

Energy Efficient Digital Baseband Modulator for Cable Terminal Systems Targeted on

Field Programmable Gate Array

A thesis presented to

the faculty of the

Fritz J. and Dolores H. Russ

College of Engineering and Technology of

Ohio University

In partial fulfillment

of the requirement for the degree

Master of Science

Feng Wang

June 2004

This thesis entitled

Energy Efficient Digital Baseband Modulator for Cable Terminal Systems Targeted on

Field Programmable Gate Array

by Feng Wang

has been approved for

the School of Electric Engineering and Computer Science

and the Russ College of Engineering and Technology by

Janusz A. Starzyk

Professor of School of Electrical Engineering and Computer Science

R. Dennis Irwin

Dean, Fritz J. and Dolores H. Russ

College of Engineering and Technology

Abstract

Feng Wang. M.S. June 2004. Electrical Engineering and Computer Science

Energy Efficient Digital Baseband Modulator for Cable Terminal Systems Targeted on
Field Programmable Gate Array (100 pp.)

Director of Thesis: Janusz A. Starzyk

This thesis presents design and research in energy efficient digital baseband

modulator for cable terminal systems targeted on field programmable gate array (FPGA).

The design specifications of the individual processing blocks of digital baseband

modulator are reviewed. Existing low power design techniques at algorithm and

architecture levels are examined and their effectiveness for low power design on FPGA is

investigated based on the power dissipation characteristics of the FPGA. Low power

design strategy for the digital modulator is then derived. Finally, the implementation

options for several key modules are investigated and the design space of power and area

product is explored. In this design, a new parallel finite field multiplier is proposed, the

interleaving algorithm is reformulated and rescheduling is used in the TCM modulator to

achieve the low power goal. The results of this research show that most of the low power

design techniques, except parallelizing, are very effective for energy efficient design in

FPGA.

Approved: Janusz A. Starzyk
 Professor, EECS

Acknowledgments

My thesis research could not be accomplished without the help and support from the

others. First and foremost, I would like to thank my research advisor Professor Janusz A.

Starzyk for his extraordinary help and guidance since I joined the VLSI group. His

profound insights into abstract problems and exceptional capabilities to solve them with

mathematical model helped me at various time of this thesis work. His high standards of

professional conduct and performance serve as a role model for me. Without his financial

support, I could not finish my study here. I would also like to thank Professor Jeffrey C.

Dill, Professor Xiaoping Shen, and Professor Savas Kaya for reviewing this thesis and

providing helpful comments. Also Professor Jeffrey C. Dill‘s lectures built my coding

theory background, which is critical for this thesis work.

Next, I would like to thank my friends in VLSI group. I’d like to thank Zhen Zhu. Zhen’s

wide knowledge of communication theory and extraordinary skills in the Matlab

programming helped me out in various times during the project. I would also like to

thank Yinyin Liu for her useful advice in thesis writing. During my two years study in

VLSI group, I learned a lot from the other members in the group: Haibo He, Zhineng Zhu,

and Mingwei Ding.

Finally, my parents, older brother and my girlfriend, have always been the best support in

my life. I would like to express my appreciation to them. My mother’s unconditional love

and continual encouragement have been the source of my strength for years even after

she passed away. I dedicate this thesis to you with all my love.

6

Table of Contents

ABSTRACT ...3

ACKNOWLEDGMENTS...4

TABLE OF CONTENTS..6

LIST OF FIGURES ..9

LIST OF TABLES ..11

SYMBOLS AND ABBREVIATIONS ...12

CHAPTER 1 INTRODUCTION ..14

1.1 MOTIVATION...14

1.2 RESEARCH GOALS ...16

1.3 THESIS ORGANIZATION ...16

CHAPTER 2 SPECIFICATION FOR DIGITAL BASEBAND MODULATOR DESIGN.............18

2.1 INTRODUCTION ...18

2.2 MPEG-2 TRANSPORT LAYER...19

2.3 MPEG-2 TRANSPORT FRAMING...20

2.4 FORWARD ERROR CORRECTION...21

2.4.1 Reed-Solomon coding..23

2.4.2 Interleaving ...25

2.4.3 Randomization...28

2.4.4 Trellis coded modulator ..29

2.5 MODULATION AND DEMODULATION ...41

2.5.1 QAM characteristics..41

CHAPTER 3 LOW POWER DESIGN ..43

7

3.1 INTRODUCTION ...43

3.2 SOURCES OF POWER CONSUMPTION ..43

3.3 LOW POWER DESIGN TECHNIQUES...46

3.3.1 Algorithm level optimization ...46

3.3.2 Architectural level optimization ..48

3.4 LOW POWER DESIGN STRATEGY FOR THE DIGITAL MODULATOR ...50

CHAPTER 4 LOW POWER DESIGN OF DIGITAL MODULATOR..51

4.1 INTRODUCTION ...51

4.2 REED SOLOMON ENCODER ..51

4.3 TRELLIS CODED MODULATION ..65

4.4 INTERLEAVER DESIGN ...70

4.5 MPEG FRAMER...79

CHAPTER 5 SIMULATION AND RESULTS ...86

5.1 INTRODUCTION...86

5.2 RS ENCODER ..86

5.3 TRELLIS CODED MODULATION ..87

5.3.1 Data parser..87

5.3.2 Differential pre-coder..88

5.3.3 Binary convolutional coder ...89

5.3.4 QAM mapper ...91

5.4 INTERLEAVER DESIGN ...92

5.5 RANDOMIZER..94

5.6 MPEG FRAMER...95

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ..96

6.1 CONCLUSIONS...96

8

6.2 FUTURE WORK ..98

REFERENCES..99

9

List of Figures

Fig. 2.1 Cable transmitter block diagram.. 19

Fig. 2.2 Checksum generator for the MPEG-2 sync byte encoder [ITU J.83] 21

Fig. 2.3 Forward Error Correction block diagram .. 22

Fig. 2.4 Interleaving functional block diagram [ITU J.83]... 26

Fig. 2.5 Block diagram of 7-bit symbol randomizer... 28

Fig. 2.6 64-QAM trellis coded modulator block diagram [ITU J.83]............................... 30

Fig. 2.7 64-QAM trellis group [ITU J.83] .. 31

Fig. 2.8 256-QAM trellis coded modulator block diagram [ITU J.83]............................. 33

Fig. 2.9 256-QAM sync and non-sync trellis group [ITU J.83] 34

Fig. 2.10 Block diagram of the differential pre-encoder [ITU J.83]................................. 35

Fig. 2.11 Punctured Binary Convolutional Coder [ITU J.83]... 37

Fig. 2.12 64-QAM constellation [ITU J.83] ... 39

Fig. 2.13 256-QAM constellation [ITU J.83] ... 40

Fig. 4.1 Block diagram for the extended RS Solomon encoder.. 53

Fig. 4.2 Block diagram of the array multiplier over GF (2^7).. 56

Fig. 4.3 Block diagram of the multiplier (C=A*alpha^52) over GF(2^7)........................ 62

Fig. 4.4 Block diagram of the convolutional coder .. 66

Fig. 4.5 RS symbols to Trellis Group bit ordering ... 66

Fig. 4.6 Block diagram of the data formatter using direct map method 67

Fig. 4.7 Block diagram of the modified data formatter .. 69

Fig. 4.8 ITU J.83 convolutional interleaver (I, J) functional block diagram 71

10

Fig. 4.9 Block diagram of the interleaver using the RAM based shift register 72

Fig. 4.10 Memory map of the Interleaver using matrix format .. 76

Fig. 4.11 Replicating the data path in (a) by factor 2 in (b), 4 in (c) and 8 in (d)........ 80-82

Fig. 4.12 Performance of the parallelizing the design by a factor of 1, 2, 4 and 8 83

Fig. 4.13 Power of the parallelizing the design by a factor of 1, 2, 4 and 8 84

Fig. 5.1 Simulation waveforms of RS encoder ... 87

Fig. 5.2 Simulation waveforms of data parser .. 88

Fig. 5.3 Simulation waveforms of differential pre-coder ... 89

Fig. 5.4 Simulation waveforms of differential pre-coder ... 90

Fig. 5.5 Simulation waveforms of formation of the 5QAM symbols............................... 91

Fig. 5.6 Simulation waveforms of formation of the 5QAM symbols............................... 92

Fig. 5.7 Signal waveforms at the interleaving starts... 93

Fig. 5.8 Signal waveforms at the interleaving ends .. 94

Fig. 5.9 Simulation waveform of randomizer... 94

11

List of Tables

Table 2.1 Level 1 interleaving [ITU J.83] .. 27

Table 2.2 Level 2 interleaving [ITU J.83] .. 27

Table 2.3 Cable transmission format [ITU J.83] .. 41

Table 2.4 Variable interleaving modes [ITU J.83] ... 42

Table 3.1 Capacitance of the resources of Virtex II (2v1000FG256-5) [Shang02]......... 45

Table 4.1 Performance of RS encoders using different multipliers.................................. 64

Table 4.2 Comparison between two methods in area and power 70

12

Symbols and Abbreviations

ASIC Application Specific Integrated Circuit

ATM Asynchronous Transfer Mode

CAD Computer Aided Design

CLB Configurable Logic Block

DFG Data Flow Graph

DOCSIS Data Over Cable Service Interface Specification

FEC Forward Error Correction

FPGA Field Programmable Gate Array

GF Galois Field

IP Intellectual Property

ITU International Telecommunication Union

LFSR Linear Feed Shift Register

LSB Least Significant Bit

LUT Look Up Table

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MPEG Moving Picture Experts Group

MSB Most Significant Bit

PN Pseudorandom Noise

QAM Quadrature Amplitude Modulation

RAM Random Access Memory

13

RISC Reduced Instruction Set Computer

RS Reed-Solomon

TCM Trellis Coded Modulation

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

14

Chapter 1 Introduction

1.1 Motivation

Cable communications system has become the major technology for the broadband

internet access. Data Over Cable Service Interface Specification (DOCSIS) compatible

cable modem chips from Broadcom and Texas Instruments dominate this competitive

market. Xilinx has recently released Intellectual Property (IP) core for the key module,

International Telecommunication Union (ITU) J.83 modulator, targeted on FPGA device

to allow the other vendors to integrate this broadband access module to their products.

This thesis approaches the cable terminal system design on FPGA from the perspective

that low power is most desirable feature. A number of choices, including full custom,

standard cell, and FPGA, exist when implementing a digital integrated circuit design. Full

custom design is time consuming and can achieve highest performance with fixed

functionalities. The standard cell library approaches shorten the design cycle by

scarificing performance. The FPGA based design has same critical advantages over these

two methods by offering higher flexibility and shorter design time. With reprogrammable

features, the design bugs can be fixed with minimal effort and cost. This greatly reduces

the design cost and time, especially for low volume design.

15

Moore's law, which is often stated as the doubling of transistor performance and

quadrupling of the number of devices on a chip every three years, has been achieved

through scaling of the MOSFET [Doyle02]. Design density and speed are gained through

the advances in the semiconductor process technology. Though the performance of the

programmable logic lags behind the full custom design [Kusse98], the high performance

and high density FPGA embedded with RISC processor is available, for example, in

Xilinx Virtex II. Area and speed may then not be the first design priority for the FPGA in

many applications, such as cable communication terminal system, and the low-power

design becomes a dominant cost factor. As a result, new applications emerge by applying

the low power design technology to FPGA based design. For instance, in cable telephone,

a desirable feature is obtaining the power from the cable.

FPGAs are traditionally considered as power-hungry devices since their programmability

is provided by a large amount of the routing resources and switches that consume a lot of

dynamic switching power. Low power design for VLSI has received a lot of attention due

to the proliferation of mobile and portable devices. Nevertheless, research in low power

FPGA design has only recently gained its popularity due to its unique features in terms of

flexibility and signal processing capabilities [Kusse98, George99]. However, its energy

inefficiency is a limiting factor for the wide acceptance in mobile and portable

applications. In addition, it is difficult to estimate the power consumption during the early

phase of the design due to the lack of detailed information about the FPGA circuits. Thus

the low power design of FPGA remains a challenging problem.

16

1.2 Research goals

The goal of this research is to apply the existing low design techniques to digital

modulator design on FPGA and to gain a better understanding of the effectiveness of

these design methods. The research is focused on the design of several key modules of

the digital modulator and optimizing the design for low power purpose at the algorithm

and arithmetic levels.

1.3 Thesis organization

This thesis is organized into six chapters. Chapter 2 presents the system specifications of

the digital baseband modulator and describes the components for this digital baseband

modulator according to the ITU J.83 standard. In this chapter, the framing structure,

channel coding, and channel modulation for a digital multi-service television distribution

system that is specific to a cable channel is presented. The chapter also covers the

features of both 64- and 256-QAM modulation schemes.

Chapter 3 discusses the sources of power dissipation, reviews the existing low power

design techniques at the algorithmic and the architectural levels, examines their

applicability to FPGA technology and finally derives the design strategy for this digital

modulator design.

17

Chapter 4 applies the low power design techniques to the design of the several key

modules including MPEG framer, Reed Solomon Encoder, interleaver, and TCM

modulator. Design space is explored and several new structures are proposed.

Chapter 5 provides the simulation results of designed circuits, verifying their

performance according to specifications.

Chapter 6 gives a conclusion of the work done, summarizes major results obtained for the

thesis and discusses the future work.

18

Chapter 2 Specification for Digital Baseband Modulator Design

2.1 Introduction

The specification of the ITU Recommendation J.83 Annex B is presented in this chapter.

This specification describes the framing structure, channel coding, and channel

modulation for a digital multi-service television distribution system that is specific to a

cable channel.

Two types of the modulation schemes are used, Quadrature Amplitude Modulation

(QAM) with 64-point signal constellation (64QAM) and with 256-point signal

constellation. In this chapter, the common features and differences of both modulation

schemes are presented.

The design of the modulation, interleaving and coding is based upon testing and

characterization of cable systems in North America using 6MHz channeling [ITU J.83].

Concatenated coding schemes, including two encoders and an interleaver are used in

Forward Error Correction (FEC) due to their high bit error rate performances with low

complexity and low overhead.

MPEG-2 transport layer data stream is the input to this digital modulator. But the

synchronization of the MPEG stream is independent from the FEC synchronization,

19

which can avoid the interference with ATM synchronization. There are two modes

supported: Mode 1 has a symbol rate of 5.057 Msymbols/s and it is used for 64-QAM;

Mode 2 has a symbol rate of 5.361 Msymbols/s and is typically employed for 256-QAM

[ITU J.83]. This system can be easily upgraded to higher order QAM extensions.

The appropriate error correction and demodulation are determined by the expected

channel error statistics and distortion characteristics. The cable channel is primarily

regarded as a bandwidth-limited linear channel, with a balanced combination of white

noise, interference, and multi-path distortion and the QAM technique used, together with

adaptive equalization and concatenated coding is well suited to this application and

channel [ITU J.83].

The block diagram of the whole digital modulator is shown in Fig.2.1. The specification

of each processing block is presented as follows.

Fig. 2.1 Cable transmitter block diagram

2.2 MPEG-2 transport layer

The MPEG-2 transport layer is defined in Reference [ITU H.222]. Each frame in the

transport layer for MPEG-2 has 4 bytes header, which contains one synchronization byte

20

47HEX, three bytes service identification, scrambling and control information, and 184

bytes of data.

2.3 MPEG-2 transport framing

The MPEG transport framing provided a synchronization mechanism for the robust

communication in this layer. Out of the 188-byte data steame in serial format, most

significant bit (MSB) is first processed by this block. In addition to the sync byte, a parity

checksum is used to improve the delineation functionality and add the additional error

detection capability. This checksum is calculated over the 187 bytes following the sync

byte. Linear Feedback Shift Register (LFSR) is used to generate this checksum.

According to specifications provided in [ITU J.83], the LFSR is based on the following

equations:

)(xf

)(/)](1[)(1496 xgxbxxf += (2.1)

Where and 8651)(xxxxxg ++++= 731)(xxxxb +++=

The structure of this checksum generation function is shown in Fig. 2.2. All the

additional operations are modulo 2 and the LFSR is reset to all zeros before the

processing of a new frame. The 187-byte data is fed into the LFSR in a serial fashion, the

MSB first at the bit rate. The feedback network implements the g(x). An offset of 67HEX

is added to this checksum result for improved autocorrelation properties, and causes a

47HEX result to be produced during a syndrome decode operation when a valid code word

is presented [ITU J.83]. The 8-bit checksum is appended to the 187-byte data and

transmitted in MSB first.

21

Z–1

B '0'

B '0'
A

'1' '1' '0''1' '1' '1' '0''0'

b0

T0903410-96/d10

Z–1Z – 1 Z–1 Z–1Z – 1 Z – 1 Z – 1 Z–1497

Z – 1 Z – 1 Z–1 Z–1 Z–1 Z–1 Z–1

Z–1 Z–1Z – 1 Z–1 Z–1Z – 1 Z – 1 Z – 1

Z–1 Z–1 Z–1 Z–1 Z – 1 Z – 1 Z–1

b1 b2 b3 b4 b 5 b 6 b7

Input

Switch position A – first 1496 shifts
Switch position B – last 8 shifts

67 HEX offset, MSB first

(LSB) (MSB)Encoder checksum output

Fig. 2.2 Checksum generator for the MPEG-2 sync byte encoder [ITU J.83]

2.4 Forward error correction

Two levels of coding, an inner coder and outer coder, are employed in the Forward Error

Correction (FEC) to achieve high error correcting performance. The inner coder

interfaced with the modulator and the channel is configured to correct most of the

channel errors, and the outer coder with a high code rate reduced the probability of error

to the specified level [Sklar01]. Interleaving and randomization are used between the

inner and outer coder to prevent the degradation of error correcting performance caused

by correlated errors among successive symbols. Then the overall implementation

22

complexity is reduced to achieve a low error rate by using the concatenated coding

scheme. As shown in Fig.2.3, the FEC consists of four processing blocks: Reed Solomon

encoding, Convolutional interleaving, Randomizer, and Trellis encoder. FEC has its own

synchronization mechanism and is independent from the input data protocols.

Fig. 2.3 Forward Error Correction block diagram

Two types of coding schemes and interleaving techniques are employed to ensure the

reliability of the data transmission over the cable channel:

• Extended (128, 122) Reed Solomon (RS) coder – Provides block

encoding and has the capability of correcting up to three symbols within

an RS block.

• Convolutional interleaver – The input symbols delayed by different

length result in spreading the errors over several code words. RS

encoding together with interleaving provide for the correction of the burst

errors that decoder can not correct [Sklar01]

• Randomizer – Randomizes the data over the channel adding the

additional information to allow effective QAM demodulator

synchronization [ITU J.83].

23

• Trellis Encoder – Provides convolutional encoding.

2.4.1 Reed-Solomon coding

Reed-Solomon codes are block-based error correcting codes and their error correcting

ability is determined by the bit redundancy, (n, k). Reed-Solomon code can correct up to

(n-k)/2 symbol errors. Reed-Solomon codes are particularly well suited to correct the

burst errors and are widely applied in communication. A systematic RS coder (128, 122)

over Galois Field (GF) (128) is employed to code the data of MPEG transport layer. This

extended RS code can correct up to t=3 symbols errors contained in a codeword, where 2t

= 128-122. Both 64-QAM and 256-QAM use this RS code.

The implementation of the extended RS encoder is described as follows. The extended

RS code over GF(128) is constructed with the systematic encoder. The primitive

polynomial used to generate all the elements over GF(128) is:

1)(37 ++= xxxp (2.2)

The (128,122) RS codeword is generated using the generating polynomial:

1561211931164525

5432))()()()(()(
ααααα

ααααα

+++++=

+++++=

xxxxx
xxxxxxg (2.3)

Where, the primitive element α is a root of a primitive polynomial of the field,

i.e. 0)(=αp [ITU J.83].

24

The message block including 122, 7-bit symbols can be expanded in a polynomial format

as follows

0
1120

120
12

12 + + ... + + = mxmxmxmxm)(1
1

1 (2.4)

First, five parity symbols can be obtained as

01
2

2
3

3
4

4)(rxrxrxrxrxr ++++= (2.5)

Then, the first parity symbols in a systematic Reed-Solomon codeword are given by the

remainder of .)(mod)(5 xgxxm ⋅

The message block appended with the five parity symbols forms a new polynomial

referred to as an even multiple of the generator polynomial, and can be represented as the

following polynomial:

01
2

2
3

3
4

4
56

1
56

1)(rxrxrxrxrxmxmxmxmxc +++++ + + ... + + = 0
12

120
12

12 (2.6)

The extended parity symbol is generated by evaluating the code word at the sixth

power of

128c

α [ITU J.83].

)(6
128 αcc = (2.7)

The code appended with this extended parity symbol forms the final 128 symbol

Reed-Solomon block:

)(xc

1280
2

1
3

2
4

3
5

4
67

1
67

1

128

)()(

cxrxrxrxrxrxmxmxmxm

cxxcxcode

++++++ + + ... + + =

+=

0
12

120
12

12

 (2.8)

The codeword of this (128, 122) RS encoder is transmitted in the order of MSB first,

128012341...1 crrrrrmmmm 012012 with transmitted as the first bit. 112m

25

2.4.2 Interleaving

The Forney Convolutional interleaver, employed between the RS encoder and the

randomizer, has the capability to correct the burst errors. The convolutional interleaver is

used for both 64-QAM and 256-QAM.

Fig.2.4 shows the operation of the convolutional interleaver. The input symbols from RS

encoder appear at the input commutator and the interleaved data is output from the output

commutator. An (I, J) interleaver, has I branches. Each branch has a bank of registers (the

width of the register is 7, the same as the RS symbol size) and each register has a delay of

J symbol periods. Symbol period is given and equals to 7 bit clock periods. The register

clock depends on its width. Clock for register width of 7 is 7 clock periods, while for a

register width of 1 equals 1 clock period. There is no register at the first branch, labeled

with 1. The k-th branch has (k-1) registers and the corresponding path delay equals (k-

1)*J symbol periods delay. The input and output commutator can be referred to as the

interleaving commutator. These two interleaving commutators are reset to the top-most

branch and move to the next branch at the RS symbol frequency. After reaching the last

branch, the interleaving commutators rotate back to the top-most branch. A series of bad

symbols caused by the burst noise in the channel are spread over many RS blocks by the

de-interleaver, such that the resultant symbol errors per block are within the range of the

RS decoder correction capability [ITU J.83].

26

J
J J

J J

J J

J J J J

J J

J

J

J J

J J

J J

J J J

J J

J

J J

J

2
1

3

1 2 I-3

1 2

2

1

3

I-2 I-1

I-1
I

I-2

I-1

I

I-3 I-2 I-1

T0903470-96/d16

I-2

De-interleaver

7 bits

Channel

7 bits
Commutator

Symbol delay
(I,J) = (128,1), (64,2), (32,4), (16,8), (8,16)
(reduced interleaving modes)
I = 128, J = 1 to 8
(enhanced interleaving modes)

Interleaver

CommutatorCommutator
Commutator

Fig. 2.4 Interleaving functional block diagram [ITU J.83]

Two distinct operating modes, level 1 and level 2, provide two distinct levels of

interleaving capability. In level 1, a single interleaving depth (128, 1) is used in the 64-

QAM modulation schemes. The level 2 shall encompass 64-QAM and 256-QAM

transmission, and will for both modulation schemes be capable of supporting variable

interleaving [ITU J.83]. The interleaving depths is enlarged and reduced by a certain

factor. For instance, the reduced modes are (64,2), (32, 4), …, (8, 16). The

synchronization bytes of the FEC frame contains the interleaving configuration

parameters, which are available for the deinterleaver at the receiver side.

Table 2.1 describes the interleaver parameters for level 1 operation, with associated

latency and burst protection [ITU J.83]. Table 2.2 describes the decoding of the 4-bit in-

27

band control word into the I and J interleaving parameters for level 2 operation, also with

associated burst protection and latency [ITU J.83].

Table 2.1 Level 1 interleaving [ITU J.83]

Control
word

(4 bits)

I (# of taps)

J (increment) Burst

protection

Latency

Xxxx 128 1 95 µs 4.0 ms

Table 2.2 Level 2 interleaving [ITU J.83]

Control
word

(4 bits)

I (# of
taps)

J (increment)

Burst
protection

64-QAM/256-QAM

Latency
64-QAM/256-QAM

0001 128 1 95 µs /66 µs 4.0 ms/2.8 ms

0011 64 2 47 µs /33 µs 2.0 ms/1.4 ms

0101 32 4 24 µs /16 µs 0.98 ms/0.68 ms

0111 16 8 12 µs /8.2 µs 0.48 ms/0.33 ms

1001 8 16 5.9 µs /4.1 µs 0.22 ms/0.15 ms

1011 Reserved

1101 Reserved

1111 Reserved

0000 128 1 95 µs /66 µs 4.0 ms/2.8 ms

0010 128 2 190 µs /132 µs 8.0 ms/5.6 ms

0100 128 3 285 µs /198 µs 12 ms/8.4 ms

0110 128 4 379 µs /264 µs 16 ms/11 ms

1000 128 5 474 µs /330 µs 20 ms/14 ms

1010 128 6 569 µs /396 µs 24 ms/17 ms

1100 128 7 664 µs /462 µs 28 ms/19 ms

1110 128 8 759 µs /528 µs 32 ms/22 ms

28

2.4.3 Randomization

As shown in Fig.2.5, the randomizer is the third function block in the FEC block diagram.

The randomizer provides for even distribution of the symbols in the constellation, which

enables the demodulator to maintain proper lock [ITU J.83]. 7-bit Pseudorandom Noise

(PN) sequence is added to the data symbols to generate a random transmitted sequence.

For both 64- and 256-QAM, the randomizer is reset to all ones during the FEC frame

trailer, so the randomization is not applied to the trailer. The randomizer can be

represented as a polynomial over the GF(128). It can be realized as a feed back network

with the finite field addition and delay terms. The randomizer is first initialized to be in

“111_1111” state. All the operations are performed over the GF(128).

33)(α++= xxxf (2.9)

where α is an root of the primitive polynomial and 1)(37 ++= xxxp 0)(=αp .

Fig. 2.5 Block diagram of 7-bit symbol randomizer

29

2.4.4 Trellis coded modulator

Trellis coded modulation (TCM) scheme has the high spectral efficiencies. This

efficiency is achieved by expanding the size of the signal constellation, instead of

expanding the bandwidth, which results in a high code performance.

2.4.4.1 64-QAM modulation mode

As shown in Fig.2.6, 64 QAM Trellis coded modulator is composed of four types of

function blocks: Parser, differential pre-coder, binary puncture convolutional coder and

QAM mapper. 28 bits data stream from the randomizer form an input group and the

modulator generates 30 bits QAM symbols. So the overall code rate for this modulator is

14/15.

28 bits data groups consist of four 7-bit symbols referred to as ‘A’ and ‘B’ as shown in

Fig. 2.7. The first two RS symbols are labeled as ‘A’ and the remaining two RS symbols

are labeled as ‘B’. The LSB of ‘A’ and ‘B’ are first differentially pre-coded and then fed

into the binary puncture convolutional coder. The convolutional coder generates two

groups of five code bits, which are labeled as U5 U4 U3 U2 U1 and V5 V4 V3 V2 V1

from four input bits. These two five bits data streams are sent to the QAM mapper. The

MSB of ‘A’ and ‘B’ are uncoded and sent to the QAM mapper directly. The whole bit

stream is aligned with the 7-bit RS symbol and is serialized MSB first.

30

U5, U4, U3, U 2, U 1 A 9 , A 6 , A3, A 0

B 9 , B 6 , B3, B 0

A 13 , A 11 , A8, A 5, A2

A 13 , A 10 , A7, A 4, A1

B 13 , B 11 , B8, B 5, B2

B 13 , B 10 , B7, B 4, B1

V5, V4, V3, V 2, V1

C 3

C 0

C 5
C 4
C 2
C 1

W

Z

X

Y

T0903510-96/d20

Uncoded
Time

(1/2)
Binary

convolutional
coder with

(4/5 puncture)

(1/2)
Binary

convolutional
coder with

(4/5 puncture)
Differential
pre-coder

Buffer

Parser

QAM
mapper

MSBs
of "A"

MSBs
of "B"

LSB
of "A"

LSB
of "B"

Every 4-bit sequential input
yields a 5-bit sequential output

The overall rate is 14/15

Data stream from
randomizer

28 bits
64-QAM
output

Coded

Fig. 2.6 64-QAM trellis coded modulator block diagram [ITU J.83]

31

T0903520-96/d21

T0 T1 T2 T3 T4

B2 B5 B8 B11 B13

B1 B4 B7 B10 B12

A2 A5 A8 A11 A13

A1 A4 A7 A10 A12

B0 B3 B6 B9

A3 A6 A9

A 10 A 8 A 7 A 5 A 4 A 2 A 1 A 9 A6 A3 A0 A13 A12 A11 B10 B8 B7 B5 B4 B2 B1 B9 B 6 B 3 B 0 B 13 B 12 B11

A0

Time

28 bits

RS symbol to Trellis Group bit ordering

Order of RS symbols

MSB LSB

Bits input
to BCC

QAM
symbols

LSB MSB LSB MSB LSB MSB

RS 0 RS1 RS2 RS 3

Fig. 2.7 64-QAM trellis group [ITU J.83]

2.4.4.2 256-QAM modulation mode

256-QAM trellis coded modulator is shown in Fig.2.8. As the 64-QAM modulator, 256-

QAM modulator consists of four function blocks: data formatter, differential pre-coder,

binary puncture convolutional coder and QAM mapper. There is slight difference

between the 256-QAM and 64-QAM modulator. 38 bits data stream from the randomizer

forms an input group. The modulator generates 40 bits 5-QAM symbols, so the overall

code rate for this modulator is 19/20.

32

As shown in Fig. 2.9, the input 38 bits data have two different formats, which can be

defined as non-sync group and sync group. In a non-sync group, only data bits form the

input 38 bits data group. For a sync group, 30 bits data and 8 bits sync byte, which appear

at the end of the FEC frame, contribute to the 38 bits data group. The MSB of the ‘A’ and

‘B’ are uncoded and fed into the QAM mapper directly. The so-called LSB of ‘A’ and

‘B’ are first differentially pre-coded and then sent to the binary puncture convolutional

coder. The convolutional coder generates two groups of five code bits, which are labeled

as U5 U4 U3 U2 U1 and V5 V4 V3 V2 V1 from four input bits. These two five bits data

streams are sent to the QAM mapper. The difference between 64-QAM modulator and

256-QAM modulator lies in the first functional block. Data formatter, instead of data

parser is used in 256-QAM modulator, to deal with non-sync group and sync group data

formats. For the non-sync group the first bit of the RS symbol bit stream forms the LSB

of ‘A’ and the second bit of the RS symbol bit stream is referred to as the LSB of ‘B’. For

sync group, the 0th, 2nd, 4th and 6th bit of sync byte forms the ‘LSB’ of A and 1st, 3rd, 5th,

7th bits are referred as the ‘LSB’ of ‘B’. The bit stream is aligned with the 7-bit RS

symbol and is serialized with the MSB first.

33

U5, U4, U3, U2, U1

B 12 , B8, B4, B0

A16, A13, A9, A5, A1
B18, B15 , B11, B7, B3

B17, B14, B10, B6, B2
B16, B13, B9, B5, B1

V5, V4, V3, V2, V1

C 4

C 0

C 5
C 3
C 2
C 1

W

Z

X

Y

T0903530-96/d22

A18, A15, A11, A7, A3
A17, A14, A10, A6, A2

C 7
C 6

(S 6 , S 4, S2, S0)

(S 7 , S 5, S3, S1)

A 12 , A8, A4, A0

Data stream
from randomizer

38 bits
Data
formatter

Coded

(1/2)
Binary

convolutional
coder with

(4/5 puncture)

(1/2)
Binary

convolutional
coder with

(4/5 puncture)
Differential
pre-coder

Uncoded Time

QAM
mapper

256-QAM
output

MSBs
of 'A'

MSBs
of 'B'

LSB
of 'A'

LSB
of 'B'

The overall rate is 19/20

Every 4-bit sequential input
yields a 5-bit sequential output

Fig. 2.8 256-QAM trellis coded modulator block diagram [ITU J.83]

34

T0903540-96/d23

B 3 B7 B11 B15 B18

B 2 B6 B10 B14 B17

B 1 B5 B9 B13 B16

T 0 T1 T2 T3 T4

A 3 A7 A11 A15 A18

A 2 A6 A10 A14 A17

A 1 A5 A9 A13 A16

B 0 B4 B8 B12

A 0 A4 A8 A12

B3 B7 B11 B15 B 18

B2 B6 B10 B14 B 17

B1 B5 B9 B13 B 16

T0 T1 T2 T3 T 4

A3 A7 A11 A15 A 18

A2 A6 A10 A14 A 17

A1 A5 A9 A13 A 16

S1 S3 S5 S7

S0 S2 S4 S6

A 0 B 0 A 1 B 1 A 2 A 3 B 2 B 3 A 4 B4 A5 A6 A7 B5 B6 B7 A8 B8 A9 A10 A11 B9 B10 B11 A12 B12 A13 A14 A15 B13 B14 B15 A 16 A 17 A 18 B 16 B 17 B 18

A 1 B 1 A 2 A 3 B 2 B 3 A5 A6 A7 B5 B6 B7 A9 A10 A11 B9 B10 B11 A13 A14 A15 B13 B14 B15 A 16 A 17 A 18 B 16 B 17 B 18 S 0 S 1 S 2 S3
S4 S5 S6 S7

Sync trellis groupNon-sync trellis group

38 bits

Non-sync trellis group bit order

Sync trellis group bit order

Time

A 0 is assigned to the
MSB of the first RS
symbol in the FEC frame

Sync
bits

QAM
symbols

QAM
symbols

Fig. 2.9 256-QAM sync and non-sync trellis group [ITU J.83]

2.4.4.3 Rotationally invariant pre-coding

As shown in Fig.2.10, differential pre-encoder is employed to take advantage of the

“rotationally invariant” property of the nonlinear, trellis encoder. For a code with 90°

invariant property, the correct sequence can be recovered after decoding even if the

decoder locks on the wrong phase (multiple of 90°). It is a desirable feature for a robust

modem. Non-rotationally invariant coding requires resynchronization of the FEC when

35

the carrier phase tracking changes quadrant alignment, leading to a burst of errors at the

FEC output [ITU J.83].

Both 64-QAM and 256-QAM modulation schemes use the rotationally invariant

encoding. In Fig. 2.6, the inputs to the differential encoder are the 3rd and the 6th of 6-bit

symbols, and C3 and C0 are the outputs of the differential encoder bits in 64-QAM; in Fig.

2.8 the inputs to the differential encoder are the 4th and the 8th of 6-bit symbols, and C4

and C0 is the output of the differential encoder bits in 256 QAM.

Fig. 2.10 Block diagram of the differential pre-encoder [ITU J.83]

2.4.4.4 Binary Convolutional Coder

Fig. 2.11 shows the binary non-systematic convolutional coder with constraint length

equal to 4. There are two output branches, so the code rate is ½. The generators that

characterize the encoding functions are G1 = 010 101 and G2 = 011 111 (25,37octal). Four

36

data bits form a trellis group and are fed into this encoder at the bit rate. When the first bit

is shifted into the encoder, encoded data bits are output from both upper and lower

branches. Before the last data bit shifts out of the shift registers, the encoder generates

eight bits data on both output branches. The output switch samples the data bits at the

output branches according to the puncture matrix. The puncture matrix defines when the

data sampled will be transmitted. The puncture matrix for this convolutional coder is

 ("0" denotes NO transmission, "1" denotes transmission). It means

the output switch is reset to the upper branch when the first bit is shifted into the encoder

and move to the lower branch when all the four bits are shifted into the encoder. The

puncture matrix essentially converts the rate 1/2 encoder to the rate 4/5, since only 5 of

the 8 encoded bits are retained after puncturing [ITU J.83].

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
1111
1000

2

1

P
P

37

T0903560-96/d25

10101

1 1 1 1 1

0 0 0 1

1 1 1 1

Z – 1 Z–1 Z–1 Z–1

G2 = 37 (octal)

G1 = 25 (octal)

Commutator

Puncture matrix

For every 4-bit sequential input
yields a 5-bit sequential output

(1/2) Binary Convolutional Coder

16 state

Binary Convolutional Coder Structure :
1) 16 state.
2) Rate 1/2 binary convolutional coder.
3) Generating code: G1 = [010101], G2 = [011111] (25,37octal)
 or Generating Matrix of [1(+)D 2 (+)D 4 , 1(+)D(+)D2(+)D3(+)D4]
 where D is equal to Z – 1 .
4) Punctured matrix [P1;P2] = [0001;1111].

from
pre-coder

NOTE 1 – 0 denotes NO transmission.
 1 denotes transmission.
NOTE 2 – (+) denotes XOR operation.

To
QAM
mapper

Fig. 2.11 Punctured Binary Convolutional Coder [ITU J.83]

2.4.4.5 QAM constellation mapping

For 64-QAM, 6-bit data from the MSB of ‘A’ and ‘B’ and outputs of convolutional

encoder are converted to the 6-bit constellation symbol according to Fig. 2.12 in the

QAM mapper.

38

For 256-QAM, 8-bit data from the MSB of ‘A’ and ‘B’ and outputs of convolutional

encoder are converted to the 6-bit constellation symbol according to Fig. 2.13 in the

QAM mapper.

39

T0903570-96/d26

011,011010,111 111,011 110,111

Q

I

011,000010,100 111,000 110,100

001,011000,111 101,011 100,111

001,000000,100 101,000 100,100

111,111110,101101,111100,101

111,010110,000101,010100,000

011,111010,101001,111000,101

011,010010,000001,010000,000

001,001000,011 011,001 010,011

001,100000,110 011,100 010,110

101,001100,011 111,001 110,011

101,100100,110 111,100 110,110

101,101100,001001,101000,001

101,110100,010001,110000,010

111,101110,001011,101010,001

111,110110,010011,110010,010

C 5 C 4 C 3 , C 2 C1 C0

Fig. 2.12 64-QAM constellation [ITU J.83]

40

T0903580-96/d27

1110,
1011 1111,

1101
1110,
1111 1111,

1001 1110,
0111

1111,
0101

1110,
0011

1111,
0001

0000,
1111

0011,
1111

0100,
1111

0111,
1111

1000,
1111

1011,
1111 1100,

1111
1111,
1111

1100,
1110

1101,
1100 1100,

1010 1101,
1000 1100,

0110 1101,
0100

1100,
0010

1101,
0000

0000,
1100

0011,
1100

0100,
1100

0111,
1100

1000,
1100

1011,
1100

1100,
1100

1111,
1100

1010,
1111 1011,

1101
1010,
1011 1011,

1001
1010,
0111 1011,

0101
1010,
0011

1011,
0001

0000,
1011

0011,
1011

0100,
1011

0111,
1011

1000,
1011 1011,

1011
1100,
1011

1111,
1011

1000,
1110 1001,

1100 1000,
1010

1001,
1000 1000,

0110
1001,
0100

1000,
0010

1001,
0000

0000,
1000

0011,
1000

0100,
1000

0111,
1000

1000,
1000 1011,

1000 1100,
1000

1111,
1000

0110,
1111 0111,

1101 0110,
1011 0111,

1001 0110,
0111

0111,
0101

0110,
0011

0111,
0001

0000,
0111

0011,
0111

0100,
0111

0111,
0111

1000,
0111

1011,
0111 1100,

0111
1111,
0111

0100,
1110 0101,

1100 0100,
1010 0101,

1000
0100,
0110 0101,

0100
0100,
0010

0101,
0000

0000,
0100

0011,
0100

0100,
0100

0111,
0100

1000,
0100

1011,
0100 1100,

0100
1111,
0100

0010,
1111

0011,
1101

0010,
1011 0011,

1001 0010,
0111 0011,

0101
0010,
0011

0011,
0001

0000,
0011

0011,
0011

0100,
0011

0111,
0011

1000,
0011 1011,

0011 1100,
0011

1111,
0011

0000,
1110

0001,
1100 0000,

1010 0001,
1000 0000,

0110 0001,
0100

0000,
0010

0001,
0000

0000,
0000

0011,
0000

0100,
0000

0111,
0000

1000,
0000

1011,
0000 1100,

0000
1111,
0000

1110,
0001
1110,
0010
1110,
0101
1110,
0110
1110,
1001
1110,
1010
1110,
1101
1110,
1110

1101,
0001 1010,

0001 1001,
0001

0110,
0001 0101,

0001
0010,
0001

0001,
0001

0000,
0001

0001,
0011

0000,
0101

0001,
0111

0000,
1001

0001,
1011 0000,

1101
0001,
1111

1101,
0010 1010,

0010 1001,
0010

0110,
0010 0101,

0010
0010,
0010

0001,
0010

0010,
0000

0011,
0010

0010,
0100

0011,
0110

0010,
1000 0011,

1010 0010,
1100

0011,
1110

1101,
0101 1010,

0101 1001,
0101

0110,
0101 0101,

0101
0010,
0101

0001,
0101

1101,
0110 1010,

0110 1001,
0110 0110,

0110 0101,
0110

0010,
0110

0001,
0110

1101,
1001

1010,
1001

1001,
1001

0110,
1001 0101,

1001
0010,
1001

0001,
1001

1101,
1010

1010,
1010

1001,
1010

0110,
1010 0101,

1010
0010,
1010

0001,
1010

1101,
1101 1010,

1101 1001,
1101

0110,
1101 0101,

1101
0010,
1101

0001,
1101

1101,
1110

1010,
1110 1001,

1110 0110,
1110 0101,

1110
0010,
1110

0001,
1110

0100,
0001

0101,
0011

0100,
0101

0101,
0111

0100,
1001

0101,
1011

0100,
1101

0101,
1111

0110,
0000

0111,
0010

0110,
0100

0111,
0110

0110,
1000 0111,

1010 0110,
1100

0111,
1110

1000,
0001

1001,
0011

1000,
0101

1001,
0111

1000,
1001

1001,
1011 1000,

1101
1001,
1111

1010,
0000

1011,
0010

1010,
0100

1011,
0110

1010,
1000

1011,
1010 1010,

1100
1011,
1110

1100,
0001

1101,
0011

1100,
0101

1101,
0111

1100,
1001 1101,

1011
1100,
1101

1101,
1111

1110,
0000

1111,
0010

1110,
0100

1111,
0110

1110,
1000 1111,

1010
1110,
1100

1111,
1110

I

Q

C7C6C5C4

C3C2C1C0

 Fig. 2.13 256-QAM constellation [ITU J.83]

41

2.5 Modulation and demodulation

2.5.1 QAM characteristics

The cable transmission format is summarized in Table 2.3 for 64-QAM and 256-QAM

and Table 2.4 contains a summary of the pertinent characteristics of the variable

interleaving modes [ITU J.83].

Table 2.3 Cable transmission format [ITU J.83]

Parameter 64-QAM format 256-QAM format

Modulation 64-QAM, rotationally invariant
coding

256-QAM, rotationally invariant
coding

Symbol size 3 bits for "I" and 3 bits for "Q"
dimensions

4 bits for "I" and 4 bits for "Q"
dimensions

Transmission band 54 to 860 MHz 54 to 860 MHz

Channel spacing 6 MHz 6 MHz

Symbol rate 5.056941 Msps ± 5 ppm 5.360537 Msps ± 5 ppm

Information bit rate 26.97035 Mbps ± 5 ppm 38.81070 Mbps ± 5 ppm

Frequency response Square root raised cosine filter
(Roll-off ≈ 0.18)

Square root raised cosine filter
(Roll-off ≈ 0.12)

FEC framing 42-bit sync trailer following 60 RS
blocks

40-bit sync trailer following 88 RS
blocks

QAM constellation
mapping

6 bits per symbol 8 bits per symbol

NOTE – These values are specific to 6 MHz channel spacing. Additional sets of values for differing
channel spacing are under study.

42

Table 2.4 Variable interleaving modes [ITU J.83]

 Level 1 Level 2

QAM format 64-QAM (see Table 2.3) 64- or 256-QAM
(see Table 2.3)

Interleaving Fixed interleaving
I = 128 J = 1

Variable interleaving I =
128,64,32,16,8

J = 1,2,3,4,5,6,7,8,16

43

Chapter 3 Low Power Design

3.1 Introduction

In this chapter, sources of the power consumption for FPGA are examined based on the

existing research work [Shang02, Kusse98] and the existing low power design techniques

[Chandrakasan95], and their applicability to the low power FPGA design is investigated.

Finally, the low power design strategy for the digital modulator is derived.

3.2 Sources of power consumption

First, the power dissipation of the Xilinx Virtex II is discussed by reviewing Shang’s

recent work [Shang02]. Good understanding of the sources of the power consumption in

FPGA is fundamental for the low power FPGA design and it will guide us in the right

direction to develop the effective methods for low-power FPGA design.

Before presenting Shang’s research results, we first briefly introduce the architecture of

Xilinx Virtex chip. The detailed information can be found in Virtex datasheet [Xilinx00].

Virtex FPGA consists of two major types of resources: configurable logic blocks (CLB),

and routing resources. CLBs are the computational elements or logic parts of the FPGA,

and they are connected by the routing resources. The routing resources include three

44

types of wires (long lines, hex lines and double lines) and the switches. The long lines

can distribute the signals across the device in two directions: vertical and horizontal; the

hex lines route signals to every third or sixth CLB blocks in all four directions; the double

lines route signals to every first or second CLB block in all four directions [Xilinx00].

The switches connect the CLB’s inputs and outputs to these lines and are referred to as

the input crossbar and the output crossbar [Shang02]. Also, there are some dedicated

global routing resources for the global clock distribution, local routing resources for the

carry propagation and the local clock, and direct connect lines.

In the digital CMOS circuits, two types of power consumption, static and dynamic power

consumption, exist. Since the design of low power FPGA devices is beyond the research

scope of this thesis, only the dynamic power consumption is considered. The dynamic

power consumption in the digital CMOS circuits results from charging and discharging

the capacitances and can be modeled as [Rabaey02]:

clkswingddLdynamic fVVCP 10 >−= α (3.1)

Where is the capacitance, is the voltage swing, is the clock frequency and LC swingV clkf

10 >−α is the switching factor. [Shang02] broke down the sources of the dynamic power

dissipation and calculated the corresponding capacitance for each resource. Due to his

privileged access to the FPGA schematic, he obtained the results on the transistor level

by simulation and confirmed these results by measurements. His results of the effective

capacitance of each resource are shown in the Table 3.1.

45

Table 3.1 Capacitance of the resources of Virtex II (2v1000FG256-5) [Shang02]

Type Resource of Virtex II Capacitance (PF)
IXbar 9.44
OXbar 5.12
Double 13.20

Hex 18.40

Interconnect
Per CLB

Long(*) 26.10
LUT inputs 26.40
FF inputs 2.88 Logic

Per CLB Carray 2.68
Global wiring(*) 300 Clocking Local 0.72

* the value may change with the types of the device

Two conclusions can be drawn from the above table. First, the capacitance of the

interconnection is comparable to that of the computational element in a CLB. Second, the

capacitance of the interconnect line is not proportional to its length. The capacitance of a

double line, which extends between two CLB blocks, is almost half of the capacitance of

the long line, which goes across the whole chip, in device 2v1000FG256-5; and the

capacitance of a double line is close to that of the hex line, which spans six CLB blocks.

For the small devices, the long line capacitance becomes smaller, and then there is not

much difference between the capacitance of the lines.

It is also reported in [Shang02] that 60% of power is dissipated in the interconnection by

experiments with a set of typical designs. Clocking and logic resources consume 14% and

16% of the total power separately. Another important factor that impacts the dynamic

46

power consumption is the switch factor [Shang02]. Actually, the dynamic or switching

power consumption of all these resources varies significantly with the switching activities.

As in the VLSI, the clock distribution network is also a primary component of power

dissipation.

3.3 Low power design techniques

Existing low power design techniques at two levels used in VLSI are explored and their

effectiveness in low power FPGA design is examined in this section based on distribution

of dynamic power dissipation in FPGA. The logic level design optimization of FPGA is

performed during the synthesis, mapping and placing processes, which is done by

Computer Aided Design (CAD) tools, and circuits level design involves the design of the

FPGA device itself, so only the algorithmic and architectural levels optimization for low

power are discussed in this section.

3.3.1 Algorithm level optimization

The most effective method for low power is performing optimization at the algorithm

level. At the algorithm level, the optimization may involve performing algorithm

modification, selecting new arithmetic operation or applying transformation described in

[Chandrakasan95]. For instance, converting the complex arithmetic operations such as

47

multiplication and division to simple actions like addition and shifting can reduce the

area many times as compared to typical implementation [Starzyk04].

This reduction in area results in the decrease of the effective capacitance, and thus the

low power goal is achieved. Another way of reducing power through algorithmic

modification is exploiting the advantages of constant values in arithmetic operations

[Chandrakasan95]. This low power design technique is used in the design of Reed

Solomon (RS) encoder. The finite field multiplication is the bottleneck of the high

performance RS encoder. The fixed coefficient not only makes the pipelining of the

design possible, but also minimizes the total number of the partial products in the new

proposed structure.

Exploiting algorithm parallelism is an effective way in low power design for VLSI

[Chandrakasan95]. Parallelizing the design to low power works in VLSI due to the power

supply’s quadratic impact on the power consumption. However, since the FPGA device is

given before the design and the power supply is fixed, then the power supply reduction to

low the power consumption is not applicable to FPGA design [Kusse98]. Yet, by

properly exploring the concurrency in the data path on the algorithm level, the amount of

the logic CLBs resources and interconnections may be reduced. This results from the

logic combination by the LUT since each LUT can accommodate any four-input function.

The optimum number of replications can be found by exploring the area power product in

the design space. The example of this exploration is presented, in the design of message

48

checksum block of the digital modulator, where concurrency of the algorithm can be

revealed by unfolding technique. Parallelizing the design speeds up the design, and the

reduction of the area due to logic combination and less interconnection load may lower

the power dissipation.

In addition, the algorithm can be reformulated to simplify the control structure and to

reduce the amount of the interconnection, which is the dominating factor of the power

dissipation in FPGA. This style is suitable for the low power FPGA design. The design

example of such algorithm reformulation is presented in the interleaver design.

3.3.2 Architectural level optimization

Techniques of optimizing architecture for low power are examined in this section. In

VLSI, parallel architectures can be employed to speed up the design. This creates an

opportunity to slow down processing in each parallel block by reducing the supply

voltage and thus saving the power. This effective approach results from the power’s

quadratic dependence on the supply voltage. As discussed in the algorithm level

optimization section, the design space can be explored to obtain the optimum number of

replications. Combining logic blocks by introducing parallelism on the architectural level

reduces total effective capacitance improving the overall performance. At some optimum

49

number of replication, the total effective capacitance decreases when the logic reduction

due to logic combination by LUT dominates.

Pipelining the architecture used successfully in low power VLSI is also suitable for the

low power design in FPGA. The increase in effective capacitance introduced by pipeline

registers is merely 11% percent. This is because each output of the CLB has an optional

registered output and the effective capacitance of this flip-flop is approximately 11%

percent of the total logic capacitance, according to the effective capacitance in Shang’s

table (Table 3.1). The data transfer frequency however can be reduced by a much higher

factor and this results in a significant power savings. In addition, the pipelining has the

lower area cost advantage over parallelizing. Therefore, the pipelined design is an

effective low power design technique for FPGA

Another category for low power design in VLSI at the architectural level is minimizing

the switching activities by choosing a proper binary number representation, for instance,

switching 2’s complement to sign-magnitude representation when the probability of data

changing around zero is high [Chandrakasan95]. In addition, resynchronizations can be

used to balance the signal paths to minimize the glitching activity [Chandrakasan95]. Due

to the similar reasons, all these are suitable to low power FPGA design.

50

3.4 Low power design strategy for the digital modulator

Considering the application characteristics specifies the low power design strategy.

Maintaining a given level of throughput is a common design concept in signal processing

and other dedicated applications, in which there is no advantage in performing computing

faster than some given rate, since the hardware will simply have to wait until further

processing is required [Chandrakasan95]. However, scaling down the power supply

voltage used in VLSI to slow down data transfer rate is not applicable to the low power

FPGA design. Thus, the low power design strategy for the digital modulator targeted on

FPGA is accomplished by slowing down the clock frequency, as well as minimizing the

effective switching capacitances by design optimization at the algorithm and architectural

levels.

51

Chapter 4 Low Power Design of Digital Modulator

4.1 Introduction

In this chapter, the low power design techniques are applied to the design of the several

key modules including Reed Solomon Encoder, interleaver, TCM modulator and MPEG

framer.

4.2 Reed Solomon encoder

The implementation of extended Reed Solomon (RS) encoder is discussed in this section.

A systematic (128,122) encoder over GF(2^7) is used in the modulator. Its generator

polynomial is g(x)=x^5+g4*x^4+g3*x^3+ g2*x^2+g1*x^1+g0, where g4=alpha^52,

g3=alpha^116, g2=alpha^119, g1=alpha^61 and g0=alpha^15, where alpha is the root of

the primitive polynomial p(x), i.e. p(alpha)=0. The primitive polynomial

p(x)=x^7+x^3+1 generates all elements of GF(2^7).

The straightforward method to implement this Reed Solomon encoder uses a feed back

network with finite field arithmetic operations. The block diagram of the encoder is

shown in Fig. 4.1. Two types of operations are involved - one is addition, which is simply

XOR operation using the standard basis to represent the finite field elements; another one

52

is multiplication, implemented by the finite field multiplier. The multiplier is the key

element and has a great impact on the performance of the RS encoder. The first parity

symbols in a systematic Reed-Solomon codeword are given by the remainder of

.The extended parity symbol is generated by evaluating the code

word at the sixth power of

)(mod)(5 xgxxm ⋅ 128c

α [ITU J.83]. So when mux_sel1=1, the first five parity

symbols are generated; when mux_sel1=0, they are shifted out and at the same time the

extended parity symbols are calculated. Finally, the extended parity symbols are

transmitted when mulx_sel2=0.

53

Fig. 4.1 Block diagram for the extended RS Solomon encoder

A number of architectures of this finite field multiplier were available [Berlekamp82]

[Massey86, Jain98, Mastrovito91 and Sunar99]. Berlekamp and Massey-ommru bit serial

multiplier, Mastrotio bit parallel and semi-systolic array multipliers are the four major

54

types of architectures. Bit serial structure is too slow for this design, though it has the

area advantage over parallel structure. Bit parallel structure has higher performance, and

thus lowers the speed requirement to lower the power. Two recently proposed parallel

structures are investigated, and a new structure based on the fixed coefficient is proposed

as follows.

First, Jain’s parallel array-type multiplier is considered. Any nonzero elements in the

finite field can be represented in two forms, the exponential form and the polynomial

form. Using the polynomial representation based on the standard basis, the finite filed

multiplication involves two types of operations, one is a polynomial multiplication and

another is a modulo operation. In this structure, the multiplication and the modulo

operation are executed alternatively. The algorithm and its implementation in the VLSI

are discussed in Sunar’s paper [Sunar99]. The notation in this part is adopted from Jain’s

paper [Jain98].

Let , where)(mod xpABC =)^2(,, mGFCBA ∈ and is a primitive polynomial

over . The polynomial representation is used, so

)(xp

)^2(mGF

0
1

1
2

2
1

1 ... aaaaA m
m

m
m ++++= −

−
−

− ααα (4.1)

 (4.2)

 (4.3) 0
1

1
2

2
1

1 ... ccccC m
m

m
m ++++= −

−
−

− ααα

0
1

1
2

2
1

1 ... bbbbB m
m

m
m ++++= −

−
−

− ααα

0
1

1
2

2
1

1 ...)(ppppxp m
m

m
m

m +++++= −
−

−
− αααα (4.4)

Then, AbxpAbxpAbxpAbC m
m 01

2
2

1
1)](mod[)](mod[...)](mod[++++= −

− ααα

55

We define , then

. Also define with , then the final

results of the multiplication is . The algorithm developed by Jain can be described as

the follows:

)(
0

1)(
1

2)(
2

1)(
1

)(...)(mod kkmk
m

mk
m

kk aaaaxpAA ++++== −
−

−
− αααα

)(mod)1()(xpaAA kk −=)1(
1

)1()(−
−

− += k
k

kk CbAC 0)0(=C

)(mC

1) At the first m-1 steps (step 0 to step m-2), and are computed, where k changes

from 1 to m-1

)(kA)(kC

⎩
⎨
⎧

=
−≤≤+

=
−
−

−
−

−
−

0,
11,

1
1

1
1

)1(
1)(

ipa
mipaa

a
i

k
m

i
k
m

k
ik

i (4.5)

)1(
1

)1()(−
−

− += k
ik

k
i

k
i cbac (4.6)

2) At step m-1, the final result of the multiplication is obtained with)(mC

)1(
1

)1()(−
−

− += m
im

m
i

m
i cbac (4.7)

As is shown in Fig 4.2, the block diagram of the multiplier over GF(2^7) is derived from

the above algorithm for this RS encoder design. The square block implements equations

(4.5) and (4.6), the inputs p6 to p0, b6 to b0, and a6 to a0 are the coefficients of p(x), B

and A respectively. The final results c6_out to c0_out were obtained at the output of the

final stage blocks (step6) as shown in Fig. 4.2.

56

Fig. 4.2 Block diagram of the array multiplier over GF (2^7)

Although the pipelining of this array multiplier can improve the performance by a factor

of m, for GF (2^m), the feed back network in RS encoder make pipelining very difficult.

In addition, pipelining of this structure requires fixed multiplicand B. I implemented this

architecture to compare with the approach developed in this thesis. As demonstrated in

next section, this new proposed approach yields smaller area and lower power dissipation.

The proposed structure is very similar to the one described by Mastrovito [Mastrovito91].

However, the proposed multiplier has a significant advantage over Mastrovito’s design,

57

namely it is not limited to trinomial. Both the Mastrovito’s and the new proposed

multiplier are fully parallel structures. In both of them, two fundamental operations,

multiplication and modulo operation, are performed separately. The Mastrovito’s

multiplier can be used only in case when the primitive polynomial is x^m+x^1+1. Sunar

extended the Mastrovito’s multiplier to the all trinomials and we refer to it as the

modified Mastrovito’s multiplier. Fortunately, the modified Mastrovito’s multiplier can

be used for the primitive polynomial in our design, since p(x) = x^7+x^3+1 is a trinomial.

In what follows, I describe the theory and the basic operation of Sunar’s multiplier, which

is commonly used in error correction processing. For the multiplier over GF(2^m), this

method constructs the multiplication matrix by pre-calculating higher order elements

 modulo p(x) using several equations. The notation in this part is

adopted from [Sunar99].

221,...,, −+ mmm xxx

Let , where)(mod xpABC =)^2(,, mGFCBA ∈ and is a primitive polynomial

over . The polynomial representation is used, so

)(xp

)^2(mGF

0
1

1
2

2
1

1 ... aaaaA m
m

m
m ++++= −

−
−

− ααα (4.7)

 (4.8)

 (4.9) 0
1

1
2

2
1

1 ... ccccC m
m

m
m ++++= −

−
−

− ααα

0
1

1
2

2
1

1 ... bbbbB m
m

m
m ++++= −

−
−

− ααα

0
1

1
2

2
1

1 ...)(ppppxp m
m

m
m

m +++++= −
−

−
− αααα (4.10)

The multiplication matrix Z will be constructed in terms of the coefficients of A and the

procedure for the construction is shown as follows.

58

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−−−−

−−−

−

−

1

2

2

1

0

04321

0432

0

012

01

0

1

2

2

1

0

0
0

0
000
0000

m

m

mmmm

mmm

m

m

b
b

b
b
b

zzzzz
zzzz

z
zzz

zz
z

c
c

c
c
c

M

L

L

MMMM

MO

L

L

M
 (4.11)

The matrix Z equals to X+Y,

And X= (4.12)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

−−−

04321

0432

0

012

01

0

0
0

0
000
0000

aaaaa
aaaa

a
aaa

aa
a

mmmm

mmm

L

L

MMMM

MO

L

L

Y= , where [] []∑∑
−

=

−

=

−→+−↑
1

0

1

0
)()(

k

i

k

i
nmiUnmiT []kT ↑ represents the matrix shift up by k

rows and shift left by k columns,[kT →] 12
+⎥⎦

⎥
⎢⎣
⎢

−
−

=
nm

mk , and the matrixes T and U are

T= (4.13)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−−

−−−

00000
0000

0
000

00
0

1

1

1

221

1321

L

L

MMMM

MO

L

L

m

m

m

mm

mmm

a
a

a
aaa
aaaa

59

U= (4.14)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−

nmm

m

mm

aa
a

aa
aaaa

LL

ML

LMMM

L

L
MLOOMM

1

4

23

1221

00
000

0
00000

000000

For the derivation of the above results, please refer to the paper [Sunar99].

The multiplication matrix of the modified Mastrivito’s multiplier over GF (2^7) for the

primitive polynomial x^7+x^3+1 is derived as follows.

In this encoder, m= 7 and n=3. Then k=2 and

 (4.15)
[] []

[] []∑∑

∑∑

==

−

=

−

=

−→+−↑=

−→+−↑=

1

0

1

0

1

0

1

0

)37()37(

)()(

ii

k

i

k

i

iUiT

nmiUnmiTY

where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0000000
6000000
5600000
4560000
3456000
2345600
1234560

a
aa
aaa
aaaa
aaaaa
aaaaaa

T (4.16)

60

[]=↑ 4T

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000000
0000000
0000000
0000000
0000000
6000000
5600000

a
aa

 (4.17)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4560000
3456000
2345600
1234560

0000000
0000000
0000000

aaa
aaaa
aaaaa
aaaaaaU (4.18)

[]4→U = (4.19)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0000000
0000000
6000000
5600000

0000000
0000000
0000000

a
aa

61

Y=T+ []4↑T +U+ = []4→U

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+++
+++++

+
++

4560000
36456000

2653645600
154265364560

3456000
62345600
516234560

aaa
aaaaa

aaaaaaaa
aaaaaaaaaaa

aaaa
aaaaaa
aaaaaaaa

Finally Z=X+Y

= (4.20)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++
++++

++++++
++++++++

+
++

4051623456
36405162345

2653640516234
154265364051623

3456012
62345601
516234560

aaaaaaaaaa
aaaaaaaaaaa

aaaaaaaaaaaaa
aaaaaaaaaaaaaaa

aaaaaaa
aaaaaaaa
aaaaaaaaa

For the constant coefficient in the RS encoder, we pre-calculate these matrixes and the

design example of g4=alpha^52 in the generator polynomial is

.i.e a6=a0=0, all others are 1. The multiplication matrix 123454 ααααα ++++=g

Z=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1 0 1 1 1 1 0
1 1 0 1 1 1 1
0 1 1 0 1 1 1
1 0 1 1 0 1 1
1 1 1 0 0 1 1
1 1 1 1 0 0 1
0 1 1 1 1 0 0

62

Then, the diagram of the multiplier over GF(2^7) can be derived from the matrix shown

in Fig. 4.3

Fig. 4.3 Block diagram of the multiplier (C=A*alpha^52) over GF(2^7)

The bottleneck for speeding up the GF multiplier is always the modulo operation. Here, I

propose a new version of this algorithm that reduces the number of the partial product

and addition operations to speed up the design. In this proposed structure, we use both the

polynomial and exponential representations instead of single polynomial or exponential

terms. The key idea to simplify modulo operation is pre-computing, which takes

advantage of the fixed coefficients. Let us consider)(mod xpABC = , where

 and is primitive polynomial over . The polynomial

representation is used for A and C, so

)^2(,, mGFCBA ∈)(xp)^2(mGF

0
1

1
2

2
1

1 ... aaaaA m
m

m
m ++++= −

−
−

− ααα (4.21)

63

0
1

1
2

2
1

1 ... ccccC m
m

m
m ++++= −

−
−

− ααα (4.22)

0
1

1
2

2
1

1 ...)(ppppxp m
m

m
m

m +++++= −
−

−
− αααα (4.23)

Since every none zero element in the GF(2^m) can be represented as , where

, and assuming that the fixed coefficient B is , then

.

kα

12...,2,1,0 −= mk kα

kkkm
m

km
m aaaaAB αααα 0

1
1

2
2

1
1 ... ++++= ++−

−
+−

−

We first calculate : 1...2,1,0),(mod −=+ mjwherexpjkα

Assume () jjmj
m

mj
m

jk rrrrxp 0
1

1
2

2
1

1 ...)(mod ++++= −
−

−
−

+ αααα ,

so , and the hardware structure can be derived from this

equation.

∑∑
−

=

−

=

==
1

0

1

0
)(mod

m

i

m

j

ij
ii raxpABC α

The design example of the multiplier with B equal to alpha^52 is shown as follows.

The coefficients of , where j=0,1,…6, is shown as the following matrix,)(mod52 xpj+α

R=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0 1 1 1 0 1 1
1 1 1 0 1 1 0
1 1 1 1 1 0 1
1 1 0 1 0 1 1
1 0 0 0 1 1 1
0 0 1 1 1 1 1
0 1 1 1 1 1 0

The hardware structure derived from the above result is similar to the modified

Mastrovito multiplier shown in Fig. 4.3. The tree structure [Chandrakasan95] can be used

to compute the individual column, if the number of elements is larger than four, which is

64

referred to as the granularity of the LUT for Xilinx Virtex FPGA. Since all the inputs

from A arrive at the same time, the tree structure effectively reduces the glitching

activities by balancing the signal paths and reducing the logic depth [Chandrakasan95].

Comparing to the Mastrovito’s multiplier, the computing complexity is of the same order:

m for GF(2^m). The proposed finite field multiplier takes advantage of the multiplication

by a constant coefficient, while Mastrovito’s multiplier is more general and both A and B

are not limited to fixed values. On the other hand, the proposed structure is not limited to

the trinomials, which is the limitation of the Mastrovito multiplier.

Table 4.1 shows the comparison between the proposed methods and Jain’s array

multiplier (From Fig. 4.2) in terms of power and area when they are employed in the RS

encoder. From this table, we can see that the logic power and the signal power are

reduced by about 243% and 350% respectively, which results from the great

simplification of modulo operations in the proposed method. Also the total area cost is

reduced by 233% by employing the new structure.

Table 4.1 Performance of RS encoders using different multipliers

Power in
(MW) Clock power Logic power Signal power Input power Total Power Area Area*Power

Proposed 0.462 0.331 0.375 0.199 1.367 62 84.754

Array 0.415 1.136 1.69 0.199 3.44 207 712.08

65

4.3 Trellis coded modulation

In this section, energy efficient design of trellis coded modulator is presented. The

modulator consists of four functional blocks: data formatter, differential pre-coder,

punctural binary convolutional encoder and QAM mapper. The signal graphs of the 64

QAM and 256 QAM have slight difference in the number of trellis groups and bit width,

so 64 QAM design example is discussed.

The direct map method can be used in implementing both the differential pre-coder and

QAM mapper. Although pipelining this feedback network pre-coder is possible as shown

in [Chandrakasan95], it will not impact the performance of the whole modulator and the

circuit complexity increases.

For the 4/5 puncture binary convolutional coder, the block diagram is shown in Fig. 4.4.

The 4 bit data stream is an input at Din from the output of the differential pre-coder

received at the bit rate, which is seven times larger than the symbol rate. 8-bit encoded

data are generated at Dout. The multiplexer selects the data from upper or lower branch

(g1 or g2) according to the puncture matrix. The first three bits are labeled as the invalid

data.

66

Fig. 4.4 Block diagram of the convolutional coder

The data formatter is the key module for this trellis coded modulator. The data formatter

forms the trellis group from the RS symbols as shown in Fig. 4.5

Fig. 4.5 RS symbols to Trellis Group bit ordering

67

We define four RS symbols as the single group for conversion to trellis group. Each of

four symbols is referred to as a processing period named as RS0 symbol period, RS1,

RS2 and RS3 symbol period. These four input RS symbols are reordered into six groups

or six output bit streams: C5, C4, C2, C1, W and Z. The rules for this reordering are

shown in Fig. 4.5. The rules for RS symbols to trellis group bit ordering:

• The odd bits of RS0 symbol and the even bits in RS1 symbol’s LSB form the C5

• The even bits of RS0 symbol and the odd bits in RS1 symbol’s LSB contribute to

the C2

• The remaining four bits of the RS1 symbol, symbol’s MSB, are fed into the W

input of differential pre-coder.

For the C2, C1, and Z repeat the same reordering on the RS2 and RS3 symbols.

The hardware structure resulting from the direct map is show in Fig. 4.6.

Fig. 4.6 Block diagram of the data formatter using direct map method

68

7-bit symbol data at DIN are fed into the register at the symbol frequency (CLK_symbol).

During a loop period, data formatter accepts four symbols to form the trellis group. The 7

to 1 multiplexer functions as a parallel to serial converter. The selection lines of the

multiplexer Mux_Sel change from 0 to 7 at the frequency of symbol rate/8 (clk_b).

During the first seven clock cycles, the symbol data is distributed to the corresponding

output shift register. The Random Access Memory (RAM) based shift register was

employed. It is very efficient for this data in terms of both area and interconnects since

only six LUTs and 12 interconnects are used. At the eighth clock period, new 7-bit RS

symbol is loaded. The load enable signals of the RAM based shift register are enabled

according to the rules of reordering as shown in Fig. 4.5. A lower 3 bits of 5-bit counter

are used to count the bit sequence and the remaining 2 bits indicate the sequence of the

RS symbols. Combining the counter and some additional combinational logic, the control

logic is enhanced to deal with the resynchronization of the output data bits to the mapper,

which is caused by the delay of further processing the w and z inputs through the

differential pre-coder and puncture binary convolutional encoder. This prevents

modulator from accepting the symbol data in a continuous way. In addition, the

handshake logic has to be introduced.

One brutal way to remove this imbalance in the signal graph is replicating the same data

path to speed up the pre-coding and convolutional encoding. Two identical data paths

including the two RAM based registers for w and z, convolutional encoding and pre-

coding are used, and each unit works at the symbol rate. The data path capacitance has

69

increased by a factor of 2, and the extra routing and overhead due to switching of the

inputs and outputs make parallelizing of the design inefficient in terms of area and power

consumption.

In this thesis a novel approach to design data formatter was developed. It is based on

rescheduling the sequences of the reordering process. By introducing the buffer, which is

implemented using bit serial RAM, we first deal with the RS1 and RS3 instead of RS0

and RS2. The bit stream is then fed into pre-encoder and convolutional encoder, and the

RS0 and RS2 is reordered simultaneously. The sum of extra delay of the two encoders is

one symbol period and then the synchronization problem automatically disappears. The

block diagram is shown in Fig. 4.7.

Fig. 4.7 Block diagram of the modified data formatter

There is also a slight increase in the total “effective” capacitances introduced by

rescheduling, which costs the four RAM based shift registers as buffers, two multipliers

70

and extra control logic, while the previous methods increase the resources by doubling

the logic and connections. From Table 4.2, the replication method consumes 74% more

power and cost 72% more logic resources than the proposed rescheduling method. Both

the interconnection and logic cost are reduced by reformulating the algorithm , which

results in low power consumption. Power area product of the original method is higher by

almost 200% than that in proposed approach.

Table 4.2 Comparison between two methods in area and power

 Power (mW) Area(Slice) Area*Power
Replicate data path 5.976 74 442.224

Rescheduling 3.43 43 147.49
Replicate / rescheduling 174.23% 172.09% 299.83%

4.4 Interleaver design

As shown in Fig. 4.8, the (I, J) convolutional interleaver consists of input and output

commutators and I branches or delay lines. The interleaver accepts the Reed Solomon

symbols at the input commutator, and the interleaved data streams are output at the

output commutator. Reed Solomon symbols appear on the input commutator arm at the

symbol rate, which is around 5.0Msymbol/sec for ITU J.83 standard [ITU J.83]. The

topmost branch, labeled with 1, has zero delay. The second branch has J symbol periods

delay, and the k-th branch is delayed by (k-1)*J symbol periods. The last branch has (I-

1)*J symbol periods delay. Both input and output commutators are reset to the top most

branch and move onto the next branch at the symbol frequency. After reaching the last

71

branch, they switch back to the first branch and repeat the above rotation. We define the

commmutator switching from branch 1 to I as a loop.

Fig. 4.8 ITU J.83 convolutional interleaver (I, J) functional block diagram

The direct map method is used to implement this convolutional interleaver. The key

elements for the straightforward implementation are the delay lines. RAM based shift

register is suitable to realize the delay elements. A single RAM based shift register can

implement the delay lines with the value ranging form 0 to 15 clock periods. Then the

delay line is constructed by cascading these RAM Based Shift Registers, named as RAM

Based Shift Register Chain. This implementation is very efficient in terms of area and

power consumption. The design example of (128,1) convolutional interleaver is shown in

Fig. 4.9.

72

Fig. 4.9 Block diagram of the interleaver using the RAM based shift register

7-bit symbol data is fed into the interleaver in a bit stream format through the Serial to

Parallel module. CLK_symbol is the symbol frequency and CLK_bit is the bit rate, which

equals symbol rate * 7. Ce(i), i=0…I-1, is the shift enable signal. For a branch i, two

delay lines were used. One is the delay line of data and its input is symbol data in a serial

format. It has (i-1)*J clock (CLK_bit) periods delay. Another delay line is for data

output enable and its input is valid data flag, valid_data_f, and it has (i-1)

clock(CLK_symbol) periods delay. When valid data appears at the input of the delay line

of data, the valid data flag is shifted into the data output enabling flag delay line

simultaneously. Since this delay line shifts at the frequency same as the symbol rate, then

the length of this delay line can be shrinked by factor of 7 bits per symbol. This reduces

the area cost and the signal switching activities. These two delay lines share the same

shift enable signal Ce(i), for branch i. The rotation of the commutator is implemented by

enabling the delay line at one symbol period. The outputs of the delay lines connect to the

73

)

inputs of the 128 to 1 multiplexer. There are two 128 to 1 multiplexers, one is for the data

output and another is the valid data flag or data output enable. The multiplexer selection

signals of the multiplexer, Mux_Sel, are synchronized with the position of the

commutators. Finally, valid data stream is converted to the 7 bit symbol data at the output

and out_enable signal indicates whether it is valid or not. However, this design is not so

efficient from the power consumption perspective. The interconnection consists of 128*2

shift enable signals, 128*1 data input signals, two types of clock signals, 128*2 output

signals from the delay lines to the multiplexer outputs, and also the interconnecting signal

between the shift register.

In what follows, the interleaver algorithm is reformulated for low power purpose. It is

based on a new concept of using dual port memory to realize the interleaving. The

interleaving can be considered as a sequences reordering process for the input symbols.

The design example of (I, J) convolutional interleaver is presented as the follows. The

following lemma helps to identify output groups and time instances at which valid data

was obtained. Let R(0), R(1), R(2),…,R(m) be the input Reed-Solomon symbols and 0, 1,

2, …,m represent the time indices. Divide the output into groups of symbols R(i), where

symbols form a group when they are output at the same loop (i.e. when the commutator

rotates from the first branch to the last branch.)

Lemma: The output sequence after the interleaving is a sequence of groups:

R(I*K), R(I*K-(I-1)), R(I*K-(I-1)*2),…, R(I*K-(I-1)*(I-1)), where

⎣ ⎦(1m/I +

⎣ ⎦m/I0,...,=K .

74

When I*K-(I-1)*j >=0, and I*K-(I-1)*j <= m, the output is a valid output; otherwise, the

output is not a valid output.

Proof:

Define a single loop as the commutator rotates from the first branch, branch 0, to the last

branch, branch I-1. At each loop, index of the RS symbols increases by one at the symbol

frequency. For the first loop, the R(0+j) RS symbol appears on the j-th branch. At the ith

loop, R(i*I+j) RS symbol presents at the j-th branch. During the first loop, only R(0+0) is

output since the first branch has no delay. Since all the other indexes in this output group,

I*0-(I-1)*p (p=1 to I-1), are negative, the lemma is proven for n=0. During the second

loop, the first branch outputs the data R(I*1), which appears on this branch at this loop;

the second branch output is R(I*1-(I-1))=R(0*I+1), which is fed into the second branch at

the first loop and it is shifted out after one symbol delay, and for all the other indexes in

this output group ,I*1-(I-1)*p (p=2 to I-1), are negative. The lemma is then proven for

n=1. Assume that the lemma is valid for n=K. At the (K+1)th loop, the output of the first

branch is the data just fed into this branch and it is equal to R(I*(K+1)). For the second

branch, it has one symbol period delay, so its output has I symbols delay of data output at

the Kth loop, which is equal to R((K-1)*I+2+I), and for i-th branch, the data that appears

on the output also have I symbols delay of data output at the Kth loop, which is equal to

R(I*K-(I-1)*i+I)= R(I*(K+1)-(I-1)*i). So the lemma is proven for n=k+1 and as a results

of induction for all n>=0.

75

The proposed dual port memory design uses the above rules to interleave the input data.

Assume that we have an interleaver with I branches. We map the RAM with column

address and row address. Let I=2^(m+1). The column address can be represented as

, and the row address lines are , so the RS symbol is

written into the RAM with the following address pattern. The address is initialized to all

zeros at the beginning of the interleaving, and increases by instead of 1 at the

symbol frequency; at the same time, data is read at the other port with the address

increased by 1 at the symbol frequency and is reset to all ones. We can prove that data

output have the same sequence as described in above rules. As shown in Fig. 4.10, we

map the dual port RAM to a matrix with the column address equal to the column number

and row address equal to the row number.

ccc
m

c
m aaaa 0121 ,,...,, −−

rrr
m

r
m aaaa 0121 ,,...,, −−

321321
mm

1...001...00

76

Fig. 4.10 Memory map of the Interleaver using matrix format

77

For each loop, the RS input symbol data is written to the diagonal of the above matrix

(RAM). During the first loop period, the data is written to the diagonal line from (0,0) to

(I-1,I-1). At the next loop, the data is written to the successive diagonal line, which starts

at (1,0) and ends at (I mod I, I-1)=(0,I-1), since the address is increased by ,

i.e. . The dashed line matrix is an extension from the

original matrix (RAM), so the data written to the matrix (RAM) in a single loop is simply

a diagonal line. At the i-th loop the data is inputted to the diagonal line starting from ((i-1)

mod I, 0). The interleaved data is obtained by reading the data row by row at the other

port of the RAM. At the same column of the neighboring line, the time difference of

these two data equals to (I-1) symbol periods. This is because the time difference at the

start point of the successive lines is equal to I symbol periods, which is time period of the

loop. The time index differences between these two symbols of the same column and

their start points are m and n, and the absolute value of m-n is 1 symbol delay time. So,

the total time difference between these two symbols equals (I-1). The symbol index of the

kth column always starts with I*K, where

321321
mm

1...001...00

{{ 321321321321
mmmmmm

II 0...001...001...001...0011 =+−−

⎣ ⎦m/I0,...,=K .

To eliminate the invalid data at the beginning of the interleaving, the RAM is initialized

to be zero and the data bus width equals 8 instead of 7 bit symbol data. One MSB bit is

used as the valid data flag. Also each time the data is read from the RAM, zero is written

back to the same position to invalidate the data at that position. To avoid the conflict that

occurs when data is written at the same address on the two ports, the write operations at

78

two ports are performed at different clock cycles. Also the counter is employed to make

the read operation occurring only when data is available and to provide the

synchronization mechanism for the data input and output.

The reformulation of the algorithm by using time sequence reordering significantly

simplifies the control structure and reduces the switching activities, since the clock

frequency is reduced by factor of seven (from the bit rate to the symbol rate), and the

interconnection lines,(which are the major power consumption sources in FPGA), are

reduced by a factor of around twenty. Unfortunately, there is a slight increase in the area

by using the block RAM. Unlike the outside RAM, the power consumption of block

RAM is comparable to the logic resources. However, the logic resource only consumes

16% power according to [Shang02]’s result. Therefore, the low switching activities and

smaller interconnection compensate cost due to logic increase in the RAM. This new

method has the advantages both in area, delay and power consumption. Unfortunately,

the XPower tools from Xilinx does not provide the power estimation of the Block RAM,

thus no quantitative results can be obtained. Based on the reduction of the clock

frequency and the number of interconnection lines, the power consumption can be

reduced by a factor of 15 without considering the power dissipated by the block RAM.

Therefore, this reformulation is well suitable for the interleaving with fewer branches

since it requires less memory space.

79

4.5 MPEG framer

In this section, the design of MPEG checksum processing block is discussed. Linear Feed

Back Shift Register is used to generate the MPEG checksum.)(xf

)(/)](1[)(1496 xgxbxxf += [ITU J.83]

Where and . 8651)(xxxxxg ++++= 731)(xxxxb +++=

The structure of this checksum generation function is shown in Fig. 2.2. All the addition

operations are modulo 2 and the LFSR is reset to all zeros before the calculation of a new

frame. We present this design with the design space exploration example for parallelizing

the design to lower the power consumption. Data flow graph (DFG) is used to represent

the feedback network g(x) as shown in Fig. 4.11. The nodes represent modulo 2 addition

operation and the edges represent the data path between the nodes. The number

associated with the edge represents the delay. For instance, D represents one bit period

delay, 2D represents two-bit period delay and so on. In Fig. 4.11(a), A, B, C, and D is

modulo 2 addition and X, Y are input and output nodes.

80

(a)

(b)

81

(c)

82

The following connection without any delay are not drawn in above diagram:

Yi->Ai, Yi->Bi, Yi->Ci and Yi->Di, where i=0, 1, 2, …,7

Bi->Ci+4, where i=0, 1, 2,3

Yi->Ai+2, where i=0,1, 2,3,4,5

The following connection with one delay are not drawn in above diagram: Y6->A0 and
Y7->A1

(d)

Fig. 4.11 Replicating the data path in (a) by factor 2 in (b), 4 in (c) and 8 in (d)

83

Applying the unfolding to the DFG in (a) with the unfolding factor equal to 2, 4 and 8,

the unfolded DFGs are obtained as shown in Fig. 4.11(b), (c), and (d). These DFGs were

implemented on Xilinx Virtex and their performance in terms of power and area are

shown in Fig. 4.12. From this plot, it is clear that the unfolding factor 2 is the optimum

number to replicate the data path, while bit serial structure is not necessarily the best

choice for low power design though it has the smallest area. The increase of the unfolding

factor to 4 and 8 degrades the performance in power and power area product. Thus, the

optimum number of the design parallelization is obtained by the design space exploration.

Pe rformance vs unfolding factor

0

0.5

1

1.5

2

2.5

1 2 4 8

Unfolding factor

Power (mW)

Area Power Product

Fig. 4.12 Performance of the parallelizing the design by a factor of 1, 2, 4 and 8

84

A detailed analysis of various sources of power dissipation in these structures is

illustrated by Fig. 4.13. Fig.4.13 shows that though the clock power is reduced by a factor

proportional to the unfolding factor, the logic and signal power increase by a factor from

3 to 5 when unfolding factor equals to 4 or 8. When this increase of logic and

interconnection dominates, the power reduction due to clock slowing down can not

compensate the extra cost due to parallelism. Then, further increase in the parallelism

only increases the power consumption. Thus design space has to be explored to optimize

the design using the parallelism.

Power vs unfolding factor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8
Unfolding factor

Po
w

er
 (m

W
)

Clock power

Inputs power

Singal Power

Logic Block P ower

Fig. 4.13 Power of the parallelizing the design by a factor of 1, 2, 4 and 8

85

In this chapter, the low power design techniques were applied to the design of several key

modules including Reed Solomon Encoder, interleaver, TCM modulator and MPEG

framer.

86

Chapter 5 Simulation and results

5.1 Introduction

The implemented designs were tested using the simulation tools from the Active-VHDL.

The functional simulation environment has been built in Matlab. It generates the test

vectors and expected results for the VHDL implementation. In this section, the simulation

results are presented by individual module of the design.

5.2 RS encoder

122 symbol data were generated using the Matlab to be applied as the test vectors to the

testbench of the RS encoder in VHDL. The six parity symbols were computed in

Matlab :30,113,116 83, 95 and 18. The simulation waveforms of RS encoder in Active

VHDL are shown in Fig. 5.1. The final six-byte symbols on data_output bus, (where the

data valid signal indicates that the output data is valid), are the same as the Matlab results.

87

Fig. 5.1 Simulation waveforms of RS encoder

5.3 Trellis coded modulation

The Trellis coded modulation has four sub blocks: data parser, differential pre-coder,

binary convolutional coder and QAM mapper. The functionality of these sub blocks are

verified by Matlab and VHDL simulations as follows.

5.3.1 Data parser

First, data parser forms the trellis group as shown in Fig. 2.7. Four symbols data are fed

into this block when the block is ready to accept new symbol data, that is r_rdy is high, at

the rising edge of the symbol clock and the falling edge of the bit clock (symbol *8) .

MSBs and LSBs of ‘A’ and ‘B’ shown in Fig. 2.6 are saved to the LFSR as shown in the

following simulation wave forms. The ce_line(0 to 5) shown in Fig. 5.2 are the shift

enable signals of the LFSR for trellis group of C5, C4, C2, C1, W and Z. The signal

88

vector sel_line selects the bit data in the symbol in LSB first and when sel_line=”7”, new

symbol data is loaded.

Fig. 5.2 Simulation waveforms of data parser

5.3.2 Differential pre-coder

As shown in Fig 5.3, the signals dformat_out(4), dformat_out(5) and df_x and df_y are

connected to inputs w and z and outputs x and y in Fig 2.6. The signal ce_in_df

initializes the differential pre-coder to zeros before the data is shifted out from the data

formatter LFSR. The high value of ce_line(5) for four bit clock period before the cursor

that indicates the last four bits of the fourth RS symbol is saved to the LFSR, which

means the end of the data formatting. Although the pre-coder output df_x and df_y are

89

still active after four clocks, these bits will be masked by the input_mask signal of the

convolutional coder.

Fig. 5.3 Simulation waveforms of differential pre-coder

5.3.3 Binary convolutional coder

As shown in Fig 5.4, df_x and df_y signals are connected to outputs of the differential

pre-coder and u and v is the output of the binary convolutional encoder in Fig. 2.6. The

pulse of start_conv signal resets the registers of the convolutional encoder. The

input_mask signal lasts four bit clock cycles to ensure data inputs is valid. The

input_mask signal is also the select signal for the multiplexer of the output and switch

output from the upper to the lower branch.

90

Fig. 5.4 Simulation waveforms of differential pre-coder

Finally, when the convolutional encoding is done, the 5QAM symbols are output from

the dout signal and the ce_out indicates its validity as shown in Fig. 5.5. These outputs

consists of two parts: first are the MSBs of ‘A’ and ‘B’, which are saved in LFSR during

data formatting stage; second are the outputs of the convolutional encoder, u and v

signals. All these six outputs will be fed into the QAM mapper to obtain the

corresponding 6-bit constellation symbols.

91

Fig. 5.5 Simulation waveforms of formation of the 5QAM symbols

5.3.4 QAM mapper

QAM constellation mapping is implemented using the look up table. The six 5-QAM

symbols c5 to c0 are the inputs to the QAM mapper as shown in Fig. 2.6. The simulation

waveform shown in Fig 5.6 is a 64-QAM mapper. The I and Q output are valid when

QAM_ce is high.

92

Fig. 5.6 Simulation waveforms of formation of the 5QAM symbols

5.4 Interleaver design

The interleaver is tested using two methods, first Matlab and testbench simulation on

large amount of data; another is simulation wave based on a small scale of data. In the

first method, test vectors were generated by Matlab and fed into the test bench of the

interleaver. The interleaver data symbols generated from this test bench are compared

with the Matlab results. The second method using simulation in a small scale is presented

as follows. The simulation waveforms shown in Fig.5.7 and Fig. 5.8 show the response of

93

the interleaver (4,1). The input data is valid when data_avail sigal is high, and the valid

output of the interleaved data is obtained when ce_out is high. The test vector contains

integer data from 3c to 4c. In Chapter 3, two special cases, starting interleaving and

ending interleaving were discussed. In this simulation, these two special cases are tested.

Fig. 5.7 shows how the interleaving starts. Data input, din, have the integer data from 3c

to 49 and the output sequence is 3c, 40, 44,41,3e, which is correct. Fig 5.8 shows how the

interleaving ends. At the final stage, the output sequence correctly shows 4C 49 46 43,

4A 47 and 4B.

Fig. 5.7 Signal waveforms at the interleaving starts

94

Fig. 5.8 Signal waveforms at the interleaving ends

5.5 Randomizer

The simulation waveforms are shown in Fig 5.9. As shown in Fig 2.5, the data_in signal

is the “Data in” and the data_out is the “Data out”, and the fb_x_as_q, fb_x_as_q1, and

fb_x_as_q2 are the output of the register from left to right. The test data fed into the

data_in are 00 to 0A. The output of the randomizer is compared with that of the Matlab

code. Then functionality of the randomizer is verified in VHDL.

Fig. 5.9 Simulation waveform of randomizer

95

5.6 MPEG framer

Matlab generates the test vectors and computes the output signature for the VHDL

implementation. The functionality of the module is verified by comparing this signature

with the one generated by Matlab.

96

Chapter 6 Conclusions and Future Work

6.1 Conclusions

This thesis research is focused on the design of the digital modulator for a cable terminal

system targeted on FPGA with emphasis on low power dissipation. The specification of

the digital modulator is presented, which is then virtually implemented in the structural

VHDL on Xilinx FPGA Virtex II. Based on the power distribution in FPGA, we found

that the existing VLSI low power design techniques are effective for energy efficient

design in FPGA. By applying these techniques to the digital modulator design and

exploring the design space of the area and power product, an acceptable low-power

design is obtained.

Existing research results on power distribution in FPGA by Shang shows that the

dominant components of the dynamic power consumption in FPGA are interconnections,

while clock and logic modules consume around 14-16% of total power each. The power

dissipation in FPGA changes in proportion to the switching activities. By limiting these

switching activities in the implementation of algorithms, a significant part of the power

can be saved.

97

The effectiveness of the low power VLSI design techniques at algorithm and architecture

levels in FPGA design are investigated based on the characteristics of the power

distribution in FPGA. First, performing the optimization at the algorithm level is well

suitable to the low power FPGA design. Performing the algorithm modification, to speed

up the design, can lower the clock frequency requirements of the design reducing its

switching activities. Also, the algorithm can be reformulated to simplify the control

structure and thus to reduce the amount of interconnections, saving hardware resources

and energy dissipation. Then, converting the complex arithmetic operations to simple

operations and taking advantage of the constant values in these operations can reduce the

effective switching capacitances and improve the speed by reducing the design area. The

optimization performed on the architectural level is also effective for the low power

design in FPGA. Pipelining the design, improves the performance with little overhead.

Also the switching and glitching activities can be minimized by choosing proper binary

number representation and balancing the signal paths. Thus, for the digital modulator

design discussed in this thesis, the strategy employed is improving the performance of

design and slowing down the clock frequency, as well as minimizing the effective

switching capacitances by optimizing the design at algorithm and architecture level.

By applying these techniques to the design, all the design options are examined towards

the low power design goal. In the design of the RS encoder, the bottleneck of the

performance improvement is removed by employing a new structure for the finite field

multiplier. For the interleaver design, dual port memory scheme is used to reduce the

98

switching activities and the amount of the interconnection. Then rescheduling is

employed to solve the real time requirement for the TCM modulator. This reformulation

reduces the area cost and increases the performance. Parallelizing the design is examined

in the design of the MPEG checksum generator. And the results show that it is not as

effective as in VLSI since the voltage is fixed in the FPGA design. Therefore, we

conclude that most of the VLSI low power design techniques, except parallelizing, are

very effective for energy efficient design in FPGA.

6.2 Future work

Perhaps the most effective way for the low power design in FPGA involves the design of

the devices themselves, since the effective capacitance is very large comparing to the

equivalent capacitance in the VLSI technology. In addition, power estimation tools

providing more accurate and detailed picture of the power dissipation of the resources is

highly desirable for the low power design and will facilitate the exploration of the design

space. Existing tools lack of such support.

99

References

[Anderson02] J. H. Anderson and F. N. Najm, “Power-Aware Technology Mapping for
LUT-Based FPGAs,” IEEE Int. Conf. on Field-Programmable Technology (FPT), Hong
Kong, pp. 211-218, 2002.

[Berlekamp82] E. R. Berlekamp. “Bit-Serial Reed-Solomon Encoders,” IEEE Trans. on
Information Theory, Vol.28, No.6, pp. 869–874, Nov. 1982.

[Chandrakasan95] A.P. Chandrakasan and R.W. Brodersen, “Minimizing power
consumption in digital CMOS circuits,” Proc. of the IEEE, Vol.83, No.4, pp.498-523,
April 1995.

[Doyle02] B. Doyle et al., “Transistor Elements for 30nm Physical Gate Lengths and
Beyond”, Intel Tech. Journal, Vol. 6, No. 2, pp. 5-13. May 2002.

[George99] V. George, H. Zhang, J. Rabaey, “The design of a low energy FPGA”, ACM
Int. Symp. on Low Power Design, pp. 188-193, 1999.

[ITUH.222] ITU-T Recommendation H.222.0 (1995) | ISO/IEC 13818-1:1996,
Information technology – Generic coding of moving pictures and associated audio
information: Systems.

[ITU J.83] ITU-T Recommendation J.83, Annex-B, Apr. 1997, Digital Multi-
Programme Systems For Television, Sound And Data Services For Cable Distribution.

[Jain98] S. Jain, L. Song and K.K. Parhi, “Efficient Semi-Systolic VLSI Architectures for
Finite Field Arithmetic”, IEEE Trans. on VLSI Systems, Vol. 6, No. 1, pp. 101-113,
March 1998.

[Kusse98] E. Kusse and J. Rabaey, Low-Energy Embedded FPGA Structures in 1998 Int.
Symp. on Low Power Electronics and Design, pp. 155- 160, Aug. 1998.

100

[Massey86] J. L. Massey and J. K. Omura. “Computational Method and Apparatus for
Finite Field Arithmetic”. US Patent No.4,587,627, 1986.

[Mastrovito91] E. D. Mastrovito. VLSI Architectures for Computation in Galois Fields.
PhD thesis, Linkoping University, Department of Electrical Engineering, Linkoping,
Sweden, 1991.

[Rabaey02] J. Rabaey and A. Chandrakasan and B. Nikolic Digital Integrated Circuits: A
Design Perspective 2nd Edition, Prentice Hall, 2002.

[Shang02] L. Shang, A. S. Kaviani, and K. Bathala “Dynamic power consumption in
VirtexTM-II FPGA,” 10th ACM Int. Symp. on Field-Programmable Gate Arrays(FPGA),
pp.157-164, Feb. 2002.

[Sklar01] B. Sklar, Digital Communications Fundamentals and Applications,
Prentice-Hall PTR, New Jersey, 2001.

[Starzyk04] J. A. Starzyk and F. Wang, “Dynamic Probability Estimator for Machine
Learning”, IEEE Trans. on Neural Networks, Vol. 15, No. 2, pp 298- 308, March 2004.

[Sunar99] B. Sunar and Ç.K. Koç, “Mastrovito Multiplier for All Trinomials,” IEEE
Trans. on Computers, Vol. 48, No.5, pp. 522-527, May 1999.

[Wang85] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, I. S. Reed,
“VLSI Architectures for Computing Multiplications and Inverses in GF(2m),” IEEE
Trans. Computers, Vol. 34, No.8, pp. 709-717, Aug. 1985.

[Xilinx00] Xilinx Inc., Virtex-II Platform FPGA Handbook, 2000.

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Symbols and Abbreviations
	Chapter 1 Introduction
	Motivation
	Research goals
	Thesis organization

	Chapter 2 Specification for Digital Baseband Modulator Desig
	2.1 Introduction
	2.2 MPEG-2 transport layer
	2.3 MPEG-2 transport framing
	2.4 Forward error correction
	2.4.1 Reed-Solomon coding
	2.4.2 Interleaving
	2.4.3 Randomization
	2.4.4 Trellis coded modulator
	2.4.4.1 64-QAM modulation mode
	2.4.4.2 256-QAM modulation mode
	2.4.4.3 Rotationally invariant pre-coding
	2.4.4.4 Binary Convolutional Coder
	2.4.4.5 QAM constellation mapping

	2.5 Modulation and demodulation
	2.5.1 QAM characteristics

	Chapter 3 Low Power Design
	3.1 Introduction
	3.2 Sources of power consumption
	3.3 Low power design techniques
	3.3.1 Algorithm level optimization
	3.3.2 Architectural level optimization

	3.4 Low power design strategy for the digital modulator

	Chapter 4 Low Power Design of Digital Modulator
	4.1 Introduction
	4.2 Reed Solomon encoder
	4.3 Trellis coded modulation
	4.4 Interleaver design
	4.5 MPEG framer

	Chapter 5 Simulation and results
	5.1 Introduction
	5.2 RS encoder
	5.3 Trellis coded modulation
	5.3.1 Data parser
	5.3.2 Differential pre-coder
	5.3.3 Binary convolutional coder
	5.3.4 QAM mapper

	5.4 Interleaver design
	5.5 Randomizer
	5.6 MPEG framer

	Chapter 6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work

	References

