

PICOBLAZE BASED SELF ORGANIZING LEARNING ARRAY AND ITS EXPERIMENTAL

SETTING

A Project Report Presented to

The Faculty of the Russ College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirement for the Degree

Master of Science

By

Yongtao Guo

November, 2004

2

This report entitled

Picoblaze Based Self Organizing Learning Array And Its Experimental Setting

by Yongtao Guo

has been approved for

the School of Electric Engineering and Computer Science

and the Russ College of Engineering and Technology by

Janusz A. Starzyk

Professor of School of Electrical Engineering and Computer Science

R. Dennis Irwin

Dean, Fritz J. and Dolores H. Russ

College of Engineering and Technology

3

Acknowledgements

 First of all, I want to thank my advisor – Dr. Starzyk, who recognized that the

PicoBlaze microcontroller core is adaptable to neural network application at the very

early stage after PicoBlaze was developed. And before then, I had been working on the

SOLAR implementation using a kind of serial based processing in the hardware. This

new design component (PicoBlaze) gave me much interest and challenge. And also

during this whole period, he gave me much direct help and directions.

 Secondly, I would also thank all the group members who helped me a lot via

discussion, advice or even argument. They are Zhineng Zhu, Haibo He, Mingwei Ding,

Zhen Zhu, Yingying Liu and etc. Among them, Zhineng Zhu’s work has some overlap

with me, so we had many discussions. He contributed to the routing work for the future

improvement of this structure. His work was combined with mine resulting in a

conference paper and a journal paper on this topic.

 Finally, I would thank my family. They are always with me, give me

encouragement, and teach me to how to face and overcome difficulty.

4

Table of Contents

List of Tables ... 5

List of Figures.. 6

Abbreviations .. 7

1. Introduction... 8

2. What Is PicoBlaze ... 9

3. How To Build A SOLAR Neuron From Modified PicoBlaze 10

3.1 Neuron Structure... 10

3.2 Neuron Programming.. 11

4. How To Connect 28 Neurons ... 15

5. Some Explanation About The VHDL Code ... 17

6. How To Setup The Experiment ... 25

7. How To Modify The Design To From 2x14 To 4x7 Structure 38

8. Summary And Future Work.. 46

Reference ... 48

5

List of Tables

Table 1. Register definition and description ……………………………………………24

Table 7.1 Implementation reports……………………………………………………….40

6

List of Figures

Figure 3.1 Single neuron’s schematic …………………………………………………...11

Figure 3.2 Single neuron’s schematic …………………………………………………...14

Figure 4.1 Array neuron’s organization………………………………………………….16

Figure 6.1 Experimental network and result……………………………………………..33

Figure 6.2 VHDL simulation for partial configuration…………………………………..34

Figure 6.3 ISE project implementation ………………………………………………….35

Figure 6.4 ISE project configuration ……...…………………………………………….36

Figure 6.5 Implementation reports ………..……………………………………………..36

Figure 6.6 Mapping result ……………………………………………………………….37

Figure 7.2 Mapping result…………… ………………………………………………….41

Figure 7.3 SOLAR simulation snapshot ……...………………………...……………….43

7

Abbreviations

RISC Reduced Instruction Set Computer

CISC Complex Instruction Set Computers

FPGA Field programmable gate array

PLD Programmable logic device

CPLD Complex programmable logic device

MUX Multiplexer

LST Least significant bit

MSB Most significant bit

DLL Dynamical link library

HEX Hexadecimal

CPU Central processing unit

LUT Look-up table

VHDL Very high-speed integrated circuit hardware description language

MIPS Million instructions per second

PCI Peripheral component interconnect

M68K Motorola 68000 microcontroller

I/O Input/Output

FF Flip flop

BRAM Block RAM

ANN Artificial neural network

8

1. Introduction

In this report, dynamically reconfigurable neuron hardware architecture and its

experiment setup using Nallatech board with Xilinx Virtex XCV800 Field Programmable

Gate Array (FPGA) are described. The neuron structure is based on the modified Xilinx

PicoBlaze [1] microcontroller. This modification allows the neuron to reconfigure itself

during the runtime. Neurons have identical initial software code, are fully connected in a

single chip, and can be expanded to a large multiple-chip system to build the 3D SOLAR

[2] learning machine. The 3D SOLAR learning machine will be composed by 384 high-

end VIRTEX XCV1000 FPGA chips. It is based on the main PCB board with 4 chips,

and then PCB boards are both connected in the horizontal and vertical dimensions

resulting in expanding SOLAR from 1D to 2D and then 3D. We are expecting the 3D

SOLAR will have powerful processing ability based on its self-organizing algorithm and

interconnections to perform tasks such as pattern recognition, prediction and modeling of

unknown systems without being programmed beforehand.

This report is divided into eight parts. Section 2 introduces the PicoBlaze;

Section 3 describes the neuron’s 2x14 architecture based on the modified PicoBlaze;

Section 4 deals with the interconnections between 28 neurons in the single FPGA chip;

Section 5 explains the VHDL codes to implement SOLAR in a single FPGA chip;

Section 6 talks about the experiment setup; Section 7 demonstrates how to change the

9

design, for example, change the structure from 2x14 to 4x7 neurons. Finally, Section 8

summarizes this work and describes some future work.

2. What Is PicoBlaze

The PicoBlaze soft microcontroller is an 8-bit Reduced Instruction Set Computer

(RISC) microprocessor from Xilinx Corp., which supports an 8-bit data bus and 16-bit

instruction bus. It has the Harvard architecture with separate data and instruction ports.

It currently supports 49 instructions that operate within any one of several Xilinx

CoolRunner™-II CPLDs (complex programmable logic device); it has 100% digital core

with low power consumption and high-speed execution. Its speed will vary depending on

executed instructions and the implementation platform. However, since it is tiny and has

small instruction space, its functionality is not as strong as the traditional single chip

computer. Although it has its own assembler, it does not have C/C++ compiler. So a user

has to learn its assembly language, which is close to the 8086/8088 or M68K instruction

set. For more information, refer to Xilinx webpage, (especially the introduction of the

instruction set.). Because of these characteristics, the PicoBlaze is a compact structure

suitable for the neural network implementation in hardware.

10

3. How to Build A SOLAR Neuron on Modified PicoBlaze

SOLAR has the self-organizing structure expressed in both its hardware and

software part. In the hardware part, the neurons are fully interconnected in a single chip.

So if we put 28 neurons in a single chip and assign two inputs from outside, then every

neuron will have a 30 to 1 multiplexer to select its inputs either from the two inputs or

from the outputs of other neuron (including itself); In the software part, every neuron has

its own software can be dynamically updated from the PC through the PCI bus and

through the inner neuron configuration bus. So we can load the individual self-organizing

algorithm into every single neuron to give these neurons more wisdom to think.

3.1 Neuron Structure

The SOLAR neuron hardware architecture developed in this report is based on the

PicoBlaze microprocessor. The PicoBlaze has been modified to adapt to the needs of

SOLAR’s self-organizing architecture. A block level of single neuron architecture based

on the 2x14 array of neurons (so every neuron has 2x14+2=30 inputs) is shown on

Fig.3.1. Each neuron module contains the circuits to be reprogrammed dynamically, and

to execute its program without affecting other neurons’ operations. The dynamics of

neuron operation comes from the Dual port instruction memory. The instruction memory

is originally a single port memory, which means that the instructions are fixed and can

not be updated after loading. In the SOLAR architecture, every neuron’s functionality

must be changed based on the self organizing principle. So, I modified the instruction

11

memory to be dual ports. The dynamical programming is implemented by the dual-port

256x16-bit memory. The PicoBlaze reads the current program in one port, while the

other port can be used to store the new program. The two ports of the dual-port Random

Access Memory (RAM) operate independently, and the operation is via shared

programming bus among all the neurons. Therefore, the self-reconfiguration process can

be performed affecting only the current neuron. One port is for the microprocessor

execution module to fetch instructions, and the other port can be used to dynamically

update this neuron’s parameters like the interconnection, threshold, functionality, and etc.

3.2 Neuron Programming

Within each single neuron, basis functions are used to form a complete non-linear

space to mimic any function for every neuron, just like we can use sine/cosine, harr

wavelet, etc to approximate any non-linear function. These functions used in SOLAR

Fig.3.1 Single neuron’s schematic

instruction <15:0>

in_port <7:0>

clk

interrupt

reset

address

out_port <7:0>

port_id<7:0>

read_strobe

write_strobe

x
30 inputs

Dual
port

memory

R

R

Neural Controller
(use KCPSM)

address

addr_bus<7:0>

data_bus<15:0>

clk

enable

instruction<15:0>

12

contain ADD, SUB, MUL, DIV, INVR, QDRE, LOG2, QDRT, ROOT, SQRE [4]. More

functions are under development including the popular sigmoid function. We have to

consider the hardware implementation when we choose these basis functions since we

have limited instruction space inside every single neuron to hold these basis functions.

The actual operation of each neuron is controlled by dynamically loaded

structural information or parameters’ values. The PicoBlaze assembler is used to

implement neuron’s functions at the initial stage. The actual operation of each neuron is

controlled by dynamically loaded structural information or parameters’ values. For

instance, a simple PicoBlaze assembly code sub2.psm to implement subtraction of two

neuron’s inputs is shown as follows:

;This program implements a sub function
;
;function z = sub(x,y)
;z = max(0,x-y);
;
;By Y. Guo
;(c) 2004 FPGA lab Ohio U.

NAMEREG s0,A
NAMEREG s1,B

DISABLE INTERRUPT
start:
 INPUT A, 00
 INPUT B, 01
 SUB A,B
 JUMP NC, a_b
 LOAD A,00
a_b:
 OUTPUT A,01
 JUMP start

13

An assembly code can be written with notepad tools. The file is then saved with

a .psm extension. Place the executive assembler file provided by Xilinx

(C:\solar\hwsw\psm\KCPSM.exe) in the same directory as the program file, open a DOS

window and navigate to the working directory that contains this programs. These

programs are named as add.psm, divd.psm, exp2.psm, invr.psm, log2.psm, mult.psm,

qdre.psm, qdrt.psm, root.psm, sqre.psm, sub.psm, and etc. For how to use the assembly

language, you can refer to Xilinx data sheet. [3]. Then run the assembler to assemble the

program. For instance,

Kcpsm sub2.psm <ENTER>

If there is no syntax error, we will obtain the “KCPSM complete” information as

shown in Fig. 3.2. If there is syntax error, you can correct it based on the given error

information. So if success, under the current directory, a binary VHDL program, named

sub2.vhd will be created and stored.

14

After translation from the assembler to the binary code, this binary code is written

into the dual port memory by calling the Peripheral Component Interconnect (PCI)

functions. The configuration time and contents of every single neuron can be controlled

by the software outside the chip or via PC simulation. In the future, we can utilize the

distributed memories at the edge of FPGA chip to pre-store some configurations for these

neurons and in that case, the configuration and reconfiguration process will be finished

by the chip itself.

The neuron inputs are obtained either from the primary inputs or other neurons’

outputs via a 30 to 1 multiplexer (MUX) as introduced in the following section. The

selection signal of the MUX to select the inputs to the current neuron is decided by the

Fig. 3.2 Run assembler to assemble program

15

content of the programming dual-port memory via execution of the programming

commands for this particular neuron. For example, if a neuron is picking the outputs from

another neuron, then the corresponding MUX selection signal is stored in this neuron’s

memory. Except for the MUX selection signal to determine neurons’ interconnections,

other configuration information including neurons’ threshold, operation function are also

obtained via training using Matlab software. These obtained configuration data is written

into the Picoblaze neuron. So every neuron is configured differently from other neurons

in most cases but they are all trained off-chip from the software simulation. Occasionally,

some neurons are not fired during the software simulation and in that case, those neurons

are “retired” from SOLAR.

4. How to Connect 28 Neurons

The single neuron architecture is expanded to an array of neurons in a single

FPGA chip. The Xilinx Virtex XCV800 FPGA can contain an array of up to 28 neurons

organized as shown in Fig.4.1 (Virtex XCV1000 FPGAs that will be used to build 3D

learning machine will contain 64 neurons on each chip).

16

These neurons are fully interconnected via the connection bus and a 30 to 1

MUX, thus forming a local cluster of neurons. 30 to 1 multiplexer allows network to use

2 independent inputs, thus 28 and system inputs are fully interconnected. These numbers

must be modified if the size of the network changes such that the multiplexer is of the

size equal to the number of neurons plus the number of inputs. The full connections

implementation mimics the dense connection scheme in the neighborhood neurons. A

3D expansion of these chips represents the sparse connections between remote neurons.

These inter-chip connections scale linearly with the number of neurons added. The

neurons connections are decided by each neuron based on its learning results. The

programming contents can be dynamically updated via the configuration bus or set

locally by a neuron. The configuration bus used to configure every single neuron is

divided into 16-bit data, 8-bit address and 5-bit neuron selection buses. To demonstrate

functionality of 28 neurons cluster, PCI interface controller is integrated to transfer the

data/configuration via the PCI bus to neurons. In Fig. 4.1, the data/addr/ctrl bus is

Fig. 4.1 Array neurons’ organization

17

connected to every neuron’s programming memory to send the configuration information

to every single neuron. The bus represents the fully interconnected bus between the

neurons. How to use the ctrl bus to select particular neuron and how to configure it is

explained in the following sections.

5. Explanation of the VHDL Code

Since the SOLAR neuron is implemented based on the PicoBlaze micro

controller. Therefore, the neuron component in the pico_solar.vhd is called PicoBlaze and

is defined as follows as a 2x14 network. (The full files are located in the hard drive in

Rm.323 C:\solar\hwsw\nn_vote_4\pico_solar.vhd - initially located at Gateway P4 PC

c:\PicoBlaze). The 4x7 network can be easily obtained from the 2x14 network and it is

further explained in Section 7.

component PicoBlaze
Port (clk : in std_logic;
 reset:in std_logic;
 data_out : out std_logic_vector(7 downto 0);
 data_in0 : in std_logic_vector(7 downto 0);
 data_in1 : in std_logic_vector(7 downto 0);
 data_in2 : in std_logic_vector(7 downto 0);
 data_in3 : in std_logic_vector(7 downto 0);
 data_in4 : in std_logic_vector(7 downto 0);
 data_in5 : in std_logic_vector(7 downto 0);
 data_in6 : in std_logic_vector(7 downto 0);
 data_in7 : in std_logic_vector(7 downto 0);
 data_in8 : in std_logic_vector(7 downto 0);
 data_in9 : in std_logic_vector(7 downto 0);
 data_in10 : in std_logic_vector(7 downto 0);
 data_in11 : in std_logic_vector(7 downto 0);
 data_in12 : in std_logic_vector(7 downto 0);

18

 data_in13 : in std_logic_vector(7 downto 0);
 data_in14 : in std_logic_vector(7 downto 0);
 data_in15 : in std_logic_vector(7 downto 0);
 data_in16 : in std_logic_vector(7 downto 0);
 data_in17 : in std_logic_vector(7 downto 0);
 data_in18 : in std_logic_vector(7 downto 0);
 data_in19 : in std_logic_vector(7 downto 0);
 data_in20 : in std_logic_vector(7 downto 0);
 data_in21 : in std_logic_vector(7 downto 0);
 data_in22 : in std_logic_vector(7 downto 0);
 data_in23 : in std_logic_vector(7 downto 0);
 data_in24 : in std_logic_vector(7 downto 0);
 data_in25 : in std_logic_vector(7 downto 0);
 data_in26 : in std_logic_vector(7 downto 0);
 data_in27 : in std_logic_vector(7 downto 0);
 data_in28 : in std_logic_vector(7 downto 0);
 data_in29 : in std_logic_vector(7 downto 0);
 ADDR_bus : in STD_LOGIC_VECTOR (7 downto 0);
 DATA_bus : in STD_LOGIC_VECTOR (15 downto 0);
 Enable : in STD_ULOGIC
);
end component;

In the above example, we built 2 rows and 14 columns SOLAR array. Every

neuron can have up to 2x14=28 inputs from other neurons plus two inputs from outside

(the number of external inputs is equal to the number of rows of the SOLAR array during

the algorithm simulation). In the above example, we only have a single output for every

neuron. Later example explains how to expand the output space. The following describes

the network’s signals.

clk signal is achieved from the CLKDLL - a clock delay-locked loop to minimize clock

skew.

data_out is the output register of every single neuron, the output is connected to all the

neurons’ 30-1 mux inputs including itself.

19

data_in0 to data_in29 are the input signals to the neuron’s 30-1 MUX. Every neuron’s

input is from all neurons outputs including itself.

ADDR_bus is the dual-port memory configuration address bus connected to every

neuron.

DATA_bus is the dual-port memory configuration data bus connected to every neuron.

Enable is the dual-port memory enable signal connected to every neuron.

The following describes the hardware operation:

Write a 28 bit data via PCI bus to register “ADDRDATAEN_BUS”.

In the 28-bit data, bits 7 downto 0 (LSB) are the neuron’s instruction address

space; bits 23 downto 8 (LSB) are the neuron’s instruction data space; bits 28 downto 24

(LSB) are the neuron’s instruction memory enable signals. This 28-bit data is latched at

the rising edge of clock with the permission of “ADDRDATAEN_BUS_WR”. The

memory enable signal is derived from the “ADDRDATAEN_BUS_WR” after four clock

periods, to assure a sufficient setup/hold time for the instruction memory address and data

signals.

process (RST, DSP_CLKi)
begin
 if RST='1' then
 Enable_bus_d <= (others => '1');
 Enable_bus <= (others => '1');
 ADDRDATAEN_BUS_WREN_d <= '0';
 ADDRDATAEN_BUS_WREN_d1 <= '0';
 ADDRDATAEN_BUS_WREN_d2 <= '0';
 ADDRDATAEN_BUS_WREN <= '0';
 elsif DSP_CLKi'event and DSP_CLKi='1' then
 Enable_bus_d <= ADDRDATAEN_BUS(28 downto 24);

20

 Enable_bus <= Enable_bus_d;
 ADDRDATAEN_BUS_WREN_d <= ADDRDATAEN_BUS_WR;
 ADDRDATAEN_BUS_WREN_d1 <= ADDRDATAEN_BUS_WREN_d;
 ADDRDATAEN_BUS_WREN_d2 <= ADDRDATAEN_BUS_WREN_d1;
 ADDRDATAEN_BUS_WREN <= ADDRDATAEN_BUS_WREN_d2;
 end if;
end process;

The enable signal for every single neuron is decoded by the

“ADDRDATAEN_BUS” after two clock periods to ensure a sufficient setup/hold time to

latch. This is implemented by the following code.

process (RST, Enable_bus,ADDRDATAEN_BUS_WREN)
begin
 if RST='1' then
 MY_ENA_BUS(1,1) <= '0';
 MY_ENA_BUS(1,2) <= '0';
 MY_ENA_BUS(2,1) <= '0';
 MY_ENA_BUS(2,2) <= '0';
 MY_ENA_BUS(3,1) <= '0';
 MY_ENA_BUS(3,2) <= '0';
 MY_ENA_BUS(4,1) <= '0';
 MY_ENA_BUS(4,2) <= '0';
 MY_ENA_BUS(5,1) <= '0';
 MY_ENA_BUS(5,2) <= '0';
 MY_ENA_BUS(6,1) <= '0';
 MY_ENA_BUS(6,2) <= '0';
 MY_ENA_BUS(7,1) <= '0';
 MY_ENA_BUS(7,2) <= '0';
 MY_ENA_BUS(8,1) <= '0';
 MY_ENA_BUS(8,2) <= '0';
 MY_ENA_BUS(9,1) <= '0';
 MY_ENA_BUS(9,2) <= '0';
 MY_ENA_BUS(10,1) <= '0';
 MY_ENA_BUS(10,2) <= '0';
 MY_ENA_BUS(11,1) <= '0';
 MY_ENA_BUS(11,2) <= '0';
 MY_ENA_BUS(12,1) <= '0';
 MY_ENA_BUS(12,2) <= '0';
 MY_ENA_BUS(13,1) <= '0';

21

 MY_ENA_BUS(13,2) <= '0';
 MY_ENA_BUS(14,1) <= '0';
 MY_ENA_BUS(14,2) <= '0';
 else
 case Enable_bus is
 when "00010" => MY_ENA_BUS(1,1) <= ADDRDATAEN_BUS_WREN;
 when "00011" => MY_ENA_BUS(1,2) <= ADDRDATAEN_BUS_WREN;
 when "00100" => MY_ENA_BUS(2,1) <= ADDRDATAEN_BUS_WREN;
 when "00101" => MY_ENA_BUS(2,2) <= ADDRDATAEN_BUS_WREN;
 when "00110" => MY_ENA_BUS(3,1) <= ADDRDATAEN_BUS_WREN;
 when "00111" => MY_ENA_BUS(3,2) <= ADDRDATAEN_BUS_WREN;
 when "01000" => MY_ENA_BUS(4,1) <= ADDRDATAEN_BUS_WREN;
 when "01001" => MY_ENA_BUS(4,2) <= ADDRDATAEN_BUS_WREN;
 when "01010" => MY_ENA_BUS(5,1) <= ADDRDATAEN_BUS_WREN;
 when "01011" => MY_ENA_BUS(5,2) <= ADDRDATAEN_BUS_WREN;
 when "01100" => MY_ENA_BUS(6,1) <= ADDRDATAEN_BUS_WREN;
 when "01101" => MY_ENA_BUS(6,2) <= ADDRDATAEN_BUS_WREN;
 when "01110" => MY_ENA_BUS(7,1) <= ADDRDATAEN_BUS_WREN;
 when "01111" => MY_ENA_BUS(7,2) <= ADDRDATAEN_BUS_WREN;
 when "10000" => MY_ENA_BUS(8,1) <= ADDRDATAEN_BUS_WREN;
 when "10001" => MY_ENA_BUS(8,2) <= ADDRDATAEN_BUS_WREN;
 when "10010" => MY_ENA_BUS(9,1) <= ADDRDATAEN_BUS_WREN;
 when "10011" => MY_ENA_BUS(9,2) <= ADDRDATAEN_BUS_WREN;
 when "10100" => MY_ENA_BUS(10,1) <= ADDRDATAEN_BUS_WREN;
 when "10101" => MY_ENA_BUS(10,2) <= ADDRDATAEN_BUS_WREN;
 when "10110" => MY_ENA_BUS(11,1) <= ADDRDATAEN_BUS_WREN;
 when "10111" => MY_ENA_BUS(11,2) <= ADDRDATAEN_BUS_WREN;
 when "11000" => MY_ENA_BUS(12,1) <= ADDRDATAEN_BUS_WREN;
 when "11001" => MY_ENA_BUS(12,2) <= ADDRDATAEN_BUS_WREN;
 when "11010" => MY_ENA_BUS(13,1) <= ADDRDATAEN_BUS_WREN;
 when "11011" => MY_ENA_BUS(13,2) <= ADDRDATAEN_BUS_WREN;
 when "11100" => MY_ENA_BUS(14,1) <= ADDRDATAEN_BUS_WREN;
 when "11101" => MY_ENA_BUS(14,2) <= ADDRDATAEN_BUS_WREN;
 when others => null;
 end case;
 end if;
end process;

In general a neuron may have many input registers, but for neurons on layer0, we

only use two - MY_NN_REGS(0,1), MY_NN_REGS(0,2) to represent neurons

themselves. It is exactly the same as in the Matlab software simulation(

22

C:\solar\hwsw\main0.m) that we treat the inputs to be special neurons on layer0. Since

the number of input features is equal to the number of neurons per layer, thus SOLAR

structure can be changed depending on the input features. This read-in process for the

“input” neurons are implemented by the following codes.

process (RST, DSP_CLKi)
begin
 if RST='1' then
 MY_NN_REGS(0,1) <= (others => '0');
 MY_NN_REGS(0,2) <= (others => '0');
 ADDRDATAEN_BUS <= (others => '0');
 elsif DSP_CLKi'event and DSP_CLKi='1' then
 if MY_WR_REGS_01 = '1' then
 MY_NN_REGS(0,1) <= DATA(7 downto 0);
 end if;
 if MY_WR_REGS_02 = '1' then
 MY_NN_REGS(0,2) <= DATA(7 downto 0);
 end if;
 if ADDRDATAEN_BUS_WR = '1' then
 ADDRDATAEN_BUS <= DATA(28 downto 0);
 end if;
 end if;
end process;

The neuron’s output is connected to an input of all other neurons. In addition, it

could be read out for debugging and monitoring. This is implemented by the following

code. The “and” operation is utilized to handle high-bit error happened very occasionally

when huge data is read very rapidly and continuously via PCI bus. Possible reason is still

not so clear and one conjecture is the interface function timing problem.

LAYRD: for i in 0 to LAYERS generate
 NEURD: for j in 1 to NEURONS generate

DATA <=("000000000000000000000000"&MY_NN_REGS(i,j)) and
 “00000000000000000000000011111111" when MY_RD_BUS(i,j)='1' else
 (others => 'Z');

23

 end generate NEURD;
end generate LAYRD;

The registers are addressed by the decoder logic as follows.

MY_WR_REGS_01<= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 0)="000010" else '0';
MY_WR_REGS_02 <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 0)="000011" else '0';

PRGRAMMEM_RST <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="000100" else '0';
ADDRDATAEN_BUS_WR <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto 0)="000101"
else '0';

MY_RD_BUS(0,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="000010" else '0';
MY_RD_BUS(0,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="000011" else '0';
MY_RD_BUS(1,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001100" else '0';
MY_RD_BUS(1,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001101" else '0';
MY_RD_BUS(2,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001111" else '0';
MY_RD_BUS(2,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001110" else '0';
MY_RD_BUS(3,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001010" else '0';
MY_RD_BUS(3,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001011" else '0';
MY_RD_BUS(4,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001001" else '0';
MY_RD_BUS(4,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="001000" else '0';
MY_RD_BUS(5,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011000" else '0';
MY_RD_BUS(5,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011001" else '0';
MY_RD_BUS(5,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011010" else '0';
MY_RD_BUS(6,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011011" else '0';
MY_RD_BUS(6,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011010" else '0';
MY_RD_BUS(7,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011110" else '0';
MY_RD_BUS(7,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011111" else '0';
MY_RD_BUS(8,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011101" else '0';
MY_RD_BUS(8,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="011100" else '0';
MY_RD_BUS(9,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010100" else '0';
MY_RD_BUS(9,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010101" else '0';
MY_RD_BUS(10,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010111" else '0';
MY_RD_BUS(10,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010110" else '0';
MY_RD_BUS(11,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010010" else '0';
MY_RD_BUS(11,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010011" else '0';
MY_RD_BUS(12,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010001" else '0';
MY_RD_BUS(12,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="010000" else '0';
MY_RD_BUS(13,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110000" else '0';
MY_RD_BUS(13,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110001" else '0';
MY_RD_BUS(14,1) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110011" else '0';
MY_RD_BUS(14,2) <= '1' when READ_STROBE='1' and ADDRESS(5 downto 0)="110010" else '0';

The signal names and their description are listed in Table. 1.

24

REG ADDR DESCRIBTION

MY_WR_REGS_01 2 Layer 0 register 1Write signal

MY_WR_REGS_02 3 Layer 0 register 1Write signal

PRGRAMMEM_RST 4 Reset

ADDRDATAEN_BUS_WR 5 Addr, Data and Enable bus

MY_RD_BUS(0,1) 2 Layer 0 register 1 Read signal

MY_RD_BUS(0,2) 3 Layer 0 register 2 Read signal

MY_RD_BUS(1,1) 12 Layer 1 register 1 Read signal

MY_RD_BUS(1,2) 13 Layer 1 register 2 Read signal

MY_RD_BUS(2…14,1) X Similar to the above

MY_RD_BUS(2…14,2) X Similar to the above

 (Addresses 0 & 1 are reserved for the main CSR and DMA counter)

Table.1 Register definition and description

In the original PicoBlaze, the programs are stored in a small instruction memory.

But the original design uses a single-port memory, which means the user can not change

the contents of the instruction memory once they are put into the FPGA chips since the

only port is read by the PicoBlaze “CPU”. The detailed implementation can be referred to

the PicoBlaze document [1]. In my design, I revised the original design to use dual port

memory. In that case, we can reprogram the instruction memory without need to reload

the whole design into the chip, and the process can be dynamically finished based on the

self-organizing process for every single neuron without interfering other neuron’s

25

execution. The modified dual-port memory causes no difference in the original

PicoBlaze implementation.

 Many useful features of PicoBlaze architecture have not been fully utilized in

this example. For instance, a PicoBlaze can have more than one single register output

and this capability could be utilized if we have more information to exchange between

neurons. The following code uses the output port "00000001" only. Later example uses

two output port spaces.

data_registers: process(clk)
begin
if clk'event and clk='1' then
 if port_id(7 downto 0)="00000001" and write_strobe='1' then
 data_out <= data_outi;
 end if;
end if;
end process data_registers;

From the described VHDL code, it should be clear how to write the content of

each neuron and how to send the created HEX file to every neuron.

6. How to Setup the Experiment

To experiment with the 28 SOLAR neurons based on PicoBlaze micro controllers,

we have to have both the hardware and software platforms. The hardware platform

contains the Ballynuey 2 PCI card and PC with PCI slot, which is easy to setup. The

26

software platform includes the operating system, Matlab, VC++, and etc. The following

explains how to set the experiment.

The operating system is either WIN98/2000 or WIN XP. If we choose

WIN98/2000, a DLL file facilitates to read/write registers and other I/O operation. The

DLL file for Matlab is developed using MATLAB MEX programming. Basically, we

need a MEX interface function to translate your C/C++ function IO data to MATLAB

environment. This gives users an option to develop C/C++ function which can be

executed in MATLAB environment for some time-consuming tasks in MATLAB. The

DLL files are developed by myself combining both the C/C++ library from Nallatech.

and Matlab MEX programming.

In this project, we use the MATLAB algorithm simulation for SOLAR. With

these DLL, we can easily operate the PCI card within Matlab environment. If we choose

to work within WIN XP, the current development library provided by the Nallatech uses

new C/C++ interface functions and there is a potential problem to develop necessary

Matlab DLL files. So we may need to use C/C++ function without Matlab environment.

Actually, there is no big issue here if you are familiar with C/C++ environment. In the

following, I assume we are using WIN2000 which is the environment that I used. The

developed DLL contains:

matOpenDIMEBoard.dll

matCloseDIMEBoard.dll

27

matResetDIMEBoard.dll

matviDIME_ReadRegister.dll

matviDIME_WriteRegister.dll

matviDIME_DMARead.dll

matviDIME_DMAWrite.dll

…

To create these DLL, you need a MEX header to connect Matlab and C/C++. This

MEX header called mexFunction as following example. The rest of the function is your

implementation function as DIME_WriteRegister function in this example. Inside this

function, you can implement whatever you want. In my code, I use

viDIME_WriteRegister function provided by Nallatech in the Nallatech CD in Rm 323.

To compile this function, you need go to Matlab console, type mex to first configure your

compiler, then you can compile your C/C++ function in Matlab environment. More

functions can be provided if needed.

#include "mex.h"
#include "dimesdl.h"
#include "vidime.h"

void DIME_WriteRegister(double * handle,double * addr,double * data,double *flag)
{
 DIME_HANDLE CurrHandle;
 if((CurrHandle=GetDIMEHandle())==NULL)
 {
 printf("Open Virtex Board failed when checking handle status!");
 return;
 }
 *flag=viDIME_WriteRegister(CurrHandle,(DWORD)*addr,(DWORD)*data,5000);
}

28

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
 double *handle;
 double *addr;
 double *data;
 double *flag;

 if (nrhs != 3) {
 mexErrMsgTxt("three arguments required - handle addr & data.");
 }
 else if(nlhs > 1)
 mexErrMsgTxt("Too many output arguments");

 handle = mxGetPr(prhs[0]);

 addr = mxGetPr(prhs[1]);

 data = mxGetPr(prhs[2]);

 plhs[0]=mxCreateDoubleMatrix(1,1,mxREAL);
 flag=mxGetPr(plhs[0]);

 DIME_WriteRegister(handle,addr,data,flag);
}

These DLL files are developed for the basic applications including register

read/write, DMA transferring, DIME board operation, and etc. In the future application,

more DLLs may be developed based on the modified design. Among these DLLs, the

matResetDIMEBoard.dll is not designed to reset your design but to reset the PCI

interface FIFO, control state machine, and etc. To reset the whole board, you not only

need to reset the PCI interface but also need to reset your design. To reset the PCI

interface, basically, three reset functions are needed as follows:

29

DIME_PCIReset(hDIME);

DIME_VirtexReset(hDIME);

DIME_SystemReset(hDIME);

(here, hDIME is the returned handle for the board)

To reset your design, there are many ways to do it. You can assign a reset register

or you can create a reset pulse based on simple read/write logic. Again, to reset your

design, you have to add one more function to create the reset DLL to reset the whole

board. In my design, the RESET signal is associated with the system reset. So there is no

additional reset pulse generated. The mex code is as follows.

#include "mex.h"
#include "dimesdl.h"
#include "vidime.h"

void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const
mxArray *prhs[])
{
 DIME_HANDLE hDIME;
 if (nrhs != 0) {
 mexErrMsgTxt("No arguments required.");
 }
 if((hDIME=GetDIMEHandle())==NULL)
 {
 printf("Open Virtex Board failed when checking
handle status!");
 return;
 }
 DIME_PCIReset(hDIME);
 DIME_SystemReset(hDIME);
 DIME_VirtexResetEnable(hDIME);
 printf("Virtex Board Reset totally.\n");

}

30

After the SOLAR training in software, we have achieved the optimal

configuration results of the network neurons. We can use Matlab to create the HEX file

based on the learned results to configure the instruction memory for every single neuron

on the Picoblaze microcontroller and to use these HEX files to configure every single

neuron. How to transfer the HEX file to every single neuron is explained in later content.

The HEX file is the instruction file created by the provided assembler (KCPSM.exe) from

Xilinx, as introduced in section 3.2. Currently, there are eleven learning functions to use

in SOLAR

'ADD.HEX','SUB.HEX','MULT.HEX','DIVD.HEX','SQRE.HEX','ROOT.HEX',

'LOG2.HEX','INVR.HEX','EXP2.HEX','QDRT.HEX','QDRE.HEX'.

Although these functions are HEX files, we can change some values inside them

(for detailed HEX file structure, refer to the recent PicoBlaze document). For instance,

8100E000C014A101A000 is a simple instruction to add two ports together. We can

change “C014” to “C016” to do the subtraction instead of addition. This configuration

work has been done in Matlab since our neurons are learning and parameters are updated.

Using Matlab program, we can change the parameters at the right memory location in

PicoBlaze.

The complete developed Matlab file is merged with the whole system to

dynamically configure the neurons based on the training results. The following Matlab

file may be used as a starting point. This file is easy to understand. The main function is

31

to configure the chip, load different instruction memory for every single neuron, and read

back the voting results. In the example code, VirtexHandle is the board memory space

and ADDRESS(5 downto 0) is used to select which neuron to configure after the address

signal is further decoded.

close all;
clear all;

load TRAININGRESULT;

input1=[64];
input2=[56];

MaxNeuron=6;

test=TEST; %function selection
threshold=NEURONSTHRESHOLD; %threshold
connection1= NEURONSCONNECTION1; %connection1
connection2= NEURONSCONNECTION2; %connection2

hexfiles={'ADD.HEX','SUB.HEX','MULT.HEX','DIVD.HEX','SQRE.HEX', ...
'ROOT.HEX','LOG2.HEX','INVR.HEX','EXP2.HEX','QDRT.HEX','QDRE.HEX'};

fid_s = fopen('send2neuron.txt','W');

VirtexHandle=matOpenDIMEBoard;

succ=matConfigDIMEBoard(VirtexHandle, 'pico_solar.bit');

for neuron=1:MaxNeuron

hexfile_pointer=test(neuron);

fid_r=fopen(hexfiles{hexfile_pointer},'r');

writedata=sprintf('%s801000',dec2hex(neuron+1,2));
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata));
writedata=sprintf('%sA1%s02',dec2hex(neuron+1,2),dec2hex(connection2(neuron),2))
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata));

32

writedata=sprintf('%s0F%s03',dec2hex(neuron+1,2),dec2hex(threshold(neuron),2));
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata));

i=0;
t=fgets(fid_r);
tpre=t;

while(isempty(strfind(t,'0000')) | isempty(strfind(tpre,'0000')))

if isempty(strfind(t,'8010')) & isempty(strfind(t,'A000')) & ...
 isempty(strfind(t,'A101')) & isempty(strfind(t(1:2),'0F'))

writedata=sprintf('%s%s%s',dec2hex(neuron+1,2),t(1:4),dec2hex(i,2));
flag=matviDIME_WriteRegister(VirtexHandle,5,hex2dec(writedata));

 end
 end

end

reset=matviDIME_ReadRegister(VirtexHandle,4);

for i=1:length(input1)

flag=matviDIME_WriteRegister(VirtexHandle,2,input1(i));
flag=matviDIME_WriteRegister(VirtexHandle,3,input2(i));
neuron2(i)=matviDIME_ReadRegister(VirtexHandle,7)
neuron3(i)=matviDIME_ReadRegister(VirtexHandle,8)
neuron4(i)=matviDIME_ReadRegister(VirtexHandle,9)
neuron5(i)=matviDIME_ReadRegister(VirtexHandle,10)
neuron6(i)=matviDIME_ReadRegister(VirtexHandle,11);
neuron7(i)=matviDIME_ReadRegister(VirtexHandle,12);

vote2(i)=matviDIME_ReadRegister(VirtexHandle,35)
vote3(i)=matviDIME_ReadRegister(VirtexHandle,36)
vote4(i)=matviDIME_ReadRegister(VirtexHandle,37)
vote5(i)=matviDIME_ReadRegister(VirtexHandle,38)
vote6(i)=matviDIME_ReadRegister(VirtexHandle,39);
vote7(i)=matviDIME_ReadRegister(VirtexHandle,40);

end

matCloseDIMEBoard;

Example

33

In this part, I used the neuron structure obtained after learning, shown in the left

part of Fig. 6.1. I prototyped the simple SOLAR architecture containing 28 neurons onto

a single VIRTEX FPGA chip. In this example, the configuration of 6 neurons among the

28 neurons is shown in Fig. 6.1.

The initial connections are shown in solid lines. In this simplified example, every

neuron simply adds two inputs together. For instance, the neuron 1 adds inputs 1 and 2 to

its content; the neuron 3 adds input 2 and the output of the neuron 1; the neuron 5 adds

the outputs of neuron 2 and 3, etc. Then, the connections of the neurons 3 and 5 are

dynamically reconfigured, as shown by the dotted line. The updated neuron 3 has inputs

as the outputs from the neurons 1 and 2, and the neuron 5 has inputs as the outputs from

the neurons 3 and 4. The results can be read out from the chip via PCI bus, as shown in

the Matlab console. In the inserted Matlab command console in Fig.6.1, “initial” values

include primary input values (6 and 2) and neuron outputs of 6 neurons in 3 layers, while

Fig.6.1 Experimental network and result

34

“updated” values show inputs and neuron outputs after dynamical reconfiguration. We

developed the Matlab DLLs to implement the I/O functions including read and write.

The results from the VHDL simulation results is shown in Fig. 6.2. In the waveform,

“Enable_bus” represents the neuron selection signal. It selects a particular neuron to be

configured at a certain time. For instance, “Enable_bus” value 4 means that we are

updating the contents of the neuron 3 and “Enable_bus” value 6 means we are updating

the contents of the neuron 5. In this way, any neuron’s configuration information can be

updated without affecting other neurons. Once the configuration process for all neurons is

over, the outputs from neurons are stable and ready to be read out. In this example, only

neurons 3 and 4 connections are updated when the “Enable_bus” has value of 4 and 6,

respectively. Based on this experiment’s inputs valued as 6 and 2, the initial outputs

from the neurons 1 to 6 are HEX 8, 8, A, 10, 18, respectively. After the connections are

updated as shown in the left of Fig. 6.2, the neuron outputs are updated to be hex 8, 8, 10,

10, 20, 20, which agree with a manual calculation.

Fig. 6.2 VHDL simulation for partial configuration

Initializing
 neuron 6

Updating
neuron 3

Initial output

U
pdated

output

Updating
neuron 5

35

The design has been described in VHDL and the simulation verifies the design.

But we have to implement this design in FPGA. Real FPGA execution may differ from

the functional simulation because of the clock, delay and etc. Since the whole design files

are developed in RTL level. We can easily obtain the FPGA configuration file using

XILINX ISE software. The usage of ISE can refer to the labs of EE414/514 [4]. A

snapshot of the project in ISE is shown in Fig. 6.3.

To implement the design, JTAB clock is assigned during the last step (Create

programming file). See Fig. 6.4.

Fig.6.3 ISE project implementation

36

The implementation results are summed up in Fig. 6.5

Based on the implementation results, it is concluded that this neural network

architecture realizes a maximum parallel instruction throughput of 23.16x28 MIPs with

28 fully connected neurons. The neuron number is limited to 28 since there are only 28

BRAM modules on the chip, although there are still some other resources remained

unused. If we can lower the neuron’s program memory size, we can put more neurons on

Fig. 6.5 Implementation reports

Fig.6.4 ISE project configuration

37

a single chip to overcome the BRAM bottleneck. Due to the parallel processing in

hardware and the distributed network memory, the speed improvement using FPGA

implementation is supposed to be significant comparing to the software simulation

because of the parallel processing array – SOLAR is aimed at adopting multiple

processing elements to achieve “real time” application. In this experiment, most of the

time is consumed in the interface when data is transmitted to SOLAR (2*14) and read

back. In addition, the current software simulation is based on 1.1 Ghz CPU clock, which

is unbeatable by the low-end FPGA chip. Due to above reasons, in this environment,

speed improvement is not obvious or even hardware computer is slower than the software

simulation because of the I/O operation.

The mapping result is shown in Fig. 6.6. It illustrates how the neurons are

distributed inside the chip after the mapping process. Every single neuron occupies a

compact and concentrated logic area. The compactness depends on the structure-oriented

hardware design. For instance, we adopt LUTs and dedicated multiplexer module in

addition to the optimized PicoBlaze structure to build every single neuron.

Fig. 6.6 Mapping result

38

7. How to Modify the Design From 2x14 to 4x7 Structure

To change the SOLAR structure from 2x14 to 4x7, in the VHDL file

(C:\solar\hwsw\nn_vote_4\pico_solar.vhd), several modifications should be made.

First, the number of layers “LAYERS” and number of neurons per layer “NEURONS”

should be changed as follows

constant LAYERS :integer := 7;
constant NEURONS :integer := 4;

Second, since there are 4 inputs to the network plus 28 inputs to 28 neurons, the

PicoBlaze component in the VHDL file is changed as follows.

component PicoBlaze
Port (clk : in std_logic;
 reset:in std_logic;
 data_out : out std_logic_vector(7 downto 0);
 vote_out : out std_logic_vector(7 downto 0);
 data_in0 : in std_logic_vector(7 downto 0);
 data_in1 : in std_logic_vector(7 downto 0);
 data_in2 : in std_logic_vector(7 downto 0);
 data_in3 : in std_logic_vector(7 downto 0);
 data_in4 : in std_logic_vector(7 downto 0);
 data_in5 : in std_logic_vector(7 downto 0);
 data_in6 : in std_logic_vector(7 downto 0);
 data_in7 : in std_logic_vector(7 downto 0);
 data_in8 : in std_logic_vector(7 downto 0);
 data_in9 : in std_logic_vector(7 downto 0);
 data_in10 : in std_logic_vector(7 downto 0);
 data_in11 : in std_logic_vector(7 downto 0);
 data_in12 : in std_logic_vector(7 downto 0);
 data_in13 : in std_logic_vector(7 downto 0);
 data_in14 : in std_logic_vector(7 downto 0);
 data_in15 : in std_logic_vector(7 downto 0);
 data_in16 : in std_logic_vector(7 downto 0);
 data_in17 : in std_logic_vector(7 downto 0);
 data_in18 : in std_logic_vector(7 downto 0);

39

 data_in19 : in std_logic_vector(7 downto 0);
 data_in20 : in std_logic_vector(7 downto 0);
 data_in21 : in std_logic_vector(7 downto 0);
 data_in22 : in std_logic_vector(7 downto 0);
 data_in23 : in std_logic_vector(7 downto 0);
 data_in24 : in std_logic_vector(7 downto 0);
 data_in25 : in std_logic_vector(7 downto 0);
 data_in26 : in std_logic_vector(7 downto 0);
 data_in27 : in std_logic_vector(7 downto 0);
 data_in28 : in std_logic_vector(7 downto 0);
 data_in29 : in std_logic_vector(7 downto 0);
 data_in30 : in std_logic_vector(7 downto 0);
 data_in31 : in std_logic_vector(7 downto 0);
 ADDR_bus : in STD_LOGIC_VECTOR (7 downto 0);
 DATA_bus : in STD_LOGIC_VECTOR (15 downto 0);
 Enable : in STD_ULOGIC
);
end component;

Third, the I/O address need to be changed to contain two more null neurons (for the input

features 3 and 4), and following that, the I/O address decoder should be changed. (refer to

the provided 4x7 source code C:\solar\hwsw\nn_vote_4\pico_solar.vhd)

MY_WR_REGS_01<= '1' when WRITE_STROBE='1' and ADDRESS(5 downto
0)="000010" else '0';
MY_WR_REGS_02 <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto
0)="000011" else '0';
MY_WR_REGS_03<= '1' when WRITE_STROBE='1' and ADDRESS(5 downto
0)="000100" else '0';
MY_WR_REGS_04 <= '1' when WRITE_STROBE='1' and ADDRESS(5 downto
0)="000101" else '0';

process (RST, DSP_CLKi)
begin
 if RST='1' then
 MY_NN_REGS(0,1) <= (others => '0');
 MY_NN_REGS(0,2) <= (others => '0');
 MY_NN_REGS(0,3) <= (others => '0');

40

 MY_NN_REGS(0,4) <= (others => '0');
 ADDRDATAEN_BUS <= (others => '0');
 elsif DSP_CLKi'event and DSP_CLKi='1' then
 if MY_WR_REGS_01 = '1' then
 MY_NN_REGS(0,1) <= DATA(7 downto 0);
 end if;
 if MY_WR_REGS_02 = '1' then
 MY_NN_REGS(0,2) <= DATA(7 downto 0);
 end if;
 if MY_WR_REGS_03 = '1' then
 MY_NN_REGS(0,3) <= DATA(7 downto 0);
 end if;
 if MY_WR_REGS_04 = '1' then
 MY_NN_REGS(0,4) <= DATA(7 downto 0);
 end if;
 if ADDRDATAEN_BUS_WR = '1' then
 ADDRDATAEN_BUS <= DATA(28 downto 0);
 end if;
 end if;
end process;

Finally, the Matlab file (C:\solar\hwsw\NNorgVote_hardwareconf.m) used to

acquire the data also needs to be changed based on the updated I/O address. The design

has been described in the VHDL and synthesized using the Xilinx XST 6.2 and the Xilinx

Alliance tools for place and route. The implementation results are summed up in

Table.6.1.

Implementation Results Per Neuron

Selected Device : v800bg432-4
Maximum Frequency: 45.568MHz
Neuron Performance: 22.784MHz
Number of Slices: 163 out of 9408 1.73%
Number of Slice FFs: 97 out of 188 0.5%
Number of 4 input LUTs:
 290 out of 1881 1.53%
Number of TBUFs: 73 out of 9408 0.75%
Number of BRAMs: 1 out of 28 3.57%

 Table 7.1 Implementation reports

41

The mapping result is shown in Fig.7.2. As before, every single neuron occupies

a compact and concentrated logic area.

 The following example presents the Matlab training based on a set of real world

data from the Iris dataset [5]. The Iris dataset contains data of 3 classes with 4 features

and each class has 50 samples. So totally there are 150 training samples for each feature.

In this simulation, half of data was used for training and the other half used for testing

based on random data order. 7 layers of neurons (28 neurons total) plus 4 inputs are used.

The simulation result is encouraging with probability 98.67% and presented in [6].

>> neurons{7}.func
ans =
 'half' 'half' 'f1'
>> neurons{7}.threshold
ans =
 52.7944

Fig. 7.2 Mapping result

I/O

 IN
T

E
R

FA
C

E

NEURON
12

NEURON
11 NEURON

11NEURON
14 NEURON

21

N
E

U
R

O
N

22

NEURON
23

NEURON
24

Layer 3 &4

L

ay
er

 7

Layer 5

Layer 6

Layer 7

42

>> neurons{7}.features
ans =
 [1] [3]
>> neurons{8}.func
ans =
 'ident' 'half' 'f2'
>> neurons{8}.threshold
ans =
 74.0095
>> neurons{8}.features
ans =
 [4] [3]

function z = f1(x,y)
xt = bitshift(x,-1);
yt = bitshift(y,-1);
z=xt+yt;

function z = f2(x,y)
z = max(0,x-y);

 Neuron 7 threshold: 52.7944 = (hex 35)
Neuron 8 threshold: 74.0095 = (hex 4A)

>> Scaled_Testing_data(:, 1:30)

ans =

 Columns 1 through 10

 243 228 210 236 239 14 35 69 113 216
 58 195 113 189 234 89 51 50 238 134
 155 116 157 44 104 208 50 3 118 51
 123 4 202 103 228 2 154 191 106 172

 Columns 11 through 20

 214 213 77 77 96 126 209 87 214 140
 5 129 48 139 220 230 169 137 145 113
 174 181 49 38 218 210 87 186 94 178
 96 109 174 178 152 165 73 78 180 159

 Columns 21 through 30

43

 203 44 224 228 72 149 110 136 200 203
 244 250 189 50 119 107 57 164 174 15
 134 69 34 76 16 132 148 53 117 154
 225 64 2 169 253 85 194 96 145 12

VHDL simulation is shown in Fig. 7.3.

After the training stage, the 28 neurons will have different values based on their

parameters including the connections, functions, threshold and etc. This information will

be transferred into the chip during the voting stage. The VHDL simulation provides

further reference to the hardware execution. In Fig.7.3, we provide a snapshot of the

hardware simulation. In this simulation, the neurons 7 and 8 in the first layer of the 4x7

network are configured based on the training results.

Some parameters for the neurons 7 and 8 after the Matlab training are shown as follows:

Neuron 7

Neuron 8
Neuron 7

Neuron 8

Configuration Voting

Fig. 7.3 SOLAR simulation snapshot

44

neurons{7}.func={ 'half', 'half', 'f1'}

neurons{7}.threshold = 52.7944

neurons{7}.features = [1] [3]

neurons{8}.func={ 'ident' 'half' 'f2'}

neurons{8}.threshold = 74.0095

neurons{8}.features = [4] [3]

These results can be translated as

Neurons{7}.output = f1(half (Neurons{1}.output), half (Neurons{3}.output)) =

Neurons{1}.output / 2 / 2 + Neurons{3}.output / 2 / 2=

Neurons{1}.output / 4 + Neurons{3}.output / 4

Neurons{8}.output = f1(half (Neurons{4}.output), half (Neurons{3}.output))=

MAX((Neurons{4}.output / 2 - Neurons{3}.output / 2), 0)

In the simulation waveform, after the configuration, testing data are sent to the 4

input neurons in the 4x7 network. The neuron outputs are stored in their individual

output registers. For example, “MY_NN_REGS(1,3)” and “MY_NN_REGS(1,4)”

represent the outputs from the neurons 7 and 8. The output result of a certain neuron is

used to compare with its corresponding subspace thresholds to determine the voting

45

results. In the waveform, “neuron 7 vote” and “neuron 8 vote” are the voting results for

neuron 7 and 8 respectively.

In this simulation waveform, the current testing features are hex values 71, EE,

76, 6A and they are the outputs from the 4 input neurons. We treat them as “input”

neurons 1-4. So neuron 1 has output 71, neuron 2 has output EE and etc. Since the

neuron 7 is connected to neurons 1 and 3, then the output from neuron 7 is hex value

(71/4+76/4)=39. In the MATLAB simulation result, it is seen that neuron 7 takes two half

inputs, left bit shift 1 (equal to divide 2) and then add them together.

 >> neurons{7}.func
ans =
 'half' 'half' 'f1'

and f1 function is as following

function z = f1(x,y)
xt = bitshift(x,-1);
yt = bitshift(y,-1);
z=xt+yt;

Thus [(neuron1 output) /2 + (neuron3 output) /2] /2 = (71/4+76/4)=39, which

can be verified in the VHDL simulation (shown as neuron 7 result).

Similarly, the output from the neuron 8 is hex value MAX(6A -76/2)=2F since

neuron 8 is connected to the neurons 4 and 3. These output results are compared to their

subspace threshold which are 52.7944 (or hex 35) and 74.0095 (or hex 4A) for th3e

neurons 7 and 8 respectively. Since the output from the neuron 7 is hex value 39 which

46

is greater than its threshold hex value 35, its voting output is 1; since the output from the

neuron 8 has hex value 2F which is less than its threshold hex value 4A, its voting output

is 0. All of the testing data are passed through the SOLAR feed forward network and

voting output from each neuron are collected to determine the final voting results as 0 or

1.

8. Summary and Future Work

SOLAR represents a new idea in hardware design of artificial neural networks

(ANNs). It is a modular and expandable system. It also defines a new breed of

dynamically reconfigurable architectures that can dynamically reconfigure themselves

based on information included in the input data. This presented architecture is a novel

dynamically reconfigurable (via dual-port memory) neural network implementation that

used simple general-purpose processor (KCPSM) architecture. Firstly, it has a regular

expandable parallel architecture. Therefore, its speed and learning abilities can be greatly

improved comparing to the software simulation. Secondly, it has data-driven self-

organizing learning structure based on a new self-organizing learning algorithm.

Furthermore, design flexibility is attained by exploiting the features of self-

reconfigurable neuron units. Finally, hardware re-configurability is achieved in this self-

organizing learning array by involving reconfigurable routing modules. According to the

implementation results, this neuron architecture realizes a maximum parallel instruction

throughput of 648 MIPs with 28 fully connected neurons. System performance increases

as more neurons are connected. The PicoBlaze for Virtex-II Series FPGAs reaches

47

performance levels of up to 55 MIPS. With up to 336 PicoBlaze nodes on the chip

SOLAR will reach the performance of 18.5 GIPS on a single chip. These numbers could

be a little different within the same chip based on the different structure. So its parallel

processing ability can be further improved. With the popular PowerPC on VIRTEX II

Pro FPGAs used as the main CPU, the PicoBlaze neurons can be used as slave

peripherals to further improve the throughput for system on a chip implementation of

neural networks. Hence it can be of a practical use for the embedded hardware

applications in signal processing, wireless communications, multimedia systems, data

networks, and so forth.

In the neuron’s design, the number of neurons/chip is limited by the number of

BRAMs, so the total logic utilization is comparatively low. The remaining LUT RAM

will be used for the communication between neurons on other chips and to reuse the same

PicoBlaze for several neurons, to fully utilize the hardware resource and accommodate

more neurons in a single FPGA chip. In this way, the design seems device-dependent,

since it may need to carefully arrange additional resource for different FPGAs. Each

device type has to be individually optimized. In scaling our design to 3D system, design

optimization will be necessary in order to accommodate more neurons in a single FPGA

chip.

This report describes the SOLAR implementation based on PicoBlaze in a single

chip. I hope this experimental setup can be helpful to prototype development of novel

neuron and routing architectures for the 3D SOLAR.

48

Reference

[1] http://www.xilinx.com/publications/xcellonline/xcell_45/xc_PicoBlaze45.htm

[2] J. A. Starzyk, Y. Guo, and Z. Zhu, ”Dynamically Reconfigurable Neuron

Architecture for the Implementation of Self-Organizing Learning Array”, Proc. 18th Int.

Parallel and Distributed Processing Symposium, Santa Fe, New Mexico, April 26– 30,

2004.

[3] http://direct.xilinx.com/bvdocs/appnotes/xapp213.pdf

[4] http://www.ent.ohiou.edu/~starzyk/network/Class/ee514/index.html

[5] “UCI Machine Learning Repository,”

ftp://ftp.ics.uci.edu/pub/machine-learning- databases/iris/

[6] J. A. Starzyk, Y. Guo, And Z. Zhu, “Dynamically Reconfigurable Neuron
Architecture For The Implementation Of Self-Organizing Learning Array,” submitted to
International Journal Of Embedded System”.

