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1. Introduction 

 

In this report, dynamically reconfigurable neuron hardware architecture and its 

experiment setup using Nallatech board with Xilinx Virtex XCV800 Field Programmable 

Gate Array (FPGA) are described. The neuron structure is based on the modified Xilinx 

PicoBlaze [1] microcontroller. This modification allows the neuron to reconfigure itself 

during the runtime. Neurons have identical initial software code, are fully connected in a 

single chip, and can be expanded to a large multiple-chip system to build the 3D SOLAR 

[2] learning machine.  The 3D SOLAR learning machine will be composed by 384 high-

end VIRTEX XCV1000 FPGA chips. It is based on the main PCB board with 4 chips, 

and then PCB boards are both connected in the horizontal and vertical dimensions 

resulting in expanding SOLAR from 1D to 2D and then 3D. We are expecting the 3D 

SOLAR will have powerful processing ability based on its self-organizing algorithm and 

interconnections to perform tasks such as pattern recognition, prediction and modeling of 

unknown systems without being programmed beforehand. 

 

This report is divided into eight parts.  Section 2 introduces the PicoBlaze;  

Section 3 describes the neuron’s 2x14 architecture based on the modified PicoBlaze;  

Section 4 deals with the interconnections between 28 neurons in the single FPGA chip;  

Section 5 explains the VHDL codes to implement SOLAR in a single FPGA chip;  

Section 6 talks about the experiment setup;  Section 7 demonstrates how to change the 
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design, for example, change the structure from 2x14 to 4x7 neurons. Finally, Section 8 

summarizes this work and describes some future work. 

 

2. What Is PicoBlaze 

 

The PicoBlaze soft microcontroller is an 8-bit Reduced Instruction Set Computer 

(RISC) microprocessor from Xilinx Corp., which supports an 8-bit data bus and 16-bit 

instruction bus.  It has the Harvard architecture with separate data and instruction ports.  

It currently supports 49 instructions that operate within any one of several Xilinx 

CoolRunner™-II CPLDs (complex programmable logic device); it has 100% digital core 

with low power consumption and high-speed execution.  Its speed will vary depending on 

executed instructions and the implementation platform.  However, since it is tiny and has 

small instruction space, its functionality is not as strong as the traditional single chip 

computer. Although it has its own assembler, it does not have C/C++ compiler. So a user 

has to learn its assembly language, which is close to the 8086/8088 or M68K instruction 

set. For more information, refer to Xilinx webpage, (especially the introduction of the 

instruction set.).  Because of these characteristics, the PicoBlaze is a compact structure 

suitable for the neural network implementation in hardware. 
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3. How to Build A SOLAR Neuron on Modified PicoBlaze 

 

SOLAR has the self-organizing structure expressed in both its hardware and 

software part. In the hardware part, the neurons are fully interconnected in a single chip. 

So if we put 28 neurons in a single chip and assign two inputs from outside, then every 

neuron will have a 30 to 1 multiplexer to select its inputs either from the two inputs or 

from the outputs of other neuron (including itself); In the software part, every neuron has 

its own software can be dynamically updated from the PC through the PCI bus and 

through the inner neuron configuration bus. So we can load the individual self-organizing 

algorithm into every single neuron to give these neurons more wisdom to think. 

 

3.1 Neuron Structure 

 

The SOLAR neuron hardware architecture developed in this report is based on the 

PicoBlaze microprocessor.  The PicoBlaze has been modified to adapt to the needs of 

SOLAR’s self-organizing architecture.  A block level of single neuron architecture based 

on the 2x14 array of neurons (so every neuron has 2x14+2=30 inputs) is shown on 

Fig.3.1.  Each neuron module contains the circuits to be reprogrammed dynamically, and 

to execute its program without affecting other neurons’ operations. The dynamics of 

neuron operation comes from the Dual port instruction memory.  The instruction memory 

is originally a single port memory, which means that the instructions are fixed and can 

not be updated after loading.  In the SOLAR architecture, every neuron’s functionality 

must be changed based on the self organizing principle.  So, I modified the instruction 
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memory to be dual ports. The dynamical programming is implemented by the dual-port 

256x16-bit memory.  The PicoBlaze reads the current program in one port, while the 

other port can be used to store the new program. The two ports of the dual-port Random 

Access Memory (RAM) operate independently, and the operation is via shared 

programming bus among all the neurons. Therefore, the self-reconfiguration process can 

be performed affecting only the current neuron.  One port is for the microprocessor 

execution module to fetch instructions, and the other port can be used to dynamically 

update this neuron’s parameters like the interconnection, threshold, functionality, and etc.  

 

 

 

 

 

 

 

 

 

 

3.2 Neuron Programming 

 

Within each single neuron, basis functions are used to form a complete non-linear 

space to mimic any function for every neuron, just like we can use sine/cosine, harr 

wavelet, etc to approximate any non-linear function. These functions used in SOLAR 

 

Fig.3.1 Single neuron’s schematic 
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contain ADD, SUB, MUL, DIV, INVR, QDRE, LOG2, QDRT, ROOT, SQRE [4]. More 

functions are under development including the popular sigmoid function. We have to 

consider the hardware implementation when we choose these basis functions since we 

have limited instruction space inside every single neuron to hold these basis functions. 

 

The actual operation of each neuron is controlled by dynamically loaded 

structural information or parameters’ values.  The PicoBlaze assembler is used to 

implement neuron’s functions at the initial stage. The actual operation of each neuron is 

controlled by dynamically loaded structural information or parameters’ values. For 

instance, a simple PicoBlaze assembly code sub2.psm to implement subtraction of two 

neuron’s inputs is shown as follows: 

  

;This program implements a sub function 
; 
;function z = sub(x,y) 
;z = max(0,x-y); 
; 
;By Y. Guo 
;(c) 2004 FPGA lab Ohio U. 
 
NAMEREG s0,A 
NAMEREG s1,B  
       
DISABLE INTERRUPT 
start:  
       INPUT A, 00 
       INPUT B, 01   
       SUB A,B 
       JUMP NC, a_b  
       LOAD A,00 
a_b: 
       OUTPUT A,01 
       JUMP start   
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An assembly code can be written with notepad tools. The file is then saved with 

a .psm extension. Place the executive assembler file provided by Xilinx 

(C:\solar\hwsw\psm\KCPSM.exe) in the same directory as the program file, open a DOS 

window and navigate to the working directory that contains this programs. These 

programs are named as add.psm, divd.psm, exp2.psm, invr.psm, log2.psm, mult.psm, 

qdre.psm, qdrt.psm, root.psm, sqre.psm, sub.psm, and etc. For how to use the assembly 

language, you can refer to Xilinx data sheet. [3]. Then run the assembler to assemble the 

program. For instance, 

 

Kcpsm sub2.psm  <ENTER> 

 

If there is no syntax error, we will obtain the “KCPSM complete” information as 

shown in Fig. 3.2. If there is syntax error, you can correct it based on the given error 

information. So if success, under the current directory, a binary VHDL program, named 

sub2.vhd will be created and stored.  
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After translation from the assembler to the binary code, this binary code is written 

into the dual port memory by calling the Peripheral Component Interconnect (PCI) 

functions.  The configuration time and contents of every single neuron can be controlled 

by the software outside the chip or via PC simulation.  In the future, we can utilize the 

distributed memories at the edge of FPGA chip to pre-store some configurations for these 

neurons and in that case, the configuration and reconfiguration process will be finished 

by the chip itself.  

 

The neuron inputs are obtained either from the primary inputs or other neurons’ 

outputs via a 30 to 1 multiplexer (MUX) as introduced in the following section.  The 

selection signal of the MUX to select the inputs to the current neuron is decided by the 

Fig. 3.2  Run assembler to assemble program 
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content of the programming dual-port memory via execution of the programming 

commands for this particular neuron. For example, if a neuron is picking the outputs from 

another neuron, then the corresponding MUX selection signal is stored in this neuron’s 

memory. Except for the MUX selection signal to determine neurons’ interconnections, 

other configuration information including neurons’ threshold, operation function are also 

obtained via training using Matlab software. These obtained configuration data is written 

into the Picoblaze neuron. So every neuron is configured differently from other neurons 

in most cases but they are all trained off-chip from the software simulation. Occasionally, 

some neurons are not fired during the software simulation and in that case, those neurons 

are “retired” from SOLAR.  

 

4. How to Connect 28 Neurons 

 

The single neuron architecture is expanded to an array of neurons in a single 

FPGA chip.  The Xilinx Virtex XCV800 FPGA can contain an array of up to 28 neurons 

organized as shown in Fig.4.1 (Virtex XCV1000 FPGAs that will be used to build 3D 

learning machine will contain 64 neurons on each chip).  
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These neurons are fully interconnected via the connection bus and a 30 to 1 

MUX, thus forming a local cluster of neurons.  30 to 1 multiplexer allows network to use 

2 independent inputs, thus 28 and system inputs are fully interconnected.  These numbers 

must be modified if the size of the network changes such that the multiplexer is of the 

size equal to the number of neurons plus the number of inputs.  The full connections 

implementation mimics the dense connection scheme in the neighborhood neurons.  A 

3D expansion of these chips represents the sparse connections between remote neurons.  

These inter-chip connections scale linearly with the number of neurons added.  The 

neurons connections are decided by each neuron based on its learning results.  The 

programming contents can be dynamically updated via the configuration bus or set 

locally by a neuron.  The configuration bus used to configure every single neuron is 

divided into 16-bit data, 8-bit address and 5-bit neuron selection buses.  To demonstrate 

functionality of 28 neurons cluster, PCI interface controller is integrated to transfer the 

data/configuration via the PCI bus to neurons.  In Fig. 4.1, the data/addr/ctrl bus is 

Fig. 4.1 Array neurons’ organization 
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connected to every neuron’s programming memory to send the configuration information 

to every single neuron.  The bus represents the fully interconnected bus between the 

neurons.  How to use the ctrl bus to select particular neuron and how to configure it is 

explained in the following sections.   

 

5. Explanation of the VHDL Code 

 

Since the SOLAR neuron is implemented based on the PicoBlaze micro 

controller. Therefore, the neuron component in the pico_solar.vhd is called PicoBlaze and 

is defined as follows as a 2x14 network. (The full files are located in the hard drive in 

Rm.323 C:\solar\hwsw\nn_vote_4\pico_solar.vhd - initially located at Gateway P4 PC 

c:\PicoBlaze). The 4x7 network can be easily obtained from the 2x14 network and it is 

further explained in Section 7.  

 

component PicoBlaze 
Port (      clk : in std_logic;  
    reset:in std_logic; 
               data_out : out std_logic_vector(7 downto 0);  
    data_in0 : in std_logic_vector(7 downto 0);  
    data_in1 : in std_logic_vector(7 downto 0);   
    data_in2 : in std_logic_vector(7 downto 0);  
    data_in3 : in std_logic_vector(7 downto 0);  
    data_in4 : in std_logic_vector(7 downto 0);  
    data_in5 : in std_logic_vector(7 downto 0);  
    data_in6 : in std_logic_vector(7 downto 0);  
    data_in7 : in std_logic_vector(7 downto 0);  
    data_in8 : in std_logic_vector(7 downto 0);  
    data_in9 : in std_logic_vector(7 downto 0);  
    data_in10 : in std_logic_vector(7 downto 0);  
    data_in11 : in std_logic_vector(7 downto 0);   
    data_in12 : in std_logic_vector(7 downto 0);  
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    data_in13 : in std_logic_vector(7 downto 0);  
    data_in14 : in std_logic_vector(7 downto 0);  
    data_in15 : in std_logic_vector(7 downto 0);  
    data_in16 : in std_logic_vector(7 downto 0);  
    data_in17 : in std_logic_vector(7 downto 0);  
    data_in18 : in std_logic_vector(7 downto 0);  
    data_in19 : in std_logic_vector(7 downto 0);  
    data_in20 : in std_logic_vector(7 downto 0);  
    data_in21 : in std_logic_vector(7 downto 0);   
    data_in22 : in std_logic_vector(7 downto 0);  
    data_in23 : in std_logic_vector(7 downto 0);  
    data_in24 : in std_logic_vector(7 downto 0);  
    data_in25 : in std_logic_vector(7 downto 0);   
    data_in26 : in std_logic_vector(7 downto 0);  
    data_in27 : in std_logic_vector(7 downto 0); 
    data_in28 : in std_logic_vector(7 downto 0);  
    data_in29 : in std_logic_vector(7 downto 0);  
    ADDR_bus : in STD_LOGIC_VECTOR (7 downto 0);  
    DATA_bus : in STD_LOGIC_VECTOR (15 downto 0);  
               Enable   : in STD_ULOGIC 
    ); 
end component; 
 

In the above example, we built 2 rows and 14 columns SOLAR array. Every 

neuron can have up to 2x14=28 inputs from other neurons plus two inputs from outside 

(the number of external inputs is equal to the number of rows of the SOLAR array during 

the algorithm simulation). In the above example, we only have a single output for every 

neuron. Later example explains how to expand the output space. The following describes 

the network’s signals. 

 

clk signal is achieved from the CLKDLL - a clock delay-locked loop to minimize clock 

skew. 

data_out is the output register of every single neuron, the output is connected to all the 

neurons’ 30-1 mux inputs including itself. 
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data_in0 to data_in29 are the input signals to the neuron’s 30-1 MUX.  Every neuron’s 

input is from all neurons outputs including itself. 

ADDR_bus is the dual-port memory configuration address bus connected to every 

neuron. 

DATA_bus is the dual-port memory configuration data bus connected to every neuron. 

Enable is the dual-port memory enable signal connected to every neuron. 

 

The following describes the hardware operation: 

Write a 28 bit data via PCI bus to register “ADDRDATAEN_BUS”.  

In the 28-bit data, bits 7 downto 0 (LSB) are the neuron’s instruction address 

space; bits 23 downto 8 (LSB) are the neuron’s instruction data space; bits 28 downto 24 

(LSB) are the neuron’s instruction memory enable signals. This 28-bit data is latched at 

the rising edge of clock with the permission of “ADDRDATAEN_BUS_WR”.  The 

memory enable signal is derived from the “ADDRDATAEN_BUS_WR” after four clock 

periods, to assure a sufficient setup/hold time for the instruction memory address and data 

signals. 

 

process (RST, DSP_CLKi) 
begin 
      if RST='1' then     
   Enable_bus_d <= (others => '1');  
              Enable_bus <= (others => '1');     
   ADDRDATAEN_BUS_WREN_d <= '0';   
   ADDRDATAEN_BUS_WREN_d1 <= '0'; 
   ADDRDATAEN_BUS_WREN_d2 <= '0'; 
   ADDRDATAEN_BUS_WREN <= '0'; 
     elsif DSP_CLKi'event and DSP_CLKi='1' then      
              Enable_bus_d <= ADDRDATAEN_BUS(28 downto 24); 
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   Enable_bus <= Enable_bus_d;     
   ADDRDATAEN_BUS_WREN_d <= ADDRDATAEN_BUS_WR; 
   ADDRDATAEN_BUS_WREN_d1 <= ADDRDATAEN_BUS_WREN_d;   
   ADDRDATAEN_BUS_WREN_d2 <= ADDRDATAEN_BUS_WREN_d1;  
   ADDRDATAEN_BUS_WREN <= ADDRDATAEN_BUS_WREN_d2; 
     end if; 
end process; 
 

The enable signal for every single neuron is decoded by the 

“ADDRDATAEN_BUS” after two clock periods to ensure a sufficient setup/hold time to 

latch. This is implemented by the following code. 

 

process (RST, Enable_bus,ADDRDATAEN_BUS_WREN) 
begin 
 if RST='1' then 
  MY_ENA_BUS(1,1) <= '0'; 
  MY_ENA_BUS(1,2) <= '0'; 
  MY_ENA_BUS(2,1) <= '0'; 
  MY_ENA_BUS(2,2) <= '0'; 
  MY_ENA_BUS(3,1) <= '0'; 
  MY_ENA_BUS(3,2) <= '0'; 
  MY_ENA_BUS(4,1) <= '0'; 
  MY_ENA_BUS(4,2) <= '0'; 
  MY_ENA_BUS(5,1) <= '0'; 
  MY_ENA_BUS(5,2) <= '0'; 
  MY_ENA_BUS(6,1) <= '0'; 
  MY_ENA_BUS(6,2) <= '0'; 
  MY_ENA_BUS(7,1) <= '0'; 
  MY_ENA_BUS(7,2) <= '0'; 
  MY_ENA_BUS(8,1) <= '0'; 
  MY_ENA_BUS(8,2) <= '0';           
  MY_ENA_BUS(9,1) <= '0'; 
  MY_ENA_BUS(9,2) <= '0'; 
  MY_ENA_BUS(10,1) <= '0'; 
  MY_ENA_BUS(10,2) <= '0'; 
  MY_ENA_BUS(11,1) <= '0'; 
  MY_ENA_BUS(11,2) <= '0'; 
             MY_ENA_BUS(12,1) <= '0'; 
  MY_ENA_BUS(12,2) <= '0'; 
  MY_ENA_BUS(13,1) <= '0'; 
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  MY_ENA_BUS(13,2) <= '0'; 
  MY_ENA_BUS(14,1) <= '0'; 
  MY_ENA_BUS(14,2) <= '0'; 
    else         
      case Enable_bus is 
  when "00010" => MY_ENA_BUS(1,1) <= ADDRDATAEN_BUS_WREN; 
  when "00011" => MY_ENA_BUS(1,2) <= ADDRDATAEN_BUS_WREN; 
  when "00100" => MY_ENA_BUS(2,1) <= ADDRDATAEN_BUS_WREN; 
  when "00101" => MY_ENA_BUS(2,2) <= ADDRDATAEN_BUS_WREN; 
  when "00110" => MY_ENA_BUS(3,1) <= ADDRDATAEN_BUS_WREN; 
  when "00111" => MY_ENA_BUS(3,2) <= ADDRDATAEN_BUS_WREN; 
  when "01000" => MY_ENA_BUS(4,1) <= ADDRDATAEN_BUS_WREN; 
  when "01001" => MY_ENA_BUS(4,2) <= ADDRDATAEN_BUS_WREN; 
  when "01010" => MY_ENA_BUS(5,1) <= ADDRDATAEN_BUS_WREN; 
  when "01011" => MY_ENA_BUS(5,2) <= ADDRDATAEN_BUS_WREN; 
  when "01100" => MY_ENA_BUS(6,1) <= ADDRDATAEN_BUS_WREN; 
  when "01101" => MY_ENA_BUS(6,2) <= ADDRDATAEN_BUS_WREN; 
  when "01110" => MY_ENA_BUS(7,1) <= ADDRDATAEN_BUS_WREN; 
  when "01111" => MY_ENA_BUS(7,2) <= ADDRDATAEN_BUS_WREN; 
  when "10000" => MY_ENA_BUS(8,1) <= ADDRDATAEN_BUS_WREN; 
  when "10001" => MY_ENA_BUS(8,2) <= ADDRDATAEN_BUS_WREN; 
  when "10010" => MY_ENA_BUS(9,1) <= ADDRDATAEN_BUS_WREN; 
  when "10011" => MY_ENA_BUS(9,2) <= ADDRDATAEN_BUS_WREN; 
  when "10100" => MY_ENA_BUS(10,1) <= ADDRDATAEN_BUS_WREN; 
  when "10101" => MY_ENA_BUS(10,2) <= ADDRDATAEN_BUS_WREN; 
  when "10110" => MY_ENA_BUS(11,1) <= ADDRDATAEN_BUS_WREN; 
  when "10111" => MY_ENA_BUS(11,2) <= ADDRDATAEN_BUS_WREN;  
  when "11000" => MY_ENA_BUS(12,1) <= ADDRDATAEN_BUS_WREN; 
  when "11001" => MY_ENA_BUS(12,2) <= ADDRDATAEN_BUS_WREN; 
  when "11010" => MY_ENA_BUS(13,1) <= ADDRDATAEN_BUS_WREN; 
  when "11011" => MY_ENA_BUS(13,2) <= ADDRDATAEN_BUS_WREN; 
  when "11100" => MY_ENA_BUS(14,1) <= ADDRDATAEN_BUS_WREN; 
  when "11101" => MY_ENA_BUS(14,2) <= ADDRDATAEN_BUS_WREN;  
  when others => null; 
  end case;  
 end if; 
end process; 
 

In general a neuron may have many input registers, but for neurons on layer0, we 

only use two - MY_NN_REGS(0,1), MY_NN_REGS(0,2) to represent neurons 

themselves. It is exactly the same as in the Matlab software simulation( 
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C:\solar\hwsw\main0.m) that we treat the inputs to be special neurons on layer0. Since 

the number of input features is equal to the number of neurons per layer, thus SOLAR 

structure can be changed depending on the input features. This read-in process for the 

“input” neurons are implemented by the following codes. 

 

process (RST, DSP_CLKi) 
begin 
 if RST='1' then 
       MY_NN_REGS(0,1) <= (others => '0');  
   MY_NN_REGS(0,2) <= (others => '0'); 
   ADDRDATAEN_BUS  <= (others => '0'); 
 elsif DSP_CLKi'event and DSP_CLKi='1' then 
  if MY_WR_REGS_01 = '1' then 
   MY_NN_REGS(0,1) <= DATA(7 downto 0);   
  end if;   
  if MY_WR_REGS_02 = '1' then 
   MY_NN_REGS(0,2) <= DATA(7 downto 0);   
  end if;   
  if ADDRDATAEN_BUS_WR = '1' then 
   ADDRDATAEN_BUS <= DATA(28 downto 0);   
  end if;    
 end if; 
end process; 
 

The neuron’s output is connected to an input of all other neurons.  In addition, it 

could be read out for debugging and monitoring. This is implemented by the following 

code. The “and” operation is utilized to handle high-bit error happened very occasionally 

when huge data is read very rapidly and continuously via PCI bus. Possible reason is still 

not so clear and one conjecture is the interface function timing problem. 

LAYRD: for i in 0 to LAYERS generate   
  NEURD: for j in 1 to NEURONS generate  

DATA <=("000000000000000000000000"&MY_NN_REGS(i,j)) and 
   “00000000000000000000000011111111"  when MY_RD_BUS(i,j)='1' else 
    (others => 'Z'); 
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  end generate NEURD;  
end generate LAYRD; 
 

The registers are addressed by the decoder logic as follows. 

MY_WR_REGS_01<= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 0)="000010" else '0'; 
MY_WR_REGS_02 <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 0)="000011" else '0'; 
 
PRGRAMMEM_RST <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="000100" else '0'; 
ADDRDATAEN_BUS_WR <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 0)="000101" 
else '0'; 
 
MY_RD_BUS(0,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="000010" else '0';   
MY_RD_BUS(0,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="000011" else '0';   
MY_RD_BUS(1,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001100" else '0';   
MY_RD_BUS(1,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001101" else '0';   
MY_RD_BUS(2,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001111" else '0';   
MY_RD_BUS(2,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001110" else '0';   
MY_RD_BUS(3,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001010" else '0';   
MY_RD_BUS(3,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001011" else '0';   
MY_RD_BUS(4,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001001" else '0';   
MY_RD_BUS(4,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001000" else '0';   
MY_RD_BUS(5,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011000" else '0';   
MY_RD_BUS(5,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011001" else '0';   
MY_RD_BUS(5,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011010" else '0'; 
MY_RD_BUS(6,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011011" else '0';   
MY_RD_BUS(6,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011010" else '0';   
MY_RD_BUS(7,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011110" else '0';   
MY_RD_BUS(7,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011111" else '0';   
MY_RD_BUS(8,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011101" else '0';   
MY_RD_BUS(8,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011100" else '0';   
MY_RD_BUS(9,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010100" else '0';   
MY_RD_BUS(9,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010101" else '0';   
MY_RD_BUS(10,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010111" else '0';   
MY_RD_BUS(10,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010110" else '0';   
MY_RD_BUS(11,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010010" else '0';   
MY_RD_BUS(11,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010011" else '0';   
MY_RD_BUS(12,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010001" else '0';   
MY_RD_BUS(12,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010000" else '0';   
MY_RD_BUS(13,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110000" else '0';   
MY_RD_BUS(13,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110001" else '0';   
MY_RD_BUS(14,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110011" else '0';   
MY_RD_BUS(14,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110010" else '0';   
 

The signal names and their description are listed in Table. 1. 
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REG ADDR DESCRIBTION 

MY_WR_REGS_01 2 Layer 0 register 1Write signal

MY_WR_REGS_02 3 Layer 0 register 1Write signal

PRGRAMMEM_RST 4 Reset 

ADDRDATAEN_BUS_WR 5 Addr, Data and Enable bus 

MY_RD_BUS(0,1) 2 Layer 0 register 1 Read signal

MY_RD_BUS(0,2) 3 Layer 0 register 2 Read signal

MY_RD_BUS(1,1) 12 Layer 1 register 1 Read signal

MY_RD_BUS(1,2) 13 Layer 1 register 2 Read signal

MY_RD_BUS(2…14,1) X Similar to the above 

MY_RD_BUS(2…14,2) X Similar to the above 

                (Addresses 0 & 1 are reserved for the main CSR and DMA counter) 

Table.1 Register definition and description 

 

In the original PicoBlaze, the programs are stored in a small instruction memory. 

But the original design uses a single-port memory, which means the user can not change 

the contents of the instruction memory once they are put into the FPGA chips since the 

only port is read by the PicoBlaze “CPU”. The detailed implementation can be referred to 

the PicoBlaze document [1]. In my design, I revised the original design to use dual port 

memory. In that case, we can reprogram the instruction memory without need to reload 

the whole design into the chip, and the process can be dynamically finished based on the 

self-organizing process for every single neuron without interfering other neuron’s 
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execution.  The modified dual-port memory causes no difference in the original 

PicoBlaze implementation. 

 

  Many useful features of PicoBlaze architecture have not been fully utilized in 

this example.  For instance, a PicoBlaze can have more than one single register output 

and this capability could be utilized if we have more information to exchange between 

neurons. The following code uses the output port "00000001" only. Later example uses 

two output port spaces. 

 

data_registers: process(clk) 
begin 
if clk'event and clk='1' then 
 if port_id(7 downto 0)="00000001" and write_strobe='1' then 
   data_out <= data_outi;   
 end if; 
end if; 
end process data_registers; 
 

From the described VHDL code, it should be clear how to write the content of 

each neuron and how to send the created HEX file to every neuron. 

 

6. How to Setup the Experiment 

 

To experiment with the 28 SOLAR neurons based on PicoBlaze micro controllers, 

we have to have both the hardware and software platforms.  The hardware platform 

contains the Ballynuey 2 PCI card and PC with PCI slot, which is easy to setup. The 
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software platform includes the operating system, Matlab, VC++, and etc. The following 

explains how to set the experiment. 

 

The operating system is either WIN98/2000 or WIN XP. If we choose 

WIN98/2000, a DLL file facilitates to read/write registers and other I/O operation. The 

DLL file for Matlab is developed using MATLAB MEX programming. Basically, we 

need a MEX interface function to translate your C/C++ function IO data to MATLAB 

environment. This gives users an option to develop C/C++ function which can be 

executed in MATLAB environment for some time-consuming tasks in MATLAB. The 

DLL files are developed by myself combining both the C/C++ library from Nallatech. 

and Matlab MEX programming.  

 

In this project, we use the MATLAB algorithm simulation for SOLAR. With 

these DLL, we can easily operate the PCI card within Matlab environment.  If we choose 

to work within WIN XP, the current development library provided by the Nallatech uses 

new C/C++ interface functions and there is a potential problem to develop necessary 

Matlab DLL files.  So we may need to use C/C++ function without Matlab environment.  

Actually, there is no big issue here if you are familiar with C/C++ environment.  In the 

following, I assume we are using WIN2000 which is the environment that I used. The 

developed DLL contains: 

 

matOpenDIMEBoard.dll 

matCloseDIMEBoard.dll 
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matResetDIMEBoard.dll 

matviDIME_ReadRegister.dll 

matviDIME_WriteRegister.dll 

matviDIME_DMARead.dll 

matviDIME_DMAWrite.dll 

… 

To create these DLL, you need a MEX header to connect Matlab and C/C++. This 

MEX header called mexFunction as following example. The rest of the function is your 

implementation function as DIME_WriteRegister function in this example. Inside this 

function, you can implement whatever you want. In my code, I use 

viDIME_WriteRegister function provided by Nallatech in the Nallatech CD in Rm 323. 

To compile this function, you need go to Matlab console, type mex to first configure your 

compiler, then you can compile your C/C++ function in Matlab environment. More 

functions can be provided if needed. 

 

#include "mex.h" 
#include "dimesdl.h" 
#include "vidime.h" 
 
void DIME_WriteRegister(double * handle,double * addr,double * data,double *flag) 
{ 
 DIME_HANDLE CurrHandle; 
 if((CurrHandle=GetDIMEHandle())==NULL) 
 { 
  printf("Open Virtex Board failed when checking handle status!"); 
  return; 
 } 
    *flag=viDIME_WriteRegister(CurrHandle,(DWORD)*addr,(DWORD)*data,5000); 
} 
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void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 
{ 
    double *handle; 
 double *addr; 
 double *data; 
 double *flag; 
   
 if (nrhs != 3) {  
  mexErrMsgTxt("three arguments required - handle addr & data.");  
    }  
 else if(nlhs > 1) 
  mexErrMsgTxt("Too many output arguments"); 
 
    handle = mxGetPr(prhs[0]); 
    
 addr = mxGetPr(prhs[1]); 
 
 data = mxGetPr(prhs[2]); 
 
    plhs[0]=mxCreateDoubleMatrix(1,1,mxREAL); 
    flag=mxGetPr(plhs[0]); 
 
    DIME_WriteRegister(handle,addr,data,flag); 
} 

 

These DLL files are developed for the basic applications including register 

read/write, DMA transferring, DIME board operation, and etc. In the future application, 

more DLLs may be developed based on the modified design. Among these DLLs, the 

matResetDIMEBoard.dll is not designed to reset your design but to reset the PCI 

interface FIFO, control state machine, and etc. To reset the whole board, you not only 

need to reset the PCI interface but also need to reset your design. To reset the PCI 

interface, basically, three reset functions are needed as follows: 
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DIME_PCIReset(hDIME);  

DIME_VirtexReset(hDIME);  

DIME_SystemReset(hDIME); 

(here, hDIME is the returned handle for the board) 

 

To reset your design, there are many ways to do it. You can assign a reset register 

or you can create a reset pulse based on simple read/write logic. Again, to reset your 

design, you have to add one more function to create the reset DLL to reset the whole 

board.  In my design, the RESET signal is associated with the system reset. So there is no 

additional reset pulse generated. The mex code is as follows.  

 
#include "mex.h" 
#include "dimesdl.h" 
#include "vidime.h" 
 
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const 
mxArray *prhs[]) 
{ 
 DIME_HANDLE hDIME; 
 if (nrhs != 0) {  
  mexErrMsgTxt("No arguments required.");  
    }   
    if((hDIME=GetDIMEHandle())==NULL) 
 { 
  printf("Open Virtex Board failed when checking 
handle status!"); 
  return; 
 } 
 DIME_PCIReset(hDIME); 
 DIME_SystemReset(hDIME); 
    DIME_VirtexResetEnable(hDIME); 
 printf("Virtex Board Reset totally.\n"); 

} 

 



  

 

30

 

After the SOLAR training in software, we have achieved the optimal 

configuration results of the network neurons.  We can use Matlab to create the HEX file 

based on the learned results to configure the instruction memory for every single neuron 

on the Picoblaze microcontroller and to use these HEX files to configure every single 

neuron. How to transfer the HEX file to every single neuron is explained  in later content.   

The HEX file is the instruction file created by the provided assembler (KCPSM.exe) from 

Xilinx, as introduced in section 3.2.  Currently, there are eleven learning functions to use 

in SOLAR  

 

'ADD.HEX','SUB.HEX','MULT.HEX','DIVD.HEX','SQRE.HEX','ROOT.HEX', 

'LOG2.HEX','INVR.HEX','EXP2.HEX','QDRT.HEX','QDRE.HEX'.  

 

Although these functions are HEX files, we can change some values inside them 

(for detailed HEX file structure, refer to the recent PicoBlaze document).  For instance, 

8100E000C014A101A000 is a simple instruction to add two ports together.  We can 

change “C014” to “C016” to do the subtraction instead of addition.  This configuration 

work has been done in Matlab since our neurons are learning and parameters are updated. 

Using Matlab program, we can change the parameters at the right memory location in 

PicoBlaze.  

 

The complete developed Matlab file is merged with the whole system to 

dynamically configure the neurons based on the training results.  The following Matlab 

file may be used as a starting point.  This file is easy to understand. The main function is 
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to configure the chip, load different instruction memory for every single neuron, and read 

back the voting results. In the example code, VirtexHandle is the board memory space 

and ADDRESS(5 downto 0) is used to select which neuron to configure after the address 

signal is further decoded.  

 

 
close all; 
clear all; 
 
load TRAININGRESULT; 
 
input1=[64]; 
input2=[56]; 
 
MaxNeuron=6; 
 
test=TEST; %function selection 
threshold=NEURONSTHRESHOLD; %threshold 
connection1= NEURONSCONNECTION1; %connection1 
connection2= NEURONSCONNECTION2; %connection2 
 
hexfiles={'ADD.HEX','SUB.HEX','MULT.HEX','DIVD.HEX','SQRE.HEX', ...                
'ROOT.HEX','LOG2.HEX','INVR.HEX','EXP2.HEX','QDRT.HEX','QDRE.HEX'}; 
 
fid_s = fopen('send2neuron.txt','W'); 
 
VirtexHandle=matOpenDIMEBoard; 
 
succ=matConfigDIMEBoard(VirtexHandle, 'pico_solar.bit'); 
 
for neuron=1:MaxNeuron 
  

hexfile_pointer=test(neuron); 
 
fid_r=fopen(hexfiles{hexfile_pointer},'r'); 
 
writedata=sprintf('%s801000',dec2hex(neuron+1,2)); 
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata)); 
writedata=sprintf('%sA1%s02',dec2hex(neuron+1,2),dec2hex(connection2(neuron),2)) 
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata)); 
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writedata=sprintf('%s0F%s03',dec2hex(neuron+1,2),dec2hex(threshold(neuron),2));  
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata)); 
 
i=0; 
t=fgets(fid_r); 
tpre=t; 
 
while(isempty(strfind(t,'0000')) | isempty(strfind(tpre,'0000')) ) 
 
if isempty(strfind(t,'8010')) & isempty(strfind(t,'A000')) & ... 
                isempty(strfind(t,'A101')) & isempty(strfind(t(1:2),'0F')) 

writedata=sprintf('%s%s%s',dec2hex(neuron+1,2),t(1:4),dec2hex(i,2)); 
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata)); 

     end 
    end 

end 
 
reset=matviDIME_ReadRegister(VirtexHandle,4); 
 
for i=1:length(input1) 
 

flag=matviDIME_WriteRegister(VirtexHandle,2,input1(i)); 
flag=matviDIME_WriteRegister(VirtexHandle,3,input2(i)); 
neuron2(i)=matviDIME_ReadRegister(VirtexHandle,7) 
neuron3(i)=matviDIME_ReadRegister(VirtexHandle,8) 
neuron4(i)=matviDIME_ReadRegister(VirtexHandle,9) 
neuron5(i)=matviDIME_ReadRegister(VirtexHandle,10) 
neuron6(i)=matviDIME_ReadRegister(VirtexHandle,11); 
neuron7(i)=matviDIME_ReadRegister(VirtexHandle,12); 
 
vote2(i)=matviDIME_ReadRegister(VirtexHandle,35) 
vote3(i)=matviDIME_ReadRegister(VirtexHandle,36) 
vote4(i)=matviDIME_ReadRegister(VirtexHandle,37) 
vote5(i)=matviDIME_ReadRegister(VirtexHandle,38) 
vote6(i)=matviDIME_ReadRegister(VirtexHandle,39); 
vote7(i)=matviDIME_ReadRegister(VirtexHandle,40); 

 
end 
 
matCloseDIMEBoard; 
 

Example 
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In this part, I used the neuron structure obtained after learning, shown in the left 

part of Fig. 6.1. I prototyped the simple SOLAR architecture containing 28 neurons onto 

a single VIRTEX FPGA chip.  In this example, the configuration of 6 neurons among the 

28 neurons is shown in Fig. 6.1.  

 

 

 

The initial connections are shown in solid lines. In this simplified example, every 

neuron simply adds two inputs together. For instance, the neuron 1 adds inputs 1 and 2 to 

its content; the neuron 3 adds input 2 and the output of the neuron 1; the neuron 5 adds 

the outputs of neuron 2 and 3, etc.  Then, the connections of the neurons 3 and 5 are 

dynamically reconfigured, as shown by the dotted line. The updated neuron 3 has inputs 

as the outputs from the neurons 1 and 2, and the neuron 5 has inputs as the outputs from 

the neurons 3 and 4. The results can be read out from the chip via PCI bus, as shown in 

the Matlab console.  In the inserted Matlab command console in Fig.6.1, “initial” values 

include primary input values (6 and 2) and neuron outputs of 6 neurons in 3 layers, while 

Fig.6.1 Experimental network and result 
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“updated” values show inputs and neuron outputs after dynamical reconfiguration.  We 

developed the Matlab DLLs to implement the I/O functions including read and write.  

The results from the VHDL simulation results is shown in Fig. 6.2. In the waveform, 

“Enable_bus” represents the neuron selection signal. It selects a particular neuron to be 

configured at a certain time.  For instance, “Enable_bus” value 4 means that we are 

updating the contents of the neuron 3 and “Enable_bus” value 6 means we are updating 

the contents of the neuron 5.  In this way, any neuron’s configuration information can be 

updated without affecting other neurons. Once the configuration process for all neurons is 

over, the outputs from neurons are stable and ready to be read out.  In this example, only 

neurons 3 and 4 connections are updated when the “Enable_bus” has value of 4 and 6, 

respectively.  Based on this experiment’s inputs valued as 6 and 2, the initial outputs 

from the neurons 1 to 6 are HEX  8, 8, A, 10, 18, respectively.  After the connections are 

updated as shown in the left of Fig. 6.2, the neuron outputs are updated to be hex 8, 8, 10, 

10, 20, 20, which agree with a manual calculation.  

 

 

 

 

 

 

 

 

 

Fig. 6.2 VHDL simulation for partial configuration 
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The design has been described in VHDL and the simulation verifies the design.  

But we have to implement this design in FPGA. Real FPGA execution may differ from 

the functional simulation because of the clock, delay and etc. Since the whole design files 

are developed in RTL level. We can easily obtain the FPGA configuration file using 

XILINX ISE software. The usage of ISE can refer to the labs of EE414/514 [4]. A 

snapshot of the project in ISE is shown in Fig. 6.3.  

 

 

 

To implement the design, JTAB clock is assigned during the last step (Create 

programming file). See Fig. 6.4. 

Fig.6.3 ISE project implementation 
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The implementation results are summed up in Fig. 6.5 

 

 

 

 

 

 

 

 

Based on the implementation results, it is concluded that this neural network 

architecture realizes a maximum parallel instruction throughput of 23.16x28 MIPs with 

28 fully connected neurons.  The neuron number is limited to 28 since there are only 28 

BRAM modules on the chip, although there are still some other resources remained 

unused.  If we can lower the neuron’s program memory size, we can put more neurons on 

Fig. 6.5 Implementation reports 

Fig.6.4 ISE project configuration 
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a single chip to overcome the BRAM bottleneck.  Due to the parallel processing in 

hardware and the distributed network memory, the speed improvement using FPGA 

implementation is supposed to be significant comparing to the software simulation 

because of the parallel processing array – SOLAR is aimed at adopting multiple 

processing elements to achieve “real time” application. In this experiment, most of the 

time is consumed in the interface when data is transmitted to SOLAR (2*14) and read 

back. In addition, the current software simulation is based on 1.1 Ghz CPU clock, which 

is unbeatable by the low-end FPGA chip. Due to above reasons, in this environment, 

speed improvement is not obvious or even hardware computer is slower than the software 

simulation because of the I/O operation.   

 

The mapping result is shown in Fig. 6.6. It illustrates how the neurons are 

distributed inside the chip after the mapping process.  Every single neuron occupies a 

compact and concentrated logic area.  The compactness depends on the structure-oriented 

hardware design. For instance, we adopt LUTs and dedicated multiplexer module in 

addition to the optimized PicoBlaze structure to build every single neuron.  

 

 

 

 

 

 

Fig. 6.6  Mapping result 
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7. How to Modify the Design From 2x14 to 4x7 Structure 

 

To change the SOLAR structure from 2x14 to 4x7, in the VHDL file 

(C:\solar\hwsw\nn_vote_4\pico_solar.vhd), several modifications should be made.  

First, the number of layers “LAYERS” and number of neurons per layer “NEURONS” 

should be changed as follows 

 
constant LAYERS :integer := 7; 
constant NEURONS :integer := 4;  
 

Second, since there are 4 inputs to the network plus 28 inputs to 28 neurons, the 

PicoBlaze component in the VHDL file is changed as follows. 

component PicoBlaze 
Port ( clk : in std_logic;  
    reset:in std_logic; 
               data_out : out std_logic_vector(7 downto 0);  
    vote_out : out std_logic_vector(7 downto 0); 
    data_in0 : in std_logic_vector(7 downto 0);  
    data_in1 : in std_logic_vector(7 downto 0);   
    data_in2 : in std_logic_vector(7 downto 0);  
    data_in3 : in std_logic_vector(7 downto 0);  
    data_in4 : in std_logic_vector(7 downto 0);  
    data_in5 : in std_logic_vector(7 downto 0);  
    data_in6 : in std_logic_vector(7 downto 0);  
    data_in7 : in std_logic_vector(7 downto 0);  
    data_in8 : in std_logic_vector(7 downto 0);  
    data_in9 : in std_logic_vector(7 downto 0);  
    data_in10 : in std_logic_vector(7 downto 0);  
    data_in11 : in std_logic_vector(7 downto 0);   
    data_in12 : in std_logic_vector(7 downto 0);  
    data_in13 : in std_logic_vector(7 downto 0);  
    data_in14 : in std_logic_vector(7 downto 0);  
    data_in15 : in std_logic_vector(7 downto 0);  
    data_in16 : in std_logic_vector(7 downto 0);  
    data_in17 : in std_logic_vector(7 downto 0);  
    data_in18 : in std_logic_vector(7 downto 0);  
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    data_in19 : in std_logic_vector(7 downto 0);  
    data_in20 : in std_logic_vector(7 downto 0);  
    data_in21 : in std_logic_vector(7 downto 0);   
    data_in22 : in std_logic_vector(7 downto 0);  
    data_in23 : in std_logic_vector(7 downto 0);  
    data_in24 : in std_logic_vector(7 downto 0);  
    data_in25 : in std_logic_vector(7 downto 0);   
    data_in26 : in std_logic_vector(7 downto 0);  
    data_in27 : in std_logic_vector(7 downto 0); 
    data_in28 : in std_logic_vector(7 downto 0);  
    data_in29 : in std_logic_vector(7 downto 0);  
    data_in30 : in std_logic_vector(7 downto 0);  
    data_in31 : in std_logic_vector(7 downto 0);  
    ADDR_bus : in STD_LOGIC_VECTOR (7 downto 0);  
    DATA_bus : in STD_LOGIC_VECTOR (15 downto 0);  
               Enable   : in STD_ULOGIC 
    ); 
end component; 
 

 

Third, the I/O address need to be changed to contain two more null neurons (for the input 

features 3 and 4), and following that, the I/O address decoder should be changed. (refer to 

the provided 4x7 source code C:\solar\hwsw\nn_vote_4\pico_solar.vhd) 

 

MY_WR_REGS_01<= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 
0)="000010" else '0'; 
MY_WR_REGS_02 <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 
0)="000011" else '0'; 
MY_WR_REGS_03<= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 
0)="000100" else '0'; 
MY_WR_REGS_04 <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 
0)="000101" else '0'; 
 
process (RST, DSP_CLKi) 
begin 
 if RST='1' then 
          MY_NN_REGS(0,1) <= (others => '0');  
   MY_NN_REGS(0,2) <= (others => '0'); 
   MY_NN_REGS(0,3) <= (others => '0');  
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   MY_NN_REGS(0,4) <= (others => '0'); 
   ADDRDATAEN_BUS  <= (others => '0'); 
 elsif DSP_CLKi'event and DSP_CLKi='1' then 
  if MY_WR_REGS_01 = '1' then 
   MY_NN_REGS(0,1) <= DATA(7 downto 0);   
  end if;   
  if MY_WR_REGS_02 = '1' then 
   MY_NN_REGS(0,2) <= DATA(7 downto 0);   
  end if; 
  if MY_WR_REGS_03 = '1' then 
   MY_NN_REGS(0,3) <= DATA(7 downto 0);   
  end if;   
  if MY_WR_REGS_04 = '1' then 
   MY_NN_REGS(0,4) <= DATA(7 downto 0);   
  end if;   
  if ADDRDATAEN_BUS_WR = '1' then 
   ADDRDATAEN_BUS <= DATA(28 downto 0);   
  end if;    
 end if; 
end process; 
 

Finally, the Matlab file (C:\solar\hwsw\NNorgVote_hardwareconf.m) used to 

acquire the data also needs to be changed based on the updated I/O address.  The design 

has been described in the VHDL and synthesized using the Xilinx XST 6.2 and the Xilinx 

Alliance tools for place and route.   The implementation results are summed up in 

Table.6.1. 

 
Implementation Results Per Neuron 

Selected Device :                         v800bg432-4  
Maximum Frequency:                    45.568MHz 
Neuron Performance:                     22.784MHz 
Number of Slices:     163 out of    9408  1.73%   
Number of Slice FFs:  97 out of  188       0.5%   
Number of 4 input LUTs:  
                                  290 out of  1881    1.53%   
Number of TBUFs:     73 out of   9408   0.75%   
Number of BRAMs:    1  out of    28      3.57%   

 Table 7.1 Implementation reports 
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The mapping result is shown in Fig.7.2.  As before, every single neuron occupies 

a compact and concentrated logic area.  

 

 

 The following example presents the Matlab training based on a set of real world 

data from the Iris dataset [5]. The Iris dataset contains data of 3 classes with 4 features 

and each class has 50 samples. So totally there are 150 training samples for each feature. 

In this simulation, half of data was used for training and the other half used for testing 

based on random data order. 7 layers of neurons (28 neurons total) plus 4 inputs are used.  

The simulation result is encouraging with probability 98.67% and presented in [6]. 

>> neurons{7}.func 
ans =  
    'half'    'half'    'f1' 
>> neurons{7}.threshold 
ans = 
   52.7944 

Fig. 7.2  Mapping result 
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>> neurons{7}.features 
ans =  
    [1]    [3] 
>> neurons{8}.func 
ans =  
    'ident'    'half'    'f2' 
>> neurons{8}.threshold 
ans = 
   74.0095 
>> neurons{8}.features 
ans =  
    [4]    [3] 
 
 
function z = f1(x,y) 
xt = bitshift(x,-1); 
yt = bitshift(y,-1); 
z=xt+yt; 
 
function z = f2(x,y) 
z = max(0,x-y); 
 
  Neuron 7 threshold: 52.7944 = (hex 35) 
Neuron 8 threshold: 74.0095 = (hex 4A) 
 
>> Scaled_Testing_data(:, 1:30) 
 
ans = 
 
  Columns 1 through 10  
 
   243   228   210   236   239    14    35    69   113   216 
    58   195   113   189   234    89    51    50   238   134 
   155   116   157    44   104   208    50     3   118    51 
   123     4   202   103   228     2   154   191   106   172 
 
  Columns 11 through 20  
 
   214   213    77    77    96   126   209    87   214   140 
     5   129    48   139   220   230   169   137   145   113 
   174   181    49    38   218   210    87   186    94   178 
    96   109   174   178   152   165    73    78   180   159 
 
  Columns 21 through 30  
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   203    44   224   228    72   149   110   136   200   203 
   244   250   189    50   119   107    57   164   174    15 
   134    69    34    76    16   132   148    53   117   154 
   225    64     2   169   253    85   194    96   145    12 
 

VHDL simulation is shown in Fig. 7.3. 

 

 

 

 

 

 

 

 

 

 

 

After the training stage, the 28 neurons will have different values based on their 

parameters including the connections, functions, threshold and etc.  This information will 

be transferred into the chip during the voting stage.  The VHDL simulation provides 

further reference to the hardware execution.  In Fig.7.3, we provide a snapshot of the 

hardware simulation.  In this simulation, the neurons 7 and 8 in the first layer of the 4x7 

network are configured based on the training results.  

 

Some parameters for the neurons 7 and 8 after the Matlab training are shown as follows: 

Neuron 7 

Neuron 8 
Neuron 7 

Neuron 8 

Configuration Voting 

Fig. 7.3 SOLAR simulation snapshot
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neurons{7}.func={ 'half',    'half',    'f1'} 

neurons{7}.threshold =  52.7944 

neurons{7}.features =    [1]    [3] 

 

neurons{8}.func={  'ident'    'half'    'f2'} 

neurons{8}.threshold =  74.0095 

neurons{8}.features =    [4]    [3] 

 

These results can be translated as  

 

Neurons{7}.output = f1( half ( Neurons{1}.output), half ( Neurons{3}.output)) = 

Neurons{1}.output / 2 / 2 + Neurons{3}.output / 2 / 2= 

Neurons{1}.output / 4 + Neurons{3}.output / 4 

 

Neurons{8}.output = f1( half ( Neurons{4}.output), half ( Neurons{3}.output))= 

MAX((Neurons{4}.output / 2 - Neurons{3}.output / 2), 0 ) 

 

In the simulation waveform, after the configuration, testing data are sent to the 4 

input neurons in the 4x7 network.  The neuron outputs are stored in their individual 

output registers. For example, “MY_NN_REGS(1,3)” and “MY_NN_REGS(1,4)” 

represent the outputs from the neurons 7 and 8. The output result of a certain neuron is 

used to compare with its corresponding subspace thresholds to determine the voting 
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results.  In the waveform, “neuron 7 vote” and “neuron 8 vote” are the voting results for 

neuron 7 and 8 respectively.  

 

In this simulation waveform, the current testing features are hex values 71, EE, 

76, 6A and they are the outputs from the 4 input neurons. We treat them as “input” 

neurons 1-4. So neuron 1 has output 71, neuron 2 has output EE and etc.   Since the 

neuron 7 is connected to neurons 1 and 3, then the output from neuron 7 is hex value 

(71/4+76/4)=39. In the MATLAB simulation result, it is seen that neuron 7 takes two half 

inputs, left bit shift 1 (equal to divide 2) and then add them together.  

 

 >> neurons{7}.func 
ans =  
    'half'    'half'    'f1' 

 
and f1 function is as following 
 
function z = f1(x,y) 
xt = bitshift(x,-1); 
yt = bitshift(y,-1); 
z=xt+yt; 
 

Thus [(neuron1 output) /2   +  (neuron3 output) /2  ] /2 = (71/4+76/4)=39, which 

can be verified in the VHDL simulation (shown as neuron 7 result). 

 

Similarly, the output from the neuron 8 is hex value MAX(6A -76/2)=2F since 

neuron 8 is connected to the neurons 4 and 3. These output results are compared to their 

subspace threshold which are 52.7944 (or hex 35) and 74.0095 (or hex 4A) for th3e 

neurons 7 and 8 respectively.  Since the output from the neuron 7 is hex value 39 which 
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is greater than its threshold hex value 35, its voting output is 1; since the output from the 

neuron 8 has hex value 2F which is less than its threshold hex value 4A, its voting output 

is 0.  All of the testing data are passed through the SOLAR feed forward network and 

voting output from each neuron are collected to determine the final voting results as 0 or 

1. 

 

8. Summary and Future Work 

 

SOLAR represents a new idea in hardware design of artificial neural networks 

(ANNs).  It is a modular and expandable system.  It also defines a new breed of 

dynamically reconfigurable architectures that can dynamically reconfigure themselves 

based on information included in the input data.  This presented architecture is a novel 

dynamically reconfigurable (via dual-port memory) neural network implementation that 

used simple general-purpose processor (KCPSM) architecture.  Firstly, it has a regular 

expandable parallel architecture.  Therefore, its speed and learning abilities can be greatly 

improved comparing to the software simulation.  Secondly, it has data-driven self-

organizing learning structure based on a new self-organizing learning algorithm.  

Furthermore, design flexibility is attained by exploiting the features of self-

reconfigurable neuron units.  Finally, hardware re-configurability is achieved in this self-

organizing learning array by involving reconfigurable routing modules.  According to the 

implementation results, this neuron architecture realizes a maximum parallel instruction 

throughput of 648 MIPs with 28 fully connected neurons.  System performance increases 

as more neurons are connected.  The PicoBlaze for Virtex-II Series FPGAs reaches 



  

 

47

 

performance levels of up to 55 MIPS.  With up to 336 PicoBlaze nodes on the chip 

SOLAR will reach the performance of 18.5 GIPS on a single chip.  These numbers could 

be a little different within the same chip based on the different structure.  So its parallel 

processing ability can be further improved.  With the popular PowerPC on VIRTEX II 

Pro FPGAs used as the main CPU, the PicoBlaze neurons can be used as slave 

peripherals to further improve the throughput for system on a chip implementation of 

neural networks.  Hence it can be of a practical use for the embedded hardware 

applications in signal processing, wireless communications, multimedia systems, data 

networks, and so forth. 

 

In the neuron’s design, the number of neurons/chip is limited by the number of 

BRAMs, so the total logic utilization is comparatively low.  The remaining LUT RAM 

will be used for the communication between neurons on other chips and to reuse the same 

PicoBlaze for several neurons, to fully utilize the hardware resource and accommodate 

more neurons in a single FPGA chip.  In this way, the design seems device-dependent, 

since it may need to carefully arrange additional resource for different FPGAs.  Each 

device type has to be individually optimized.   In scaling our design to 3D system, design 

optimization will be necessary in order to accommodate more neurons in a single FPGA 

chip.   

 

This report describes the SOLAR implementation based on PicoBlaze in a single 

chip.  I hope this experimental setup can be helpful to prototype development of novel 

neuron and routing architectures for the 3D SOLAR. 
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