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Abstract 

HE, HAIBO, Ph.D., August 2006, Electrical Engineering and Computer Science 

DYNAMICALLY SELF-RECONFIGURABLE SYSTEMS FOR MACHINE 

INTELLIGENCE (170 pp.) 

Director of Dissertation: Janusz A. Starzyk 

 

This dissertation is focused on the development of system level architectures and 

models of dynamically self-reconfigurable systems for machine intelligence. This research is 

significant for building brain-like intelligent systems. Although the development of deep 

submicron very large scale integration (VLSI) system, nanotechnology and bioinformatics 

facilitate building such intelligent systems, yet it is very challenging to study how these kinds 

of complex, reconfigurable systems can self-develop their connectivity structures, accumulate 

knowledge, make associations and predictions, dynamically interact with environment, and 

self-control to accomplish desired tasks.   

A new framework of “learning-memory-prediction” for machine intelligence is 

proposed in this research, and it serves as the foundation for building intelligent systems 

through learning in dynamic value systems, memorizing in self-organizing networks, and 

predicting in hierarchical structures. These systems are characterized by on-line data driven 

learning, distributed structure of processing components with local and sparse 

interconnections, dynamic reconfigurability, self-organization, and active interaction with 

environment.  



 

Learning is the fundamental element for biologically intelligent systems. The 

proposed online value system is able to learn and dynamically estimate the value of any 

multi-dimensional data set, and such value system can be used in reinforcement learning. 

Feedback mechanism is introduced in the self-organizing learning system to allow the 

machine to be able to memorize information in its distributed processing elements and make 

associations. After the information is learned and stored in the associative memory, a 

biologically-inspired anticipation-based temporal sequence learning architecture is proposed. 

All systems proposed in this research are hardware-oriented. A novel computing paradigm 

that can achieve low power consumption for designing large scale, high density intelligent 

systems is proposed, and a brief description of the system level hardware architecture for 

prototyping and testing of the proposed systems is also presented.  

Intelligent systems have wide applications from military security systems to civilian 

daily life. In this research, different application problems, including pattern recognition, 

classification, image recovery, and sequence learning, are presented to show the capability of 

the proposed systems in learning, memory, and prediction.  
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Chapter 1 

  Introduction 

1.1 Motivation  

With the development of deep submicron very large scale integration (VLSI) 

systems, nanotechnology and bioinformatics, it is possible to build complex dynamically 

self-reconfigurable systems for machine intelligence. However, there is still no clear picture 

about how to design the truly brain-like intelligent machines. The biggest challenge comes 

from how to develop the system level models and architectures that are able to learn, process 

information, make associations and predictions to accomplish desired tasks, which are the 

critical elements for any biological intelligent systems. 

Traditional structures for artificial intelligence, for instance, neural networks, were 

introduced with the hope to model functions of the human brain. However, very little progress 

was made towards implementation of structures and distributed learning algorithms, which 

would yield essential features of neural processing observable in a living brain. People agreed 

that human brains and computers use fundamentally different ways in handling various 

problems [Haw 04]. That is why a three-year old baby can easily watch, listen, learn, and 

remember various external environment information and adjust her behavior, while the most 

sophisticated computer can not. In such sense, modern computers are just computational 

machines without intelligence. The question is: how does one develop the system level 

models and architectures that are able to mimic the brain intelligence?  
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Recently, a new theoretical framework titled “memory-prediction” was proposed for 

designing real intelligent machines by J. Hawkins [Haw 04]. This theoretical framework 

provides a new solution for how to understand the memory and prediction, which are widely 

considered to be critical elements of human intelligence. In this dissertation, “learning” is 

added to this framework to present a complete picture for designing brain-like machine 

intelligence. While [Haw04] focused on understanding the intelligent framework based on the 

neocortex, the “learning-memory-prediction” framework proposed in this dissertation 

research is focused on developing system level models and architectures for dynamically 

self-reconfigurable systems that are able to mimic the brain-intelligence. The major advantage 

of such systems over the traditional hardware with embedded software systems is that they 

can dynamically self-reconfigure their structures in interaction with the external environment 

to learn, remember and predict information, therefore guiding the machine to achieve its 

goals. These kinds of systems have wide applications including dynamically adaptive control, 

intelligent robotics, automatic target recognition and tracking, image and signal processing, 

biological research, data mining, and decision-support systems.  

Another motivation for designing brain-like intelligent systems comes from the 

development of the reconfigurable computing and VLSI technologies. With the capability of 

fabricating millions of transistors in a tiny silicon area, it is technologically possible for 

engineers to implement an integrated “silicon brain”. Therefore, it is critical to integrate 

knowledge from neuroscience, bioinformatics and engineering design to develop a truly 

intelligent machine. To this end, we need to develop the system level models and 
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architectures that not only can learn, remember and anticipate, but are also hardware oriented, 

fault tolerant and scalable to large systems.  

 

1.2 Related work: learning, memory and prediction 

As one of the most sophisticated, challenging, rewarding and significant 

interdisciplinary research areas, designing of intelligent systems has attracted extensive 

attention both in science and engineering. In this section, I will give a brief review of the 

state-of-the-art research achievements for understanding, modeling and designing of 

intelligent systems in learning, memory and prediction.   

The ability of self-organization is critical for intelligent systems to learn and process 

information from the external environment. A self-organizing learning array (SOLAR) system 

was proposed by J. A. Starzyk [Sta 05a]. As a parallel learning architecture, SOLAR provides 

a general learning mechanism with sparsely, adaptive interconnections, data-driven learning, 

and multilayer structures. Neurons in SOLAR exchange information during learning, and 

have the ability to self-organize by adapting their functionality and interconnection weights in 

response to the information received.  

The SOLAR structure proposed in [Sta 05a] is a supervised learning mechanism and 

shows solid performance for classification problems. However, the intelligent systems should 

also be able to learn without supervision, which means that there is no instructor telling the 

machine what it should or should not do. The intelligent machine should learn through its 

experience interacting with the external environment in order to maximize the reward for its 
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actions and thus achieve its goal. Reinforcement learning (RL) is this type of un-supervised 

learning that learns by optimizing the expected reward it receives when interacting with the 

environment [Sut 98]. Value system is an important element for the RL. The machine should 

have an internal biologically plausible organization that streamlines reward and punishment 

signals from environment to build its internal value system, is able to evaluate signals coming 

from environment according to its value system, and plans its actions to optimize the expected 

rewards. Although it is very important to estimate the value signal accurately and 

dynamically, it is very difficult to do so in complex, uncertain environment for the following 

reasons: 

• Limited availability of information; 

• Time variation of the information included in data; 

• High information redundancy; 

• High dimensionality of the data set; 

Many results for using value systems in reinforcement learning have been reported in 

recent literature. For instance, [Bab 03] proposed a fuzzy-based navigation system for two 

mobile robots using distributed value function reinforcement learning. This approach enables 

the robots to learn a value function, which estimates the future rewards for both robots. In this 

way, cooperation between the two robots is maintained and each robot learns to execute the 

actions that are good for both of them. In [Hua 02b], a robotic value system was proposed by 

integrating novelty and reinforcement learning. This system includes sensory inputs, a 

cognitive mapping module, a value system, and an action network. In this dissertation 

research, a value system for machine learning is investigated. The proposed value system is 
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an online dynamic network, which can dynamically estimate the value of multidimensional 

data set.  

The SOLAR structure implemented in [Sta 05a] utilizes a feedforward mechanism for 

the machine to learn the information from environment. This concept is further advanced in 

this dissertation research to include both feedforward and feedback mechanisms in 

hierarchical organization to learn and memorize information: self-organizing associative 

memory (SOAM). This introduced the second element of the proposed framework: 

associative memory. 

Associative memory is of critical importance for human intelligence. There are two 

types of associative memories: hetero-associative (HA) and auto-associative (AA) memory. 

HA memory makes associations between paired patterns, such as words and pictures, while 

AA memory associates a pattern with itself, recalling stored patterns from fractional parts of 

the pattern as in image recovery. Due to the importance of the associative memory for 

machine intelligence, such systems have been extensively studied. Among HA studies, Salih 

et al. proposed a new approach for bidirectional associative memories (BAM) using feedback 

neural networks [Sal 00]. The perceptron training algorithm was used to solve a set of linear 

inequalities for the BAM neural network design. In [Cha 03], Chang et al. proposed adaptive 

local training rules for second-order asymmetric bidirectional associative memory. In [Wan 

99], Wang presented a multi-associative neural network (MANN) and showed its application 

to learning and retrieving complex spatio-temporal sequences. Simulation results show that 

this system is characterized by fast and accurate learning, and has the ability to store and 

retrieve a large number of complex sequences of spatial patterns. Hopfield’s paper [Hop 82] 
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is a classic reference among AA studies. Since that paper, many research results have been 

reported. Vogel presented an algorithm for auto-associative memory in sparsely connected 

networks [Vog 98]. The resulting networks have large information storage capacities relative 

to the number of synapses per neuron. Vogel et al. derived a lower bound on the storage 

capacities of two-layer projective networks (P-nets) with binary Hebbian synapses [Vog 97]. 

It is reported that given a %1  tolerance for activation of spurious neurons, the P-net with 

1000 synapses per neuron may store more than 6105.1 ×  training vectors with 20 active 

neurons per vector. In [Wu 00], an efficient learning algorithm for feedforward associative 

memory is proposed. This memory uses a winner take all (WTA) mechanism and involves a 

two-layer feedforward neural network. Recently, Wang et al. proposed an enhanced fuzzy 

morphological auto-associative memory based on the empirical kernel map [Wan 05].  

It is believed that the human brain employs both hetero-associative and 

auto-associative memory for learning, action planning, and anticipation [Riz 01] [Bro 95] 

[Mur 97]. The memory formed in the human brain is self-organized and data driven.  

Self-organization is responsible for formation of hierarchically organized interconnected 

structures not only in the human brain but also in the nervous systems of lower vertebrates 

[Mal 03]. In this research, a self-organizing associative memory capable of both 

hetero-associative and auto-associative learning is designed and analyzed. The SOAM is a 

hierarchically organized associative memory, with sparse and local connections, 

self-organizing processing elements (PE), and probabilistic synaptic transmissions. Initially, 

all PEs in the network are identical and record their input data distribution using probability 

estimators. Using associations observed in the input data, the network self-organizes defining 
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transfer functions of its PEs. Both feedforward and feedback mechanisms are used to 

transform signals and make associations.  

 After the information is stored in the memory, the prediction mechanism is 

introduced for the intelligent systems to be able to learn and predict temporal sequences. 

Temporal sequence learning is presumably among the most important components of human 

intelligence, as most human intelligence behaviors are in the sequential format. For instance, 

the natural language processing, speech recognition, reasoning and planning are all based on 

sequential memory. Over the past decade, models and mechanisms for temporal sequence 

learning have attracted considerable attention. R. Sun and C. L. Giles offer a useful review of 

the characteristics, problems, and challenges for sequence learning from recognition and 

prediction to sequential decision making [Sun 01].  

D. Wang and M. A. Arbib proposed a complex temporal sequence learning model 

based on short-term memory (STM) [Wan 90a]. In their paper, two special types of neurons 

are proposed for complex temporal sequence learning. The first one is the dual neuron, which 

is used to store a signal for a short period of time. Unlike the traditional binary signal values 

used in many neural network models, the output of a dual neuron is a graded signal. The 

second neuron is the sequence detecting neuron. After learning, this sequence detecting 

neuron fires in response to the previous sequence of patterns, not just the previous pattern. It 

thereby overcomes a limitation of networks that cannot reliably recall sequences that share 

common patterns. The same authors presented a framework of learning, recognition and 

reproduction of complex temporal sequences in [Wan 93]. In this model, sequences are 

acquired by the attention learning rule, which combines Hebbian learning and a normalization 
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rule with sequential system activation. Time intervals between sequence components do not 

affect recognition. A global inhibitor is proposed to enable the model to learn context lengths 

required to disambiguate associations in complex sequence reproduction. In order to 

overcome the capacity limitation of STM, a hierarchical sequence recognition model based on 

the chunking notion is proposed in [Wan 93]. For instance, in a letter-word-sentence 

hierarchical structure, a unit for a given word is activated at the end of the presentation of that 

word, and the model learns the sequence of letters of that word based on the letter units active 

at that time. Once the word structure has been learned, the same mechanism can be applied to 

train a higher hierarchical level on the sequence of words. One more issue addressed in [Wan 

93] is interval maintenance. This is achieved by coding intervals by connection weights from 

the detector layer to the input layer.   

In [Wan 95], a neural network model capable of learning and generating complex 

temporal patterns by self-organization was proposed. This model actively regenerates the next 

component in a sequence and compares the anticipated component with the next input. A 

mismatch between what the model anticipates and the actual input triggers one-shot learning. 

Although the anticipation mechanism improves the learning efficiency of this model, it needs 

several training sweeps to learn a sequence. As the number of training sweeps required 

depends on the degree of complexity of the sequences, it is not very efficient for highly 

complex sequences. 

Another paper [Wan 96] focused on the learning of the multiple temporal sequences 

and “catastrophic interference.” It is showed that the anticipation model proposed in [Wan 95] 

is capable of incremental learning with retroactive interference but without catastrophic 
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interference. In addition, a chunking mechanism was included in this model to detect repeated 

subsequences between and within sequences, thereby substantially reducing the amount of 

retraining in sequential training.   

L. Wang proposed the use of associative memory to learn and retrieve spatio-temporal 

sequences in [Wan 98] and [Wan 99]. In [Wan 98], the associative memory model includes 

three major components: a voting network, a parallel array of hetero-associative neural 

networks (HANN), and delayed feedback lines from the output of the system to the 

associative neural network layers. The delayed sequence of hetero-associators “votes” on the 

next output at each time step. After learning, the system can retrieve the entire sequence from 

a small cue sequence. Since the model in [Wan 98] assumes that each HANN only learns 

hetero-associations between single spatial patterns and does not learn to associate multiple 

patterns in groups, this model was further extended to include associations of one pattern with 

multiple patterns in [Wan 99]. The proposed model in [Wan 99] has the advantages of short 

learning time and accurate retrievals, and the ability to store a large number of complex 

sequences. However, in both of the models the required number of networks (HANNs in 

[Wan 98] and MANNs in [Wan 99]) for learning and retrieving a sequence significantly 

increases with the complexity of the sequence.   

In [Wan 01], a dual-weight neural network (DNN) scheme for fast learning, 

recognition, and reproduction of temporal sequences was developed. In a DNN, each neuron 

is linked to other neurons by long-term excitatory weights and short-term inhibitory weights.  

Fast learning is achieved by employing a two-pass training rule to encode the temporal 

distance between two arbitrary pattern occurrences. Based on this, the DNN was extended to 
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a more generalized model, DNN2, which incorporates a self-organizing algorithm. In this way, 

the DNN2 can achieve autonomous temporal sequence recognition and reproduction.  

A hierarchical structure is important for sequence learning. For instance, in [Man 97], 

a linear-time algorithm called SEQUITUR was proposed for identifying hierarchical structure 

in sequences. The main idea of this algorithm is that phrases which appear more than once 

can be replaced by a grammatical rule that generates the phrase, and that this process can be 

continued recursively, producing a hierarchical representation of the original sequences.  

Although [Man 97] is not focused on sequence retrieval, it presents the idea of hierarchical 

representation of sequences, which is used in many research efforts that model sequence 

learning. For instance, D. George and J. Hawkins [Geo] discussed the problem of hierarchical 

structure for temporal sequence learning targets on invariant pattern recognition. It is 

concluded in [Geo] that the neocortex solves the invariance problem in a hierarchical 

structure. Each region in the hierarchy learns and recalls sequences of inputs, and temporal 

sequences at each level of the hierarchy become the spatial inputs to the next higher regions.  

In this dissertation research, an anticipation based sequence learning neural structure 

is proposed. Hierarchical organization, prediction mechanism, and one-shot learning 

characterize this model. In the lowest level of the hierarchy, a modified Hebbian learning 

mechanism is used for pattern recognition. Prediction is an essential element of this temporal 

sequence learning model. By correct prediction, the machine indicates that it knows the 

current sequence and does not require additional learning. When the prediction is incorrect, 

one-shot learning is executed and the machine learns the new input sequence as soon as the 

sequence is completed.   
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1.3 Significance of Research 

Significance of the research presented in this dissertation stems from the following 

needs and observations:  

• It is important to understand how a brain-like complex system can be 

self-organized to develop its connectivity structure, build the mechanisms for 

association and anticipation, interact with external environment, accumulate 

knowledge through experience, formulate goals for its actions, and self-control to 

achieve its goals. To this end, the proposed “learning-memory-prediction” 

framework provides a foundation for designing the intelligent systems with such 

capabilities; 

• It is critical to design system level models and architectures that are able to mimic 

such intelligent mechanisms. The proposed dynamic value learning system, 

self-organizing associative memory, and anticipation based sequence learning 

network provide a solution for designing necessary elements of such brain-like 

intelligent systems. In the proposed systems, the complexity of the network 

organization is self-decided by the system according to the information it receives, 

rather than by the arbitrary choice of a designer; as is the case of artificial neural 

networks. These characteristics make the proposed models in this research more 

like a “living-brain”; it can grow in complexity and ability to model external 

environment according to the information it receives, and it can accumulate such 
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knowledge. This is a fundamental difference in comparison to the fixed or 

pre-defined neural network structure; 

• It is essential to develop new computing paradigm that can achieve extremely low 

power consumption for hardware implementation of such large scale integrated 

intelligent systems. Without careful consideration of the low power consumption, 

the designed intelligent system will not be able to function properly. Therefore, the 

proposed low power design scheme in this dissertation provides a possible solution 

for the future implementation of such large scale high density intelligent systems; 

 

1.4 Research goals and objectives 

 As most of the state-of-the-art research in the effort of designing intelligent systems 

is focused on individual elements for learning, memory, and prediction, it is the goal of this 

dissertation research to develop mechanisms and organization for elements of intelligence and 

to provide a framework to integrate these individual elements together with the aim of 

designing brain-like intelligent systems.  

 To accomplish this research goal, I will focus on the designing of system level 

models and architectures for building dynamically self-reconfigurable systems for machine 

intelligence. The underlying foundation of building such brain-like intelligent systems is 

based on the proposed “learning-memory-prediction” framework. It is the objective of this 

research to justify such an integrated theoretical framework for designing real intelligent 

systems, and under this foundation, to develop the network models and architectures that:  
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• Are able to self-organize their connectivity structure and dynamically reconfigure 

to learn, process information, accumulate knowledge, and make associations and 

predictions;  

• Are able to learn without a supervisor, learn through interaction with environment 

without software rules or a global learning algorithm, and learn through 

experiences to accomplish desired tasks;  

• Are scaleable to very large systems, and are fault tolerant and modular for easy 

implementation in hardware, such as reconfigurable computing 

field-programmable gate array (FPGA) technology, dedicated analog or digital 

VLSI technology, or future system level technology (modular blocks represented 

by SOLAR systems or nanotechnology).   

 

1.5 Dissertation Organization 

Figure 1-1 illustrates the overall organization of this dissertation.  
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Figure 1-1 Dissertation organization 

 

Chapter 1 presents the motivations, significance, and objective of this research. This 

chapter also provides a brief review of the state-of-the-art work in the area of learning, 

memory, and prediction. In addition, this chapter provides an overview and organization of 

the whole dissertation.  

Chapter 2 focuses on the learning scheme. A brief review of the SOLAR and 

reinforcement learning is given in this chapter. It introduces one of the critical elements in the 

learning procedure: value learning system. A novel architecture of the dual-network online 

value system is proposed in this chapter, and this system can dynamically estimate the value 

of incoming multidimensional data sets from external environment. In the SOLAR learning 

system, information is only propagated forward, and this is not sufficient for the intelligent 
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systems to select, evaluate, and memorize useful information. Therefore, a feedback 

mechanism is introduced in the self-organizing network and this leads to the organization of 

SOAM in Chapter 3.  

Chapter 3 discusses in detail the proposed self-organizing associative memory 

architecture, which is a hierarchically organized memory network with sparse and local 

interconnections. Both feedforward and feedback mechanisms are used to transform signals 

and make associations. This associative memory provides a mechanism for the intelligent 

system to be able to associatively recover a complete picture from partial information 

(auto-association), or associate one piece of information with another one 

(hetero-association). After the information is stored in the memory structure, the intelligent 

systems should be able to make predictions to learn and retrieve temporal sequences. This 

leads to the hierarchical sequence learning machine (HSLM) introduced in Chapter 4.  

Chapter 4 focuses on the system level architecture of the proposed temporal sequence 

learning neural network. This network is hierarchically organized and is efficient in both 

learning effort and storage capacity. At each hierarchical level, a winner-take-all structure is 

used to select the firing neurons at this level, and the firing neurons in one level provide the 

input to the neurons on the next hierarchical level. A prediction mechanism is proposed in this 

model for efficient anticipation based learning. As long as all predictions are correct, no 

learning takes place. Otherwise, a learning signal is issued at the end of a sequence and a 

one-shot learning is executed to learn the new sequence.  

Chapter 5 discusses different application problems for the proposed dynamically 

self-reconfigurable systems. The application areas studied in this dissertation include pattern 
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recognition and classification, image recovery, and temporal sequence learning. Through 

these application problems, it is clearly shown that the proposed models have the abilities to 

learn, process information, and make associations and predictions to solve practical problems.  

Chapter 6 discusses the low power design of the large scale, high density intelligent 

systems. Power consumption will be a major design issue for such complex dynamically 

reconfigurable systems. In this chapter, a novel switched inductor-capacitor (SLC) 

architecture is proposed to reduce the dynamic power consumption. Finally, a brief 

description of the hardware architecture based on the reconfigurable FPGA technology is 

presented in this chapter. This FPGA system will provide a platform for prototyping and 

testing of the proposed models and architectures in this dissertation.  

Chapter 7 summarizes the whole dissertation work, restates the novelty and original 

contributions of this dissertation work, and discusses future research directions.  
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Chapter 2 

   Value System for Machine Learning 

2.1 Introduction 

A new machine learning concept, the self-organizing learning array was recently 

proposed in [Sta 05a]. As a general learning mechanism, SOLAR has several fundamental 

advantages over the traditional neural network based learning scheme, including online 

data-driven learning, local and sparse interconnection, and entropy based learning. While the 

learning in Kohonen’s self-organizing map (SOM) [Koh 95] is performed in the entire input 

data space, individual neurons in SOLAR learn information from their local input space. In 

addition, the interconnect structure in SOLAR can be dynamically reconfigured according to 

the information each neuron receives in the learning process. This provides SOLAR with 

more flexibility in the learning process compared to the fixed interconnection structure 

(defined by templates) in cellular neural networks (CNN) [Man 99].  

The SOLAR architecture presented in [Sta 05a] uses supervised learning, which 

means a teacher (instructor) is needed to tell the machine what is good and what is bad. 

However, a supervisor is not always available in many learning environments [Sut 98]. For 

instance, when a one-year old baby stands alone in a baby-cart and plays with toys, turns 

around and looks at the fantasy world around him, there is no explicit teacher telling him 

about the information he is observing, processing and perceiving. However, learning does 

occur in this process. By the interaction with the external environment, the baby can process 
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information it receives, adjust its behavior and learn how to achieve his goals [Haw 04]. This 

kind of learning is a combination of reinforcement learning [Sut 98], anticipation, and novelty 

detection.  

Learning from active interaction with the external uncertain environment is the 

foundation of reinforcement learning [Sut 98], which is also believed to be the foundation of 

learning for most of the biologically intelligent systems. People learn through interacting with 

the external environment, accumulate knowledge through experiences, and adjust behavior 

(action) to achieve their goals (maximize the rewards signal). A typical reinforcement learning 

system includes the external environment, a policy, a reward function, and a value function. 

Among all these elements, R. S. Sutton presented that value function is of critical importance 

and almost all reinforcement learning algorithms are based on estimating the state-action 

values [Sut 98]. Based on the information an intelligent system receives from the environment, 

it should be able to evaluate the signals according to the value system, and adjust its actions to 

maximize its rewards.  

Although it is very important to estimate the value signal accurately and dynamically, 

it is very difficult to do so in practical applications. In this chapter, an online value system is 

proposed to dynamically evaluate the value signal for multi-dimensional data sets. Dynamic 

curve fitting is the core module for this value learning system. Based on this scheme, a three 

curve fitting (TCF) method is proposed to improve the fit to a statistically distributed high 

dimensional data set. The proposed value system model has a pipelined architecture and uses 

two networks: a data processing network (DPN) and an information processing network 

(IPN).  



33 

2.2 Online dynamic curve fitting 

Consider dynamic adjustment of the fit function described by a linear combination of 

the selected base functions qii ,...2,1, =ϕ , where q  is the number of base functions. The 

objective of the fit function is to fit values from the received data samples. Assume that each 

processing element will dynamically adjust its fit function to minimize the least square error 

(LSE) of the function approximating values of all training data x  and y  as follows: 

qqaaaY ϕϕϕ ∗++∗+∗= ......2211                     (2.1) 

where qii ,...2,1, =ϕ , is the base function. The number of base functions can be adjusted 

according to the accuracy required and the data noise level.  

Using the least square solution, the coefficients qaaa ,...,, 21  can be determined by 

pseudo inversion. To do this dynamically, it is necessary to accumulate function values and 

their combinations for different input samples. Equation (2.1) can be represented as follows: 
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then the coefficients of the approximating function are obtained from 
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where n  is the number of data points. For online implementation, this requires storage of 
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As new samples arrive, these s  values are updated, and equation (2.3) is solved for 

new coefficients qaaa ,...,, 21 . In general, for q  base functions one may need to store s  

combinations and invert qq ×  matrix ( ΦΦT ) to update coefficients of the approximating 

equation.   

 

2.3 Three curve fitting and voting scheme 

Further investigation of the above online curve fitting scheme shows its limitations. 

This is illustrated in Figure 2-1, which gives a general idea of a single curve fit to noisy data 



35 

by individual PE. For noisy data values, the single curve fitting technique can not reflect the 

statistical distribution of the data values in areas A  and B , which will cause poor value 

fitting in these areas. One can compute a standard deviation of the approximated data from 

the curve fit, but this only gives a uniform measure of statistical errors that does not reflect 

the different quality of approximation in different regions of the input space. 

 

 

 
Figure 2-1 Single curve fitting 

 

In order to overcome this limitation, a three curve fitting and differential voting (DV) 

scheme are proposed. Figure 2-2 shows the concept of the TCF scheme.  
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Figure 2-2 Three curve fitting (TCF) scheme 

 

For the same data distribution as in Figure 2-1, there are three curves fitting to these 

data samples values in the following way: 

Neutral Curve: it fits to all the data samples in the input space, and is the same as the 

curve in Figure 2-1.  

Upper Curve: it only fits to the data points which are above the neutral curve. 

Lower Curve: it only fits to the data points which are below the neutral curve. 

As we can see from Figure 2-2, the neutral curve can provide a rough estimation of 

the fitted value, and the upper and lower curves can provide its statistical distribution 

information. Therefore, these upper and lower curves characterize a statistical deviation of the 

approximated data from the least square fit value. Next, it will be shown how to use this 

information to get the final estimated value by the differential voting.  

Assume that there are total k processing elements in the network. During training, 

based on the incoming data samples, each processing element will update its own coefficients 

of the three curves. During testing, when one testing sample is input to the network, each 



37 

processing element will provide the estimated value for this sample based on the three fitting 

curves built during the training stage. Figure 2-3 shows the results of PE i when the 

incoming samples are fitted, where uiv  is the value estimated by the upper curve, niv  is 

the value estimated by the neutral curve, and liv  is the value estimated by the lower curve. 

In order to reflect the statistical distribution characteristics of the data points, the standard 

deviation of the estimated value is defined in the following way. 

2
21

2

1

ii
i

linii

uinii

dd
d

vvd

vvd

+
=

−=

−=

                              (2.5) 

 

id1

id2

uiv

niv

liv

 
 

Figure 2-3 Three curve fitting results 
 

Each id  reflects how good the estimated value niv  computed by its PE is 

compared to its true value. Small values of id  mean the estimated value niv  is obtained 

with greater confidence and should carry higher weight in the final voting scheme. On the 

other hand, when id  is large, it means that the estimated value niv  is not so good and 
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should contribute less to the final voting result. Based on this, the weights for each PE is 

derived by the following equation (2.6) 

i
i d

w 1
=                                 (2.6) 

so the final value in differential voting is obtained by  
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2.4 System architecture 

Figure 2-4 shows the system architecture of the proposed dual network value system. 

This system has two network structures: a DPN and an IPN. The DPN is responsible for the 

incoming numerical data processing, including input data space transformation and online 

dynamic data fitting. The IPN is in charge of the final evaluation of the results provided by 

DPN. Each data processing element will conduct the three curve fitting scheme as discussed 

in Section 2.3, and will output the fitted values of uini vv ,  and liv  for information 

processing elements. These values will provide a rough estimation of the true value as well as 

its statistical distribution information. Based on this information, each information PE will 

vote on the final value based on the DV scheme as presented in equations (2.5) ~ (2.7). 



39 

 

( )11 ∑= ii vwv

( )11 ∑= iww

( ) 1−+= ∑ lliil vvwv

( ) 1−+= ∑ llil www

l

l
vote w

v
v =

1nv
1w

2nv
2w

niv

niw

 

 
Figure 2-4 Pipelined value system architecture 

 

A novel communication channel structure based on the shift-register is presented in 

Figure 2-4. Each data PE has a set of inputs, and they are pseudo randomly connected to their 

local channel. The PEs are more likely to be connected to their local neighbors, although 

some of them may still reach distant PEs.   

This architecture processes the information in a way similar to the pipelined 

shift-register structure. In the first clock cycle, the data is available in the first layer channel, 

and the first layer data PEs will read this data as their inputs. After processing, PEs will output 

the transformed data into the same location in the input channel. At the same time, they will 

also output their estimated value niv  and its corresponding weight iw  to the information 

PE in IPN network. The information PE will combine these local values and their weights 

according to the following equations and pass them to the next layer of information PE at the 

next clock cycle.  
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( ) 1−+= ∑ lliil vvwv                             (2.8) 

( ) 1−+= ∑ llil www                              (2.9) 

here the subscript “ l ” means the information from channel layer l .  Therefore, lv  

and lw  are the combined value and weight information for layer l .   

When the next clock cycle arrives, the transformed data (the output data of the PEs in 

the first layer channel) is shifted to the next layer channel as the input data to the data PEs in 

the second layer, while another set of input data samples can be sent to the first layer channel.  

Meanwhile, the information PEs in the second layer will combine the information from the 

second layer with that passed from the previous layer.  

All processing elements in the system are active during all clock cycles making this 

architecture suitable for the dynamic online processing. Finally, when the data reaches the 

final layer, the final voted value is computed as  

l

l
vote w

v
v =                             (2.10) 

Figure 2-5 shows the local organization and connectivity structure of one data 

processing element to illustrate how the individual data PE works in the system. During the 

training stage, the input multidimensional data samples and their corresponding true values 

are provided as inputs to the local channel. Each PE will use a set of input space transform 

functions to combine the information from different inputs. Based on the proposed curve 

fitting technique, each PE will modify its curve fitting coefficients every time a new sample is 

received. Each PE will also output the numerical value obtained by the input space 

transformation function. This output will be used as the input of the data processing element 
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in the next layer after shifting is performed in the routing channel. After training, each data 

PE has its TCF coefficients determined based on the characteristics of training information.  
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Figure 2-5 Detailed structure of data PE 
 

In the testing stage, when a testing sample is applied to the inputs of the first layer 

processing elements of the value system, each data PE will output the three fitted values 

uini vv ,  and liv  according to its own fitting curves. All of this information will go to the 

information processing network for final voting based on the differential voting scheme.   

 

2.5 Summary  

This chapter presents a novel value system for machine learning. The ability to learn 

is the foundation of the biological intelligent systems, and forms the first element of the 

proposed “learning-memory-prediction” framework for machine intelligence. In a supervised 
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learning process, the machine learns the information from a knowledgeable teacher with an 

explicitly stated goal. However, supervisory learning is not always available, nor is it 

necessary for biological intelligent systems to learn and process information. Reinforcement 

learning does not have the requirements of supervised learning. In RL, the machine learns 

through interaction with the external environment, accumulates knowledge and plans its 

action to maximize the reward signal and to achieve the goal of its operation. Value system is 

one of the critical elements for RL. Based on the dynamic curve fitting technology, the 

proposed value system can accurately and dynamically estimate the value signal for 

multi-dimensional data set. This value system has two networks (DPN and IPN), and has an 

efficient pipelined architecture suitable for hardware implementation.  

In the value system, signals only propagate forward for the machine to learn the 

information received from environment. However, this is not enough for building intelligent 

systems. Feedback is introduced in the learning mechanism for the machine to be able to 

remember the information in its distributed elements, which leads to the second element of 

the proposed framework: associative memory.  
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Chapter 3 

   Self-Organizing Associative Memory 

3.1 Introduction 

Biological intelligent systems use a different memory organization than that of digital 

computers. Their memory is characterized by associations and self-organization, is data 

driven, has hierarchical structure, and uses distributed information storage. This chapter 

focuses on the second element of the “learning-memory-prediction” framework: associative 

memory. In this chapter, the feedforward network presented in [Sta 05a] is further advanced 

to include a feedback mechanism to learn and remember information from the environment 

[Sta 06b]. This self-organizing associative memory has a hierarchical organization and can 

self-adjust its association depth according to the complexity of different application problems. 

In addition, this memory structure is capable of both auto-association and hetero-association, 

which co-exist in human brain [Riz 01] [Bro 95] [Mur 97].  

 

3.2 Probability based associative learning  

3.2.1 Structure of individual processing elements  

The proposed self-organizing associative memory consists of a multilayer array of 

processing elements. Figure 3-1 gives the interface model of an individual PE, which consists 

of two inputs ( 1I  and 2I ) and one output ( O ). All the inputs and the output are bidirectional, 
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allowing signals to propagate forward and backward. Each PE stores observed 

probabilities 100100 ,, ppp  and 11p  corresponding to four different combinations of inputs 

1I  and 2I  ( }11{},10{},01{},00{}{ 21 =II ), respectively. These probabilities specify data 

distribution in each PE’s input space, and are used to make associations.     

 

00P 01P 10P 11P

1I

2I

O

 
     

Figure 3-1 Individual PE interface model 
 

Figure 3-2 gives an example of possible distribution of the observed input data points. 

Probabilities are estimated from 
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00n , 01n , 10n  and 11n are the number of data points located in 5.0&5.0 21 << II , 

5.0&5.0 21 >< II , 5.0&5.0 21 <> II and 5.0&5.0 21 >> II , respectively. The value 

totn  is the total number of data points defined as 11100100 nnnnntot +++= . An efficient 

algorithm for dynamic estimation of these probabilities without division on unlimited number 

of input data is proposed in [Sta 04]. Such an estimation is good for on-line learning and 

hardware implementation. This research takes advantage of the results presented in [Sta 04], 

and assumes that on-line probability estimation is inexpensive from a hardware point of view.  
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Figure 3-2 An example of input space distribution 
 

 

3.2.2 Self-determination of the function value  

Based on the observed probability distribution 100100 ,, ppp and 11p  of an 

individual PE as in Figure 3-2, each PE decides its output function value F  by specifying its 

truth table as shown in Table 3-1.  

  
Table 3-1 Self-determination of function value F  

 

Probability 00p  01p  10p  11p  

1I  0 0 1 1 

2I  0 1 0 1 

Function value 00f  01f  10f  11f  

 

The output function values 10,0100 , fff  and 11f are decided as follows: 
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(1) The input, ),( 21 II , that is associated with the largest probability, )1,0,(, =jipij , 

is assigned a corresponding output function F  value of 0.  

(2) If the largest probability is less than 0.5, then the input ),( 21 II , that is associated 

with smallest probability )1,0,(, =jipij , is also assigned a corresponding F  value of 0;  

(3) If the sum of the largest and smallest probabilities is less than 0.5, then the 

input, ),( 21 II , that is associated with the second-smallest probability )1,0,(, =jipij  is also 

assigned a corresponding F  value of 0;  

(4) All input combinations not assigned a corresponding F  value of 0 by the above 

rules are assigned a corresponding F  value of 1.  

The probability that the neuron is active is smaller than 0.5. This type of assignment 

is motivated by the sparse activity of biological neurons [Tri 04]. In addition to biological 

motivation, lower activities are preferable for efficient power consumption. Table 3-2 shows 

two examples of this self-determination of the function value F .       

 
Table 3-2 Two examples of setting F value 

 

00P  01P  10P  11P  F  

0.4 0.2 0.3 0.1 0 1 1 0 

0.4 0.05 0.3 0.25 0 0 1 0 

 

3.2.3 Signal strength 

In the proposed associative learning model, outside signals are presented to the 

network in a binary form. The internal signals have semi-logic values ranging from 0 to 1, 
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where 0 and 1 correspond to logic false and logic true, respectively. The signal strength is the 

absolute value of the distance between the signal level and a specified logic threshold 

( 5.0=Th  in the current model; other threshold values can be used as well, particularly if 

signals are biased towards 1 or 0): 

Signal strength ( SS ) = |Signal value – logic threshold (Th )|          (3.1)              

SS is in the range of [0, 0.5]. If 5.0=SS , the signal is either determinate high (logic 

true) or determinate low (logic false), corresponding to signal value 1 or 0, respectively. If 

signal value equals Th , it is undefined (inactive) and 0=SS . Signals in the range 

5.00 << SS  are intermediate. An intermediate signal is weak low if its value is less than 

Th or weak high if it is higher thanTh .     

 

 

 
Figure 3-3 Signal strength and its semi-logic value 

 

Figure 3-3 illustrates this definition of the signal strength. SS provides a coherent 

way of determining when to trigger an association, and helps to resolve the feedback signal 

value if more than one feedback signals are presented at the PE’s output port.  
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3.2.4 Probability based associative learning algorithm 

3.2.4.1 Example PE and its associations 

During training, each PE counts its input data points in 100100 ,, nnn  and 11n  and 

estimates their corresponding probabilities 100100 ,, ppp  and 11p . The objective of the 

training stage for each PE is to discover the potential relationship between its inputs. This 

relationship is remembered as the corresponding probabilities and is used to make 

associations during the testing stage. Consider the example in Figure 3-2, this particular PE 

finds that most of its input data points are distributed in the lower-left corner 

( 5.0&5.0 21 << II ). Assume that the relevant probabilities are 8.000 =P , 07.001 =p , 

1.010 =p  and 03.011 =p , resulting in F = {0, 1, 1, 1}. This function value is propagated 

through the network as input to other PE’s and may be used to make associations.  

Figure 3-4 illustrates three types of associations used in the testing stage to infer the 

undefined signal value. 

    

1I

2I

fO

fI2

1I

2I

fO

fO fI 2 fI1

1I

2I

fO

fO fI21I1I

 
Figure 3-4 Three types of associations of processing element 
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(1) Input only association (IOA). If, in the testing stage, one input is defined while the 

other input and the received output feedback signal fO  from other PEs are undefined (for 

instance, if 01 =I , 5.02 =I  and 5.0=fO  as in Figure 3-4 (a)), this PE will determine 

2I  through association with 1I , driving 2I  towards logic 0.     

(2) Output only association (OOA). If both inputs, 1I  and 2I , are undefined, a 

defined feedback signal, fO , will determine both inputs (Figure 3-4 (b)). For instance, if 

0=fO , based on PE function F = {0, 1, 1, 1}, then this PE will set both inputs, fI1  and 

fI 2  to 0. (Here I use fI1 fI1 and fI 2  to denote the feedback signals of inputs 1 and 2 to 

distinguish them from the corresponding feedforward signals). On the other hand, if the 

received output feedback signal 1=fO , the input feedback values, fI1  and fI 2 , are 

intermediate and their values will be estimated according to data distribution probabilities.  

(3) Input–output association (INOUA). If one input and the output feedback 

signal, fO , are defined and the other input is undefined, the PE will set the other input signal 

according to its observed probabilities, as shown in Figure 3-4 (c).  

 

3.2.4.2 Probability based associative learning algorithm 

I will formulate the mathematical description of the probability based associative 

learning algorithm. There are four cases:   
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Case 1: Given the semi-logic values of both inputs )( 1IV and )( 2IV , decide the 

output value )(OV  

Assume one PE received input values mIV =)( 1 and nIV =)( 2 , then 
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where 100111 ,, VVV and 00V  are defined as 
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and )1,1,1( 21 === FIIp , )1,1( 21 == IIp  etc. are joint probabilities that can be 

obtained from Table 3-1 using probabilities 100100 ,, ppp and 11p . For instance, if one PE 

has F = {0, 1, 1, 1}, then  
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1121
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===
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                   (3.4) 

This case is required when a signal is propagated forward (during both training and 

testing stages). In the current model, this input and the output semi-logic values are typically 

0, 1 or 0.5. However, these equations are still true if other semi-logic values are used.   
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Case 2: Given the values of one input, ))()(( 21 IVorIV , and an undefined output 

( )OV , decide the value of the other input.  

This case corresponds to IOA as shown in Figure 3-4 (a). Consider the situation that 

given )( 1IV  to decide an unknown )( 2IV  as follows:   
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2 1
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In the case in which )( 2IV  is given and determines )( 1IV , 1I  and 2I  are 

switched in equation (3.5). This case is required when a signal is propagated backwards (in 

testing stage).  

 

Case 3: Given the value of the output )(OV , decide the value of both inputs )( 1IV  

and )( 2IV . 
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This corresponds to OOA as shown in Figure 3-4 (b). )1( =Fp  and )0( =Fp are 

determined by the probability in Table 3-1 in accordance with the F  value. For instance, if 
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F  = {0 1 0 1}, then 1101)1( ppFp +==  and 1000)0( ppFp +== . This case is required 

when a signal is propagated backwards.  

 

Case 4: Given the values of one input, ( )( 1IV or )( 2IV , and the output, )(OV , 

decide the other input value, )( 2IV or )( 1IV ;  

This case corresponds to the INOUA in Figure 3-4 (c). For example, consider the 

case that given )( 1IV  and )(OV to decide )( 2IV as follows:  
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where 100111 ˆ,ˆ,ˆ VVV and 00V̂  are determined in the following way:  
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The conditions in equation (3.9) ~ (3.12) refer to the value of F in Table 3-1, where 

“ X ” is a do not care, which means its value can be either ‘0’ or ‘1’. For example, if one PE 

received ( ) mIV =1  and ( ) tOV = , and the function value of this PE is F = {0 1 1 1}, we 

will get the following results: 
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When )( 2IV  and )(OV are given one only needs to switch 1I  and 2I in equations 

(3.8) ~ (3.12) to decide ( )1IV . This case is required when a signal is propagated backwards.  



54 

3.3 Self-organizing associative memory structure and operation 

3.3.1 Network structure 

The overall memory network is a hierarchy of sparsely connected self-organizing 

processing elements similar in its connectivity structure to the self-organizing learning array 

reported in [Sta 05a]. As in SOLAR, each PE in the array can self-organize by dynamically 

adapting its function in response to the input data. However, unlike SOLAR, the memory 

proposed in this research uses feedback as well as feedforward connections between PEs to 

produce an associative memory scheme. Since in this research I focus on the associative 

memory mechanism, I assume a fixed interconnection structure. This, however, is not a 

restriction of the proposed model. In a self-organizing structure, each PE can chose its 

connections based on probabilities of success as discussed in [Sta 05b].  

All PEs in the memory network have two inputs, 1I  and 2I , and one output, O . 

Each port is also associated with a feedback signal for input 1, input 2, and the output denoted 

by fI1 , fI 2  and fO , respectively. All the PEs are identical and function according to 

their own probability distributions. In the hierarchical structure adopted in this research, each 

PE connects only to PEs in the next lower and higher layers. This differs from the previous 

work [Sta 05a] in which each PE can reach distant layers. The hierarchical connections are 

suitable for hardware implementation, time control, and correlate well to complexity of object 

representation. The further away a PE is from the sensory input, the more abstract and 

invariant the representation of objects or their features captured by the PEs. Each PE is more 

likely to connect to other PEs within a short Euclidean distance. This organization is observed 



55 

in biological memory where neurons tend to have mostly local connections. Thus, the lateral 

connection probability is a superposition of a Gaussian and a uniform distribution.  

 

3.3.2 Network operation 

3.3.2.1 Feedforward operation 

Feedforward operation is necessary in both training and testing stages. Figure 3-5 

shows a feedforward network structure for the associative memory. For simplicity, I will only 

illustrate four layers with six PEs per layer. The bold lines from PE 1 to PE 11 and from PE18 

to PE21 are two examples of distant connections.  
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Figure 3-5 An example of feedforward operation network 
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During training, all external sensor input data is presented to the network. Each PE 

counts activities on its inputs to estimate the corresponding probabilities, )1,0,(, =jipij , and 

decide its output function as in case 1 of Section 3.2.4.2. During testing, some input values 

are undefined (the signal value is set to 0.5). Whenever there is an undefined input signal, the 

output of the PE is undefined; otherwise, it will be decided as in case 1 of Section 3.2.4.2 

using the probabilities established during training. In fact, the distinction between training and 

testing is artificial as the network always learns, updating input probabilities of all PEs that 

receive determinate inputs.  

 

3.3.2.2 Feedback operation 

Feedback operation is essential for the network to make correct associations and to 

recover the missing parts of the input data.  

Figure 3-6 shows a feedback structure in the testing stage. For consistency, the 

network connection is the same as shown in Figure 3-5, although some feedforward 

connections are not shown in order to show feedback signals clearly. In testing stage, some 

information is undefined as would be the case in a classification application (all the class ID 

code inputs are undefined and only the feature input values are presented to the associative 

memory network) or an image recovery application (part of the image could be blocked or 

undefined). In both cases, the network will use associations to determine the undefined signal 

values.   
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Figure 3-6 Example of feedback structure in testing stage 

 

In Figure 3-6, the shaded PEs are associative and will use associations to recover the 

undefined values. All three types of association presented in section 3.2.4 are used. As 

illustrated in Figure 3-6, the proposed model has the ability to self-determine the depth of the 

association used in the feedback structure based on the complexity of the input data. This kind 

of self-organization provides great flexibility in applications of different complexity.   

To illustrate the feedback association mechanism, let us consider part of an 

associative memory shown in Figure 3-7.  
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Figure 3-7 Associative memory feedback mechanism 
 

At time T=k: 

PE1 has two determinate inputs (
11I is determinate low and 

12I is determinate high, 

sub-subscripts denote PE numbers). In this case, PE1 decides its output value according to the 

probability learning algorithm (case 1) in Section 3.2.4.2. Assume that one get output 01 =O .  

PE2 has two undefined inputs. Accordingly, PE2 outputs an undefined value 5.02 =O . No 

associations or feedback values are used.  

 

At time T=k+1: 

Since both inputs of PE3 are defined, it decides its output value according to case 1 in 

Section 3.2.4.2. Since 5.0
42 =I  and output of PE1 is defined ( 01 =O ), PE 4 makes an IOA 

to determine the feedback signal
42 fI . Assume that the calculated feedback signal of 

42 fI  is 
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0.3. This feedback signal,
42 fI , becomes the output feedback signal of PE2 ( 3.0

24
=fO ). 

Here the first and second subscripts indicate the target and source of the feedback (4 onto 2). 

Since both inputs of PE2 are undefined, 
24fO  triggers the association from output to both 

inputs (OOA), which corresponds to case 3 in Section 3.2.4.2. Assume that calculation from 

the training information leads to 1.0
21 =fI  and 4.0

22 =fI for PE2. These input feedback 

signals become the output feedback signals to the targets of PE2 in lower level layers, and 

may trigger other associations.   

 

At time T=k+2: 

Since 
51I  is defined ( 1

51 =I ) and  
52I  is undefined, the IOA association will 

decide the input feedback signal of PE5 according to case 2 in Section 3.2.4.2 (assume that 

the calculated 8.0
52 =fI ). At the same time, let us assume that PE4 receives three feedback 

signals from three different PEs (PE 7, PE5 and PE9) with 7.0
47
=fO , 8.0

45
=fO  and 

4.0
49
=fO . In this case, the output feedback signal of PE4 is selected as the one with the 

largest signal strength, which means: 

fO = ( )( )
ifOSS

4
max                         (3.14)              

where i  represents the PEs from which PE4 received feedback signals. In this case, we 

have: 

( ) 2.05.07.0
47

=−=fOSS    

( ) 3.05.08.0
45

=−=fOSS                        (3.15) 

( ) 1.05.04.0
49

=−=fOSS                         
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The feedback signal of PE4 becomes 8.0
4
=fO . This signal triggers associations in 

PE4. For PE4, 
41I  is defined ( 0

41 =I ), 
4fO  is defined ( 8.0

4
=fO ), and 

42I is undefined. 

Accordingly, the feedback signal,
42 fI , is based on the input-output association. Assume that, 

from case 4 in Section 3.2.4.2, one get 2.0
42 =fI . In the previous step, the signal on 

42 fI  

is 0.3. Since there can be only one value in a particular signal line, these two signals need to 

be resolved. This is achieved by choosing the signal with the largest signal strength. In this 

case, 0.2 ( 3.0=SS ) is stronger than 0.3 ( 2.0=SS ), so 
42 fI  is updated to 0.2. Now, updated 

42 fI  becomes the output feedback signal for PE2, which in turn triggers the associations of 

PE 2 based on case 3 in Section 3.2.4.2.   

In summary, the proposed memory makes the necessary associations to trace a signal 

to previous layers, ultimately deciding the undefined signal values. It should be noted that the 

updated input feedback signals ( fI1 and fI2 ) and the output feedback signal ( fO ) must 

not propagate forward to higher hierarchical layers, since they may cause instability and start 

oscillations in the network.     

 

3.4 Summary 

This chapter discussed the self-organization associative memory for machine 

intelligence. Self-organization and association are desirable features of learning structures and 

evidently play a critical role in development of the brain [Hau 83] [Erw 95] [Swi 96]. 

Self-organizing structures require no explicit supervision and selectively affect different areas 

of learning networks, depending on how new data is related to the information stored in the 
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network and how the emergent network behavior is useful to the machine.   

Self-organization in human memory builds natural associations between different sensors and 

internal representations of the external world. As in the real brain, in the described associative 

memory network there is no pre-designated group of PEs that represent a specific concept or 

make a specific association. These emerge spontaneously from interactions between sensors, 

PEs and the external world. In particular, the signal propagation depth in this network is not 

predefined. It emerges from building associations and is a function of structural complexity of 

the input data. It can be observed that, in more complex cases, the depth of association 

increases, and more PEs are actively involved in the decision-making processes.  
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Chapter 4 

   Anticipation-Based Temporal Sequences Learning in 

Hierarchical Structure 

4.1 Introduction 

Temporal sequence learning is one of the most critical components for human 

intelligence. I presented the learning and memory structures in Chapter 2 and Chapter 3, 

respectively. After the information is learned and remembered in the distributed elements 

(neurons), the machine should be able to anticipate the future inputs. As most human 

behaviors and related information processing are sequential, a prediction mechanism is 

introduced in the learning and memory structure for the machine to be able to learn, 

memorize, and predict any multiple complex sequences [Sta 06c]. This contributes to the third 

element of the proposed “learning-memory-prediction” framework: prediction.   

 

4.2 System architecture  

In this dissertation, I focus on the learning and retrieval of multiple complex temporal 

sequences in the network of neurons. I have adopted the terminology introduced by D. Wang 

ad M. A. Arbib in [Wan 90a] and [Wan 93]. A temporal sequence is defined as  

nSSSS −− ...: 21                               (4.1)              

Where iS , ni ,...,1=  is a component of sequence S  and the length of the 
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sequence S  is n . If a sequence includes repetitions of the same subsequence in different 

contexts, it is called a complex sequence; otherwise it is a simple sequence. Figure 4-1 shows 

the hierarchical organization of three levels of letter-word-sentence. It is believed that such a 

hierarchical structure of a sequence is efficient [Wan 93] [Man 97] and [Geo].   

 

 
 

Figure 4-1 Hierarchical organization of sequences 
 

The overall system architecture of the proposed model is shown in Figure 4-2. It 

contains a hierarchical layer structure. The output of one hierarchical level is the input to the 

next level. At each level, a winner-takes-all algorithm is used to select active neurons. 
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Figure 4-2 System architecture of anticipation-based hierarchical temporal sequence learning 

 

 



65 

Winning neurons are indicated in grey. In the first layer (level 0), a modified Hebbian 

learning mechanism is utilized for pattern recognition. Level 1 to level N are identical 

structures for temporal memory. The key components of each hierarchical level are: input 

register (IR), multiplexer (MUX), prediction neuron (PN), prediction checking neuron (PCN), 

prediction matching neuron (PMN), learning flag neuron (LFN), multiple winner detection 

neuron (MWDN) and learning neuron (LN). The IR spatially encodes a temporal sequence of 

outputs from the next lower level. The sequence may be recently entered or recalled from the 

sequential memory. The MUX calls the contents of the IR sequentially for comparison with a 

sequence being output by the next lower level. I will show that this network is efficient for 

complex temporal sequence learning and retrieval.   

 

4.3 Level 0: A modified Hebbian learning mechanism 

A modified Hebbian learning mechanism is used in the first hierarchical layer of the 

proposed model (level 0 on Figure 4-2). Since biological neurons either fire or do not, it is 

assumed that each sensory input from the environment is either 0 or 1. In this way, Figure 4-3 

illustrates the idea of a both active-0 and active-1 representation of the sensory information. 

When the sensory input is 1, the left neuron will fire. When the sensory input is 0, this input 

value is passed through an “inverter” and drives the right neuron to fire. In this way, different 

neurons firing represent different sensory input values for the binary coded input.    
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Figure 4-3 Two-active area neuron firing mechanism 

 

Figure 4-4 shows the detailed structure of the modified Hebbian learning mechanism 

used in this dissertation research. For simplification, I show a three level hierarchical structure 

with unsupervised learning. The neurons in the second layer are grouped into several groups. 

Each neuron of a second layer group is sparsely connected, at random, to the same subset of 

neurons in the first layer. There is some overlap of the subsets of neurons in the first layer to 

which second layer groups project.   
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Figure 4-4 Hierarchical structure of the modified Hebbian learning 
 

Two similar winner-take-all mechanisms are used in this research to improve the 

learning efficiency of the model as well as to reduce its learning complexity. The first one is a 

stiff WTA (SWTA), which can be achieved by a simple counter. SWTA is used in the second 

layer. Since the sensory inputs from the environment are either 0 or 1, SWTA simply counts 

the number of 1’s each neuron receives, and selects, as winners, the one neuron from each 

group that receives the largest number of 1’s. In particular, there is no weight adjustment in 

SWTA.  

The second WTA mechanism is used in the output layer (layer 3 in Figure 4-4). 

Initially, all the weights, iw , for neurons in the output layer are randomly set with the 

following conditions: 
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Where n  indexes the neurons, and ki ...2,1=  indexes connections onto neuron n  

from all the neurons of the previous layer. The winner is given by  

Winner (w) = 
⎟
⎟

⎠

⎞
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⎝
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∑

i
nini

n
Iwmax                     (4.3) 

Where niI  is the activity (0 or 1) of the neuron from which projection niw  arises. In each 

time instance, after the winner is selected, the weights of the winner ( wiw , where the 

subscript w denotes a winner) are adjusted as follows: 

For the connections that received input 1=liI ,  

)0(*)()1( Mtwtw wiwi Δ+=+                        (4.4) 

For the connections that received input 0=liI : 

)1(*)()1( Mtwtw wiwi Δ−=+                        (4.5) 

Where Δ  is a small adjustment, and )1(M  and )0(M  are the number of 1s and 0s the 

neuron received. This adjustment guarantees that the sum of the weights for the winner after 

adjustment still equals 0. After all the weights of the winners are adjusted, these weights are 

linearly scaled to be in the range [-1,1]. Unsupervised learning is used in this model, meaning 

that each output neuron updates its activity whenever a new training sample is presented.  
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4.4 Level 1 to level N: Sequence learning and prediction 

4.4.1 Storing input sequences 

As indicated in Section 4.3, the first hierarchical level provides recognition of 

component iS , ni ...1=  in the sequence S . From now on, I focus on how the model can 

store and predict complex sequences.  

The output of one level is stored in the input registers of the next higher level by 

means of connections not shown in Figure 4-2. Neurons of the input registers project onto the 

output neurons of the same level through trainable connections. Initially all output neurons 

are fully connected to all IR's through untrained links with electrical (resistive) synapses. In  

the current model, the initial weights for all the output neurons are set to small positive 

numbers 01.0001.0 << iw .   

Once an input sequence is stored in the input registers, all the output neurons compete 

and weights of the winning neuron are adjusted. All the weights of projections of active 

neurons onto a winning neuron in IR are set to 1 (excitatory) and all other weights onto a 

winning neuron are set to -100 (inhibitory). I employ this strong inhibition to guarantee that 

once an output neuron is trained to store a sequence, it is excluded from further learning.  

For instance, consider the IR states as shown in Figure 4-5, where the links with a triangle 

represent excitatory projections and links with a circle represent inhibitory projections. The 

locations of the various IR's establish that this neuron stores the letter sequence “miss” (i.e., 

above the letter “m” there is a trained connection from the section of the IR representing the 

first time step). Once an output neuron’s links are trained, the neuron responds only to one 
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specific input sequence.   

 
Figure 4-5 Storage of sequence in input register 

 

Before discussing the prediction mechanism, I describe the structure of the input 

register. In the proposed model, the IR stores the input data selected by WTA in the location 

indicated by a time pointer, each pattern in a sequence is directed to a different location. The 

structure of the IR is shown in Figure 4-6, which contains pointer neurons and IR neurons 

with inhibitory and excitatory links. A unit delay Δ  in activation of the links between 

neurons is considered in this research.  

 
 

Figure 4-6 Structure of input register 
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Figure 4-7 illustrates the storage of input data based on the input register structure in 

Figure 4-6 timed by neurons activity. Suppose the incoming data is “ AB ”. At the beginning 

of the new sequence a Start signal is presented (start signal is an impulse signal at the 

beginning of the new sequence). The Start signal clears all information in the IR through 

inhibitory links. At the same time, 0PT  fires. When the first data, “ A ”, is received, the Next 

signal is generated. When the Next signal goes low, the inhibition of the upper pointer neurons 

is removed. Therefore, after the delay time Δ , 1PT  will fire. After one more delay time, the 

lower pointer neuron 2PT fires since it has an excitatory link from 1PT . At the same time, 

1PT provides the inhibition to 3PT . As illustrated in Figure 4-6, since the Start signal is low, 

and both the 1PT  and the input data neuron are active, input register neuron 1IR  fires to 

store the first data in the 1IR . Assume that after some time, another data “ B ” is presented, and 

a pulse signal Next is generated. This signal inhibits all the upper pointer neurons 1PT , 

3PT , 5PT  and so on. However, 2PT continues firing. When the Next signal goes low, 

after the delay timeΔ , 3PT  fires because it is excited by 2PT . As before, 4PT fires after 

3PT  with delayΔ . At the same time, 2IR  fires because it is excited by 3PT  and the input 

data neuron. This will store the data “ B ” in the second input register, 2IR . The entire time 

diagram is illustrated in Figure 4-7.   
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Figure 4-7 Timing diagram of neurons firing in the IR 
 

The process continues until all the input data of the sequence is presented. In this 

scheme, the lower level pointer neurons provide inhibitory feedback to remove excitation 

from prior pointer neurons and to excite the next pointer neuron. This approach forms long 

term memories (LTM) of the learned sequences. One may make these memories modifiable 

by allowing training to decay after some specified period of time.   
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4.4.2 Predicting the input sequences 

4.4.2.1 Prediction mechanism  

Predicting an input sequence is an essential part of sequence learning in this model. 

By correctly predicting a sequence, the machine indicates it knows the sequence and does not 

require additional learning. If there is a single error, the long term memory is modified to 

learn the new sequence. A simple one-shot learning mechanism is employed.  

The first stage of prediction is a competition stage. Several sequences stored in LTM 

compete to determine a unique sequence that may correspond to the input sequence. Once 

such a sequence is determined, it predicts the consecutive inputs. (Notice, that the same 

mechanism is used if LTM is simply playing back a stored sequence after a high level node of 

LTM is triggered by an internal process). A multiple winner detection neuron is used to detect 

whether there are multiple winners with trained links. This is achieved by setting the 

threshold of the MWDN equal to 2. Therefore, it will fire when there are 2 or more winners in 

the output layer (This occurs when the sum of the weights of all the winners are the same).  

The output of the MWDN is connected to the learning flag neuron as well as all the prediction 

neurons through inhibitory links. This provides a mechanism for setting the proper learning 

flag signal. The output of the LFN is connected to the learning neuron through an excitatory 

link. Together with the excitatory links from the end of input sequence neuron, the whole 

system provides a proper mechanism for setting the learning signal. It should be noted that 

each hierarchy level requires its ESN to indicate the end of input sequence for this level. In 

addition, if an ESN neuron fires in a higher hierarchical level, it automatically generates an 
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ESN signal in all the lower hierarchical levels. Consider an example in which the first level of 

hierarchy in LTM stores letters, the second level is stores words, and the third level stores 

sentences. The last letter of every word will trigger the activation of the ESN neuron for the 

second level. The last letter of the last word in every sentence will be followed by the 

activation of the ESN for the third level, and at the same time, the ESN signal will also be 

sent to the lower levels (level 2 in this case).   

There are three cases of all possible outcomes for the competition stage of the 

prediction mechanism.  

 

Case 1: There is a single winner with trained links 

In this case, MWDN does not fire because it has a threshold of 2. Therefore, PN and 

LFN are not inhibited. The set of PN’s includes one PN corresponding to each output neuron 

of the next lower level. By a mechanism described in Section 4.4.2.3, LTM acts through the 

MUX at each time step to activate an excitatory projection onto a PN that represents the 

prediction of the network for the time step. The time pointer (TP) is incremented with each 

new symbol (pattern) presented to LTM. As may be seen in Figure 4-2, each PN receives an 

inhibitory projection from the MWDN, as well as the excitatory projection from the MUX.  

Since, in this case, the PN is not inhibited by the MWDN, LTM (acting through the MUX) 

activates the particular PN corresponding to the predicted symbol for the input sequence. 

Each prediction neuron and its corresponding output neuron from the next lower level form 

two inputs to a prediction matching neuron. Firing of a PMN verifies that the predicted 

symbol corresponds to the input symbol, as shown in Figure 4-8.  
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Figure 4-8 Firing mechanism of PMN 

 

All prediction matching neurons have their outputs connected to the prediction 

checking neuron as shown in Figure 4-9. This neuron fires to indicate there is a correct 

prediction.  

 

 

 
Figure 4-9 Prediction mechanism 

 

If there is no match, the learning flag neuron is set automatically (no inhibition from 

PCN or MWDN). LFN remains on, and the sequence continues until ESN fires. Thus, the 
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firing of both LFN and ESN triggers the learning neuron, as shown in Figure 4-10 (a). If there 

is a match on the output of the PMN, PCN will fire. Therefore LFN is inhibited. Figure 4-10  

(b) and (c) shows the remaining two conditions for the LN. Figure 4-10 (b) indicates that if 

only the LFN fires (meaning there is no correct prediction), the LN neuron will not fire 

because the ESN does not fire in this situation. Figure 4-10 (c) indicates that if only the ESN 

fires, the LN will not fire because the LFN does not fire (meaning there is a correct 

prediction).   

 

 
 

Figure 4-10 Firing mechanism of learning neuron 
 

Case 2:  There are multiple winners with trained links 

Consider the case shown in Figure 4-11. Assume two words “miss” and “mom” are 

already stored in LTM (only excitation links are shown in Figure 4-11) and the new sequence 

is “mit”. When the first symbol of this sequence “m” is input, both neuron 1n  and 3n  win 

with trained links (weight equal to 1). MWDN then reaches its threshold of 2 and fires. As 

indicated in Figure 4-11, MWDN inhibits both PN and LFN. Since both neurons are the 

winners with trained links, it is premature for the network to attempt a prediction.  
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(Inhibition of all the PN’s also reduces energy consumption). When the second symbol “i” is 

presented, neuron 1n  wins because it receives two excitatory projections from IR, while 

neuron 3n  receives an inhibitory projection. In this situation, there is a single winner with 

trained links (i.e., case 1). MWDN does not fire, removing the inhibition on PN and LFN. 

With the control of the TP signal through the MUX, 1n  will predict the next symbol as “s”, 

which is not correct in this case. Therefore, PMN will not fire (please refer to Figure 4-8), and 

PCN does not fire. In this way, LFN will fire because there is no inhibition form PCN. At this 

time, LN does not fire because ESN does not fire. When the third symbol “t” is presented, 

both 1n  and 3n  receive inhibition from IR and neither wins. Assume 2n  is the winner 

without lost of generality, this will lead to case 3 in which there is a single winner with 

untrained links.      

 

 
Figure 4-11 LTM and multiple winners 
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Case 3: There is a single winner with untrained links. 

In this situation, MWDN does not fire, and since the winner has untrained links, PN does 

not fire. Therefore PCN does not fire, allowing LFN to fire. LFN remains active until ESN fires. 

The combination of LFN and ESN then causes LN to fire, and a learning signal activates one-shot 

learning, and adjusts weights according to the previously described rules to learn the sequence 

"mit". Figure 4-11 illustrates the strengthened connections after learning.   

 

4.4.2.2 Activation of a prediction neuron 

To perform sequence prediction each IR neuron is associated with a dual IR neuron.  

WTA neurons responsible for storing the sequence are linked to dual IR neurons through 

untrained links. IR neurons connect to their dual neurons through trained links. Thus firing an 

IR neuron automatically activates its dual neuron. When a sequence is stored in a WTA 

neuron, connections from the WTA neuron to dual IR neurons corresponding to active IR 

neurons in the sequence are trained (the bold line in Figure 4-12). When a previously stored 

sequence is input again, a partially matched sequence may activate the WTA neuron of this 

sequence. This will activate all dual IR neurons that compose the entire sequence. The 

structure is shown in Figure 4-12. This structure combined with the time-controlled 

multiplexer provides the mechanism for the prediction scheme.    
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Figure 4-12 Activation of prediction neuron 

 

4.4.2.3 Time controlled multiplexer 

The neural network structure of the time-controlled multiplexer is shown in Figure 

4-13. The output from WTA activates the dual IR neurons that represent predictions for each 

time step as discussed in Section 4.4.2.2. At a given time step indicated by an active pointer 

neuron, this dual IR neuron actives the corresponding IR output neuron, and subsequently the 

prediction neuron for the next element of the stored sequence. This predicted data is 

connected to the PMN, which compares the PN with the actual data and fires if the prediction 

is correct.   
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Figure 4-13 Time-controlled multiplexer 

 

4.5 Retrieval of the stored sequences 

Stored spatio-temporal sequences can be retrieved by activating neurons at any 

hierarchical level through internal processes or by association with a first level (sensory) input 

cue. An important element in the process of retrieving the stored sequences is the duration of 

each element of the sequence. By scaling this time, different speeds of presentation may be 

achieved. [Wan 93] describes a mechanism for storing the presentation time intervals in which 

timing is related to timing of the input sequences. While it is necessary for applications to 

reproduce the stored sequence at approximately the pace of the original sequence, it is not 

necessary in general.   

If a person is given a complex task that requires completion of sequence of operations, 

timing of the sequence must be determined by the time needed to complete each task, and this 
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timing may be either unknown ahead of time or may depend on the context in which the task 

is executed. Biological organisms commonly rely on sensory-motor coordination to provide 

proper timing for execution of the stored sequences. The speed of retrieval depends on the 

natural delay and feedback received through sensory inputs which verifies that a particular 

element of the sequence was completed. This completion of the sequence element induces 

presentation of the next element of the stored sequence. Thus the process of retrieval of stored 

temporal sequences is self-timed and does not depend on any internal clock, but rather on 

interaction with the environment. This may be a desired feature for many real life applications 

where spatio-temporal memories are needed. 

 

4.6 Example of anticipation based sequence learning 

So far, I have shown how the proposed model can correctly and efficiently implement 

the learning and prediction of a complex sequence. I will now give an example to summarize 

how this mechanism works.  

 

Example:  

In order to focus on the sequence learning mechanism, I assume that each sensory 

input from the environment causes a corresponding winning neuron to fire at the output of the 

first level. Therefore, I focus on the hierarchical level 1 in Figure 4-2. As in [Wan 95], let “#” 

be the end-of-sequence marker for this hierarchical level. Assume one need to store and 

retrieve the multiple sequences: “mis#mit#miss#mit#”, as shown in Figure 4-14. Without loss 
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of generality, let this hierarchical level have 3 output neurons and 27 input neurons 

(representing the complete alphabet plus the end marker “#”). Each of the output neurons is 

fully connected to all of the input neurons of the input registers and their initial weights of the 

synapses are set to 01.0001.0 << iw .   
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Figure 4-14 Learning and anticipation of multiple sequences 
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When the first symbol of the first sequence “m” is activated, the time pointer is set to 

1. Since all the weights are initially randomly set, assume neuron 1 ( 1N ) is the winner 

without loss of generality. Since there is no previous training, there is no prediction at this 

time. Therefore PCN is not fired, which causes LFN to fire. LFN continues to fire until ESN 

fires at the end of the first sequence. The combination of LFN and ESN fires LN, which sets 

the learning signal. A one-shot learning is triggered and the weights of the winner are adjusted 

as discussed in Section 4.4.1 (i.e., the excitatory weights are set to 1 and inhibitory weights 

are set to 100− ).   

When the first symbol of the second sequence “m” is activated, TP is set to 1. The 

previously fired neuron ( 1N ) becomes the single winner since it receives the all the 

excitatory projections from the first location of the input register. 1N  predicts the next 

symbol is “i” through the multiplex controlled by the TP signal. In this case the prediction is 

correct and the corresponding PMN fires, which fires PCN and inhibits LFN. When the 

second symbol “i” is presented to the model, TP is incremented to 2. 1N  is still the only 

winner since it has two excitatory links and no inhibitory links from the first two locations of 

the corresponding input registers. The corresponding PN neuron predicts “s” as the next 

symbol. As this prediction is not true, no PMN fires, and PCN does not fire. Accordingly, 

LFN is not inhibited and fires. When the third symbol “t” is activated, TP is increased to 3. 

1N  is not the winner because it has an inhibitory projection from the input register. Without 

lost of generality, let us assume 2N  is the winner. When the end of sequence marker “#” is 

activated, ESN fires. When both LFN and ESN fire, LN fires, which sets the learning signal. 

A one-shot learning is triggered and the appropriate weights of the winner ( 2N ) are adjusted.   
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When the first symbol of the third word “m” is presented to the model, there will be 2 

winners with trained connections ( 1N and 2N ). Therefore, MWDN will fire. The firing of 

MWDN will inhibit all PN and LFN. The MWDN fires, again, when the second symbol, “i”, 

is presented. When the third symbol “s” is activated, 1N is the single winner. MWDN does 

not fire, and the inhibition of PN and LFN is removed. 1N predicts the next symbol is “#”, 

which is not correct. When the fourth symbol “s” is activated, both 1N  and 2N  are 

inhibited. Assume 3N  is the winner without lost of generality. Because 3N  has no trained 

link, there is no prediction. Therefore, PCN does not fire and LFN does fire. The procedure 

continues until the “#” is activated and ESN fires. The combined firing of LFN and ESN 

sends the learning signal, and a one-shot learning is executed, adjusting weights on 3N .   

When the first symbol of the forth sequence, “m”, is activated, there are three winners 

( 1N , 2N  and 3N ). MWDN fires and inhibits PN and LFN. When the second symbol “i” is 

activated, these three neurons still are winners. MWDN fires and inhibits PN and LFN.  

When the third symbol “t” is activated, 2N  is the single winner with trained links. MWDN 

does not fire, and 2N  correctly predicts the next symbol, “#”. When the last symbol of this 

sequence, “#”, is activated, ESN fires. Since LFN does not fire when the prediction is correct, 

LN does not fire. Therefore, no learning is needed for this last sequence.  

Figure 4-14 shows the firing activities of neurons over the course of the above 

example. The model stored the four sequences in three output neurons (the second and the last 

sequence being stored in the same neuron: 2N ). One may noticed that this anticipation 

based model does not separate the learning and retrieval processes, which make this model 

more efficient for sequence learning and retrieval.   
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4.7 Discussion 

The results reported in this chapter suggest that the presented temporal sequence 

learning model can be an essential element of an intelligent machine, and may be of interest 

for the construction of engineered devices. The use, in this model, of WTA and single neuron 

representations of symbols (so called “grandmother cells”) flies in the face of the widely held 

view that real brains use distributed representations, perhaps consisting of a few hundred 

neurons. The use of grandmother cells prevents the model from showing the “graceful 

degradation” of memory seen with loss of neurons from real brains. The model also seems too 

highly engineered to be an evolved device, and there is little in the real environment to serve 

as start or end-of-sequence signals. However, this model is only a simplification of the 

biologically plausible process in which the grandmother cells are replaced by groups of 

neurons firing synchronously, as it is suggested in [Wan 90b]. Groups of neurons organized in 

minicolumns are able to perform feature selection and classification in structures that 

resemble WTA operation of grandmother cells as demonstrated in [Luc 04]. In addition, 

sufficient computational resources should make it possible to render the present model in 

large associative networks that use sparsely coded, distributive representations. For example, 

as in the model presented here, R-nets [Vog 01] [Vog 05] implement a mechanism of 

associative recall that depends on the absence of inhibitory projections. The biological 

plausibility of the mechanism is argued in [Vog 05]. Nearly identical R-nets have already 

been assembled in a modular fashion to create the sort of “and”, “or”, and “if not” gates 

needed in the present model. As the function of an R-net depends chiefly on its position in the 
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network, the use of such networks would reduce the appearance of ad hoc engineering.  

The model proposed in this dissertation research bears some resemblance to the 

incremental learning of sequences presented by Wang and Yuwono [Wan 95] [Wan 96]. 

However, there are several significant differences between the proposed model in this 

research compared to those in [Wan 95] and [Wan 96].  

First, the proposed model uses a hierarchical approach that extends the concept of 

learning by chunking. I believe that the proposed sequence learning model is a more natural 

approach to sequence learning and allows a natural grouping of sequences within the context 

of learned events.   

A second difference relates to the efficiency of learning. In [Wan 95] and [Wan 96], 

training requires several presentations of a complex sequence that includes repetitions of the 

same subsequence in different contexts. (For simple sequences in which no subsequence is 

repeated, only 1 training sweep is necessary.) The training phase is completed when there is 

no mismatch occurring during the last training sweep. In the proposed model, a complex 

sequence needs to be presented only once. The number of retraining sweeps required in [Wan 

95] and [Wan 96] is a function of the sequence degree. The upper bound of the sweep number 

is 2/)1( +× kk , where k  is the sequence degree defined as the shortest prior subsequence 

that uniquely defines the following sequence component. This upper bound is reduced to one 

in the proposed model without sacrificing computational efficiency or increasing the 

hardware cost.   

The third difference is the hardware implementation structure. The proposed model 

use a memory-like storage of temporal events rather than the shift register structure proposed 
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in [Wan 95] and [Wan 96]. Instead of shifting all inputs as each new element of the sequence 

is presented to the system, each new element is stored at a specified location in IR in the 

proposed model. Accordingly, the hardware cost in Wang’s work depends on the degree of 

complexity of the sequence while in the proposed method it depends on the sequence length. 

One can argue that the sequence degree is smaller than its length. However, the opposite is 

true for complex sequences hierarchically represented as sequences of elements representing 

chunked sequences. Take, for example, a sequence in which the same word is repeated more 

than once. The sequence degree is then at least equal to the length of this word, and if several 

words are repeated, to the combined length of these words. Chunking may help this to some 

degree but it introduces a requirement for additional training to accommodate chunks. 

However, this is not a natural approach adopted in biological neural systems. People are not 

capable of memorizing long sequences even if their order is low. Instead of learning a 

sentence as a long sequence of letters in which individual words are just part of the sequence, 

people learn sentences as sequences of words, learn stanzas as sequences of sentences, learn 

songs as sequences of stanzas, and learn stories as sequences of scenes.  

What I have tried to preserve from Wang and Yuwono’s approach [Wan 96] is its 

incremental learning of sentences that allows learning based on acquired knowledge rather 

than learning of all sequences at once. Incremental learning is natural for biological systems, 

where knowledge is built upon prior experience, modifies behavior, and influences further 

learning. Not all methods for learning temporal sequences preserve this important feature. For 

instance, the approach taken in [Wan 01] claims many advantages over the method presented 

in [Wan 96]. However, it is not an incremental learning model as it requires two-pass training. 
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In the first pass all temporal weights are computed and they affect the global threshold 

established in the second pass. Thus, whenever there is a change in learning sequence, the 

entire training process must be repeated.  

The importance of incremental learning and the difficulty involved in obtaining such 

learning has been know at least since Grossberg [Gro 87]. Subsequently, McCloskey and 

Cohen identified the problem as the “catastrophic interference” [Mcc 89]. Sharkey 

characterized the catastrophic interference as one of forgetting previously learned information 

as new information is added [Sha 94]. There have been many attempts to solve the problem 

by minimizing the overlap between synaptic weights storing various sequences [Kor 90] [Fre 

91] [Slo 92] with little success demonstrated for relatively small sequences. Catastrophic 

interference in incremental learning is chiefly the result of modification of weights 

representing all previously stored patterns. While some interference may be found in human 

memory [Bow 94], the catastrophic interference is not. In the proposed model in this 

dissertation, ideally there is no interference between stored patterns, as a learning increment 

involves only those neurons not previously involved in information storage. Only when the 

number of presented sequences exceeds the storage capacity of the proposed associative 

memory does partial interference appear. The catastrophic interference never happens in the 

proposed model in this dissertation. 

Another important feature of Wang and Yuwono’s approach [Wan 95] preserved in 

the proposed model is anticipation based learning in which the model actively anticipates the 

next input. As long as the anticipated inputs are correctly verified, no learning is required on 

any level of the hierarchy. When a mismatch is detected on a given level of the hierarchy, a 
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new sequence on this and all higher levels must be learned.   

In addition, the model presented in this research uses one-shot, normalized, Hebbian 

learning such that the entire sequence is learned using only a single presentation of the input 

data. Any new sequence at any level of the hierarchy is learned by self-organization that 

allocates the required resources. The proposed approach can store arbitrarily complex 

sequences so long as the number of distinct subsequences is smaller than the storage capacity 

expressed by the total number of neurons on various hierarchy levels. 

Hierarchical sequence recognition is also considered in [Doy 90] [Jen 90] where 

complex sequences are separated into simple sequences combined at higher hierarchical 

levels. In [Wan 95] hierarchical learning is used and requires a number of presentations of the 

training sequence before a higher level sequence can be learned. In the proposed approach in 

this dissertation, learning on all levels proceeds without repeated input presentations, and 

sequence reproduction does not require special handling. In particular, there is no need for the 

interval maintenance required in [Wan 95]. 

 

4.8 Summary 

In this chapter, a novel temporal sequence learning model is presented. This model is 

characterized by hierarchical organization, anticipation mechanism and incremental learning. 

A modified Hebbian learning mechanism is proposed for input pattern recognition at the 

lowest level of the model. In each hierarchical level, a winner-take-all mechanism is used to 

select neurons that serve as the input for the next higher hierarchical level. The resulting 
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model can efficiently handle large scale, multiple, complex sequence learning and retrieval. 

Prediction is an essential component of the temporal sequence learning in the proposed model. 

By correct prediction, the machine indicates it knows the current sequence and does not 

require additional learning, otherwise, one-shot learning is executed. This chapter together 

with the Chapter 3 (learning) and Chapter 4 (memory) provide a complete framework for 

designing brain-like intelligent systems that are able to learn, memorize and predict 

information. From the next chapter, I will present different applications of the proposed 

systems as well as their hardware design architecture.  
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Chapter 5 

  Application Research 

5.1 Introduction  

This chapter explores different application problems for the proposed dynamically 

self-reconfigurable systems for machine intelligence. Based on the characteristics of the 

learning, memory and prediction capability of the proposed reconfigurable systems, they have 

a wide range of applications from classification and pattern recognition [He 06], data mining 

[Zhu 06] [Sta 03b], image recovery [Sta 06b], to sequence learning and prediction [Sta 06c].  

 

5.2 Self-organizing learning array for power quality classification 

The first application is the power quality (PQ) classification problem [He 06]. PQ is 

recently becoming prevalent and of critical importance for power industry. According to the 

results of the investigating by the Electrical Power Research Institute, the US economy is 

losing between $104 billion and $164 billion a year to power outages, and another $15 billion 

to $24 billion to PQ phenomena [Pri 01]. Artificial intelligence (AI) and machine learning is 

one of the powerful tools used to deal with the power quality classification problems. Ibrahim 

et al. presented a survey of the advanced AI techniques for PQ applications [Ibr 02]. The most 

interesting AI tools for PQ problems include expert systems [San 00a], fuzzy logic [Hua 02a] 

[Elm 00] [Elm 01] [Far 02], artificial neural networks [Elm 01] [San 00b] [San 00c] [Wij 02] 
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and genetic algorithms [Kun 98]. As a novel learning scheme, SOLAR has the potential to be 

a more powerful tool for the PQ classification application. In this research, I first use wavelet 

transform to extract feature vectors for various PQ disturbances based on the multiresolution 

analysis (MRA), then this data sets are sent to the SOLAR system for learning and 

classification. 

 

5.2.1 Wavelet based feature extraction 

The mathematics of the wavelet transform have been extensively studied and can be 

referenced in [Dau 92] and [Bur 98]. Multiresolution analysis was introduced by Mallat and a 

detailed study about MRA can be found in [Mal 89]. Briefly speaking, in multiresolution 

analysis, any time series can be completely decomposed in terms of the approximations 

provided by scaling functions, and the details provided by the wavelets function. The 

decomposition procedure starts with passing the signal through filters banks. The 

approximations are the low-frequency components of the time series and the details are the 

high-frequency components. In this way, the decomposition of a signal )(tx  can be 

illustrated as in Figure 5-1, where )(tAi  is called the approximation at level i , and )(tDi is 

called the detail at level i , and sf  is the sample frequency.  
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Figure 5-1 MRA analysis and feature extraction 
 

In order to reduce the feature dimensions, signal energy at each decomposition level 

is used as a new input feature for SOLAR classification. The energy at each decomposition 

level is calculated using the following equations: 
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where li ...1=  is the wavelet decomposition level from level 1 to level l . N  is the 

number of the coefficients of detail or approximation at each decomposition level. iED  is 
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the energy of the detail at decomposition level i  and lEA  is the energy of the 

approximation at decomposition level l . In this way, for a l  level wavelet decomposition, a 

( 1+l ) dimensional feature vector is created for SOLAR analysis. Figure 5-2 shows the data 

flow in the proposed wavelet feature extraction. 
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Figure 5-2 Wavelet based feature extraction 
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5.2.2 Simulation and analysis 

5.2.2.1 Data generation 

The simulation data is generated based on the model in paper [Gal 04]. Seven classes 

( 7~1 CC ) of different PQ disturbances are considered: undisturbed sinusoid (normal), swell, 

sag, harmonics, outage, sag with harmonic, and swell with harmonic. Table 5-1 gives the 

signal generation model and their control parameters. Two hundred cases of each class with 

different parameters are generated for training and another 200 cases are generated for testing. 

Both the training and testing signals are sampled at 256 points/cycle (same as in reference 

[Gal 04] for results comparison) and the normal frequency is Hz50 . Ten power frequency 

cycles which contain the disturbance is used for a total of 2560 points.  

 
Table 5-1 Power quality distance model [Gal 04] 
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5.2.2.2 Simulation results 

Daubechies 4 (Db4) wavelets with 10 levels of decomposition are used for analysis 

( 10=l ). Based on the feature extraction shown in Figure 5-2, 11-dimensional feature sets for 

training and testing data are created. The dimensions describe different features resulting 

from the wavelet transform, that is to say, the total size of the training data or testing data set 

is 111400× , where 1400 comes from 200 cases per class multiplied by 7 classes, and 11 is 

the feature size dimension of each case. All data sets are scaled to the range of (1~255) before 

applied to SOLAR for training and testing.  

Figure 5-3 and Figure 5-4 shows two 2-dimensional projections of the training set. As 

we can see from these two figures, in some dimensions, such as dimension 8 and dimension 

10 shown in Figure 5-3, the data sets are mixed up, while in some other dimensions, such as 

dimension 8 and dimension 6 shown in Figure 5-4, the data sets are better separated. Since 

SOLAR will dynamically choose its functionality and connection structure in its learning 

stage, it can easily handle this kind of data classification problem.  
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Figure 5-3 Two dimensional projections of the feature vector: dimensional 8 and 10 
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Figure 5-4 Two dimensional projections of the feature vector: dimensional 8 and 6 
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In order to evaluate the performance of the proposed method, three classification 

results are compared: inductive interface approach [Gal 04], support vector machine (SVM) 

and SOLAR. Simulation of the SVM for classification is based on the modification of the 

Ohio State University SVM Classifier Matlab Toolbox [Ohi]. Two types of SVM are 

implemented in this research: C -support vector classification and ν - support vector 

classification. For each type of SVM, the following four kernel 

functions )()(),( j
T

iji xxxxK φφ= , where ix  and jx  are the feature vectors in the input 

space ( i  and j denotes the index of the features) and φ  is the mapping function, are taken 

into account: 

Linear:  

j
T
iji xxxxK =),(                                 (5.3) 

Polynomial:  

( ) 0,),( >+= γγ
d

j
T
iji rxxxxK                     (5.4) 

Radial Basis Function (RBF): 

  0,exp),(
2

>⎟
⎠
⎞

⎜
⎝
⎛ −−= γγ jiji xxxxK                (5.5) 

Sigmoid: 

  ( )rxxxxK j
T
iji += γtanh),(                       (5.6) 

where r,γ and d are kernel parameters. The detailed discussion about these types of 

SVMs and the kernel functions can be referred in [Sch 00] [Vap 98] [Cor 95].  

Table 5-2, Table 5-3 and Table 5-4 give the simulation results for this 7-class PQ 

disturbance classification problem based on SOLAR, inductive inference approach [Gal 04], 

and SVM classification, respectively.  
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Table 5-2 Classification results for SOLAR based on wavelet feature extraction 
 

 

 

 

 

 

 

 
 
 

 
Table 5-3 Classification results reported in [Gal 04]: Inductive interface approach 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 C1 C2 C3 C4 C5 C6 C7 

C1 200 0 0 0 0 0 0 

C2 0 200 0 0 0 0 0 

C3 1 0 174 0 24 1 0 

C4 0 0 0 200 0 0 0 

C5 15 0 16 0 161 8 0 

C6 0 0 2 1 2 194 1 

C7 0 0 0 0 0 0 200 

Overall accuracy 94.93% 

 C1 C2 C3 C4 C5 C6 C7 

C1 200 0 0 0 0 0 0 

C2 0 194 0 0 0 0 6 

C3 0 0 153 0 11 36 0 

C4 0 0 0 200 0 0 0 

C5 0 0 1 0 180 19 0 

C6 0 0 42 0 15 143 0 

C7 0 4 0 0 0 0 196 

Overall accuracy 90.4% 
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Table 5-4 Classification results based on SVM 

 C-SVM v -SVM 

 C1 C2 C3 C4 C5 C6 C7  C1 C2 C3 C4 C5 C6 C7 

C1 200 0 0 0 0 0 0 C1 200 0 0 0 0 0 0 

C2 32 168 0 0 0 0 0 C2 43 157 0 0 0 0 0 

C3 36 0 132 0 31 1 0 C3 55 0 113 0 31 1 0 

C4 0 0 0 200 0 0 0 C4 0 0 0 177 0 10 13 

C5 0 0 11 0 189 0 0 C5 3 0 13 0 184 0 0 

C6 0 0 1 0 10 189 0 C6 0 0 1 0 15 184 0 

C7 0 0 0 0 0 0 200 C7 0 0 0 0 0 0 200 

Linear kernel 

function 

Overall 

accuracy 
91.29% 

Overall 

accuracy
86.79% 

 C1 C2 C3 C4 C5 C6 C7  C1 C2 C3 C4 C5 C6 C7 

C1 200 0 0 0 0 0 0 C1 200 0 0 0 0 0 0 

C2 31 169 0 0 0 0 0 C2 44 156 0 0 0 0 0 

C3 36 0 140 0 23 1 0 C3 54 0 117 0 28 1 0 

C4 0 0 0 196 0 4 0 C4 0 0 0 155 0 45 0 

C5 0 0 21 0 179 0 0 C5 3 0 18 0 179 0 0 

C6 0 0 2 0 7 191 0 C6 0 0 1 0 14 185 0 

C7 0 0 0 0 0 0 200 C7 0 0 0 0 0 0 200 

Polynomial 

Kernel 

function 

Overall 

accuracy 
91.07% 

Overall 

accuracy
86.14% 

 C1 C2 C3 C4 C5 C6 C7  C1 C2 C3 C4 C5 C6 C7 

C1 200 0 0 0 0 0 0 C1 200 0 0 0 0 0 0 

C2 12 188 0 0 0 0 0 C2 38 162 0 0 0 0 0 

C3 17 0 158 0 23 2 0 C3 52 0 121 0 26 1 0 

C4 0 0 0 200 0 0 0 C4 0 0 0 181 0 0 19 

C5 0 0 7 0 193 0 0 C5 0 0 9 0 191 0 0 

C6 0 0 3 0 11 186 0 C6 0 0 1 0 24 175 0 

C7 0 0 0 0 0 0 200 C7 0 0 0 0 0 0 200 

RBF kernel 

function  

Overall 

accuracy 
94.64% 

Overall 

accuracy
87.86% 

 C1 C2 C3 C4 C5 C6 C7  C1 C2 C3 C4 C5 C6 C7 

C1 200 0 0 0 0 0 0 C1 200 0 0 0 0 0 0 

C2 0 200 0 0 0 0 0 C2 39 161 0 0 0 0 0 

C3 0 0 171 0 28 1 0 C3 55 0 112 0 32 1 0 

C4 0 0 0 200 0 0 0 C4 0 0 0 179 0 0 21 

C5 0 0 33 0 164 3 0 C5 3 0 10 0 187 0 0 

C6 0 0 1 0 6 193 0 C6 0 0 2 0 15 183 0 

C7 0 0 0 0 0 0 200 C7 0 0 0 0 0 0 200 

Sigmoid 

kernel 

function  

Overall 

accuracy 
94.86% 

Overall 

accuracy
87.29% 
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For the results in Table 5-2, Table 5-3 and Table 5-4, a 77× confusion matrix C  is 

constructed for each method to show the classification performance. The diagonal elements 

represent the correctly classified PQ types. The off-diagonal elements represent the 

misclassification. As illustrated in these three tables, the SOLAR learning mechanism can 

effectively classify different kinds of PQ disturbances. One thing that should be noted here is 

that, it is recognized that an optimum selection of the SVM type, kernel function and 

parameter setting may reach better results than those listed in Table 5-4. However, it is not 

easy to choose the optimum SVM kernel function and parameters in advance. SOLAR can 

dynamically configure its connectivity structure and select its function according to the 

information that individual neurons receive, therefore it can automatically provide statistically 

stable results. Further discussion about the selection of SVM kernel function and parameters 

can be found in papers [Sch 00] [Vap 98] [Cor 95].  

 

5.2.2.3 Discussion 

5.2.2.3.1 Classification performance and wavelet decomposition levels 

As discussed in Section 5.2.1, l  levels wavelet decomposition will create a ( 1+l ) 

dimensional feature vector for SOLAR system. Obviously, more levels of decomposition will 

increase the computational cost. So, how to choose a reasonable number of decomposition 

levels? 
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In this simulation, the Db4 wavelet is selected and its decomposition levels are 

scanned from 1 to 10. For each type of PQ class (C1 to C7 as in Table 5-1), 200 cases are 

generated with different parameters for training and another 200 cases are generated for 

testing. Sample frequency is 256 points/cycle. Figure 5-5 gives the simulation results.  
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Figure 5-5 Relationship between the wavelet decomposition levels and classification accuracy 
 

As we can see from Figure 5-5, when the wavelet decomposition levels are relatively 

small, such as 3≤l , the overall classification accuracy is about %60 . When the 

decomposition level is larger then 6, the classification accuracy can reach about %90 . 

Further investigation shows that when 6≥l , the increase of the classification accuracy is 

small. Figure 5-5 provides a reference for the trade off between the decomposition levels and 

classification performance. 
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5.2.2.3.2 Choosing a suitable wavelet 

Another import issue is the choice of a suitable wavelet. Obviously, the longer the 

wavelet filter length, the higher the computational cost. In this part, the influence of different 

kinds of wavelets on the classification accuracy is investigated.  

Conjecture 1: No single wavelet transform has a statistically significant advantage 

over other wavelets on the performance of the proposed method for PQ classification.  

To verify conjecture 1, four commonly used wavelets, the Haar wavelet, Daubechies 

wavelets, Symlets, and Coiflets wavelet are taken into account. Table 5-5 shows their 

corresponding characteristics. The detailed discussion about these wavelet characteristics can 

be found in [Dau 92] and [Bur 98].  

 
Table 5-5 Wavelet characteristics 

 

In order to evaluate the performance of different kind of wavelets, the number of 

decomposition levels are fixed at 6. The reason that 6 levels of decomposition is selected here 

is based on the results in Figure 5-5, in which we can see that 6 levels decomposition can 

provide nice classification accuracy (about %90 ) as well as relatively small computational 

cost compared to higher levels of decomposition, such as 9 levels or 10 levels. Although these 

Wavelet Name Orthogonal Compact support Support Width Filters length Symmetry

Haar Yes Yes 1 2 Yes 

Daubechies Yes Yes 2N-1 2N Far from 

Coiflets Yes Yes 6N-1 6N Near from

Symlets Yes Yes 2N-1 2N Near from
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additional decomposition levels can provide slightly better classification accuracy, they come 

with extra computing cost. The trade off between the decomposition levels and classification 

performance is also discussed in Section 5.2.2.3.1. For each choice of wavelet, 10 simulation 

runs is conducted to show the statistical performance. In each run, 200 cases of each class (7 

classes total) of PQ disturbances based on the model in Table 5-1 are generated for training 

and another 200 cases of each class are generated for testing. The average accuracy over the 

10 runs for each choice of wavelet are presented in Table 5-6.   

 
Table 5-6 Averaged classification results for different wavelets 

 

 

To test if there is any significant difference among different wavelet families, or 

among different wavelets within one wavelet family, hypothesis testing of the means [Mil 65] 

Wavelet name Haar Db2 Db3 Db4 

Average accuracy 0.8700 0.8557 0.8746 0.8908 

Wavelet name Db5 Db6 Db7 Db8 

Average accuracy 0.8909 0.8786 0.8784 0.8776 

Wavelet name Db9 Db10 Coif1 Coif2 

Average accuracy 0.8996 0.8882 0.8903 0.8921 

Wavelet name Coif3 Coif4 Coif5 Sym2 

Average accuracy 0.8819 0.8694 0.8883 0.8646 

Wavelet name Sym3 Sym4 Sym5 Sym6 

Average accuracy 0.8856 0.8692 0.8644 0.8755 

Wavelet name Sym7 Sym8   

Average accuracy 0.8894 0.8650   
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is used. Table 5-7 gives the mean and standard deviation results of each family of wavelet as 

presented in Table 5-6. The mean, μ , and the standard deviation, σ , of the population are 

calculated using the following equations: 

∑
=

=
n

i
ip

n 1

1μ                               (5.7) 

)1(

2

11

2

−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

=
∑∑
==

nn

ppn
n

i
i

n

i
i

σ                          (5.8) 

where ip  is the classification accuracy of different wavelets in each wavelet family in Table 

5-6 and n  is the number of wavelets in each family. 

 
Table 5-7 Performance of different wavelets 

 

Wavelet p Wavelet p Wavelet p 

Haar (Db1) 0.8700 Coif1 0.8903 Sym2 0.8646 

Db2 0.8557 Coif2 0.8921 Sym3 0.8856 

Db3 0.8746 Coif3 0.8819 Sym4 0.8692 

Db4 0.8908 Coif4 0.8694 Sym5 0.8644 

Db5 0.8909 Coif5 0.8883 Sym6 0.8755 

Db6 0.8786   Sym7 0.8894 

Db7 0.8784   Sym8 0.8650 

Db8 0.8776     

Db9 0.8996     

Db10 0.8882     

Mean( μ ) 0.8804  0.8844  0.8734 

Standard deviation (σ ) 0.0125  0.0092  0.0105 
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Null hypothesis:  

210 : μμ =H                                (5.9) 

Alternative hypothesis:  

 211 : μμ ≠H                                (5.10) 

The test statistic is calculated as follows:  

2

2
2

1

2
1

21

nn

xx
Z

σσ
+

−
=                             (5.11) 

For a two-tailed test, 0H  will be rejected if 96.1>Z . (1.96 is for a two-tailed test 

where the results are significant at a level of 0.05). Table 5-8 shows the hypothesis testing 

result.  

Table 5-8 Wavelet family hypothesis test 
 

Wavelet name Wavelet name Z  Accept or reject 0H  

Daubechies Coiflets 0.7011 Accept 

Daubechies Symlet 1.2497 Accept 

Coiflets Symlet 1.9243 Accept 

 

From the analysis results in Table 5-8, it can be seen that all Z  values are less 

than 1.96, thus, the null hypothesis 0H  will be accepted. This means that there is no 

statistically significant difference in the classification performance when different wavelet 

families are chosen. The same test can be performed for different wavelets within one wavelet 

family and the same results can be concluded. Figure 5-6 shows the analysis results for 

different wavelets within one wavelet family, namely Daubechies wavelets and their 

corresponding wavelet filter length. 



108 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Classification results within one wavelet family (Daubechies wavelet)

O
ve

ra
ll 

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
: (

p)

Db2 Db4 Db6 Db8 Db10 

p = 0.8557 
p=0.8908 p=0.8786 p=0.8776 p=0.8882 

length=4 

length=8 

length=12 

length=16 

length=20 

 
 

Figure 5-6 Classification results and their corresponding wavelet filter length 
 

So far, it is tested that there is no statistically significant difference in performance of 

the proposed method for PQ classification when different wavelets are chosen. Since the 

longer the wavelet filter length, the larger the computational cost, one can choose the wavelet 

with a short wavelet filter length, such as the Haar wavelet or Db2 wavelet to achieve both 

good classification results as well as small computational cost.  

 

5.2.3 Noise analysis 

Since noise is omnipresent in an electrical power distribution network, in this section, 

I now analyze whether the proposed method is still effective in a noisy environment.   

Gaussian white noise is widely considered in the research of power quality issues 

[Yan 01] [She 02]. To test the proposed method’s performance in different noise environment, 
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different levels of noise with the signal to noise ratio (SNR) values ranging from 10 to 50 dB 

are considered here. The value of SNR is defined as following 

)/log(10 ns PPSNR = dB                          (5.12) 

where sP  is the power of the signal and nP  is that of the noise. The Monte-Carlo method is 

used to generate the simulation data set with different parameters as shown in Table 5-1. The 

Db4 wavelet with 6 levels of decomposition and 10 levels of decomposition is used in this 

simulation. Figure 5-7 shows the simulation results. Even in very low SNR conditions, the 

proposed method still can achieve high overall classification accuracy. Ten levels of 

decomposition classification result is slightly better than that of 6 levels of decomposition, but 

the improvement is not very great. This is consistent with the previous results as shown in 

Figure 5-5.  
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Figure 5-7 Classification results under different SNR condition 
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Figure 5-8 shows the overall classification performance for different wavelets in 

noisy environments. Ten levels of wavelet decomposition is used here. As illustrated in 

Figure 5-8, the SOLAR based method has robust anti-noise performance and it still can 

achieve high classification accuracy in a noisy environment. In addition, although Db4 

wavelets show slightly better classification results among the chosen wavelets, there is no 

statistically significant difference in performance of the proposed method with different 

wavelets. This is also consistent with the previous results in Section 5.2.2.3.2. 
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Figure 5-8 Different wavelet classification results under different SNR conditions 
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5.3 Self-organizing associative memory for pattern recognition and 

image recovery 

As discussed in Chapter 3, the proposed self-organizing associative memory is a 

general memory network capable of both hetero-association and auto-association. In this 

section, both classification and image recovery applications are utilized to show the capability 

of the proposed associative memory applied to practical problems [Sta 06b].  

 

5.3.1 Hetero-associative memory: Iris database classification 

The Iris database [Fis 36] is used to test the classification performance of the 

proposed associative memory. This database has 3 classes (Iris Setosa, Iris Versicolour and 

Iris Virginica) and 4 numeric features (sepal length, sepal width, petal length, and petal 

width).   

The N-bits sliding bar coding mechanism presented in [Sta 06a] is used in this 

research to code the input data. Assume that the maximum and minimum values to be coded 

are maxV  and minV , respectively. The length of the sliding bar is defined by 

minmax VVLN −=− . Assume that the value of the scaled feature to be coded is V . In the 

coded input, bits numbered from 1)( min +−VV  to LVV +− )( min  are set to 1s, while the 

remaining bits are set to 0s. This scheme is illustrated in Figure 5-9.  
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Figure 5-9 N input bits sliding bar coding mechanism [Sta 06a] 
 

The class ID is coded in a similar way by using M  bit code redundancy. Since there 

are 3 classes in this database, total number of 3×M bits are used to code the class ID, 

maximizing their Hamming distance. This is achieved by filling the M  bits from position 

MCi ×− )1(  to MCi ×  with 1’s, while filling the remaining 2×M  bits with 0’s. Here 

2,1=iC  and 3 for this 3 classes Iris database. In this simulation, N  is set to 80, L  is set 

to 20 and M  is set to 30. Such coding is compatible with a binary neural network in which 

neurons either fire or do not, and all activation signals are binary. While it may be more 

numerically efficient to represent signals as continuous values, this is not biologically 

plausible.   

In the training stage, both the feature code and class ID code are presented to the 

associative memory. This information is used to discover the potential relationship in PEs’ 

input spaces. In testing, only the feature code is presented to the input layer, and the class ID 

code is filled with undefined values. Through the feedback mechanism, the network makes 

associations and decides the class ID code values. After the class ID code values are decided, 

the system votes on the class ID of each testing instance according to the minimum Hamming 

distance to code values of all the possible classes. The classification accuracy is then 
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calculated by the ratio of correctly classified instances over the total number of testing 

instances.   

Since there are only 150 instances in the Iris database, the N-fold cross validation 

method is used to handle this small sample dataset as used in [Hon 00] [Das 80] [Qui 87] [Lee 

01] [Cha 04a]. In N-fold cross validation, all instances are randomly divided into N subsets of 

as nearly equal size as possible. In each trial, one of the N subsets is used as the testing set 

and the other ( )1−N  subsets are used as training sets. Therefore, totally N  trials are 

necessary in order for each instance to be tested once. The final classification accuracy is 

calculated by averaging results across all N  trials. In this simulation, N  is set to 10 

(10-fold cross validation). Based on the description in Chapter 3, the proposed memory 

network self-organizes its structure, decide the necessary depth of the feedback association. 

Figure 5-10 (a) shows the associative PEs and their connection structure, and Figure 5-10 (b) 

shows the associative PE firing activity for part of the network. The Y-axis represents the 

input bits, and the X-axis represents the distance from the input (association depth). The 

associative PEs are represented by circles and their backward propagation paths are marked. 

The large dots at the input layer represent correctly recognized class ID code bits. It may be 

noted that only six layers are needed for the network to learn the associations in the Iris 

database. 
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Figure 5-10 Associative PEs and their inter connection structure 
 

Table 5-9 shows the classification performance of the proposed associative memory 

compared with some other classification performances reported in literature using the same 

database. These results indicate that the self-organizing associative memory presented in this 

dissertation shows satisfactory performance in a classification problem, satisfying necessary 

elements of learning through associations. Learning through associations is useful if one 

wants to associate specific behavior in a reinforcement learning value system.   
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Table 5-9 Comparison of the classification performance on Iris database 

 

Method Average classification accuracy 

Merging-membership-functions-first [Hon 00] 97.33% 

C4 method [Hon 00] [Qui 87] 93.87% 

Influential Rule Search Schemes [Cha 04a] 96.00% 

Dasarathy's pattern-recognition 
approach [Hon 00] [Das 80] 

94.67% 

Fuzzy entropy-based fuzzy classifier [Lee 01] 96.7% 

Self-organizing associative memory 96.00% 

 

5.3.2 Auto-associative memory: image recovery 

Image recovery problems can be used to test the effectiveness of the proposed 

memory for auto-associative applications. This is necessary for applications where only 

partial images are available without specifying class identities. The proposed SOAM network 

can learn features of the training data using unsupervised learning, self-determine the 

feedback depth, and make correct associations to recover the original images.    

 

5.3.2.1 Panda image recovery 

The 6464×  binary panda image used in [Dju 02] is used in this research. The panda 

image is represented by a vector ( ) 4096,...21 == nxxxp ni , with 1=ix  for a black 

pixel and 0=ix  for a white pixel. In testing, %r  percentage ( 20,10=r  and 30) of the 
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panda image is randomly blocked by setting %)(rn ×  pixels to the undefined value (0.5).  

The original panda image and samples of its blocked image are shown in Figure 5-11 (a) and 

(b), respectively. Figure 5-11 (c) shows images recovered through the proposed associative 

memory. As in [Dju 02], the image recovery performance is evaluated by computing the ratios 

of the number of incorrectly recovered pixels (both erroneous pixels and pixels remaining 

undefined after recovery) over the total number of pixels. As one can see in Table 5-10, the 

SOAM model can provide results comparable to those in [Dju 02].     

Original 

 

(a) 

               

(b) 

               

(c) 

 
Figure 5-11 The 64x64 binary panda image 

(a) The original training image; 
(b) Blocked image with r% of undefined values (r = 10, 20 and 30 respectively); 

(c) Recovered image and the recovery error. 
 
 

10=r  20=r

%24.0=e  %39.0=e %44.0=e  

30=r  
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Table 5-10 Image recovery error information 

 

Noise/block level 10% 20% 30% 

Reference [Dju 02] 2.95% 4.83% 6.57% 

SOAM 0.24% 0.39% 0.44% 

 

While Figure 5-11 tested the capability of the self-organizing associative memory in 

recovering randomly blocked images, Figure 5-12 shows the recovery performance under the 

condition of the entire lower half of the panda image being blocked. In this case, the recovery 

error bits are at the level of 2.42% of the total image.  

 

                 

 
Figure 5-12 Testing image (block half) and recovered image 

 

5.3.2.2 Chinese character recognition and recovery   

Chinese character recognition is considered as a very challenging problem due to a 

couple of reasons discussed in [Won 98]. First, the Chinese vocabulary is extremely large. 

Second, many Chinese characters look very similar to each other. And third, the Chinese 

characters themselves are very complex. In [Wu 00] and [Wu 01], a local identical index 
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associative memory algorithm is proposed for Chinese character recognition. On a 16 Chinese 

prototype patterns data set, the proposed method achieved about %3.97 [Wu 00] and 

%100 [Wu 01] recognition accuracy. In [Fu 98], H. C. Fu et al. presented a Bayesian 

decision-based neural network (BDNN) for multilinguistic handwritten character recognition. 

BDNN is a self-growing probabilistic decision-based neural network and adopts a hierarchical 

network structure with nonlinear basis functions and a competitive credit-assignment scheme. 

Simulation results on three different Chinese character databases show the recognition rate 

around %94~86 . Most of the references in literature solely handle the Chinese character 

recognition problem. Since the proposed self-organizing associative memory is capable of 

both classification and image recovery, the Chinese character recognition and recovery is 

illustrated in this section.  

Figure 5-13 shows the 5 black-and-white Chinese characters considered in this 

research. As we can see these 5 characters are very similar to each other. Each of these 

patterns is scanned ( 2020× pixel images) and represented in the vector format. Similar to 

Section 5.3.2.1, each pattern is represented by a vector ( ) 400,...21 == nxxxp ni , 

where 1=ix  if it is a black pixel and 0=ix  if it is a white pixel. In testing, each character 

is randomly blocked %50 , which means 200 randomly selected pixels are set to the 

undefined value (0.5). These testing patterns are sent to the associative memory for 

recognition and recovery. Figure 5-14 shows the input testing patters, corresponding to the 

training patterns in Figure 5-13.     

 



119 

         

     Pattern 1       Pattern 2         Pattern 3       Pattern 4        Pattern 5 

 
Figure 5-13 Training patterns: Five black-white Chinese characters 

 

         

     Pattern 1       Pattern 2         Pattern 3       Pattern 4        Pattern 5 

 
Figure 5-14 Testing patterns with 50% pixels (200 pixels) blocked 

 

The performance of the associative memory is evaluated in two ways. The first one is 

the correct recognition rate, which is similar to what is defined in Section 5.3.1. Ten-runs 

simulation is performed to get the statistical performance, and SOAM achieved an average of 

100% correct recognition rate for these very similar Chinese characters. The second 

evaluation step is to observe what the recovered character looks like, and what the ratios of 

the error bits and missing bits in the recovered pattern are, similar to Section 5.3.2.1.  

Figure 5-15 shows the recovered patterns corresponding to Figure 5-14, and Table 

5-11 is the error bits and missing bits information for each pattern. The grey part in Figure 

5-15 shows that there are still some missing pixel values after recovery. From Figure 5-15 one 

can see that the associative memory can correctly recover the original image even if only half 

of the pattern pixels are presented. Table 5-11 illustrates that the average error bits percentage 

and missing bits percentage are about 6.2% and 2.4%, respectively.   
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     Pattern 1       Pattern 2         Pattern 3       Pattern 4        Pattern 5 

 
Figure 5-15 Recovered Chinese testing pattern 

 
 

Table 5-11 Testing error bits and missing bits information 
 

Testing pattern Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Mean 

Error bits 12 9 14 13 14 12.4 

Error bits percentage 6% 4.5% 7% 6.5% 7% 6.2% 

Missing bits 6 5 7 2 4 4.8 

Missing bits percentage 3% 2.5% 3.5% 1% 2% 2.4% 

 

5.3.3 Discussion 

The results presented in this section demonstrate adequate performance of the 

proposed self-organizing associative memory on both HA and AA applications. I did not 

expect these results to be the best among the networks used for comparison, which are 

optimized for a specific problems (e.g., classification with fixed number of classes). The 

proposed SOAM network is more robust in terms of the variety of problems it can solve 

without modification of the network structure. The aim of the proposed associative memory is 

to search for network structures that can be extended towards building real intelligent 
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machines, perhaps toward structures resembling the macrocolumns and minicolumns that 

have been the objects of recent biological studies [Mou 97] [Jon 00]. Flexibility and 

robustness, rather than optimality, is the trademark of human brain, and I wish to contribute 

progress that takes neural networks from implementing specialized filters that solve 

classification problems in an optimum way towards flexible structures capable of 

accumulating knowledge and using them to reach higher levels of self-organization and 

problem solving.  

 

5.4 Temporal sequence learning 

As presented in Chapter 4, sequence learning and prediction is one of the most 

important elements of human intelligence. In this section, a four level hierarchical structure 

with letters, words, sentences and strophes of the popular song “This land is your land” is 

simulated to illustrate the proposed hierarchical sequence learning machine [Sta 06c].  

The original sensory input data received from the environment contains the scan of 

2020×  pixel images for the entire alphabet plus three special characters: space, dot, and 

semicolon for the end of input sequence for word level, sentence level and strophes level, 

respectively. There is no distinction between learning and playing back, which means that 

with each incoming sequence, the model will either correctly predict this sequence, or 

conduct a one-shot learning at the end of the sequence at a particular level of sequence 

hierarchy. Figure 5-16 shows the simulation results for this model.  
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Figure 5-16 Simulation results for the temporal sequence learning model 

 

The light text (in red) is the input sequence and the bold italic text (in blue) stands for 

the correctly predicted elements of the sequence.  indicates the correct prediction at the 

word level. For instance, when the first letter “ l ” of the second “ land ” is activated, the 

memory correctly predicted the next symbol, “ a ”, because it had already learned the 

sequence “ land ” when it is presented the first time.  and  in Figure 5-16 indicate correct 

predictions at the sentence level. “This land is made for you and me” is repeated at the end of 

the second strophe, therefore the words “for you and me” is correctly predicted when “This 
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land is made” is presented. The reason “land is made for you and me” cannot be predicted 

after “This” is that there are other sentences, such as “This land is your land”, “This land is 

my land” with the same first three words. Accordingly, the MWDN neuron fired after “This” 

is presented, inhibiting firing of the prediction neuron.  in Figure 5-16 indicates a correct 

prediction at the strophe level. The last strophe is the repetition of the first one. Therefore, 

after the first sentence of the strophe, the model correctly predicted the rest of the strophe.   

After the model has stored this song, it should have the ability to predict the song 

from an input hint, or to learn a new sequence without destroying the stored sequence. For 

example, if a hint “e” is given to the system, there is a unique neuron in the word level that 

stores the word “everywhere”. So, the model will play the word “everywhere”. After this 

neuron in the word level fires, it will trigger a neuron in the sentence level to fire. In this case, 

a unique neuron in the sentence level will be the winner, and that neuron will play back its 

stored sequence from the sentence level, to the word level, and finally generate the original 

sequence. Figure 5-17 shows the simulation result after the character “e” is activated as a hint 

to the model.  

 

 
 

Figure 5-17 Prediction result based on hint 
 

In addition, if a new word, sentence or strophe is presented to this model, it can 

further learn the new sequence without destroying the previously stored sequence, and this 

learned sequence can be used for associative predictions.     
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5.5 Summary 

In this chapter, different applications of the proposed dynamically self-reconfigurable 

systems for machine intelligence are investigated. Such applications include classification, 

pattern recognition, image recovery and sequence learning. These applications show that the 

proposed models are capable of learning, memory and prediction based on active interacting 

with the external environment. It is confirmed that such system level models and architectures 

are essential elements for building real brain-like intelligent systems, and will have wide 

applications in different areas.  



125 

Chapter 6 

   Low Power Design and Hardware Architecture 

6.1 Introduction  

So far, I have presented the “learning-memory-prediction” framework aimed at 

designing brain-like intelligent systems, and under this framework, system level models and 

architectures of dynamically self-reconfigurable systems for machine intelligence are 

proposed. One of the major advantages of such proposed systems is that they are 

hardware-oriented, fault tolerant, and modular for easy implementation in hardware.  

Power consumption is one of the critical design issues in hardware implementation 

(either using dedicated VLSI technology or FPGA technology) of such large scale 

dynamically intelligent systems. Due to the high density of interconnections (although each 

processing element has sparsely and locally dominated interconnections, there still are many 

interconnections in the whole system, as in the association network in Figure 5-10), high data 

flow, and high volume of switching activities, the designed systems will not be able to 

function properly without careful consideration of low power design issues.  

Power dissipation in a complementary metal oxide semiconductor (CMOS) based 

logic circuit is dominated by the switching energy [Cha 04b] [Rab 03]. This is the energy that 

must be dissipated in order to change the internal state of the devices. Other sources of energy 

loss in CMOS circuits are related to leakage current [Rab 03] [Han 04] and to short circuit 

current [Rab 03] [Umi 95]. While the other two types of energy loss can be reduced to 
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arbitrarily low levels (at least in theory) by regulating the voltage levels (both power supply 

and thresholds), there seems to be no solution to eliminate dynamic power dissipation. In this 

dissertation research, a novel computing paradigm, that in the ideal case, may lead to logic 

operations without dynamic power dissipation is proposed [Sta 06d]. The solution proposed is 

a theoretical one, since so far no practical devices have been built to support this kind of 

circuits. However, lowering the path resistance by several orders of magnitude is certainly 

within the reach of superconducting devices, thus the proposed paradigm may become a 

valuable solution for future large scale, high density intelligent systems design.   

Finally, I give a brief description of the system level hardware architecture of the 

proposed reconfigurable systems. The current design takes advantage of reconfigurable 

computing FPGA technology, and is under prototyping and testing [SOL 06].   

 

6.2 Low power design 

6.2.1 Low power switched inductor-capacitor (SLC) architecture 

The primary components of power dissipation in digital CMOS design can be 

estimated using the following equations [Rab 03].  

Dynamic power:  

fVCP DDLdyn
2α=                            (6.1)              

Short circuit power: 

fIVtP peakDDscsc =                          (6.2)              
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Leakage power: 

leakageDDleakage IVP =                        (6.3)              

where α is the switching activity factor, LC  is the load capacitance, DDV  is the 

supply voltage, f  is the clock frequency, sct represents the time for short-path conducting 

from DDV  to ground and leakageI  is the leakage current.    

Dynamic power is the dominant component among these three sources. Assume a 

logic gate is driving a load capacitor LC . Each time there is a logic 1 at the output, LC is 

charged through the pull-up circuit from the supply voltage DDV . This energy is stored in the 

capacitor until the output logic value changes to 0 and the load capacitor LC  is discharged. 

In this case, the stored energy will be dissipated through the pull down circuit to the ground. 

This energy is changed to thermal energy and needs to be removed by a cooling process. The 

amount of energy dissipated through switching the logic output value does not depend on 

switch resistance. Even if superconducting switches were used it will remain on the same 

level. Not only does this drain the power, it also creates a requirement for an efficient heat 

removal and increases the packaging cost.   

An alternative approach would store this energy and re-use it whenever it is needed.  

Based on this idea, I propose a novel SLC logic architecture capable of operating without 

energy loss in the ideal case. In this architecture, the energy is stored alternatively in an 

inductor whenever the load capacitor LC is discharged, and in the capacitor LC  whenever 

the load capacitor needs to be charged again. In this way, ideally, no energy is wasted and the 

load capacitor only needs to be charged once. In non-ideal devices, stored energy is reduced 

through leakage current or dissipated on path resistance (defined as a combination of switch 
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resistance, serial resistance of inductor, capacitor or wires) and needs to be restored. The 

proposed architecture is especially suitable in the situation where large load capacitor needs to 

be charged and discharged. Buses and clock distribution trees are two examples of such loads. 

For instance, it is reported that the bus dissipated about %30~%15  of the total power in 

Alpha 21064 and Intel 80386 [Liu 94]. It is also reported that a clock distribution tree 

dissipated about %50~20  of the total power [Far 01] [Pan 02]. For example, in the second 

generation of the Alpha microprocessor, the Alpha 21164, the clock distribution tree 

consumes 20W, which is %40  of the total power dissipation of the processor [Bow 95]. A 

simple SLC circuit may save most of this energy. The major difficulty in implementing the 

proposed logic design scheme will arise from the fabrication process and implementation 

technology. A brief discussion of these issues is addressed in section 6.2.2.4. 

Figure 6-1 shows a basic logic gate structure for the proposed SLC architecture. It 

consists of a switch control unit (SCU) with two control signals 1CS and 2CS  and two 

energy storage elements – inductor ( L ) and load capacitor ( C ). Inside the SCU, there are 

four switches controlled by two-phase control signals 1CS  and 2CS , which control 

switches 1s  and 2s  respectively. If the control signal is equal to 1, the corresponding 

switch is on, otherwise it is off.   
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Figure 6-1 Proposed SLC architecture for low power design 
 

The circuit shown in Figure 6-1 inverts the control input value, thus implementing an 

inverter. Unlike CMOS gates that implement inverting logic, this design style can produce 

both inverting and noninverting logic in the same circuit. I now give a detailed description of 

this circuit focusing on inverting logic operation first.  

Figure 6-2 shows the waveform of the control signals 1CS and 2CS , where T is the 

period related to the LC  resonant frequency: LCT π2= .  

 

 
 

Figure 6-2 Control signals of 1CS  and 2CS  
 

Based on the value of control signals 1CS and 2CS , this circuit will have four 

phases of operation as illustrated in Figure 6-3. 
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Figure 6-3 Operation phases of the proposed circuit 
 

Phase I: 02,01 == CSCS  

In this phase, switches 1s  and 2s  are off. Energy is stored in the load capacitor C .  

This corresponds to a logic 1 in the output load.   

 

Phase II: 02,11 == CSCS  

In this phase, the 1s  switches are on and the 2s switches are off. The stored energy 

in the capacitor C  is transformed to the inductor L . The capacitor voltage and the inductor 

current are: 
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∫
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After 4/T , the capacitor voltage becomes 0 and the inductor current reaches the 

maximum point. At this moment, switches 2s  are closed (on) according to the control signal.  

This leads to the phase III. 

 

Phase III: 12,11 == CSCS  

In this phase, all switches are on. The current is cycled in the inductor and the short 

circuit paths. This will keep the capacitor voltage at 0, which corresponds to a logic 0 at the 

output load. The load energy is not lost in this phase as it is stored in the magnetic field of the 

inductor.   

 

Phase IV: 12,01 == CSCS  

Whenever there is a need to re-charge the load capacitor again to switch the load 

output from 0 to 1, the 2s  switches are set on and 1s  switches are off. This will re-charge 

the load capacitor to the full voltage. After 4/T , the capacitor voltage reaches the maximum 

point and energy is restored in the electrical field of the capacitor. The inductor current is 0 at 

this point.  Switches 2s  then are opened again (off), which leads to the initial phase I.  

From the above four operation phases, the energy is stored in the inductor when there 

is a need to discharging the load capacitor. Whenever next time the capacitor needs to be 

re-charged, the energy stored in the inductor can be reused to charge the capacitor. Ideally, no 

energy is lost in this architecture. The reason for the cross connection of the switches in the 

switch control unit is to avoid a negative charge on the load capacitor. 
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6.2.2 Simulation results 

In this section, SPICE simulation for Figure 6-1 to build inverting and noninverting 

logics is presented. Meanwhile, the comparison of the energy loss of the proposed circuit with 

those of the traditional integrated circuit (IC) design is also discussed in this section.  

 

6.2.2.1 Inverting logic construction 

Various logic gates can be built using the described energy exchange and storage 

mechanism. To implement a general compound gate, the same approach as in NMOS design 

can be used. To accomplish a pull down operation (logic 0), one needs to compose a 

conducting path of switches controlled by various input signals. A series connection of 

switches implements logic AND, while a parallel connection implements logic OR. By 

properly combining switches controlled by the input signals, any logic function F  in the 

pull down path can be implemented. Thus a switch controlled path implements a logic 

function F , and the resulting SLC gate implements this logic function inverse F . 

For instance, to implement a 2-input NAND gate BAF •= , each switch 1s  in 

Figure 6-1 is replaced by a series connection of two switches controlled by signals A  and 

B  respectively. Each switch 2s  is replaced by a series connection of two switches 

controlled by signals A  and B  delayed by 4/T . The 4/T delay can be achieved by 

passing the input signal through a transmission delay line. Figure 6-4 shows the simulation 
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result. The logic function is correctly implemented and the four operation phases presented in 

Section 6.2.1 are clearly marked.  

 

 
 

Figure 6-4 BAF •= output waveform 
 

Figure 6-4 also shows there is some energy loss when the load capacitor is re-charged 

from the inductor (the output voltage drops from 5V at the beginning of simulation to 4.94V 

and 4.88V in the first and second re-charge period, respectively). This voltage drop is due to 

the path resistance. This means it is necessary to periodically re-charge the output capacitor 

through the pull-up path when the stored energy is below a set threshold. The energy losses of 

the SLC scheme are discussed in detail in Section 6.2.2.3.   

 

6.2.2.2 Non-inverting logic 

Unlike CMOS circuits that implement inverting logic only, the proposed SLC 

structure can be used to build non-inverting logic. This can be accomplished by using 
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complementary switches in the switch control unit. The complementary switch is on when the 

control signal is 0 and is off, when the control signal is 1. 

In this case, the conducting path must stay open to maintain the high output value, so 

it is necessary to express the complemented function value through a logic combination of 

complemented input signals. For instance to obtain a 2-input AND operation, one need to 

build a conducting path of complementary switches connected in parallel (Figure 6-5) that 

implements BAF += (equivalent to BAF •= ). Notice that, if the parallel connection of 

regular switches is used, the same SLC circuit would implement a NOR gate 

 

iS

A

B  
 

Figure 6-5 Switch iS  replaced by path of complementary switches 

 

6.2.2.3 Energy loss and timing analysis  

Figure 6-6 shows an equivalent circuit to charge the load capacitor from 0 to ddV in 

the traditional IC design [Rab 03].  
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Figure 6-6 Equivalent circuit in the charging load capacitor phase [Rab 03] 
 

It is well known that the energy taken from the supply during the charging transition 

ddVE  and the energy stored in the load capacitor at the end of the transition CE are [Rab 

03]:  
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As we can see from Equation (6.5) and (6.6), half of the energy is dissipated in the 

transition regardless of the size of the PMOS device and its effective resistance. During the 

discharging phase, the stored energy 2/2
ddLVC  will be dissipated through the NMOS device 

to the ground. Thus with each change of the logic value this device dissipates CE  energy.  

However, this is different in the proposed SLC circuit. Figure 6-7 shows the 

relationship between the percentages of stored energy losses per cycle with respect to the path 
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resistance for different L  and C  values. The x-axis is the value of the path resistance (in 

ohms) and y-axis is the percentage of energy losses. Figure 6-7 indicates that the energy loss 

increases with the increase of the path resistance. This means it is necessary to periodically 

recharge the output node through the pull-up path when the output voltage is lower than some 

threshold. Assume this threshold is set to 2/ddV , which corresponds to the lose of %75  of 

the energy stored in the output capacitor. This %75  threshold line determines the maximum 

value of the path resistance. Figure 6-7 also shows that to get the optimal energy saving 

performance, the fabrication of very low resistance switches (below 10 ohms for this circuits 

parameters) is required.  
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Figure 6-7 Energy loss with respect to the path resistance 
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Clock jitter will also cost energy loss in the proposed SLC circuit. As illustrated in 

Figure 6-2, control signal 2CS  should be delayed exactly by 4/T  compared to 1CS . 

However, this delay time is hard to maintain in a real circuit due to the clock phase jitter. 

Figure 6-8 shows the jitter effect. For simplification, let us assume that the control signal 

1CS  has fixed phase and signal 2CS  either leads (positive jitter) or lags (negative jitter) 

1CS  signal delayed by 4/T . The jitter in this dissertation research is defined as percentage 

of clock time )%100*/( Tδ .  

 

 δδ  
 

Figure 6-8 Control signal jitter effect 
 

Considering a SLC design with the parameters of nhL 200=  and pfC 100=  from 

Figure 6-7, Figure 6-9 illustrates the energy loss for different path resistance due to the jitter 

effect. As one can see from Figure 6-9, if there is no jitter, the corresponding energy loss is 

consistent with the results illustrated in Figure 6-7. With the increase of the jitter, more energy 

is lost in this switching scheme. For instance, if the jitter is larger than 15%, majority of the 

energy (more than 90%) will be lost due to the jitter effect. This means that for the proposed 
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SLC circuit to work properly, it is very critical to control the proper timing of the control 

signals 1CS  and 2CS .  
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Figure 6-9 Energy loss with respect to jitter effect 
 

Another issue related to the SLC circuit is the operating frequency. As illustrated in 

Figure 6-7, path resistance affects not only the energy loss but also the frequency of operation 

of the SLC circuit. The larger the path resistance, the larger the inductor value that 

corresponds to the same level of energy loss. This in turn means that the larger the resistance, 

the smaller the operating frequency. Figure 6-10 shows the LC resonance frequency with 

respect to the path resistance for different energy loss levels.   

There are two time periods in the SLC circuit: Period T  is decided by the resonance 

frequency of the LC parameters and sets 4/T delay of 2CS signal with respect to the 1CS  
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signal (Figure 6-2). The other period fT  is related to the operating frequency of the logic 

function. fT  must be significantly larger than T to guarantee that the logic function is 

correctly implemented. For instance, consider the %40  energy loss line in Figure 6-10. If 

the path resistance is about Ωm100 , then the resonance frequency is about GHz1 . If the 

logic operating frequency is set to be 10 times lower than this resonance frequency, then the 

maximum logic operating frequency is MHz100 . With further reduction of the path 

resistance, the logic operating frequency will increase. Though fabrication of low resistance 

switches is not practical in the current technology, lowering the path resistance to single 

milliohms could be within reach of superconducting devices in the future. Therefore, the 

speed of the SLC circuits should satisfy the requirements of modern digital circuits.  
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Figure 6-10 Frequency relationship with the path resistance 
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6.2.2.4 Discussion 

A novel idea of low power digital design based on the proposed SLC architecture is 

presented and simulation results show correct behavior of the proposed logic. However, for 

this methodology to be used in practical sub-micron IC design, there are several issues that 

need to be carefully evaluated and require further research.  

(1) Area overhead. Generally speaking, the proposed SLC gate needs 2 times the 

number of transistors plus an inductor than the equivalent CMOS gate. The proposed scheme 

is especially suitable for circuits that need to drive large capacitive loads, such as buses and 

clock distribution trees, or in the situations where power consumption is the most critical 

concern with no strict limitation on design area.   

(2) Energy loss. Since the path resistance will consume some energy, it is necessary to 

periodically recharge the load capacitor through the pull-up path when its voltage is lower 

than some pre-set threshold. This would require extra circuitry. In addition, to meet the speed 

requirements of the modern digital circuit, the switch-on resistor should be on the level of 

milliohms or less. This is out-of reach of current MOS technology.  

(3) High quality on-chip inductors. This new circuit needs the fabrication of accurate 

high quality (low resistance) on-chip inductors. This presents a serious challenge for 

fabrication technology. For reference, please review the practical design considerations for 

on-chip inductors presented in [Yue 99]. The impact of interconnect scaling, copper 

metallization and low-K dielectric on the achievable inductor quality factor is studied there.  
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(4) Timing of the control signals. The correct operation of this circuit depends on 

proper timing of the control signals. Control signal 2CS  is a control signal 1CS  delayed 

by a quarter of the LC oscillation period. How to provide this accurate delay time is also a 

design challenge. One way to alleviate this problem is to use clocked gate operations, in 

which all switched paths will contain a clock control switch for synchronization of the control 

signals.  

(5) Antenna and radiation effect. In the proposed SLC circuit, there are two types of 

energy losses:  one is the energy loss due to the path resistance, while the other one is due to 

the antenna effect. The amount of this radiation energy loss is related to the operating 

frequency (influence the wavelength of the radiation), size of the SLC circuit (influence the 

antenna length) and the path resistance (influence the current magnitude in SLC circuit) [Sad 

01]. Without degrading the operating frequency of the SLC circuit, reduction of the radiation 

energy loss can be achieved by carefully designing the size of the on-chip inductor and 

routing the length of wires in SLC (reduce antenna length and avoid cross coupling between 

different SLC circuits).  

Explorations of superconductor properties to digital computing are the subject of 

intensive research. Perhaps the most promising technologies today explore superconducting 

quantum computing circuits [Orl 02] and the superconducting properties of nanowires [Rog 

03].  None of these techniques, however, considers energy transfer from magnetic to electric 

fields, which is a basis of the computing model developed in this research.   
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6.3 Programmable hardware for intelligent systems 

So far, I have presented system level architectures and models of the dynamically 

self-reconfigurable systems as well as a concept of low power organization of such system. In 

this section, I will briefly describe the hardware architecture for designing such systems using 

reconfigurable FPGA technology.  

Intelligent system models can be simulated in a sequential computer, mapped into a 

programmable hardware, or built in VLSI. Software implementation is the easiest one but it 

has its inherent limitations. With the existing state of personal computer technology, it is not 

practical to develop a network with more than 10000 neurons. This limitation comes from the 

limited computer speed and their dynamic memory. While such networks can be used to test 

some machine learning ideas, they are not sufficient to build human-like intelligence. 

Assuming continuous progress in the computer industry and extrapolating computer 

efficiency growth into near future, we can expect computers to be 10 times faster and have 20 

times larger random access memory (RAM) in the next 7 years [Int 05] [Mor]. This would 

allow the increase in size of simulated networks to 100000 neurons (with twice as many 

connections per neuron as in today models). Yet, as the industry is expected to produce 60 

times as many transistors as it produces today [Mor], the system level capacity is expected to 

grow 60 times in the same time period. Thus, the expected capacity of programmable 

hardware will grow significantly faster than the software speed. In addition, this hardware 

will operate at increased speed (the same growth rate as the growth rate of computer speed), 

thus in the next 7 years, the computing capacity of parallel hardware will grow 600 times 
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comparing to 10 times growth in the software speed. This discrepancy between software 

capacity to simulate networks of neurons for machine intelligence and hardware capacity to 

implement them will grow even more in the future. Thus, we need to develop methods to 

build concurrent hardware prototypes for networks of neurons, program them, and test their 

performance in arrays of processors. This is a motivation behind the SOLAR program [SOL 

06]. This program intends to build support for system level implementation of networks of 

neurons in a parallel array of processing elements implemented in FPGA technology.  

Figure 6-11 illustrates the system level hardware architecture of the proposed 

dynamically reconfigurable system [Sta 03a]. Every processing element (neural unit) will 

receive input data and feed output data after processing to the routing channel through the 

bidirectional routing unit (BRU). The configurable switching unit (CSU) permutes the 

incoming data to any location of the output address, which provides a mechanism for 

dynamically defined connections between different neurons. In addition, such a connection 

structure can be dynamically reconfigured based on the embedded configuration units in the 

routing path. We fabricated the hardware FPGA boards with each board hosting 4 Xilinx XCV 

1000 chips, and these boards are under prototyping and testing. A more detailed description of 

the design progress in this research can be found in [SOL 06].   
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Figure 6-11 System level hardware architecture [Sta 03a] & [Sol 06] 

 

6.4 Looking ahead 

Power dissipation is the most critical issue for the hardware implementation of 

intelligence. Today, a simple processor running at 3GHz  speed dissipates over 100 Watts of 

power. Making a significant array of such processors (several millions of them) will be too 
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costly to operate. For comparison, a human brain with 1110  neurons dissipates less than 

10Watts of power. If we consider a neuron to be the elementary processor of intelligent 

systems, this translates to 1010−  Watts per neuron. Comparing this to 100Watts dissipated by 

today’s computers, each neuron dissipates on average 1210  times less energy. Thus power 

dissipation is a key issue.  

If we look at the dynamic power dissipated by N  digital processors working 

concurrently, we can estimate it to be in proportion to fNCV 2 , where C  is the total 

actively switched capacitance of a unit processor, V  is the power supply voltage and f  is 

the frequency of operation. Let us assume that the effective switching capacitance of a unit 

processor is nF10 (this number corresponds to currently built processors). This capacitance 

can go down linearly as the feature size will be reduced in future. Since the feature sizes are 

reduced at the rate of 2.5 times every 7 years (about 30% reduction every three years [Int 05] 

[Mal 96]), there is not much reduction expected due to this factor. The voltage level is around 

1V and will not be significantly reduced in the next 7 years. Thus, if we wish to design a 

system with 1110  processors (not withstanding its cost), its total dynamic power would be: 

( ) fP ××××= − 2911 1101010                      (6.7) 

Such a system would have to operate at a frequency of Hzf 210−=  to dissipate the 

same power as the human brain. Since neuron response time is estimated at 5 ms, such a 

system would be 20000 times slower than the human brain while operating at the same power 

budget. Even if we assume that only %5  of neurons are active at any given time, this would 

still require the system to operate 1000 times slower than the brain. Thus the only viable 

implementation for a brain-level system in modern VLSI technology is in analog VLSI 
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implementation. Analog VLSI circuits for neural network implementation were pioneered by 

E. A. Vittoz [Vit 85] [Vit 90a] [Vit 90b] [Vit 96] [Vit 98] and C. Mead [Mea 89], and many 

useful circuits were built since their pioneering work. Analog processors are 2 orders of 

magnitude smaller [Bay 96] [Bay 97] (and therefore require to load 100 times smaller 

capacitance), they can also operate at lower voltages. Lowering voltage level to mV40  in 

information transformed between neurons (as it is in real neural networks) would lower power 

requirements over 600 times. This combined with a smaller total capacitance to load would 

reduce power consumption to levels comparable or lower than those used by living brain 

making hardware implementation of human level intelligence feasible from an energy point of 

view.  

Handling the power dissipation problem does not guarantee that a system with human 

level capacity will be built in near future. Existing FPGA chips can integrate about 400 

picoblaze controllers, this is by no means is close to what one would need to design a system 

with 1110  processors. Even if an array of FPGA chips is designed with 10000 chips, it 

would allow to emulate 6104×  processors. Hardware progress in the next 7 years could 

increase this number to 810  processors in a 10000 chips system (assuming current growth of 

the number of transistors per chip doubles every 18 month). Even with this capacity, fully 

parallel implementation will not be comparable to the capacity of the human brain. Thus, a 

hybrid solution that combines parallel array implementation with software simulation needs to 

be considered. For instance, if each processor would simulate a cluster of 1000 neurons we 

would be able to implement a system of human level complexity within next 7 years.  

However, 10000 chips on 2500 boards would carry a high price tag. Assuming a chip 
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cost of 1000 dollars 7 years from now, such a system would cost more than 10 million dollars 

to build and use around 1 MW  of power to operate. However, with the current rate of 

transistor price drop of 1.5 times per year [Mor], such a system would only cost 3000 dollars 

after 20 years. Power dissipation of such system would still be on the level of 20 KW , so 

unless the energy price will drop it will be too expensive to operate. Only analog VLSI 

implementation will be both affordable to buy and operate. Thus in 25 years, people could 

afford to have their own personal intelligent system. This of course will only be true if we 

learn how to build such intelligent systems.  

 

6.5 Summary 

 This chapter presents a low power design scheme for large scale, high density 

intelligent systems. A novel SLC architecture for reducing the dynamic power consumption is 

proposed in this chapter. The basic idea of this low power design scheme is to store the energy 

in an inductor instead of dissipating it to the ground, and re-use it to charge the load capacitor 

whenever it is needed. This scheme provides a possible solution for future extremely low 

power design for large scale, high density integrated intelligent systems. The current platform 

selected for the prototyping and testing of the proposed intelligent systems in this research is 

the reconfigurable FPGA technology. A brief description of the system level hardware 

architecture, and a perspective of the future hardware development of human level intelligent 

systems is also presented in this chapter. 
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Chapter 7  

  Conclusions and Future Research 

7.1 Conclusions 

Development of deep submicron VLSI technology and neuroscience research 

facilitate building complex dynamically self-reconfigurable systems for machine intelligence. 

Over the past decades, the traditional AI approach has shown little progress in designing 

brain-like intelligent systems. Therefore, it is critical to develop a new framework for the 

designing of such systems. This is the major motivation of the research presented in this 

dissertation. 

In this dissertation, a novel framework titled “learning-memory-prediction” is 

proposed. This framework is an extension of the “memory-prediction” theory as presented 

recently by J. Hawkins in [Haw 04]. As the human brain uses a fundamentally different way 

compared to today’s computers in handling information, the proposed 

“learning-memory-prediction” framework provides a solution for designing intelligent 

systems. Under this framework, three major dynamically self-reconfigurable systems that are 

able to learn, process information, and make associations and predictions for intelligent 

systems are proposed.  

Learning is the fundamental property of biological intelligent systems. Therefore, 

learning mechanism is studied in Chapter 2. While both supervised learning and unsupervised 

learning are important for machine intelligence, I focus on the unsupervised reinforcement 
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learning. The reason for this is that in a practical learning environment, the supervisor 

(instructor) is not always available. In most of the cases, an intelligent system should learn 

through active interaction with the external uncertain environment, accumulate knowledge 

through experiences, define goals for its actions, and adjust its actions to achieve these goals. 

Many of these objectives can be accomplished through reinforcement learning. Since a value 

system is considered as one of the most critical components for reinforcement learning, 

Chapter 2 proposes a novel online value system, which can dynamically evaluate the signal 

value for any multi-dimensional data sets. This value system can be an important element for 

reinforcement learning to help the machine to adjust its actions.  

Chapter 3 focuses on the development of a self-organizing associative memory 

network. As an intelligent system learns the information from its environment, it should also 

be able to memorize such information in its distributed elements, and be able to make 

associations to recover a complete picture based on fractional information. The proposed 

memory network is a hierarchical network with sparse and local inter-connections. In addition, 

this memory is capable of self-adjusting its association depth according to the complexity of 

the incoming information. This is fundamentally different than the fixed structure of a pre-set 

memory network.  

After an intelligent system is able to learn and memorize information, it should be 

able to anticipate certain responses from the environment that is a result of its actions and thus 

predict the incoming information. It is well known that the ability of prediction is the most 

important element for human-intelligence. Therefore, a prediction mechanism is introduced in 

Chapter 4 to allow the machine to be able to learn, remember and anticipate any complex 
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sequences. This sequence learning machine is a biologically plausible system, in which every 

neuron only has two states: fire or do not. I believe that this sequence learning mechanism 

will be a critical element for the development of integrated intelligent systems. 

Chapters 2, 3, and 4 provide a complete picture of the proposed “learning-memory- 

prediction” framework. In order to show that the proposed system level models and 

architectures have the intelligence to handle different tasks, several application examples are 

studied in Chapter 5, which include pattern recognition and classification, image recovery and 

temporal sequence learning. 

As the long-term objective of the intelligent systems design is to implement them in 

hardware, a novel SLC architecture that is able to significantly reduce the dynamic power 

consumption of traditional CMOS designs is proposed in Chapter 6. As a novel computing 

paradigm, I hope that this scheme can provide a possible solution for low power design for 

future large scale, high-density intelligent systems in silicon. In addition, a brief description of 

the system level hardware architecture for prototyping and testing the proposed models is 

illustrated.  

 

7.2 Original Contributions 

One of the major contributions of this dissertation research is the proposed 

“learning-memory-prediction” framework for designing real-time, large, distributed 

intelligent systems. Under this framework, different system level models and architectures of 

dynamically self-reconfigurable systems for machine intelligence, including dynamic value 
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system, self-organizing associative memory, and temporal sequence learning are proposed in 

this research. Such systems are characterized by on-line data driven learning, dynamic 

reconfiguration, distributed information processing, hierarchical structure, local and sparse 

interconnections, and self-organization. By integrating such systems together, this dissertation 

provides the overall perspective for designing a brain-like intelligent system that is able to 

learn, process information, make predictions and associations, and dynamically adjust its 

organization and actions to accomplish the desired tasks and achieve its goals. 

Another contribution of this dissertation is that the proposed systems are hardware 

oriented, fault tolerant, and scalable. Therefore, this research contributes to the effort of 

designing large scale intelligent electronic systems. If Moore’s Law continues to hold through 

the quick development of modern electronic technology, it will be possible to design large 

scale, high density, and low power intelligent systems. As J. Hawkins predicted in his book 

“On Intelligence” [Haw 04], building brain-like intelligent systems will be the “last great 

terrestrial frontier of science”, and will trigger the renovation of the whole next generation of 

computer technology. This dissertation research contributes to the research in such an effort.  

 

7.3 Future research 

As studying intelligence and discovering mechanisms for intelligent behavior are one 

of the most exciting research areas in science and engineering, there is still a long way to go 

before we can design the truly intelligent systems. Along the research direction presented in 

this dissertation, the following issues are some of the challenges for future research: 
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(1) Selective observation and representation of the external environment for intelligent 

systems. In other words, how does the intelligent machine sense the external environment 

to its own advantage? For instance, when we look around, how can we focus our attention 

to the interesting information and distinguish it from the environment background noise? 

How can we successfully build the invariant object representations by integrating 

continuous observation, understanding and saccade movements? The research in [Li 06] 

provided an extensive study of active vision through invariant representations and saccade 

movements. I believe that the results presented in [Li 06] and in this dissertation research 

can be integrated together to build a complete system for machine intelligence from 

external environment representation, information sampling to the internal “brain” 

processing for learning, memory and prediction. 

(2) The proposed value system should be integrated into a real reinforcement learning 

system, and develop mechanisms under which such a system will modify a network’s 

organization and influence its learning, adjust its actions, maximize the reward signals, and 

achieve its goals.  

(3) So far, most of the proposed dynamically self-reconfigurable systems are tested in 

software. For real time testing in hardware design, either using reconfigurable FPGA 

technology or dedicated VLSI technology, there are many issues that need to be addressed. 

For instance, how to make full use of the hardware resources, how to dynamically 

reconfigure the connectivity structure, and how to process information and provide 

communication between different processing elements in real-time.  
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Design of brain-like intelligent systems is one of the most ambitious research topics 

nowadays. With the development of VLSI systems, nanotechnology, neuroscience and 

bioinformatics research, I believe that “brain-on-silicon” will not just be a dream and 

scientific fiction in the future. I also believe that such technology will benefit science and 

economy alike, and will trigger the renovation of our life in future. However, there are many 

difficult issues that need to be carefully investigated and studied. I hope that the research 

presented in this dissertation will contribute to this exciting, interesting and rewarding field.  
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Appendix A: Source Code and Data Sets Used in Dissertation 
 

The source code and data set packages used in this dissertation are available at the 

following address. 

http://www.ent.ohiou.edu/~webcad/dissertation/haibohe.html  

You can also email me to ask for a copy of these documents.  

Email: haibohe@bobcat.ent.ohiou.edu  

 

Software packages: 

Value_System:    package for the dynamic value system 

Associative_Memory:   package for the self-organizing associative memory 

Sequence_Learning:   package for the hierarchical sequence learning machine 

SOLAR_SVM:   package for the SOLAR and SVM power quality classification 

 

 

http://www.ent.ohiou.edu/~webcad/dissertation/haibohe.html
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