical method, it is important to

note, that a confidence level of 99% with a confidence interval of 0.5% were chosen for

use with the algorithm for all tests.

86

Table 4.2 – Test results for wdbc database.
 Exhaustive Exhaustive Exhaustive Stat Based Stat Based Stat Based

Learn
vs. Test

%

Average
of
Rules

Average
Correct

Classification

Avg
Reduct

Time (sec)

Average
of
Rules

Average
Correct

Classification

Avg
Discern
Time
(sec)

10/90 69 88.49 1.61 62 88.82 0.38
20/80 114 93.00 5.63 100 92.49 0.90
30/70 405 93.32 13.95 306 93.71 1.59
40/60 950 93.65 30.28 524 93.72 1.81
50/50 1706 93.80 122.23 939 94.31 2.11
60/40 2724 93.73 222.36 1217 93.55 2.64
70/30 3715 94.74 370.37 1827 93.57 3.35
80/20 4634 94.30 506.52 2394 92.76 3.87
90/10 5573 96.84 753.15 3101 95.35 4.38

Table 4.3 – Test results for bcwis database.
 Exhaustive Exhaustive Exhaustive Stat Based Stat Based Stat Based

Learn
vs. Test

%

Average
of
Rules

Average
Correct

Classification

Avg
Reduct

Time (sec)

Average
of
Rules

Average
Correct

Classification

Avg
Discern

Time (sec)
10/90 20 86.72 0.19 14 87.86 0.13
20/80 48 92.20 0.46 39 92.34 0.29
30/70 77 93.70 0.89 45 93.47 0.52
40/60 107 93.74 1.43 83 93.83 0.82
50/50 122 94.28 2.19 96 94.58 1.12
60/40 160 94.10 3.39 110 94.40 1.46
70/30 176 95.00 4.48 130 93.91 1.80
80/20 196 94.12 5.79 148 94.56 2.18
90/10 191 94.00 6.91 143 94.89 2.46

87

Table 4.4 – Test results for wpbc database.
 Exhaustive Exhaustive Exhaustive Stat Based Stat Based Stat Based

Learn
vs. Test

%

Average
of
Rules

Average
Correct

Classification
Avg Reduct
Time (sec)

Average
of
Rules

Average
Correct

Classification

Avg
Discern

Time (sec)
10/90 3 42.64 0.66 2 41.40 0.64
20/80 18 65.92 1.98 25 68.86 0.40
30/70 50 74.46 3.59 48 74.10 0.65
40/60 60 75.59 6.57 47 75.29 1.07
50/50 80 74.14 10.96 54 75.66 1.53
60/40 102 75.76 17.45 52 72.78 1.19
70/30 166 75.68 24.40 76 72.12 1.32
80/20 266 75.50 34.70 128 73.75 1.47
90/10 394 72.75 48.58 208 78.00 1.92

Table 4.5 – Test results for mushroom database.
 Exhaustive Exhaustive Exhaustive Stat Based Stat Based Stat Based

Learn
vs. Test

%

Average
of
Rules

Average
Correct

Classification
Avg Reduct
Time (sec)

Average
of
Rules

Average
Correct

Classification

Avg
Discern

Time (sec)
2.5/97.5 587 96.80 5.65 164 96.89 1.23

5/95 794 98.71 24.44 234 98.30 2.83
10/90 1098 99.40 83.54 263 99.48 5.85
20/80 1327 99.82 302.31 293 99.88 14.86
30/70 1409 99.98 658.53 285 99.95 29.67
40/60 1423 99.98 1216.30 305 99.98 49.81
50/50 1427 100.00 1763.50 316 99.99 77.56
60/40 1523 100.00 2567.90 307 100.00 108.40
70/30 1550 100.00 3441.90 340 99.99 146.65
80/20 1409 100.00 4442.40 303 99.99 193.63
90/10 1159 100.00 5706.20 325 100.00 248.44

Complete results are shown in the Appendix. The average reduct/discern times were

tracked because it is important to see how much time is saved by the statistical method

explained here. The average total time was tracked because the time to completion shows

how the statistical method impacts the other processes in the algorithm and provides a

88

complete picture. The numbers of rules and reducts were tracked as a way of

differentiating the different tests. For example, in the 2.5/97.5 mushroom database

statistical test, an average of 164 rules were discovered over 10 iterations, while for the

90/10 test an average of 325 rules were discovered. Interestingly, the average number of

reducts/discerns was actually less in the 90/10 test compared to the 2.5/97.5 test, 46 vs.

98. This can be explained because the 90/10 test had several thousand more instances to

use for rule generation despite having fewer discerns with which to work. The actual

implications of these results and the results of other people’s work on the selected

databases are considered in the next section.

4.5.1 Discussion of Classification Results

The proposed hybrid statistical method gives classification results nearly as good as those

achieved using other approximate methods even when using a non-optimized rule

generation algorithm. The mushroom database typically permits 100% correct

classification and that result has been matched as can be seen by examining the results of

the 90/10 test for which the discrepancy between the statistical method and the

exhaustive method is 0.00%. For comparison, using the SolarC [Sta02] (classification)

algorithm achieved a result of 99.99% correct classification in 877.98 seconds. This

SolarC test when combined with the subsequent SolarC results shows that the SolarC

algorithm goes a good job classifying smaller databases. However, once databases

approach the size of the mushroom database a large increase in computational time

89

occurs. The SolarC test took roughly 3.5 times longer than the present statistical method,

showing that despite its classification performance it does not scale well on

computational time, thus limiting its usefulness for larger databases.

For the wdbc database using the 90/10 test, the difference in classification accuracy

between the exhaustive (96.84%) and statistical (95.35%) based test is 1.49%. For this

database, the exhaustive method almost universally performs better than the statistical

one. However, considering the savings in computational time, the difference in the

quality of results can be thought of as negligible, and it is a given that a more

sophisticated rule generation algorithm would likely close the gap further. The SolarC

algorithm yielded a result of 94.64% correct classification in 113.34 seconds. In their

work, Chen et al. [Che05] presented results of using several classification methods

including neural network, reduct, and others in an ensemble classifier. The ensemble

classifier performed the best and was able to get as high as 96.14% correct classification

of malignant cancers and 95.42% correct classification of benign cancers. The best

predictive accuracy on this database according to the information in the UCI repository

[Wol96a] is 97.50%, using one separating plane in the 3-D space of Worst Area, Worst

Smoothness and Mean Texture, obtained by applying repeated 10-fold cross validations.

These results show that the hybrid statistical method’s results are representative of other

methods.

90

There are many reported classification results for the bcwis database, likely because it is

preprocessed, meaning there are no variations in results as a result of differences in

preprocessing among the various tests. Using the developed method and looking at the

90/10 (bcwis) test, the difference in classification accuracy between the exhaustive

(94.00%) and statistical (94.89%) based test is 0.89% in favor of the statistical method. In

contrast, the 70/30 test shows a difference of 1.09% in favor of the exhaustive test. Note

that the results using the exhaustive method are generally better as they are for the wdbc

database. However, the results for the statistical test are better for the bcwis database,

which is something of an anomaly, although the scale of the difference is not highly

significant.

The bcwis database was also tested using the SolarC algorithm, and received a 95.65%

correct classification result in 25.125 seconds. As before, other testing methods produce

both better and worse results, such as those found in [Hon04], which is based in part on

fuzzy sets; BCFS-1: 96.00%, BCFS-1,2: 96.75%, SVM: 97.33%, FNN-SWEEP: 93.00%.

Additional results for comparison can be found in [Soo97, Kol04a, Kol04b]. Leifler also

made some use of the breast cancer databases in her thesis [Lei02], however, only a

relatively small subset of 286 elements was used. Her work is relevant because she tested

a dynamic reduct classification approach against another method. Unfortunately, due to

either the size or composition of the data used, correct classification results only reached

93.64%. These examples illustrate that the results can vary either way depending on the

individual database, the size of the learning set and the algorithm.

91

The wpbc database is a less commonly used database, but was chosen because it

possessed the most features of the databases that have been examined. As before,

examine the 90/10 (wpbc) test; the difference in classification accuracy between the

exhaustive (72.75%) and statistical (78.00%) based test is 5.25% in favor of the statistical

method. The results for this database tend to flip-flop from one side to the other,

although, typically, the difference isn’t as extreme as what is observed in the 90/10 test.

One test [Ben92] using the wpbc database gave a correct classification result of 86.3%.

As with the other databases, the wpbc database was also tested using the SolarC

algorithm, which was able to get as high as 89.47% correct classification in 96.47

seconds. These results illustrate that there is room for improvement in the rule generation

algorithm used in this paper. However, to reiterate, the main goal is not to produce the

best possible overall algorithm, but to show the utility of the statistically found discerns.

If there were a greater number of data points (rows) to work from, it is not inconceivable

to assume that the correct classification percentage would be notably greater. However,

with the limited number of data points the wpbc database is simply too “individual” to be

easily classified. This caused the rules that the rule generation algorithm produced to be

too specific and, therefore, caused many rules to be dropped, causing a decrease in the

correct classification percentage. Other factors may also be present, such as overly noisy

or contradictory data; however, it would require a more in depth analysis of the data set

to verify this.

92

4.5.2 Computational Time

Figure 4.3 graphically compares the time to completion using either the Exhaustive or the

Statistical methods for reduct determination for the wdbc database. Results in seconds are

plotted vs. the percent of the full dataset used for training. Notice how much faster the

computational time increases (approximately exponential) for the exhaustive method

compared to the almost linear progression of the statistical method.

Time Progression of Exhausive vs. Statistical Methods

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

0.00 2.00 4.00 6.00 8.00 10.00
% Data Used

Exhaustive
Statistical

Figure 4.3 – Exhaustive vs. statistical time to completion for wdbc database.

Also, note, in regards to Tables 4.2-4.5, that the statistical method generates both fewer

reducts and fewer rules. Fewer reducts are a result of the reduced size of the discernibility

93

matrix, while the fewer rules can be traced to the reduction in the number of reducts

(discerns) discovered. And yet, despite the reduction in information, the statistical

method produces results of nearly equivalent quality, meaning that the results are “good

enough” considering the massive time saving potential of the algorithm. (The level of

“good enough” is determined at the outset when selecting the desired confidence interval

level.)

As with the Figure 4.3 above, Figure 4.4 shows the improvement in computation time of

the statistical method compared to the exhaustive method (linear vs. exponential growth

in computational time vs. % of the data set used) for the mushroom database.

Exhaustive vs. Statistical Time to Completion

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

0 0.2 0.4 0.6 0.8 1
% Data Used

Exhaustive
Statistical

Figure 4.4 – Exhaustive vs. statistical time to completion for mushroom database.

94

In Figure 4.4, using a 90% training set of the mushroom database, the hybrid statistical

method takes roughly 350 seconds, while the exhaustive method takes well over an hour

to complete a single iteration of the test. Also, note that it appears that the curves in

Figure 4.3 have a greater slope than the curves in Figure 4.4. This is almost certainly

related to the higher number of features present in the wdbc database. This helps explain

the reason for Step 5 in the algorithm; the presence of a greater number of features causes

the time needed for reduct generation to grow exponentially, thus necessitating the

inclusion of a cut-off for the number of features allowed in the algorithm as well as a

method for selecting the features utilized.

4.5.3 Confidence Level and Confidence Interval Values

Up to this point, the values of the Confidence Interval and Confidence Interval have been

largely ignored. All the tests previously mentioned have held these two variables to a

constant value of 99% for the Confidence Level and 0.5% for the Confidence Interval. In

this section the effect on test results of varying the values of these variables is examined.

Table 4.6 provides the results for several different combinations of Confidence Level and

Confidence Interval. Each test was performed on the wdbc database for 20 iterations. By

changing the Confidence Interval and adjusting the Confidence Level accordingly, the

number of samples needed to reach the desired Confidence Values changes

correspondingly. While greater Confidence Intervals require fewer samples, they produce

95

less accurate results. In fact, by the time the 78% and 80% Confidence Levels are

reached, the population size will only amount to a few samples.

Table 4.6 – Classification results for varying confidence values.

Confidence
Level

Confidence
Interval

Avg.
Discern
Time (s)

Average
Num

Discerns

Average
Total Time

(s)

Average
Correct

Classification
99.90% 0.10% 10.73 933 130.38 93.07%
99.75% 0.25% 8.82 987 122.64 95.35%
99.50% 0.50% 5.59 897 126.93 93.77%
99.00% 1.00% 3.29 1022 129.75 95.61%
98.00% 2.00% 2.61 1226 101.40 94.56%
97.00% 3.00% 2.52 1301 132.10 93.77%
96.00% 4.00% 2.47 1317 146.34 95.00%
95.00% 5.00% 2.43 1287 175.74 93.77%
94.00% 6.00% 2.46 1297 203.75 94.65%
93.00% 7.00% 2.50 1431 177.45 95.35%
90.00% 10.00% 8.62 6275 175.70 95.96%
80.00% 20.00% 16.27 8063 249.78 93.77%
70.00% 30.00% 20.99 8473 228.72 94.74%

Surprisingly, the statistical variable values seem to have relatively little effect on the

resulting average correct classification percentage values. For examples, the 90%

Confidence Level test actually produced better average results than any of the other tests.

In fact, the only apparent advantage of using higher confidence values is their effect

toward reducing the algorithm’s computations time. Note, that as the confidence level

declines and the interval widens, the average number of discerns increases.

96

Figure 4.5, below, illustrates how the confidence interval affects the number of discerns

generated by the algorithm. Both the wdbc and bcwis databases were examined for this

test. At the 90% Confidence Level, with its corresponding 10% Confidence Interval,

there was a sharp increase in the number of discerns discovered by the algorithm. The

reason for this is that a threshold in the sampling quality was reached. The sampled

discernibility matrix differed enough from the true discernibility matrix that when the

discern generation matrix was created it ended up being much larger than expected, thus,

the reason for both the greater number of discerns and the corresponding increase in time.

This threshold can be observed in Figure 4.5 below in the 7%-10% range.

Average Number of Discerns vs. Confidence Interval

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25 30 35

Confidence Interval (%)

wpbc

bcwis

Figure 4.5 – Average number of discerns vs. confidence interval.

97

The actual position of the level jump will vary from database to database, however it is

expected to be present in varying extremes in all databases. By observing Figure 4.5 and

Table 4.6 it is apparent that the main effect of the Confidence Values is their impact on

time. In all experiments the sampling quality threshold was always to the right of the

confidence interval size that corresponds to the minimum total discern generation time.

From this analysis it is possible to realize some additional time improvements by

adjusting the Confidence Values so that the algorithm takes less time in the sampling

stage without sacrificing too much accuracy and causing the resulting discernibility

matrix to be too large. For the wdbc database, this point would be around the 98%

confidence level with a 2% confidence interval, since that region is where the time taken

is at its lowest as seen in Table 4.6. Unfortunately, there was no discernible pattern to the

classification results with regards to the Confidence Values.

4.6 Comparison of Standard and Hybrid Statistical Methods

This section provides some results using the standard statistical method mentioned in

Section 4.3, and compares them to the results achieved using the hybrid method that has

been the focus of this chapter. Table 4.7, shows the results of the standard statistical

method applied to the mushroom database. If the results of Table 4.7 are compared to the

results shown in Table 4.5 (also see Table A4), it becomes apparent, especially from

looking at the reduct generation time, that the standard statistical method easily beats the

hybrid statistical method in computation time. On the other hand, while it is not highly

98

obvious when using the mushroom database, it is still apparent that the classification

results are significantly less accurate. This is especially apparent as both exhaustive and

hybrid methods produced several instances of 100% correct classification, while the

standard statistical method produced none.

Table 4.7 – Standard method test results for mushroom database.

Learn/Test

Avg.
Discern

Time (sec.)

Average
Num

Discerns
Average #
of Rules

Average
Correct %

Classification

Average
Total Time

(sec)
0.025 1.02 81 148 96.46 7.51
0.05 2.31 77 207 98.56 14.23
0.1 3.68 79 289 99.48 22.50
0.2 4.38 100 412 99.73 48.27
0.3 4.69 101 492 99.89 71.23
0.4 4.83 96 516 99.92 82.68
0.5 4.82 105 548 99.89 101.76
0.6 5.01 111 596 99.92 124.92
0.7 5.06 122 752 99.95 179.69
0.8 5.20 131 782 99.92 208.34
0.9 5.24 98 652 99.93 139.10

The utility of the standard statistical method can be seen from its ability to handle

datasets that would be prohibitive in size for the hybrid method because of its reliance on

the one time calculation of the reduced full discernibility matrix. In fact, if the reduct

calculation times presented in Table 4.7 and Table A4 are examined, it becomes apparent

that not only does the standard method drastically reduce Discern computation time

compared to the hybrid method, but that the computation time for the standard method

actually levels out at around five seconds. For a comparison of the standard vs. hybrid

99

discern generation times see Figure 4.6. The leveling occurs because of the Ssize limit

mentioned in Section 4.2 and the discernibility matrix size threshold for feature removal

(the point at which features stop being removed from the sampled discernibility matrix).

These results verify the expected uses for the two versions of the statistical method.

Discern Generation Time for the Standard Method

1.00

10.00

100.00

1000.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Learn/Test Ratio

Standard Method

Hybrid Method

Figure 4.6 – Discern generation time for the standard method.

The hybrid version works best with medium sized databases and in cases where accuracy

is of high importance. The standard version of the method will work best for extremely

large databases (databases with tens of thousands of entries), where achieving results in a

timely manner is more important than a maximum accuracy in specifying the

classification rules. Correct classification is a function of both – the classifier accuracy

100

and data separability. Thus, if data is not statistically separable, it would not make sense

to strive for the maximum precision in defining the classifier, since small differences in

the classifier performance may be overshadowed by large classification error resulting

from data inseparability.

4.7 Conclusions

The methods introduced in this chapter, while lacking the completeness of the exhaustive

methodology from Chapter 2 to which they are compared, are shown to generate results

at a level of quality on par with other methods while saving massively in computational

time. The statistical method used an optimized exhaustive algorithm, integrating the

statistical reduction methods into the procedure, to create an algorithm for which the

computational time is nearly linear vs. the amount of data examined. A more

sophisticated rule generation algorithm may improve the classification results for the

methods examined; however, increased sophistication means both greater complexity and

increased computational time.

The quality of the results is tied at least in part to the way features are selected to reduce

computational time. To clarify, the selected features are the most common differentiating

elements in each database, meaning that in most circumstances their presence in a

reduct/discern results in a shorter reduct/discern. These features are then present in every

single discern generated by the algorithm. Because of the feature’s common nature, they

101

tend to be good classifiers. However, their presence also eliminates a greater portion of

the available discern pool. And while much of the “pool” is redundant and unnecessary,

the missing portions are likely the cause of the slight decrease in overall correct

classification observed in the statistical tests. The size of the database being tested can

also affect the quality of the results. As was mentioned with regards to the wpbc database,

too small a database, or one whose data elements are too “unique”, will result in rules that

are too precise, thus causing them to be dropped from consideration.

102

5. Thesis Conclusions

5.1 Conclusions

This thesis has examined reduct based classification with the hope of improving on one

of the greatest drawbacks of such work, the computational time. In Chapter 1, the

background of reduct generation and research in this area was examined. Several other

peoples’ works were referenced as useful source material, and other methods for finding

reducts have been described.

In the second chapter, the basic algorithm for finding reducts was examined for potential

ways to accelerate performance. The basic notation and underlying math were also

briefly covered. Several potentially useful algorithm modifications were found, coded,

and examined by testing for results against a well-known program that was also capable

of finding reducts exhaustively. Results were promising and showed substantial time

improvements against the mentioned comparison program. However, also noted, was the

remaining NP-complete computational nature of the problem, and that computational

time was still too great for the bulk of databases. This was illustrated by a dataset test of a

40 features by 500 instances whose time to completion exceeded 16 hours.

103

Chapter 3 provided background information on how to produce classification results

using reducts/discerns. Since reducts by themselves cannot be used to classify data, it was

necessary to provide a way for them to be used to generate meaningful results. In order to

do this, Chapter 3 introduced rule generation via reducts for classification purposes, and

provided the necessary background before proceeding to Chapter 4.

At the end of Chapter 2, it was mentioned that the use of discerns, as opposed to reducts,

is a promising approach to improving classification performance. Results in Chapter 4

support this assertion. Chapter 4 showed, that by reducing computational time further and

generating discerns as opposed to reducts, it is possible to produce results approaching or

of the same quality as other methods, including the exhaustive method of Chapter 2. The

reason for this similarity in quality arises because the majority of those reducts found

using an exhaustive algorithm (there are often many thousands for some databases) are

redundant and unneeded. They may potentially provide some improvement in the end

classification results. However, the chore of producing them, and then determining which

ones produce the best rules is simply too time consuming. On the other hand, the hybrid

discern based method introduced in Chapter 4 produces fewer discerns at a much greater

rate, and, as is true of the exhaustive method, doesn’t use all of them. While the hybrid

discern based method is a significant improvement over the exhaustive version, it still has

some issues with exceptionally large databases. To that end, Section 4.6 discusses the

standard statistical method, which while less accurate, can produce reducts at a much

better rate (reduced computation time).

104

This thesis has delved into the core of reduct generation in an attempt to find ways of

decreasing the computational time while maintaining good results. Initially, the basic

reduct generation algorithm was examined and ways to improve its speed were sought.

When this was verified to be insufficient, research continued into other slightly less

precise methods for generating reduct based classifiers. Eventually, two methods based

on statistical sampling were examined, with the more accurate hybrid method being

chosen for the focus of the research. Results show that for the databases tested, the hybrid

method performed well in terms of both accuracy and time.

5.2 Future Work

There remains significant room for improvement in the algorithm proposed in Chapter 4.

Many such potential improvements have been implemented in other work. For example,

the discretization step (labeling) and the feature selection portion of the algorithm could

be optimized using entropy measures in labels. Likewise, the capacity to handle textual

input could be added, or the ability to recognize and handle patterns in the input data

could be utilized. The statistical feature selection method could potentially be improved

as well. For example, other factors for feature selection, aside from simple representation

within a sampled discernibility matrix, could be introduced. However, such changes

would most likely be at the expense of computational time. There is also potential for

additional research into the standard statistical method (see section 4.6), since it is clearly

105

superior in terms of time usage to any of the other methods examined. Such research

might focus on improving the classification accuracy without too significantly affecting

the computation time.

Also, a relatively simple rule generation algorithm was used in this thesis. There exist

varieties of other algorithms for rule generation, which might improve the quality of the

results, but it is expected that they might increase the computational time. One such

algorithm, for example, is the a priori based method touched upon in Section 4.6. There is

little doubt, that an improved rule generation method would improve the correct

classification percentages produced by any of the algorithm presented herein. However,

sorting this out is left for future work.

106

References

[Agr94] R. Agrawal and S. Srikant, “Fast Algorithms for Mining Association Rules in

Large Databases,” in Proc. International Conference on Very Large Data Bases, 1994,

pp. 487–499.

[Baz94] J.G. Bazan, A. Skowron, and P. Synak, “Dynamic reducts as a tool for extracting

laws from decision tables”, in Proc. International Symposium on Methodologies for

Intelligent Systems, vol. 869 of Lecture Notes in Artificial Intelligence, 1994, pp. 346–

355.

[Baz98] J. G. Bazan, “A comparison of dynamic and non-dynamic rough set methods for

extracting laws from decision tables”, in Rough Sets in Knowledge Discovery 1:

Methodology and Applications, L. Polkowski and A. Skowron, Eds. Berlin, Germany:

Springer-Verlag, 1998, pp. 322-365.

[Ben92] K. P. Bennett, "Decision Tree Construction Via Linear Programming," in Proc

of the 4th Midwest Artificial Intelligence and Cognitive Science Society, 1992, pp. 97-101.

[Bjo97] A.T. Bjorvand, J. Komorowski, “Practical Applications of Genetic Algorithms

for Efficient Reduct Computation,” Wissenschaft & Technik Verlag, vol. 4, 1997, pp.

601-606.

[Bor03] C. Borgelt, “Efficient Implementations of Apriori and Eclat,” in Proc. of the

IEEE ICDM Workshop on Frequent Itemset Mining Implementations, Melbourne, FL,

November 19, 2003.

107

[Che05] Y. Chen, A. Abraham, and B. Yang, “Hybrid Neurocomputing for Breast Cancer

Detection,” in The Fourth International Workshop on Soft Computing as

Transdisciplinary Science and Technology, 2005, pp.884-892.

[Cro06] Cross Validation (2006, June 21 – last update). [Online]. Available:

http://en.wikipedia.org/wiki/Cross-validation [2006, September 15]

[Dub90] D. Dubois, "Rough fuzzy sets and fuzzy rough sets," International Journal of

General Systems, vol. 17, 1990, pp. 191–209.

[Fis88] R. A. Fisher, Iris Plants Database, UCI Machine Learning Repository, University

of California, Department of Information and Computer Science, Irvine, California, 1988.

(http://www.ics.uci.edu/~mlearn/databases/iris/iris.data)

[Gam99] A. Gammerman and V. Vovk., “Kolmogorov Complexity: Sources, Theory and

Applications”, The Computer Journal, vol. 42, 1999, pp. 252-255.

[Her05] J. Herbert and J.T. Yao, “Time-Series Data Analysis with Rough Sets,” in Proc.

4th International Conference on Computational Intelligence in Economics and Finance

(CIEF), Salt Lake City, July 21-26, 2005, pp. 908-911.

[Hon04] H. Takahashi and H. Honda, “New cancer diagnosis method on the basis of

fuzzy theory and boosting,” Unpublished, Nagoya University, 2004.

[Hu03] K. Hu, Y. Lu, and C. Shi, “Feature Ranking in Rough Set,” AI Communications,

vol. 16, 2003, pp. 41-50.

108

[Im05] S. Im, Z. W. Ras, A. Dardzinska, "Building a security-aware query answering

system based on hierarchical data masking", in Computational Intelligence in Data

Mining, Nova Scotia: Saint Mary's Univ., 2005, pp. 55-62.

[Jon74] D. S. Johnson. “Approximation algorithms for combinatorial problems”, Journal

of Computer and System Sciences, vol. 9, 1974, pp. 256–278.

[Kol04a] P. Mylonas, M Wallace, and S Kollias, “Using k-nearest neighbor and feature

selections as an improvement to hierarchical clustering,” presented at 3rd Hellenic Conf.

on Artificial Intelligence, Samos, Greece, 2004.

[Kol04b] M. Wallace, N. Tsapatsoulis, and S. Kollias, “Intelligent initialization of

resource allocating RBF networks,” Neural Networks, vol. 18, March 2005, pp. 117-122.

[Lei02] O. Leifler, Comparison of LEM2 and a Dynamic Reduct Classification

Algorithm, MS Thesis, Linköpings University, 2002, [Online]. Available:

http://www.diva-portal.org/diva/getDocument?urn_nbn_se_liu_diva-1856-1__fulltext.pdf

[February 2, 2007]

[Mel96] M. Melanie, An Introduction to Genetic Algorithms. MIT Press, Cambridge,

MA, 1996.

[Mos05] M. Moshkov and M. Piliszczuk, “On construction of partial reducts and bounds

on their complexity,” in Systemy wspomagania decyzji, Institute of Computer Science

US, Poland, Katowice, 2005, pp. 102-106.

[Mos07] M. Moshkov, M. Piliszczuk, and B. Zielosko, “On Construction of Partial

Reducts and Irreducible Partial Decision Rule,” Fundamenta Informatica, vol. 75(1-4),

2007, pp. 357-374.

109

[Mur90] Patrick M. Murphy, David. W. Aha, Mushroom Database, UCI Machine

Learning Repository, University of California, Department of Information and Computer

Science, Irvine, California, 1987, [Online].

Available: http://www.ics.uci.edu/~mlearn/databases/mushroom/agaricus-lepiota.data

[May 23, 2006]

[Nel01] D.E. Nelson, High Range Resolution Radar Target Classification: A Rough Set

Approach, PhD Thesis, Ohio University, 2001, [Online]. Available:

http://www.ent.ohiou.edu/~starzyk/network/Research/Thesis/Dale_Nelson_dissertation.p

df [May 4, 2006]

[Ohr99] A. Ohrn, Discernibility and Rough Sets in Medicine: Tools and Applications,

PhD Thesis, Norwegian University of Science and Technology, 1999, [Online].

Available: http://www.idi.ntnu.no/~aleks/thesis/ [March 28, 2006]

[Paw82] Z. Pawlak, “Rough Sets,” International Journal of Computer and Information

Sciences, vol. 11, 1982, pp. 341-356.

[Paw84] Z. Pawlak, “Rough Sets and Classification”, International Journal of Man-

Machine Studies, vol. 20(5), 1984, pp. 469-483.

[Paw85] Z. Pawlak, “Rough Sets and Fuzzy Sets”, International Journal of Man-

Machine Studies, vol. 21(2), 1985, pp. 99-102.

[Paw91] Z. Pawlak, “Rough Sets - Theoretical Aspects of Reasoning About Data,” in

Kluwer Academic Publ, 1991.

110

[Pol06] R. Polikar, “Ensemble based systems in decision making,” in IEEE Circuits and

Systems, vol. 2(3), 2006, pp. 21-45.

[Pyl99] D. Pyle, Data Preparation for Data Mining. San Francisco: Morgan Kaufman,

1999.

[Ras06] Z. W. Ras and A. Dardzinska , "Extracting Rules from Incomplete Decision

Systems: System ERID", in Studies in Computational Intelligence Vol. 9: Foundations

and Novel Approaches in Data Mining, T.Y. Lin, S. Ohsuga, C.J. Liau, and X. Hu, Eds.

Springer, 2006, pp. 143-154.

[Ras07] Z. W. Ras and S. Im, "Data Confidentiality and Chase-Based Knowledge

Discovery", in Encyclopedia of Data Warehousing and Mining, 2nd ed., J. Wang, Ed.,

Idea Group Inc, 2007, will appear.

[RSES2] RSES2.2 User’s Guide, Warsaw University, 2005, [Online]. Available:

http://logic.mimuw.edu.pl/~rses/ [November 29, 2005]

[Slo92] A. Skowron and C. Rauszer, “The Discernibility Matrices and Functions in

Information Systems,” in Intelligent Decision Support: Handbook of Applications and

Advances of the Rough Sets Theory, Dordrecht, The Netherlands: Kluwer, 1992, pp. 331-

362.

[Soo97] T. Lin and V. Soo, “Pruning Fuzzy ARTMAP Using Minimum Description

Length Principle in Learning from Clinical Databases,” in Proc. of the 9th International

Conference on Tools with Artificial Intelligence, 1997, pp. 396-403.

[Sta99] J. A. Starzyk, D. E. Nelson, and K. Sturtz, “Reduct Generation in Information

Systems,” in Bulletin of International Rough Set Society, vol. 3(1/2), 1999.

111

[Sta00] J. A. Starzyk, D. E. Nelson, and K. Sturtz, “A Mathematical Foundation for

Improved Reduct Generation in Information Systems,” in Journal of Knowledge and

Information Systems, vol. 2(2), 2000, pp.131-146.

[Sta02] J. Starzyk and Z. Zhu, "Software Simulation of a Self-Organizing Learning Array

System", presented at The 6th IASTED Int. Conf. Artificial Intelligence & Soft Comp.

(ASC 2002), Banff, Alberta, Canada, July 17-19, 2002.

[Tse05] T. Tseng, Y. Kwon, and Y. Ertekin, “Feature-based rule induction in machining

operation using rough set theory for quality assurance,” in Robotics and Computer-

Integrated Manufacturing, vol. 21(6), 2005, pp. 559-567.

[Vin99] S. Vinterbo and A. Øhrn, “Minimal approximate hitting sets and rule templates,

in Predictive Models in Medicine: Some Methods for Construction and Adaptation,”

Department of Computer and Information Science, NTNU report 1999:130, 1999.

[Wol92] W.H Wolberg, O. L. Mangasarian, Wisconsin Breast Cancer Database (bcwis),

UCI Machine Learning Repository , University of California, Department of Information

and Computer Science, Irvine, California, 1991, [Online]. Available:

http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/ breast-cancer-

wisconsin.data [February 10, 2006]

[Wol96a] W.H Wolberg, W. N. Street, O. L. Mangasarian, Wisconsin Diagnostic Breast

Cancer (WDBC) Database, UCI Machine Learning Repository, University of California,

Department of Information and Computer Science, Irvine, California, 1995, [Online].

Available: http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/wdbc.data

[February 10, 2006]

[Wro95] Jakub Wroblewski, “Finding minimal reducts using genetic algorithms

(extended version).”, in Proc. Second International Joint Conference on Information

Sciences, 1995, pp. 186–189.

112

[Wol96b] W.H Wolberg, W. N. Street, O. L. Mangasarian, Wisconsin Prognostic Breast

Cancer (WPBC) Database, UCI Machine Learning Repository, University of California,

Department of Information and Computer Science, Irvine, California, 1995, [Online].

Available: http://www.ics.uci.edu/~mlearn/databases/breast-cancer-wisconsin/wpbc.data

[February 10, 2006]

113

Appendix – Full Tables

The tables in this Appendix contain the full set of information pertaining to the database results portrayed in Section 4.5, and are
placed here to allow for a more thorough examination of the tests.

Table A1 – Full test results for the wdbc database.

Method

Learn
vs.
Test
% Iterations

Avg.
Reduct
Time
(s)

StdDev
Rtime

Average
of
Rules

StdDev
of
Rules

% Average
Correct

Classification

Std
Dev

Correct

Average
Total
Time

Std
Dev
Time
(s)

Exhaustive 10/90 20 1.61 0.32 69 14.00 88.49 5.36 2.91 0.45
Exhaustive 20/80 20 5.63 0.78 114 21.00 93.00 1.55 10.02 1.84
Exhaustive 30/70 20 13.95 1.80 405 68.00 93.32 0.86 28.69 3.71
Exhaustive 40/60 10 30.28 2.44 950 124 93.65 1.22 57.14 6.79
Exhaustive 50/50 10 122.23 20.13 1706 158 93.80 1.22 162.08 23.15
Exhaustive 60/40 10 222.36 16.76 2724 338 93.73 1.65 293.05 30.64
Exhaustive 70/30 20 370.37 31.04 3715 277 94.74 1.47 479.65 37.98
Exhaustive 80/20 10 506.52 21.58 4634 124 94.30 1.19 644.00 34.24
Exhaustive 90/10 5 753.15 34.66 5573 542 96.84 3.14 972.30 91.93

Stat Based 10/90 20 0.38 0.06 62 11 88.82 5.11 1.40 0.24
Stat Based 20/80 20 0.90 0.17 100 15 92.49 1.48 3.86 1.56
Stat Based 30/70 20 1.59 0.20 306 72 93.71 0.92 14.46 4.11
Stat Based 40/60 20 1.81 0.35 524 167 93.72 1.44 18.41 6.49
Stat Based 50/50 20 2.11 0.22 939 302 94.31 1.29 29.10 11.71
Stat Based 60/40 20 2.64 0.17 1217 383 93.55 1.27 35.13 16.13
Stat Based 70/30 20 3.35 0.31 1827 476 93.57 2.17 56.99 26.20
Stat Based 80/20 20 3.87 0.39 2394 700 92.76 1.89 86.99 38.65
Stat Based 90/10 20 4.38 0.45 3101 692 95.35 2.63 125.06 35.67

114

Table A2 – Full test results for the bcwis database.

Method
Learn vs.
Test % Iterations

Avg.
Reduct
Time
(s)

StdDev
Rtime

Average
of
Rules

StdDev
of
Rules

% Average
Correct

Classification

Std
Dev

Correct

Average
Total
Time

Std
Dev
Time
(s)

Exhaustive 10/90 20 0.19 0.01 20 5 86.72 5.12 0.79 0.15
Exhaustive 20/80 20 0.46 0.01 48 8 92.20 1.76 1.58 0.22
Exhaustive 30/70 20 0.89 0.03 77 11 93.70 1.25 2.73 0.38
Exhaustive 40/60 20 1.43 0.02 107 15 93.74 1.19 3.73 0.44
Exhaustive 50/50 20 2.19 0.05 122 18 94.28 1.10 4.88 0.74
Exhaustive 60/40 20 3.39 0.11 160 20 94.10 1.18 7.01 0.96
Exhaustive 70/30 20 4.48 0.19 176 25 95.00 1.84 8.35 1.28
Exhaustive 80/20 20 5.79 0.17 196 30 94.12 2.29 10.14 1.63
Exhaustive 90/10 20 6.91 0.06 191 11 94.00 3.59 10.43 0.52

Stat Based 10/90 20 0.13 0.01 14 4 87.86 3.58 0.45 0.08
Stat Based 20/80 20 0.29 0.01 39 5 92.34 1.41 0.94 0.16
Stat Based 30/70 20 0.52 0.01 45 7 93.47 1.14 1.49 0.26
Stat Based 40/60 20 0.82 0.05 83 12 93.83 1.32 1.96 0.39
Stat Based 50/50 20 1.12 0.03 96 18 94.58 1.51 2.54 0.52
Stat Based 60/40 20 1.46 0.04 110 22 94.40 1.46 3.18 0.64
Stat Based 70/30 20 1.80 0.04 130 27 93.91 1.65 3.71 0.71
Stat Based 80/20 20 2.18 0.09 148 28 94.56 2.61 4.64 1.01
Stat Based 90/10 20 2.46 0.04 143 27 94.89 3.02 4.67 0.96

115

Table A3 – Full test results for the wpbc database

Method
Learn vs.
Test % Iterations

Avg.
Reduct
Time
(s)

StdDev
Rtime

Average
of
Rules

StdDev
of
Rules

% Average
Correct

Classification

Std
Dev

Correct

Average
Total
Time

Std
Dev
Time
(s)

Exhaustive 10/90 20 0.66 0.14 3 6 42.64 11.93 1.15 0.18
Exhaustive 20/80 20 1.98 0.24 18 8 65.92 8.17 3.09 0.24
Exhaustive 30/70 20 3.59 0.60 50 20 74.46 1.35 5.41 0.68
Exhaustive 40/60 20 6.57 0.89 60 16 75.59 2.59 9.74 1.39
Exhaustive 50/50 20 10.96 1.42 80 29 74.14 2.71 16.98 2.47
Exhaustive 60/40 20 17.45 1.75 102 31 75.76 4.15 25.62 2.28
Exhaustive 70/30 20 24.40 1.83 166 38 75.68 4.90 36.65 3.43
Exhaustive 80/20 20 34.70 2.97 266 41 75.50 6.86 52.14 4.56
Exhaustive 90/10 20 48.58 1.83 394 55 72.75 6.38 71.09 5.12

Stat Based 10/90 20 0.64 0.13 2 2 41.40 11.99 1.19 0.19
Stat Based 20/80 20 0.40 0.06 25 10 68.86 4.75 1.32 0.24
Stat Based 30/70 20 0.65 0.13 48 19 74.10 2.06 2.02 0.33
Stat Based 40/60 20 1.07 0.20 47 12 75.29 1.43 3.06 0.44
Stat Based 50/50 20 1.53 0.26 54 20 75.66 2.74 4.97 1.22
Stat Based 60/40 20 1.19 0.64 52 24 72.78 4.55 5.29 2.44
Stat Based 70/30 20 1.32 0.77 76 33 72.12 4.28 7.37 3.36
Stat Based 80/20 20 1.47 0.70 128 71 73.75 5.65 11.57 5.48
Stat Based 90/10 20 1.92 1.19 208 88 78.00 7.15 16.26 6.48

116

Table A4 – Full test results for the mushroom database

Method
Learn

vs. Test
Itera-
tions

Avg.
Reduct
time

StdDev.
Rtime

Average
of

Reducts
StdDev.
#Red

Average
of rules

StdDev #
Rules

Average
Correct

Classification
Std Dev

class
Average

total time
Std Dev

Time

Exhaustive 2.5/97.5 10 5.65 0.07 592 189 587 105 96.80 1.62 50.34 24.33

Exhaustive 5/95 10 24.44 3.60 479 133 794 132 98.71 0.69 109.09 40.94

Exhaustive 10/90 10 83.54 9.88 394 87 1098 221 99.40 0.24 291.34 97.51

Exhaustive 20/80 5 302.31 16.59 316 25 1327 135 99.82 0.22 662.18 111.39

Exhaustive 30/70 5 658.53 45.73 275 37 1409 97 99.98 0.03 1134.50 63.20

Exhaustive 40/60 5 1216.30 46.30 272 32 1423 161 99.98 0.06 1659.50 207.38

Exhaustive 50/50 5 1763.50 45.91 222 17 1427 109 100.00 0.00 2240.80 111.39

Exhaustive 60/40 5 2567.90 40.20 211 5 1523 115 100.00 0.00 3113.40 123.15

Exhaustive 70/30 5 3441.90 25.80 209 5 1550 62 100.00 0.00 4026.60 41.35

Exhaustive 80/20 5 4442.40 15.15 203 0 1409 90 100.00 0.00 4947.00 82.51

Exhaustive 90/10 5 5706.20 88.35 203 0 1159 283 100.00 0.00 6016.30 165.05

Stat Based 2.5/97.5 10 1.23 0.09 98 49 164 45 96.89 0.72 10.18 5.85

Stat Based 5/95 10 2.83 0.23 132 100 234 88 98.30 0.94 24.40 14.91

Stat Based 10/90 10 5.85 0.24 75 57 263 92 99.48 0.29 28.84 15.58

Stat Based 20/80 10 14.86 0.31 61 42 293 107 99.88 0.07 68.91 53.62

Stat Based 30/70 10 29.67 0.53 48 26 285 93 99.95 0.06 83.83 38.26

Stat Based 40/60 10 49.81 0.77 47 16 305 42 99.98 0.04 112.88 23.56

Stat Based 50/50 10 77.56 0.09 51 29 316 84 99.99 0.03 149.30 35.68

Stat Based 60/40 10 108.40 1.60 40 12 307 64 100.00 0.01 177.15 0.60

Stat Based 70/30 10 146.65 3.00 46 23 340 104 99.99 0.03 236.67 49.74

Stat Based 80/20 10 193.63 3.45 45 13 303 54 99.99 0.04 288.89 35.72

Stat Based 90/10 10 248.44 3.94 46 24 325 132 100.00 0.00 363.09 77.28

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	1. Introduction
	1.1 Background
	1.2 Research Objective and Thesis Organization

	2. An Improved Exhaustive Reduct Determination Method
	2.1 Introduction
	2.2 Prior Research on Reducts
	2.3 Definitions and Notation
	2.4 The Reduct Generation Algorithm
	2.5 A Finding Reducts Example
	2.6 A Classification Based Example
	2.7 Improvements to the Reduct Generation Algorithm
	2.8 Testing of the Reduct Generation Algorithm
	2.9 Discussion of Results
	2.10 Conclusions

	3. Generating Rules from Classifiers
	3.1 Introduction
	3.2 Rule Generation
	3.3 The Rule Generation Algorithm
	3.4 Examples
	3.4.1 Random Example
	3.4.2 The Iris Example

	3.5 Closing Remarks

	4. A Statistical Approach to Discerns in Classification
	4.1 Introduction
	4.2 Prior research on partial reducts
	4.2.1 The Genetic Algorithm
	4.2.2 Set Covering Heuristics
	4.2.3 Approximate Hitting Sets
	4.2.4 Dynamic Reducts
	4.2.5 Ensemble Systems
	4.2.6 Other Methods and Research

	4.3 How Reducts Are Found Statistically
	4.3.1 Population Sampling
	4.3.2 Reducts and Discerns in the Sampling Method

	4.4 The Hybrid Statistical Reduct Determination Algorithm
	4.5 Results and Discussion
	4.5.1 Discussion of Classification Results
	4.5.2 Computational Time
	4.5.3 Confidence Level and Confidence Interval Values

	4.6 Comparison of Standard and Hybrid Statistical Methods
	4.7 Conclusions

	5. Thesis Conclusions
	5.1 Conclusions
	5.2 Future Work

	References
	Appendix – Full Tables

		2007-04-02T14:58:25-0400
	ETD Program
	I am approving this document

