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ABSTRACT 

HUANG, YIMING, M.S., March 2009, Electrical Engineering 

Phoneme Recognition Using Neural Network and Sequence Learning Model (82 pp.) 

Director of Thesis: Janusz A. Starzyk 

 The purpose of this thesis is to describe a biologically motivated approach for 

phoneme recognition by using a self-organized neural network and sequence learning 

algorithm. Phoneme recognition in continuous speech is a tough task with a low accuracy 

rate. By using the sequence learning algorithm to add sequential information of 

individual phonemes, recognition performance can be improved. 

 This thesis includes three parts. A self-organized neural network is the first stage, 

which classifies the input sound waves into forty two different phoneme categories. The 

42 output neurons of the neural network are sent to the Sequence Learning block which is 

composed of Long Term Memory cells. Finally each LTM cell sends a unique feedback 

strength signal to each output of the neural network to predict the next phoneme, hence, 

to improve the phoneme recognition based on the sequential information. 
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1. INTRODUCTION 

 
 
 
 
1.1 Background 

Speech recognition is a very popular research goal in the field of machine intelligence. 

There are many reasons for automatic speech recognition being widely developed by 

engineers and scientists around the world. Human-machine interaction is one of the most 

important reasons. We always dream of ordering machines such as the TV to turn itself 

on and change channels per our orders, thermostats to adjusting the temperature by 

themselves to adapt to a human’s preferences, or even a robot babysitter to do all the 

house tasks fast and efficiently. The basic sensory stages of the human-machine 

interaction are vision recognition and speech recognition. Voice recognition, which is a 

special kind of speech recognition, is widely used in high security locations. Due to the 

high demand in the current market, many corporations have already built some 

Automatic Speech Recognition (ASR) systems: like the dictation system used by IBM 

and the telephone transaction system used by T-Mobile, AT&T and Philips. Although 

these systems have been used in commercial area for years already, they still have many 

problems. First, these systems can only accomplish limited tasks such as recognizing 

numbers from 0 to 9, or isolated commands (e.g. transfer to customer service, balance 

request, pay bill, and etc.). Second, they all lack robustness, i.e. these systems have very 

poor performance in a noisy environment. Some of the “smart” recognition systems can 

recognize a word, a sentence or even a paragraph but require to be adapted to every new 
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user, so every new user needs to train the system to recognize his/her specific voice. This 

approach is not suitable or feasible for a commercial use. These problems lead 

researchers and scientists to improve the speech recognition systems. 

 

There are three speech recognition technologies that have been developed over the years: 

1. Dynamic time warping: an algorithm for measuring similarity between two 

sequences which may vary in time or speed. However, this technology has been 

displaced by the more accurate Hidden Markov Model (HMM). 

2. Hidden Markov Model: a statistical model in which the system being modeled is 

assumed to be a Markov process with unknown parameters. This algorithm is often 

used due to its simplicity and feasibility of use. 

3. Neural Network based approach: an algorithm for training the system to recognize 

speech using an artificial neural network. This technology is capable of solving much 

more complicated recognition tasks, and can handle low quality, noisy data, and 

speaker independence. If properly developed and used it may be more accurate than 

HMM. 

 

Although, the Hidden Markov Model is the most popular method used in the commercial 

speech recognition field due to its simplicity and feasibility of use, its drawbacks 

motivate many researchers to focus on neural network based approaches. HMM relies 

highly on the accuracy of the model phonemes and is state dependent. If the nature of the 

speech is not the same as the given sample or the next phoneme in the word depends on 



  12 
   
more than just the previous state, then the recognition rate drops dramatically. In 

particular, the HMM model cannot properly represent the context of the processed speech, 

which is an important property of human speech recognition. Another drawback of HMM 

products is that they are speaker-dependent. The system needs to be trained to create 

templates of the phonemes and words for each user, i.e. before any user starts to use the 

recognition system, he/she always needs to train the system with a number of sample 

words which contains all the phonemes by repeatedly speaking these samples and 

representing them to the system, then the system can recognize his/her speech by 

calculating the probability of the current phoneme compared to the database models. This 

training stage is time consuming. The third disadvantage is that the HMM model always 

drops the low probability word transitions although they may contain the correct 

information. [Kom 1998] 

 

A Neural Network (NN) based approach may present a solution to the above drawbacks. 

Unlike HMM, the NN approach does not require template creation and to a large degree 

is speaker independent. The recognition system only needs to be trained once to generate 

the structure of the network. So the total training time for the system is significantly 

reduced comparing to the HMM. In the neural network system, all the output neurons, 

where one neuron represents one recognition category, fire at a certain excitation level all 

the time, so the system does not lose any useful information even for incorrect outputs. In 

addition, since NNs are compatible with neural based associative memory structures, they 

are more likely to use speech context in speech recognition.  Previously activated words 



  13 
   
or concepts may be reused to help recognize a new word or sentence and may remove 

ambiguity from understanding similarly sounding words.  In addition, using speech 

context will help to overcome the effect of noise or speech interference in case of cocktail 

party speech recognition. 

 

In general, at the present there is no such speech recognition system that is accurate and 

robust to all conditions and applications in real world speech based communications. 

Researchers are looking for a way to simulate human hearing perception, but no one yet 

is close enough to human ability to understand the speech signals.  

 

1.2 Research Goal 

The goal of this master thesis is to find a method to reach an accuracy level of 

recognition comparable or exceeding those achievable using HMM-based speech 

recognition systems without too much training, and to provide methods that are largely 

speaker independent, so that the system can recognize most variations in pronunciation 

that would be understood by a native speaker of the language. [Kom 1998] In my thesis, 

the neural network based approach is used for phoneme recognition where the feedback 

correction method uses the sequence learning model to improve the neural network 

performance. 

 

There are three stages in my phoneme recognition system. Before the beginning of the 

first stage, the sound waves need to be preprocessed for the input to the neural network. 
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There are several ways to preprocess the input sound wave: Feature Extraction, Fourier 

Transform, Wavelet Transform, etc. Feature Extraction is the most popular method for 

speech processing but it is possible to produce errors when estimating speech parameters 

[Wha 1988]; Short Time Fourier Transforms (STFTs) and Linear Predictive Coding 

(LPC) techniques assume signal stationarity within a given time frame and may therefore 

lack the ability to accurately analyze localized events [Lon 1996]. In addition, since it 

contains 1-D information only it is not sufficient for analysis of complex speech signals; 

Wavelet Transforms can overcome some of the above limitations, and translate a 1-D 

sound wave into a 2-D image which contains both time and frequency information, they 

are easy to simulate in a mathematical model. So instead of the popular feature extraction, 

I used a simpler Wavelet Transform method to obtain the input images. It is not the first 

time that the Wavelet Transform method applied in this thesis is used in Automatic 

Speech Recognition. It has been applied with some success in pitch detection, formant 

tracking and phoneme classification [Lon 1996], due to its high time-frequency resolution 

[Jan 1996]. In order to limit the size of the inputs, sampling is used to reduce the 

resolution of the image, and overlapping windows are used to avoid loss of the sampled 

information.  

 

After preprocessing, these images are input into the neural network to train it for 

recognition of English syllables or phonemes with the weighted least square approach. In 

this stage, the outputs are organized into different categories: 42 different phonemes, 

which are used as the input to the next stage. After this first level recognition of 
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phonemes by the neural network, a certain recognition rate level is obtained, but it is not 

accurate enough, so an additional method or system needs to be applied in order to 

improve the phoneme recognition rate. 

 

The second stage of my simulation model is to create a sequence learning block 

composed by a number of Long Term Memory (LTM) cells, which saves the sample 

words (the phoneme sequences) in the sample sentences, using the outputs of the neural 

network and the desired outputs of this sequence learning block.  These LTM cells are 

created using the sequence learning method based on the architecture introduced by J. 

Starzyk and H. He in [Sta 2007] for recognizing English words from the syllables or 

phonemes, and the output of this block is the winner of the LTM cells which has the 

strongest excitation strength, hence provides the result for word level recognition. 

However, our goal is to improve the phoneme recognition rate, so the final stage is added 

to improve the phoneme recognition rate which sends back the word level recognition 

results to the outputs of the phoneme recognition neural network.  

 

In the final stage of our simulated system, we create feedback signals from the output of 

each LTM cell and send them back to the neural network outputs to influence the 

recognition result of the next playing phoneme. The neural network outputs supported by 

the sequence information should have a more accurate recognition rate. This is because 

only certain phonemes can compose a word, and by recognizing the word the next 
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phoneme in the word can be predicted; hence, the performance of the phoneme 

recognition becomes higher than without the feedback signals.  

 

1.3 Thesis Organization 

This thesis is composed of five chapters. Chapter 1 contains the introduction and the 

organization of the thesis and the background of the current speech recognition research.  

 

Chapter 2 describes the sound signal preprocessing methods and the neural network 

structure with the weighted least square approach. In this chapter, the structure of a feed-

forward network is described in detail and the weighted least square method is presented. 

The analysis results are also presented in this chapter.  

 

Chapter 3 introduces the sequence learning method and describes in details of the 

structure of the Long Term Memory (LTM) cells. It also contains the analysis results for 

word recognition. 

 

Chapter 4 provides information about the phoneme correction method to improve the 

phoneme recognition rate. The basic idea of this correction method is adding feedback 

links from the outputs of the LTM cells to the outputs of the phoneme recognition neural 

network, so the results of word recognition can help the phoneme recognition. 
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Chapter 5 presents the conclusion of this thesis. This chapter summarizes the work done 

and the results presented in this thesis. It also provides the work that needs to be done for 

the future improvement of the speech recognition system. 
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2. SOUND PREPROCESSING AND FEED-FORWARD NEURAL NETWORK 

WITH WEIGHTED LEAST SQUARE APPROACH 

 
 
 
 

2.1 Sound Wave Preprocessing 

Before the sound waves are sent into the recognition system, they need to be 

preprocessed to extract as much information as possible. There are several methods to 

preprocess the sound waves as described above in section 1.2. In this chapter, the 

Continuous Wavelet Transform is used to extract information from the input sound waves. 

The processed inputs are the wavelet coefficients obtained by transforming Daubechies 

wavelet [Dau 1992] with the order of 32. The wavelet coefficients of the signal S at scale 

a and position b are calculated by: 

C a , b = S ( t )
1

a
Ψ

t − b
a

⎛ 
⎝ 

⎞ 
⎠ 

R
∫ dt

, (2.1) 

where S is the discrete sound wave signal and Ψis the wavelet. 

 

The inputs to the neural network of our recognition system are composed of these 

coefficients, and the size of the input matrix is 32 by (the time duration of the current 

sentence in ms). In order to limit the number of inputs to the neural network and shorten 

the processing time, one training sentence is transformed at a time. A sampling method 

was also used to further reduce the resolution of the input image. Before sampling the 

information in the time domain, a Butterworth 1st order low-pass filter with a cut-off 
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frequency of 0.02 is applied to take out some of the high frequency noise [Woo 2001]. 

Then, by setting the sampling limits all the sentences, all transformed phonemes are 

represented as a 32x32 matrix. The following 3 figures show the sound preprocessing 

steps:  

 

Figure 1 displays the image of the phoneme “sh” after the Daubechies wavelet transform, 

the x-axis represents the time duration of this phoneme which is about 1500ms and the y-

axis represents the frequency information of the sound at the dedicated time (since we use 

Daubechies wavelet of the 32nd order, the frequency axis has 32 levels). In this figure the 

pixels with brighter color mean greater energy at this frequency and this time, and the 

pixels with darker color means less energy. Figure 2 shows the transformed data after 

passing through a Butterworth low-pass filter which filtered out some high frequency 

noise for optimal processing. Then the filtered data gets sampled by a digital sampler and 

reduced to the size of the image to 32x32 for faster and more efficient analysis. The 

sampled image is shown in Figure 3. As we can see, the final sampled image is still 

similar to the original image of wavelet transform, so the most important information 

from the sound wave has been preserved. 
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Original wavelet coefficient transformed from sound wave of the phoneme "sh"
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Figure 1. The image of original wavelet coefficient transformed 

from sound wave of the phoneme “sh”. 
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Filtered wavelet coefficient transformed from sound wave of the phoneme "sh" (Butterworth)
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Figure 2. The image of filtered wavelet coefficient transformed 
from sound wave of the phoneme “sh” using Butterworth low-

pass filter. 
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Sampled wavelet coefficient transformed from sound wave of the phoneme "sh"
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Figure 3. The image of sampled wavelet coefficient 
transformed from filtered sound wave of the phoneme “sh”. 
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Figure 4 shows the preprocessed sound wave of a whole sentence “She had your dark suit 

in greasy wash water all year”. The blue areas represent silence and the red areas 

represent the actual voiced phonemes. This figure also proves again that, the information 

of the sound wave passing through low-pass filter and digital sampler still contains 

significant contents for future analysis. 

 

Since the input of neural network is a vector of the digitalized numbers, each sentence is 

translated into a 1x1024 vector from the 32x32 matrix. Therefore, a large matrix with a 

size of 1024 by (the number of sentences) composed by these translated vectors is 
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x 104

10

20

30

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
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Figure 4. The image of sampled wavelet coefficient 
transformed from sound wave of a whole sentence. 
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formulated for each training and testing set, and these matrices are saved into files to be 

ready for further use. 

 

2.2 Multi-Layer Feed-Forward Neural Network 

A Feed-Forward Neural Network, also known as multi-layer perceptron, is widely used in 

many practical applications. [Neu 2008] It is an interconnection of single layer 

perceptrons in which data and calculations flow in one direction from the inputs to 

outputs. [Num 2007]  

 

The simplest network of this kind contains only one single layer of inputs and single 

layer of outputs. In this thesis, a 3-layer feed-forward neural network is used to classify 

the phonemes from the preprocessed sound wave. The 3-layers are the input layer which 

contains 1024 input neurons, the hidden layer with various hidden neurons, (where the 

number of hidden neurons are to be determined in the training process and need to be 

chosen for efficient processing), and the output layer containing 42 neurons which 

represent 42 different phonemes to classify.  
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The input neurons fire at a certain excitation level with a strength corresponding to the 

preprocessed sound wave data. The information from the input neurons is summed with 

various weights to excite the hidden neurons in the hidden layer, and then each hidden 

neuron uses a non-linear activation function, also called the neuron output function, [Neu 

2008] described by 

y

y

e
ey 2

2

1
1)( −

−

+
−

=σ ，  (2.2) 

which is a hyperbolic tangent sigmoid transfer function, where  

∑
=

+=
n

j
jjj bxwy

0
,  (2.3) 

and the transfer function of the hidden neuron in this thesis is described by 

)(
0

∑
=

+=Φ
n

j
jjj bxwσ ,  (2.4) 

Figure 5. The structure of the multi-layer feed-forward neural 
network. 
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where jw represents the weight of the connection between the jth input and this hidden 

neuron, jb  denotes the bias of the jth connection, and jx is the jth input. Finally, the 

output neurons are obtained by summing the excitation strength of all the hidden neurons 

with corresponding weights. So the formula to obtain one output neuron z in a three layer 

neural network is: 

∑∑ ∑
== =

+Φ=++=
m

i
ii

m

i
i

n

j
jjji bwbbxwwz

0
22

0
2

0
112 )(σ   (2.5) 

We can also write this formula as follows: 

BWZ +⋅Φ=  (2.6) 

After the excitation levels of the output neurons are calculated, a Winner-Take-All (WTA) 

method is used to find the strongest excitation neuron, which represents the recognition 

result.  

 

In neural network systems, the connections between two layers are the core of the 

network structure, and the training process of the neural network is the process of 

obtaining the weights of these connections. Assuming that the bias b is negligible, then 

equation 2.4 can be written as: 

)(φfWZ =⋅Φ=  (2.7) 

From equation 2.5, the straightforward method to obtain the weights is to invert the input 

matrixΛ and then multiply it by the output vector: 

ZW ⋅Λ= −1   (2.8) 

where, 
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represents the connections between n inputs and m outputs,  
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⎪
⎭
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for n inputs.  

 

There are several different algorithms for Multilayer Perceptron Learning, and in this 

thesis the back-propagation training algorithm is used. This algorithm contains two 

phases: the forward pass phase and the backward pass phase. In the forward pass phase, 

the input signals are propagated forward through the network, and then in the second 

phase, the errors are propagated backwards through the network [Erd 05]. The basic idea 

of this algorithm is to find out a way to modify the weights in order to reduce the errors, 

where the error function is: 

∑
=

−=
1

2))()((1)(
k

kk tytd
k

tE , (2.10) 

and d(t) is the desired output value at time t, and y(t) is the current output value at time t. 

To find the minimum E, we can use gradient-based weights adjustment: 

)(
)()()1(
tw
tEtwtww

ij
ijijij ∂

∂
−∝−+=Δ , (2.11) 

the problem is that this could go to local minima instead of the global minimum point, 

and it also could cost very long time to process due to the large number of learning steps 
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and the number of iterations needed. There is another efficient multi-layer perceptron 

learning method which is used here to obtain the minimum sum of squared error, hence to 

adjust the weights. It is known as the Least-Squares method for NN. 

 

2.3 Least-Squares Method for Weight Adjustment 

2.3.1 Introduction 

Least-Squares method is used to obtain the minimum sum of squared errors for a system 

of linear equations. It can be used to solve both underdetermined and overdetermined 

systems. For an underdetermined system, Least-Squares method finds the solution with 

the minimum sum of weights using system regularization; and for an overdetermined 

system, the pseudo-inverse finds the solution with minimum sum of squared errors.  In 

the neural system used in this thesis, the number of training data points is larger than the 

number of unknown weights in the NN and this produces an overdetermined linear 

system of equations. So the Least-Squares algorithm is applied in the optimization for 

weights of the connections between the layers. The Least-Squares Algorithm (LSA) is 

able to provide best fitting to go through all the points in this nonlinear system and the 

idea of the LSA is to adjust the function parameters to best fit a data set. The data set 

contains the input points and corresponding output points of each layer in the neural 

network, ( iφ , iz ), and )(φf is the fitting curve. Suppose )(φf  has error e for each data 

point, i.e. )( 111 φfze −= , then according to the least squares algorithm, the best fitting 

curve should have the property of:[Lea 2008] 
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2.3.2 Training algorithm 

The training algorithm used in this thesis is the back-propagation algorithm that was first 

introduced by Yinyin Liu in [Liu 08]. First we randomly initialize the value of the 

weights and biases between the output layer and the second layer to obtain the signals on 

the second layer, then the weights and biases for the connections between the first layer 

and the second layer can be optimized from the random initial value using the input 

signals and the signals on the second layer. After these weights and biases are calculated, 

the signals on the second layer can be re-calculated from the optimized weights, biases 

and the input signals, finally the signals on third layer, (that is also the output layer in our 

case), can also be obtained using the optimized weights and biases between the second 

layer and this layer and the signals on the second layer. In general, if we have n layers, 

the weights and biases between each layer can be optimized and the signals on each layer 

can be conducted, in a feed-forward fashion (moving from lower to higher layers) until 

the output layer is reached. [Liu 08]  

 

Suppose the input signals x and desired output signals d are provided from the training 

data in the database, abW  and abb denote the weights and biases between the input layer a 

and the hidden layer b, and bcW  and bcb denote the weights and biases between the hidden 

layer b and the output layer c accordingly. We also let y1 and z1
 to represent the signals of 
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the hidden layer before and after the nonlinearity, and y2 and z2 

 to represent the signals of 

the output layer before and after the nonlinearity accordingly. Then the following 

procedure describes the least squares method of NN training used in this thesis to find all 

the optimized weights: 

 

1.) Randomly initialize the weights and biases abW , abb , bcW  and bcb  in the network with 

the values in [ ]∞∞− , . 

2.) Use the desired output signals d to calculate the signals d’ obtained before the transfer 

function. 

3.) Calculate the signal z1 of the hidden layer after the non-linear transfer function using 

the least square method to satisfy: 

'1 dbzW bcbc =+⋅   (2.13) 

The signal z1 can be obtained by the pseudo-inverse of the augmented coefficient 

matrix: 

[ ] '
1

11 dbW
z

bcbc ⋅=
⎭
⎬
⎫

⎩
⎨
⎧ −  (2.14) 

4.) Use the obtained signal z1 to calculate the signal y1 before the transfer function of the 

first layer, and z1 needs to be linearly scaled into the range of the transfer function 

output. 

5.) Now, we can optimize the weights and biases for the connections between the first 

layer and the hidden layer using calculated signal y1 and input signals X:  
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[ ]
1

1 1

−

⎭
⎬
⎫

⎩
⎨
⎧

⋅=
x

ybW abab  (2.15) 

6.) After abW  and abb  are obtained, the signal y1 before the transfer function of the first 

layer can be calculated using these new values, and subsequently used to calculate the 

signal z1 after the transfer function by the following formulas: 

)( 1
1

1

1

yfz
bxWy abab

=
+=

 (2.16) 

7.) As the new z1 is obtained in 6.) and the signal d’ found in 2.), we can optimize bcW  

and bcb using least-square algorithm through this formula: 

[ ]
1

1

1
'

−

⎭
⎬
⎫

⎩
⎨
⎧
⋅=

z
dbW bcbc  (2.17) 

8.) The signals of the output layers y2 and z2
 can now be calculated based on the current 

value of bcW  and bcb using formulas: 

)( 2
2

2

12

yfz
bzWy bcbc

=
+=

 (2.18) 

9.) The final step is to calculate the mean squared error (MSE) between the calculated 

output signals z2
 and the desired outputs d by using the following formula, and then 

normalize the MSE.  

][

)()( 22

ddE

zdzdE
J T

T −−
=   (2.19) 

 

The NN learning program iterates from the step 2 to step 9 for a number of trials until the 

MSE J reaches a certain minimum, hence, the final calculated output signals z2 are most 
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likely equal to the desired outputs d. We can save the final weights and biases which 

result in these output signals as the best results. In the above procedure, “the desired 

outputs are propagated back through layers, and the Least Squared Method is used to 

obtain the optimal weights and biases. It yields a single global optimum solution for all 

stages of the applied procedure.” [Liu 08] Thus, by using this method, the global 

optimized weights and biases can be found. 

 

2.4 Model Simulation and Discussion 

For neural network learning and testing, a proper database selection is very important. In 

this thesis, TIMIT acoustic-phonetic continuous speech corpus was selected for training 

and testing. It contains broadband recordings of 630 speakers of eight major dialects of 

American English, and each reading ten phonetically rich sentences. Since the goal of 

this thesis is to recognize the phonemes not sentences, separating the phonemes from the 

training sentence samples is very important and is the most difficult part. There is no 

existing technology that can automatically separate either phoneme or words accurately 

enough from a spoken sentence, but the TIMIT database already provided the endpoints 

of each phoneme and each word in the sentences to make our task simpler. 

 

By using the training algorithm mentioned above, the network can be constructed with 

the proper weight connections and biases which can result in optimal outputs. Next we 

send the testing samples into this network to obtain the recognition results.  
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2.4.1 Model Simulation 

Training and testing samples: 

80 sentences (total 2957 phonemes) from the training sets of the database 

40 sentences (total 1497 phonemes) from the testing sets of the database 

 

Neural Network:  

Input: 1024 input neurons (size of the vector), which represent the preprocessed sound 

wave information of one phoneme. 

Hidden layer: 1 layer contains 50—70 hidden neurons 

Output: 42 output neurons which represent 42 different phoneme classes 

Network structure: Weighted Least-Squares Multilayer Perceptron (3 iterations and 2 

Monte-Carlo runs) 
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Training and testing results: 

Table 1:  

Training and testing results for phoneme recognition 
# of Hidden Neurons 50 55 60 65 70 

J_train (mse) 0.4883 0.4712 0.4691 0.4516 0.4378 

J_test (mse) 1.2133 1.2183 1.2390 1.1846 1.2662 

Misclassification 

(training) 

342/2957 291/2957 273/2957 283/2957 212/2957 

Misclassification 

(testing) 

1050/1497 1023/1497 1014/1497 1027/1497 1030/1497

Testing Error 70% 68% 67% 69% 69% 

 

From Table 1, we can conclude that more hidden neurons do not necessarily improve the 

classification results. The overfitting problem also occurs in this project. 

 

2.5 Conclusion 

Due to very high time and frequency variances between different people’s speech, and 

even more variances between different dialects, the individual phoneme recognition 

performance is not good in the above table, although the method used can approach the 

optimal recognition results in theory. However, since only certain phonemes’ 

combination in a specific sequence can compose a word, by applying a sequence learning 

method to phoneme recognition, the system can predict the next phoneme and correct the 

previous phoneme in the same word, hence, the performance of the recognition should be 
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improved. In Chapter 3, a sequence learning method will be introduced and a word level 

simulation will also be introduced after adding a sequence learning block on top of the 

phoneme recognition neural network for word recognition. In Chapter 4, I will apply this 

sequence learning method to the phoneme recognition system, and explain how to 

improve the phoneme recognition rate by adding the feedback signals from the sequence 

learning blocks. 
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3. LONG TERM MEMORY AND SEQUENCE LEARNING ALGORITHMS 

 

 

3.1 Long Term Memory Block 

3.1.1 Introduction to Long Term Memory 

Research in our group focuses on Embodied Intelligence, so the simulation network 

structures and sequence learning blocks is modeled similarly to the human brain. As we 

know, humans have two major types of memory, Short-Term Memory and Long-Term 

Memory. In Wikipedia, Short-Term Memory is defined as the memory “to hold a small 

amount of information for about 30 second”[Wikis]; and Long Term Memory is defined 

as “the memory that can last as little as a few days or as long as decades”[Wikil]. Over 

the past decade, many scientists have studied these two types of memory trying to find a 

better understanding of human memory. It is believed that these two types of memory 

have different structure and functionalities. In this thesis the long-term memory structure 

is used to store the sequence information. 

 

The basic idea of using the long-term memory (LTM) instead of short-term memory 

(STM) is to save the trained sequence information as long as possible, since in reality the 

system should be only trained once for as many different combinations of sequences as 

possible, then it will be used to predict the next testing sequence after all the training is 

done. The LTM is composed by a number of memory blocks, and each block saves the 
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letter/phoneme combination information of one dedicated sequence, while waiting to 

recognize the represented character.  

 

3.1.2 The Structure and Operation of Long-Term Memory 

The structure of the Long-Term Memory discussed in this thesis is based on the 

architecture of LTM introduced by J. Starzyk and H. He in [Sta 2007]. In that paper, the 

LTM structure is used to recognize text. But in this thesis, the technology was adapted to 

recognize spoken words, and provide feedback to correct phoneme recognition errors. 
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Figure 6. The basic structure of the memory block in LTM 
introduced in [Sta 2007]. 
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Figure 6 shows a sample structure of the memory cell in the sequence learning block 

described in [Sta 2007]. In this thesis, the memory block structure is configured for 

speech recognition, i.e. instead of 26 inputs representing 26 letters, the inputs of each 

block 41210 ...,, iiiiI =  are a series of neurons that represent all 42 phoneme recognition 

categories 41210 ...,, zzzzZ =  from the neural network output. Since, in the training mode 

the number of elements in the sequence is known, the number of primary neurons in 

LTM equals to the number of elements. Each primary neuron connects to all the inputs 

with different weights (the excited inputs have weights of 1, and others are set to 0). 

Since the input sequence may be discontinuous or out of order due to the noise, dual 

neurons are used to save the excitation strength, and to help excite other elements in this 

saved sequence. Each dual neuron connects to its corresponding primary neurons with a 

weight of 1 and adjacent primary neurons with reduced weights defined by a weight 

reduction coefficient q, resulting in internal weights ernalWint  (a more distant primary 

neuron receives a weaker feedback signal). The final output of each LTM cell is equal to 

the sum of the activations of all dual neurons. As a sequence is being trained, the 

excitation level of primary neurons is obtained by the input signal strength multiplied by 

the input weights, added with the feedback from previous dual neurons. And then the 

dual neurons simply copy the excitation strength of the corresponding primary neurons. 

The LTM response strength for a current element of the saved sequence is the sum of the 

excitation strength of all the dual neurons computed at the current time. 
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After the training process is finished, each LTM saves a strength vector for the dedicated 

sequence of elements. These values will be used as a reference to compare with the LTM 

response of testing samples. 

 

In the testing mode, the same LTM structure is used to obtain the LTM response strength 

of the input sound, and compare (divide) it to the saved strength. The LTM response 

strengths for the currently playing input element are normalized between 0 and 1. If both 

testing and saved strength match, the LTM response strength is 1, otherwise it is less than 

1 but always a non-negative number. Since each testing sequence needs to be compared 

to all the saved LTM’s, the testing sequence may be shorter or longer than the saved 

sequence. Thus, in case of a shorter sequence, because the last element of the playing 

sequence is set to the end-of-sequence symbol, the final LTM response strength is 

reduced. For a longer sequence, the final signal is normalized using the logarithm of the 

length ratio.  In order to keep the output signal from growing rapidly with the sequence 

length, the following equation is used to predict the LTM response for ith element of the 

saved sequence: 

)
12
12(1

1

−
−

⋅⋅+=
−

qr
qrrqS

i

i ,  (3.1) 

where q is a weight reduction coefficient and r is equal to 1/decay factor. 

 

After all the relative LTM response strengths of the playing elements have been obtained, 

a Winner-Take-All (WTA) method is used to choose the best fit LTM with the strongest 
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relative respond strength. The sequence stored in this winning LTM is the recognition 

result. 

 

3.2 The Training Algorithm and Testing Process of Sequence Learning Block 

In the above section, we have discussed a general structure of the Long-Term Memory 

cell used in sequence recognition. A detailed training algorithm and simulation process 

for sequence learning are introduced in this section. 

 

 

 

 

Figure 7. The detailed external connections between LTM and 
phoneme recognition NN and internal connection of LTM  



  41 
   
TRAINING ALGORITHM 

1. Set all primary neurons (PN) and dual neurons (DN) to zero. In order to be saved in 

one matrix for all LTM cells, we make the number of PNs and DNs the same in all 

the cells, so in this case, the number is set to 18 which is greater than the number of 

phonemes in the longest word possible. 

2. Since in the training mode the desired activation output neuron from phoneme 

recognition is known, the weights for the connections between PN and the LTM cell 

inputs I can be obtained based on the desired outputs. E.g. if the first phoneme in the 

word activates the third output neuron, then the connection between the first PN in 

the current training LTM cell and the third input neuron has a weight of 1 and all 

other connections between the fist PN and the rest of input neurons have weights of 

zero, i.e.  

0,1 42,1,4,1,2,1,1,1,3,1, ====== PNPNPNPNPN WWWWW L  

3. There are two types of connections between the dual neurons and primary neurons, 

one is a feed-forward connection and another is a feedback connection. The PN 

signals are always passed feed-forward to DN’s, and all the weights for feed-forward 

connections are set to 1; the feedback signals from DN’s to PN’s are used to pass the 

sequential information from previous phoneme to the next one, and the feedback 

weight between nth DN and (n+m)th PN is calculated by the following formula: 

m
mnnernalW δ=+,,int  

where δ is the decay factor and 10 << δ . 

4. Repeat steps 2 and 3 until all the phonemes in the playing word have been input, then 
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the structure of one LTM cell has built up, (i.e. the weights for the connection 

between PNs and inputs, PNs and DNs, and DNs and outputs are all obtained.) 

5. Repeat steps 1 through 4 until all the words in the training set have been trained, and 

then the sequence learning block is established with several LTM cells, where each 

cell saves the sequential information of one word. 

6. As the internal structure of the sequence learning block builds up, the ideal/desired 

outputs NNI '  (only the activation neuron has a value of 1, the others are zeros) from 

the phoneme recognition NN are sent into the LTM cells as inputs for the sequence 

learning in the word level.  

7. The nth primary neuron in each LTM cell first accepts the weighted inputs from the 

inputs of nth playing phoneme in the current training word and sums them up as the 

following formula:  

∑
=

⋅=
42

1
,,,'

i
inPNiNNn WIPN  (3.2) 

Next, the feedback signals from the previous dual neurons are also added into this nth 

PN. The strengths of these feedback signals for this PN are calculated by the 

following formula: 

∑
−

=

⋅=
1

1
,,int,

n

i
niernalinfeedback WDNPN   (3.3) 

So the final strength of the nth PN is  

∑∑
−

==

⋅+⋅=+=
1

1
,,int

42

1
,,,,, '

n

i
niernali

i
inPNiNNnfeedbackndfeedforwarn WDNWIPNPNPN   (3.4) 



  43 
   

Then the PN sends its strength to the corresponding dual neuron directly with weights 

of 1, i.e. nn PNDN = . 

8. Now the strength of the output neuron for this jth LTM cell and nth playing phoneme 

can be calculated as: 

∑= DNB nj ,  (3.5) 

9. After all the phonemes in this word have been played, the output neuron has a vector 

of values which contain the LTM responses for each phoneme in this word. These 

responses are the desired reference values which will be compared with the responses 

calculated in step 13 to obtain the trained strength of LTM. 

10. Since we want to save all the desired reference vectors in one matrix for simplicity, 

the maximum number of phonemes that can be saved in one LTM is set to a large 

number (18 in this case). In order to calculate the desired reference value which goes 

beyond the input phonemes in a word, we use the equation 3.1. 

11. Repeat steps 6 through 10 for all training phoneme samples to obtain the desired 

reference values of all LTM cells in the sequence learning block. 

12. Still in the training mode, we send the real-time output values from the neural 

network for the training samples into the sequence learning block, and repeat step 6 

through step 10 for these data, to obtain the response realB  for each LTM. Then we 

divide these response values by the corresponding reference values desiredB , and these 

results are the final reference LTM response that will be compared by the testing 

results to see which LTM has the best match. 



  44 
   

desiredrealf BBB /Re =  (3.6) 

where 20 ≤≤ refB . 

 

TESTING OPERATIONS 

Now we can start to test the system. Use the real time NN output data of the testing set to 

send into sequence learning block, repeat step 6 through step 10 to obtain the responses 

testB . Then divide these responses by all the final reference LTM response from training 

to obtain the relative responses. Finally, we use the Winner-Take-All method to find the 

best matching sequence based on the relative responses of all the LTM cells. The best 

match for the currently played test word sample is the sequence information saved in the 

LTM which has a relative response closest to 1. 

 

3.3 Simulation Results of the Sequence Learning Block 

A simulation is constructed as follows to show the performance of the sequence learning 

block. For simplicity, I use text converted inputs instead of phoneme recognition data 

since text input has less classification categories than phoneme, and both of them have 

similar characteristics. 

 

Suppose that the word “perforation” was successfully saved in one LTM cell after 

training, the total energy of all input neurons is set to one (i.e. 12 == ∑
n

nIE ) , the desired  
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activated input neuron α−= 121I where α  represents the noise level, and the other input 

neurons are all randomly generated with total energy of α (i.e. 1
20

1

26

22

22 =+= ∑ ∑
= =n n

nn IIE ). 

Table 2:  

Results for the saved text “abba” with decay rate of 2 
Input Text Output Strength 

 1st 2nd  3rd 4th 5th 
abba 1.0 1.0 1.0 1.0  

aabb 1.0 1.0 0.8654 0.8857  

bbaa 1.0 1.2 1.0750 1.0593  

baab 1.0 1.1 1.025 0.8854  

aba 1.0 1.0 0.9625   

abbab 1.0 1.0 1.0 1.0 0.9117 

prus 0 0 0 0  

 

 

Table 3:  

Results for the saved text “abab” with decay rate of 2 
Input Text Output Strength 

 1st 2nd 3rd 4th 5th 
abba 1.0 1.0 1.0789 0.9669  

aabb 1.0 1.0476 1.0132 1.0331  

bbaa 1.0 1.0476 0.9474 0.9256  

baab 1.0 0.9524 1.0 0.9587  

aba 1.0 1.0 1.0   

abbab 1.0 1.0 1.0789 0.9669 0.8815 

prus 0 0 0 0  
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From the above 2 tables, Table 2 and Table 3, we can see that when the playing sequence 

exactly matches the saved sequence, the LTM response is 1, and when the playing 

sequence is different than the saved one, the strength of LTM response deviates from 1. 

 

We use the following plots to show the LTM responses for the inputs with different 

levels of noise α  in the input data which satisfies the equation of: 

∑ =⋅+ − 1)( ,, excitednonNNexcitedNN II α  

 

For playing the exactly same word “perforation” as trained sequence: 
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Figure 8. The plot of LTM cell “perforation” response for 
playing sequence “perforation” 
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For testing word “performance”: 

LTM "perforation" response for "performance" played
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In an ideal situation, the noise level α is zero, the LTM response strength is 1 for the 

matched sequence (from letter 1 to letter 6), and is being reduced as different letters are 

played. As the noise level increases, the strength of the activated neuron decreases, so the 

LTM response strength reduces accordingly. From the results shown in Figure 8, we can 

see that even with the noise level of 60% the LTM cell still has a sharp decrease in 

activation value when the non-matching letters are played. 

 

Figure 9. The plot of LTM cell “perforation” response for 
playing sequence “performance” 
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The following figure shows how well the LTM cell separates the matched and non-

matched sequences.  The plot shows the LTM output signal strength of word recognition 

by the entire sequence learning block with different noise levels: 
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Figure 10. The figure showing the difference between the 
matched sequence and non-matched sequence (“perforation” vs. 

“performance”). 
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From Figure 9 and Figure 10, we can see explicitly that the sequence learning method can 

significantly recognize the matched sequence when noise level is less than 80%, i.e. when 

the recognition rate in the previous stage is significantly high, then the sequence learning 

method is also able to improve the recognition rate significantly, but as the recognition 

rate of the previous stage is getting lower, this method can provide less improvement to 

the whole recognition system. 

 

From the results shown above, we can predict that by adding the sequence learning 

method to the recognition system the recognition rate can be improved to a certain level 

Figure 11. The figure showing the difference between the 
matched sequence and non-matched sequence (“abbreviation” 

vs. “accessories” and “alternative”). 
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depending on the recognition rate obtained from last stage. Adding another sequence 

learning block on top of the current system for the sentence level recognition, we can 

expect even better recognition rate. 
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4. THE PHONEME RECOGNITION CORRECTION METHOD USING 

FEEDBACK SIGNALS 

 

 

4.1 Introduction 

In this thesis, the phoneme recognition system introduced in Chapter 2 does not provide a 

good recognition rate for our simulation due to the variance in the speakers with different 

dialects, but in reality the recognition system needs to be adaptive to all types of speakers 

regardless of race and dialect. So a correction method that can improve the phoneme 

recognition rate needs to be considered and developed.  

 

In Chapter 3, we showed that the sequence learning method can recognize the playing 

sequence with a certain level of noise, and that by adding the sequence learning block on 

top of the phoneme recognition neural network we can expect that the recognition rate at 

the higher level should have a significant improvement. Can this block provide help to 

the phoneme recognition block to improve its recognition rate? The answer is affirmative. 

However, the previous sequence learning block needs to be modified so that it can 

provide feedback signals to the outputs of the phoneme recognition network in order to 

predict the next playing phoneme, and to improve the overall phoneme recognition rate. 
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4.2 The Modified Sequence Learning Block with Feedback Signals 

In the original sequence learning model described in the previous chapter, for each 

playing element, there is only one output response value from each LTM cell which is the 

summation of the strength of all the dual neurons in this cell. And the final recognition 

decision is made according to the largest response strength from all the LTM cells using 

the Winner-Take-All method. This original model only works for recognizing a sequence 

or making prediction to the next level. So in order to predict an individual character or 

Figure 12. The flow chart of proposed word recognition system 
with phoneme recognition network and sequence learning block 

introduced in Chapter 3. 
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phoneme that is at a lower level than the current one by using this sequence information, 

some modifications are needed. 

 

The prediction of the next character or phoneme in sequence learning always requires the 

information of the previously played characters because each sequence of words is 

unique. Since in the structure of the LTM introduced in the last chapter the LTM 

responses of the individual playing phonemes in one word is saved into a vector, we can 

create feedback signals from the LTM to all the input neurons, and these feedback signals 

provide the sequence information to add to the next playing phoneme for prediction.  

 

 

 Figure 13. The detailed external connections between LTM and 
phoneme recognition NN and internal connection of LTM with 

feedback connections. 
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4.2.1 The Phoneme Recognition Correction Algorithm 

The first step of this algorithm is to obtain the desired LTM responses in every LTM cell 

for all the training samples by sending the desired neural network outputs NNI '  (i.e. value 

1 for desired firing neuron and value 0 for all other neurons) into the sequence learning 

block introduced in last chapter. All the LTM responses are saved into a vector refS  

which will be used later to get relative response of training samples in the next step. 

 

Next, the real-time normalized NN outputs NNI  (i.e. all neurons fire with a non-negative 

strength with values between 0 and 1) from the same training samples as in the previous 

step are sent into the sequence learning block. Then by going through each LTM, the 

activation strengths of the LTM responses to the training elements can be obtained. 

Dividing these activation strengths by the desired response strengths will give us the final 

reference LTM response strengths mnSS ,':' .  

 

From the last steps, we have obtained the LTM response strengths for the real-time inputs, 

and since the purpose of the feedback is to reduce the error between the desired inputs 

and real-time inputs, the real-time inputs should be as close to the desired inputs as 

possible by adding the feedback signals. So the weights of feedback connections can be 

obtained using the errors between the real-time inputs and desired inputs and the LTM 

response strengths. As the weights get calculated, the training stage is finished. 
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The following example is used to clearly describe how to find the weights of feedback 

connections in training. In this example a text sequence instead of phoneme sequence is 

used for simplicity, since they have the same sequence information. 

 

Example 

Suppose matrix A contains the location information and response strengths of the training 

sequences, and current training sequence is “perforation”: 

 

We start with letter “p”. Since this is the first letter and the letter following is “e” which 

is the fifth letter in the English set of 26 letters, the response strength is placed in row 5; 

because this is the response for the first letter from the first LTM, the strength is placed in 

column 1 of the matrix A:  

1,11,1 )118)11(,5)11(26()1,5( SASA =+×−+−×→= , where 26 is the number of English 

letter categories and 18 is the maximum length of the sequence saved in the LTM cell. 

 

For the same letter, the response strength from the second LTM cell is placed in row 5 

and column 19:  

1,21,2 )118)12(,5)11(26()19,5( SASA =+×−+−×→= , 

 

 So we can conclude that the response from nth LTM cell is placed in row 5 and column 

118)1( +×−n : 

1,)118)1(,5)11(26( nSnA =+×−+−× .  
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The second training letter in this word is “e”. Since the next word after “e” is the 

eighteenth letter in English letter, “r”, use the same method as above, the response from 

the first LTM cell is placed in row 70 and column 2:  

2,12,1 )218)11(,18)12(26()2,70( SASA =+×−+−×→= ,  

and the equation for the second LTM cell response is: 

2,2)218)12(,18)12(26( SA =+×−+−× ,  

So the equation for nth LTM cell is: 

2,)218)1(,18)12(26( nSnA =+×−+−× .  

 

Thus, we can conclude a general formula for the nth LTM cell response strength for the 

mth training letter as: 

mnLTMmdesiredcategory SmLnKmNA ,1, ))1(,)1(( =+×−+−× +  (4.1), 

where categoryN denotes the number of recognition categories, desiredK  represents the 

desired input neurons, and LTML is the maximum length of the sequence saved in all LTM 

cells.  

 

Next we calculate the difference between the desired input of the sequence learning block 

from the neural network NNI ' and the real-time NN outputs NNI  for all training 

samples NNNN IIE −= ' . The obtained results are the errors to be reduced in NN learning. 

Then a vector B is formulated for the feedback structure by reshaping the error matrix E 
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to a vector B with size of 1 by trainCategory NN × , where trainN  denotes the number of 

training letters/phonemes. As soon as the matrix A and vector B are obtained for the 

training set, the equation to calculate the weights feedbackW of the feedback connections to 

NN outputs can be formulated as the following: 

1)( −×−= AIBW NNfeedback . (4.2) 

Now the training stage of the sequence learning method with feedback signals is finished.  

 

 The testing process begins from here. In this process, the NN recognition outputs for the 

testing phoneme are sent into the sequence learning block individually. Every LTM cell 

has different response for the playing test phoneme, and this strength multiplied by the 

feedback weights to provide the values of the feedback signals. Each LTM cell has 

feedback connections to all the input neurons with different weights, so when the next 

NN outputs come in it will add these feedback signals to formulate the final input signals 

for the sequence learning block. Hence, this new input signals can also be seen as the 

corrected phoneme recognition results. 

 

In test operation, unlike training, the phonemes are sent into the LTMs one by one in 

order for the system to predict the next playing phoneme. For simplicity, the word 

separation is assumed to be known. Then with these assumptions, the following test 

procedure is applied to obtain the test results: 

1. The phoneme recognition neural network generates the input vector testI ' to the 

sequence learning block for the current playing phoneme from the testing set, which 
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contains different real values between 0 and 1. testI '  is sent into the LTM cells to 

obtain the response strength testS ' , which is a vector of 1 by LTMLTM NL ×− )1(  to save 

the LTM response in all the LTM cells, where LTMN  denotes the number of LTM 

cells saved in the sequence learning block. Use the same formula 4.1 as in training to 

generate testA , where  

mtestLTMmdesiredcategorytest SmLnKmNA ,1, '))1()1(,)1(( =+−×−+−× +  (4.2) 

2. Use the formula 

feedbacktestmtestmtest WAIB ×+= ++ 1,1, '   (4.3) 

to calculate the next NN output vector 1, +mtestB . 

3. Substitute 1, +mtestB for testI '  in step 1, and repeat step 1 to step 2 to update testS ' , then 

testA  and 2,' +mtestI , until all the phonemes in the testing word are played (i.e. reaches a 

long silence). 

4. Reset all the internal neurons (PNs and DNs) of all LTM cells, and then repeat step 1 

through step 3 for the new word 
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4.3 Simulation Results and Discussion 

We sent the same phoneme recognition results obtained in Chapter 2 into the sequence 

learning block for simulation. The following results were obtained: 

 

 

 

 

 

Figure 14. The flow chart of proposed phoneme recognition 
system with feedback correction method. 
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Table 4:  

Comparison table of testing results for phoneme recognition with and w/o feedback 
correction involved 
# of Hidden Neurons 50 55 60 65 70 

Misclassification 

(Without Feedback) 

1050/1497 1023/1497 1014/1497 1027/1497 1030/1497

Testing Error 

(Without Feedback) 

70.14% 68.34% 67.74% 68.60% 68.80% 

Misclassification 

(With Feedback) 

1001/1497 972/1497 950/1497 976/1497 978/1497 

Testing Error 

(With Feedback) 

66.87% 64.93% 63.46% 65.20% 65.33% 

 

 

The above Table 4 clearly shows that by adding feedback connections from the sequence 

learning block to the phoneme recognition block, the average phoneme recognition rate 

improves approximately by 5%. If we analyze each phoneme individually, we can see 

that most of the phoneme recognition results get improved by a certain level (i.e. the 

desired activate neuron gets promoted and other neurons get depressed) although the 

recognition results for many phonemes didn’t improve. The following plots clearly show 

this result (Figure 15 continues from pages 61-63): 
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In Figure 15 above, the five plots display the comparison of the phoneme recognition 

results with and without the feedback correction for five different phonemes, and as we 

can see that all of the plots show different levels of corrections: they lower the activation 

strength of the inactive neurons and increase the strength of the active neuron. Plot #3 in 

Figure 15 shows a very good example of the corrections, which clearly shows the 

recognition results get corrected after feedback is involved.  

 

4.4 Conclusion 

Based on the simulation results obtained above, it can be proven that the sequence 

Figure 15. The comparison plots of phoneme recognition 
improvements with feedback connections: the blue line shows 
the desired results; the red line shows the results before adding 
sequence learning method; and the green line shows the final 

results with the feedback correction from the sequence learning 
block.
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information can provide some improvement to the phoneme recognition because of the 

sequence characteristics. The longer sequences provide more information and show more 

improvement because they are more unique. However, in reality, most common words 

are composed of less than 6 phonemes, so the sequence information provided is very 

limited. Therefore, by adding a sequence learning block to the phoneme recognition 

system, the recognition rate is improved, but with limited corrections. 
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5. CONCLUSIONS AND FUTURE WORK 

 

 

5.1 Conclusions 

This thesis introduces an innovative phoneme recognition model that using a feed-

forward neural network with a Least-Squared method for first level phoneme recognition, 

a sequence learning block with the structure of the Long Term Memory cells for word 

level recognition, and then combine these two parts with a feedback correction method to 

achieve an improvement of the phoneme recognition. 

 

The first stage of this phoneme recognition model is a feed-forward neural network. To 

construct this network, we used the Least-Squared method to find the weighted 

connections between the hidden layer and input/output layers, which result in the best 

recognition rate. By using this method, the lowest number of the hidden neurons needed 

for the best match results are also found. At the output layer of the network, the Winner-

Take-All method is used to find the strongest activation strength of the output neuron, 

and the phoneme represented by this neuron is the recognition result.  

 

Since the performance obtained from the first stage is not sufficient to be close to other 

researchers’ model [Yuk 1999] [Fal 1990], which can reach 62.2% and 66.2%, we 

introduced a sequence learning algorithm to be added on top of phoneme recognition 

neural network in order to improve the recognition rate.  
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In the sequence learning stage, a number of Long-Term Memory cells are used to 

compose the sequence learning block. These LTM cells have a similar structure as the 

LTM introduced in [Sta 2007] with some modifications to make these cells useable in 

speech recognition. By sending the outputs of the phoneme recognition neural network 

into this sequence learning block, word level recognition results can be obtained. The 

recognition rate for this higher level is better than for the lower level because the 

sequence information has been added. Hence, we can propose that the recognition rate 

should see more improvement at the sentence level because of more unique sequence 

information added from the word level. 

 

Since my thesis focuses on phoneme recognition, I have also proven that the sequence 

learning method can help to improve phoneme recognition by sending feedback signals to 

the outputs of the neural network. In Chapter 4, the structural modifications from the 

model in Chapter 3 were described, the response strength of all the LTM’s for any 

phoneme played needed to be tracked and send back a corresponding feedback signal to 

predict the next playing phoneme. The outputs of the neural network for the current 

playing phoneme plus the feedback signals from all of the LTM cells for the previous 

played phoneme generate the corrected recognition results for the playing phonemes. 

 

5.2 Future Work 

Although a certain level of phoneme recognition has been reached in this thesis, the 
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recognition rate is still not as good as the models in [Yuk 1999] and [Fal 1990], and far 

from commercial requirements. So additional future work is needed to further improve 

the recognition rate. 

 

There are several ways to improve the recognition rate based on the model described in 

this thesis. In the sound preprocessing stage, instead of using the wavelet transform 

method, we can extract the features that represent the characteristics of the sound wave, 

and use a separate neural network for each feature in parallel. This way, the training time 

will be much less because of parallel processing, and the recognition rate will also be 

improved since all the extracted features will be unique to each phoneme. 

 

A better algorithm to calculate the internal weights of the neural network also needs to be 

developed, since the current algorithm is not quite time efficient. The current processing 

time using least squared method increases rapidly when the number of training samples 

increases, so very limited training samples have been used in this thesis. This also adds to 

the poor testing performance. If a more efficient training algorithm is used, and the 

system saves more phoneme information and knowledge from training, the recognition 

rate should increase accordingly. 
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Also, as shown in Figure 16, if we add another sequence learning block for sentences, 

and use feedback signals to correct the word level recognition, then use the corrected 

word level recognition results as the feedback signal to sent back to phoneme level, the 

phoneme recognition rate should be improved. 

 

Another aspect of the future work for this thesis is to implement a hardware system to 

substitute the software simulation, so that it can be embedded into a large hardware 

“Brain” in the future. 

Figure 16. A general view of the proposed speech recognition 
system model. 
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APPENDIX A: SOURCE CODE AND DATA SETS USED IN THIS THESIS 

 

The source code packages used in this thesis are available at the following address: 

http://www.ent.ohiou.edu/~webcad/Current_Projects/Students_thesis_dissertation/Yimin
g 
 

Source Code Packages: 

Phoneme_Neural_Network:  Package for the feed-forward phoneme recognition 

neural network 

 

Sequence_Learning_LTM: Package for the sequence learning block composed by 

Long-Term Memory cells 

 

Phoneme_Recognition_Feedback_Correction: Package for the phoneme recognition 

model which combine the feed-forward phoneme recognition neural network and the 

sequence learning block with feedback correction 

 

These software packages can be provided upon request. Please send your request to: 

yh128999@ohio.edu . Each package includes a README file, please read it before use.  

 

Data Sets: 

In order to use the above software packages, the datasets used have to be from the TIMIT 

Acoustic-Phonetic Continuous Speech Corpus [Gar 1993].  
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To obtain TIMIT database, please visit the following address for ordering information:  

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1 
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APPENDIX B: HOW TO USE THE SOURCE CODE 

 

Phoneme_Neural_Network 

To use this phoneme neural network package, please follow the following steps: 

1. Open SoundProcess.m 

 1.1 Change the filename to the file path where saves the training sets of the 

TIMIT database in your computer. (Make sure to change the names of the TIMIT files 

and folders to numbers so that the program can run in a loop to read all the data files.) 

 1.2 Choose the regions (indexi), the speakers (folders) and the sentences (files) 

for training. 

 1.3 Run this program. The outputs (A_matrix and B) of this program are 

saved into #.mat files in the working directory. Each file contains the outputs for one 

training sentence. 

 1.4 Change the file path to the testing sets of the TIMIT database, and choose 

the regions (indexi), the speakers (folders) and the sentences (files) for testing. 

 1.5  Uncomment line 116 and run the program again for testing sets. The 

outputs (A_matrix and B) of this program are saved into test#.mat files in the working 

directory. Each file contains the outputs for one testing sentence. 

 

2. Open WordProcess.m 

 Use the same procedure as in step 1to obtain the preprocessed word information. 
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3. Open MLPProcessing.m 

 3.1 Change the path_data and test_path_data to your working directory or the 

directory saves the preprocessed sound information (.mat files). 

 3.2 Change the number of training sentences (file_index) and the number of 

testing sentences (test_file_index) as you want. 

 3.3 Run this program. This program is used to retrieve the preprocessed sound 

data from the saved .mat files and save them into large matrices for neural network to 

process. 

 

4. Open main_MLP_LS.m (Important: must run MLPProcessing.m before this 

program) 

 4.1 Choose your desired number of layers (no_layer) and number of hidden 

neurons (B_neurons) in the neural network, and choose the transfer function you like to 

have on hidden neurons (nltype_hidden). 

 4.2 Run this program. The results are displayed in the console and also saved 

in train_error_result (the number of incorrect recognized phonemes in training set), 

train_error_rate (the error rate for the training data), test_error_result (the number of 

incorrect recognized phonemes in testing set), and test_error_rate (the error rate for the 

testing data). 

 

Follow the above procedure with the following parameters to obtain the results shown in 

Table 1: 
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SoundProcess.m 

When process training datasets: 

Regions 1 – 8:    indexi = 1:8 

Speakers 1 – 20:   folders = 1:20 

Sample Files/Sentences 1 – 2: samplefiles = 2 

When process testing datasets: 

Region 1 – 2:    indexi = 1:2 

Speakers 1 – 10:   folders = 1:10 

Sample Files/Sentences 1 – 2: samplefiles = 2 

 

WordProcess.m 

Use the same parameters as in SoundProcess.m 

 

MLPProcessing.m 

Training Sentences 1 – 80:  file_index = 1:80 

Testing Sentences 1 – 40:  test_file_index = 1:40 

 

main_MLP_LS.m 

Number of the Layers 3:  no_layer = 3 

Hidden Neurons (50, 55, 60, 65, 70): B_Neurons = 50, 55, 60, 65, 70 

Hidden Neuron Transfer Function 2: nltype_hidden = 2 

Training Type 2:   training_type = 2 
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Sequence_Learning_LTM 

To use this Sequence_Learning_LTM package, please follow the following steps: 

1. Open LTMmain.m, change the decay rate as you desire, choose your own training 

text words and replace them in variable saved_text; choose your own testing text words 

and replace them in variable input_text. 

2. Run the program. Variable strength1 saves the LTM responses for all the testing 

words. 

 

Phoneme_Recognition_Feedback_Correction 

To use this Phoneme Recognition with Feedback Correction package, please follow the 

following steps: 

1. Open SoundProcess.m 

 1.1 Change the filename to the file path where you save the training sets of the 

TIMIT database in your computer. (Make sure to change the names of the TIMIT files 

and folders to numbers so that the program can run in a loop to read all the data files.) 

 1.2 Choose the regions (indexi), the speakers (folders) and the sentences (files) 

for training. 

 1.3 Run this program. The outputs (A_matrix and B) of this program are 

saved into #.mat files in the working directory. One file contains the outputs for one 

training sentence. 
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 1.4 Change the file path to the testing sets of the TIMIT database, and choose 

the regions (indexi), the speakers (folders) and the sentences (files) for testing. 

 1.5 Uncomment line 116 and run the program again for testing sets. The 

outputs (A_matrix and B) of this program are saved into test#.mat files in the working 

directory. One file contains the outputs for one testing sentence. 

 

2. Open WordProcess.m 

 Use the same procedure as in step 1 above to obtain the preprocessed word 

information. 

 

3. Open MLPProcessing.m 

 3.1 Change the path_data and test_path_data to your working directory or the 

directory saves the preprocessed sound information .mat files. 

 3.2 Choose the number of training sentences (file_index) and the number of 

testing sentences (test_file_index) as you want. 

 3.3 Run this program. This program is to retrieve the preprocessed sound data 

from the saved .mat files and save into large matrices for neural network to process. 

 

4. Open main_MLP_LS.m (Important: must run MLPProcessing.m before this 

program) 
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 4.1 Choose your desired number of layers (no_layer) and number of hidden 

neurons (B_neurons) in the neural network, and choose the tranfer function you like to 

have on hidden neurons (nltype_hidden). 

 4.2 Run this program. The results are displayed in the console and also saved 

in train_error_result (the number of incorrect recognized phonemes in training set), 

train_error_rate (the error rate for the training data), test_error_result (the number of 

incorrect recognized phonemes in testing set), and test_error_rate (the error rate for the 

testing data). 

 

5. Open SequenceLearningFeedbackMain.m 

 5.1 Change the path_data and test_path_data to your working directory or the 

directory saves the preprocessed word sequence information dword_#.mat files. 

 5.2 Choose the number of training sentences (file_index) and the number of 

testing sentences (test_file_index) as you want. 

 5.3 Run this program. The results are displayed in the console and also saved 

in test_feedback_error_result (the number of incorrect recognized phonemes in testing set 

with feedback correction) and test_feedback_error_rate (the error rate for the testing data 

with feedback correction). 

 

Follow the above procedure with the following parameters to obtain the results shown in 

Table 4: 

SoundProcess.m 
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When process training datasets: 

Regions 1 – 8:    indexi = 1:8 

Speakers 1 – 20:   folders = 1:20 

Sample Files/Sentences 1 – 2: samplefiles = 2 

When process testing datasets: 

Region 1 – 2:    indexi = 1:2 

Speakers 1 – 10:   folders = 1:10 

Sample Files/Sentences 1 – 2: samplefiles = 2 

 

WordProcess.m 

Use the same parameters as in SoundProcess.m 

 

MLPProcessing.m 

Training Sentences 1 – 80:  file_index = 1:80 

Testing Sentences 1 – 40:  test_file_index = 1:40 

 

main_MLP_LS.m 

Number of the Layers 3:  no_layer = 3 

Hidden Neurons (50, 55, 60, 65, 70): B_Neurons = 50, 55, 60, 65, 70 

Hidden Neuron Transfer Function 2: nltype_hidden = 2 

Training Type 2:   training_type = 2 
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SequenceLearningFeedbackMain.m 

Training Sentences 1 – 80:  file_index = 1:80 

Testing Sentences 1 – 40:  test_file_index = 1:40 

Decay Rate 2:    decay = 2 
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