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Abstract 
 
Feng Wang. M.S. June 2004. Electrical Engineering and Computer Science 
 
Energy Efficient Digital Baseband Modulator for Cable Terminal Systems Targeted on 
Field Programmable Gate Array (100 pp.) 
  
Director of Thesis: Janusz A. Starzyk 
 

This thesis presents design and research in energy efficient digital baseband 

modulator for cable terminal systems targeted on field programmable gate array (FPGA). 

The design specifications of the individual processing blocks of digital baseband 

modulator are reviewed. Existing low power design techniques at algorithm and 

architecture levels are examined and their effectiveness for low power design on FPGA is 

investigated based on the power dissipation characteristics of the FPGA. Low power 

design strategy for the digital modulator is then derived. Finally, the implementation 

options for several key modules are investigated and the design space of power and area 

product is explored. In this design, a new parallel finite field multiplier is proposed, the 

interleaving algorithm is reformulated and rescheduling is used in the TCM modulator to 

achieve the low power goal. The results of this research show that most of the low power 

design techniques, except parallelizing, are very effective for energy efficient design in 

FPGA.  

Approved:   Janusz A. Starzyk 
   Professor, EECS 
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Chapter 1 Introduction 

 

1.1 Motivation 

 

Cable communications system has become the major technology for the broadband 

internet access. Data Over Cable Service Interface Specification (DOCSIS) compatible 

cable modem chips from Broadcom and Texas Instruments dominate this competitive 

market. Xilinx has recently released Intellectual Property (IP) core for the key module, 

International Telecommunication Union (ITU) J.83 modulator, targeted on FPGA device 

to allow the other vendors to integrate this broadband access module to their products.  

 

This thesis approaches the cable terminal system design on FPGA from the perspective 

that low power is most desirable feature. A number of choices, including full custom, 

standard cell, and FPGA, exist when implementing a digital integrated circuit design. Full 

custom design is time consuming and can achieve highest performance with fixed 

functionalities. The standard cell library approaches shorten the design cycle by 

scarificing performance. The FPGA based design has same critical advantages over these 

two methods by offering higher flexibility and shorter design time. With reprogrammable 

features, the design bugs can be fixed with minimal effort and cost. This greatly reduces 

the design cost and time, especially for low volume design.  
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Moore's law, which is often stated as the doubling of transistor performance and 

quadrupling of the number of devices on a chip every three years, has been achieved 

through scaling of the MOSFET [Doyle02]. Design density and speed are gained through 

the advances in the semiconductor process technology. Though the performance of the 

programmable logic lags behind the full custom design [Kusse98], the high performance 

and high density FPGA embedded with RISC processor is available, for example, in 

Xilinx Virtex II. Area and speed may then not be the first design priority for the FPGA in 

many applications, such as cable communication terminal system, and the low-power 

design becomes a dominant cost factor. As a result, new applications emerge by applying 

the low power design technology to FPGA based design. For instance, in cable telephone, 

a desirable feature is obtaining the power from the cable. 

 

FPGAs are traditionally considered as power-hungry devices since their programmability 

is provided by a large amount of the routing resources and switches that consume a lot of 

dynamic switching power. Low power design for VLSI has received a lot of attention due 

to the proliferation of mobile and portable devices. Nevertheless, research in low power 

FPGA design has only recently gained its popularity due to its unique features in terms of 

flexibility and signal processing capabilities [Kusse98, George99]. However, its energy 

inefficiency is a limiting factor for the wide acceptance in mobile and portable 

applications. In addition, it is difficult to estimate the power consumption during the early 

phase of the design due to the lack of detailed information about the FPGA circuits. Thus 

the low power design of FPGA remains a challenging problem. 
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1.2 Research goals 

 

The goal of this research is to apply the existing low design techniques to digital 

modulator design on FPGA and to gain a better understanding of the effectiveness of 

these design methods. The research is focused on the design of several key modules of 

the digital modulator and optimizing the design for low power purpose at the algorithm 

and arithmetic levels. 

 

1.3 Thesis organization 

 

This thesis is organized into six chapters. Chapter 2 presents the system specifications of 

the digital baseband modulator and describes the components for this digital baseband 

modulator according to the ITU J.83 standard. In this chapter, the framing structure, 

channel coding, and channel modulation for a digital multi-service television distribution 

system that is specific to a cable channel is presented. The chapter also covers the 

features of both 64- and 256-QAM modulation schemes.  

 

Chapter 3 discusses the sources of power dissipation, reviews the existing low power 

design techniques at the algorithmic and the architectural levels, examines their 

applicability to FPGA technology and finally derives the design strategy for this digital 

modulator design.  
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Chapter 4 applies the low power design techniques to the design of the several key 

modules including MPEG framer, Reed Solomon Encoder, interleaver, and TCM 

modulator. Design space is explored and several new structures are proposed.  

 

Chapter 5 provides the simulation results of designed circuits, verifying their 

performance according to specifications. 

 

Chapter 6 gives a conclusion of the work done, summarizes major results obtained for the 

thesis and discusses the future work.  
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Chapter 2 Specification for Digital Baseband Modulator Design 

2.1  Introduction 

 

The specification of the ITU Recommendation J.83 Annex B is presented in this chapter. 

This specification describes the framing structure, channel coding, and channel 

modulation for a digital multi-service television distribution system that is specific to a 

cable channel. 

 

Two types of the modulation schemes are used, Quadrature Amplitude Modulation 

(QAM) with 64-point signal constellation (64QAM) and with 256-point signal 

constellation. In this chapter, the common features and differences of both modulation 

schemes are presented. 

 

The design of the modulation, interleaving and coding is based upon testing and 

characterization of cable systems in North America using 6MHz channeling [ITU J.83]. 

Concatenated coding schemes, including two encoders and an interleaver are used in 

Forward Error Correction (FEC) due to their high bit error rate performances with low 

complexity and low overhead.  

 

MPEG-2 transport layer data stream is the input to this digital modulator. But the 

synchronization of the MPEG stream is independent from the FEC synchronization, 
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which can avoid the interference with ATM synchronization. There are two modes 

supported: Mode 1 has a symbol rate of 5.057 Msymbols/s and it is used for 64-QAM; 

Mode 2 has a symbol rate of 5.361 Msymbols/s and is typically employed for 256-QAM 

[ITU J.83]. This system can be easily upgraded to higher order QAM extensions. 

The appropriate error correction and demodulation are determined by the expected 

channel error statistics and distortion characteristics. The cable channel is primarily 

regarded as a bandwidth-limited linear channel, with a balanced combination of white 

noise, interference, and multi-path distortion and the QAM technique used, together with 

adaptive equalization and concatenated coding is well suited to this application and 

channel [ITU J.83]. 

 

The block diagram of the whole digital modulator is shown in Fig.2.1. The specification 

of each processing block is presented as follows. 

 

 
 

Fig. 2.1 Cable transmitter block diagram 
 

2.2  MPEG-2 transport layer 

The MPEG-2 transport layer is defined in Reference [ITU H.222]. Each frame in the 

transport layer for MPEG-2 has 4 bytes header, which contains one synchronization byte 
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47HEX, three bytes service identification, scrambling and control information, and 184 

bytes of data. 

2.3  MPEG-2 transport framing 

The MPEG transport framing provided a synchronization mechanism for the robust 

communication in this layer. Out of the 188-byte data steame in serial format, most 

significant bit (MSB) is first processed by this block. In addition to the sync byte, a parity 

checksum is used to improve the delineation functionality and add the additional error 

detection capability. This checksum is calculated over the 187 bytes following the sync 

byte. Linear Feedback Shift Register (LFSR)  is used to generate this checksum. 

According to specifications provided in [ITU J.83], the LFSR is based on the following 

equations: 

)(xf

)(/)](1[)( 1496 xgxbxxf +=     (2.1) 

Where  and  8651)( xxxxxg ++++= 731)( xxxxb +++=

The structure of this checksum generation function is shown in Fig. 2.2. All the 

additional operations are modulo 2 and the LFSR is reset to all zeros before the 

processing of a new frame. The 187-byte data is fed into the LFSR in a serial fashion, the 

MSB first at the bit rate. The feedback network implements the g(x). An offset of 67HEX 

is added to this checksum result for improved autocorrelation properties, and causes a 

47HEX result to be produced during a syndrome decode operation when a valid code word 

is presented [ITU J.83]. The 8-bit checksum is appended to the 187-byte data and 

transmitted in MSB first. 
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Fig. 2.2 Checksum generator for the MPEG-2 sync byte encoder [ITU J.83] 

 

2.4  Forward error correction 

 
Two levels of coding, an inner coder and outer coder, are employed in the Forward Error 

Correction (FEC) to achieve high error correcting performance. The inner coder 

interfaced with the modulator and the channel is configured to correct most of the 

channel errors, and the outer coder with a high code rate reduced the probability of error 

to the specified level [Sklar01]. Interleaving and randomization are used between the 

inner and outer coder to prevent the degradation of error correcting performance caused 

by correlated errors among successive symbols. Then the overall implementation 
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complexity is reduced to achieve a low error rate by using the concatenated coding 

scheme. As shown in Fig.2.3, the FEC consists of four processing blocks: Reed Solomon 

encoding, Convolutional interleaving, Randomizer, and Trellis encoder. FEC has its own 

synchronization mechanism and is independent from the input data protocols. 

 

 
 

Fig. 2.3 Forward Error Correction block diagram 
 

Two types of coding schemes and interleaving techniques are employed to ensure the 

reliability of the data transmission over the cable channel: 

• Extended (128, 122) Reed Solomon (RS) coder – Provides block 

encoding and has the capability of correcting up to three symbols within 

an RS block. 

• Convolutional interleaver – The input symbols delayed by different 

length result in spreading the errors over several code words. RS 

encoding together with interleaving provide for the correction of the burst 

errors that decoder can not correct [Sklar01] 

• Randomizer – Randomizes the data over the channel adding the 

additional information to allow effective QAM demodulator 

synchronization [ITU J.83]. 
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• Trellis Encoder – Provides convolutional encoding.  

 

2.4.1  Reed-Solomon coding 

 
Reed-Solomon codes are block-based error correcting codes and their error correcting 

ability is determined by the bit redundancy, (n, k). Reed-Solomon code can correct up to 

(n-k)/2 symbol errors. Reed-Solomon codes are particularly well suited to correct the 

burst errors and are widely applied in communication. A systematic RS coder (128, 122) 

over Galois Field (GF) (128) is employed to code the data of MPEG transport layer. This 

extended RS code can correct up to t=3 symbols errors contained in a codeword, where 2t 

= 128-122. Both 64-QAM and 256-QAM use this RS code. 

 

The implementation of the extended RS encoder is described as follows. The extended 

RS code over GF(128) is constructed with the systematic encoder. The primitive 

polynomial used to generate all the elements over GF(128) is:  

1)( 37 ++= xxxp     (2.2) 

The (128,122) RS codeword is generated using the generating polynomial: 

1561211931164525

5432 ))()()()(()(
ααααα

ααααα

+++++=

+++++=

xxxxx
xxxxxxg                            (2.3) 

Where, the primitive element α is a root of a primitive polynomial of the field, 

i.e. 0)( =αp [ITU J.83]. 
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The message block including 122, 7-bit symbols can be expanded in a polynomial format 

as follows 

0
1120

120
12

12   +   + ... +     + = mxmxmxmxm     )( 1
1

1                          (2.4) 

First, five parity symbols can be obtained as  

01
2

2
3

3
4

4)( rxrxrxrxrxr ++++=     (2.5) 

Then, the first parity symbols in a systematic Reed-Solomon codeword are given by the 

remainder of . )(mod)( 5 xgxxm ⋅

The message block appended with the five parity symbols forms a new polynomial 

referred to as an even multiple of the generator polynomial, and can be represented as the 

following polynomial: 

01
2

2
3

3
4

4
56

1
56

1      )( rxrxrxrxrxmxmxmxmxc +++++  +   + ... +     + = 0
12

120
12

12    (2.6) 

The extended parity symbol is generated by evaluating the code word at the sixth 

power of 

128c

α  [ITU J.83]. 

)( 6
128 αcc =                 (2.7) 

The code  appended with this extended parity symbol forms the final 128 symbol 

Reed-Solomon block:  

)(xc

1280
2

1
3

2
4

3
5

4
67

1
67

1

128

     

)()(

cxrxrxrxrxrxmxmxmxm

cxxcxcode

++++++  +   + ... +     + =

+=

0
12

120
12

12

     (2.8) 

The codeword of this (128, 122) RS encoder is transmitted in the order of MSB first,  

128012341...1 crrrrrmmmm 012012  with transmitted as the first bit.  112m
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2.4.2  Interleaving 

 
The Forney Convolutional interleaver, employed between the RS encoder and the 

randomizer, has the capability to correct the burst errors. The convolutional interleaver is 

used for both 64-QAM and 256-QAM. 

 

Fig.2.4 shows the operation of the convolutional interleaver. The input symbols from RS 

encoder appear at the input commutator and the interleaved data is output from the output 

commutator. An (I, J) interleaver, has I branches. Each branch has a bank of registers (the 

width of the register is 7, the same as the RS symbol size) and each register has a delay of 

J symbol periods. Symbol period is given and equals to 7 bit clock periods. The register 

clock depends on its width. Clock for register width of 7 is 7 clock periods, while for a 

register width of 1 equals 1 clock period. There is no register at the first branch, labeled 

with 1. The k-th branch has (k-1) registers and the corresponding path delay equals (k-

1)*J symbol periods delay. The input and output commutator can be referred to as the 

interleaving commutator. These two interleaving commutators are reset to the top-most 

branch and move to the next branch at the RS symbol frequency. After reaching the last 

branch, the interleaving commutators rotate back to the top-most branch. A series of bad 

symbols caused by the burst noise in the channel are spread over many RS blocks by the 

de-interleaver, such that the resultant symbol errors per block are within the range of the 

RS decoder correction capability [ITU J.83]. 
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Fig. 2.4 Interleaving functional block diagram [ITU J.83] 

 

Two distinct operating modes, level 1 and level 2, provide two distinct levels of 

interleaving capability. In level 1, a single interleaving depth (128, 1) is used in the 64-

QAM modulation schemes. The level 2 shall encompass 64-QAM and 256-QAM 

transmission, and will for both modulation schemes be capable of supporting variable 

interleaving [ITU J.83]. The interleaving depths is enlarged and reduced by a certain 

factor. For instance, the reduced modes are (64,2), (32, 4), …, (8, 16). The 

synchronization bytes of the FEC frame contains the interleaving configuration 

parameters, which are available for the deinterleaver at the receiver side.  

 

Table 2.1 describes the interleaver parameters for level 1 operation, with associated 

latency and burst protection [ITU J.83]. Table 2.2 describes the decoding of the 4-bit in-
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band control word into the I and J interleaving parameters for level 2 operation, also with 

associated burst protection and latency [ITU J.83]. 

 
Table 2.1 Level 1 interleaving [ITU J.83] 

 

 

 

Control 
word 

(4 bits) 

 
I (# of taps) 

 
J (increment) Burst 

protection 

 
Latency 

Xxxx 128 1 95 µs 4.0 ms 

Table 2.2 Level 2 interleaving [ITU J.83] 
 

 

Control 
word 

(4 bits) 

 
I (# of 
taps) 

 
J (increment) 

Burst 
protection 

64-QAM/256-QAM 

Latency 
64-QAM/256-QAM 

 

0001 128 1 95 µs /66 µs 4.0 ms/2.8 ms 

0011 64 2 47 µs /33 µs 2.0 ms/1.4 ms 

0101 32 4 24 µs /16 µs 0.98 ms/0.68 ms 

0111 16 8 12 µs /8.2 µs 0.48 ms/0.33 ms 

1001 8 16 5.9 µs /4.1 µs 0.22 ms/0.15 ms 

1011 Reserved    

1101 Reserved    

1111 Reserved    

0000 128 1 95 µs /66 µs 4.0 ms/2.8 ms 

0010 128 2 190 µs /132 µs 8.0 ms/5.6 ms 

0100 128 3 285 µs /198 µs 12 ms/8.4 ms 

0110 128 4 379 µs /264 µs 16 ms/11 ms 

1000 128 5 474 µs /330 µs 20 ms/14 ms 

1010 128 6 569 µs /396 µs 24 ms/17 ms 

1100 128 7 664 µs /462 µs 28 ms/19 ms 

1110 128 8 759 µs /528 µs 32 ms/22 ms 
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2.4.3  Randomization 

As shown in Fig.2.5, the randomizer is the third function block in the FEC block diagram. 

The randomizer provides for even distribution of the symbols in the constellation, which 

enables the demodulator to maintain proper lock [ITU J.83]. 7-bit Pseudorandom Noise 

(PN) sequence is added to the data symbols to generate a random transmitted sequence. 

 

For both 64- and 256-QAM, the randomizer is reset to all ones during the FEC frame 

trailer, so the randomization is not applied to the trailer. The randomizer can be 

represented as a polynomial over the GF(128). It can be realized as a feed back network 

with the finite field addition and delay terms. The randomizer is first initialized to be in 

“111_1111” state. All the operations are performed over the GF(128).   

33)( α++= xxxf      (2.9) 

where α  is an root of the primitive polynomial  and 1)( 37 ++= xxxp 0)( =αp . 

 
Fig. 2.5 Block diagram of 7-bit symbol randomizer 
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2.4.4  Trellis coded modulator 

 
Trellis coded modulation (TCM) scheme has the high spectral efficiencies. This 

efficiency is achieved by expanding the size of the signal constellation, instead of 

expanding the bandwidth, which results in a high code performance. 

 

2.4.4.1  64-QAM modulation mode 

 
As shown in Fig.2.6, 64 QAM Trellis coded modulator is composed of four types of 

function blocks: Parser, differential pre-coder, binary puncture convolutional coder and 

QAM mapper. 28 bits data stream from the randomizer form an input group and the 

modulator generates 30 bits QAM symbols. So the overall code rate for this modulator is 

14/15.  

 

28 bits data groups consist of four 7-bit symbols referred to as ‘A’ and ‘B’ as shown in 

Fig. 2.7. The first two RS symbols are labeled as ‘A’ and the remaining two RS symbols 

are labeled as ‘B’. The LSB of ‘A’ and ‘B’ are first differentially pre-coded and then fed 

into the binary puncture convolutional coder. The convolutional coder generates two 

groups of five code bits, which are labeled as U5 U4 U3 U2 U1 and V5 V4 V3 V2 V1 

from four input bits. These two five bits data streams are sent to the QAM mapper. The 

MSB of ‘A’ and ‘B’ are uncoded and sent to the QAM mapper directly. The whole bit 

stream is aligned with the 7-bit RS symbol and is serialized MSB first. 
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Every 4-bit sequential input 
yields a 5-bit sequential output

The overall rate is 14/15

Data stream from  
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28 bits 
64-QAM
output

Coded

 
Fig. 2.6 64-QAM trellis coded modulator block diagram [ITU J.83] 
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T0 T1 T2 T3 T4

B2 B5 B8 B11 B13

B1 B4 B7 B10 B12

A2 A5 A8 A11 A13

A1 A4 A7 A10 A12

B0 B3 B6 B9

A3 A6 A9

A 10 A 8 A 7 A 5 A 4 A 2 A 1 A 9 A6 A3 A0 A13 A12 A11 B10 B8 B7 B5 B4 B2 B1 B9 B 6 B 3 B 0 B 13 B 12 B11

A0

Time

28 bits

RS symbol to Trellis Group bit ordering

Order of  RS symbols

MSB LSB

Bits input
to BCC

QAM
symbols

LSB  MSB LSB MSB LSB MSB 

RS 0 RS1 RS2 RS 3 

 
Fig. 2.7 64-QAM trellis group [ITU J.83] 

 

2.4.4.2  256-QAM modulation mode 

 
256-QAM trellis coded modulator is shown in Fig.2.8. As the 64-QAM modulator, 256-

QAM modulator consists of four function blocks: data formatter, differential pre-coder, 

binary puncture convolutional coder and QAM mapper. There is slight difference 

between the 256-QAM and 64-QAM modulator. 38 bits data stream from the randomizer 

forms an input group. The modulator generates 40 bits 5-QAM symbols, so the overall 

code rate for this modulator is 19/20.  
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As shown in Fig. 2.9, the input 38 bits data have two different formats, which can be 

defined as non-sync group and sync group. In a non-sync group, only data bits form the 

input 38 bits data group. For a sync group, 30 bits data and 8 bits sync byte, which appear 

at the end of the FEC frame, contribute to the 38 bits data group. The MSB of the ‘A’ and 

‘B’ are uncoded and fed into the QAM mapper directly. The so-called LSB of ‘A’ and 

‘B’ are first differentially pre-coded and then sent to the binary puncture convolutional 

coder. The convolutional coder generates two groups of five code bits, which are labeled 

as U5 U4 U3 U2 U1 and V5 V4 V3 V2 V1 from four input bits. These two five bits data 

streams are sent to the QAM mapper.  The difference between 64-QAM modulator and 

256-QAM modulator lies in the first functional block. Data formatter, instead of data 

parser is used in 256-QAM modulator, to deal with non-sync group and sync group data 

formats. For the non-sync group the first bit of the RS symbol bit stream forms the LSB 

of ‘A’ and the second bit of the RS symbol bit stream is referred to as the LSB of ‘B’. For 

sync group, the 0th, 2nd, 4th and 6th bit of sync byte forms the ‘LSB’ of A and 1st, 3rd, 5th, 

7th bits are referred as the ‘LSB’ of ‘B’. The bit stream is aligned with the 7-bit RS 

symbol and is serialized with the MSB first.  
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Fig. 2.8 256-QAM trellis coded modulator block diagram [ITU J.83] 
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Fig. 2.9 256-QAM sync and non-sync trellis group [ITU J.83] 

 

2.4.4.3  Rotationally invariant pre-coding 

 

As shown in Fig.2.10, differential pre-encoder is employed to take advantage of the 

“rotationally invariant” property of the nonlinear, trellis encoder. For a code with 90° 

invariant property, the correct sequence can be recovered after decoding even if the 

decoder locks on the wrong phase (multiple of 90°). It is a desirable feature for a robust 

modem. Non-rotationally invariant coding requires resynchronization of the FEC when 



 
 

35 

 

the carrier phase tracking changes quadrant alignment, leading to a burst of errors at the 

FEC output [ITU J.83]. 

 

Both 64-QAM and 256-QAM modulation schemes use the rotationally invariant 

encoding. In Fig. 2.6, the inputs to the differential encoder are the 3rd and the 6th of 6-bit 

symbols, and C3 and C0 are the outputs of the differential encoder bits in 64-QAM; in Fig. 

2.8 the inputs to the differential encoder are the 4th and the 8th of 6-bit symbols, and C4 

and C0 is the output of the differential encoder bits in 256 QAM. 

 

 

Fig. 2.10 Block diagram of the differential pre-encoder [ITU J.83] 

 

2.4.4.4  Binary Convolutional Coder 

 
Fig. 2.11 shows the binary non-systematic convolutional coder with constraint length 

equal to 4. There are two output branches, so the code rate is ½. The generators that 

characterize the encoding functions are G1 = 010 101 and G2 = 011 111 (25,37octal).  Four 
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data bits form a trellis group and are fed into this encoder at the bit rate. When the first bit 

is shifted into the encoder, encoded data bits are output from both upper and lower 

branches. Before the last data bit shifts out of the shift registers, the encoder generates 

eight bits data on both output branches. The output switch samples the data bits at the 

output branches according to the puncture matrix. The puncture matrix defines when the 

data sampled will be transmitted. The puncture matrix for this convolutional coder is 

 ("0" denotes NO transmission, "1" denotes transmission). It means 

the output switch is reset to the upper branch when the first bit is shifted into the encoder 

and move to the lower branch when all the four bits are shifted into the encoder. The 

puncture matrix essentially converts the rate 1/2 encoder to the rate 4/5, since only 5 of 

the 8 encoded bits are retained after puncturing [ITU J.83]. 
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Fig. 2.11 Punctured Binary Convolutional Coder [ITU J.83] 

 

2.4.4.5  QAM constellation mapping 

 

For 64-QAM, 6-bit data from the MSB of ‘A’ and ‘B’ and outputs of convolutional 

encoder are converted to the 6-bit constellation symbol according to Fig. 2.12 in the 

QAM mapper.  
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For 256-QAM, 8-bit data from the MSB of ‘A’ and ‘B’ and outputs of convolutional 

encoder are converted to the 6-bit constellation symbol according to Fig. 2.13 in the 

QAM mapper.  
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Fig. 2.12 64-QAM constellation [ITU J.83] 
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 Fig. 2.13 256-QAM constellation [ITU J.83] 
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2.5  Modulation and demodulation 

2.5.1  QAM characteristics 

 

The cable transmission format is summarized in Table 2.3 for 64-QAM and 256-QAM 

and Table 2.4 contains a summary of the pertinent characteristics of the variable 

interleaving modes [ITU J.83]. 

 

Table 2.3 Cable transmission format [ITU J.83] 
 

Parameter 64-QAM format 256-QAM format 

Modulation 64-QAM, rotationally invariant 
coding 

256-QAM, rotationally invariant 
coding 

Symbol size 3 bits for "I" and 3 bits for "Q" 
dimensions 

4 bits for "I" and 4 bits for "Q" 
dimensions 

Transmission band 54 to 860 MHz 54 to 860 MHz 

Channel spacing 6 MHz 6 MHz 

Symbol rate 5.056941 Msps ± 5 ppm 5.360537 Msps ± 5 ppm 

Information bit rate 26.97035 Mbps ± 5 ppm 38.81070 Mbps ± 5 ppm 

Frequency response Square root raised cosine filter 
(Roll-off ≈ 0.18) 

Square root raised cosine filter 
(Roll-off ≈ 0.12) 

FEC framing 42-bit sync trailer following 60 RS 
blocks 

40-bit sync trailer following 88 RS 
blocks 

QAM constellation 
mapping 

6 bits per symbol 8 bits per symbol 

NOTE – These values are specific to 6 MHz channel spacing. Additional sets of values for differing 
channel spacing are under study. 
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Table 2.4 Variable interleaving modes [ITU J.83] 
 

 Level 1 Level 2 

QAM format 64-QAM (see Table 2.3) 64- or 256-QAM 
(see Table 2.3) 

Interleaving Fixed interleaving  
I  =  128    J  =  1 

Variable interleaving I  =  
128,64,32,16,8 

J  =  1,2,3,4,5,6,7,8,16 
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Chapter 3  Low Power Design 
 

3.1  Introduction 

 
In this chapter, sources of the power consumption for FPGA are examined based on the 

existing research work [Shang02, Kusse98] and the existing low power design techniques 

[Chandrakasan95], and their applicability to the low power FPGA design is investigated. 

Finally, the low power design strategy for the digital modulator is derived. 

 

3.2  Sources of power consumption 

 

First, the power dissipation of the Xilinx Virtex II is discussed by reviewing Shang’s 

recent work [Shang02]. Good understanding of the sources of the power consumption in 

FPGA is fundamental for the low power FPGA design and it will guide us in the right 

direction to develop the effective methods for low-power FPGA design.  

 

Before presenting Shang’s research results, we first briefly introduce the architecture of 

Xilinx Virtex chip. The detailed information can be found in Virtex datasheet [Xilinx00]. 

Virtex FPGA consists of two major types of resources: configurable logic blocks (CLB), 

and routing resources. CLBs are the computational elements or logic parts of the FPGA, 

and they are connected by the routing resources. The routing resources include three 
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types of wires (long lines, hex lines and double lines) and the switches. The long lines 

can distribute the signals across the device in two directions: vertical and horizontal; the 

hex lines route signals to every third or sixth CLB blocks in all four directions; the double 

lines route signals to every first or second CLB block  in all four directions [Xilinx00]. 

The switches connect the CLB’s inputs and outputs to these lines and are referred to as 

the input crossbar and the output crossbar [Shang02]. Also, there are some dedicated 

global routing resources for the global clock distribution, local routing resources for the 

carry propagation and the local clock, and direct connect lines.  

 

In the digital CMOS circuits, two types of power consumption, static and dynamic power 

consumption, exist. Since the design of low power FPGA devices is beyond the research 

scope of this thesis, only the dynamic power consumption is considered. The dynamic 

power consumption in the digital CMOS circuits results from charging and discharging 

the capacitances and can be modeled as [Rabaey02]: 

clkswingddLdynamic fVVCP 10 >−= α       (3.1) 

Where  is the capacitance,  is the voltage swing, is the clock frequency and LC swingV clkf

10 >−α is the switching factor. [Shang02] broke down the sources of the dynamic power 

dissipation and calculated the corresponding capacitance for each resource. Due to his 

privileged access to the FPGA schematic, he obtained the results on the transistor level 

by simulation and confirmed these results by measurements. His results of the effective 

capacitance of each resource are shown in the Table 3.1. 
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Table 3.1 Capacitance of the resources of Virtex II (2v1000FG256-5) [ Shang02] 

Type Resource of Virtex II Capacitance (PF) 
IXbar 9.44 
OXbar 5.12 
Double 13.20 

Hex 18.40 

Interconnect 
Per CLB 

Long(*) 26.10 
LUT inputs 26.40 
FF inputs 2.88 Logic 

Per CLB Carray 2.68 
Global wiring(*) 300 Clocking Local 0.72 

 

* the value may change with the types of the device 

 

Two conclusions can be drawn from the above table. First, the capacitance of the 

interconnection is comparable to that of the computational element in a CLB. Second, the 

capacitance of the interconnect line is not proportional to its length. The capacitance of a 

double line, which extends between two CLB blocks, is almost half of the capacitance of 

the long line, which goes across the whole chip, in device 2v1000FG256-5; and the 

capacitance of a double line is close to that of the hex line, which spans six CLB blocks. 

For the small devices, the long line capacitance becomes smaller, and then there is not 

much difference between the capacitance of the lines.  

 

It is also reported in [Shang02] that 60% of power is dissipated in the interconnection by 

experiments with a set of typical designs. Clocking and logic resources consume 14% and 

16% of the total power separately. Another important factor that impacts the dynamic 
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power consumption is the switch factor [Shang02]. Actually, the dynamic or switching 

power consumption of all these resources varies significantly with the switching activities. 

As in the VLSI, the clock distribution network is also a primary component of power 

dissipation.  

 

3.3  Low power design techniques 

 

Existing low power design techniques at two levels used in VLSI are explored and their 

effectiveness in low power FPGA design is examined in this section based on distribution 

of dynamic power dissipation in FPGA. The logic level design optimization of FPGA is 

performed during the synthesis, mapping and placing processes, which is done by 

Computer Aided Design (CAD) tools, and circuits level design involves the design of the 

FPGA device itself, so only the algorithmic and architectural levels optimization for low 

power are discussed in this section. 

 

3.3.1  Algorithm level optimization 

 

The most effective method for low power is performing optimization at the algorithm 

level. At the algorithm level, the optimization may involve performing algorithm 

modification, selecting new arithmetic operation or applying transformation described in 

[Chandrakasan95]. For instance, converting the complex arithmetic operations such as 
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multiplication and division to simple actions like addition and shifting can reduce the 

area many times as compared to typical implementation [Starzyk04]. 

 

This reduction in area results in the decrease of the effective capacitance, and thus the 

low power goal is achieved. Another way of reducing power through algorithmic 

modification is exploiting the advantages of constant values in arithmetic operations 

[Chandrakasan95]. This low power design technique is used in the design of Reed 

Solomon (RS) encoder. The finite field multiplication is the bottleneck of the high 

performance RS encoder. The fixed coefficient not only makes the pipelining of the 

design possible, but also minimizes the total number of the partial products in the new 

proposed structure.  

 

Exploiting algorithm parallelism is an effective way in low power design for VLSI 

[Chandrakasan95]. Parallelizing the design to low power works in VLSI due to the power 

supply’s quadratic impact on the power consumption. However, since the FPGA device is 

given before the design and the power supply is fixed, then the power supply reduction to 

low the power consumption is not applicable to FPGA design [Kusse98]. Yet, by 

properly exploring the concurrency in the data path on the algorithm level, the amount of 

the logic CLBs resources and interconnections may be reduced. This results from the 

logic combination by the LUT since each LUT can accommodate any four-input function. 

The optimum number of replications can be found by exploring the area power product in 

the design space. The example of this exploration is presented, in the design of message 
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checksum block of the digital modulator, where concurrency of the algorithm can be 

revealed by unfolding technique. Parallelizing the design speeds up the design, and the 

reduction of the area due to logic combination and less interconnection load may lower 

the power dissipation.  

 

In addition, the algorithm can be reformulated to simplify the control structure and to 

reduce the amount of the interconnection, which is the dominating factor of the power 

dissipation in FPGA. This style is suitable for the low power FPGA design. The design 

example of such algorithm reformulation is presented in the interleaver design. 

 

3.3.2  Architectural level optimization 

 

Techniques of optimizing architecture for low power are examined in this section. In 

VLSI, parallel architectures can be employed to speed up the design. This creates an 

opportunity to slow down processing in each parallel block by reducing the supply 

voltage and thus saving the power. This effective approach results from the power’s 

quadratic dependence on the supply voltage. As discussed in the algorithm level 

optimization section, the design space can be explored to obtain the optimum number of 

replications. Combining logic blocks by introducing parallelism on the architectural level 

reduces total effective capacitance improving the overall performance. At some optimum 
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number of replication, the total effective capacitance decreases when the logic reduction 

due to logic combination by LUT dominates.  

 

Pipelining the architecture used successfully in low power VLSI is also suitable for the 

low power design in FPGA. The increase in effective capacitance introduced by pipeline 

registers is merely 11% percent. This is because each output of the CLB has an optional 

registered output and the effective capacitance of this flip-flop is approximately 11% 

percent of the total logic capacitance, according to the effective capacitance in Shang’s 

table (Table 3.1). The data transfer frequency however can be reduced by a much higher 

factor and this results in a significant power savings. In addition, the pipelining has the 

lower area cost advantage over parallelizing. Therefore, the pipelined design is an 

effective low power design technique for FPGA 

 

Another category for low power design in VLSI at the architectural level is minimizing 

the switching activities by choosing a proper binary number representation, for instance, 

switching 2’s complement to sign-magnitude representation when the probability of data 

changing around zero is high [Chandrakasan95].  In addition, resynchronizations can be 

used to balance the signal paths to minimize the glitching activity [Chandrakasan95]. Due 

to the similar reasons, all these are suitable to low power FPGA design. 
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3.4  Low power design strategy for the digital modulator 

 

Considering the application characteristics specifies the low power design strategy. 

Maintaining a given level of  throughput is a common design concept in signal processing 

and other dedicated applications, in which there is no advantage in performing computing 

faster than some given rate, since the hardware will simply have to wait until further 

processing is required [Chandrakasan95]. However, scaling down the power supply 

voltage used in VLSI to slow down data transfer rate is not applicable to the low power 

FPGA design. Thus, the low power design strategy for the digital modulator targeted on 

FPGA is accomplished by slowing down the clock frequency, as well as minimizing the 

effective switching capacitances by design optimization at the algorithm and architectural 

levels.  
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Chapter 4  Low Power Design of Digital Modulator 

4.1  Introduction 

 

In this chapter, the low power design techniques are applied to the design of the several 

key modules including Reed Solomon Encoder, interleaver, TCM modulator and MPEG 

framer.  

 

4.2 Reed Solomon encoder 

 

The implementation of extended Reed Solomon (RS) encoder is discussed in this section.  

A systematic (128,122) encoder over GF(2^7) is used in the modulator. Its generator 

polynomial is g(x)=x^5+g4*x^4+g3*x^3+ g2*x^2+g1*x^1+g0, where g4=alpha^52, 

g3=alpha^116, g2=alpha^119, g1=alpha^61 and g0=alpha^15, where alpha is the root of 

the primitive polynomial p(x), i.e. p(alpha)=0. The primitive polynomial 

p(x)=x^7+x^3+1 generates all elements of GF(2^7).  

 

The straightforward method to implement this Reed Solomon encoder uses a feed back 

network with finite field arithmetic operations. The block diagram of the encoder is 

shown in Fig. 4.1. Two types of operations are involved - one is addition, which is simply 

XOR operation using the standard basis to represent the finite field elements; another one 
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is multiplication, implemented by the finite field multiplier. The multiplier is the key 

element and has a great impact on the performance of the RS encoder. The first parity 

symbols in a systematic Reed-Solomon codeword are given by the remainder of 

.The extended parity symbol is generated by evaluating the code 

word at the sixth power of 

)(mod)( 5 xgxxm ⋅ 128c

α  [ITU J.83]. So when mux_sel1=1, the first five parity 

symbols are generated; when mux_sel1=0, they are shifted out and at the same time the 

extended parity symbols are calculated. Finally, the extended parity symbols are 

transmitted when mulx_sel2=0.  
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Fig. 4.1 Block diagram for the extended RS Solomon encoder 
 
 
A number of architectures of this finite field multiplier were available [Berlekamp82] 

[Massey86, Jain98, Mastrovito91 and Sunar99]. Berlekamp and Massey-ommru bit serial 

multiplier, Mastrotio bit parallel and semi-systolic array multipliers are the four major 
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types of architectures. Bit serial structure is too slow for this design, though it has the 

area advantage over parallel structure. Bit parallel structure has higher performance, and 

thus lowers the speed requirement to lower the power. Two recently proposed parallel 

structures are investigated, and a new structure based on the fixed coefficient is proposed 

as follows.  

 

First, Jain’s parallel array-type multiplier is considered. Any nonzero elements in the 

finite field can be represented in two forms, the exponential form and the polynomial 

form. Using the polynomial representation based on the standard basis, the finite filed 

multiplication involves two types of operations, one is a polynomial multiplication and 

another is a modulo operation. In this structure, the multiplication and the modulo 

operation are executed alternatively. The algorithm and its implementation in the VLSI 

are discussed in Sunar’s paper [Sunar99]. The notation in this part is adopted from Jain’s 

paper [Jain98]. 

Let ,  where )(mod xpABC = )^2(,, mGFCBA ∈  and  is a primitive polynomial 

over . The polynomial representation is used, so 
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We define , then 

. Also define  with , then the final 

results of the multiplication is . The algorithm developed by Jain can be described as 

the follows: 
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2) At step m-1, the final result of the multiplication is obtained with )(mC

)1(
1

)1()( −
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− += m
im

m
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m
i cbac                                                           (4.7) 

As is shown in Fig 4.2, the block diagram of the multiplier over GF(2^7)  is derived from 

the above algorithm for this RS encoder design. The square block implements equations 

(4.5) and (4.6), the inputs p6 to p0, b6 to b0, and a6 to a0 are the coefficients of p(x), B 

and A respectively. The final results c6_out to c0_out were obtained at the output of the 

final stage blocks (step6) as shown in Fig. 4.2. 
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Fig. 4.2 Block diagram of the array multiplier over GF (2^7) 
 

Although the pipelining of this array multiplier can improve the performance by a factor 

of m, for GF (2^m), the feed back network in RS encoder make pipelining very difficult. 

In addition, pipelining of this structure requires fixed multiplicand B. I implemented this 

architecture to compare with the approach developed in this thesis. As demonstrated in 

next section, this new proposed approach yields smaller area and lower power dissipation. 

 

The proposed structure is very similar to the one described by Mastrovito [Mastrovito91]. 

However, the proposed multiplier has a significant advantage over Mastrovito’s design, 
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namely it is not limited to trinomial.  Both the Mastrovito’s and the new proposed 

multiplier are fully parallel structures. In both of them, two fundamental operations, 

multiplication and modulo operation, are performed separately. The Mastrovito’s 

multiplier can be used only in case when the primitive polynomial is x^m+x^1+1. Sunar 

extended the Mastrovito’s multiplier to the all trinomials and we refer to it as the 

modified Mastrovito’s multiplier. Fortunately, the modified Mastrovito’s multiplier can 

be used for the primitive polynomial in our design, since p(x) = x^7+x^3+1 is a trinomial.  

 

In what follows, I describe the theory and the basic operation of Sunar’s multiplier, which 

is commonly used in error correction processing. For the multiplier over GF(2^m), this 

method constructs the multiplication matrix by pre-calculating higher order elements 

 modulo p(x) using several equations. The notation in this part is 

adopted from [Sunar99]. 

221,...,, −+ mmm xxx

Let ,  where )(mod xpABC = )^2(,, mGFCBA ∈  and  is a primitive polynomial 

over . The polynomial representation is used, so 
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The multiplication matrix Z will be constructed in terms of the coefficients of A and the 

procedure for the construction is shown as follows.  
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The matrix Z equals to X+Y, 
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For the derivation of the above results, please refer to the paper [Sunar99]. 

 

The multiplication matrix of the modified Mastrivito’s multiplier over GF (2^7) for the 

primitive polynomial x^7+x^3+1 is derived as follows.  

In this encoder, m= 7 and n=3. Then k=2 and 
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=  (4.20) 
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For the constant coefficient in the RS encoder, we pre-calculate these matrixes and the 

design example of g4=alpha^52 in the generator polynomial is 

.i.e a6=a0=0, all others are 1. The multiplication matrix  123454 ααααα ++++=g

Z=     
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Then, the diagram of the multiplier over GF(2^7) can be derived from the matrix shown 

in Fig. 4.3 

 

 

Fig. 4.3 Block diagram of the multiplier (C=A*alpha^52) over GF(2^7) 
 

The bottleneck for speeding up the GF multiplier is always the modulo operation. Here, I 

propose a new version of this algorithm that reduces the number of the partial product 

and addition operations to speed up the design. In this proposed structure, we use both the 

polynomial and exponential representations instead of single polynomial or exponential 

terms. The key idea to simplify modulo operation is pre-computing, which takes 

advantage of the fixed coefficients. Let us consider )(mod xpABC = , where 

 and  is primitive polynomial over . The polynomial 

representation is used for A and C, so 
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Since every none zero element in the GF(2^m) can be represented as , where 
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The design example of the multiplier with B equal to alpha^52 is shown as follows. 

The coefficients of , where j=0,1,…6, is shown as the following matrix, )(mod52 xpj+α

R=  
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1     1     0     1     0     1     1
1     0     0     0     1     1     1
0     0     1     1     1     1     1
0     1     1     1     1     1     0

The hardware structure derived from the above result is similar to the modified 

Mastrovito multiplier shown in Fig. 4.3. The tree structure [Chandrakasan95] can be used 

to compute the individual column, if the number of elements is larger than four, which is 
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referred to as the granularity of the LUT for Xilinx Virtex FPGA. Since all the inputs 

from A arrive at the same time, the tree structure effectively reduces the glitching 

activities by balancing the signal paths and reducing the logic depth [Chandrakasan95]. 

 

Comparing to the Mastrovito’s multiplier, the computing complexity is of the same order: 

m for GF(2^m). The proposed finite field multiplier takes advantage of the multiplication 

by a constant coefficient, while Mastrovito’s multiplier is more general and both A and B 

are not limited to fixed values. On the other hand, the proposed structure is not limited to 

the trinomials, which is the limitation of the Mastrovito multiplier. 

 

Table 4.1 shows the comparison between the proposed methods and Jain’s array 

multiplier (From Fig. 4.2) in terms of power and area when they are employed in the RS 

encoder. From this table, we can see that the logic power and the signal power are 

reduced by about 243% and 350% respectively, which results from the great 

simplification of modulo operations in the proposed method. Also the total area cost is 

reduced by 233% by employing the new structure.  

 

Table 4.1 Performance of RS encoders using different multipliers 
 

Power in 
(MW) Clock power Logic power Signal power Input power Total Power Area Area*Power

Proposed 0.462 0.331 0.375 0.199 1.367 62 84.754 

Array 0.415 1.136 1.69 0.199 3.44 207 712.08 
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4.3  Trellis coded modulation 

 

In this section, energy efficient design of trellis coded modulator is presented. The 

modulator consists of four functional blocks: data formatter, differential pre-coder, 

punctural binary convolutional encoder and QAM mapper. The signal graphs of the 64 

QAM and 256 QAM have slight difference in the number of trellis groups and bit width, 

so 64 QAM design example is discussed.  

 

The direct map method can be used in implementing both the differential pre-coder and 

QAM mapper. Although pipelining this feedback network pre-coder is possible as shown 

in [Chandrakasan95], it will not impact the performance of the whole modulator and the 

circuit complexity increases.  

 

For the 4/5 puncture binary convolutional coder, the block diagram is shown in Fig. 4.4. 

The 4 bit data stream is an input at Din from the output of the differential pre-coder 

received at the bit rate, which is seven times larger than the symbol rate. 8-bit encoded 

data are generated at Dout. The multiplexer selects the data from upper or lower branch 

(g1 or g2) according to the puncture matrix. The first three bits are labeled as the invalid 

data.   
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Fig. 4.4 Block diagram of the convolutional coder 
 

The data formatter is the key module for this trellis coded modulator. The data formatter 

forms the trellis group from the RS symbols as shown in Fig. 4.5 

 

 

Fig. 4.5 RS symbols to Trellis Group bit ordering 
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We define four RS symbols as the single group for conversion to trellis group. Each of 

four symbols is referred to as a processing period named as RS0 symbol period, RS1, 

RS2 and RS3 symbol period. These four input RS symbols are reordered into six groups 

or six output bit streams: C5, C4, C2, C1, W and Z. The rules for this reordering are 

shown in Fig. 4.5. The rules for RS symbols to trellis group bit ordering:  

• The odd bits of RS0 symbol and the even bits in RS1 symbol’s LSB form the C5 

• The even bits of RS0 symbol and the odd bits in RS1 symbol’s LSB contribute to 

the C2 

• The remaining four bits of the RS1 symbol, symbol’s MSB, are fed into the W 

input of differential pre-coder.  

For the C2, C1, and Z repeat the same reordering on the RS2 and RS3 symbols.  

The hardware structure resulting from the direct map is show in Fig. 4.6. 

 

 

Fig. 4.6 Block diagram of the data formatter using direct map method 
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7-bit symbol data at DIN are fed into the register at the symbol frequency (CLK_symbol). 

During a loop period, data formatter accepts four symbols to form the trellis group. The 7 

to 1 multiplexer functions as a parallel to serial converter. The selection lines of the 

multiplexer Mux_Sel change from 0 to 7 at the frequency of symbol rate/8 (clk_b). 

During the first seven clock cycles, the symbol data is distributed to the corresponding 

output shift register. The Random Access Memory (RAM) based shift register was 

employed. It is very efficient for this data in terms of both area and interconnects since 

only six LUTs and 12 interconnects are used. At the eighth clock period, new 7-bit RS 

symbol is loaded. The load enable signals of the RAM based shift register are enabled 

according to the rules of reordering as shown in Fig. 4.5. A lower 3 bits of 5-bit counter 

are used to count the bit sequence and the remaining 2 bits indicate the sequence of the 

RS symbols. Combining the counter and some additional combinational logic, the control 

logic is enhanced to deal with the resynchronization of the output data bits to the mapper, 

which is caused by the delay of further processing the w and z inputs through the 

differential pre-coder and puncture binary convolutional encoder. This prevents 

modulator from accepting the symbol data in a continuous way. In addition, the 

handshake logic has to be introduced.  

 

One brutal way to remove this imbalance in the signal graph is replicating the same data 

path to speed up the pre-coding and convolutional encoding. Two identical data paths 

including the two RAM based registers for w and z, convolutional encoding and pre-

coding are used, and each unit works at the symbol rate. The data path capacitance has 
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increased by a factor of 2, and the extra routing and overhead due to switching of the 

inputs and outputs make parallelizing of the design inefficient in terms of area and power 

consumption.  

 

In this thesis a novel approach to design data formatter was developed. It is based on 

rescheduling the sequences of the reordering process. By introducing the buffer, which is 

implemented using bit serial RAM, we first deal with the RS1 and RS3 instead of RS0 

and RS2. The bit stream is then fed into pre-encoder and convolutional encoder, and the 

RS0 and RS2 is reordered simultaneously.  The sum of extra delay of the two encoders is 

one symbol period and then the synchronization problem automatically disappears. The 

block diagram is shown in Fig. 4.7. 

 

  
Fig. 4.7 Block diagram of the modified data formatter 

 

There is also a slight increase in the total “effective” capacitances introduced by  

rescheduling, which costs the four RAM based shift registers as buffers, two multipliers 
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and extra control logic, while the previous methods increase the resources by doubling 

the logic and connections. From Table 4.2, the replication method consumes 74% more 

power and cost 72% more logic resources than the proposed rescheduling method. Both 

the interconnection and logic cost are reduced by reformulating the algorithm , which 

results in low power consumption. Power area product of the original method is higher by 

almost 200% than that in proposed approach. 

 
Table 4.2 Comparison between two methods in area and power 

 Power (mW) Area(Slice) Area*Power 
Replicate data path 5.976 74 442.224 

Rescheduling 3.43 43 147.49 
Replicate / rescheduling 174.23% 172.09% 299.83% 

 

4.4  Interleaver design 

As shown in Fig. 4.8, the (I, J) convolutional interleaver consists of input and output 

commutators and I branches or delay lines. The interleaver accepts the Reed Solomon  

symbols at the input commutator, and the interleaved data streams are output at the 

output commutator. Reed Solomon symbols appear on the input commutator arm at the 

symbol rate, which is around 5.0Msymbol/sec for ITU J.83 standard [ITU J.83]. The 

topmost branch, labeled with 1, has zero delay. The second branch has J symbol periods 

delay, and the k-th branch is delayed by (k-1)*J symbol periods. The last branch has (I-

1)*J symbol periods delay. Both input and output commutators are reset to the top most 

branch and move onto the next branch at the symbol frequency. After reaching the last 
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branch, they switch back to the first branch and repeat the above rotation. We define the 

commmutator switching from branch 1 to I as a loop. 

 

 

Fig. 4.8 ITU J.83 convolutional interleaver (I, J) functional block diagram 
 

The direct map method is used to implement this convolutional interleaver. The key 

elements for the straightforward implementation are the delay lines. RAM based shift 

register is suitable to realize the delay elements. A single RAM based shift register can 

implement the delay lines with the value ranging form 0 to 15 clock periods. Then the 

delay line is constructed by cascading these RAM Based Shift Registers, named as RAM 

Based Shift Register Chain.  This implementation is very efficient in terms of area and 

power consumption. The design example of (128,1) convolutional interleaver is shown in 

Fig. 4.9.  
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Fig. 4.9 Block diagram of the interleaver using the RAM based shift register 
 

7-bit symbol data is fed into the interleaver in a bit stream format through the Serial to 

Parallel module. CLK_symbol is the symbol frequency and CLK_bit is the bit rate, which 

equals symbol rate * 7. Ce(i), i=0…I-1, is the shift enable signal. For a branch i, two 

delay lines were used. One is the delay line of data and its input is symbol data in a serial 

format.  It has (i-1)*J clock (CLK_bit) periods delay. Another delay line is for data 

output enable and its input is valid data flag, valid_data_f, and it has (i-1) 

clock(CLK_symbol) periods delay. When valid data appears at the input of the delay line 

of data, the valid data flag is shifted into the data output enabling flag delay line 

simultaneously. Since this delay line shifts at the frequency same as the symbol rate, then 

the length of this delay line can be shrinked by factor of 7 bits per symbol. This reduces 

the area cost and the signal switching activities. These two delay lines share the same 

shift enable signal Ce(i), for branch i. The rotation of the commutator is implemented by 

enabling the delay line at one symbol period. The outputs of the delay lines connect to the 
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)

inputs of the 128 to 1 multiplexer. There are two 128 to 1 multiplexers, one is for the data 

output and another is the valid data flag or data output enable. The multiplexer selection 

signals of the multiplexer, Mux_Sel,  are synchronized with the position of the 

commutators. Finally, valid data stream is converted to the 7 bit symbol data at the output 

and out_enable signal indicates whether it is valid or not. However, this design is not so 

efficient from the power consumption perspective. The interconnection consists of 128*2 

shift enable signals, 128*1 data input signals, two types of clock signals, 128*2 output 

signals from the delay lines to the multiplexer outputs, and also the interconnecting signal 

between the shift register.  

 

In what follows, the interleaver algorithm is reformulated for low power purpose. It is 

based on a new concept of using dual port memory to realize the interleaving. The 

interleaving can be considered as a sequences reordering process for the input symbols. 

The design example of (I, J) convolutional interleaver is presented as the follows.  The 

following lemma helps to identify output groups and time instances at which valid data 

was obtained. Let R(0), R(1), R(2),…,R(m) be the input Reed-Solomon symbols and 0, 1, 

2, …,m represent the time indices. Divide the output into groups of symbols R(i), where 

symbols form a group when they are output at the same loop (i.e. when the commutator 

rotates from the first branch to the last branch.) 

 

Lemma: The output sequence after the interleaving is a sequence of  groups: 

R(I*K), R(I*K-(I-1)), R(I*K-(I-1)*2),…, R(I*K-(I-1)*(I-1)), where 

⎣ ⎦( 1m/I +

⎣ ⎦m/I0,...,=K . 
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When I*K-(I-1)*j >=0, and I*K-(I-1)*j <= m, the output is a valid output; otherwise, the 

output is not a valid output.  

 

Proof:  

Define a single loop as the commutator rotates from the first branch, branch 0,  to the last 

branch, branch I-1. At each loop, index of the RS symbols increases by one at the symbol 

frequency. For the first loop, the R(0+j) RS symbol appears on the j-th branch. At the ith 

loop, R(i*I+j) RS symbol presents at the j-th branch. During the first loop, only R(0+0) is 

output since the first branch has no delay. Since all the other indexes in this output group, 

I*0-(I-1)*p (p=1 to I-1), are negative, the lemma is proven for n=0. During the second 

loop, the first branch outputs the data R(I*1), which appears on this branch at this loop; 

the second branch output is R(I*1-(I-1))=R(0*I+1), which is fed into the second branch at 

the first loop and it is shifted out after one symbol delay, and for all the other indexes in 

this output group ,I*1-(I-1)*p (p=2 to I-1), are negative. The lemma is then proven for 

n=1. Assume that the lemma is valid for n=K. At the (K+1)th loop, the output of the first 

branch is the data just fed into this branch and it is equal to R(I*(K+1)). For the second 

branch, it has one symbol period delay, so its output has I symbols delay of data output at 

the Kth loop, which is equal to R((K-1)*I+2+I), and for i-th branch, the data that appears 

on the output also have I symbols delay of data output at the Kth loop, which is equal to 

R(I*K-(I-1)*i+I)= R(I*(K+1)-(I-1)*i). So the lemma is proven for n=k+1 and as a results 

of induction for all n>=0.  
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The proposed dual port memory design uses the above rules to interleave the input data. 

Assume that we have an interleaver with I branches. We map the RAM with column 

address and row address. Let I=2^(m+1). The column address can be represented as 

, and the row address lines are , so the RS symbol is 

written into the RAM with the following address pattern. The address is initialized to all 

zeros at the beginning of the interleaving, and increases by instead of 1 at the 

symbol frequency; at the same time, data is read at the other port with the address 

increased by 1 at the symbol frequency and is reset to all ones. We can prove that data 

output have the same sequence as described in above rules. As shown in Fig. 4.10, we 

map the dual port RAM to a matrix with the column address equal to the column number 

and row address equal to the row number.  

ccc
m

c
m aaaa 0121 ,,...,, −−

rrr
m

r
m aaaa 0121 ,,...,, −−

321321
mm

1...001...00
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Fig. 4.10 Memory map of the Interleaver using matrix format 
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For each loop, the RS input symbol data is written to the diagonal of the above matrix 

(RAM). During the first loop period, the data is written to the diagonal line from (0,0) to 

(I-1,I-1). At the next loop, the data is written to the successive diagonal line, which starts 

at (1,0) and ends at  (I mod I, I-1)=(0,I-1), since the address is increased by , 

i.e. . The dashed line matrix is an extension from the 

original matrix (RAM), so the data written to the matrix (RAM) in a single loop is simply 

a diagonal line. At the i-th loop the data is inputted to the diagonal line starting from ((i-1) 

mod I, 0). The interleaved data is obtained by reading the data row by row at the other 

port of the RAM. At the same column of the neighboring line, the time difference of 

these two data equals to (I-1) symbol periods. This is because the time difference at the 

start point of the successive lines is equal to I symbol periods, which is time period of the 

loop. The time index differences between these two symbols of the same column and 

their start points are m and n, and the absolute value of m-n is 1 symbol delay time. So, 

the total time difference between these two symbols equals (I-1). The symbol index of the 

kth column always starts with I*K, where 

321321
mm

1...001...00

{{ 321321321321
mmmmmm

II 0...001...001...001...0011 =+−−

⎣ ⎦m/I0,...,=K . 

 

To eliminate the invalid data at the beginning of the interleaving, the RAM is initialized 

to be zero and the data bus width equals 8 instead of 7 bit symbol data. One MSB bit is 

used as the valid data flag. Also each time the data is read from the RAM, zero is written 

back to the same position to invalidate the data at that position. To avoid the conflict that 

occurs when data is written at the same address on the two ports, the write operations at 
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two ports are performed at different clock cycles. Also the counter is employed to make 

the read operation occurring only when data is available and to provide the 

synchronization mechanism for the data input and output.  

 

The reformulation of the algorithm by using time sequence reordering significantly 

simplifies the control structure and reduces the switching activities, since the clock 

frequency is reduced by factor of seven (from the bit rate to the symbol rate), and the 

interconnection lines,(which are the major power consumption sources in FPGA), are 

reduced by a factor of around twenty. Unfortunately, there is a slight increase in the area 

by using the block RAM. Unlike the outside RAM, the power consumption of block 

RAM is comparable to the logic resources. However, the logic resource only consumes 

16% power according to [Shang02]’s result. Therefore, the low switching activities and 

smaller interconnection compensate cost due to logic increase in the RAM. This new 

method has the advantages both in area, delay and power consumption. Unfortunately, 

the XPower tools from Xilinx does not provide the power estimation of the Block RAM, 

thus no quantitative results can be obtained. Based on the reduction of the clock 

frequency and the number of interconnection lines, the power consumption can be 

reduced by a factor of 15 without considering the power dissipated by the block RAM. 

Therefore, this reformulation is well suitable for the interleaving with fewer branches 

since it requires less memory space.  
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4.5  MPEG framer 

 

In this section, the design of MPEG checksum processing block is discussed. Linear Feed 

Back Shift Register  is used to generate the MPEG checksum.  )(xf

)(/)](1[)( 1496 xgxbxxf +=  [ITU J.83] 

Where  and . 8651)( xxxxxg ++++= 731)( xxxxb +++=

The structure of this checksum generation function is shown in Fig. 2.2. All the addition 

operations are modulo 2 and the LFSR is reset to all zeros before the calculation of a new 

frame. We present this design with the design space exploration example for parallelizing 

the design to lower the power consumption. Data flow graph (DFG) is used to represent 

the feedback network g(x) as shown in Fig. 4.11. The nodes represent modulo 2 addition 

operation and the edges represent the data path between the nodes. The number 

associated with the edge represents the delay. For instance, D represents one bit period 

delay, 2D represents two-bit period delay and so on. In Fig. 4.11(a), A, B, C, and D is 

modulo 2 addition and X, Y are input and output nodes.  
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(a) 

 

 

 

(b) 
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(c) 



 
 

82 

 

 

The following connection without any delay are not drawn in above diagram: 

Yi->Ai, Yi->Bi, Yi->Ci and Yi->Di, where i=0, 1, 2, …,7 

Bi->Ci+4, where i=0, 1, 2,3 

Yi->Ai+2, where i=0,1, 2,3,4,5 

The following connection with one delay are not drawn in above diagram: Y6->A0 and 
Y7->A1   

(d) 

Fig. 4.11 Replicating the data path in (a) by factor 2 in (b), 4 in (c) and 8 in (d) 
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Applying the unfolding to the DFG in (a) with the unfolding factor equal to 2, 4 and 8, 

the unfolded DFGs are obtained as shown in Fig. 4.11(b), (c), and (d). These DFGs were 

implemented on Xilinx Virtex and their performance in terms of power and area are 

shown in Fig. 4.12.  From this plot, it is clear that the unfolding factor 2 is the optimum 

number to replicate the data path, while bit serial structure is not necessarily the best 

choice for low power design though it has the smallest area. The increase of the unfolding 

factor to 4 and 8 degrades the performance in power and power area product. Thus, the 

optimum number of the design parallelization is obtained by the design space exploration.  
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Fig. 4.12 Performance of the parallelizing the design by a factor of 1, 2, 4 and 8 
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A detailed analysis of various sources of power dissipation in these structures is 

illustrated by Fig. 4.13. Fig.4.13 shows that though the clock power is reduced by a factor 

proportional to the unfolding factor, the logic and signal power increase by a factor from 

3 to 5 when unfolding factor equals to 4 or 8. When this increase of logic and 

interconnection dominates, the power reduction due to clock slowing down can not 

compensate the extra cost due to parallelism. Then, further increase in the parallelism 

only increases the power consumption. Thus design space has to be explored to optimize 

the design using the parallelism.  
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Fig. 4.13 Power of the parallelizing the design by a factor of 1, 2, 4 and 8 
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In this chapter, the low power design techniques were applied to the design of several key 

modules including Reed Solomon Encoder, interleaver, TCM modulator and MPEG 

framer.  
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Chapter 5  Simulation and results 

 

5.1  Introduction 

The implemented designs were tested using the simulation tools from the Active-VHDL. 

The functional simulation environment has been built in Matlab. It generates the test 

vectors and expected results for the VHDL implementation. In this section, the simulation 

results are presented by individual module of the design.  

 

5.2  RS encoder 

 

122 symbol data were generated using the Matlab to be applied as the test vectors to the 

testbench of the RS encoder in VHDL. The six parity symbols were computed in 

Matlab :30,113,116 83, 95 and 18. The simulation waveforms of RS encoder in Active 

VHDL are shown in Fig. 5.1. The final six-byte symbols on data_output bus, (where the 

data valid signal indicates that the output data is valid), are the same as the Matlab results.  
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Fig. 5.1 Simulation waveforms of RS encoder 
 

5.3  Trellis coded modulation 

 

The Trellis coded modulation has four sub blocks: data parser, differential pre-coder, 

binary convolutional coder and QAM mapper. The functionality of these sub blocks are 

verified by Matlab and VHDL simulations as follows. 

 

5.3.1  Data parser 

 

First, data parser forms the trellis group as shown in Fig. 2.7. Four symbols data are fed 

into this block when the block is ready to accept new symbol data, that is r_rdy is high, at 

the rising edge of the symbol clock and the falling edge of the bit clock (symbol *8) . 

MSBs and LSBs of ‘A’ and ‘B’ shown in Fig. 2.6 are saved to the LFSR as shown in the 

following simulation wave forms. The ce_line(0 to 5) shown in Fig. 5.2 are the shift 

enable signals of the LFSR for trellis group of C5, C4, C2, C1, W and Z. The signal 
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vector sel_line selects the bit data in the symbol in LSB first and when sel_line=”7”, new 

symbol data is loaded.   

 

 

Fig. 5.2 Simulation waveforms of data parser 

 

5.3.2  Differential pre-coder 

 

As shown in Fig 5.3, the signals dformat_out(4), dformat_out(5) and df_x and df_y are 

connected to inputs w and z and outputs x and y in Fig 2.6. The signal ce_in_df  

initializes the differential pre-coder to zeros before the data is shifted out from the data 

formatter LFSR. The high value of ce_line(5) for four bit clock period before the cursor 

that indicates the last four bits of the fourth RS symbol is saved to the LFSR, which 

means the end of the data formatting. Although the pre-coder output df_x and df_y are 
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still active after four clocks, these bits will be masked by the input_mask signal of the 

convolutional coder. 

 

 

Fig. 5.3 Simulation waveforms of differential pre-coder 
 

5.3.3  Binary convolutional coder  

 

As shown in Fig 5.4, df_x and df_y signals are connected to outputs of the differential 

pre-coder and u and v is the output of the binary convolutional encoder in Fig. 2.6. The 

pulse of start_conv signal resets the registers of the convolutional encoder. The 

input_mask signal lasts four bit clock cycles to ensure data inputs is valid. The 

input_mask signal is also the select signal for the multiplexer of the output and switch 

output from the upper to the lower branch. 
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Fig. 5.4 Simulation waveforms of differential pre-coder 
 

Finally, when the convolutional encoding is done, the 5QAM symbols are output from 

the dout signal and the ce_out indicates its validity as shown in Fig. 5.5. These outputs 

consists of two parts: first are the MSBs of ‘A’ and ‘B’, which are saved in LFSR during 

data formatting stage; second are the outputs of the convolutional encoder, u and v 

signals. All these six outputs will be fed into the QAM mapper to obtain the 

corresponding 6-bit constellation symbols.  
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Fig. 5.5 Simulation waveforms of formation of the 5QAM symbols 
 

5.3.4  QAM mapper 

 

QAM constellation mapping is implemented using the look up table. The six 5-QAM 

symbols c5 to c0 are the inputs to the QAM mapper as shown in Fig. 2.6. The simulation 

waveform shown in Fig 5.6 is a 64-QAM  mapper. The I and Q output are valid when 

QAM_ce is high.  
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Fig. 5.6 Simulation waveforms of formation of the 5QAM symbols 
 

5.4  Interleaver design 
 

The interleaver is tested using two methods, first Matlab and testbench simulation on 

large amount of data; another is simulation wave based on a small scale of data. In the 

first method, test vectors were generated by Matlab and fed into the test bench of the 

interleaver. The interleaver data symbols generated from this test bench are compared 

with the Matlab results. The second method using simulation in a small scale is presented 

as follows. The simulation waveforms shown in Fig.5.7 and Fig. 5.8 show the response of 
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the interleaver (4,1). The input data is valid when data_avail sigal is high, and the valid 

output of the interleaved data is obtained when ce_out is high. The test vector contains 

integer data from 3c to 4c. In Chapter 3, two special cases, starting interleaving and 

ending interleaving were discussed. In this simulation, these two special cases are tested. 

Fig. 5.7 shows how the interleaving starts. Data input, din, have the integer data from 3c 

to 49 and the output sequence is 3c, 40, 44,41,3e, which is correct. Fig 5.8 shows how the 

interleaving ends. At the final stage, the output sequence correctly shows 4C 49 46 43, 

4A 47 and 4B. 

 

 

Fig. 5.7 Signal waveforms at the interleaving starts 
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Fig. 5.8 Signal waveforms at the interleaving ends 
 

5.5  Randomizer 
 

The simulation waveforms are shown in Fig 5.9. As shown in Fig 2.5, the data_in signal 

is the “Data in” and the data_out is the “Data out”, and the fb_x_as_q, fb_x_as_q1, and 

fb_x_as_q2  are the output of the register from left to right. The test data fed into the 

data_in are 00 to 0A. The output of the randomizer is compared with that of the Matlab 

code. Then functionality of the randomizer is verified in VHDL.  

 

 

Fig. 5.9 Simulation waveform of randomizer 
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5.6  MPEG framer 
 

Matlab generates the test vectors and computes the output signature for the VHDL 

implementation. The functionality of the module is verified by comparing this signature 

with the one generated by Matlab. 
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Chapter 6  Conclusions and Future Work 

 

6.1  Conclusions 

 

This thesis research is focused on the design of the digital modulator for a cable terminal 

system targeted on FPGA with emphasis on low power dissipation. The specification of 

the digital modulator is presented, which is then virtually implemented in the structural 

VHDL on Xilinx FPGA Virtex II. Based on the power distribution in FPGA, we found 

that the existing VLSI low power design techniques are effective for energy efficient 

design in FPGA. By applying these techniques to the digital modulator design and 

exploring the design space of the area and power product, an acceptable low-power 

design is obtained.  

 

Existing research results on power distribution in FPGA by Shang shows that the 

dominant components of the dynamic power consumption in FPGA are interconnections, 

while clock and logic modules consume around 14-16% of total power each. The power 

dissipation in FPGA changes in proportion to the switching activities. By limiting these 

switching activities in the implementation of algorithms, a significant part of the power 

can be saved. 

 



 
 

97 

 

The effectiveness of the low power VLSI design techniques at algorithm and architecture 

levels in FPGA design are investigated based on the characteristics of the power 

distribution in FPGA. First, performing the optimization at the algorithm level is well 

suitable to the low power FPGA design. Performing the algorithm modification, to speed 

up the design, can lower the clock frequency requirements of the design reducing its 

switching activities. Also, the algorithm can be reformulated to simplify the control 

structure and thus to reduce the amount of interconnections, saving hardware resources 

and energy dissipation. Then, converting the complex arithmetic operations to simple 

operations and taking advantage of the constant values in these operations can reduce the 

effective switching capacitances and improve the speed by reducing the design area. The 

optimization performed on the architectural level is also effective for the low power 

design in FPGA. Pipelining the design, improves the performance with little overhead. 

Also the switching and glitching activities can be minimized by choosing proper binary 

number representation and balancing the signal paths. Thus, for the digital modulator 

design discussed in this thesis, the strategy employed is improving the performance of 

design and slowing down the clock frequency, as well as minimizing the effective 

switching capacitances by optimizing the design at algorithm and architecture level. 

 

By applying these techniques to the design, all the design options are examined towards 

the low power design goal. In the design of the RS encoder, the bottleneck of the 

performance improvement is removed by employing a new structure for the finite field 

multiplier. For the interleaver design, dual port memory scheme is used to reduce the 
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switching activities and the amount of the interconnection. Then rescheduling is 

employed to solve the real time requirement for the TCM modulator. This reformulation 

reduces the area cost and increases the performance. Parallelizing the design is examined 

in the design of the MPEG checksum generator. And the results show that it is not as 

effective as in VLSI since the voltage is fixed in the FPGA design. Therefore, we 

conclude that most of the VLSI low power design techniques, except parallelizing, are 

very effective for energy efficient design in FPGA. 

 

6.2  Future work 

 

Perhaps the most effective way for the low power design in FPGA involves the design of 

the devices themselves, since the effective capacitance is very large comparing to the 

equivalent capacitance in the VLSI technology. In addition, power estimation tools 

providing more accurate and detailed picture of the power dissipation of the resources is 

highly desirable for the low power design and will facilitate the exploration of the design 

space. Existing tools lack of such support.  
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