

Phoneme Recognition Using Neural Network and Sequence Learning Model

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Yiming Huang

March 2009

© 2009 Yiming Huang. All Rights Reserved.

 2

This thesis titled

Phoneme Recognition Using Neural Nework And Sequence Learning Model

by

YIMING HUANG

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Janusz A. Starzyk

Professor of Electrical Engineering and Computer Science

Dennis Irwin

Dean, Russ College of Engineering and Technology

 3

ABSTRACT

HUANG, YIMING, M.S., March 2009, Electrical Engineering

Phoneme Recognition Using Neural Network and Sequence Learning Model (82 pp.)

Director of Thesis: Janusz A. Starzyk

 The purpose of this thesis is to describe a biologically motivated approach for

phoneme recognition by using a self-organized neural network and sequence learning

algorithm. Phoneme recognition in continuous speech is a tough task with a low accuracy

rate. By using the sequence learning algorithm to add sequential information of

individual phonemes, recognition performance can be improved.

 This thesis includes three parts. A self-organized neural network is the first stage,

which classifies the input sound waves into forty two different phoneme categories. The

42 output neurons of the neural network are sent to the Sequence Learning block which is

composed of Long Term Memory cells. Finally each LTM cell sends a unique feedback

strength signal to each output of the neural network to predict the next phoneme, hence,

to improve the phoneme recognition based on the sequential information.

Approved: ___

Janusz A. Starzyk

Professor of Electrical Engineering and Computer Science

 4

ACKNOWLEDGMENTS

I would like to take this opportunity to thank all the people who helped and supported me

in completing this thesis. Without their assistances and support, my thesis could not have

been accomplished.

First and most importantly, I would like give appreciation to my advisor, Professor

Janusz A. Starzyk for advising my thesis with his outstanding knowledge and countless

time. His working attitude and innovative ideas in research has been of great value for me.

I have learned a lot more than just knowledge, but a great work and studying habits.

I also would like to thank my committee members: Professor Jeffery Dill, Professor

Maarten Uijt de Haag, and Professor Xiaozhuo Chen for their time to reviewing my

thesis and providing useful suggestions.

In these 3 years of graduate study, my lab mates: Haibo, Yinyin, Lily, Xinming and

James have provided me a lot of valuable suggestions for research and study. As friends,

they also helped me and give me courage and strength in the daily life. So they also

deserve my many thanks for all the help they have provided to me.

And last, I would like to thank my parents for their continuous supports. And most

importantly, I would like to thank my lovely wife, Chun, for her years of love and

support.

 5

TABLE OF CONTENTS

Page

Abstract ... 3

Acknowledgments... 4

List of Tables .. 7

List of Figures ... 8

1. Introduction ... 10

1.1 Background ... 10

1.2 Research Goal ... 13

1.3 Thesis Organization .. 16

2. Sound Preprocessing and Feed-Forward Neural Network with Weighted Least

Square Approach ... 18

2.1 Sound Wave Preprocessing... 18

2.2 Multi-Layer Feed-Forward Neural Network .. 24

2.3 Least-Squares Method for Weight Adjustment .. 28

2.3.1 Introduction ... 28

2.3.2 Training algorithm .. 29

2.4 Model Simulation and Discussion .. 32

2.4.1 Model Simulation .. 33

2.5 Conclusion .. 34

3. Long Term Memory and Sequence Learning Algorithms 36

3.1 Long Term Memory Block ... 36

 6

3.1.1 Introduction to Long Term Memory ... 36

3.1.2 The Structure and Operation of Long-Term Memory 37

3.2 The Training Algorithm and Testing Process of Sequence Learning Block

 ... 40

3.3 Simulation Results of the Sequence Learning Block 44

4. The Phoneme Recognition Correction Method Using Feedback Signals 51

4.1 Introduction ... 51

4.2 The Modified Sequence Learning Block with Feedback Signals 52

4.2.1 The Phoneme Recognition Correction Algorithm 54

4.3 Simulation Results and Discussion ... 59

4.4 Conclusion .. 63

5. Conclusions and Future Work .. 65

5.1 Conclusions ... 65

5.2 Future Work .. 66

References ... 69

Appendix A: Source Code and Data Sets Used in This Thesis .. 73

Appendix B: How to Use the Source Code .. 75

 7

LIST OF TABLES

 Page

Table 1: Training and testing results for phoneme recognition34

Table 2: Results for the saved ext “abba” with decay rate of 245

Table 3: Results for the saved text “abab” with decay rate of 245

Table 4: Comparison table of testing results for phoneme recognition with and w/o
feedback correction involved ..60

 8

LIST OF FIGURES

 Page

Figure 1: The image of original wavelet coefficient transformed from sound wave of the
phoneme “sh” ..20

Figure 2: The image of filtered wavelet coefficient transformed from sound wave of the
phoneme “sh” using Butterworth low-pass filter. ...21

Figure 3: The image of sampled wavelet coefficient transformed from filtered sound
wave of the phoneme “sh” ..22

Figure 4: The image of sampled wavelet coefficient transformed from sound wave of a
whole sentence ..23

Figure 5: The structure of the multi-layer feed-forward neural network25

Figure 6: The basic structure of the memory block in LTM introduced in [Sta 2007] ...37

Figure 7: The detailed external connections between LTM and phoneme recognition NN
and internal connection of LTM ...40

Figure 8: The plot of LTM cell “perforation” response for playing sequence “perforation”
...46

Figure 9: The plot of LTM cell “perforation” response for playing sequence
“performance” ...47

Figure 10: The figure showing the difference between the matched sequence and non-
matched sequence (“perforation” vs. “performance”) ..48

Figure 11: The figure showing the difference between the matched sequence and non-
matched sequence (“abbreviation” vs. “accessories” and “alternative”)49

Figure 12: The flow chart of proposed word recognition system with phoneme
recognition network and sequence learning block introduced in Chapter 352

Figure 13: The detailed external connections between LTM and phoneme recognition NN
and internal connection of LTM with feedback connections ..53

Figure 14: The flow chart of proposed phoneme recognition system with feedback
correction method ...59

 9

Figure 15: The comparison plots of phoneme recognition improvements with feedback
connections ...61

Figure 16: A general view of the proposed speech recognition system model68

 10

1. INTRODUCTION

1.1 Background

Speech recognition is a very popular research goal in the field of machine intelligence.

There are many reasons for automatic speech recognition being widely developed by

engineers and scientists around the world. Human-machine interaction is one of the most

important reasons. We always dream of ordering machines such as the TV to turn itself

on and change channels per our orders, thermostats to adjusting the temperature by

themselves to adapt to a human’s preferences, or even a robot babysitter to do all the

house tasks fast and efficiently. The basic sensory stages of the human-machine

interaction are vision recognition and speech recognition. Voice recognition, which is a

special kind of speech recognition, is widely used in high security locations. Due to the

high demand in the current market, many corporations have already built some

Automatic Speech Recognition (ASR) systems: like the dictation system used by IBM

and the telephone transaction system used by T-Mobile, AT&T and Philips. Although

these systems have been used in commercial area for years already, they still have many

problems. First, these systems can only accomplish limited tasks such as recognizing

numbers from 0 to 9, or isolated commands (e.g. transfer to customer service, balance

request, pay bill, and etc.). Second, they all lack robustness, i.e. these systems have very

poor performance in a noisy environment. Some of the “smart” recognition systems can

recognize a word, a sentence or even a paragraph but require to be adapted to every new

 11

user, so every new user needs to train the system to recognize his/her specific voice. This

approach is not suitable or feasible for a commercial use. These problems lead

researchers and scientists to improve the speech recognition systems.

There are three speech recognition technologies that have been developed over the years:

1. Dynamic time warping: an algorithm for measuring similarity between two

sequences which may vary in time or speed. However, this technology has been

displaced by the more accurate Hidden Markov Model (HMM).

2. Hidden Markov Model: a statistical model in which the system being modeled is

assumed to be a Markov process with unknown parameters. This algorithm is often

used due to its simplicity and feasibility of use.

3. Neural Network based approach: an algorithm for training the system to recognize

speech using an artificial neural network. This technology is capable of solving much

more complicated recognition tasks, and can handle low quality, noisy data, and

speaker independence. If properly developed and used it may be more accurate than

HMM.

Although, the Hidden Markov Model is the most popular method used in the commercial

speech recognition field due to its simplicity and feasibility of use, its drawbacks

motivate many researchers to focus on neural network based approaches. HMM relies

highly on the accuracy of the model phonemes and is state dependent. If the nature of the

speech is not the same as the given sample or the next phoneme in the word depends on

 12

more than just the previous state, then the recognition rate drops dramatically. In

particular, the HMM model cannot properly represent the context of the processed speech,

which is an important property of human speech recognition. Another drawback of HMM

products is that they are speaker-dependent. The system needs to be trained to create

templates of the phonemes and words for each user, i.e. before any user starts to use the

recognition system, he/she always needs to train the system with a number of sample

words which contains all the phonemes by repeatedly speaking these samples and

representing them to the system, then the system can recognize his/her speech by

calculating the probability of the current phoneme compared to the database models. This

training stage is time consuming. The third disadvantage is that the HMM model always

drops the low probability word transitions although they may contain the correct

information. [Kom 1998]

A Neural Network (NN) based approach may present a solution to the above drawbacks.

Unlike HMM, the NN approach does not require template creation and to a large degree

is speaker independent. The recognition system only needs to be trained once to generate

the structure of the network. So the total training time for the system is significantly

reduced comparing to the HMM. In the neural network system, all the output neurons,

where one neuron represents one recognition category, fire at a certain excitation level all

the time, so the system does not lose any useful information even for incorrect outputs. In

addition, since NNs are compatible with neural based associative memory structures, they

are more likely to use speech context in speech recognition. Previously activated words

 13

or concepts may be reused to help recognize a new word or sentence and may remove

ambiguity from understanding similarly sounding words. In addition, using speech

context will help to overcome the effect of noise or speech interference in case of cocktail

party speech recognition.

In general, at the present there is no such speech recognition system that is accurate and

robust to all conditions and applications in real world speech based communications.

Researchers are looking for a way to simulate human hearing perception, but no one yet

is close enough to human ability to understand the speech signals.

1.2 Research Goal

The goal of this master thesis is to find a method to reach an accuracy level of

recognition comparable or exceeding those achievable using HMM-based speech

recognition systems without too much training, and to provide methods that are largely

speaker independent, so that the system can recognize most variations in pronunciation

that would be understood by a native speaker of the language. [Kom 1998] In my thesis,

the neural network based approach is used for phoneme recognition where the feedback

correction method uses the sequence learning model to improve the neural network

performance.

There are three stages in my phoneme recognition system. Before the beginning of the

first stage, the sound waves need to be preprocessed for the input to the neural network.

 14

There are several ways to preprocess the input sound wave: Feature Extraction, Fourier

Transform, Wavelet Transform, etc. Feature Extraction is the most popular method for

speech processing but it is possible to produce errors when estimating speech parameters

[Wha 1988]; Short Time Fourier Transforms (STFTs) and Linear Predictive Coding

(LPC) techniques assume signal stationarity within a given time frame and may therefore

lack the ability to accurately analyze localized events [Lon 1996]. In addition, since it

contains 1-D information only it is not sufficient for analysis of complex speech signals;

Wavelet Transforms can overcome some of the above limitations, and translate a 1-D

sound wave into a 2-D image which contains both time and frequency information, they

are easy to simulate in a mathematical model. So instead of the popular feature extraction,

I used a simpler Wavelet Transform method to obtain the input images. It is not the first

time that the Wavelet Transform method applied in this thesis is used in Automatic

Speech Recognition. It has been applied with some success in pitch detection, formant

tracking and phoneme classification [Lon 1996], due to its high time-frequency resolution

[Jan 1996]. In order to limit the size of the inputs, sampling is used to reduce the

resolution of the image, and overlapping windows are used to avoid loss of the sampled

information.

After preprocessing, these images are input into the neural network to train it for

recognition of English syllables or phonemes with the weighted least square approach. In

this stage, the outputs are organized into different categories: 42 different phonemes,

which are used as the input to the next stage. After this first level recognition of

 15

phonemes by the neural network, a certain recognition rate level is obtained, but it is not

accurate enough, so an additional method or system needs to be applied in order to

improve the phoneme recognition rate.

The second stage of my simulation model is to create a sequence learning block

composed by a number of Long Term Memory (LTM) cells, which saves the sample

words (the phoneme sequences) in the sample sentences, using the outputs of the neural

network and the desired outputs of this sequence learning block. These LTM cells are

created using the sequence learning method based on the architecture introduced by J.

Starzyk and H. He in [Sta 2007] for recognizing English words from the syllables or

phonemes, and the output of this block is the winner of the LTM cells which has the

strongest excitation strength, hence provides the result for word level recognition.

However, our goal is to improve the phoneme recognition rate, so the final stage is added

to improve the phoneme recognition rate which sends back the word level recognition

results to the outputs of the phoneme recognition neural network.

In the final stage of our simulated system, we create feedback signals from the output of

each LTM cell and send them back to the neural network outputs to influence the

recognition result of the next playing phoneme. The neural network outputs supported by

the sequence information should have a more accurate recognition rate. This is because

only certain phonemes can compose a word, and by recognizing the word the next

 16

phoneme in the word can be predicted; hence, the performance of the phoneme

recognition becomes higher than without the feedback signals.

1.3 Thesis Organization

This thesis is composed of five chapters. Chapter 1 contains the introduction and the

organization of the thesis and the background of the current speech recognition research.

Chapter 2 describes the sound signal preprocessing methods and the neural network

structure with the weighted least square approach. In this chapter, the structure of a feed-

forward network is described in detail and the weighted least square method is presented.

The analysis results are also presented in this chapter.

Chapter 3 introduces the sequence learning method and describes in details of the

structure of the Long Term Memory (LTM) cells. It also contains the analysis results for

word recognition.

Chapter 4 provides information about the phoneme correction method to improve the

phoneme recognition rate. The basic idea of this correction method is adding feedback

links from the outputs of the LTM cells to the outputs of the phoneme recognition neural

network, so the results of word recognition can help the phoneme recognition.

 17

Chapter 5 presents the conclusion of this thesis. This chapter summarizes the work done

and the results presented in this thesis. It also provides the work that needs to be done for

the future improvement of the speech recognition system.

 18

2. SOUND PREPROCESSING AND FEED-FORWARD NEURAL NETWORK

WITH WEIGHTED LEAST SQUARE APPROACH

2.1 Sound Wave Preprocessing

Before the sound waves are sent into the recognition system, they need to be

preprocessed to extract as much information as possible. There are several methods to

preprocess the sound waves as described above in section 1.2. In this chapter, the

Continuous Wavelet Transform is used to extract information from the input sound waves.

The processed inputs are the wavelet coefficients obtained by transforming Daubechies

wavelet [Dau 1992] with the order of 32. The wavelet coefficients of the signal S at scale

a and position b are calculated by:

C a , b = S (t)
1

a
Ψ

t − b
a

⎛
⎝

⎞
⎠

R
∫ dt

, (2.1)

where S is the discrete sound wave signal and Ψis the wavelet.

The inputs to the neural network of our recognition system are composed of these

coefficients, and the size of the input matrix is 32 by (the time duration of the current

sentence in ms). In order to limit the number of inputs to the neural network and shorten

the processing time, one training sentence is transformed at a time. A sampling method

was also used to further reduce the resolution of the input image. Before sampling the

information in the time domain, a Butterworth 1st order low-pass filter with a cut-off

 19

frequency of 0.02 is applied to take out some of the high frequency noise [Woo 2001].

Then, by setting the sampling limits all the sentences, all transformed phonemes are

represented as a 32x32 matrix. The following 3 figures show the sound preprocessing

steps:

Figure 1 displays the image of the phoneme “sh” after the Daubechies wavelet transform,

the x-axis represents the time duration of this phoneme which is about 1500ms and the y-

axis represents the frequency information of the sound at the dedicated time (since we use

Daubechies wavelet of the 32nd order, the frequency axis has 32 levels). In this figure the

pixels with brighter color mean greater energy at this frequency and this time, and the

pixels with darker color means less energy. Figure 2 shows the transformed data after

passing through a Butterworth low-pass filter which filtered out some high frequency

noise for optimal processing. Then the filtered data gets sampled by a digital sampler and

reduced to the size of the image to 32x32 for faster and more efficient analysis. The

sampled image is shown in Figure 3. As we can see, the final sampled image is still

similar to the original image of wavelet transform, so the most important information

from the sound wave has been preserved.

 20

Original wavelet coefficient transformed from sound wave of the phoneme "sh"

Time

Fr
eq

ue
nc

y

200 400 600 800 1000 1200 1400

5

10

15

20

25

30

Figure 1. The image of original wavelet coefficient transformed

from sound wave of the phoneme “sh”.

 21

Filtered wavelet coefficient transformed from sound wave of the phoneme "sh" (Butterworth)

Time

Fr
eq

ue
nc

y

200 400 600 800 1000 1200 1400

5

10

15

20

25

30

Figure 2. The image of filtered wavelet coefficient transformed
from sound wave of the phoneme “sh” using Butterworth low-

pass filter.

 22

Sampled wavelet coefficient transformed from sound wave of the phoneme "sh"

Time

Fr
eq

ue
nc

y

5 10 15 20 25 30

5

10

15

20

25

30

Figure 3. The image of sampled wavelet coefficient
transformed from filtered sound wave of the phoneme “sh”.

 23

Figure 4 shows the preprocessed sound wave of a whole sentence “She had your dark suit

in greasy wash water all year”. The blue areas represent silence and the red areas

represent the actual voiced phonemes. This figure also proves again that, the information

of the sound wave passing through low-pass filter and digital sampler still contains

significant contents for future analysis.

Since the input of neural network is a vector of the digitalized numbers, each sentence is

translated into a 1x1024 vector from the 32x32 matrix. Therefore, a large matrix with a

size of 1024 by (the number of sentences) composed by these translated vectors is

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 104

10

20

30

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

x 104

10

20

30

200 400 600 800 1000 1200

10

20

30

Figure 4. The image of sampled wavelet coefficient
transformed from sound wave of a whole sentence.

 24

formulated for each training and testing set, and these matrices are saved into files to be

ready for further use.

2.2 Multi-Layer Feed-Forward Neural Network

A Feed-Forward Neural Network, also known as multi-layer perceptron, is widely used in

many practical applications. [Neu 2008] It is an interconnection of single layer

perceptrons in which data and calculations flow in one direction from the inputs to

outputs. [Num 2007]

The simplest network of this kind contains only one single layer of inputs and single

layer of outputs. In this thesis, a 3-layer feed-forward neural network is used to classify

the phonemes from the preprocessed sound wave. The 3-layers are the input layer which

contains 1024 input neurons, the hidden layer with various hidden neurons, (where the

number of hidden neurons are to be determined in the training process and need to be

chosen for efficient processing), and the output layer containing 42 neurons which

represent 42 different phonemes to classify.

 25

The input neurons fire at a certain excitation level with a strength corresponding to the

preprocessed sound wave data. The information from the input neurons is summed with

various weights to excite the hidden neurons in the hidden layer, and then each hidden

neuron uses a non-linear activation function, also called the neuron output function, [Neu

2008] described by

y

y

e
ey 2

2

1
1)(−

−

+
−

=σ ， (2.2)

which is a hyperbolic tangent sigmoid transfer function, where

∑
=

+=
n

j
jjj bxwy

0
, (2.3)

and the transfer function of the hidden neuron in this thesis is described by

)(
0

∑
=

+=Φ
n

j
jjj bxwσ , (2.4)

Figure 5. The structure of the multi-layer feed-forward neural
network.

 26

where jw represents the weight of the connection between the jth input and this hidden

neuron, jb denotes the bias of the jth connection, and jx is the jth input. Finally, the

output neurons are obtained by summing the excitation strength of all the hidden neurons

with corresponding weights. So the formula to obtain one output neuron z in a three layer

neural network is:

∑∑ ∑
== =

+Φ=++=
m

i
ii

m

i
i

n

j
jjji bwbbxwwz

0
22

0
2

0
112)(σ (2.5)

We can also write this formula as follows:

BWZ +⋅Φ= (2.6)

After the excitation levels of the output neurons are calculated, a Winner-Take-All (WTA)

method is used to find the strongest excitation neuron, which represents the recognition

result.

In neural network systems, the connections between two layers are the core of the

network structure, and the training process of the neural network is the process of

obtaining the weights of these connections. Assuming that the bias b is negligible, then

equation 2.4 can be written as:

)(φfWZ =⋅Φ= (2.7)

From equation 2.5, the straightforward method to obtain the weights is to invert the input

matrixΛ and then multiply it by the output vector:

ZW ⋅Λ= −1 (2.8)

where,

 27

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

nmnn

m

m

www

ww
www

W

L

MOM

O

L

21

221

11211

 (2.9)

represents the connections between n inputs and m outputs,

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

mz

z
z

Z
M
2

1

 for m outputs, and

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=Λ

nφ

φ
φ

M
2

1

for n inputs.

There are several different algorithms for Multilayer Perceptron Learning, and in this

thesis the back-propagation training algorithm is used. This algorithm contains two

phases: the forward pass phase and the backward pass phase. In the forward pass phase,

the input signals are propagated forward through the network, and then in the second

phase, the errors are propagated backwards through the network [Erd 05]. The basic idea

of this algorithm is to find out a way to modify the weights in order to reduce the errors,

where the error function is:

∑
=

−=
1

2))()((1)(
k

kk tytd
k

tE , (2.10)

and d(t) is the desired output value at time t, and y(t) is the current output value at time t.

To find the minimum E, we can use gradient-based weights adjustment:

)(
)()()1(
tw
tEtwtww

ij
ijijij ∂

∂
−∝−+=Δ , (2.11)

the problem is that this could go to local minima instead of the global minimum point,

and it also could cost very long time to process due to the large number of learning steps

 28

and the number of iterations needed. There is another efficient multi-layer perceptron

learning method which is used here to obtain the minimum sum of squared error, hence to

adjust the weights. It is known as the Least-Squares method for NN.

2.3 Least-Squares Method for Weight Adjustment

2.3.1 Introduction

Least-Squares method is used to obtain the minimum sum of squared errors for a system

of linear equations. It can be used to solve both underdetermined and overdetermined

systems. For an underdetermined system, Least-Squares method finds the solution with

the minimum sum of weights using system regularization; and for an overdetermined

system, the pseudo-inverse finds the solution with minimum sum of squared errors. In

the neural system used in this thesis, the number of training data points is larger than the

number of unknown weights in the NN and this produces an overdetermined linear

system of equations. So the Least-Squares algorithm is applied in the optimization for

weights of the connections between the layers. The Least-Squares Algorithm (LSA) is

able to provide best fitting to go through all the points in this nonlinear system and the

idea of the LSA is to adjust the function parameters to best fit a data set. The data set

contains the input points and corresponding output points of each layer in the neural

network, (iφ , iz), and)(φf is the fitting curve. Suppose)(φf has error e for each data

point, i.e.)(111 φfze −= , then according to the least squares algorithm, the best fitting

curve should have the property of:[Lea 2008]

 29

min))((
00

222
2

2
1 ∑∑

==

=−==+++=Ε
n

i
ii

n

i
in fzeeee φL (2.12)

2.3.2 Training algorithm

The training algorithm used in this thesis is the back-propagation algorithm that was first

introduced by Yinyin Liu in [Liu 08]. First we randomly initialize the value of the

weights and biases between the output layer and the second layer to obtain the signals on

the second layer, then the weights and biases for the connections between the first layer

and the second layer can be optimized from the random initial value using the input

signals and the signals on the second layer. After these weights and biases are calculated,

the signals on the second layer can be re-calculated from the optimized weights, biases

and the input signals, finally the signals on third layer, (that is also the output layer in our

case), can also be obtained using the optimized weights and biases between the second

layer and this layer and the signals on the second layer. In general, if we have n layers,

the weights and biases between each layer can be optimized and the signals on each layer

can be conducted, in a feed-forward fashion (moving from lower to higher layers) until

the output layer is reached. [Liu 08]

Suppose the input signals x and desired output signals d are provided from the training

data in the database, abW and abb denote the weights and biases between the input layer a

and the hidden layer b, and bcW and bcb denote the weights and biases between the hidden

layer b and the output layer c accordingly. We also let y1 and z1
 to represent the signals of

 30

the hidden layer before and after the nonlinearity, and y2 and z2

 to represent the signals of

the output layer before and after the nonlinearity accordingly. Then the following

procedure describes the least squares method of NN training used in this thesis to find all

the optimized weights:

1.) Randomly initialize the weights and biases abW , abb , bcW and bcb in the network with

the values in []∞∞− , .

2.) Use the desired output signals d to calculate the signals d’ obtained before the transfer

function.

3.) Calculate the signal z1 of the hidden layer after the non-linear transfer function using

the least square method to satisfy:

'1 dbzW bcbc =+⋅ (2.13)

The signal z1 can be obtained by the pseudo-inverse of the augmented coefficient

matrix:

[] '
1

11 dbW
z

bcbc ⋅=
⎭
⎬
⎫

⎩
⎨
⎧ − (2.14)

4.) Use the obtained signal z1 to calculate the signal y1 before the transfer function of the

first layer, and z1 needs to be linearly scaled into the range of the transfer function

output.

5.) Now, we can optimize the weights and biases for the connections between the first

layer and the hidden layer using calculated signal y1 and input signals X:

 31

[]
1

1 1

−

⎭
⎬
⎫

⎩
⎨
⎧

⋅=
x

ybW abab (2.15)

6.) After abW and abb are obtained, the signal y1 before the transfer function of the first

layer can be calculated using these new values, and subsequently used to calculate the

signal z1 after the transfer function by the following formulas:

)(1
1

1

1

yfz
bxWy abab

=
+=

 (2.16)

7.) As the new z1 is obtained in 6.) and the signal d’ found in 2.), we can optimize bcW

and bcb using least-square algorithm through this formula:

[]
1

1

1
'

−

⎭
⎬
⎫

⎩
⎨
⎧
⋅=

z
dbW bcbc (2.17)

8.) The signals of the output layers y2 and z2
 can now be calculated based on the current

value of bcW and bcb using formulas:

)(2
2

2

12

yfz
bzWy bcbc

=
+=

 (2.18)

9.) The final step is to calculate the mean squared error (MSE) between the calculated

output signals z2
 and the desired outputs d by using the following formula, and then

normalize the MSE.

][

)()(22

ddE

zdzdE
J T

T −−
= (2.19)

The NN learning program iterates from the step 2 to step 9 for a number of trials until the

MSE J reaches a certain minimum, hence, the final calculated output signals z2 are most

 32

likely equal to the desired outputs d. We can save the final weights and biases which

result in these output signals as the best results. In the above procedure, “the desired

outputs are propagated back through layers, and the Least Squared Method is used to

obtain the optimal weights and biases. It yields a single global optimum solution for all

stages of the applied procedure.” [Liu 08] Thus, by using this method, the global

optimized weights and biases can be found.

2.4 Model Simulation and Discussion

For neural network learning and testing, a proper database selection is very important. In

this thesis, TIMIT acoustic-phonetic continuous speech corpus was selected for training

and testing. It contains broadband recordings of 630 speakers of eight major dialects of

American English, and each reading ten phonetically rich sentences. Since the goal of

this thesis is to recognize the phonemes not sentences, separating the phonemes from the

training sentence samples is very important and is the most difficult part. There is no

existing technology that can automatically separate either phoneme or words accurately

enough from a spoken sentence, but the TIMIT database already provided the endpoints

of each phoneme and each word in the sentences to make our task simpler.

By using the training algorithm mentioned above, the network can be constructed with

the proper weight connections and biases which can result in optimal outputs. Next we

send the testing samples into this network to obtain the recognition results.

 33

2.4.1 Model Simulation

Training and testing samples:

80 sentences (total 2957 phonemes) from the training sets of the database

40 sentences (total 1497 phonemes) from the testing sets of the database

Neural Network:

Input: 1024 input neurons (size of the vector), which represent the preprocessed sound

wave information of one phoneme.

Hidden layer: 1 layer contains 50—70 hidden neurons

Output: 42 output neurons which represent 42 different phoneme classes

Network structure: Weighted Least-Squares Multilayer Perceptron (3 iterations and 2

Monte-Carlo runs)

 34

Training and testing results:

Table 1:

Training and testing results for phoneme recognition
of Hidden Neurons 50 55 60 65 70

J_train (mse) 0.4883 0.4712 0.4691 0.4516 0.4378

J_test (mse) 1.2133 1.2183 1.2390 1.1846 1.2662

Misclassification

(training)

342/2957 291/2957 273/2957 283/2957 212/2957

Misclassification

(testing)

1050/1497 1023/1497 1014/1497 1027/1497 1030/1497

Testing Error 70% 68% 67% 69% 69%

From Table 1, we can conclude that more hidden neurons do not necessarily improve the

classification results. The overfitting problem also occurs in this project.

2.5 Conclusion

Due to very high time and frequency variances between different people’s speech, and

even more variances between different dialects, the individual phoneme recognition

performance is not good in the above table, although the method used can approach the

optimal recognition results in theory. However, since only certain phonemes’

combination in a specific sequence can compose a word, by applying a sequence learning

method to phoneme recognition, the system can predict the next phoneme and correct the

previous phoneme in the same word, hence, the performance of the recognition should be

 35

improved. In Chapter 3, a sequence learning method will be introduced and a word level

simulation will also be introduced after adding a sequence learning block on top of the

phoneme recognition neural network for word recognition. In Chapter 4, I will apply this

sequence learning method to the phoneme recognition system, and explain how to

improve the phoneme recognition rate by adding the feedback signals from the sequence

learning blocks.

 36

3. LONG TERM MEMORY AND SEQUENCE LEARNING ALGORITHMS

3.1 Long Term Memory Block

3.1.1 Introduction to Long Term Memory

Research in our group focuses on Embodied Intelligence, so the simulation network

structures and sequence learning blocks is modeled similarly to the human brain. As we

know, humans have two major types of memory, Short-Term Memory and Long-Term

Memory. In Wikipedia, Short-Term Memory is defined as the memory “to hold a small

amount of information for about 30 second”[Wikis]; and Long Term Memory is defined

as “the memory that can last as little as a few days or as long as decades”[Wikil]. Over

the past decade, many scientists have studied these two types of memory trying to find a

better understanding of human memory. It is believed that these two types of memory

have different structure and functionalities. In this thesis the long-term memory structure

is used to store the sequence information.

The basic idea of using the long-term memory (LTM) instead of short-term memory

(STM) is to save the trained sequence information as long as possible, since in reality the

system should be only trained once for as many different combinations of sequences as

possible, then it will be used to predict the next testing sequence after all the training is

done. The LTM is composed by a number of memory blocks, and each block saves the

 37

letter/phoneme combination information of one dedicated sequence, while waiting to

recognize the represented character.

3.1.2 The Structure and Operation of Long-Term Memory

The structure of the Long-Term Memory discussed in this thesis is based on the

architecture of LTM introduced by J. Starzyk and H. He in [Sta 2007]. In that paper, the

LTM structure is used to recognize text. But in this thesis, the technology was adapted to

recognize spoken words, and provide feedback to correct phoneme recognition errors.

A B C

1 1 1 1

0.5
0.5 0.5 0.50.25

0.25 0.250.125 0.125

Input Neuron Strength
from Phoneme

Recognition

Primary Neurons

Dual Neurons

Output Neuron

LTM Block Structure

ABBAB

0.125

Figure 6. The basic structure of the memory block in LTM
introduced in [Sta 2007].

 38

Figure 6 shows a sample structure of the memory cell in the sequence learning block

described in [Sta 2007]. In this thesis, the memory block structure is configured for

speech recognition, i.e. instead of 26 inputs representing 26 letters, the inputs of each

block 41210 ...,, iiiiI = are a series of neurons that represent all 42 phoneme recognition

categories 41210 ...,, zzzzZ = from the neural network output. Since, in the training mode

the number of elements in the sequence is known, the number of primary neurons in

LTM equals to the number of elements. Each primary neuron connects to all the inputs

with different weights (the excited inputs have weights of 1, and others are set to 0).

Since the input sequence may be discontinuous or out of order due to the noise, dual

neurons are used to save the excitation strength, and to help excite other elements in this

saved sequence. Each dual neuron connects to its corresponding primary neurons with a

weight of 1 and adjacent primary neurons with reduced weights defined by a weight

reduction coefficient q, resulting in internal weights ernalWint (a more distant primary

neuron receives a weaker feedback signal). The final output of each LTM cell is equal to

the sum of the activations of all dual neurons. As a sequence is being trained, the

excitation level of primary neurons is obtained by the input signal strength multiplied by

the input weights, added with the feedback from previous dual neurons. And then the

dual neurons simply copy the excitation strength of the corresponding primary neurons.

The LTM response strength for a current element of the saved sequence is the sum of the

excitation strength of all the dual neurons computed at the current time.

 39

After the training process is finished, each LTM saves a strength vector for the dedicated

sequence of elements. These values will be used as a reference to compare with the LTM

response of testing samples.

In the testing mode, the same LTM structure is used to obtain the LTM response strength

of the input sound, and compare (divide) it to the saved strength. The LTM response

strengths for the currently playing input element are normalized between 0 and 1. If both

testing and saved strength match, the LTM response strength is 1, otherwise it is less than

1 but always a non-negative number. Since each testing sequence needs to be compared

to all the saved LTM’s, the testing sequence may be shorter or longer than the saved

sequence. Thus, in case of a shorter sequence, because the last element of the playing

sequence is set to the end-of-sequence symbol, the final LTM response strength is

reduced. For a longer sequence, the final signal is normalized using the logarithm of the

length ratio. In order to keep the output signal from growing rapidly with the sequence

length, the following equation is used to predict the LTM response for ith element of the

saved sequence:

)
12
12(1

1

−
−

⋅⋅+=
−

qr
qrrqS

i

i , (3.1)

where q is a weight reduction coefficient and r is equal to 1/decay factor.

After all the relative LTM response strengths of the playing elements have been obtained,

a Winner-Take-All (WTA) method is used to choose the best fit LTM with the strongest

 40

relative respond strength. The sequence stored in this winning LTM is the recognition

result.

3.2 The Training Algorithm and Testing Process of Sequence Learning Block

In the above section, we have discussed a general structure of the Long-Term Memory

cell used in sequence recognition. A detailed training algorithm and simulation process

for sequence learning are introduced in this section.

Figure 7. The detailed external connections between LTM and
phoneme recognition NN and internal connection of LTM

 41

TRAINING ALGORITHM

1. Set all primary neurons (PN) and dual neurons (DN) to zero. In order to be saved in

one matrix for all LTM cells, we make the number of PNs and DNs the same in all

the cells, so in this case, the number is set to 18 which is greater than the number of

phonemes in the longest word possible.

2. Since in the training mode the desired activation output neuron from phoneme

recognition is known, the weights for the connections between PN and the LTM cell

inputs I can be obtained based on the desired outputs. E.g. if the first phoneme in the

word activates the third output neuron, then the connection between the first PN in

the current training LTM cell and the third input neuron has a weight of 1 and all

other connections between the fist PN and the rest of input neurons have weights of

zero, i.e.

0,1 42,1,4,1,2,1,1,1,3,1, ====== PNPNPNPNPN WWWWW L

3. There are two types of connections between the dual neurons and primary neurons,

one is a feed-forward connection and another is a feedback connection. The PN

signals are always passed feed-forward to DN’s, and all the weights for feed-forward

connections are set to 1; the feedback signals from DN’s to PN’s are used to pass the

sequential information from previous phoneme to the next one, and the feedback

weight between nth DN and (n+m)th PN is calculated by the following formula:

m
mnnernalW δ=+,,int

where δ is the decay factor and 10 << δ .

4. Repeat steps 2 and 3 until all the phonemes in the playing word have been input, then

 42

the structure of one LTM cell has built up, (i.e. the weights for the connection

between PNs and inputs, PNs and DNs, and DNs and outputs are all obtained.)

5. Repeat steps 1 through 4 until all the words in the training set have been trained, and

then the sequence learning block is established with several LTM cells, where each

cell saves the sequential information of one word.

6. As the internal structure of the sequence learning block builds up, the ideal/desired

outputs NNI ' (only the activation neuron has a value of 1, the others are zeros) from

the phoneme recognition NN are sent into the LTM cells as inputs for the sequence

learning in the word level.

7. The nth primary neuron in each LTM cell first accepts the weighted inputs from the

inputs of nth playing phoneme in the current training word and sums them up as the

following formula:

∑
=

⋅=
42

1
,,,'

i
inPNiNNn WIPN (3.2)

Next, the feedback signals from the previous dual neurons are also added into this nth

PN. The strengths of these feedback signals for this PN are calculated by the

following formula:

∑
−

=

⋅=
1

1
,,int,

n

i
niernalinfeedback WDNPN (3.3)

So the final strength of the nth PN is

∑∑
−

==

⋅+⋅=+=
1

1
,,int

42

1
,,,,, '

n

i
niernali

i
inPNiNNnfeedbackndfeedforwarn WDNWIPNPNPN (3.4)

 43

Then the PN sends its strength to the corresponding dual neuron directly with weights

of 1, i.e. nn PNDN = .

8. Now the strength of the output neuron for this jth LTM cell and nth playing phoneme

can be calculated as:

∑= DNB nj , (3.5)

9. After all the phonemes in this word have been played, the output neuron has a vector

of values which contain the LTM responses for each phoneme in this word. These

responses are the desired reference values which will be compared with the responses

calculated in step 13 to obtain the trained strength of LTM.

10. Since we want to save all the desired reference vectors in one matrix for simplicity,

the maximum number of phonemes that can be saved in one LTM is set to a large

number (18 in this case). In order to calculate the desired reference value which goes

beyond the input phonemes in a word, we use the equation 3.1.

11. Repeat steps 6 through 10 for all training phoneme samples to obtain the desired

reference values of all LTM cells in the sequence learning block.

12. Still in the training mode, we send the real-time output values from the neural

network for the training samples into the sequence learning block, and repeat step 6

through step 10 for these data, to obtain the response realB for each LTM. Then we

divide these response values by the corresponding reference values desiredB , and these

results are the final reference LTM response that will be compared by the testing

results to see which LTM has the best match.

 44

desiredrealf BBB /Re = (3.6)

where 20 ≤≤ refB .

TESTING OPERATIONS

Now we can start to test the system. Use the real time NN output data of the testing set to

send into sequence learning block, repeat step 6 through step 10 to obtain the responses

testB . Then divide these responses by all the final reference LTM response from training

to obtain the relative responses. Finally, we use the Winner-Take-All method to find the

best matching sequence based on the relative responses of all the LTM cells. The best

match for the currently played test word sample is the sequence information saved in the

LTM which has a relative response closest to 1.

3.3 Simulation Results of the Sequence Learning Block

A simulation is constructed as follows to show the performance of the sequence learning

block. For simplicity, I use text converted inputs instead of phoneme recognition data

since text input has less classification categories than phoneme, and both of them have

similar characteristics.

Suppose that the word “perforation” was successfully saved in one LTM cell after

training, the total energy of all input neurons is set to one (i.e. 12 == ∑
n

nIE) , the desired

 45

activated input neuron α−= 121I where α represents the noise level, and the other input

neurons are all randomly generated with total energy of α (i.e. 1
20

1

26

22

22 =+= ∑ ∑
= =n n

nn IIE).

Table 2:

Results for the saved text “abba” with decay rate of 2
Input Text Output Strength

 1st 2nd 3rd 4th 5th
abba 1.0 1.0 1.0 1.0

aabb 1.0 1.0 0.8654 0.8857

bbaa 1.0 1.2 1.0750 1.0593

baab 1.0 1.1 1.025 0.8854

aba 1.0 1.0 0.9625

abbab 1.0 1.0 1.0 1.0 0.9117

prus 0 0 0 0

Table 3:

Results for the saved text “abab” with decay rate of 2
Input Text Output Strength

 1st 2nd 3rd 4th 5th
abba 1.0 1.0 1.0789 0.9669

aabb 1.0 1.0476 1.0132 1.0331

bbaa 1.0 1.0476 0.9474 0.9256

baab 1.0 0.9524 1.0 0.9587

aba 1.0 1.0 1.0

abbab 1.0 1.0 1.0789 0.9669 0.8815

prus 0 0 0 0

 46

From the above 2 tables, Table 2 and Table 3, we can see that when the playing sequence

exactly matches the saved sequence, the LTM response is 1, and when the playing

sequence is different than the saved one, the strength of LTM response deviates from 1.

We use the following plots to show the LTM responses for the inputs with different

levels of noise α in the input data which satisfies the equation of:

∑ =⋅+ − 1)(,, excitednonNNexcitedNN II α

For playing the exactly same word “perforation” as trained sequence:

LTM "perforation" Response as "perforation"

played

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Sequence Played

L
T
M

R
e
s
p
o
n
d

S
t
r
e
n
g
t
h alpha=0

alpha=0.1

alpha=0.2

alpha=0.3

alpha=0.4

alpha=0.5

alpha=0.6

alpha=0.7

alpha=0.8

alpha=0.9

alpha=1

Figure 8. The plot of LTM cell “perforation” response for
playing sequence “perforation”

 47

For testing word “performance”:

LTM "perforation" response for "performance" played

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Sequence Played

L
T
M

r
e
s
p
o
n
d

s
t
r
e
n
g
t
h

alpha=0

alpha=0.1

alpha=0.2

alpha=0.3

alpha=0.4

alpha=0.5

alpha=0.6

alpha=0.7

alpha=0.8

alpha=0.9

alpha=1

In an ideal situation, the noise level α is zero, the LTM response strength is 1 for the

matched sequence (from letter 1 to letter 6), and is being reduced as different letters are

played. As the noise level increases, the strength of the activated neuron decreases, so the

LTM response strength reduces accordingly. From the results shown in Figure 8, we can

see that even with the noise level of 60% the LTM cell still has a sharp decrease in

activation value when the non-matching letters are played.

Figure 9. The plot of LTM cell “perforation” response for
playing sequence “performance”

 48

The following figure shows how well the LTM cell separates the matched and non-

matched sequences. The plot shows the LTM output signal strength of word recognition

by the entire sequence learning block with different noise levels:

LTM "perforation" response

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Noise

L
T
M

R
e
s
p
o
n
d

S
t
r
e
n
g
t
h

perforation

performance

Figure 10. The figure showing the difference between the
matched sequence and non-matched sequence (“perforation” vs.

“performance”).

 49

LTM "abbreviates" response

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11

Noise Level

L
T
M

R
e
s
p
o
n
d

S
t
r
e
n
g
t
h

abbreviates

accessories

alternative

From Figure 9 and Figure 10, we can see explicitly that the sequence learning method can

significantly recognize the matched sequence when noise level is less than 80%, i.e. when

the recognition rate in the previous stage is significantly high, then the sequence learning

method is also able to improve the recognition rate significantly, but as the recognition

rate of the previous stage is getting lower, this method can provide less improvement to

the whole recognition system.

From the results shown above, we can predict that by adding the sequence learning

method to the recognition system the recognition rate can be improved to a certain level

Figure 11. The figure showing the difference between the
matched sequence and non-matched sequence (“abbreviation”

vs. “accessories” and “alternative”).

 50

depending on the recognition rate obtained from last stage. Adding another sequence

learning block on top of the current system for the sentence level recognition, we can

expect even better recognition rate.

 51

4. THE PHONEME RECOGNITION CORRECTION METHOD USING

FEEDBACK SIGNALS

4.1 Introduction

In this thesis, the phoneme recognition system introduced in Chapter 2 does not provide a

good recognition rate for our simulation due to the variance in the speakers with different

dialects, but in reality the recognition system needs to be adaptive to all types of speakers

regardless of race and dialect. So a correction method that can improve the phoneme

recognition rate needs to be considered and developed.

In Chapter 3, we showed that the sequence learning method can recognize the playing

sequence with a certain level of noise, and that by adding the sequence learning block on

top of the phoneme recognition neural network we can expect that the recognition rate at

the higher level should have a significant improvement. Can this block provide help to

the phoneme recognition block to improve its recognition rate? The answer is affirmative.

However, the previous sequence learning block needs to be modified so that it can

provide feedback signals to the outputs of the phoneme recognition network in order to

predict the next playing phoneme, and to improve the overall phoneme recognition rate.

 52

4.2 The Modified Sequence Learning Block with Feedback Signals

In the original sequence learning model described in the previous chapter, for each

playing element, there is only one output response value from each LTM cell which is the

summation of the strength of all the dual neurons in this cell. And the final recognition

decision is made according to the largest response strength from all the LTM cells using

the Winner-Take-All method. This original model only works for recognizing a sequence

or making prediction to the next level. So in order to predict an individual character or

Figure 12. The flow chart of proposed word recognition system
with phoneme recognition network and sequence learning block

introduced in Chapter 3.

 53

phoneme that is at a lower level than the current one by using this sequence information,

some modifications are needed.

The prediction of the next character or phoneme in sequence learning always requires the

information of the previously played characters because each sequence of words is

unique. Since in the structure of the LTM introduced in the last chapter the LTM

responses of the individual playing phonemes in one word is saved into a vector, we can

create feedback signals from the LTM to all the input neurons, and these feedback signals

provide the sequence information to add to the next playing phoneme for prediction.

 Figure 13. The detailed external connections between LTM and
phoneme recognition NN and internal connection of LTM with

feedback connections.

 54

4.2.1 The Phoneme Recognition Correction Algorithm

The first step of this algorithm is to obtain the desired LTM responses in every LTM cell

for all the training samples by sending the desired neural network outputs NNI ' (i.e. value

1 for desired firing neuron and value 0 for all other neurons) into the sequence learning

block introduced in last chapter. All the LTM responses are saved into a vector refS

which will be used later to get relative response of training samples in the next step.

Next, the real-time normalized NN outputs NNI (i.e. all neurons fire with a non-negative

strength with values between 0 and 1) from the same training samples as in the previous

step are sent into the sequence learning block. Then by going through each LTM, the

activation strengths of the LTM responses to the training elements can be obtained.

Dividing these activation strengths by the desired response strengths will give us the final

reference LTM response strengths mnSS ,':' .

From the last steps, we have obtained the LTM response strengths for the real-time inputs,

and since the purpose of the feedback is to reduce the error between the desired inputs

and real-time inputs, the real-time inputs should be as close to the desired inputs as

possible by adding the feedback signals. So the weights of feedback connections can be

obtained using the errors between the real-time inputs and desired inputs and the LTM

response strengths. As the weights get calculated, the training stage is finished.

 55

The following example is used to clearly describe how to find the weights of feedback

connections in training. In this example a text sequence instead of phoneme sequence is

used for simplicity, since they have the same sequence information.

Example

Suppose matrix A contains the location information and response strengths of the training

sequences, and current training sequence is “perforation”:

We start with letter “p”. Since this is the first letter and the letter following is “e” which

is the fifth letter in the English set of 26 letters, the response strength is placed in row 5;

because this is the response for the first letter from the first LTM, the strength is placed in

column 1 of the matrix A:

1,11,1)118)11(,5)11(26()1,5(SASA =+×−+−×→= , where 26 is the number of English

letter categories and 18 is the maximum length of the sequence saved in the LTM cell.

For the same letter, the response strength from the second LTM cell is placed in row 5

and column 19:

1,21,2)118)12(,5)11(26()19,5(SASA =+×−+−×→= ,

 So we can conclude that the response from nth LTM cell is placed in row 5 and column

118)1(+×−n :

1,)118)1(,5)11(26(nSnA =+×−+−× .

 56

The second training letter in this word is “e”. Since the next word after “e” is the

eighteenth letter in English letter, “r”, use the same method as above, the response from

the first LTM cell is placed in row 70 and column 2:

2,12,1)218)11(,18)12(26()2,70(SASA =+×−+−×→= ,

and the equation for the second LTM cell response is:

2,2)218)12(,18)12(26(SA =+×−+−× ,

So the equation for nth LTM cell is:

2,)218)1(,18)12(26(nSnA =+×−+−× .

Thus, we can conclude a general formula for the nth LTM cell response strength for the

mth training letter as:

mnLTMmdesiredcategory SmLnKmNA ,1,))1(,)1((=+×−+−× + (4.1),

where categoryN denotes the number of recognition categories, desiredK represents the

desired input neurons, and LTML is the maximum length of the sequence saved in all LTM

cells.

Next we calculate the difference between the desired input of the sequence learning block

from the neural network NNI ' and the real-time NN outputs NNI for all training

samples NNNN IIE −= ' . The obtained results are the errors to be reduced in NN learning.

Then a vector B is formulated for the feedback structure by reshaping the error matrix E

 57

to a vector B with size of 1 by trainCategory NN × , where trainN denotes the number of

training letters/phonemes. As soon as the matrix A and vector B are obtained for the

training set, the equation to calculate the weights feedbackW of the feedback connections to

NN outputs can be formulated as the following:

1)(−×−= AIBW NNfeedback . (4.2)

Now the training stage of the sequence learning method with feedback signals is finished.

 The testing process begins from here. In this process, the NN recognition outputs for the

testing phoneme are sent into the sequence learning block individually. Every LTM cell

has different response for the playing test phoneme, and this strength multiplied by the

feedback weights to provide the values of the feedback signals. Each LTM cell has

feedback connections to all the input neurons with different weights, so when the next

NN outputs come in it will add these feedback signals to formulate the final input signals

for the sequence learning block. Hence, this new input signals can also be seen as the

corrected phoneme recognition results.

In test operation, unlike training, the phonemes are sent into the LTMs one by one in

order for the system to predict the next playing phoneme. For simplicity, the word

separation is assumed to be known. Then with these assumptions, the following test

procedure is applied to obtain the test results:

1. The phoneme recognition neural network generates the input vector testI ' to the

sequence learning block for the current playing phoneme from the testing set, which

 58

contains different real values between 0 and 1. testI ' is sent into the LTM cells to

obtain the response strength testS ' , which is a vector of 1 by LTMLTM NL ×−)1(to save

the LTM response in all the LTM cells, where LTMN denotes the number of LTM

cells saved in the sequence learning block. Use the same formula 4.1 as in training to

generate testA , where

mtestLTMmdesiredcategorytest SmLnKmNA ,1, '))1()1(,)1((=+−×−+−× + (4.2)

2. Use the formula

feedbacktestmtestmtest WAIB ×+= ++ 1,1, ' (4.3)

to calculate the next NN output vector 1, +mtestB .

3. Substitute 1, +mtestB for testI ' in step 1, and repeat step 1 to step 2 to update testS ' , then

testA and 2,' +mtestI , until all the phonemes in the testing word are played (i.e. reaches a

long silence).

4. Reset all the internal neurons (PNs and DNs) of all LTM cells, and then repeat step 1

through step 3 for the new word

 59

4.3 Simulation Results and Discussion

We sent the same phoneme recognition results obtained in Chapter 2 into the sequence

learning block for simulation. The following results were obtained:

Figure 14. The flow chart of proposed phoneme recognition
system with feedback correction method.

 60

Table 4:

Comparison table of testing results for phoneme recognition with and w/o feedback
correction involved
of Hidden Neurons 50 55 60 65 70

Misclassification

(Without Feedback)

1050/1497 1023/1497 1014/1497 1027/1497 1030/1497

Testing Error

(Without Feedback)

70.14% 68.34% 67.74% 68.60% 68.80%

Misclassification

(With Feedback)

1001/1497 972/1497 950/1497 976/1497 978/1497

Testing Error

(With Feedback)

66.87% 64.93% 63.46% 65.20% 65.33%

The above Table 4 clearly shows that by adding feedback connections from the sequence

learning block to the phoneme recognition block, the average phoneme recognition rate

improves approximately by 5%. If we analyze each phoneme individually, we can see

that most of the phoneme recognition results get improved by a certain level (i.e. the

desired activate neuron gets promoted and other neurons get depressed) although the

recognition results for many phonemes didn’t improve. The following plots clearly show

this result (Figure 15 continues from pages 61-63):

 61

0 5 10 15 20 25 30 35 40 45
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
The Comparison Plot of Phoneme Recognition Improvement with Feedback Correction

Phoneme

A
ct

iv
at

io
n

S
tre

ng
th

0 5 10 15 20 25 30 35 40 45
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
The Comparison Plot of Phoneme Recognition Improvement with Feedback Correction

Phoneme

A
ct

iv
at

io
n

S
tre

ng
th

 62

0 5 10 15 20 25 30 35 40 45
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The Comparison Plot of Phoneme Recognition Improvement with Feedback Correction

Phoneme

A
ct

iv
at

io
n

S
tre

ng
th

0 5 10 15 20 25 30 35 40 45
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The Comparison Plot of Phoneme Recognition Improvement with Feedback Correction

Phoneme

A
ct

iv
at

io
n

S
tre

ng
th

 63

0 5 10 15 20 25 30 35 40 45
-0.5

0

0.5

1
The Comparison Plot of Phoneme Recognition Improvement with Feedback Correction

Phoneme

A
ct

iv
at

io
n

S
tre

ng
th

In Figure 15 above, the five plots display the comparison of the phoneme recognition

results with and without the feedback correction for five different phonemes, and as we

can see that all of the plots show different levels of corrections: they lower the activation

strength of the inactive neurons and increase the strength of the active neuron. Plot #3 in

Figure 15 shows a very good example of the corrections, which clearly shows the

recognition results get corrected after feedback is involved.

4.4 Conclusion

Based on the simulation results obtained above, it can be proven that the sequence

Figure 15. The comparison plots of phoneme recognition
improvements with feedback connections: the blue line shows
the desired results; the red line shows the results before adding
sequence learning method; and the green line shows the final

results with the feedback correction from the sequence learning
block.

 64

information can provide some improvement to the phoneme recognition because of the

sequence characteristics. The longer sequences provide more information and show more

improvement because they are more unique. However, in reality, most common words

are composed of less than 6 phonemes, so the sequence information provided is very

limited. Therefore, by adding a sequence learning block to the phoneme recognition

system, the recognition rate is improved, but with limited corrections.

 65

5. CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This thesis introduces an innovative phoneme recognition model that using a feed-

forward neural network with a Least-Squared method for first level phoneme recognition,

a sequence learning block with the structure of the Long Term Memory cells for word

level recognition, and then combine these two parts with a feedback correction method to

achieve an improvement of the phoneme recognition.

The first stage of this phoneme recognition model is a feed-forward neural network. To

construct this network, we used the Least-Squared method to find the weighted

connections between the hidden layer and input/output layers, which result in the best

recognition rate. By using this method, the lowest number of the hidden neurons needed

for the best match results are also found. At the output layer of the network, the Winner-

Take-All method is used to find the strongest activation strength of the output neuron,

and the phoneme represented by this neuron is the recognition result.

Since the performance obtained from the first stage is not sufficient to be close to other

researchers’ model [Yuk 1999] [Fal 1990], which can reach 62.2% and 66.2%, we

introduced a sequence learning algorithm to be added on top of phoneme recognition

neural network in order to improve the recognition rate.

 66

In the sequence learning stage, a number of Long-Term Memory cells are used to

compose the sequence learning block. These LTM cells have a similar structure as the

LTM introduced in [Sta 2007] with some modifications to make these cells useable in

speech recognition. By sending the outputs of the phoneme recognition neural network

into this sequence learning block, word level recognition results can be obtained. The

recognition rate for this higher level is better than for the lower level because the

sequence information has been added. Hence, we can propose that the recognition rate

should see more improvement at the sentence level because of more unique sequence

information added from the word level.

Since my thesis focuses on phoneme recognition, I have also proven that the sequence

learning method can help to improve phoneme recognition by sending feedback signals to

the outputs of the neural network. In Chapter 4, the structural modifications from the

model in Chapter 3 were described, the response strength of all the LTM’s for any

phoneme played needed to be tracked and send back a corresponding feedback signal to

predict the next playing phoneme. The outputs of the neural network for the current

playing phoneme plus the feedback signals from all of the LTM cells for the previous

played phoneme generate the corrected recognition results for the playing phonemes.

5.2 Future Work

Although a certain level of phoneme recognition has been reached in this thesis, the

 67

recognition rate is still not as good as the models in [Yuk 1999] and [Fal 1990], and far

from commercial requirements. So additional future work is needed to further improve

the recognition rate.

There are several ways to improve the recognition rate based on the model described in

this thesis. In the sound preprocessing stage, instead of using the wavelet transform

method, we can extract the features that represent the characteristics of the sound wave,

and use a separate neural network for each feature in parallel. This way, the training time

will be much less because of parallel processing, and the recognition rate will also be

improved since all the extracted features will be unique to each phoneme.

A better algorithm to calculate the internal weights of the neural network also needs to be

developed, since the current algorithm is not quite time efficient. The current processing

time using least squared method increases rapidly when the number of training samples

increases, so very limited training samples have been used in this thesis. This also adds to

the poor testing performance. If a more efficient training algorithm is used, and the

system saves more phoneme information and knowledge from training, the recognition

rate should increase accordingly.

 68

Also, as shown in Figure 16, if we add another sequence learning block for sentences,

and use feedback signals to correct the word level recognition, then use the corrected

word level recognition results as the feedback signal to sent back to phoneme level, the

phoneme recognition rate should be improved.

Another aspect of the future work for this thesis is to implement a hardware system to

substitute the software simulation, so that it can be embedded into a large hardware

“Brain” in the future.

Figure 16. A general view of the proposed speech recognition
system model.

 69

REFERENCES

[Kom 1998] E. Komissarchik, V. Arlazarov, and D. Bogdanov, “Knowledge-based

speech recognition system and methods having frame length computed based

upon estimated pitch period of vocalic intervals” U.S. Patent 5799276, August 25,

1998.

[Wha 1988] National Center for Biotechnology Information, “What Are the

Advantages and Disadvantages of the Different Types of Cochlear Implants?”,

NIH Consens Statement Online, May 2-4, 1998.

[Lon 1996] C. J. Long and S. Datta, “Wavelet Based Feature Extraction for Phoneme

Recognition”, Proceedings of 4th International Conference of Spoken Lauguage

Processing, Philadelphia, PA, 1996.

[Jan 1996] L. Janer, J. Marti, C. Nadeu, E. Lleida-Solan006F, “Wavelet Transforms

for Non-Uniform Speech Recognition Systems”, Proceedings of 4th International

Conference of Spoken Lauguage Processing, Philadelphia, PA, 1996.

[Dau 1992] Daubechies, I. Ten Lectures on Wavelets. SIAM, Philadelphia, PA. 1992.

 70

[Woo 2001] S. C. Woo, C. P. Lim, R. Osman, “Development of a Speaker Recognition

System using Wavelets and Artificial Neural Networks”, Proceedings of 2001

International Symposium, 2001.

[Tan 1994] B. T. Tan, M. Fu, A. Spray, P. Dermody, “ The use of wavelet transforms

in phoneme recognition”, Proceedings of ICSLP 96, 1996.

[Neu 2008] WolfFarm Research, “Neural Networks Documentation”, from

http://documents.wolfram.com/applications/neuralnetworks/NeuralNetworkTheor

y/2.5.1.html

[Num 2007] Visual Numerics, “IMSL® C Numerical Stat Library”, 2007,

http://www.vni.com/products/imsl/documentation/CNL06/stat/NetHelp/default.ht

m?turl=multilayerfeedforwardneuralnetworks.htm

[Lea 2008] eFunda, “Least Square Method”, from

http://www.efunda.com/math/leastsquares/leastsquares.cfm

[Erd 05] D. Erdogmus, O. Fontenla-Romero, J.C. Principe, A. Alonso-Betanzos, E.

Castillo, “Linear-least-squares initialization of multilayer perceptrons through

backpropagation of the desired response”, IEEE Trans. On Neural Networks,

vol.16, no.2, pp. 325-337, 2005.

 71

[Liu 08] Y. Liu, “Hierarchical Self-Organizing Learning systems for Embodied

Intelligence”, Ph.D. dissertation, Ohio University, Athens, OH, USA, 2008.

 [Wikis] Wikipedia, the free encyclopedia. Available:

http://en.wikipedia.org/wiki/Short-term_memory

[Wikil] Wikipedia, the free encyclopedia. Available:

http://en.wikipedia.org/wiki/Long-term_memory

[Sta 2007] J. A. Starzyk, and H. He, “Anticipation-Based Temporal Sequences

Learning in Hierarchical Structure”, IEEE Trans. on Neural Networks, vol.

18, no. 2, pp. 344 – 358, March 2007.

[Yuk 1999] D.S. Yuk, J. Flanagan, “Telephone Speech Recognition Using Neural

Networks and Hidden Markov Model”, IEEE International Conference on

Acoustics, Speech, and Signal Processing, 1999.

[Fal 1990] F. Fallside, H. Lucke, T.P. Marsland, Oapos, P.J. Shea, M.S.J. Owen, R.

W. Prager, A.J. Robinson, N.H. Russell, “Continuous speech recognition for the

TIMIT database using neural networks”, IEEE International Conference on

Acoustics, Speech, and Signal Processing, vol.1 445-448, 1990.

 72

[Gar 1993] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, N. L.

Dahlgren, V. Zue, “TIMIT Acoustic-Phonetic Continuous Speech Corpus”,

Linguistic Data Consortium, Philadelphia, 1993.

 73

APPENDIX A: SOURCE CODE AND DATA SETS USED IN THIS THESIS

The source code packages used in this thesis are available at the following address:

http://www.ent.ohiou.edu/~webcad/Current_Projects/Students_thesis_dissertation/Yimin
g

Source Code Packages:

Phoneme_Neural_Network: Package for the feed-forward phoneme recognition

neural network

Sequence_Learning_LTM: Package for the sequence learning block composed by

Long-Term Memory cells

Phoneme_Recognition_Feedback_Correction: Package for the phoneme recognition

model which combine the feed-forward phoneme recognition neural network and the

sequence learning block with feedback correction

These software packages can be provided upon request. Please send your request to:

yh128999@ohio.edu . Each package includes a README file, please read it before use.

Data Sets:

In order to use the above software packages, the datasets used have to be from the TIMIT

Acoustic-Phonetic Continuous Speech Corpus [Gar 1993].

 74

To obtain TIMIT database, please visit the following address for ordering information:

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

 75

APPENDIX B: HOW TO USE THE SOURCE CODE

Phoneme_Neural_Network

To use this phoneme neural network package, please follow the following steps:

1. Open SoundProcess.m

 1.1 Change the filename to the file path where saves the training sets of the

TIMIT database in your computer. (Make sure to change the names of the TIMIT files

and folders to numbers so that the program can run in a loop to read all the data files.)

 1.2 Choose the regions (indexi), the speakers (folders) and the sentences (files)

for training.

 1.3 Run this program. The outputs (A_matrix and B) of this program are

saved into #.mat files in the working directory. Each file contains the outputs for one

training sentence.

 1.4 Change the file path to the testing sets of the TIMIT database, and choose

the regions (indexi), the speakers (folders) and the sentences (files) for testing.

 1.5 Uncomment line 116 and run the program again for testing sets. The

outputs (A_matrix and B) of this program are saved into test#.mat files in the working

directory. Each file contains the outputs for one testing sentence.

2. Open WordProcess.m

 Use the same procedure as in step 1to obtain the preprocessed word information.

 76

3. Open MLPProcessing.m

 3.1 Change the path_data and test_path_data to your working directory or the

directory saves the preprocessed sound information (.mat files).

 3.2 Change the number of training sentences (file_index) and the number of

testing sentences (test_file_index) as you want.

 3.3 Run this program. This program is used to retrieve the preprocessed sound

data from the saved .mat files and save them into large matrices for neural network to

process.

4. Open main_MLP_LS.m (Important: must run MLPProcessing.m before this

program)

 4.1 Choose your desired number of layers (no_layer) and number of hidden

neurons (B_neurons) in the neural network, and choose the transfer function you like to

have on hidden neurons (nltype_hidden).

 4.2 Run this program. The results are displayed in the console and also saved

in train_error_result (the number of incorrect recognized phonemes in training set),

train_error_rate (the error rate for the training data), test_error_result (the number of

incorrect recognized phonemes in testing set), and test_error_rate (the error rate for the

testing data).

Follow the above procedure with the following parameters to obtain the results shown in

Table 1:

 77

SoundProcess.m

When process training datasets:

Regions 1 – 8: indexi = 1:8

Speakers 1 – 20: folders = 1:20

Sample Files/Sentences 1 – 2: samplefiles = 2

When process testing datasets:

Region 1 – 2: indexi = 1:2

Speakers 1 – 10: folders = 1:10

Sample Files/Sentences 1 – 2: samplefiles = 2

WordProcess.m

Use the same parameters as in SoundProcess.m

MLPProcessing.m

Training Sentences 1 – 80: file_index = 1:80

Testing Sentences 1 – 40: test_file_index = 1:40

main_MLP_LS.m

Number of the Layers 3: no_layer = 3

Hidden Neurons (50, 55, 60, 65, 70): B_Neurons = 50, 55, 60, 65, 70

Hidden Neuron Transfer Function 2: nltype_hidden = 2

Training Type 2: training_type = 2

 78

Sequence_Learning_LTM

To use this Sequence_Learning_LTM package, please follow the following steps:

1. Open LTMmain.m, change the decay rate as you desire, choose your own training

text words and replace them in variable saved_text; choose your own testing text words

and replace them in variable input_text.

2. Run the program. Variable strength1 saves the LTM responses for all the testing

words.

Phoneme_Recognition_Feedback_Correction

To use this Phoneme Recognition with Feedback Correction package, please follow the

following steps:

1. Open SoundProcess.m

 1.1 Change the filename to the file path where you save the training sets of the

TIMIT database in your computer. (Make sure to change the names of the TIMIT files

and folders to numbers so that the program can run in a loop to read all the data files.)

 1.2 Choose the regions (indexi), the speakers (folders) and the sentences (files)

for training.

 1.3 Run this program. The outputs (A_matrix and B) of this program are

saved into #.mat files in the working directory. One file contains the outputs for one

training sentence.

 79

 1.4 Change the file path to the testing sets of the TIMIT database, and choose

the regions (indexi), the speakers (folders) and the sentences (files) for testing.

 1.5 Uncomment line 116 and run the program again for testing sets. The

outputs (A_matrix and B) of this program are saved into test#.mat files in the working

directory. One file contains the outputs for one testing sentence.

2. Open WordProcess.m

 Use the same procedure as in step 1 above to obtain the preprocessed word

information.

3. Open MLPProcessing.m

 3.1 Change the path_data and test_path_data to your working directory or the

directory saves the preprocessed sound information .mat files.

 3.2 Choose the number of training sentences (file_index) and the number of

testing sentences (test_file_index) as you want.

 3.3 Run this program. This program is to retrieve the preprocessed sound data

from the saved .mat files and save into large matrices for neural network to process.

4. Open main_MLP_LS.m (Important: must run MLPProcessing.m before this

program)

 80

 4.1 Choose your desired number of layers (no_layer) and number of hidden

neurons (B_neurons) in the neural network, and choose the tranfer function you like to

have on hidden neurons (nltype_hidden).

 4.2 Run this program. The results are displayed in the console and also saved

in train_error_result (the number of incorrect recognized phonemes in training set),

train_error_rate (the error rate for the training data), test_error_result (the number of

incorrect recognized phonemes in testing set), and test_error_rate (the error rate for the

testing data).

5. Open SequenceLearningFeedbackMain.m

 5.1 Change the path_data and test_path_data to your working directory or the

directory saves the preprocessed word sequence information dword_#.mat files.

 5.2 Choose the number of training sentences (file_index) and the number of

testing sentences (test_file_index) as you want.

 5.3 Run this program. The results are displayed in the console and also saved

in test_feedback_error_result (the number of incorrect recognized phonemes in testing set

with feedback correction) and test_feedback_error_rate (the error rate for the testing data

with feedback correction).

Follow the above procedure with the following parameters to obtain the results shown in

Table 4:

SoundProcess.m

 81

When process training datasets:

Regions 1 – 8: indexi = 1:8

Speakers 1 – 20: folders = 1:20

Sample Files/Sentences 1 – 2: samplefiles = 2

When process testing datasets:

Region 1 – 2: indexi = 1:2

Speakers 1 – 10: folders = 1:10

Sample Files/Sentences 1 – 2: samplefiles = 2

WordProcess.m

Use the same parameters as in SoundProcess.m

MLPProcessing.m

Training Sentences 1 – 80: file_index = 1:80

Testing Sentences 1 – 40: test_file_index = 1:40

main_MLP_LS.m

Number of the Layers 3: no_layer = 3

Hidden Neurons (50, 55, 60, 65, 70): B_Neurons = 50, 55, 60, 65, 70

Hidden Neuron Transfer Function 2: nltype_hidden = 2

Training Type 2: training_type = 2

 82

SequenceLearningFeedbackMain.m

Training Sentences 1 – 80: file_index = 1:80

Testing Sentences 1 – 40: test_file_index = 1:40

Decay Rate 2: decay = 2

		2009-02-23T13:39:28-0500
	TAD Services

