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Notation

The following notation is used in this dissertation:

N - network

S - subnetwork

t - time

a - frequency

j - discrete time indices

n - number of nodes

m - external node indices

i - internal node indices
x

p - vector of actual parameters
n

p" - vector of nominal or designed parameters

p - vector of computed or updated parameters

Ap - parameter deviations (p. - p0)

d - relative parameter deviations in percent (-48- 100%)
p "

x - vector of the circuit variables

i - partial derivative of x w.r.t. time

xt - transpose of x

xo - nominal vector or initial vector

xi - vector x at the jth time instance
J*

x - measured vector

x - computed vector

*& - adjoint vector

X - spectrum of x
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lxl - magnitude of X

X - complex conjugate of X

0 - vector of test functions

f - circuit function waveforms

F - circuit function spectra

S - sensitivity matrix in frequency domain t#l' o p /

s - sensitivity matrix in time domain t#l
0x.

si - sensitivity matrix at the jth time instance (-J)
J " u \ o p

T - t e s t m a t r i x f f f f' q p /

9- test matrix in time domain

.{ - test matrix at the jth time instance
J

M - Jacobian matrix in time domain f# I

g - diagonal submatrix of M

6 - column submatrix of M

9, - row submatrix of M

6 - external matrix of M

al - selected matrix

Y - admittance matrix in frequency domain (Jacobian matrix

Y 
- admittance matrix in time domain

\i 
- diagonal submatrix of Y

\- 
- column submatrix of Y

Y*i - row submatrix of Y

Y** - external submatrix of Y

v,V - node voltage waveforms, spectra

i,I - node current waveforms, spectra

w,W - input waveforms, spectra

a v \
T)
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q - capacitor charges and inductor fluxes

C - capacitance of the capacitor

G - admittance of the conductor

C - reactive matrix

G - resistive matrix

A - incident matrix

a - orthogonalized matrix

R - upper triangle matrix

a - subnetwork indices

k - number of subnetworks

n^ - number of parameters
p

nm - number of test nodes

ne - number of excitation nodes

nf - number of test frequencies

nh - number of harmonic frequencies

nl - number of DC excitation levels

ns - number of piecewise linear segmentations

nr - number of piecewise linear regions

nt - number of time points

tf - testability factor

a - standard deviation



1. INTRODUCTION

1.1 Statement of Testing Problems

As the demand for electronic circuits and systems in modern technology

increases, both their scale and complexity grow rapidty. The phenomenal

development of electronic systems would not have been possible without the

advances in large scale and very large scale integration (LSI/VLSI) in

semiconductor circuit technologies. Large analog or integrated analog and digital

circuits are applied to many fields such as medical technology fStotts 1989],

neural networks [Mead 1989, Graf et al. 1988, and Hutchinson et al. 1988], and

space technology. With the growth in significance and pervasiveness of electronic

systems, availability, reliability and cost effectiveness become the main

characteristics of quality. Therefore, in order to achieve the desired quality,

product testing is of the utmost importance.

Testing, generally speaking, means examination of a product, to ensure

that it functions and exhibits the properties and capabilities for which it was

designed. The main purpose of testing is to detect malfunctions and locate their

cause so that they can be eliminated. The quality of a test system can be

evaluated on the basis of its availability, reliability and cost-rffectiveness.

For large scale circuits and systems, testing is not only important but also

complex, difficult and costly. It is difficult to gain access to different subsystems

for functional testing. It is costly to analyze test results since the computations

increase with the cube of the system size. Therefore, in order to meet the
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needs of modern technology, a reliable and cost-efficient automatic test system

for large scale electronic circuits should be developed.

Electronic circuit testing can be broadly classified into digital circuit

testing and analog circuit testing. Digital circuit testing has developed quite

rapidly in recent years. Excellent research results have contributed substantially

to this advancement fTsui, 1987]. Testing of analog circuits is more difficult

than that of digital circuits because of the following reasons:

1. Analog circuits do not have precise accept/reject criteria in terms of

clearly defined thresholds.

2. Analog components do not have good fault models like the stuck-at or

stuck-open models widely accepted in digital testing.

3. Element tolerances and signal noise increase the difficulty of analog

testing.

In an electronic system, digital circuits and analog circuits are interfaced

through interacting circuits such as sensors, transducers and other forms of

converters (e.S., A/D and D I A converters). These circuits are called

mixed-mode (digital/analog) circuits. Testing of mixed-mode circuits has been

attracting the interest of researchers in the past few years [Mahoney, 1987].

Testing of analog and mixed-mode circuits is a very important and

challenging task. In the following discussion, a brief review of the existing

methods for analog testing is given.



1.2 Brief Review of Analog Testing

Testing and fault diagnosis of analog circuits have been an active research

topic for more than twenty five years. Some of the earliest publications in this

area fBerkowitz 1962, Brown et al. 1962,, Allen 1963, and Seshu and Waxman

1966] described basic techniques and their limitations as well as difficulties in

analog testing. Over the years many researchers have worked to make analog

testing more powerful and reliable. They have considered topics such as

testability measures, computational requirements, effects of measurement errors

and element tolerances. Yet, to this day, many problems remain unsolved and

many techniques need better implementation.

Bandler and Salama (1985) gave an excellent review of the techniques and

research publications in fault diagnosis for analog circuits. They compared the

existing techniques in a systematic and understandable format. Depending on

whether circuit simulation takes place before or after the test, analog circuit

diagnosis methods can be classified into two main categories: the simulation

before test (SBT) methods and the simulation after test (SAT) methods. The

former methods consist of two major steps. The first step is to construct a fault

dictionary by analyzing the circuit being tested for various faults with given

measurement points. The second is to compare the measured responses with the

simulated results in this dictionary to locate faults (so called fault dictionarl'

technique). The latter methods try to locate faults directly from measurement

data by verifying faulty assumptions (so called fault verification technique) ot

by calculating parameter values (so called parameter identification technioue).
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In order to ascertain the effectiveness of an analog test technique, it is

necessary to establish a measure of testability. Testability can be measured in

different ways depending on the technique being used and the type of circuit

being tested. In order to insure the efficiency of the test, an optimum set of

measurement points is selected before performing the measurement. Different

measurement points are selected depending on the test situation. In the

following sections, three techniques are discussed including the testability

analysis and test point selection.

I.2.I F ault Dictionary Technique

The fault dictionary technique is well suited for the diagnosis of hard

faults (shorts, opens, catastrophic changes in bias points, etc.) [Seshu and

Waxman 1966, Schreiber 1979, and Lin and Elcherif 1988]. As mentioned above,

this technique is implemented in two steps. The first step is to construct a

dictionary which includes the most likely faults. A circuit under test is

simulated for the hypothesized faulty cases. Sets of stimuli are designed to

produce desired responses in order to detect and isolate the faults. Signatures of

the response are stored in the dictionary for use in the second step. An

optimum set of stimuli, responses, and signatures is required to store the

minimum amount of data and to achieve the desired degree of detection. In the

second step, the circuit is excited by the stimuli designed in the first step. The

signatures obtained are compared with those stored in the dictionary. The fault,

or an ambiguity set that contains the number of possible faults, is identified if

the signature matches one of the prestored signatures. Different methods were

used to select an optimum set of measurements for the fault dictionary



[Freeman 1979, Hochwald and Bastian 1979, and Varghese et al. 1gT8].

I.2.2 Fault Verification Technique

With a limited number of measurements, not all parameters of the

network can be identified. The fault verification technique addresses this

problem based on the assumption that a few elements are faulty and the rest of

network elements are within design tolerances. A set of faulty elements is

assumed first. Then test equations generated on the basis of the assumed faulty

elements are checked. If the fault assumption is correct, then the equations are

consistent. Otherwise they are not. A number of research results have been

developed based on this technique. Wu et al. (1982) introduced the self-testing

method. Wu (1985), Wu and Wu (1986), and Wey (1987,199g) have discussed

design testability and test point selection based on this method. Starzyk and

Bandler (1981,1982), Huang et al. (1983), Lin, et al. (1983) have formulated

topological testability conditions for the fault verification technique. Maeda et

al. (1986) extended these topological conditions to the case of nonlinear systems.

Reisig and DeCarlo (1987) expanded this method to analog-digital multiple

fault diagnosis. These verification techniques were generalized to handle

multi<xcitation and multi-frequency tests for piecewise-linear circuits by

Starzyk and Dai (1988) and to handle nonlinear circuits by Starzyk and

El-Camal (1988). Nodal and branch decomposition techniques for fault diagnosis

and calibration of large networks have been presented by Salama, Starzyk and

Bandler (1984) and by Hatzopoulos and Kontoleon (1987). The effect of element

tolerances in this technique has been studied by zou (1ggg).



1.2.3 Element Identification Technique

The element identification technique is well suited for soft faults (the

faults due to the deviations of parameters). Assuming that enough independent

measurements are available, all circuit parameters can be identified. The

element tolerances are automatically taken into consideration in this technique.

The element identification technique is useful in calibration, alignment and fault

diagnosis. Most practical electronic circuits are frequency dependent and

nonlinear. Consequently, in such networks, a large number of independent

measurements can be produced by changing excitation levels and test

frequencies. Navid and Willson ( 1979) have studied the testability of resistive

networks based on the rank of the sensitivity matrix. Sen and Saeks (t0Zl ,1979)

have developed a theory for multi-frequency testing of linear circuits.

Visvanathan and Sangiovanni-Vincentelli (1981) and Saeks et al. (1981)

addressed diagnosability of DC and dynamic nonlinear circuits.

Stenbakken and Souders (19S7) developed an efficient algorithm for test

point selection and testability measures for the element identification technique.

They studied relations between the circuitrs testability and measurement errors.

In their study, testability is related to the condition number of the test matrix.

Test point selection is performed by QR factorization in order to minimize the

condition number and increase testabilitv.



I.2.4 Comparisons

Of the three techniques discussed, the element identification technique is

the most general and powerful. In the fault dictionary technique, a large

number of potential faults should be simulated in order to construct the fault

dictionary. However, the amount of computation required to simulate these

faults is enormous. This make the faulty dictionary technique suitable for

specific circuits but too expensive for general large scale networks. In the fault

verification technique, the faults can be located after verifying all fault

assumptions. For linear circuits, the solution can be obtained by solving linear

system equations. But the number of combinations of different fault assumptions

increases exponentially as the size of the circuit increases. Therefore, the process

of verifying for all assumptions is time consuming.

On the other hand, the element identification method can handle a broad

range of test situations (DC testing, frequency domain testing, time domain

testing, etc.) and test circuits (linear, piecewise linear or nonlinear). Without

making any assumptions, faulty elements can be located when the circuit

parameters are evaluated. Consequently, the actual element deviations are

estimated. The elements can be calibrated to their designed values in order to

make the circuit work properly. Based on the estimated parameter values,

responses to arbitrary input signals can be predicted. Therefore, the element

identification technique is very useful in practical applications such as trimming,

alignment, functional testing, fault diagnosis, and calibration.

Normally, the element identification technique is based on the sensitivity



8

approach, i.e. the sensitivity of the responses with respect to all parameters.

The element deviations are found through deviations of the responses and the

sensitivity matrix. Testing strategies developed for the sensitivity approach

consider many practical aspects including test point selection, element

tolerances, measurement errors , etc..

In summary, the element identification technique is general and powerful.

Its implementation, based on the sensitivity approach, is very useful in practice,

but, unfortunately, cannot handle large scale circuits. The sensitivity matrix is

dense which requires an enormous amount of memory space to store and takes a

long time to compute when the circuit size is large. Overcoming these

deficiencies was the main motivation behind this dissertation.

1.3 Objective and Organization

The objective of this dissertation is to develop a new testing method for

large scale circuits based on the element identification technique. This new

method must be useful for functional testing and calibration of complex systems

as well as identifying element characteristics and verifying macromodels or

entire subsystems. It must also be able to diagnose faults and evaluate elements

efficiently and reliably, while meeting the requirements of the automatic test

system.

In order to realize this objective, two major tasks are defined:

develop a decomposition approach for testing large scale circuits and

establish testing strategies related to calibration, functional testing and fault

1 )

2)



diagnosis.

The first task is realized by decomposing the interconnected system into a

number of small subnetworks. To achieve this decomposition without breaking

interconnections, voltage measurements are taken at the partition points and

new test equations are formulated at these nodes. In this way the effects of the

measurement errors are reduced to a local area, and computations are performed

in each subcircuit. Subcircuit analysis is facilitated since the boundary

conditions are determined by the measurement voltages. Thus, the speed and

accuracy of the diagnosis process are improved.

In order to realize the second goal, we must account for all practical

aspects of testing. Therefore, we consider finite accuracy of the computer

simulation as well as effects of measurement errors on the validity of the results

obtained. The best set of test points (DC excitation levels, test frequencies, and

type of input signals applied) is selected in order to achieve adequate test

coverage with minimum cost. In addition, &tr accurate response prediction and

an effective method to eliminate ambiguity groups are proposed.

Figure 1.3.1 shows classification of testing techniques with special emphasis

on two approaches presented in this dissertation sensitivity approach and

decomposition approach.
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Electronic Circui t
Tes t in  g

Dig  i ta l  C i rcu i t
Tes t i n  g

Ana log  C i rcu i t
Tes t i n  g

Faul t  Ver i f i ca t ion
Tech nique

Faul t  Dict ionary
Tech n ique

Element  lden t i f i ca t ion
Technique

S e n s i t i v i t y
Approach

D eco mpos i t io  n
Approach

Fig. 1.3.1 Classification of electronic circuit testing.
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Remaining of this dissertation is organized as follows: In Chapter 2,

general test methods and the test procedure for element identification techniques

are given. In Chapter 3, the sensitivity approach is discussed. The response

simulation and sensitivity matrix are derived in DC, time and frequency

domains respectively. The research for this approach stems from the need. to

implement the sensitivity based methods in a practical testing situation and to

include them as software tools in circuit simulators. The discussion in Chapter 3

serves also as an introduction to the decomposition approach. In Chapter 4, the

decomposition approach for large scale circuits is developed. Test equations are

formed based on Kirchhoff's current law (KCL) equations at the partition nodes.

In a similar woy, the internal voltage simulation and the test matrix are

derived in DC, time and frequency domains. The test matrix obtained by the

decomposition approach is a bordered block diagonal (BBD) matrix thereby

allowing sparse matrix and parallel processing techniques to be used to speed up

computation in circuit simulation and fault diagnosis. In Chapter 5, test

strategies for practical considerations, including test point selection, response

prediction, and the effects of ambiguity groups, measurement errors, and time

skews are covered. In Chapter 6, computer simulation and experimental results

are given. The results obtained by the sensitivity approach and decomposition

approach are compared. Chapter 7 presents the conclusion which includes

discussion and suggestions for future work.
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2. GENERAT APPROACH

When a new circuit is built, the responses of the circuit to one or several

specific input signals must be measured to determine whether it works or not.

This is called functional testing. If the responses are out of the range of design

specifications, the circuit can be adjusted by calibrating its parameter values.

This is referred to as calibration. In order to perform trimming, alignment and

calibration, the actual parameter deviations must be estimated. The purpose of

element identification and fault diagnosis is to find the actual parameter

deviations from the measurements.

In general, fault diagnosis is more difficult than analysis. Equations for

determining element values from measurement data such as input and output

voltages are nonlinear, even for a linear circuit. One numerical approach to

element identification is to linearize these equations. A solution of the linearized

equations can be obtained by the Newton-Raphson iteration process. This

approach is called the first order approximation method. Testing techniques

based on the first order approximation method are both general and powerful.

Techniques developed in this dissertation belong to this category. In the

following sections, classification of the test methods is defined. A test procedure

for the proposed method is described in a general way and the corresponding

iterative process is given.

2.1 Test Methods

Test methods can be classified according

subjects - circuits under test, test environments

to the

and test

following factors: test

functions.
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2.1.I Test Subjects

Circuits under test can be linear or nonlinear. Linear circuits contain

linear RCL elements, operational amplifiers, controlled sources, nullators,

norators, and switches. Nonlinear circuits contain the components which have

nonlinear characteristics such as nonlinear resistors and capacitors, diodes, BJT

transistors, and MOS transistors.

2.L.2 Test Environments

Depending upon the type of circuit being tested and the test equipment

used, a test can be performed in DC domain, frequency domain or time domain:

DC domain:

excitations: DC voltage/current sources,

measurements: DC voltage, DC current, transfer function.

Frequency domain:

excitations: sinusoidal - single frequency, multifrequency,

or arbitrary periodic function,

measurements: magnitude/phase of voltages at test frequencies,

or harmonic frequencies.

Time domain:

excitations: step function, impulse function,

arbitrary waveforms,

measurements: step response, impulse response

arbitrary time domain response.
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2.I.3 Twt Functions

Test equations are derived from test functions using the information

obtained from the tested circuit (such as circuit topology, parameter values and

element models, etc.) and measurements. In general, test functions can be

represented as a system of nonlinear functions in variable p as.

0 - 0 ( p ) ( 2 .1 .1  )

where p is a vector of parameter values. We denote the actual parameters
x - n

values by p and the nominal or designed parameter values by p'. The purpose

of fault diagnosis is to find the deviations of actual parameters from design

parameters as Ap*-p*-p0. Once the actual parameter values are known, the

faulty components can be identified and can be calibrated to the designed

parameter values. Test functions are defined in such a way that for p - p*,

0(p.) _ o , (2 .1 .2 )

To solve (2.1.2), w€ expand the system functions in the Taylor series

about po,

0(p0) + 
4

fo ln-no

*
0 ( p ) g

0(p
where T is the Jacobian matrix

(p*- po) + (2 .1 .3)

In the case of the actual parameters p* being close to their nominal

higher order terms in (2.1.3) may be ignored and the system can be

a linearized form:
* )  

: o ( p o )  + T A p ,

a 0
T _

A p

values po,

written in

(2.r .4)

(2 .1 .5 )
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and Ap are unknown deviations

A p - p * - p o .

Substituting (2.L.2) into (2.L4), we have

r A p - - O ( p o )

(2 .1 .6 )

(2 .1 .7 )

The element deviations Ap can be obtained by solving (2.1.7). If Ap is large,

the iterative process can be applied in which case we replace p0 by a variable

p.Solvability of (2.L.7) depends on the condition number of the coefficient

matrix T in (2.1.5). We give the following definitions:

Q(p) '

a 0
- l

A p

r A P _ - 0 ( P ) .

The test function can be defined in different ways. Depending upon

different test functions, the test matrix has different properties. Consequently,

the test equation is solved using different techniques.

Normally, output voltages are defined as test functions. Since in such

approach the test matrix is equivalent to the sensitivity matrix, we call it the

sensitivity approach. The advantage of this approach is that test points can be

selected directly by performing the QR factorization [Leon 1980J on the

sensitivity matrix [Stenbakken and Souders 1987]. The disadvantage is that the

sensitivity matrix is dense, therefore it needs a large memory capacity to store

and a significant amount of computational effort to analyze.

Test function:

Test matrix T:

Test equation:
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To overcome the problems of the sensitivity approach, we define the node

current function at the measurement nodes as the test function. The resulting

test matrix has bordered block diagonal structure so the decomposition

technique can be applied. We call this method decomnosition a,nproach. The

advantage of this approach is that the effect of faults is lirnited to local

subcircuits, and the memory requirement and computational effort is much less

than in the sensitivity approach. The disadvantage is that voltage measurements

must be performed at partitioned nodes, and that the test point selection is not

as intuitive as that in the sensitivity approach.

The classification factors of test methods discussed in this section are

i l lustrated in Fig. 2.L.L

Test Subject Test  Environment Test Functions

Linear
C i r c u i t

S e n s i t i v i t y
Approach

Frequency
Domain

No n  l inear
C  i r c u  i t

T i m e
Domain

Decomposi t ion
Approach

Fig. 2.1.1 Classification factors of the element identification methods.
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2.2 Test Procedure

Test procedure developed in this dissertation is implemented in three

stages: pre-test, real-test and post-test. In the pre-test stage, the followins

tasks are performed:

(1) The physical circuit is modeled. Modeling is the process by which

electrical properties of a device or a group of interconnected devices are

represented through mathematical equations, circuit representations or

tables. Complex devices and large scale systems are characte rized, by

macromodels which reflect their terminal behavior. There are several

different modeling techniques and device element models [Meiner and Spina

1980, Antognetti and Massobrio 1988, and Milnes rg80].

(2) The response to one or more specific input signals is simulated based on

the circuit model. The DC response, time domain response or frequency

domain response are simulated depending on the type of test environment.

This step can be implemented with the help of circuit simulators such as

SPICE [Nagel 1976], SABER [Goering 1986] , etc..

(3) The test matrix is formulated depending on the type of test function. In

the sensitivity approach, the test matrix is equivalent to the sensitivity

matrix. In the decomposition approach, the test matrix is derived based on

the Kirchhoff current law equations. Up until now, sensitivity analysis has

not been available in the public domain circuit simulators. This

dissertation has developed the software for sensitivity calculation in the
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frequency domain and the time domain.

(4) Test selection and test analysis are performed. One possible approach is to

run the QR factorization on the test matrix.

Pr*test computations are performed either at the design stage or before

performing the real test. The computational effort at this stage is quite large

but can be computed off-line. Only one sample circuit is used to prepare the

information needed to test other circuits of the same design. This information is

useful to both design and test engineers. Design engineers may propose the

accessible nodes. Test engineers know which measurements should be taken in

order to achieve a reliable and cost effective test.

During testing, reference input signals are applied to the circuit using

input signals (DC levels, signal frequencies and waveforms) selected in the

pre-test stage. Either a network or spectrum analyzer or waveform recorder is

used to measure the output response(s) at the previously selected test points

(test nodes, test frequencies, harmonics, and sampling time point).

In the post-test stage, the measurement data and the test matrix are used

to estimate the actual circuit parameters. Accurate predictions of the circuit's

response to other arbitrary inputs can be made by performing response

simulations using the updated parameters.

T$
The post+tage computation should be performed on-line. It requires an

algorithm to calculate the parameter deviations quickly, so that the circuit
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components can be adjusted to their designed values by the automatic

calibration system once the measurements have been made. Computation is

accomplished for each tested circuit. This test procedure is summarized in Fig.

2.2.r .

2.3 Iterative Process

If the actual circuit parameters are substantially different from the

nominal values on which the test matrix is based, then the iteration process is

needed. Using superscript k to indicate the kth iteration sequence, the iterative

procedure will be as follows:

1. calculatu Apk from

+ *k apk

*k

s  l l  o (pk )  l l

(2 .3 .1)

(2.3.2)

*k is selected such

(2.3.3 )

(2.3.4)

rk(pk) lpk - {(pk)

2. update element values

pk+l _ pk

is the weight factor (0where *k

that

l l o ( p k + l )  l l
3. check the condition

I lO(pk+t)l I s ,r and lpk s ,2

where ,L and e Z arc the preset bounds.

4. stop if the conditions (2.3.4) are satisfied, otherwise

set k-k+l and go back to step 1.

Since the starting point p0 for the iterative process is close to the actual

solution point p*, this iterative process converges for all practical situations.
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P re  - te  s t

Real-Test

P  o  s t - te  s t

Fig. 2.2.L General test procedure

Circu i t  Model ing

Response Simulat ion

Test Matrix Generation Add More
Test Points

Test  Points  Select ion

Test  Points  Suf f ic ient  ?

Measurement  lmp lementa t ion

E lement  lden t i f i ca t ion

Response Predict ion

Yes
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3. SENSITTVITY APPROACH

This chapter presents the sensitivity approach for fault diagnosis and

calibration. Sensitivity s is a derivative of a response x(p) with respect to any

parameter p; i.e., s - A*l 0p. Sensitivities help us to understand how variations

of parameters influence the response. In Section 3.1 we derive test equations

based on responses x and their sensitivities. Sensitivity computation is the key

element for this approach. DC sensitivity, time domain sensitivity, and

frequency domain sensitivity are derived. Although sensitivity computations have

been described and used in many research papers [Navid and Willson 1979,

Saeks et al. 1981 and Visvanathan and Sangiovanni-Vincentelli 1981, 1984,

Flecha and DeCarlo, 1984], w€ present them in this chapter in order to use a

uniform notation for different test environments, and as a reference for the

decomposition approach developed in Chapter 4.

3.1 Test Equations and Sensitivity Matrix

Test

responses x

where x(p)

functions can be defined as the differences
*

and nominal responses x(p) as
*

0 ( P )  _ * ( P )  - x  ,

can be simulated based on the circuit model with

between measured

(3 .1 .1  )

element values p.

A test matrix corresponding

derivatives of responses x w.r.t.

equivalent to the sensitivity matrix,

to the test function

parameters p. Since

it can be denoted bv s

(3.1.1) consists

the test matrix

and given by

of

is



a 0 d * (p )
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(3 .1 .2  )S _

A p 0 p

The test equation is obtained by substituting (3.1.1) into (2.I.7)

s A p - A x

where Ax - ** - x(p). It can be seen from (3.1.3) that in order to obtain Ap,

the sensitivity matrix s should be computed first. Sensitivities can be calculated

either by the finite difference method or the adjoint technique. The finite

difference method is easily implemented, requiring only repeated simulation of

the circuit response with parameter values perturbed from the nominal.

However, unacceptable errors may occur, and the computational cost is

prohibitive in most cases. The adjoint technique is a popular numerical method

for computing sensitivities [Director and Rohrer, 1969]. Once the system

response is obtained, the sensitivity can be determined by solving a system of

linear equations.

After each element and device in a circuit is modeled, a system of circuit

equations is determined using both the element model equations and topological

constraints. The topological constraints reflect KCL and KVL. The circuit

equations are, in general, a system of algebraic{ifferential equations of the

form

f ( i , x , p , t , w )  : 0  )

( 3 .1 .3 )

(3 .1 .4 )

where

x is the vector of voltages, currents, capacitor charges, and inductor fluxes

spanning the solution space of the circuit,

i is the vector of partial derivatives with respect to t (i : 0*l 0t),
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of

of

p l s

w i s

the vector

the vector

circuit parameters,

input functions.

The solution of (3.1.4) and the sensitivity matrix }xl 0p can be determined

for different cases such as DC, time domain and frequency domain.

3.2 DC Sensitivity

Usually, the DC solution is determined for the equilibrium case, that is,

for the case when i is zero. Energy storage in the circuit is ignored (capacitors

are replaced by open circuits and inductors are replaced by short circuits). With

excitation fixed and with no time-varying circuit elements, the circuit equations

are not dependent on time. Without loss of generality, t can be set to 0, and

hence (3.1.4) can be modified to

or simply

f ( 0 , * 0 , p , 0 , w )  _ 0

f(xg, p, w) _ o

If the circuit contains a nonlinear element, then the DC solution is

obtained by an iterative sequence of a linearization algorithm. The

Newton-Raphson algorithm is the common method of linearization. Beginning

with an initial "guess'r for the solution, all nonlinear equations are linearized

about this initial operating point. The system equations for the linear equivalent

circuit can be solved using linear methods. The circuit solution is then used as

the next "guess", and the process is repeated. The iteration stops when

successive solutions agree within a specified tolerance. The linearized equation is

(3 .2 .1 )

(3.2.2)
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(3 .2 .3 )
o * o

Iterations in (3.2.3) provide x0. At the convergence, the Jacobian matrix is

available in its factored form.

Differentiating (3.2.1) with respect to p, yietds

a  f  d  * o  
* o  

f  
: o

a * o  a p  a p  
( 3 ' 2 ' 4 )

The DC sensitivities can be found by solving the following equation:

A f A *0 0 f
(3.2.5 )

A * 0 - - f .

Let us denote

Then (3.2.5) becomes

A *0 A p A p

a :' o _ J '
o p

a f 0 f
- D 6 : -

A xn u A p
U

(3.2.6 )

(3.2.7)

The DC solutions \ and their sensitivities s0 can be used as the initial values

in time domain analysis, or the operating point values in the frequency domain

analysis.
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3.3 Time Domain Sensitivity

Time domain analysis determines the response of a circuit to specified time

domain inputs. The sensitivity of the response w.r.t. to a parameter can be

calculated when the response is determined. The initial time instant can be

arbitrarily defined as time zero. The initial conditions (response and sensitivity

at the initial time instant) are determined by previous DC operating point

solutions xo and DC sensitivities s0.

The time interval (0, t) is divided into the discrete time instants

(O,tt,t2,....,r). At each time instant, the solution of (3.1.4) is determined by a

nonlinear equation solver first. Then the sensitivities of (3.1.4) w.r.t. all

parameters can be obtained simultaneously with the solution vector by solving

linear equations. The time interval between successive time instants is controlled

by a computer program to insure an accurate solution. After that, computed

data is interpolated at the time instants at which measurements will be taken.

First we derive the sensitivity matrix based on the general formulation.

Then the modified nodal equation formulation is given as an example to

illustrate the procedure.

3.3.1 General Formulation

The sensitivity calculation is implemented in two steps: 1) network

analysis, in which the system solution is found, and 2) sensitivity analysis, in

which the system sensitivity is obtained.
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A. Network Analysis

At a certain time instant ,j, (3.1.4) becomes a nonlinear algebraic equation

f ( i , , X : , p )  _ 0 .  ( 3 . 3 . 1 )
J '

Using the backward differentiation fomnula (BDF) [Gear 1971], i can be

represented by

k .
I

i .  -  ! '  -  1-l 
uo \ 

"t: *i-t' (3'3'2)

where

n j - t j - r j _ r ,

In order to solve (3.3.1) by the modified Newton-Raphson method or

other techniques [see, for example, Ortega and Rheinboldt, 1970], the Jacobian

matrix is evaluated bv
U

M,
J d*i ai, &, axl

J J J J

Using (3.3.2), w€ can get

0*.i 0n;
-  ' r . 1  ( 3 . 3 . 4 )

tuj nj

Let us denote

e{ :  + ,  (3 .3 .5)
nj

and the Jacobian matrix (3.3.3) becomes
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0f at
M . : - & o + -  ( 3 . 3 . 0 )

J 6;.
J ^ j

The nonlinear iterations are solved using Newton-Raphson method

M . A x . _ - f . .  ( 3 . 3 . 7 )
J J J

B. Sensitivity Analysis

Sensitivities of the solution *j of the original system (3.3.1) w.r.t.

parameters p can be obtained by differentiating both sides of (3.3.1)

af 0*, af 0x, af

" ,  ar t .  * ,  f  
* ; :  o  (3 '3 '8)

Let us denote

then (3.3.8) becomes

Ax.
s i -  ' l  

'r o p (3.3.e )

(3 .3 .10)
af at at

; t j  
+ ; t j  - -

* j ,  * j J  6 n

Using BDF, we can write 6j as

k .

i : : :  "o ' i  +  
, | t r^ t ' i - t  

(3 '3 '11)

Substi tut ing (3.3.11) into (3.3.10), we get

l o f  a f  I  a f  a f  u j
|  .  an  +  -  

|  r ,  X"  i l t  s ;_ t .  (3 .3 .12)
t% u a , . j l  t  6n e : ( : r  (  r -L
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The system of linear equations (3.3.12) has the following form:

t j r j - - B j ,

ar af
r j _  

e j a ' * %  
I

ar ar uj
B , : - + -  t  & z s ,  / ) .J 6n e: f_t 

-( -J-( .

(3 .3 .13)

where

and

(3 .3 .14)

(3 .3 .15)

Remarks:

1. The coefficient matrix (3.3.14) is the same as the Jacobian matrix (3.3.6)

of the original system calculated at the solution point. When the iterations

(3.3.7) at time instant ,j converge, the matrix tj is available in a

factored form.

2. Equation (3.3.13) is linear. Sensitivities can be obtained by solving linear

equations with the coefficient matrix known in the factored form.
af 0t af

3. Matrices 
A, A 

and 
a, 

are functions of i, x and p. At each time
J J

instant, these matrices can be evaluated using the solutions X, derivative i

obtained from BDF (3.3.2), and the nominal parameter values pO.

3.3.2. Sensitivity Formulation Based on the Modified Nodal Equations

The modified nodal equation generally has the fotlowing form:



f (x ,p, t )  _ Ai l  x* y ( x ) - w - 0

Here / consists of linear elements and y consists of

vector x has the form
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(3 .3 .16)

nonlinear elements, and the

(3 .3 .17)

y ( x )  - w _ 0 ,  ( 3 . 3 . 1 8 )

is the linear resistive matrix.

L ; ]
where the vector v consists of the nodal voltages and currents through

inductors, independent and controlled voltage sources, and current--controlled

voltage sources. The vector q consists of capacitor charges and inductor fluxes.

If charges/fluxes of linear capacitors/inductors are expressed as functions of

the branch voltages/currents, then q contains only charges/fluxes of nonlinear

reactive elements. Equation (3.3.16) can be written as

f ( x , p , t )  _ C i + G x

where C is the linear reactive matrix and

+

G

A. General Ca.se

In most cases, the charge of a capacitive branch q can be explicitly

expressed by the voltage v across that branch

q - q(v)

A transformation of q into v is allowed so that the unknown vector is v rather

than larger vector x. The modified nodal equations can be rewritten in the



following form:

f(v,v,p,t) - G

where

A is the

g(v,p) is

q(v,p) is

v * C v + A g ( . ' , p ) + A q ( n , p )  - * - 0 ,
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(3 .3 .1e)

For simplicity, let C.O denote Aq A* ,,

Ail Ap. Derivatives of the system function f

as follows:

a f
G a o _ f : G r A

^ o v

a f
c . o : ; : c + A

' o v

resistive elements,

reactive elements.

GuO denote 1fl 0* and r.q denote

needed in (3.3.8) can be evaluated

(3.3.20)

A q
C + A -

A v
(3 .3 .21)

(3.3.22)

incidence matrix.

a vector of currents

a vector of currents

through nonlinear

through nonlinear

a q
- :
a n

a g a q
- + A -
0  v  A . r '

a g a q
A - r A -

a p a p 
)

n2o q
Y

0p Av

oaq -
a f
- :

0 p

O G A C
v *  v +

a p o p
where

and

A  q  A  A  q d v

A  v  A v A  v d  t

& q .
:  

U p u ,  
( 3 . 3 . 2 3 )

a  i  _ ,  
0  q d  v

A  p  0 p A  v d  t
(3.3.24)

Since the branch equations are described by analytic functions of their



arguments, the above derivatives

can be written as

c.o

Let

tgaq -

can be obtained directlv.
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The equation (3.3.10)

s i +
J

G . q t j - - u e e (3.3.25)

k .

P-t, 
ut'j--t (3.3.26)

(3.3.28)

(3.3.2e)

(3.3.30)

In similar way (3.3.12) can be simplified as

(cuq uo + G.o ) tj ouq - c.o

B. DC Case

In a DC case, t -

(3.3.1e)  as

0 a n d n _ 0 . T h e D Cequatlons are obtained from

f (vg,p) - G r0 + A g(v' ,p) - wO _ 0,

q _ q(vg,p)

Differentiating both sides of (3.J.27) w.r.t. p yields

(3.3.27)

( c + A g )  
" o _ - ( ' " u ^ +

A u0 0 p A p u a l i l
A p

0 s

A p

a f

A p

A G
- - V * A

A p

The DC sensitivities can be obtained from

G . q t o _ - o g . q

Note that (3.3.30) is the nodal formulation of

(3.2.7) .

the DC sensitivity equation
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C. Linear Case

In the case of a linear network, both g(v,p) and q(v,p) are equal to zero.

The linear equations are obtained from (3.8.19) as

f(,t, v, p, t) _ C v + G v - w(t) _ 0 . (3 .3 .31)

Let

0 f a c a c
u - - _  v * - i ,  ( 3 . 3 . 3 2 )

A p  A  p  0  p

then the system sensitivity equation is simplified to

c s i + G t i _ - u .  ( 3 . 3 . 3 3 )
J J

After applying BDF, sensitivities can be obtained by solving

k .
(C a., + G ) s, - -  u - C XJ*o 

r t-1 
u( t i -( '  (3'3'34)

1,- L

3-3-3. Procedure to Generate the Sensitivity Matrix in Time Domain

The sensitivity matrix can be obtained using the following procedure:

1. Bvaluate the linear resistive matrix G and the reactive matrix C. These

two matrices do not depend on time or the solution vector.

2. Select the initial values v0 and sO obtained at the DC analysis.

3. Predict tj using the forward differentiation formula [Gear 1gZlJ

4. Calculate v, using the backward differentiation formula.

5. Evaluate derivatives for nonlinear branches and form Cuq, G.o and r.q.

Calculate the Jacobian matri* Mj and the function vector f,



6.

7.

8.

Apply the Newton-Raphson algorithm.

Solve the linear system (3.3.26) to obtain the sensitivity vector

Repeat 3-7 for each time instance within (0-"), the sensitivity

have the form

s - lr i, sl,...,sfJ' ,
where I stands for the matrix transpose operation.

This procedure is summarized in Fig. 3.3.1.
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sj.

matrix will

(3.3.35)

Rema,rks:

1. Newton-Raphson's method requires that the Jacobian be constructed and

factored at each iteration. If the changes in the Jacobian from iteration to

iteration are sufficiently small, then the old Jacobian closely approximates

the new one. Therefore, the factored Jacobian from one iteration can be

used for several subsequent iterations.

2. If the system response can be obtained from a general circuit simulation

program, Steps 3, 5 and 6 are omitted. The sensitivity calculation can be

added to this simulation program.
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Evaluate Linear Matrices C & G
Find DC Solut ion and Sensit ivi ty

t= t+  h

N u mer ica l  In teg ra t io  n

Evaluate Nonl inear  Matr ices
Ceq and Geq

Equat ion Formulat ion and Solut ion

Converg ed?

Store T ime Instant  Solut ion Vj

Calcu la te  Sensi t iv i ty  S j  by
Solv ing L inear  Equat ion

Store Sensi t iv i ty  S

Time lnstant?

Generate Output and Sensit ivi ty Matrix

Yes

Fig. 3.3.1 Flowchart of sensitivity computation in time domain.



Example

A small nonlinear circuit (FiS.

evaluation using the derived formulas.

circuit: a nonlinear capacitor Co and a

The characteristic equation of the

q : C r r u 2 ,

and the corresponding derivatives are

^ - 2
#  -2Cnv  ,  +

o\l

The characteristic equation of the diode

iD _ I'{tI{u - 1) '

where K is a constant, and the corresponding
di n T.{v

# :  I ( I r e . - ' ,  a n d

The nodal equations are

N o d e l  f l  - i C  + G ( u t - u ) -
n

Node 2 f2 - - G (ur - uZ) + iC

Js
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3.3.2) is chosen to illustrate sensitivity

There are two nonlinear elements in this

diode D.

nonlinear capacitor is

i . e .  i C  : q : z C n v v ,
-n

: 2Cn

can be

a2q'  f f i : 2v
described by

derivatives are

t o  
_ . I ( v _ ,q

J,

+ i D

1D

D

i  l .t cn  
t  t c

c n  A c

Fig. 3.3.2 A nonlinear circuit.
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From (3.3.20)

/-t A fG . o - f f i : G +

and (3.3.21) *e have

o # *
n 2o o

J I '
,  v l

a,i r

_G

G -G

A s -
orl

c+ + ,
0a
4c.o a f: -

r\
o v

2c + 
ffiul* #,"0 _G

+ 'oc_G

coulu o

G

-G

,  
d i D

T T ,

G C

u1-u2 0

a

u2-ul u2

I ,  
. r c no ffi;,

d i n  n
a f u

G + 2Cnut*  2

G (1  ,  
d iD

G  + 6  + . 0 c

have

og oA
A _ + A _

op ap

G C

ul-uz 0

uz-ul ,2

I ,

0 u1

_ c + o + _

The Jacobian matrix is

M - C . q u 0 + G . q :

and on the basis of (3.3.22) we

a f ac ac
U o ^ : - : - V * - V +vY A p 0p 0p

Kto
e ' - I  0

cn

2 vn

The sensitivitv matrix can now be calculated by solving (3.3.26).
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3.4 Frequency Domain Sensitivity

A time domain signal x is called a waveform. A frequency domain signal

X is called a spectrum. All waveforms are assumed to be of real value, whereas

all spectra are assumed to be of complex value. A periodic waveform x with a

period TO can be written as a Fourier series fBracewell, 1978]

x( t )  _ I  X(k)
k:ro

1 ,.To
x(k) - |

T o ' o

.Jkr0r,

*(r) u-jkarot dt

2 r
where ,0

T0
(3 .4 .1 )

(3.4.2)

The kth harmonic of x(t) is the frequency kr' and X(k) is its Fourier

coefficient or phasor. X:{..., X(-1),X(0),X(1),...} is called the frequency domain

representation or the spectrum of x.

In frequency domain testing, the spectrum X of response can be measured.

For testing purposes, we should find the sensitivity of spectrum X w.r.t. circuit

ax
parameter p r T. The deviations Ap can be found by solving the system of

0p
linear test equations

ax
A p - A X ,

0p

where Ax : x* x(p0), X* is the spectrum of the measured response, and
n

X(p") is the calculated spectrum of the nominal circuit.
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In the following discussion, we consider sensitivity calculation in two

different cases. First, the circuit is linearized when a small sinusoidal signal or a

linear combination of several small sinusoidal signals are applied. In this case,

spectrum X can be obtained from the phasor method and the sensitivity

calculation can be implemented directly in the frequency domain representation.

In the second case, a periodic arbitrary signal is applied to the nonlinear circuit.

In this case the simulation of steady+tate response and sensitivity calculation

becomes complicated. Subsection 3.4.1 presents a method to calculate the AC

sensitivity and Subsection 3.4.2 presents methods of sensitivity analysis for a

nonlinear circuit excited by periodic functions.

3.4.1 Linearized Circuit (AC) Sensitivity

AC analysis determines the small-signal solution of the circuit in

sinusoidal steady state. Since the circuit is in sinusoidal steady state, the system

of differential algebraic equations (3. 1.a) is transformed into a system of

algebraic equations in frequency domain using the phasor method

where

F (X, u), p, xg, W) - 0 , (3.4.3)

the complex (amplitude) vector analogous to the real vector x,

the complex (amplitude) vector analogous to the real vector w,

the input frequency in radians/second,

the vector of the DC quiescent conditions, and

the parameter vector.

X i s

W i s

c.l iS

x^ is
U

p i s
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A. General Linearized Circuit

For small-signal analysis, nonlinear elements are modeled

linearized models. The parameter values of the linearized model

by a DC operating point analysis xo. For simplicity, the modified

formulation is considered for AC circuit equation

where

Y[p, "o(n)l v(p) _ w ,

the complex vector of node voltages analogous to v,

the excitation vector analogous to w, and

the admittance matrix dependent on the DC solution vo.

V i s

W i s

Y i s

by equivalent

are determined

nodal analysis

(3.4.5)

(3.4.4)

obtained from (3.4.4). In order to obtain

w.r.t. parameters p and use the chain rule.

The AC response V can be

sensitivities we differentiate (3.4.4)

This vields

A V A Yy _ _ _ t _
a  p  - a  

p

a particular frequency

rewrite (3.4.5) as

A Y A v^ A W
r  - u l t r  r

A  t 0 A p  0  p

For

and

A V
u)., we can denote the sensitivity matrix bv S

a p 
u a

0 Y a Y A w
Y S ,  [  + ^  s n ] v +  ( J . 4 . 6 )' A  

p  A  u o  u J  A  p

where the DC sensitivity s0 can be obtained from (g.2.7) or (g.3.30). A circuit
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usually has separate DC and

sources with zero AC values

values. When the circuit has

simplified

AC sources. Power supplies, for example, are

whereas input AC sources often have zero

AC sources only (n0:0 and sO-0 ), (3.4.6) can

DC

DC

be

Y S , :
a Y a w

V +
o p a p

on the parameters, thenIf the excitations do not depend

(3.4.7) becomes

A Y
Y S r :  - V .

o p
The sensitivity matrix can be explicitly evaluated from

, a Y
S  _ Y _ I  Va a p

a w
A p

(3.4.8 )

(3.4.e)

To avoid the matrix inversion, the adjoint technique is used. This results in

^ a Y
S r : - v t  ^  v  j

o p
is the adjoint matrix [J. Vlach, 1983].

(3.4.10)

where Va

Remarks:

1 .  Y ( r )  : G +  i u C . S i n c e G a n d C a r e i n d e p e n d e n t o f  f r e q u e n c y  ( t )  t h e y

can be precomputed based on the DC solution. Comparing the matrix

Y(") with the coefficient matrix of (3.3.26), w€ find that these two

matrices have an identical structure with aO in (3.3.26) substituted by jo.

2. When solution V is known, the sensitivity can be simply obtained by the

adjoint technique.

3. Suppose that p is the element incident to the nodes i and j in the network
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N. Let v^- be the voltage at node q (q-t,2,...,D) when an excitation isqr  .____c  

ay
applied at node r. Since 

T 
has four or less nonzero elements,

individual sensitivities in (3.4.10) can be obtained from

%
Genera,,y, when #.;.:Jl ;3,: l"';. J;1.;.",
intersection of rorvs i,j and columns k,l, then

%
ap' 

: ( "tt - "ej ) ( ukr - ul' )'

B. Piecewise Linear Circuit

(3.4.1 1)

matrix Y on the

(3.4.12)

In a piecervise linear circuit, a nonlinear element can be approximated by

several linear segments as shorvn in Fig. 3.4.1.

io(v6 )
t 3

slope G4
slope\G, plopeG3

s l o p e

uo: -

Gl 
u l  iz

v3 v4:t
1.lt

i4

Fig. 3.4.1 Characteristic of a piecewise linear element.

In the /th segment, branch current ib is described by a function of the

branch voltage vO
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(3 .4 .13)

where G t is the equivalent

equivalent DC source at this

admittance at this

point. Derivatives of

operating point and i ( is the

the branch variables are

o  i b

o t b
r-tu l ,

d i u

o  t t
_ 1 ,  a n d

a  i b
_ vb' (3.4.14)

called a region.

and replace all

source at the

and the nodal

(3 .4 .15)

The

Denote r

nonlinear

operating

equations

where I,

o  G (

linear combination of segments of different elements is

to be the region in which the network N, operates,

elements by their equivalent admittance and current

point. The network N, becomes a linearized network

have the form

Y , V , _ I + I ,

is the vector of currents through the nonlinear elements.

The lth linear piecewise element can be represented by the linear

admittance G, and equivalent current source i, as shown in Fig. 3.4. 1. In this

case, the sensitivities will be obtained by the method used in the linear network

(3.4.11) and (3.4.7). When the branch is incident to the nodes l and j, we have

A Vr - "jl(v, - v;) , (3.4.16)- ( r ?
a Gt

O Vr ("? - "?)
a  i t

and

(3 .4 .17)
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C. Sensitivity of the Magnitude of the Response

Using the frequency domain representation, the response V has a complex

value. A complex variable can be expressed by its magnitude I V I and phase g,

v _  lv l  eJe (3 .4 .18)

Usually, the magnitude I V I can be measured with high accuracy (measurement

error S 0.L%), but the phase measurement is less accurate. Most often we only

measure the magnitude of the spectrum lV | . In this section we discuss how to

find the sensitivity of measured lV I after the sensitivity of the spectrum V has

been computed. First let us change the test equation (3.4.2) to

d l v l
Ap  -  A l v l

A p
where AlVl  -  lV* l - lV(p)  l .The magni tude of a variable can be

(3.4.1e)

computed by

where V

w.r . t .  p .

is the complex

We can derive

lvl : / vlil
conjugate of V. Denote

S as follows:

alv I a(v . i f  lz
a p op

a(v' if lz a(v' v)

(3.4.20)

the sensitivities of I V I

)

S t o b e

q
LJ

a(V.V)  0  p
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(3.4.21)

magnitude of the spectrum

that the sensitivitv 
'l ul 

,," 
A p

1 .

2 .

3 .

4.

o .

Measure the magnitude of the responses I V* | at all test frequencies.

Linearize the circuit elements at the operating point.

calculate spectra of responses v(p) from (3.4.4) and ger lv(p) I .

Compute the adjoint matrix Va.

Evaluate the sensit ivity matrix S, (i.e. 
ff l  

using (3.4.11-12) or

(3.4. 16-17).

6. Obtain the sensitivity of the magnitude of the response 3,,, (i.e. ql#ll
a '  op

from (3.4.21).

Repeat Steps 3--6 for all test frequencies. If nf is the number of test

frequencies, the sensitivity matrix has the form

S _ isi ,  S;, . . . ,  S: I  ' .nf'

Obtain element deviations Ap by solving

7.

8 .

1  1  A v  -  A n
- \ - v T v - � )

2  ( V ' V ; ' r o  A  p  A  p

I A V
- _ R e ( _

l v l  
'  

0  p

A V
After the sensitivity of the spectrum is obtained, the sensitivitv of the

0 p
a l v  I- can be calculated from (9.4.21 ). It is obvious
A p

real.

D. Procedure to Generate and Solve Test Equations (AC mse)

s  A p  -  A l v l (3.4.22)
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3.4.2 Periodic Nonlinear Circuit Sensitivity

There are three ways to find the spectrum of response and its sensitivity

in a nonlinear circuit. The first way is to find the steady state response and its

0x
sensitivity in time domain. Once the steady state x and are evaluated, the

ax 
oP

spectrum X and can be obtained by Fourier transformation. This is called
dp

the time domain method. The second way is to evaluate the spectrum X and
AX

its sensitivity - directly in the frequency domain. This is called the frequency
0p

domain method. The third way is to partition a circuit into the linear and

nonlinear part, and analyze the linear part in the frequency domain and the

nonlinear part in time domain. This is called the hybrid method.

The following sections present different methods to evaluate the periodic

circuit responses. These methods can be used to evaluate sensitivities, if the

"original networkrl is replaced by therlsensit ivi ty network" and the circuit

response x is replaced by its sensitivity s (4,/ ap). The only difference is that

several iterations are needed to obtain the response values, but only one step is

needed to obtain the sensitivities. The procedure to generate and solve test

equations is given in Part D.

A. Time Domain Methods

Many time domain methods are available for finding the steady state

solution of a nonlinear circuit. The primary approach is to integrate the system
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equations over many periods until the transients die out. Such an approach is

probably the best for systems which quickly converge to the steady state. But

many practical networks are such that the transients die out onlv after

hundreds of periods.

To avoid expensive integration, several methods have been proposed in

recent years. They can be classified into two basic categories: the shooting

method and the finite-difference method. The shooting method treats the

problem as an initial-value problem to be evaluated over one period. It tries to

find an initial state that eliminates any transient behavior and results in

periodicity. There are two ways to accelerate convergence of nonlinear iteration

to the periodic solution. The first one is the so<alted shooting by extrapolation

method [Skelboe 1980]. The other approach is the so<alled shooting b]'

Newton-Raphson method fTrick et al. 1975].

The shooting by extrapolation method simulates the circuit over several

periods. The final states of all periods are used to extrapolate the values of

circuit states which result in the steady state. Extrapolated states may not

result in the steady state, but they will be close. In such a case, the

extrapolation procedure is repeated starting with the new states until the circuit

reaches the steadv state.

In the shooting by Newton-Raphson method, the circuit is simulated for

one period and the final state is compared with the initial state. If two states

match, then the circuit is in the steady state. Otherwise, the derivative of the
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final state w.r.t. the initial state must be calculated and the Newton-Raphson

algorithm is used to find the change in the initial state. The initial state is

adjusted and the procedure is performed again in order to achieve the steady

state.

In the finitedifference method, the differential equations are substituted

by the finite-difference equations. The method tries to find the solution that

satisfies the boundary condition. The finite difference methods can generate large

number of system equations when either the number of unknown waveforms or

the number of time points is large. However, this method has an advantage

because of its robustness, which stems from performing the iterative process on

the waveform rather than initial conditions.

B. Frequency Domain Methods

The second approach is to calculate spectrum response and sensitivity in

frequency domain. The power series method is one approach to nonlinear circuit

analysis in the frequency domain, in which both linear and the nonlinear

elements are treated in the frequency domain. Frequency domain nonlinear

analyses use functional expansions of the input<utput characteristic of the

nonlinear element, y(t) _ F(x(t)). Generally, the input function, x(t), is the

summation of some basis functions, and the responses due to each functional

component of the expansion are added to yield the total response of the system

y(t). The simplest functional expansion is the representation of y(t) as a power

series in x(t). Conventional power series expansions can only be used with

resistive systems having single valued input-output characteristics.
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Volterra series, developed by Weiner in the 1950's, can be used with a

large class of nonlinear systems. It can handle reactive systems with single

valued input-output characteristics. But the method only works for circuits that

have weak nonlinearities [weiner and Spina 1gg0].

Steer and Khan (1983) developed the generalized oower series method

which is related to Volterra series analysis. However, it is not restricted to

weakly nonlinear systems, &s is Volterra series. The nonlinear elements are

described using generalized power series while the linear elements are handled

using the standard frequency domain nodal technique. The spectra of the

terminal variables of nonlinear and linear circuits are balanced iteratively

[Rhyne et al. 1988]. The solution can be found by minimizing the objective

function derived from the application of Kirchhoff's current law. This method

can be also called the spectral balance method.

C. tlybrid Method

A popular method for simulation of periodic nonlinear circuits is called the

harmonic balance method [Nakhla and J.Vlach 1976, Curtice 1gg7, and Kundert

and Sangiovanni-Vincentelli 1986]. The harmonic balance method analyzes linear

circuits in the frequency domain and nonlinear circuits in the time domain, and

transforms the solution of nonlinear circuits back to the frequency domain using

the discrete Fourier transform. The harmonics of the terminal variables of

nonlinear and linear circuits are balanced iteratively. Since the analysis of

nonlinear circuits is explicitly done in the time domain, this method is more

appropriately called the hybrid method.
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The harmonic balance method is very useful in the simulation of

microwave circuits [Wong 1988J. It can be also applied to almost-periodic

circuits [Kundert, et al. 1988].

The methods discussed above are classified in Fig. 3.4.2.

Shooting by
Extrapolat ion

Shooting Method

Shooting by

Newton-Raphson
Finite Difference

Power Series

Analysis

Methods for

Per iodic

Nonl inear

C i rcu i t

Frequency

Domain

Methods

Volterra Series

Generalized Power Series

or Spectral Balance Method

Harmonic Balance MethodHybrid Method

Fig. 3.4.2 Classification of analysis methods for periodic nonlinear circuits.
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D. Procedure to Generate and Solve Test Equations (Nonlinear)

In order to test nonlinear circuits with periodic input functions, the

following procedure can be implemented:

1. Measure the spectra of responses X* at all harmonic frequencies.

2. Calculate the spectra of response X based on the nominal circuit using the

time domain method, the frequency domain method or the hybrid method.

3. Evaluate the spectra of sensitivities 
# 

using the same method that is

used to find the spectra of response X.

4. The sensitivitv matrix has the form

where I stands

frequencies.

5. Obtain element

s - [si, si, ..., r,in]"

for the matrix transpose and nn is the number of harmonic

deviations Ap by solving the test equation

S A p - x * - x .

3.6 Summary

The sensitivity matrix method is currently the most popular fault

identification technique. It can handle a broad category of networks and testing

situations. Specialized formulas have been developed for this method when

applied to linear and nonlinear networks or networks with reactive elements and

switches. Different test equations are derived depending upon the type of

measured responses such as time domain response, frequency response or

harmonics of a periodic response.
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As was mentioned in the previous sections, sensitivities are calculated in

two stages: the network analysis stage and the sensitivity analysis stage. In the

network analysis stage, equations of therroriginal networkrr are solved and the

circuit responses are obtained. In the sensitivity analysis stage, equations of the
frsensitivity network'f are solved and the sensitivities of the circuit response are

evaluated. The system matrix (Jacobian matrix) in the sensitivity analysis is

the same as the system matrix at the convergence of iterations in the network

analysis. Hence, the most important task is to evaluate the circuit response in

the network analysis. Once the circuit response is evaluated, its sensitivities can

be obtained by solving a system of linear equations.

The sensitivity matrix is the same as the test matrix in the sensitivity

approach. Test points are directly selected by the QR factorization (QRF) based

on the sensitivity matrix [Stenbakken and Souders 1g8T].

However, the method shows some serious drawbacks when applied to large

scale circuits. The first drawback is its low speed. In order to derive the

sensitivity matrix, a circuit must be analyzed using simulators based on

Newtonrs method, a sparse matrix technique, and numerical integration. Since

the computation time in these simulators is very long for large circuits, the size

of circuits that can be tested practically using the sensitivity matrix approach is

limited to a few hundred elements.

Another drawback is the low accuracy of the sensitivity matrix method. In

addition to errors caused by the first order approximation, the method is very

sensitive to inaccuracies in the circuit model and in the numerical integration
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techniques, to parasitics introduced by the test equipment and errors of time

synchronization [Dai and Souders 1989] . Serious problems are associated with

determination of the rank of the sensitivity matrix, testability factors, and

ambiguity groups [Stenbakken, souders and Stewart 1988].

Finally, the sensitivity matrix method has large memory requirements, not

only during the analysis but also at the solution of the test equations. Each

transfer function is sensitive to variations of every network parameter. This

causes the sensitivity matrix to be dense and makes numerical calculations

expensive in the case of large networks. Since the obtained sensitivity matrix is

dense, the memory required is at least proportional to the square of the number

of network parameters. For example, a digital-to-analog converter model with

50 resistors required a 1024 x 50 sensitivity matrix which was close to the

memory limits of the CDC Cyber-855 computer [Stenbakken and Souders 19871.
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4. DECOMPOSITION APPROACH

This chapter presents a new testing method for large analog and

mixed-mode circuits based on the decomposition approach. As we mentioned in

the previous chapter, the sensitivity approach is a very popular fault

identification technique which can be used for different networks and testing

environments. However, the sensitivity approach shows serious drawbacks when

it is applied to large circuits: 1) it needs large computation time and memory

space, 2) it is sensitive to errors caused by the circuit model, numerical

methods, and measurements, 3) it cannot be directly applied to the mixed mode

circuits. In order to eliminate these drawbacks, the decomposition approach is

now introduced.

It is well known that deeomposition approaches to network analysis are

very effective in reducing the amount of computation when the analyzed

network becomes sizable [Starzyk et al. 1980, 1983 and M. Vlach 1985]. Salama

et al. (1984) proposed the decomposition approach for fault location in

large-tcale networks using the fault verification technique. In this case it is

assumed that the faulty elements are located within a small part of the network

and the remaining part is fault-free. The decomposition of network into smaller

subnetworks facilitate testing by localizing the effect of faults.

In their approach to fault location [Salama et al., 1984] , a network is

decomposed into subnetworks at accessible nodes. For each subnetwork the

terminal currents are computed from its terminal voltages assuming that the

subnetwork is fault-free. The validity of this assumption is tested by checking
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KCL at the accessible nodes. A test at an accessible node is passed if the

computed terminal currents satisfy KCL at this node, and all the subnetworks

connected to it are declared to be fault-free. If KCL is not satisfied, the test is

failed, and at least one of the subnetworks connected to this node is faulty. The

pass--or-fail results of different tests are analyzed, using logical diagnostic

functions, to identify the faulty subnetworks.

The process can be performed hierarchically. The original network is

decomposed into a small number of subnetworks, and these subnetworks which

contain faults are identified. Each of these faulty subnetworks are then further

decomposed into a small number of sub-subnetworks and again, the faulty

sub-+ubnetworks are identified. The process is repeated until each fault is

localized within a sufficiently small portion of the network. The logical fault

analysis at each stage involves only a small number of subnetworks, therefore

the computational effort needed to locate the fault is minimal. On the other

hand, the parameters of subnetworks are necessary to compute the terminal

currents which requires a great amount of computation. This computation can

be done before the actual testing and stored in memory. This approach is

attractive for on-line testing cases where a quick fault analysis is needed.

But Salama's method was developed only for fault location not for element

identification. Element identification is more difficult than fault location since

all parameter values in the circuit have to be evaluated. Therefore the need to

develop a decomposition approach for element identification is of significant

importance. This new approach developed in the course of this dissertation is

presented in the following sections. The basic idea of this approach is as follows.
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The network to be tested is partitioned into small subnetworks. Then the

voltage measurements are taken at the partition points. Voltages and their

sensitivities within each subnetwork can be computed independently and in

parallel. The test equations are formulated on the basis of KCL equations at

the measurement (partition) points. This results in a system matrix (test

matrix) with a bordered block diagonal (BBD) structure. Because of the

sparsity of the test matrix obtained, analysis of the test results is much easier.

Test point selection and element evaluation are performed in parallel.

This chapter is organized as follows: Section 4.L presents the nodal

decomposition method and shows that the corresponding system matrix is a

bordered block diagonal (BBD) structure. These results have been presented in

the literature and are cited here in order to derive the new testing method

based on the network decomposition. Section 4.2 formulates the system functions

and test equations for the decomposed network. Then Section 4.J derives a

general formulation of the test matrix in time domain. Section 4.4 uses nodal

equations as an example to illustrate the procedure for evaluating the test

matrix in frequency domain. Section 4.5 presents the approximate method for a

pre-test simulation and the exact method for a post-test calculation.

4.r Nodal Decomposition and Structure of the System Matrix

Let N be the network under test. We assume voltage measurements only

because direct measurement of currents is not possible in most cases of network

diagnosis except perhaps at the input or output terminals of the network. The

nodal decomposition is to decompose the network N into k subnetworks bv
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hypothetically breaking the connections (not actually cutting connecting wires)

at accessible nodes (see Fig. 4.1. 1 ). There must be no mutual coupiing between

any trvo subnetworks. We assume that all decomposition nodes are accessible for

measurements. There are efficient algorithms for nodal decomposition based on

tlre graph theory [Sangiovanni-Vincentelli, et al. 1977 and George and Liu

1e811

Fig. .{.1.1 Decomposition of Netrvork N.

The entire network can be described by a

f ( * , p )  _ o  , ,

where the independent variables x represent

partition the vector x into internal variables

with the test nodes) and external variables

nodes):

x -

In a similar w&y, we can partition

external parts:

nonlinear function

(4 .1 .1  )

voltages and currents. Let us

(those rvhich are not associated

(those associated rvith the test

f * ' l
L** j
the network

(4.r .2)

into internal andfunctions f
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(4 .1 .4 )

If nodal formulation is used, t' consists of

and t'n consists of KCL equations for each

KCL equations for each

external node.

internal node.

The Jacobian of function (4.1 .1) may

(4.1.3)  as

ati-
A x l

f/fm-
Axr

where -O stands for

submatrix and 6 for

diagonal submatrix,

external submatrix.

be partitioned from (4.I.2) and

a f l
af ., IDox

afm

6g

&

M _
Ax

^ mox

If the network

each subnetwork can

decomposed into k

partitioned into the

6 for column submatrix, g for row

subnetworks, then the variables

internal part and external part:

ofis

be

t k
x

ml.
nx

I ax

m a
rL

I' 2
x

^2
x

i 1
x

m1
Ix

and

m
X

the external variables of each subnetwork

m
x  a  -  n l a  #

m
x a are the selected entries of

(4 .1 .5 )

(4 .1 .6 )



r8

where the & a is called a selector matrix whose rows are elementarv unit

m
vectors. (e.S. row i of aY a is "(, corresponding to the selectior --"-a m,  * i  * _ * ' i),
Thus, the independent variables of the interconnected system (4.I.2) can be

written as

l 1
T

x

i  r ,
t1'x

mx

The selector matrix can be used

network as the summation of the

to express the external

external functions of all

(4 . r .7 )

functions of the entire

subnetworks:

frn -

where I stands for the matrix

The system of equations

k m i m
x  E a ,  f  o ( * o , x - a )

A:L

transpose operation.

(4.1.1 ) can be written as

(4 .1 .8  )

(4.1.e)

(4 .  1 .10)

i  . ,  i ,
"  L /  Ir  ( x

-1.,
' x )

f 
i  k(*tu, *-k)

t ' t(*i, *m)

l r  I

1 ' 1 1 * ' 1 ,  n t r l * - )

. :
I t ,  l  . r

- f u(*' u, "rk*- )
k m i
t  E a ,  f .  o ( * o  

, o y o * ^ )
a-I

f(*) _

since

i
a f a

l m
a f a  a x a

m
0 x a  0 x

I

a f a
: :  nYam

4 AoxAx
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the Jacobian matrix (4.1.4) becomes

a f
M - _ :

A x

Let us denote

l 1

a f r-r
0x 

'L

I
A  s Q

_ u l
61 u -& ' - . . . - T -

i t

A  * o

l 1

af ' 
ay 1

m 1

. . .  y . ' .
i  r -  i  r .

af K af K b
T - , Q l
ox K ax K

, dfml r, af-k k a f^ *
ey ' ,  

-T  
eyz ,  T  x  aya ,  m^  nya

0 x ' A x n a : I  0 x u

g 6

& 6

(4 .1 .1  1 )

(4 .1 .13)

I

a f a
6 u : - -  a / a  :m

A x a

m ^ m

f r . a  -  o r a t r y  a n d  6 a  -  n y a , a  
f  o  

& , a
l ^ m v

a  x  a  a x " a
f o r a - 1 , 2 , . . . ) k  ( 4 . l . L Z )

The Jacobian matrix (4.1.11) can be simplified to

g 1

g 2

1
6 '

c)

6 "

(' 6 ;

g k  6 k

M _ g a

s r f l z  f l a . . . f r k  b  6 a
s-l
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For a single level interconnection, the Jacobian matrix has the bordered block

diagonal (BBD) structure as shown (4.1 .13). If we decompose the network

hierarchically, the Jacobian matrix wilt have the recursive bordered block

diagonal form as follows:

M _ (4 .1 .14)

An efficient implementation of a decomposition algorithm for such a

matrix was presented in [M. Vlach, 1986]. The method is very useful for

parallel and vector computation. Simulating large electronic circuits with n
a

nodes, O(n') computations are needed if the direct analysis method is used,

whereas only O (n*ln(n)) computations are needed for the hierarchical

decomposition method.
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4.2 System Solutions and Test Equations

System solutions used in testing techniques are based on first order

approximations. Both the sensitivity approach and the decomposition approach

belong to this category. We have presented the sensitivity approach in Chapter

3. After the decomposition approach is discussed, we can compare these two

techniques and point out the most essential advantages of the decomposition

approach. We can also point out how the decomposition method can be used to

test mixed mode circuits.

We see that the critical step in the formulation of the test equations for

the sensitivity approach is that both the nominal solution vector x and the

sensitivity matrix I have to be calculated first. Usually several iterations are

needed to obtain the system solution x when the circuit is nonlinear. Also, the

obtained sensitivity matrix s is dense, since all variables in x depend on all

parameters p.

It is obvious from the discussion of the sensitivity approach that the most

time consuming step in sensitivity evaluation is the solution of the original

system. This is also the most inaccurate step in sensitivity evaluation.

Inaccuracies in the system model, approximations of nonlinear integration and

solutions of nonlinear algebraic equations introduce errors in the sensitivity

analysis. The decomposition method significantly reduces these deficiencies. As a

result, analog testing strategies can be developed and implemented for networks

many times larger than those which can be handled by existing methods

(including the sensitivity approach).
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In the decomposition method, we attempt to reduce computation time and

the need for large memory storage both in the evaluation of the solution vector

x and the vector of parameter deviations Ap. The approach is realized in two

major steps:

1. Network analysis to calculate the solution vector x and to evaluate

sensitivities of the internal voltages w.r.t. network parameters.

2. Formulation and solution of test equations - to evaluate parameter

deviations Ap.

4.2.1. Network Analysis

In the decomposition approach, the voltage measurements must be taken

at the external nodes of each subnetwork. After the test has been completed,

the external variables *r* have known values. In this case, the deviation of

measured voltages Avm are zero

A v f f i : 0

and since the measured voltages do not vary

parameter values, sensitivities of the external

zeto.

(4.2.r )

with the assumed or computed

variables to the parameters are

(4.2.2)

Due to simplification resulting from (4.2.I) and (4.2.2), the system solution

vector *i and the sensitivities ,i can be easily computed. When the circuit is

decomposed into a number of small subnetworks, all computations for *i and ,i

can be implemented in parallel within each subnetwork.

s * :  # :  o



A. Internal System Solutions

As a result of (4.2.L), the

internal part

A x :
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deviations of circuit variables contain onlv the

A x l

Axm

Axl

0

so only the internal system equations t' are used for
I

Ax'. If we use the Newton-Raphson iteration process,

M is replaced by the internal submatrix g. Therefore

e L x i - - i

where

s- t"
Axr

and

t' - ri1*i,*-,po;
here 4 are the assumed internal variables and p0

values. It is known from (4.1.13) that the internal

I is the block diagonal matrix. Therefore, equation

(4.2.3)

solving internal variables

then the Jacobian matrix

equation (3.3.7) becomes

(4.2.4)

(4.2.5)

(4.2.6)

are the nominal parameter

part of the Jacobian matrix

(4.2.4) can be written as

g r

g 2

. g a

L

. g n

l 1

A x '
i.)

A x o

:
I

A x 0

I t
^ K

AX

block.

f i1

i2
. :

I

f a
. :

ftk

(4.2.7)

and it can be solved independently in each



.ga a*io- - 1".
i

The internal variables * o are evaluated using the measured. variables

the nominal parameter values pa of each subnetwork (a- r,2,...,k).
I

internal variables * o can be computed in parallel.
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(4.2.8)

m
x  O a n d

All the

When the iterative process converges, the KCL equations are satisfied at

the internal nodes. i.e..

t'1*t,*-,po; _ o (4.2.g)

where the internal variables *i obtained from (4.2.4) are different than the

actual values of *i*. The reason is that the iterations were performed based on

the nominal parameters p0 rather than the actual parameters p*.

B. Internal System Sensitivities

N
In order to evaluate the test matrix q the sensitivities of the

0p
internal variable, "i w.r.t. parameters p should be evaluaterd first.

Differentiating both sides of @.2.g) w.r.t. p, we obtain

a fr a *t a fm a *-
: _ - . _ _ +  _ +

o - - l 4 r r \ m r ro  x  o  p  o  x - - d  p
: 0 (4.2.r0)

the right hand side, we get

d p

Substituting (4.2.2)

d f i a f r

A p

and putting the
I

0 f ' a

last term

i ^x o

to

fi

Let us denote
0 *t a 0 p

(4.2.r1)



. A *t
st : _,t and

0 p

then (4.2.11) can be written as

g s i

It is clear that the internal variables

of the ath subnetwork depend only

which belong to the same subnetwork

A p

: - f i
. p
I

* o and the internal

on these parameters

S i .e .u
i

a f a  . e

, f t -  
i f  p r S o

I
l .  g otherwise

OD

(4.2.r2)

(4.2.13)

i
functions f a

the vector p

a f r
f i _p

system

from

and fr -
p

I

S , :

Let

i
T x a  .  r

, #  i f  p r S o
l '
I  o otherwise

i
! r r Qr o x
u I

,  a n d  L o :pa

the ath subnetwork. Thus,

(4.2.r4)

(4.2.15)

becomes

i
A r a
U | '

A pa

po are the parameters in

g L

,
. 9 "

g a

g k

a pa 
1

the (4.2.13)

, t t f t 1
P1

i , )
f "
P2

t )

S -

I
n

s *

l r
K

s ' -

i
f apa

L

f K
Pp

Since matrices

sensitivity can

g, ,i and

be solved in

f: are of the block diagonal structure, thep

each subnetwork independently

i i
. g a  s  0  -  -  f  a

p0

(4.2.16)

internal

(4.2.r7)
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solution (4.2.8) converges.

needed to solve (4.2.17).

This can be compared

are the differences between
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the LU factored form obtained when the system

Only one forward and backward substitution is

to the sensitivity approach in which test functions

measured and nominal responses (3.1 .1), and test

4.2.2 Test Matrix and Test Bquations

After the analysis stage, the system equations will be satisfied at the

internal points, but in general they will not be satisfied at the partition points

l - f i t  I . 0  I
r 1 * i , * m , p o )  _ l j l : l  - l  ( 4 . 2 . 1 8 )'  ' "  

L d i l  L r T l
This results from a mismatch between the assumed (in our case nominal)

parameter values p0 for which iteration s (4.2.4) were performed, and the actual
' *

parameter values p for which the measurements were taken. In other words,

the reason that the external system equations cannot be satisfied is that the

parameter values p* deviate from their nominal values p0. Thus, the actual

parameter values can be evaluated when the external system equations are

satisfied. We define external system functions t't as test functions

frn- t'o1*i,*-, p; ( 4.2.rg)

The corresponding test matrix is

a f m
g- (4.2.20)

0 p
and the test equation is

5Lp - - t'" (4.2.2r)
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matrix is the sensitivity matrix (3.1.2) resulting in test equation (3.1.3).

Because of the differences shown in Table 4.2.I, the sensitivity and the

decomposition approaches have different numerical properties.

Table 4.2.I Comparison of sensitivity approach and decomposition approach

sensitivity approach decomposition approach

test function

test matrix

test equation

*
0 - x ( p ) - x

A x
d -

U

0 p
s A p - A x

O - t'n1*i,*m, p;

a f m
cr-

A p
J'Lp - - t'"

In the following discussion, we want to show that the test matrix in the

decomposition approach has BBD structure. F rom (4.2.20)

d fm a fm a *i a fm a *- a fm
g -  E - - . . - - +  , -  + -  ( 4 . 2 . 2 2 )

d  p  A  * t  A  p  0  * *  A  p  A  p

Let us denote

a f m
frn - _ e.2.2J)^ p  

o ,
and recall (4.1.4), (4.2.2) and (4.2.12). The test matrix (4.2.22) can be

simplified as

s- fr, si + t g.2.24)p

or written in the block form as
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g,L

g'2

The matrix ,i is a

blocks on the basis

those parameters in

nodes. As the result

A , T ,tt
m1

f r
P 1

f l 2
t ,

s -
r&)

f z ,
P 2

+
g & a

i_ a
U

g f l k ,tu
" ' m l .

f r \
P 1

(4.2.25)

block diagonal matrix (there is no overlap between any two

of (4.2.14)). The matrice s fr. and f, are nonzero only forp

the subnetworks which are incident to selected measurement

, the matrix Tis a bordered block diagonal matrix.

The test matrix

and the test equation

g,I

g'2

g a

g'k

The structures of matrices 5 and g

block diagonal (BD) structure, but the

diagonal (BBD) structure as shown in Fig.

can be evaluated within each subnetwork in parallel as

.7e  :  f la  * t "  *  f - "-p 
0 

' (4'2'26)

in the block form is

6p1

tr,
1r"
4pk

m l
f I
m.)

f ' J

m

ffl,

f K

(4.2.27)

are different.

matrix T is

4.2.L In the

The matrix I is of the

of the bordered block

block diagonal matrix,
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h
t
d
%

E
E
n

t
ffi

(b )

Fig. 4.2.L (a) Bordered block diagonal matrix of single-level decomposition.

(b) Bordered block diagonal matrix of multi-level decomposition.

n

-

l-J
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blocks are independent from each other (no overlap between any two blocks). So

the system equations can be solved independently in each block, e.g. the

solutions of the interconnected systems (4.2.7) and (4.2.16) can be obtained by

solving the subnetwork systems (4.2.8) and (4.2.I7) respectively. In the

bordered block diagonal matrix, there are some overlaps between the blocks.

The solution of such a system can not be obtained as simply as the solution of

a block diagonal system, but such equations can be solved very efficiently using

the sparse matrix technique or parallel processing. Due to the bordered block

diagonal structure, it is possible to identify individual parameters locally using

only measurements from a given subnetwork or adjacent subnetworks.

4-2-3 Procedure to Generate and Solve Test Bquations (DC case)

The formulation and solution of the test equation in the DC case can be

organized as follows:

1. Decompose the tested network N into k subnetworks.

2. Perform measurements at the partition nodes to obtain *- for all DC

excitation levels.

Assume the initial parameter values p0.

Assume initial internal variabler *d for a given DC level.

For each subnetwork do the following steps in parallel (o-I,2,...,k)

I
a. Calculate the internal variables * o by solving the internal system

equations. Use the Newton-Raphson iterative process
r i

. g a  A x 0  -  - f o

i
b. Keep g a in LU factored form when *-o converges.

3 .

4.

o .

(4.2.28)



6 .

7I

i i
c. Compute sensitivities s o of the internal variables * o w.r.t. the

parameters Po of the subnetwork So by solving the linear equations
i i

g a  s o :  - f  a  
@ . 2 . 2 g )p0

d. Evaluate the test matrix g a

i m
g a - f l a s - o + f - 0  ( 4 . 2 . 3 0 )p a

Form the test matrix g by combining test matrice s 5 a of all

subnetworks.

Repeat Steps 44 for each DC excitation level. The test matrix has the

form
f f f fg - t E 9 2 , . . . ,  f r \ , (4.2.31)

where ' represents the matrix transpose operation.

8. Estimate parameter deviations Ap by solving the test equation of the

entire system

7 LP : - fffi (4.2.32)

The test matrix I is a bordered block diagonal matrix. Sparse matrix

technique, a parallel algorithm and vector computation can be used to

reduce computational time and memory requirements.

9. Update the parameter values and repeat steps 3-8 if Ap is large.

This procedure is summarized in Fig. 4.2.2.

t .
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Decompose the Network

Take Voltage Measurements
at the Decomposed Nodes

Subnetwork
l e v e l

Compute In terna l  Vol tages Vi

Compute  In te rna l  Sens i t i v i t i es  S i

Evaluate Test Matrix

Formulate Test Matrix for Entire Network

Solve Test Equations Using the Sparse
Matrix Technique and Paral lel Algori thm

Fig. 4.2.2 Flowchart for generation and solution of test equation in DC case.
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4.3 Time Domain Test Equations

In time domain

equation

where

the system is describedby an algebraic-differential

f(i,x,p,t) - 0 (4 .3 .1 )

an algebraic equationAt a certain time instant ,j, (4.3.1 ) becomes

f(i,,xr,n) : 0

From (3.3.6), the Jacobian matrix of functions (a.3.2) has the form

a f

a * u o
M.

J

a f
+ _ ) ,

a x j

(4 .3 .2 )

(4.3.3)

(4.3.4)

Let us denote

flf. 
I

ai '

r/fm
0*.'

I

a f a

.T- )
A * o

m
a f a

a Y a ' -
. l  

1

0 x a

for

n ' I Dox

afm
n ' f I Iox

and

a  -  1 r2 , ,  . . . ,  k

r i t l
a f

t _

a i l -' J

g g

& 6

g a  -

f r , Q :

6 a :

' n A

6 :

i
a f a

^ f Q
. m )

A x a

m
0 f a

nf a' ny a.
. m

A x a

(4.3.5)
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The matrix (4.3.4) can be written as

So the Jacobian matrix

(BBD) structure.

4.3.1. Network Analysis

A. Internal System Solutions

b L
b 2

g a (4.3.6 )

f l L n 2
k
x

a-I

in time domain also has the bordered block diagonal

b L
b 2
:
6 a

b k

t a

b k

e k

af
t -

t u l' J

At a certain

solving the internal

time step j, the

system equations

internal variable *1 can
J

using the N-R iterations

be evaluated bv

(4 .3 .7 )

(refer to (4.3.3))

M i  A * i  _ - d
J J I

part of the Jacobian matrixwhere the internal

F rom (4.2.7) and (4.3.6),

block diagonal structure,

,

has two terms

t

M; _ E ao
J J

it is clear that

so that (4.3.7)

+ s j

the internal Jacobian

can be solved in

(4.3.8)

matrix is of the

each subnetwork
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independently. For a - 1,2,...,k.

where

B. Internal System Sensitivities

Differentiating

d f

(4.3.2), we obtain

i  i -  i
M,t  Ax,O- -  f rQ .

J J J '

i a
M , 0 :  g . i

J  J N O

d *  I  n
J - (

M j  _  
Z a o +  s i ,

(4.3.e )

d p

a  t  I  a i  I
J J

3 7
r t ' I  . t
o x ;  o p

J

a f l
J

* ---
0 x l

J

a t l
J

0
0 p

d x  I
J

0 p

d x  I
J

0 p

a
+  "  j , (4 .3 .10)

(4 .3 .1  1 )

(4.3.r2)

(4 .3.13)

(4 .3 .14)

Using the backward differentiationformula (BDF) , it

a f l
J

* -
d x  I

J

becomes

I

a f . ' .
J

0
0 p

a f i .
J-:.

0 x l
J

Substi tut ing (4.2.5),

k .
J

tr
L a (

(:0 0 p

(4.2.12) and (4.3.5) into (4.3.12), we have

k .
g . J : :
, t2"oVJq+ 

"i'i +
from which we can find the internal sensitivities

Ml sl _ a
J J  i '

f i .
PJ

s l b
J

: : 0 )

y solving

where

(4.3.  15)



76

and

The matrices

can be solved

where

and

Note that Ma is

(4.3.9) converges. Only

solve (4.3.17) .

" f l :  g .
J J

a q  -  s q
J J

r l  n * f i .
J_( PJ

i ^
M , * :  9 ?  a ^  +  g q  .

J  J  U  J I

i i
s . Q n * f
J-( pOJ

k .
J

E a,,
( :L L

(4 .3 .16)

MI
J

in

and 
l 

are of the block diagonal structure. Equation (4.3.14)

each subnetwork independently.

M l " r l o -  s ? ,  ( 4 . r . r l )-J _J 
J '

k .
J

X a,n
(-l {

(4 .3 .18)

(4 .3 .1e)

in LU factored form, obtained when the solution

one forward and backward substitution is needed

of

to

4.3.2. Test Matrix and Test Bquations

The testmatrix evaluated from the following equation:{ 
can be

a i  I
J

0 p1 -
orT
d p

afry
J

-T

a i  I
J

, 'T
0 p

(4.3.20)

0fry d* i
J J

^ l ^ =o x ;  o p
J

Using BDF (3.3.2), it becomes



1 - t
a f T  u j

14 /, 
a(

a  f  T  l x t
J J

n l r to *  
i  

o p

, 'T
0 p
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(4.3.2r)

(4.3.22)

} x l  n
J - (

k .' -  ^J i
1 

- *i 
f:o 

as si-s +

+ I
)

Similar to (4.3.13), we have

and the test matrix of each

7 ? : n
J

n, ri +
J J

subnetwork can be evaluated in parallel

0 p

i
^  ^ A  Io(, " j - (  -

d".
P J '

The test equations at the time instance j will be

9 . r L P - - f , ,
J  ^  

P J

e q s . * + f
I

+
m, a

(4.3.23)j ' j P 0 J

(4.3.24)

k .
?  ' J
J t-o

4.3.3 Procedure to Generate and Solve Test Equations (Time Domain)

Test equations in time domain can be formulated and solved using the

following procedure:

1. Decompose the tested network N into k subnetworks.

2. Perform the test measurements at the partition nodes to obtain xm within

the time interval (0-").

Assume the initial parameter values p0.

Assume the initial values of internal variabler *i.

For each subnetwork do the following steps in parallel (a-r,2,...,k)
I

a. Predict x,o using the forward differentiation formula.
, i

b. Calculate i,o using the backward differentiation formula.
J -

3.

4 .

o .
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i
c. Evaluate the internal variables * o by solving the internal system

equations. Use the Newton-Raphson iterative process

i i i
M,t A*,o - - f ,o (4.J.2s)

J J "

d. Keep Uf in LU factored form when *,o converges.
J^  

J  
i  ^ �  

__ - - -  - l  - -o - - -  

i
e. Compute the sensitivity rjo of the internal variables *,o w.r.t. the

J

parameters po of the subnetwork by solving the linear equation
i i

M , o r r o : - , 2 o .  ( 4 . J . 2 6 )
J J  J

f. Evaluate the test matrix T?

k .

s ? : f l ? . t J  ^ , r ' , o , * f r ? r l " + { " ,  ( 4 . J . z T )
J J (:0 ( J-( J J PoJ

6. Formulate the test matrix 
I 

by combining test matrices g ? of all
J

subnetworks.

7. Repeat Steps 5{ for each time instance within (0,r). The test matrix has

the form

s- ;4 ;2, . . . ,  i r l '  ,  (4.3.28)

where I stands for the matrix transpose operation.

8. Estimate the parameter deviations Ap by solving the test equations of the

interconnected svstem

I Lp - - frn (4.J.2g)

The test matrix I is of the bordered block diagonal structure. The sparse

matrix technique, parallel algorithm and vector computation can be used

to reduce the computational time and the memory requirements.

9. Update the parameter values and repeat steps 4-8 if Ap is large.

This procedure is summarized in Fig. 4.3.1.
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Decompose the Network

Take Voltage Measurements
at the Decomposed Nodes

t= t+  h

Subnetwork Level Integ rate

Compute In terna l  Vol tage Vi

Compute Internal  Sensi t iv i ty  Si

Evaluate Test Matrix of Subnetwork

Formulate Test Matr ix for Ent i re Network

Last Time Step?

Solve Test Equations Using the Sparse
Matrix Technique and Paral lel Algori thm

Fig. 4.3.1 Flowchart of generation and solution of test equation in time domain.
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Remarks

1' The Jacobian matrix Mi for the nonlinear iterations (a.3.2) is blockJ

diagonal, so the circuit analysis is much easier than the corresponding

analysis in the sensitivity approach [r* (3.3.2)].

2' Each subnetwork can be analyzed independently, therefore, parallel

processing can be implemented, which further reduces the analysis time.

3' In the case of a linear subnetwork, a solution vector can be obtained in

one step; no iterations are necessary. Note that if a linear subnetwork is a

part of a nonlinear network, such a simplification of analysis cannot be

achieved by other approaches. Even in the popular harmonic balance

approach IKundert and Sangiovanni-Vincentelli, 1986], in which linear

subnetworks are separated from the nonlinear part, several iterations are

necessary to balance the mismatch between the solutions of nonlinear and

linear parts.

4. Jacobian matrix Ml is the block diagonal with LU factorization which wasJ

known from the solution of (4.J.9). Therefore the

easily obtained from (4.3.12).

5. It is obvious from the block diagonal form of Mi that the internal
J

variablet *1 of a subnetwork depend only on these parameters from theJ

vector p which belong to the same subnetwork. Also, one can observe thar

derivatives of t'l w.r.t. *l or ii are nonzero only for these variables orJ J J
their derivatives in the subnetworks which are incident to the selected

measurement nodes. As a result, the test matrix 
I e5.22) has a block

matrix structure. Due to this structure it is possible to identify individual

parameters locally using only measurements from a given subnetwork or

two adjacent subnetworks.

I
sensitivities s,0 can be

J
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4.4 Frequency Domain Test Equations

In this section, the general method described in Section 4.2 is applied to

frequency domain testing. In order to acquire a better unrderstanding of the

method, nodal analysis is used to obtain the system equations. First, w€

consider the case in which small sinusoidal signals are applied to the tested

circuit. The circuit can be linearized at the operating point. Therefore both

simulation and test can be implemented in the frequency domain. In Sections

4.4.14.4.3,, we show that the internal system solutions and their sensitivities

can be evaluated within each subnetwork in parallel, and that the test matrix

is of the BBD form for the hierarchically decomposed network. Second, we

consider the case in which arbitrary periodical signals are applied to the tested

circuit. When the circuit is nonlinear, the real test is implemented in the

frequency domain. However, the simulation can be implemented either in the

frequency domain or in time domain depending on the method used. The

methods that deal with nonlinear circuits are presented in Section 4.4.4.

4.L Network Analysis

Consider a linearized network N. Let n*l be the

The system functions based on the nodal equations are

F - Y - v n - I n ,n

number of nodes of N.

(4.4.r )

where Yn is the nodal admittance matrix, Vn is the nodal voltage vector and

In is the nodal current vector. Assume that m is the number of measurement
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external nodes first

function (4.4.1) can

nodes) and i is

and then the

be written as

the number of internal

internal nodes., in which
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nodes. Label the

case the network

IIn

0

VM

v i

Ynu

Y . .
l l

F-

F i

Ymm

Y .
l m

Fo : Yn vto - Ino

Then the network is divided hierarchically into k subnetworks. The

corresponding nodal admittance matrix has a bordered block diagonal (BBD)

form as shown in Fig. 4.4.L In fact, Fig. 4.4.L shows the worst case situation

since in practice both internal blocks (shaded areas) as well as interconnection

parts are sparse.

For each subnetwork, the nodal equations are

where ̂ o and io are the

subnetwork S o respectively.

in Fig. 4.4.2.

number of the external

The admittance matrix

(4.4.2)

(4.4.3 )

(4.4.4)

and internal nodes of the

has the structure as shown

or

m ' rr "l
o J

m
v a

I

V A

Ym

Y .
I

Ym

Y .
I

m
F A

i
F A

ma a .

ma a

Ia a

ia a
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I
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:

n
ct

n k

Fig. 4.4.L The nonzero pattern of matrix Y of the decomposed N.
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N
I-1

N
-

N
I-]

N

Fig. 4.4.2 The nonzero pattern of rmrdered matrix Y in Fig. 4.4.L.
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il-il*il-ils



85

A. Internal System Solutions

The internal system functions are used to solve the internal voltages Vi.

From (4.4.2), w€ have

Fi _ Yir' v- + \i vi . (4.4.b)

when KCL equations are satisfied at the internal nodes

F r _ 0 ,  ( 4 . 4 . 6 )

we get the internal voltages by solving

vi - - Y;l Y,- vm ( 4.4.7)
l l  i m

In fact, the internal voltages of each subnetwork can be solved independently

using

i^ ,  rr l
v a _ - Y i t i  Y i m  v - ' - a  ( 4 . 4 . 8 )

a Q ,  a  a

B. Internal System Sensitivities

Differentiating the both sides of (a.a.5) w.r.t. parameters p, we obtain

A FJ A Y.
- _  l m V f f i - y .

o p  o  p  rm

since the vm is the vector of measured voltages, we have

a v m

, n  
: 0

The sensitivity of the internal voltage w.r.t. the parameter is

(4.4.10)

a v m  a Y , ,  ,  a v l
-  l l l r l r Y = , - ' l  

- - 0
A p 0 p ' A p

(4.4.e)

s i :  1  
u :  

- y , , 1  [  
' . " , -  

vm +  
0 -Y i i  

n i ,  .  (  4 .4 .11 )
a p rr  a p o p
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T -

,  a  v i  ,  a Y .
S' _ -  -  -y , , t  I  

tn  Vn]
a  p  l l  ' a  

p
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(4.4.r2)

It can be acquired by computing the internal sensitivities of each subnetwork in

parallel,

i
n Q\-)

i
a  v a _1

: - : - Y l

a  p  ' o t a

aY.l n  n

l -  o o v " l
A p

(4 .4 .  13)

Note that tit, has been computed when the internal voltages
a a

obtained from (4.4.8).

i
v a  a r e

4.4.2 Test Matrix and Test trquations

Define the external functions as test functions. From (4.4.2),

F f f i - Y - - v * + y - i v t - t -

The test matrix is

AFIn AY
-  m m V m - Y

a p mm
avm aY

op o p

we have

(4.4.14)

ai arm
+ Y m i ^  - ^  . ( 1 . 1 . 1 5 )

op op0p

Since

0 v m a I m
_ 0  a n d _ 0

a p a p

The second term and the last term vanish. Substituting (4.4.L2) into

we get

(4.4.16)

(4 .4 .15) ,
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T - ib vm + 1"* vi - y,.', y,,1 ,d-Yin ur,1
a  p  a  p  m l  l l  ' a  

p

a Y*_ ,  a Y,-
_ t -. 

g Vn I - Y_i \it [- -- 
tn Vn]

d p 
' -^^ 

a p 
J

. a Y
_ [ u** - Y_i Y,,t I 

n vn (4.4.LT)i l  ' a  
p

where U*- stands for the mxm identity matrix.

Let

9 : [ 9 * * l - Y m i Y i l  ]  ,  ( 4 . 4 . 1 8 )

so that the test matrix T can be expressed as

a  F m  a Y
T - - - 11 -n yn (4.4.19)

a p a p

Note that the test matrix (4.4.19) is the product of three matrices and is

similar to the sensitivity matrix (3.4.10) except that the H matrix of (4.4.19)

IY
replaces the Va matrix in (3.4.10). The derivative 

-n 
can be easily evaluated

0p
by direct differentiation of all entries in Yn which contain the variable p (in

most formulation methods not more than four).

To show the structure of the test matrix (4.4.19), we investigate the

structure of the matrix H.

H - [ u * - l w ] .

w - - Y . Y : l
nu l l

(4.4.20)

(4.4.21)

where
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Yrrri and Yii are sparse matrices that have the block structure as shown in Fig.

4.4.2. Since (\i)-t is a block diagonal matrix, it is easy to show that the

matrix W the product of ( Y . Y:l ) - has a block structure identical to' m l l

that of Y Therefore, H has the block structure as shown in Fig. 4.4.9.,nu

where

W  _ - Y  Y .  1 .
a  ^ o t o  ' o ' o (4.4.22)

We can define

H o : I  u * o - o  I  w " ]  '

where s-1,2,.. .k. Equations (4.4.22) and (4.4.2J) can be

within each subnetwork and H can be obtained by adding

this approach the computations can be kept to a minimum.

(4.4.23)

The test matrix can be evaluated in each subnetwork independently

computed in

different Ho

parallel

with

(4.4.24)T o :  H o

AYn n* v  a
A p

An alternative way to see that a test matrix is a sparse matrix is as

follows. Suppose that p is the element incident to the nodes i and j in the

subnetwork Sa. Let tO, Ou the sum of currents at node q (q-t,2,...,m) when an

trY
excitation is applied at node r. Since H has the block nonzero pattern and 

W
has four or less nonzero elements, we can see that the derivative of fO, w.r.t. p

(qr-th element of T) is not equal to zero only if the node q is a node of the

subnetwork So. Individual sensitivities can be obtained from (4.4.19).
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Fig. 4.4.3 The nonzero pattern of matrix H.
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derived in [J. Vlach,The r

1983], that

0fo r
op

esult

is

(h
[ '  q l
{
t s

ujr)

In general, when

intersection of rows i,j

an element p appears

and columns k,l,

- nni)(ui' - w h e n n o d e q . S o

o t h e r w i s e

in the coefficient matrix

w h e n n o d e q r S o

o therwi  se

(4.4.25)

Yn at the

(4.4.26)
afqr
op { , n ; ' - nn i ) (uk , -u r ' . )

The test matrix T is a block matrix of the size .*p where rn is the

product of the number of external nodes used for measurements multiptied by

the number of excitations, and np is the number of elements in the network.

When the external nodes and all the elements are labeled based on the order of

subnetworks in which they are included, the test matrix has the block structure

as shown in Fig. 4.4.4. If the sparsity of the test matrix is properly used, then

the computation speed at pre-test as well as post-test stages can be increased.
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Fig. 4.4.4 The nonzero pattern of matrix T.
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4.4.3. Procedure to Generate and Solve Test Equations (Frequency Domaio)

1. Decompose the tested circuit N into k subnetworks.

2. Perform the test measurements at the partition nodes to obtain Vm in the

interested frequency range.

3. Assume initial parameter values p0 and Vi.

4. Do the following steps for each subnetwo.rk in parallel (o-1,2,...,k)

I
a. Bvaluate the internal voltages V a by solving the internal system

equations.

vio - -Y,- l  yi  v*o . (  4.4.27)' g ' o  t o^o

l i
b. Compute sensitivities S o of the internal voltages V'a w.r.t. the

parameters p of the subnetwork S o using
i

i ^  a v a  ,  d Y i  n  n
s a _

a  p  ' o t o '  a  p

f. Evaluate the test matrix T? of the subnetwork
J

r0 - "o l"no ,, . (4.4.2s)' a p

5. Formulate the test matrix T by combining test matrices To of all

subnetworks.

6. Repeat Steps 4-5 for each test frequencies (rL, a2, ...rn ̂ ). The test"f

matrix has the form

r - r r1 T2,..., t ; / '  (4.4.30)

where I stands for the matrix transpose operation.

7. Estimate parameter deviations Ap by solving the test equation of the
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interconnected svstem

T

The test matrix T has the

matrix technique, a parallel

to reduce the computational

8. Update the parameter values

bordered block diagonal structure. The sparse

algorithm and vector computation can be used

time and the memory requirements.

and repeat steps 4-7 if Ap is large.

A p - - F m (4.4 .31)

4.5. Approximate Method and trxact Method

In the previous sections, w€ assumed that the test matrix was formulated

after the measurements had been taken. In order to perform the test point

selection and to measure testability before the test, the test matrix should be

formulated in the pre-test stage. It is required, then, to simulate the solution

vector of the entire network which includes both external and internal nodes,

based on the nominal model. i.e..

x  -  * (po)  (4.b.1)

This method is called the anproximate method. The solution will be obtained

by the Newton-Raphson iterative process

M A x - - f . (4.5.2)

From the discussion in Section 4.I.,, when the network is decomposed

hierarchically to a number of small subnetworks, the corresponding Jacobian

matrix M is of the bordered block diagonal (BBD) structure. The equation

(4.5.2) can be solved by parallel processing and a vector computation algorithm.

The test matrix will be evaluated based on the solution vector obtained

form (4.5.2). The procedure will be the same as discussed before. The test
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matrix of each of the subnetworks To can be computed in parallel, and the test

matrix of the entire network T is formed by combining all T a. The test point

selection is performed by QRF based on the obtained test matrix T. In the

next chapter, w€ will present the method needed to perform QRF in parallel.

After the test is performed at the test points selected by QRF, the test

equations are formulated, and the deviations of parameters Ap can be

estimated. Since external variables (i.e.the measured voltages at the partition

nodes) are known, the internal node voltages can be computed using the

function of measured external voltages as ( 4.2.4), (4.3.7) and (4.4.6). Taking a

linearized circuit in the frequency domain as an example, the voltage matrix can

be evaluated more accurately than in the case when all voltages are obtained by

simulation.

v n _

This way of evaluating the

advantage of (a.5.3) is that it

evaluation problem.

In summary:

before the test

after the test

voltage matrix is called

provides a more accurate

(4 .5 .3 )

the exact method. The

solution to the element

v**

-y:1 y. vm*
l l  I

VM*

_ i
V '

Before the test, the approximate method can

matrix. The QR factorization is implemented on

select test points and measure circuit testability.

approximate method

exact method

be used to evaluate the test

the test matrix in order to

After the test. the exact

vn _ vt(pO)

V n : V n
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method can be used to evaluate the test matrix in order to obtain the solution

of test equations. The difference between these two methods is only in the

values of the voltage vectors. Hence, the test matrices formulated by both

methods have the same structure.

The test procedure for the decomposition approach is given in Fig. 4.b.L.

In this chapter we have developed a decomposition approach to element

identification and demonstrated its advantages. It reduces the computation time

and enhances the test performance. Large circuits can be tested. It increases

the accuracy of the solutions. Inaccuracies in the circuit model, numerical

methods and measurement techniques affect only the local computations of

subnetworks so they do not affect the test results of remote subnetworks. In

addition it can be directly applied to test mixed mode circuits. A network can

be decomposed into analog and digital subnetworks. At the boundaries of the

analog and digital subnetworks, analog signals can be converted to the digital

signal form, and digital testing procedures can be implemented [Cha IgTg,

Miczo 1986, Cox and Rajski, 1938]. In the next Chapter, test strategies for

large analog circuits are developed.
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Decompose the Network

Simulate External and Internal
Voltages Using the Approximate Method

Formulate Test Matrices of
Subnetworks in  Para l le l

Add More
Test Points

Perform Test Points Select ion Using Modif ied QRF

Test  Po in ts  S uf  f  ic ient?

Take Measurements at Selected Test Points

Subnetwork
Leve I

Compute Internal Voltages Using the Exact Method

Evaluate Test Matrix T Based on Measurement Data

Solve Test Equation Using the Sparse Matrix Technique

ldenti fy Elements and Predict Response

Yes

Fig. 4.5.1 Test procedure for the decomposition approach.
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5. TESTING STRATtrGIES

In this chapter testing strategies for fault diagnosis and calibration of

analog circuits are presented. Testing strategies enable test engineers to perform

reliable and cost--effective tests. They can be used to design testable circuits by

affecting circuit architecture and providing access to the selected test points.

Design, which incorporates a testing strategy, is known as "design for

testabilitv".

Testing strategies include the following aspects:

determination of the test method depending on the type of faulty elements

and the type or size of the tested system;

determination of the test environment (such as DC testing, frequency

domain testing, or time domain testing) depending on the type of the

tested circuit. F or each test environment, there are several ways to

increase the number of independent measurements.

test point selection and testability measurement to ensure a reliable and

inexpensive test.

prediction of the circuitrs response in order to obtain the accurate response

in very efficient way.

consideration of the effect of the measurement errors on the element

estimation and response prediction.

elimination of the ambiguity groups in order to estimate parameter values.

estimation of the time skew effect on element evaluation.

In Sections 5.1-5.7, all aspects of testing strategies will be presented in a



98

general way.The QR factorization process, which is a key point for test point

selection, testability measurement, element estimation and response prediction, is

time consuming for a large circuit. In Section 5.8, the modified QRF process,

which can be performed in parallel within each subnetwork, is developed and

used for the decomposition approach. Hence the computational speed is

increased and the memory requirement is decreased in this method. This

strengthens our claim that the decomposition approach is suitable for large

systems.

5.1 Test Methods

Fault diagnosis and calibration of analog circuits are related. When the

changes in the networkfs element values are small, the first order approximation

method can be applied. A relationship between measurement and parameter

deviations can be expressed through the sensitivity matrix. With a sufficient

number of test points, all elements can be evaluated. This allows one to

diagnose a faulty circuit or calibrate a working one by tuning its elements to

the desired settings. For a large scale system, a decomposition approach has to

be used to increase reliability and to reduce test costs.

5.2 Test Environments

Usually the number of accessible nodes in a circuit is limited. Different

techniques can be used to increase the number of measurements depending on

the type of circuit. By changing operating points (DC excitation level), test

frequencies, sampling time points and input signal waveforms, a sufficient
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number of candidate test points can be obtained. However, not all candidate

test points are independent. In this section, the upper bounds of the

independent measurements from all the test candidates are estimated. In the

following sections, efficient methods in selecting independent measurements from

all test candidates will be given.

5.2.1 Multi-Excitation Testing

F or a linear resistive circuit, multi+xcitation testing can be used. Voltage

measurements are taken with excitations applied to the accessible nodes. The

number of transfer functions depends on the number of excitations and

measurements. If the nr' is the number of measurement nodes and re is the

number of excitation nodes, then the number of rows of the test matrix is

n*'ne. However, the upper bound of the number of independent functions for

a reciprocal circuit was given by Navid and Willson (lg7g) as

R-o il- (L * 1), where il* : max (n*,r.) (5 .2 .1 )

5.2.2 Multi-Frequmcy Testing

When a circuit contains reactive elements, multi-frequency voltage

measurements can be used [Sen and Seaks 1979, and Rapisarda and DeCarlo

1983]. A test circuit is excited with sinewave excitations. Deviations of the

steady-state voltage responses from their nominal values are measured. If n, is

the number of test frequencies, the number of rows of the test matrix can be

up to nrrr'ne'tf. The number of harmonics generated from the nonlinear circuit

s +
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is greater than the number of test frequencies. If nn is the number of harmonics

generated, then the number of rows of the test matrix is nm.n..nh. The upper

bound on the number of independent transfer functions was estimated bv

Berkowitz (1962),

R-* : n-.ne (nr.act* l) + nreact $.2.2)

where nreact is the number of the reactive elements. Or more exactly,

R-* : n-'ne (Nord.r* 1) + No.de, (5 .2 .3 )

where Nord., it the order of complexity of the network, which is defined as the

order of the polynomial of complex variable s describing the determinant of the

transfer function. The order of complexity is determined by the number of

reactive elements and their location in the network. Therefore, it is related to

the network topology [Starzyk and Dai 1987].

5.2.3. Multi-{perating-Point Testing

When a circuit contains nonlinear elements, multi<perating-point testing

can be used. Voltage measurements are taken when the circuit is operated at

different DC levels. Different DC excitation levels bring the nonlinear elements

to different operating points. The effect of nonlinearities on the rank of the

test matrix is similar to the effect of the multifrequency measurements in the

linear reactive network. If tl is the number of DC excitation levels, then the

number of rows of the test matrix is nm.ne.nl. If nonlinear elements are

represented by their piecewise linear segments, the linear combinations of the
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piecewise linear segments can be mapped to different linear regions. If n, is the

number of linear regions, then the number of rows of the test matrix is

rm' ne' nr. Since the voltage measurements are taken at different linear regions

of the piecewise characteristics, the equivalent branch admittances Gi will

change their values acting as variable parameters. An effect of these changes

can be compared to changes caused by variable frequency, therefore this method

is called the nseudo-frequency approach [Swamy and Roytman 1984].

Let AGlin be the vector of deviations of linear elements from their

nominal values and LG l, LIf the vectors of deviations in nonlinear segments

description (changes in io and Go in each segment for each nonlinear element).

Changing the region causes the number of unknowns to increase since new

values for LG f and LIl, have to be added. If ns is the number of piecewise

linear segments, the total nurnber of parameters will be rfin + 2.nr. However,

since the circuit is linearized, the multi-frequency testing can be used when the

circuit contains reactive elements. Then we gain additional system information.

In such case we will be able to evalua,te all the unknowns.

The number of rows of the test matrix is nm. rra.n1. frr. Let *:n*. ne. nf.

The test matrix has the following pattern

(* tvt
* {u,

:
(-tv'

AG1AI1AG2AI2 .

tt'% ,7,' �ru,

.  .o"orotrr,
,%

T = 22%,

'1,%

'%,2 (5.2.4)
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5.2.4. Multi{imrPoint Testing

In time domain testing, the waveform recorder is used to sample, digitize

and store the time response. If nt is the number of time points at which the

response is sampled and recorded, the number of rows of the test matrix is up

to nrr,.'ne'tt. Different test signals, e.g. step function, ramp function, pulse

function or any arbitrary function, can be applied since different input functions

affect the output differently. If no, is the number of input signals applied to the

circuit, the number of rows of the test matrix is nm.ne.nt . nw.

The ma,:cimum number of candidate test points for different cases is

summarized in Table 5.2.L.

Table 5.2.L The maximum number of candidate test points

tes t
envi ronment

tes  t
circuit

number of
tes t points

DC

linear
Frequency domain nonlinear

Time domain

linear

nonlinear

piecewise linear

piecewise linear

linear

nonlinear
piecewise linear

n,,, 'ne

nln.  ne. t l

n* .  te .  t ,

[m 'ne 'n f

nm.ne.  n f .  n l

nm. ne. nf .  nr

nm. ne. nt

n*.  ne. nt  .  n l

om. ne. nt  .  nr



103

5.3. Test Point Selection and Testability Measure

A key factor in solving fault diagnosis problems is the selection of

appropriate measurements. This is often referred to as the test point selection

problem. An important related concern is circuit testability, which indicates

the percentage of components that can be identified.

Seaks, Visvanathan and Sangiovanni-Vincentelli discussed the subject of

testability measures on the basis of the rank of the test matrix [Seaks at el

1981, and Visvanathan and Sangiovanni-Vincentelli 1981]. The effect of the

network topology, type of network elements, and test points on the rank of the

test matrix has been discussed in several papers addressing problems of network

testability [Iuculano et al. 1986 and Starzyk and Dai 1g8z].

Stenbakken and Souders have considered the problem of selecting test

points, as well as practical aspects of testability related to measurement and

computation errors. Analyzing the sensitivity matrix with the help of the QR

algorithm, they have selected a sub-optimum set of test points. The selected

test points can be used to evaluate circuit elements with minimum

computational effort and high numerical accuracy. Using the same technique,

the effect of measurement errors and element tolerances can be studied with

sufficient statistical confidence.

The QRF algorithm is primarily used as a robust, linear+ystems solving

technique [Leon 1980]. However, Stenbakken and Souders (1987) have shown

that the QRF algorithm with pivoting is also a powerful technique for the test
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point selection, estimation of prediction variances, and element testability. In

order to select the optimum set of test points, the largest major of the test

matrix must be identified. In the QRF with pivoting, this selection is performed

in a multi+tage process. First, we choose the column of the largest norm and

orthogonalize all remaining columns to the selected one. Then the column of the

largest norm of those remaining is selected and the orthogonalization step is

repeated. The process continues until the norms of all the remaining columns

are less than a preset threshold.

To measure testability, the QRF is performed on the original sensitivity

matrix. The selected pivot column vectors correspond to the parameters which

are testable under the given test nodes or test conditions. The reduced column

number is equal to the column rank r, which indicates the number of the

elements that can be estimated. If the column reduced sensitivitv matrix is

denoted by s^, then the test equation becomes" L

sc APsel : Av

where APset represents the deviations of the selected elements.

(5 .3 .1 )

To select the test points, the QRF is performed again on the column

reduced sensitivity matrix sc. The selected pivot row vectors correspond to the

test points at which the actual measurements will be taken. The row and

column reduced sensitivity matrix is denoted by src, which is a rxr square

matrix. After that, the real measurements are taken at the selected test nodes,

resulting in Atr. The test equation can be reduced to a system of r equations
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Apsel can be obtained by

(5.3.2 )sc, APsel _ At,

5.4 R€sponse Prediction

Prediction of the circuit's response from known information without taking

the actual measurements is known as response prediction. There are two kinds

of response prediction. One is cailed linea,r response prediction and the other is

nonlinear response prediction.

5.4.1. Linear Response Prediction

Linear response prediction is used to predict the circuitrs response at all

candidate test points from measurements made at the selected points. This is

based on the sensitivity approach. The procedure LINRtrSPRED used for linear

response prediction is organized as follows.

Procedure LINRESPRED:

1. Simulate the response vector v(p) of the nominal circuit and formulate its

sensitivity matrix s at all candidate test points.

2. Perform the QRF process on the sensitivity matrix in order to select test

points

Perform the measurements at the selected test points.

Estimate the parameter values from the equation (5.3.2).

Calculate the response deviations at all candidate test points

3 .

4.

o .
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A t o . . _ s A p .

Predict the circuit response by adding the nominal response

Step 1 and the deviation of response Aror. calculated in Step

t p r u _ v ( P )  + A t o r .
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(5 .4 .1 )

simulated in

a .

(5.4.2)

In this method, the deviation of response Aror. is the product of the

sensitivity matrix and the estimated parameter deviations (Step 5). Since only

linear equations are dealt with, it is a linear method. This method is very

useful in predicting the frequency response, which is an important characteristic

for a wide variety of circuits and systems. Usually, measurements have to be

taken at all candidate test frequencies in the entire interested range in order to

obtain an accurate response. Even if the candidate test frequencies can be

spread on the log scale, the number of frequencies is still large, making it

difficult to measure the frequency response accurately. The linear method is a

very efficient and accurate method for predicting the frequency response for

linear time invariant systems [Stenbakken and Souders 1985].

The linear response prediction method is very useful not only for frequency

domain testing, but also for the general case testing. F or example, this method

can be used for data converter testing fsouders and Stenbakken 1985]. The

response at the L024 codes of the 10 bits D I A converter can be predicted based

on the 37 selected measurements. If we extend this method to the time domain

testing, the circuitrs response within the entire time interval can be predicted

based on a few measurements at the selected sampling time points [Dai and

Souders 1989].
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5.4.2. Nonlinear Response Prediction

The nonlinear response prediction is used to predict the circuit's response

to an arbitrary input signal, based on the updated parameter values obtained

from the measurements of the circuit's response to the standard input signal.

The procedure NONRESPRED which utilizes nonlinear response prediction is

organized as follows.

Procedure NONRESPRED:

1. Apply the standard input signal to the circuit and measure the response.

2. Bstimate the deviation of parameters Ap by solving (5.3.2).

3. Update the element parameters by

P u _ P g + A p (5.4.3)

the iterative process could be used if Ap is large.

4. Simulate the circuit's response to an arbitrary input signal *a, based on

the updated parameter values pu obtained in Step 3. The circuit's response

can be obtained by solving the system equations

f(var, iar, t, pu, *rr) : o (5.4.4)

The circuit simulator such as SPICtr or SABER can be used to simulate rar.

Since the system of nonlinear equations is used in Step 4, this method is

referred to as a nonlinear method. In practice, the step input signal can be

chosen as a standard input because it can be accurately generated and the step

response can be obtained directly through an automatic test equipment.

However, some arbitrary input signals are difficult to be accurately generated

and their response cannot be easily recorded. We can solve this problem by
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employing the nonlinear response prediction method. In order to test the circuit,

we apply the step input signal and measure the step response. Then we evaluate

the parameter values and update the circuit model based on the step response

measurement. Instead of measuring the response to an arbitrary input signal, we

can simulate the response based on the updated model. Therefore we can

predict the time domain response to an arbitrary input signal or the frequency

domain response based on the step response measurement. This is a general

method for linear and nonlinear circuits.

5.5 Measurement Errors

According to statistics, a commonly used optimization criterion is to

minimize the variances of the response predictions caused by measurement errors

[Box and Draper 1971]. If we assume that the measurement errors are normally

distributed, uncorrelated, with zero mean, and have a variance of o?rr, then the

variances of the parameter estimation are

o|p: diag t ( ,;. ,r.)-1 o?rr) (5 .5 .1  )

which determine the confidence of the parameter estimation (5.8.2). The

variances of the response predictions are

diag I s ( *lc sr.)-ls' oSrr] (5.5.2)
2oa.tr:

which determine the confidence of the response prediction (5.4.1).
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Stenbakken and Souders (1987) took the measurement errors into account.

They defined testability factor as the ratio of the variance of the measurement

errors oe* to the variance of the parameter estimation o^p as follows:

o e  r r (5 .5 .3 )
oao.

' J

To understand the testability factors, wewhere j stands for the jth component.

substi tute (5.5.1) into (5.5.3)

o e '

t l -

,fj _ I4,1 [ti-. tr.] (5.5.4)diag
Jaapj

As we mentioned above, the QRF process gives a suboptimal maximization

of I s|.sr. | . Therefore, the variances of the response prediction and parameter

estimation are minimized, and testability factor tf is maximi zed. Equations

(5.3.1-5.3.4) not only provide reasonable optimization criteria for the test point

selection, but also provide a definition of testabilitv which takes measurement

errors into account.

5.6. Ambiguity Groups Elimination

In a typical circuit, it is common for the column rank of a test matrix to

be less than the actual number of circuit parameters. This is due to the

presence of ambiguity groups in the circuit [Stenbakken, Souders and Steward

1989]. Ambiguity groups are groups of components which cannot be
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distinguished from each other by measurements made at the designated test

nodes and test conditions. Consequently, their sensitivity vectors are dependent,

the test matrix is singular, and a unique solution of the test equation cannot be

found. However, even with full numerical rank the test matrix may still be

nearly singular due to near-ambiguity groups. In these cases, the solution is

unstable, and will be extremely sensitive to small errors in the model, and to

measurement errors. In short, the testability factor will be poor. If ambiguity

groups exist in the circuit, then the parameter values can not be evaluated. The

effects of ambiguity groups have been shown to be very important for parameter

estimation.

There are several ways in which ambiguity groups, or near-ambiguity

groups can be eliminated.

First, addition of new test nodes or test conditions is often effective. These

test conditions can be DC excitation levels, test frequencies, or input waveforms.

Second, it is possible to add components of known value into the tested

circuit and take measurements with and without the added components. The

sensitivity matrix consists of two parts: the test matrix obtained from

measurements taken at the original circuit sorigina, and the test matrix

obtained from measurements taken at the circuit with additional components

sadded. The new test matrix s is formed by combining the two as follows:

sor i gi nal
sadded

sne* : (5 .6 .1 )
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It was shown through the computer simulation that the rank of the new test

matrix is larger than the rank of the original test matrix. When the sufficient

components are added, the full rank can be achieved. In this case, all ambiguity

groups are broken up and all element values can be identified. This approach

can be an attractive compromise between functional testing and traditional

bed<f-nails, in circuit testing.

Finally, if these approaches fail or are not feasible, the column dimension

of the test matrix is reduced to the column rank. This is accomplished by

performing the QRF process. Only one element from each ambiguity group is

selected by the QRF. Remaining elements in each ambiguity group are fixed to

their nominal values artificially, i.e., deviations of the remaining element values

are assumed to be zero. In this case the selected element values can be obtained

from

sc APsel : Av

where tc is the column reduced sensitivity and Apsel correspond

deviation of the selected element values. Of course, the values of the

parameters can be estimated relative to the remaining parameters.

(5.6.2 )

to the

selected

The level of ambiguity permitted (and hence the testability of the selected

components) is set by a factor e) provided by the user. By setting e larger,

fewer components may be included in the test matrix, but the testability factors

of the selected components will be higher. Consequently, response predictions

made by substituting the estimated parameter values back into the original

model may be more accurate.
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5.7 Time Skew Estimation

In order to obtain accurate parameter estimates from the first order

approximation, it is critical that the timing relationship between the output and

input data record be accurately known. In cases where the output and input

waveforms are synchronously sampled, this may not be particularly difficult if

the external electrical delays are kept equal. On the other hand, it is often

convenient to apply a standard input waveform, €.g., a step, which is known to

be nearly ideal, and then sample only the output waveform. In this case, only

one recording channel is required. Ilowever, rvith asynchronous triggering, the

timing may be in error by as much as one half the sampling period. This

amount of timing error is often intolerable. For example, it has been found that

in some cases as little as 1 ns of time skew can cause changes in parameter

estimates of up to 50%. The problem can be overcome, however, by adding a

time skew parameter to the model. We accomplish this by adding At to the

parameter vector Ap, and an column vector, rt, to the test matrix. The test

equation becomes

where

s t :

At the jth time instance, the vector rt

difference of the response vector, i.e.,

(5 .7 .1  )

(5.7.2)

easily computed by taking the first

I s s t ]
r r
l ^ o l _ A v ,
L A t . J

dr
is

dv

tt - ti-l
' t j  - 

i (b.7.3)_J r j_ , j_ t

It is has been verified experimentally that this approach makes the parameter

estimates relatively insensitive to the actual time skew.
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5.8 Modified QR Factorization for the Decomposition Approach

The optimum set of test points should be selected to minimize the

variances of response prediction and parameter evaluation. An efficient approach

to test point selection is based on the QR factorization (QRF) of the system

test matrix as we mentioned in the previous sections.

5.8.1 Group Test Point Selection

In the Kcl-based method, the test equations are formulated using voltage

measurements at the partition points. Since all the partition voltages (at least

in one subnetwork) must be known to formulate even a single test equation, it

is necessary to modify the QRF process. In each step, instead of selecting a

vector with the largest norm, we look for the best group of vectors. Each

candidate group consists of a set of rows of the test matrix that correspond to

all the partition points at a single test frequency or sampling time point. The

QR factorization is run on the candidate group to evaluate a product of

diagonal elements of the R matrix. Partial products are evaluated only for those

elements of R which correspond to the selected rows. The group with the

largest partial product is our pivot. The remaining rows in the Jacobian are

orthogonalized w.r.t. the pivot rows.

It may happen that not all rows in the selected group are independent.

This will be indicated by small values on the diagonal positions in R that

correspond to the dependent vectors. Using a user{efined threshold, we can

eliminate such vectors from the selected group. Since different groups may have



a different number of selected vectors, we

appropriately. Rather than using a partial

the group, we construct a vector of partial

Lt4

must compare their partial products

product for all diagonal elements in

products as follows:

where R, represents the k-thtk

group, and g1 is the number of

threshold value. Comparing two

diagonal element of the R

elements in this group that

groups (say ith and mth) we

g _ min(g,, g_)

(5 .8 .1 )

matrix in the

are larger than

first select

R .
l . l

2 I

I I R .
k -  1  .  

r k

8 1
I I R .

k -  1  t k

t1

,2

:

r

Rp

81

ith

the

(5.8.2 )

and choose the one with the larger r., as a pivot.

The computer simulation shows that this selection reduces the number of

excitations (and frequencies) with only a small decrease in the accuracy of the

solution (see Tables 6.1.4{.1.6).

5.8.2 Parallel QR Factorization

The test matrix

the deviations of the

based on the sensitivity approach is a dense matrix since

measured voltages are taken as test functions. In such a
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case, considerable computational effort for the QRF is required. On the other

hand, the test matrix based on the decomposition approach is sparse. In what

follows we present the modified QRF process. Its purpose is to preserve the

sparsity of the test matrix during the vector orthogonalization.

For simplicity, we divide the network into 2n subnetworks hierarchicatly

using n levels of decomposition. Fig. 5.8.1 shows an example of a network

partitioned hierarchically into 8 subnetworks (n-3). Here ci represents the set of

common nodes between the subnetworks on different levels of the hierarchical

partition. The hierarchical levels are illustrated in Fig. 5.8.2 where ro represents

the remaining external nodes of the subnetwork S o (the external nodes

excluding the common nodes).

The test matrix for this example has the same nonzero pattern as the one

shown in Fig. 4.4.4. To select test points, the QR factorization is performed on

the Tf (where'stands for the matrix transpose operator) Columns of T'are

reordered according to the hierarchical levels as shown in Fig. 5.8.3.

The test matrix has a block structure, and blocks at the same level are

independent of each other. Therefore, the QR process can be implemented in

parallel within these blocks, level by level, to speed up the computations. There

are four levels in this example. Level t has 8 blocks corresponding to the nodes

t1, ,2,... ,rg. Level 2 has 4 blocks corresponding to the nodes cT, c6, c5, c4.

Level 3 has 2 blocks corresponding to the nodes .g and cZ, and level 4 has one

block corresponding to the nodes cl. The QRF runs from level 1to level 4

performing parallel computations at each level.
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f)

€g %R
Fig. 5.8.1 An ocample of the hierarchical decomposition.
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The resulting Jacobian matrix ten' has the same nonzero pattern as

shown in F i g. 5.8.3 . I t can be seen that "en, is a sparse matrix as well.

Since the corresponding test matrix has a block structure, it is possible to solve

the test equations locally. Parallel processing can be used to find the element

values in each subnetwork. This increases the computation speed. Furthermore,

higher accuracy can be expected because the numerical errors decrease when

computation operations are performed in the smaller matrices.
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6. COMPUTER SIMUTATION AND EXPERIMENTAL RESULTS

The software for the decomposition approach was developed and tested on

a transistor amplifier circuit. Results obtained from the decomposition approach

are compared with those obtained from the sensitivity approach. A piecewise

linear circuit is used to illustrate how all parameters in a nonlinear circuit can

be estimated by the multi--operating-point and multi-frequency testing

methods. The effect of nonlinearities of the nonlinear circuit on circuit

testability is shown on a small nonlinear circuit example.

A time domain testing system was set up at the National Institute of

Standards and Technology, U.S. Department of Commerce. Time domain testing

was implemented on two example circuits: an amplifier/attenuator circuit and a

bandpass filter circuit. Testing strategies presented in Chapter 5 were applied to

time domain testing.

6.1 A Transistor Amplifier Circuit

A linearized transistor amplifier circuit shown in Fig. 6.1.1 is selected as

an example to illustrate the decomposition approach presented in Chapter 4.

Voltage measurements are taken at nodes 1 , 2, 4,, 5 and 6. The circuit is

decomposed at the measurement nodes into three subnetworks as shown in Fig.

6.1.2. Nodes 1, 6 and 5 are the internal measurement nodes of S1,52 and 53

respectively. Node 2 is the common node between 51 and 52, and node 4 is the

common node between S, and Sr. The system of test equations is formed based
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on the KCL equations at these five nodes. The corresponding test matrix has

the block structure as shown in Fig. 6.1.3 where the shaded areas repreJent the

nonzero pattern of T.

The nominal and faulty parameter values are listed in Table 6.1 .1. The

actual element deviation in percent is denoted by d. The purpose of testing is

to estimate the paratneter deviations Ap. In rvhat follows, the computed

deviations obtained by different methods are compared.

R C
1 1

R
2

R r R o c c . R r c u s Ru c, R

* ,

c
1 2

rn
2

"zg

ffi,

Fig. 6.1.3 Nonzero pattern of the test matrix.
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Comparison of the Sensitivity and Decomposition Approaches in

Frequency Domain

In frequency domain testing, the candidate set of test frequencies consists

of 31 frequencies equally spaced on a logarithmic scale, giving 155 possible test

measurements. We compare the results obtained from the decomposition

approach described in Section 4.4 with those of the sensitivity approach

described in Section 3.4 in Tables 6.1.2-6.1.6.

In Table 6.L.2, the first and second columns list the estimated errors in

element deviations obtained by the approximate method and the exact method

respectively, which are the two methods of the decomposition approach

described in Section 4.5. The last column represents results obtained from the

sensitivity approach. The results in Table 6.I.2 are obtained by the real

variables computation (refer to Section 3.4.1 C) and the results in Table 6.1.3

are obtained by the complex variables computation. As we can see, element

deviations calculated using the decomposition approach are comparable with

those obtained using the sensitivity approach.

In Tables 6.1.4 - Table 6.1.6 we compare results of the QR factorization

with the single test and the group test selections discussed in Section 5.8. The

single test selection uses orthogonalized vectors with the largest norm, while the

group test selection uses the partial products (5.8.1). We compare the results of

different selections for the test matrix obtained using the decomposition

approach and the sensitivity approach. Tables 6.1.4 and Table 6.1.5 show the

selected test nodes and the test frequencies. The accuracies of the solution
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obtained in the single and the group test selection are compared in Table 6.1.6.

Note that the number of test frequencies selected by the group test selection is

less than that selected by the single test (Table 6.1.4), but the accuracy of the

solutions obtained by both methods are equivalent. Therefore, the group test

selection reduces the test effort without any notable decrease in accuracy.

6.L.2 Comparison of Sensitivity and Decomposition Approaches in Time Domain

In time domain testing, the candidate

consists of 40 time points distributed in the

measurements.

of test time sampling points

scale, giving 200 possible test

set

log

Table 6.I.7 gives the comparison of results obtained by the decomposition

approach and the sensitivity approach. Column a lists the actual element

deviations. Columns b and c give the element deviations computed by the

decomposition approach and the sensitivity approach, respectively. From the

table we can see that the results are comparable for both approaches.

6.1.3. Comparison of Time Domain Testing with Frequency Domain Testing

To understand the effect of measurement errors on element estimation and

testability factors, the results obtained by the sensitivity approach were studied.

Table 6.1.8 compares results obtained by time domain and frequency domain

methods. Column a lists true element deviations from the nominal values. Two

cases are considered. In the first case deviations are calculated based on the

assumption that there are no measurement errors (standard deviations of
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measurement errors o - 0). Test results are listed in columns b and d. In the

second case, random measurement errors were simulated with o - 0.1 %. This

random error simulation was repeated 20 times. Test results are listed in

columns c and e. Table 6.1.9 gives testability factors computed using the time

domain and the frequency domain methods.

From the results of the computer simulation, it is obvious that the

accuracy obtained by the time domain and the frequency domain methods are

comparable, and testability factors computed by these methods are equivalent.

Since the time domain measurements can be obtained easily by using automatic

test equipment (ATtr), the time domain method preferred over the frequency

domain method in practical testing.
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Table 6.1.1 Data'for Example

p - p
d _ - x 1 0 0

p

element
nomi nal
va I  ues

n faul ty *  actual
pu values" p deviat  ions d (%)

R1
C1
R2
R3
R4
C4
R7
C3
C5
R5
C2
R6
S1

10Q
20F
75Q
10Q
40cl
25F
30Q
15F
10F
10Q
20F
20Q
10s

10.05CI
19.00F
76.92Q
10.20Q
42.67Q
24.00F
29.40Q
14.00F
9.50F
9.80F
19.00F
20.60F
9.50S

0.5
-5.0
2.5
2 .0
6 .6

-4.0
-2.0
-{.6
-5.0
-2.0
-5.0
3 .0

-5.0

The normalized frequency points (in Hz) are

f l  0.0001

f 4 199.5268{

f- 398.107E{
I

fro 794.328tr{
frg 158.490E-5
fro 316.230tr-5
frg 630.9608-5
f zz 125.893E-4
fzs 25L.188E-4
fzs 501.187H
far 100.oooE-3

f 2 125.892E-6
f , 25r.188tr{o
f8 501.187E{

fr r 100.000tr-5
fra 199.530E-5
ftz 398.1 10tr-5
fzo 794.330E-5
f zg 158.489E-4
f za 361.2288-4
fzg 630.960E-4

as follows:

f3 158.4898--6
f6 316.227 tr-6
f9 630.960tr{
f tz 125.890E-5
fr s 25t.190E-5
frs 501.1908-5
f zt 100.0008-4
f z+ 199.5268-4
fzz 398.107tr-4
fso 794.32884
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Table 6.r.2 Estimated Errors Ad (real case, in percent)
Ad : dcalculated - dactual

element
decompo s i t ion
appr o xi mate

approach
exact

s e n s i t i v i t v
approacn

C4
C1
R1
R3
S1
C3
C2
R7
C5
R5
R2
R6
R4

{.00081
{.00243
{.00017
0.00002

-0.00046
-0.00407
0.rr372

-{.05968
{ .00171
0.08824
0.00078

-{ .11573
0.60676

{.00026
0 .0

-0.00002
-0.00049
-{.00339
0.00037

-o .01011
{.00660
-{.00523
0.00626
0.00074
0.00946
0.10454

{.00166
-0.00168
-o.00005
{.00010
{.00304
0.00379

-{.00124
{.00195
0.00203

-{.00171
0.00067

{.00027
-{.16485

Table 6.1.3 Estimated Errors Ad (complex case, in percent)

Ad :dca l -dac tua l

dcal - Re(d.*) + jlm(d.*1)

dcat - sgn I Re(d.u,) ]

element
decompo s i t ion
appr o xi mate

approach
exact

s e n s i t i v i t y
approach

C4
R1
C1
S 1
R3
C5
C3
R5
R7
c2
R2
R6
R4

{.00076
{ .00005
{ .00233
{ .00104
{.00044
-o.00108
{ .00256
0.00906
0. 00893
0 .01389
0.00336

{ .00499
0.04449

0. 00040
-{.00002
0 . 0
0 .00026

-{.00050
0 .00053

--0.00020
0.00047
0. 00064
0 . 0 1 1 9 5
0.00080

-o.01075
0.03748

-{.00097
0.00002

-{ .00183
-0.01461
-{.00004
{ .00144
{ .01371
{ .00053
{ .00007
0.00281

-{.00049
-{.0045r
0.16446
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Table 6.1.4 Test frequencies in the single and group test selections.
Decomposition approach (exact method, real case)

Nodes Test frequencies
Single test Group test

r  2  3  4  5  6  7  8  9  1 1  2  3  4  5

1 |  fsr f1 |  f ro fsr
2 I  fsr f1 |  f ro fsr
3 |  tn f5 fe fzg l f ro fgr fn f4
4  |  f s r  f n  f 3  f 8  l f r o f s r  f n  f 5
5 ;  f r s  l f r o

Table 6.1.5 Test frequencies in the single and group test selections.
Sensitivity approach (real case)

Nodes Test frequencies
Single test I  Group test

r 2 3 4 5 6 7 1 1 2 3 4 5

1 I  f r  f5 frr  fzg
2  |  f r
3 l  f r  f 5  f e r
4 |  f r  fsr
b I  f r

I  t+ fzg frr
I  t+ f r r
I r+ rzg

fzz I t+
frs I  t+ fzg frr

fgr fgo
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Table 6.1.6 Estimated element deviations in the single and group test selections.
(real case, in percent)

e 1 ement
Decomposition approach
single test group test

sensitivity approach
single test group test

C4
C1
R1
R3
S1
C3
c2
R7
C5
R5
R4
R2
R6

0 .00026
0 . 0

{ .00002
-0.00049
{ .00339
0.00037
- { .01011
-o.00660
{ .00523
0.00626
0.10454
0.00074
0.00946

0 .00068
0 . 0

-o.00002
4.00094
{ .00267
0.00074

{ .00539
{ .00847
4.00427
0.00805
0.  10399
0.00406
0.00463

{ .00166
{.00168
{.00005
{.00010
-o.00304
-0.00379
-{.00124
{.00195
{.00203
{ .00171
{.16485
0.00067

{.00027

{.00078
{.00185
-{.00018
{.00047
{.00194
{.00364
0.00359

-0.00117
{.00189
-{.00047
4.04327
0 .00445

{.00526

Table 6.1.7 Deviations from nominal (time domain)

Element True
sensitivity
approach

decomposition
approach

R1
R3
C1
C5
C4
R5
R7
R6
R2
C2
S1
C3
R4

0.500
2.00

-5.00
-5.00
+.00
-2.00
-2.00
3.00
2.56

-5.00
-5.00
-6.67
6.68

0.490
1.98

-5.18
-5.15
-4.11
-2.08
-2.05
2.37
2.68

4.57
-o.40
-7.03
- r . o c

0.505
2.00

-5.00
-5.04
4.02
-2.64
-2.72
2.03
2.21

4.r4
-5.04
-6.76
9 . 1 1
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Table 6.1.8 Deviations from nominal
( Sensitivity approach)

Element True
Time Domain
o : 0  o - 0 . I %

Frequency Domain
o  : 0  o  -  0 . I T o

R1
R3
C1
C5
C4
R5
R7
R6
R2
C2
S1
C3
R4

0.500
2.00

-5.00
-5.00
-4.00
-2.00
-2.00
3.00
2.56

-5.00
-5.00
4.67
6.68

0.490
1.98

-5.18
_O.  ID

+ . 1 1
-2.08
-2.05
2.37
2.68

4.57
-o.+o
-7.03
- { . oo

0.456
2.02

-5.27
-5.r4
-3.98
-3.03
-1.83
4.05
3 .14

4.97
_LL.2
42.9
0.023

0.495
2.00

-5.16
-5.L2
-4.15
-2.16
-2.r5
3.22
2.50

-5.39
-5.41
-6.69
2.75

0.435
1.99

-5.31
-5.16
-3.51
-1.49
{.79
2.6r
2.89

-5.10
-17.0
-25.6
413.

Table 6.1.9 Estimated testability factors
( Sensitivity approach)

Element Time Domain Frequency Domain

R1
R3
C1
C5
C4
R5
R7
R6
R2
C2
S1
C3
R4

0.67
0 .14
0. r2
0.052
0.085
0.032
0.045
0.0068
0.024
0.0070
0.0039
0.0015
0.00015

0.65
0.082
0. r7
0.038
0.026
0.024
0.017
0.0086
0.013
0.0081
0.0024
0.0010
0.000095
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6.2 A Piecewise Linear Circuit

This example is used to illustrate how the multi-operating-point testing

and multi-frequency testing methods work. As mentioned in Chapter b,

nonlinearities of circuit elements can effect the circuit testability. When different

DC excitation levels are applied to a tested circuit, the circuit is driven ro

different operating points. Therefore more independent measurements can be

obtained. For a piecewise linear circuit, the nonlinear elements are represented

by a number of linear segments and a linear combination of segments of

different piecewise linear elements can be mapped into a region. One region is

equivalent to a specific operating point. Multi-region testing

linear circuit is similar to the multi--operating-point testing

circuit.

in

in

a piecewise

a nonlinear

When the circuit operating point changes from one region to another, the

number of unknown variables for each piecewise linear element increases by 2

(an equivalent admittance and a current source of a new segment). However the

number of linear elements does not change. If the number of additional test

points obtained in multi-region testing is two times larger than the number of

piecewise elements, then it is possible to solve all element values. The common

way to increase the number of test points is to use multifrequency testing at

each region so that the reactive elements can be identified.
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As an example, consider the nonlinear circuit shown in Fig. 6.2.L Its

equivalent piecewise linear circuit is shown in Fig. 6.2.2, and the characteristics

of the piecewise linear elements g1 and g2 are given in Fig. 6.2.3. Voltage

measurements are taken at the nodes I,2 and 3. Each piecewise linear element

has two segments and the parameter space is divided into four regions as

follows:

t l  (segment A and C)'  u3( 1.0 and vn< 0.5;

,2 (segment B and D)r u3) 1.0 and u4) 0.5;

.3 (segment B and C)'  u3( 1.0 and u4) 0.5;

,4 (segment A and D), u3) 1.0 and vn< 0.5.

The operating point can be moved from one region to another by changing

the level of the DC current excitation

tl ,  Js: -2.0 A,

,2, Jr: 3.0 A and

t3r  Jr :  15.0 A

In each region, a small AC signal is applied at two test f requencies:

ft:0.075 Hz and

f2:o'o L Hz'
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G 2 @  G 4

Fig. 6.2.1 A nonlinear circuit

G a  @ G 4

1 s

0o)

i a  Gc

:  r  ( G d )

Fig. 6.2.2. Equivalent piecewise linear circuit
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(a)

i  (A)

g l

G d  =  2

i n  =
. l -r a -

1 . 0

0 . 5 v (V)

i  v 3 =  1 . 0

=  - 2 . 0

9 z

Fig. 6.2.3. Characteristics of piecewise linear elements.

/
/

i o

V  4  
=  0 . 5

i c  =  - 1 . 0



Assume that deviations

The QR algorithm was run

the element deviations were

are listed in Table 6.2.I.
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of element values d (Ap/p) are small $.b%-2J%).

on the test matrix to select 14 test points. Then

computed. The results of the computer simulation

Table. 6.2.L Computer Results

Element
Deviations

Computed d. Actual d"
Differences
Ad-d.-du

1

2

3

4

o

6

I

8

9

10

1 1

12

13

T4

G1

G2

G3

G4

C .o
c6
G.,
Iu
Gb
rb
G.

I.

Gd

rd

{.00973

0.00447

4.02129
-{.01070

0.00784

4.A2205
-{.05150

0.22660

0.01986
-{.01973

-{.01069

-{.01070

0.00444

0.00435

{ .010

0.005
-{.020

{).010

0.010
-{.020

-0.050

0.226

0.020

{.020
-{.010

{ .010

0.005

0.005

0.00027
-0.00053

-{.00205

-{.00069

-{.00216

{.00205
-0.00150

0.00060
-{.00014

{.00150
-{.00069

-{.00070

-{.00056

{.00065
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6.3 A Nonlinea.r Circuit

In the previous example, a piecewise linear circuit was tested by the

multi-operating-point method and the multi-frequency method in frequency

domain. It showed that the nonlinearity of circuit elements can be used to

increase circuit testability. In this section, a nonlinear circuit is tested by the

multi<perating-point method and the multi-time points method in time

domain. Similar results are observed.

Let us take the example from Section 3.3.3. Assume that the step function

signal is applied to node 1 and the step response is measured at node 2. When

we use only one excitation level, the rank of the sensitivity matrix is 3. One of

the elements cannot be determined. When we use two excitation levels, the rank

increases to 4. The procedure developed in Section 3.3.3 was used to estimate

parameter deviations in this circuit. The true and computed deviations are

listed in Table 6.3.1.

Table 6.3.1. Deviations from nominal (d in percent)

Element Actual Computed
j - 1 A  j - l A a n d j - 2 4

C
G
I,

cn

2.00
-3.00
10.00
-5.00

2 . 1 7
-3.34
9.73

-5.02

2.24
-3.51
undetermined
-4.85
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Testing results discussed in Sections 6.1 through 6.3 were based entirely on

the computer simulation. Both faults and measurements were simulated and

then the test problem was solved. The remaining part of this chapter deals with

experimental results and related problems. We first describe the organization of

the time domain testing system.

6.4. Time Domain Testing System

Time domain testing of nonlinear circuits is very useful for the following

reasons:

(1) Dynamic response is an important characteristic of nonlinear systems.

(2) Discrete measurements can be accurately obtained by the automatic test

equipment in a fraction of the time needed for other tests (e.S., frequency

domain test).

(3) The frequency domain response of a circuit can be estimated with

sufficient accuracy from the discrete step response as discussed in [Souders

and Flach, 1987].

(4) Time domain testing is essential for calibration and fault diagnosis of

analog/digital mixed signal systems.

For the above reasons, we conducted experiments in time domain in order

to implement the testing strategies developed in the previous chapters. The time

domain testing system was set up as shown in the Fig. 6.4.L During the real

test, reference time domain input signals were applied to the circuits under test

using signal levels selected in the pre-test stage. A waveform recorder was used

to sample, digitize and store the output responses at the test points determined



in the pre-test stage. Data

post-test processing.

was transferred to

r37

the computer system for the

The following sections present

collected at the National Institute of

experimental results based on the data

Standards and Technology.

I IORAOC

o ! c l L L o r c o P E

F U N C T I O N
O E N E R A T O R C O M P U T E R

CIRCUIT
UNOER
TEST

}{AVEFORM
RECOROER

F i g . 6 . 4 . 1 .Time domain testing system.
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6.5. An Amplifier/Attenuator Circuit

An amplifier/attenuator circuit, which comprises the front end of a wide

band sampling wattmeter developed at the National Institute of Standards and

Technology (NIST), was the first circuit tested. It was designed to have a

bandwidth of about 5 MHz and a flat response up to 300 kHz. A precision

programmable step generator developed at NIST was used as the input

waveform. The voltage step from this generator has a transition duration (rise

time) of approximately 6 ns and settles smoothly to 0.1 percent in L7 ns. The

waveform recorder used to sample, digitize, and store the step response was a

commercial 10-bit instrument. The fastest sampling frequency is 60 MHz and

the total number of sampling points is 4096. The output response from 0 to 1

nN was obtained by combining data at 4 MHz and 60MHz sampling frequencies.

The lumped element model of the circuit is shown in Fig. 6.b.1.

6.5.1 Variable Step Integration and Time Skew trstimation

The step response was simulated based on this model. For greater

simulation accuracy, we have used variable size time steps in the numerical

integration procedure. Since the step response changes rapidly during the

transition, and stabilizes after three to four times the circuit time constant, we

have used an integration step of 16.6 ns (1/60 MHz). In this case a total of 45

time points are needed in the time interval 0-1 ms. The time skew parameter

discussed in Section 5.7 was included in the test matrix.
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Fig. 6.5.1. Lumped element model of amplifier-attenuator network.
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Fig. 6.5.2 shows the measured (solid) step response, and the step response

computed from the nominal model (dashed), for two different time scales. Note

that the measured response has an overshoot following the transition, while the

computed one does not. The overshoot is caused by a mismatch between the

time constants of the input circuits.

6.5.2 Testability Analysis and Ambigurty Groups

The testability analysis of this circuit showed that many ambiguity groups

are present when node 5 (the output) is the only measurement. For example,

(R1, R2) and (C1, C2) are ambiguity groups. Unfortunately for this circuit,

nodes 3 and 4 are inaccessible, node 2 and node 6 are almost redundant because

Vl : 0, and both nodes are easily perturbed by small amounts of test probe

capacitance.

Table 6.5.1 gives results of the computer simulation. Although results of

the computer simulation in this example are satisfactory, the testability factors

are very low (t

large, i.e., 1000 times the measurement errors. In the real testing, the accuracy

of the waveform recorder is about 0.1%. Thus the component errors are usually

large due to the inaccuracies of circuit modeling, temperature variations, and

measurement errors.
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Fig.6.5.2 Step response of amplifier/attenuator network, over I ps (a) and I ms

(b) time intervals. Solid curves give the measured response, and dashed curves

give the response computed from the nominal model.
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6-5.3 Una,mbiguous Component Selection and Linear Response Prediction

Using the third approach to eliminate the effect of ambiguity groups

discussed in Section 5.6, we set a value of e to 0.001 (the test node was still

node 5). Four unambiguous components were found (Ra, Cl, Rl, CO) and their

testability factors were higher than that in Table 6.5.1. Consequently, four out

of the 45 candidate time points were selected for Av measurements. Deviations

Ap of the four chosen elements were computed by solving (5.3.2); then the step

response for the entire time period was predicted based on Atpred calculated

from (5.4.1). Fig. 6.5.3 shows the measured and the predicted responses, for the

same time scales shown in Fig. 6.5.2. The maximum difference between the two

curves over all time points, is 0.08 V, or I% of the peak response.

Table 6.5.1. Element deviations and testability factors from computer simulation

Element
Nominal
value

Deviations Testabilitv
v

tactorTrue Computed

I
t4
1 1
16
4
3
D

15

91 KCI
3.9 KCI
10 pF
100 fl
150 pF
10 KCI
20 MCI
5 p F

{.549
{.256
1.00
1.00

-o.67
0.80

{.50
1.00

{ .616
4.25
0.98
0.99

-o.75
0.80

{ .50
0.98

0.003122
0.0004687
0.0005038
0.003726
0.0003946
0.0004071
0.0004001
0.0004862



u J 6
o
:)
ts
0 o . 4

143

o.4 0.6
T IME (us )

(a)

o.o o.2 0.4 0.6
TIME (ms)

(b)

Fig. 6.5.3 Measured (solid) and predicted

amplifier-attenuator network, over 1 ps (a) and 1

u r 6
o
f
F
f

-

o.8

(dashed)

ms (b).

slep response of
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6.6. A Band Pass Filter

In this example, the second-order filter shown in Fig. 6.6.1 was used. The

filter was designed to have a nominal center frequency f0 : 24.5 kHz, a gain

K:2, and a quality factor Q:4. The design values of the elements are given by
2q

It is apparent

give identical

however, were

q -
C ,0 I(

2 q
L  c , u o { - t + [ ( K - t ) ' + 8 Q 2 ] t / 2 1

& : : [  
t *  t  

]o gzwf i  Rl  R2 
'

R 4 - R 5 _ 2 R g

c l - c 2

from (6.6.1) that, by changing the value of

responses are possible. The element values

within 5% of the design values in (6.6.1).

C,

of

(6.6.1a)

(6.6.1b)

(6.6.1c)

(6.6.1d)

(6.6.1e)

other designs that

the actual circuit,

1 k f l

@ s .

Vin cr
5nF

Vo ut

c2

Fig. 6.6.1 Model for bandpass filter with center frequency of 24.5 klflrz.
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6.6.1 Linear Response Prediction

As can be seen in Table 6.6. 1, only three components must be identified

in order to predict the complete output (node 5) response (referring to the

discussion in Section 5.4). Fig. 6.6.2 presents the results of a linear prediction of

the step response, based on measurements made at node 5, at three time points

selected by QR factorization. In this figure, the solid curve is the measured

step response, and the dashed curve (barely distinguishable because of

coincidence with the solid curve) is the response predicted by solving (5.4.1). In

this case' the design values, pd, were used for the calculation of the sensitivity

matrix, and the linear model was quite satisfactory.

6.6.2 Iterative Process

To determine the effectiveness of the proposed approach for cases in which

the assumed values deviate substantially form the actual values, the sensitivity

matrix was recomputed based on the assumed values shown in Table 6.6.2. In

this case' the assumed values deviate from the actual values by as much as

L00%, and result in the large step response differences shown in F ig. 6.6.g.

Because of the large differences, the linear model is inadequate, as indicated by

the poor prediction results shown in Fig. 6.6.4. However by applying the

iterative procedure discussed previously, excellent predictions can still be made.

This is il lustrated in Fig.6.6.5, with the prediction results obtained after four

iterations. In this example, a weighting factor, w (2.3.2), of 0.b was used.
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Table 6.6.1 Test Nodes and Ambiguity Groups

number of
te s t nodes

t e s t
nodes

rank selected elements

*

)F

*
3

4

o

3

2

3,5

2r5

2,3,5

2,314,5

3

3

4

4

D

c

o

R3, R2' [ \ 'c1]

R3, R2, [R1,C1]

*

*

x
R3, R2' [Rl 'C1] ' [R4'R5]

*
R3, R2, C1,[R4,R5]

*
R3, R2, Rt,[C t,CZ) , [R4,R5]

R3, R2, R1,[C t,Cz]*,1Rn,Rrl
R3, R2, R1,[C t,Cz]*,;Rn,RrJ

* one of two selected depending on the initial values assumed.

Tabte 6.6.2 Parameter Values (kQ, nF)

Case 1: no. of test nod€s _ 1 (node 5) and rank - 3

Des i gn
v alue s

P6

As sumed
val  u es

Pg

Updated
values

pu

percent  percent
changes changes
P 4 - P g  P 6  P u

puPg

R1

R2

R3

5.18
1 .0
2.0

c.c

1 .5

1 .0

4 .815

0.967

1.993

{

-33

100

I

3

0.4

c1
c2
R4

R,-
o

5.0
5.0
4.0
4.0

5.2

5.2

4.0

4.0

5.2

5 .2

4 .0

4 .0

4

4

0

0

4

4

0

0

Rtct 25.9 28.6 25.0 -9
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6.6.3 Nonlinea.r Response Prediction

For linear circuits if we know the step response, it is possible to predict

the response to any other input signal. However, for nonlinear circuits, this is

not generally the case. Here it becomes necessary to determine the full model

parameters in order to make accurate response predictions for arbitrary input

signals. Therefore, we are interested in the accuracy of the response predictions

based on the new parameter estimates, as presented in Section 5.4.2.

The results from such a predict ion are given in Figs.6.6.6 and 6.6.7.

Figure 6.6.6 shows an arbitrary input signal (solid) and the measured filter

response (dashed). In Fig. 6.6.7 we show the measured filter response (solid)

and the response predicted from the assumed model (dashed), which is based on

assumed values pg. Finally, Fig. 6.6.8 shows the predicted response to the input

signal of Fig. 6.6.6, computed from the updated parameter estimates, pu, which

we have determined earlier from the step response data. The peak error in the

prediction is less than 2%.

The updated parameter values that were used for the predicted response in

Fig. 6.6.8 are given in Table 6.6.2. These are also the values that were used to

obtain the response prediction of Fig. 6.6.5. Note that the updated values of the

selected elements, Rl, R2 and R3, deviate significantly from the design values.

This is because these elements form ambiguity groups with unselected

components whose values have been arbitrarily fixed at the assumed values

listed in Table 6.6.2. Any error in the value of an unselected component will be

compensated for by the computed deviation for the selected component. Thus,
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for example, the filter response depends on o-�2QlwOK: RfCf, rather than on

Rl and Cl independently. In such cases where the response depends on a

combination of parameters rather than on individual parameters, as indicated in

Fig. 6.6.8, the predicted responses will be accurate even though the individual

parameter estimates are not.

3.0

2.O

o 50 100 150 200
TIME (us)

Fig. 6.6.6 Measured arbitrary input signal (solid) and measured filter response

(dashed)

trl
o
f,
F
J
(L

1 . 0

o.o

-  1 . 0
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the arbitrary input signal.
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o
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b 0.0
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-0.5
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Fig. 6.6.8 Measured (solid) and predicted (dashed) responses

200

to the input signal

of Fig. 6.6.6. Prediction was based on the updated parameter estimates, pu,

determined from step response data.
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6.6.4 Ambiguity Group Elimination and Para.rreter Evaluation

The result of the ambiguity analysis for the filter circuit is given in Table

6.6.1. It is seen, as expected, that the rank or number of observable components

tends to increase as the number of test nodes increases. Nevertheless, the

maximum rank is five (two pairs of ambiguous components remain), even

though all test nodes are used. There is no way to distinguish between Cl and

Cr, or between Rl and R2, solely using voltage measurements.

However, as shown in the last coiumn of Table 6.6.3, it is possible to

increase the rank to seven (full rank) with as few as one test nodes, by making

additional measurements with known components added to the circuit (refer to

the discussion in Section 5.6). In this case, two resistors R" and Rb, having

nominal values of 4 kCl and 1 kCI respectively, were added in succession. R, was

added in parallel with R5 between nodes 4 and 5, and Rb was added in parallel

with C1 between nodes 2 and the common node as shown Fig. 6.6.9. The

perturbed sensitivity matrices, S, and Sb, are calculated by computing

sensitivities of the new circuits with respect to the seven original components. A

composite sensitivity matrix 5o*6, is then formed by combining the original and

perturbed matrices so that Soab _ [S',S;,S|] 
'. The testability analysis showed

that the circuit testability is significantly higher when using two rather than

one test nodes, while further increasing of the number of nodes to four resulted

in only marginally better testability.

Results obtained using this approach are listed in Table 6.6.4. In this case,

measurements were made at test nodes 2 and 5, on both the original and
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perturbed circuits. As seen in the fifth column, the assumed values pg of the

components deviated by as much as LBTo from the design values. After eight

iterations, the updated estimates (nu) listed in column four were obtained. The

updated values deviate from the design values by only about 2To (see column

six), which is within design tolerances. In Fig. 6.6.10, the step response using

the updated values is plotted. The solid curve is the measured response, ild the

dashed curve is the step response calculated from system equations of the circuit

based on the updated values pu.

V in Vout

Fi9.6.6.9 Perturbed bandpass filter with additional components R, and RO

R " : 4 k O a n d R O : 1 k f t
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Table 6.6.3 Comparison of the rank of the original sensitivity matrix So

and rank of the composite sensitivity matri* So"b using R, and RO.

number of
te s t nodes

rank( So) rank( So"U)t e s t
nodes

D
3
2
3,5
2r5
2,3,5
2,3,4,5

3
3
4
4
c
o
5

I
n
I

6x
l-,

I
n
T
n
t

7

Table 6.6.4 Parameter Values (kfl, nF)

Case 2: Add R" and R5, no. of test nodes - 2 (node2 and 5)

rank - 7 and no. of iterations : 8

Des i gn
v alue s

P6

As sumed
val  u es

Pg

Updat ed
va I ues

pu

per cent
changes
P 6 - P g

per cent
changes
P 4 - P u

Pg pu

R1

c1
c2

&
R3

R4

R,,
o

5 .18

5.0

5.0

1 .0

2.0

4.0

4.0

5.0
5.2
5.25
r .2
1 .8

3.5

3.4

5 .136

5.444

5.089

1.008

2.039

4.033

4.029

3.6
-3.9
-4.8
-r7
1 1

T4

18

0.86

{.87
-2.r5
-0.79

-1 .91

-{.82

4.72
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7. CONCLUSION

This dissertation is devoted to the development of computer aided testing

(CAT) of analog and mixed-mode (analog and digital) systems. The

decomposition approach to the testing of large scale circuit is developed and

testing strategies related to the practical aspects are proposed.

7.L Advantages of the Developed Methods

In the decomposition approach, the circuit being tested is decomposed into

a number of small subnetworks. Measurements are taken at interconnection

points of different subnetworks, resulting in a test matrix with a sparse block

structure. Because of this sparsity, analysis of the test results is much easier.

Test point selection and element evaluation are performed in parallel, reducing

computation time and enhancing the test performance. In order to fully

understand the advantages of such an approach, we have compared it with a

sensitivity matrix method used in nonlinear analog testing.

The two major goals of our developed testing method are 1) to improve

circuit simulation and 2) to identify parameters efficiently and accurately.

The first goal is satisfied by breaking interconnected systems into a set of

smaller subsystems. Bach of the subsystems can be analyzed separately in order

to reduce overall analysis time and memory requirements. Different analysis

methods can be used depending on the type of subcircuit analyzed. For

example, a linear subcircuit can be analyzed using the Fourier transform, or
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some other frequency domain method, which takes advantage of the circuit

linearity. A subcircuit containing only resistive elements can use an algebraic

equation solver since the differential equations will not be needed. Other types

of subcircuits such as those with distributed parameters or subcircuits with ideal

switches can use specialized analysis methods.

The second goal is satisfied by applying the principle of partition to the

test stage. The test matrix of the test equations is of a block structure which

yields solutions to the parameter identification problem locally. As a result,

computer time and memory storage needs are reduced. Another important

advantage of the block structure of the test matrix is that it limits the effects

of changes in the system to local areas. Only the parameters inside the

subnetworks adjacent to a particular test node will affect test equations at this

node.

Advantages of the decomposition approach developed in this dissertation

over the sensitivity approach include the following:

1) Errors in the subcircuit modeling do not affect evaluation of remote

parameters.

2) In the exact method of the decomposition approach, measured voltages are

used to simulate the internal voltages. Errors caused by numerical

integration and nonlinear iterations are reduced when the measured

voltages are highly accurate.

3) When a circuit has ideal switches (like a digital-to-analog converter), the

circuit topology changes as the switches turn on or off. The decomposition

approach can handle these topology changes with much less effort than the
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sensitivity approach. This difference can be justified as follows. If a circuit

has n switches, all of which can be either opened or closed, then 2n

different topologies have to be considered in the sensitivity matrix

approach. However, in the decomposition approach, changes of switch

values affect only local test equations, therefore fewer cases have to be

considered.

4) Different subnetworks can be simulated and tested using different circuit

representation levels, such as the discrete element level, gate level,

functional level etc.. Some subnetworks may be tested on the functional or

macromodel level for functional testing, while other may be tested on the

element level for element identification.

In the exact method, the test matrix is derived after measurements are

taken. This requires more post-test processing. However, we can alleviate this

problem by measuring only one sample circuit in order to derive the test matrix

for other circuits of the same design. Test selection and testability analysis can

then be performed on this test matrix. In this w&y, the post-test processing is

made manageable.

This dissertation proposes test strategies for fault diagnosis of large analog

circuits. Taking the practical aspects into consideration, the developed method is

modified so that it is implemented in the real world. The practical aspects

include determination of the test method and test environment, selection of test

points, analysis of testability, prediction of the circuit's response, effect of

measurement errors, elimination of ambiguity groups and estimation of time

skew. Techniques related to these practical aspects are developed. The real test
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was implemented at the National Institute of Standards and Technology. The

experiment results verified the effectiveness of the developed techniques.

7.2 Impact of the Performed Research

Modern fabrication facilities allow analog and mixed mode electronic

circuits to be built with much higher complexity than ever before. However,

research interest in large scale integration analog circuits has been modest

compared to the huge demand for VLSI digital circuits. This demand stemmed

from the tremendous increase in popularity and applications of digital

computers. This situation will soon change dramatically with the development of

neural networks, whose applications could revoiutionize areas such as speech and

pattern recognition and information retrieval.

The new testing techniques developed in this dissertation can be used to

test such large scale integration analog circuits. The research already developed

had a significant impact on analog and mixed mode circuit testing and design.

During the testing, voltage measurements play an active role in circuit

simulation and diagnosis processes. We are able to test large systems without

breaking the connections and can implement all calculations at the subsystem

level. In design, the testing strategies provide design engineers with useful

information so that they can make selected test points accessible.

The test method developed here can be used for testing custom integrated

circuits (IC) such as analog/digital converters, filters, voltage regulators or

operating amplifiers. It also can be applied to test VLSI neural networks or



complicated mixed mode circuits that combine

method is very useful at the system design,

and repair stages.
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analog and digital functions. The

fabrication, maintenance, testing

Direction for future work includes improvements in the numerical

integration and optimization routines, and extensions to accommodate

mixed-signal devices and nonlinear elements.



161

REFERENCES

R. J. Allen, "F ailure prediction employing continuous monitoring techniques,rl
IEEE Trans. Aerosp. Suppor-t Conf. Procedures, vol. AS-1, pp. 924-930, 1963.

P. Antognetti and G. Massobrio, Semiconductor Deuice Modeling with SPICE,
McGraw-Hill Book Company, New, York, 1988.

J. W. Bandler and A. E. Salama, "Fault diagnosis of analog circuits,tt Proc.
IEEE, vol. 73, no. 8, pp. 1279-1325,, 1985.

J. W. Bandler and a.J. Zhang, "Large change sensitivity analysis in linear
system using generalized Householder formulae", Int. J. Circuit Theory and
Appl.,  vol.  14, pp. 89-101, 1986.

J. W. Bandler and a.J. Zhang, "Optimization techniques for modeling,
diagnosis, and tuningrr, in Analog Methods for Computer- Aided Analysis and
Diagnosis,, (Editor, T. Ozawa), Marcel Dekker, New York, pp. 381-416, 1988.

R. M. Biernacki and J. A. Starzyk, " Sufficient test conditions for parameter
identification of analog circuits based on voltage measurements," Proc. European
Conf.Circuit Theory and Design, vol. 2, pp. 233-24I, 1980.

R. S. Berkowitz, " Conditions for network--element-value solvability." IRE
Trans. Circuit Theory, vol. CT-g, pp 24-29, 1962.

R. N. Bracewell, The Fourier Transform and its Applications,, McGraw-Hill
Book Company, New York, 1978.

F. D. Brown, N.F. McAllister, and R. P. Perry, "An application of inverse
probability to fault isolation", IRE Trans. Mil. Electron., vol. MIL{, pp.
260-267. 1962.

G. Casinovi and A. Sangiovanni-Vincentelli, " A new aggregation technique for
the solution of large systems of algebraic equations,rr IEEE Trans.
Computer-Aided Des., vol. CAD-7, pp. 976-986, 1988.

M. Catelani, G. Iuculano, A. Liberatore, S. Manetti and M. Marini,
"Improvemenis to numerical testability evaluatiotr", IEEE Trans. Instrtt. Meas.,
vol. IM-36, no. 4, pp. 902-9A7, 1987.

C. W. Cha, , Multiple fault diagnosis in combinational networksrl, Proc. 16th
Design Automation Conf., pp. 149-155, 1979.

W.K. Chia, et al., "Stability and convergence property
for hierarchical simulation of VLSI circuits,t) Proc. IEEE
Syst., Montred, Canada, pp. 848-851, 1984.

of Relaxation methods
Int. Symp. on Circuits

L. O. Chua and P. M. Lin, Computer Aided Analysis of Electronics Circuits,
Prentice Hall, Englewood Cliffs, New Jersey, 1975.

H. Cox and J. Rajski, "A method of fault analysis for test generation and fault
diagnosisr', IEEE Trans. Computer-Aided Des., vol. CAD-7, pp. 813-833, 1988.



r62

W. R. Curtice, -."Nonlinear analysis of GaAs MESFET amplifiers, mixers, and
distributed qmplifiers using the harmonic balance technique", IEEE Trans. on
Microwaae Theory and TeChniques, vol. MTT-35, no. 4, pb. 4'4L447, 1ggz.

H. Dai and T. M. Souders, ."Time domain testing strategies and fault diagnosis
of nonlinear analog circuits", to be presented at IEEE Instrum. Meas." Test
Conf,, Washington,-D.C., April, 1989.

S. W. Director , Circuit Theory A Computational Approach, John Wiley k
Sons, New York, 1975.

S. W. Director and R. _ A. Rohrer, rrThe generalized adjoint network and
network sensitivitiesrr , IEEE Trans. on Circui{ Theory, vol. 

"CT-16, 
no. 3, pp.

318-323, 1969.

J, J-, Pgggutta,, et. gl., LINPACI( (Jser's Guide, Society for Ind,ustrial and,
Applied Mathematics, Philadelphia, tg7g.

tr. Flecha and R. DeCarlo,'rTime domain tableau approach to the fault
diagnosis.-of analog nonlinear circuits, t' Proc. IEEE Ini.- Symp. Circuits and,
Systems (Newport Beach, CA), pp. 828-830, 1984.

F, Franco, .-?t:igry with Operatino Ampli,fi,ers and Analog Integrated, Circuits,
McGraw-Hill Book Company, New Yorli, igSA.

Sr. Freeman, " Optimum fault isolation by statistical inference," IEEE Trans.
Circuits Syst.,  vol.  CAS-26, pp.b05-b12, iSZg.

C. W. Gear, l'{umerical Initial Value Problems in Ord,inary Differential
Equations, Prentice-Hall, Englewood Cliffs, NJ, lg7l.

4 George and J. W. Liu, -Cornp.ute.r Solution of Large Sparse Positiue Define
systems, Prentice-Hall, Englewood cliffs, New Jeisey, igst.

ry. Goering, I'Circuit simulator tackles electrical and mechnical componentsrl,
Computer Design, November. 1986.

G. H. Golub, V. Klema, and G. _W. Stewart, "Rank degeneracy and least
squ.ares . proble*gr: _Tech. Rep. TR-456, Com,puter Scien\e neqit., Stanford
University, CA, 1976.

H. P. Graf, -L,P. Jgq&I,_and W. E. Hubbard, "VLSI implementation of a neural
network modellr ,, IEEE Computer, pp. 4149,, March, 1gti8.

G. D. Hachtel, R.- K. Brayton, _ ald F. G. Gustavson, rrThe sparse tableau
lplppppppppppppppp�roach to network analysis al_d design, tt IEEE Trans. Circuit^ Theory, vol.
CT-l8, pp. 101-112, January. 1971.

H. H. Happ, Diakoptics and ltletworks, Academic Press, New York, 1921.

4.4, Hatzopoulos, aqd.f.M. Kontoleon, "Eff icient fault  diagnosis in analogue
circuits using a branch decomposition approach," IEE Proc.," vol. 134, Pt. 

"G,

no. 4, pp. 149-157, 1987.



163

C. W.. Ho, 4. .E,. Ruehli, and P. A. Brennan, "The modified nodal approach to
network analysis,lr IEEE Trans. Circuits Syst., vol. CAS-22, pp. 504-b09, June
1975.

W. Hochwald and J. D. Baslan, .rrA ̂ dc apploqch for analog fault dictionary
determination,tt IEEE Trans. Circuits Syst., vot. CAS-26, pp. 5ZS-SZS, lg7g.

-Qr.Jlu?"9 and R. W. Liu, "!a_ult diagnosis of piece-wise linear system,tt Proc.
IEEE Int. Symp. Circuits and Systems-(Philadelphia, PA), pp. 418421, 1982.

?..F,.].Iua{}Br_S-' S._Lin and R. W. Liq "Node-fault diagnosis and a design of
testability," IEEE Trans. Ci,rcuits and Syst,., vol. CAS-30, pp. 257-265, 1953.

J. Hutchinson, Ch. f{och, J. Lup,.. atq_q. ^Mead, 
"Computing motion using

analog and binary resistive networks'r, IEEE Compufter, pp. 
-52--65, 

March, lg88:

G .  I ucu lano ,4 .L ibe ra to re ,  q .Mane t t i ,  and  M .  Mar i n i , r rMu l t i f r equency
measurements of testability *.ith^ application to large linear analog sysfems'r,
IEEE Trans. Circuits Syst., vol. CAS-33, pp. 644446, 1986.

P .$ql,an-er, C. Moler and S. Nash, Numerical Methods and Sort,uare, Prentice
Hall, Englewood Cliffs, New Jersey, 1988.

K. S. Kundert and A. Sangiovanni-Vincentelli, "simulation of nonlinear circuits
i_l-thg^lreggg1cy domain," IEEE Trans. Computer-Aided Des., vol. CAD-5, pp.
521-535. 1996.

K. S. Kundert, G. P Sorkin, ..and. A.. Sangiovanni-Vincentelli, "Applying
harmonic balance to almost-periodic circuits'r, Innn Trans. Microwoue 

-'iheory

and Techniques,, vol. 36, no. 2, pp. 366-328, 1988.

9r .1. !Pl, Linear Algebra With Applications, MacMillan Publishing Co., New
York, 1980.

.C. S. L^in'. ?. _I_ILang and R. W. ,Li,u, 
"Topological conditions for single

branch-fault," IEEE Trans. Circuits and Syst.,, voi. CAS-SO, pp. 326-381, 198"3.

P. M. Lin and Y. S. Elcherif, "Computational approach to fault dictionary", in
Analog, Methods^ fpf Cgynfutgr .Aid,ed Analysi,s' and Diagnosis, (Edito;, 

' 
T.

Ozawa), Marcel Dekker, New York, pp. 32b-303, 1988.

H. Maeda, Y.. Ohta, S. Kodama and S. Takeda, "Fault diagnosis of non-linear
systems: graphical ]pproach to detectability, distinguishab-ility and diagnosis
algorithm,, Int. J. Circuit Theory Appl. vol. i4, pp. tbs-zog, t996. 

v

Yr M.ahg1e1', _ Tutorial: DSP-Based _Testing of Analog and Mfued,-signal
Circuits, IEtrE Computer Society Press, washington, D.C., ig8z.

M. J. Maron, _Numerical Analysis A Practicat Approach, MacMillan
Publishing, New York, 1982.

C. Mead, Analog VLil and Neural Systenl,s, Addison-Wesley, New York, 1989.

D. D. Weiner and J. F. Spina, Sinusoidal Analysis and Modeling of Weakty



Nonlinear Circuits
Reinhold Company,

A. Miczo, Digital
1986.

r64

_ _ w_i_th Application Interference Effects, Van Nostrand
New York, 1980

Logic Testing and Simulation, Harper k Row, New york,

A. G. Milnes, - _Sem_igonductor Deuices and Integrated Electronics, Van Nostrand
Reinhold Co., New York, 1980.

M. tr. Mohari-Bolhassan and T. N. Trick, "A new iterative algorithm for the
solution of large_-scal_e systems,rr Proc. 28th Midwest Symposium 

"on 
Circuits and

Systems, Louisville, KY; pp. 75-TT, 198b.

M. tr. Mohari-Bolhassan, D. Smart and T. N. Trick, "A new robust relaxation
t^echnique for VLSI circuit simulatiotr, " Proc. Int. Conference on
Computer-Aided-Design, (Santa Clara, CA), pp. 26-28, lgg5

L. ry.. Nagel, "SPICE 
_ 2: A computer program to simulate semiconductor

circuitsrr, University of California at Berkeley, ERL-1,Is20,, May, lg7b.

M. S. Nakhla and J. Vlach, " A piecewise harmonic balance technique for
determination^ of peqio{iq _ response of nonlinear systemsrt, IEEE Trins. on
Circuits and Syst., vol. CAS-23, tro. 2, pp. 85-gl , tg76.

N. Navid and A. N. Willson,. Jr., 'rFault diagnosis for resistive analog circuits,r'
Proc. IEEE Int. Symp. Circuits and Systems (Tokyo, Japan), pp. 882:885, IgTg.

X.__ _Vj, _D.^_Ril.y, $. s.angiovanni-Vincentelli, and A. L. Tits,"DBLIGHT.SPIC€: An optimization - lr{.d system foi the design of integrated
circuits," IEEE Trans. Computer-Aided Des., vol. CAD-7, pp. sbt-trtg, rbsg

J; M. ,Ol!.g." and W.C. Rheinboldt_,_ Iteratiue Solution of Nontinear Equations in
Seueral Variables, Academic Press, New York, lgZ0.

q. Ozawa, ']?,..gqposition approaches to fault locationrl, in Analog Method,s for
Qompl$er _{id,ed Analyfis^ qnd, Diagnosis, (Editor, T. Ozawa), Mircel Dekk"er,
Inc., New York, pp. 365-380, 1988.-

U Rapiry,rda and R. DeCarlo, ''Analog multifrequency fault diagnosisrr, IEEE
Trans. Circuits Syst., vol. CAS-30, tro.-4, pp. 2ZJ-\JJ," 19g3.

? Reisig 3nd R. DeCqlo, "A. method of analog-digital multiple fault
diagnosis," Int. J. Circuit Theory Appl., vol. 15, pp. L-12, t3gZ.

q. W. Rhyne, M. B. Steer and B. D. Bates, rrFrequency-domain nonlinear
cjTcuit analysis - using generalized power series "', IEEE Tians. on Microwaue
Theory and Techniqubs,-voL 36, no. 2,, pp. 3Zg-382, 1989.

Y..Rizzoli, A. N9ri, "State of the art and present trends in nonlinear microwave
CAq techniqueq'1,_ IEEE Trans. on Miuowaue Theory and, Techniques, vol. tO,
no. 2, pp. 343-365, 1988.

S. M. Rubin, Computer Aids for vLil Design,, Acldison - Wesley, 1ggz.



165

J. Rutkowski and A. Macura, 'lMultiple fault location in AC circuits,'t IEE
Proc., vol. 133, Pt. G, no. 6, pp. 279-284, 1986.

, 
"Fault location for nonlinear resistive circuits,tt Electron.

Lett.,, vol. 20 , pp.401-403,  1984.

R. Saeks, A. Sangiovanni-Vincentelli, and V. Visvanathan, lrDiagnosability of
nonlinear circuits and systems-Part II: Dynamical systems,'r Innn Tians.
Ci,rcuits Syst., vol. CAS-28, pp. 1103-1108, 1981.

A. B. Salama, l.Starzyk, and J. W. Bandler, "A unified decomposition
approach_- for fault location_ in large analog circuits,'t Proc. European Conf.
Circuit Theory and Desegn (Stuttgart, West Germany), pp. I25-L27, iOa3.

large analog circuits,r'
1 984.

"A unified decomposition approach for fault location in
IBEB Trans. Circuits Syst., vol. CAS-31 , pp. 609422,

A. Sangiovanni-Vincentelli, L. K. Chen and L. O. Chua, "An efficient heuristic
cluste^r. algorithm for tearing large+cale networks,[ IEEE Trans Circuits Syst.,
vol. CAS-24, tro. I2,, pp. 709-TI7, 1977.

H. H. Schreiber, _ 
" 
{aplt dictionary based upon stimulus design,I' IEEE Trans.

Circuits Syst., vol. CAS-26, pp. 529-537, 1979.

N. Sen and R. Saeks, " A measure of testability and its application to test
g_oiqt-s selection Theory,ttProc.20th Midwes[ Symp.Cir i i i ts and Systems
(Lubbock, TX), pp. b76-583, ITTT.

N. Sen and S. [qg\t,_ 
"Fault diagnosis for linear systems via multifrequency

measurements", IEEE Trans. Circuits Syst., vol. CAS-26, pp. 457465, 1979.

S. Seshu and R. Waxman, "Fault isolation in conventional linear systems A
feasibility study,rr IEEE Trans. Reliab., vol. R-lb, pp. l l-10, 1goo.

N Singh, _ An Artifi,cial Intelligence Approach to Test Generation, Kluwer
Academic Publishers, Boston, 1987.

S. Skelboe, " Computation of the periodic steady-state response of nonlinear
lelYol$ by exlrapolatrqn methods" ,, IEEE Trans.- on Circuits and Systems, vol.
CAS-27, pp. 161-175, March 1980.

T. M. Souders and G. N. Stenbakken, "Modeling and test point selection for
data converter testingrr, Proc. of IEEE AUTOT-ESTCO^I Cbnf. (Long Island,
NY), pp. 813-817, 1985.

T, M.- Souders and D. R. F lach, rf Accurate frequency response determinations
from discrete step response data't , IEEE Trans. Instrum. Meas., vol. IM-36, no.
2, pp. 433-439, 1987.

S. Spence and .J. l. Pu_tgess,_ Circuit Analysis by Computer from Algorithm
Package, Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1986.

J. A. Starzyk, "Development of testing strategies for large nonlinear circuits,rf

to

A



166

A final report submitted to the National Bureau of Standards. United States
Department of Commerce, ECtr Research Report #030, Ohio University, 1987.

I A. Starzyk, _"Si,gnal-flow-graph analysis by decomposition method", IEE
Proc., vol. I27, Pt.G, no. 2,, pp. 81-86, 1980.

.1. 4. Starzyk, rfDevelopment of testing strategies for large nonlinear circuits,rf A
A final report submitted to the Natlonal B[reau of Slandards. United States
Department of Commerce, ECE Research Report #031, Ohio University, 1988.

{, A. Starzyk and J. W. gandler, "Location of fault regions in analog circuits,rl
Simulation Optimization _pystems Research Laboratory-, McMaster IJniversity,
Hamilton, Ont., Canada, Rep. SOS-81-17-R, 1981.

J. A. Starzyk and J. W. Bandler, 'rNodal approach to multiple-fault location in
?1?loq -.it uitlr'l Proc. IEEE Int. SArnp. Circuits and Systems (Rome, Italy), pp.
1136-1139,  1992.

J. A. Starzyk and H. Dai, "Multifrequency measurement
circuits", Proc. IEEE Int. Symp. Circuits and Systems
884-887. 1987.

J. A. Starzyk and A. Konczykowska,
networks", IEEE Trans. on Circuits

of testability in analog
(Philadelphia, PA), pp.

J- A.. Starzyk and H. Dai, r'Faul^t. diagnosis qnd calibration of large analog
9i1_cu!t9, 

t' Pyoc. IEEE Int. Symp. Circuits an d Systems (Helsinki, Finiand), pp.
94t-944, 1ggg.

J_-4_ S_tarzyk and _H. Dai, "Sensitivity based testing of nonlinear circuits,lt Proc.
IEEE Int. Symp. Circuits and Systems (Helsinki, Finland), pp. ltbg-l I6i, 1988.

/. A. Starzyk and H. Dai, I'Time domain testing of large nonlinear circuitsfr, to
!g .pt.tglted. at. Europeaq Conference on Circult Theoiy and Design (London,
[Jnited Kingdom), September, 1989.

.l - 4 Starzyk and M. El-Qqm&l, "Fault location by nodal equations", in Analog
Methods^ [o.r Computgr .Aided {nalysis and Dia-gnosis, (E-ditor, T. Ozawa)l
Marcel Dekker, New York, pp. 265-297, 1988.

J-. A. Starzyk and M. El-Gamal, "Diagnosability of analog circuits a graph
theoretical apploqcl!" Proc. IEEE Int.- Symp. Circuits and, Systems, (HeEini<i,
Finland), p. 945-948, 1988.

J-. 4...Starzyk qnq M. El-Gamal, l'Fault diagnosis of nonlinear resistive
cir-cuits", Proc. Midwest Symp. on Circuits and Systems (St. Luis, MO), pp. ,
1988.

J. A. Starzyk and M. El-Gamal, "Parameter identification of nonlinear resistive
Circuits,il to be__presgn_ted at Furopean Conference on Circuit Theory and
Design (London, United Kingdom), September, 1989.

302-315, 1986.

J. A. Starzyk and

" Flowgraph analysis of large electronic
and Syst., vol. CAS-33, tro. 3, pp.

E. Sliwa, " Hierarchic decomposition method for the



r67

topological analysis of electronic networksrr, Int. J. Circuit Theory Appl., vol. 8,
pp. 407117, 1980.

{, A. Starzyk and E. Sliwa, i'Upyqrd topological analysis of large circuits using
directed graph representationrr, IEEE Trans.-Circuits Syst., vol.tAs-gt, no. {,
pp. 4I04I4, 1984.

M. B. Steer and P. J. Khan, "An algebraic formula for the complex output of a
system with multi-frequency excitatior", Proc. IEEE, vol 71, pp. If7q79,,
January 1983.

G. N. Stenbakken,. T. V. Souders, J. A. Lechner, and P. T. Boggs, rrEfficient
calibration strategies foe linear time invariant systems", Pr-oc. of IEEE
AUTOTESTCONeonf. (Long Island, NY), pp. 301-366, 198b.

G. N. Stenbakken and T. M. Souders, r'Test point selection and testability
measures via QR factorization of linear models,'t IEEE Trans. Instrum. Meas.,
vol. IM-36, no. 2, June pp. 406-410, 1987.

G. N. Stenbakk-.n, Tr -M. Souders and G. W. Stewart, "Ambiguity groups and
testability", to be published in IEEE Trans. Instrum. Meas.

L. J._Stotts, rrlntroduction to implantable biomedical IC design" , IEEE Circuit
and Deaices, pp. 12-18, January, 1989.

M. N. Swamy a_nd L. M. Roytman, "Pseudo-multifrequency approach to fault
d_iagnosis - in DC networkrr, Proc. IEEE Int. Symp-. Circufts and Systems
(Montreal, Canada), pp. 672474, 1984.

G. C. Temes,_"Efficie9_t methods of fault simulatior," Proc. 20th Midwest Symp.
Circuits and Systems (Lubbock, TX), pp. 191-194, 1977.

T. . N. Trick, F. R. Colon, .ald S. -P. F an, " Computation of capacitor voltage
and inductor current sensitivities with respect to initial conditions- for the steady
state3.nglysis of nonlinear _p_eriodic circuitsrr, IEEE Trans. on Circuits and Syst.,
vol. CAS-22, pp.391-396, May 1975.

F. F. Tsui, Lil/VLSI Testability Design,, McGraw Hill, New York, 1986.

K. C. Varghese, J. H. Williams, and D. R. Towill, "Computer-aided feature
selection for enhanced analogue system fault location,i' Pattem Recogn., vol. 10,
pp. 265-280, 1978.

V. Visvanathan and A. Sangiovanni-Vincentelli,rrDiagnosability of nonlinear
circuits and syg_tgms
CAS-28, pp. 1093-1I02, 1981.

V. Visvanathan and A. Sangiovanni-Vincenteili, "A computational approach for
thg 4?S_ttoqability of dynamical circuits,t' IEEE Trans. 

- 
Computer-Aided Des.,

vol. CAD-3, pp. 165-171, 1984.

J. Vlach and. {. Singb"l, -Computer Methods for Circuit Analysis and Design,
Van Nostrand Reinhold, 1983.



168

M. Vlach, "LU decomposition and forward-backward substitution of recursive
bordered block diagonal matrices,rr IEE Proc., vol. I32, Pt. G, no. 1, pp. 24-3I,
1985.

K. D. Wagner and T. W. Williams, "Design for testability of mixed signal
integrated circuitsrr, Proc. Int. Testing Conference (Washington, DC), pp.
823-828, 1988.

C. L. Wey, lrDesign of testability for analogue fault diagnosis," Int. J. Circuit
Theory Appl., vol. 15, pp. L23-L42, 1987.

C. L. W.y, l'Parallel processing for analogue fault diagnosis'|, Int. J. Ci,rcuit
Theory Appl., vol. 15, pp. 303-316, 1988.

C. L. Wey and R. Saeks, "On the Implementation of an analog ATPG: the
nonlinear case" , IEEE Trans. on Instram. I\[eas., vol. 37, no. 2, pp. 252-258,
June 1988.

J. K. White and A. Sangiovanni-Vincentelli, Relaration Techniques for the
Simulation of VLSI Circuits, Kluwer Academic Publishers, Boston, 1987.

W. K. Wong, f rSimulation of nonlinear microwave circuits using harmonic
balance method", M.S. Thesis, Ohio University, 1988.

C. C. Wu, rlTest point selection methods for the self-testing based analogue
fault diagnosis system,lr IEE Proc., vol. I32,, Pt. G, no. 5, pp. 172-L83, 1985.

C. C. Wu, K. Nakajima, C. L. Wey and R. Saeks, "Analog fault diagnosis with
failure bounds,tt IEEE Trans. Circuits Syst. vol. CAS-26, pp. 277-284, 1982.

C. C. Wu and Y. Y. Wu, lrComputer generation of topological equations and
pseudocircuits for the self testing analogue fault diagnosis algorithm, " IEE
Proc., vol. 133, Pt. G, no. 6, pp. 273-278, 1986.

C. C. Wu, rrTest point selection methods for the self-testing based analogue
fault diagnosis system,rr IEE Proc., vol. L32, Pt. G, no. 5, pp. I72-I83, 1985.

F. F. Wu, " Solution of large scale networks by tearing, " IEEE Trans. on
Circuits and Syst., vol. CAS-23, tro. 12, 1976.

P. Yang, "An investigation of ordering, tearing, and latency algorithms for the
time-domain simulation of large circuits," Report R-891, University of Illinois
at Urbana-Champaign, 1980.

M. E. Zaghloul and D. Gobovic, "Single-fault diagnosis of nonlinear resistive
networks", IEE Proc., vol. 134, Pt. G, No. 1, 1987.

R. Zot, "Fault analysis of nonlinear circuits from node voltage measurements rf
proc. insn Int. Sir;p. circitti aii ia;;;*t (ir.iri'ir.i;-Fi;ld8l, 

-pp. 
11bb-1rbb,

1 988.



Dai, Hong. Ph.D. June, 1989, Electrical and Computer Engineering

Development of Decomposition Approach for Testing Large Analog Circuits.

(168.  pp)

Director of Dissertation: Dr. Janusz A. Starzvk

The objective of this dissertation is to develop a new testing method for

large scale circuits. This new method must be useful for functional testing and

calibration of complex systems as well as identifying element characteristics and

verifying macromodels or entire subsystems. It must also be able to diagnose

faults and evaluate elements efficiently and reliably, while meeting the

requirements of the automatic test system.

In order to realize this objective, a decomposition approach for testing

large scale analog circuits was deveioped and testing strategies related to

calibration, functional testing and fault diagnosis were established.

In the decomposition approach, the interconnected system was

decomposed into a number of small subnetworks. To achieve this decomposition

without breaking interconnections, voltage measurements were taken at the

partition points and new test equations were formulated at these nodes. In this

way the effects of the measurement errors were reduced to a local area, and

computations were performed in each subcircuit. Subcircuit analysis was

facilitated since the boundary conditions were determined by the measurement

voltages. Thus, the speed and accuracy of the diagnosis process were improved.

In order to fully understand the advantages of such an approach, we compared

it with the sensitivity approach.



This dissertation proposed test strategies for fault diagnosis of large

analog circuits. Taking the practical aspects into consideration, the developed

method was modified so that it could be implemented in the real world. The

practical aspects include determination of the test method and test environment,

selection of test points, analysis of testability, prediction of the circuit's

response, effect of measurement errors) elimination of ambiguity groups and

estimation of time skew. The real test was implemented at the National

Institute of Standards and Technology where experiment results verified

effectiveness of the developed techniques.

The dissertation was organized as follows. First the general test methods

and test procedure for element identification techniques were given. Then the

sensitivity approaches, in DC, time and frequency domains was discussed,

respectively. This research stemmed from the need to implement the sensitivity

approach in a practical testing situation and to include it as software tools in

circuit simulators. The discussion on the sensitivity approach served as an

introduction to the decomposition approach. then the decomposition approach

for testing large scale circuits was presented. The test equations were derived

and the test procedures for DC testing, time domain testing and frequency

domain testing were given. It was shown that the test matrix obtained by the

decomposition approach had bordered block diagonal (BBD) structure thereby

allowing sparse matrix and parallel processing techniques to be used to speed up

computation in circuit simulation and fault diagnosis. Test strategies related to

the practical aspects were proposed. The computer simulation and experimental

results were given and the results obtained by the sensitivity approach and

decomposition approach were compared.



The test method developed here can be used for testing custom

integrated circuits (IC) such as analog/digital converters, filters, voltage

regulators or operating amplifiers. It also can be applied to test VLSI neural

networks or complicated mixed mode circuits that combine analog and digital

functions. This method has a significant impact on system design, fabrication,

maintenance, testing and repair stages. Voltage measurements taken during the

testing play an active role in circuit simulation and diagnosis processes. Large

systems can be tested without breaking the connections and all calculations can

be implemented all calculations at the subsystem level. In design, the testing

strategies provide design engineers with useful information so that they can

make selected test points accessible.
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