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1 Introduction

The United States Army, Navy, Air Force, and the intelligence community have all been

actively researching the subject of Automatic Target Recognition (ATR) algorithms for

many years. Part of the reason for this research has been the explosion in the amount of

information that is becoming available. The United States is bringing on line more satel-

lites, sensors, and sensor systems which are responsible for this deluge of information. At

the same time there has been a push to downsize government in general and the military

specifically. This means that there are far fewer people to interpret the data. To make mat-

ters even worse the time available to make critical decisions based on the data is becoming

shorter. As the data becomes more complex with new sensors pushing the envelope of

knowledge and with fewer people available to develop the new generations of ATR sys-

tems, scientists and engineers have looked to computers to assist with this development.

Innovative sensors capable of sensing new and broader aspects of the electromagnetic spec-

trum are befuddling past methods of interpreting this new “imagery.” In the past human

intelligence, experience, and intuition were excellent guides. However as these new sensors

move more toward sensing DC to daylight, intuition fails. Machine learning provides a new

hope that computers can develop new ways of interpreting data and transforming it into

information.

There is a hierarchy associated with converting data into knowledge or understanding [34]. 

Data - Data is at the bottom of the hierarchy and normally consists of raw numbers.

This could be the signal strength values in range bins or latitude and longitude numbers of

a target’s location.
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Information - In order to turn data into information the data must be associated,

organized, and perhaps fused with other data. Once this is accomplished trends become

apparent. These trends tell what is happening at a basic level. A series of latitude and lon-

gitudes of a given target indicate direction and speed.

Knowledge - Information becomes knowledge when it is combined with context,

education, and experience. Knowledge indicates why something happened giving a better

view of a bigger picture. Knowing the direction and speed of a target along with the target’s

ID and similar movements from other targets may reveal the mission of the target.

Understanding - Understanding is at the top of the hierarchy. When knowledge

and intuition are combined with perspective and judgement obtained over time understand-

ing is developed. Understanding permits anticipation of future information, how it fits in

the overall picture, and what actions should be taken based upon it.

It is the goal of machine intelligence and data mining to turn data into knowledge and per-

haps understanding. ATR’s goal is to take the myriad of data being spewed forth by a mul-

tiplicity of sensors and convert this into knowledge to be used by commanders and troops

to effectively accomplish their mission.

1.1 Background
Although not a new sensor, High Range Resolution (HRR) radar is becoming increasingly

more important as an ATR sensor. New radars are being deployed with this mode of oper-

ation. This sensor collects data which is a range profile of an aircraft. The data obtained is

the result of the electromagnetic scattering characteristics of the target as a function of the

range along the line of sight of the radar. Strong returns will come from items such as the

canopy-fuselage interface, the nose cone, the wing root, the tail root, and engine cavities to

name just a few. The goal of the ATR system is to identify the target (aircraft type in the

case of this research) from this data. The concept of HRR radar is illustrated in Figure 1-1.
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HRR radar target identification is not an easy task. Figure 1-1 shows that a three dimen-

sional object is being represented as one dimensional signal. Three dimensions are col-

lapsed into one. The radar signals are typically modeled as complex exponentials [22].

When these are combined during the dimensional reduction, they add constructively or

destructively depending on their relative phases. Therefore just a slight change in the rela-

tive phases in the returns can have significant effect on the signature. This results in a high

degree of variability in the target signature. This variability can easily be seen in Figure 1-2

which contains HRR returns over a one second period. Two aircraft are shown with 5 obser-

vations, 200ms apart. During this time period the azimuth and elevation changed by less

than one degree. This variability in signature is characteristic of all HRR signatures. Due

to this variability most ATR approaches, until now, have been statistically based.

For small numbers of targets the targets have been shown to exhibit good separability using

standard statistical pattern recognition techniques [23]. The problem has typically been

meeting performance requirements. Typically these include:

a) high probability of declaration (Pdec).

b) high probability of correct classification (Pcc).

c) low probability of misidentifying an unknown target.

Figure 1-1 HRR Radar Target Identification
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Known targets are those that are contained in the training data set. Unknown targets are

anything that is not in the training data set. For an ATR system to be useful it must declare,

when presented with a known target, a high percent of the time. When the system does

declare, it must be correct almost all the time. If the target is unknown, the system should

either declare that or just not make any declaration at all. These are conflicting goals. If the

ATR system does not have to declare often, then it is easy to just declare when the system

is absolutely certain. The Pcc will be very high but Pdec will be very low. Conversely if the

system is forced to declare almost all the time, it likely will be wrong a significant part of

that time. The unknown target classes are problematic. Obviously they cannot be included

in the training data set or else they would be known targets. To put this in perspective, a

system requirement might be Pcc> 90% and Pdec> 85%. These figures would be contained

in the specifications for a given system based on its mission.

A HRR is considered a nonliteral sensor. That is it does not match signals humans are

familiar with. A person seeing a picture can easily do recognition on it because it is the

same as normal vision. A HRR signature would be better interpreted by a person if it was

listened to (sound is a one dimensional signal). However, the HRR signature is presented

as a visual signal and humans are not very good at interpreting it. Therefore, intuition does

not provide insight in how to devise an ATR system for HRR. The focus of this research is

to apply advanced machine learning to creating an ATR capable of meeting operation

requirements for the Air Force.

Figure 1-2 One Second Sequence of HRR for Two Aircraft
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1.2 Related Research
The literature reviewed on classifiers for identifying HRR signatures for this research effort

covered the most popular classification technique, the constrained quadratic classifier, and

one of the most recent developments, the Statistical Feature Based Classifier with Feature

Level Fusion (StaF).

Current approaches for HRR use the entire range profile as a feature vector. The training of

this classifier is a statistical parameter estimation problem. For better accuracy, due to the

extreme variability of a target signature with azimuth and elevation, classifiers are typically

developed for a small viewing window of approximately 5o in azimuth and 5o in elevation.

This is illustrated in Figure 1-3.

The parameters to be estimated will depend on the algorithm to be used.

1.2.1 Quadratic Classifier
One of the most frequently chosen techniques for classification of HRR signatures is the

constrained quadratic classifier [24]. This classifier is based on computing the mean and

variance for each range bin in the signal. The discrimination function for this classifier is:

(1-1) 

Figure 1-3 Windowed Partitioning of Data
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where xi, , and  are the observation, mean, and variance of the i th range bin for target

class k. The classification of the observation is determined from the maximum likelihood

criteria,

(1-2) 

where  is the maximum likelihood target class. Another variant of this technique is to

use mean square error which does not use the variance term. This class of target recognizer

works best when the number of target classes is small (5 to 10 targets). This approach does

very poorly at rejecting or not declaring on unknown target classes. Further, it is not robust

due to the fact that it tries to match range bins in the signal which contain little or no infor-

mation about the target. Typically these are the range bins at the beginning of the signal and

near the end of the signal.

1.2.2 Statistical Feature Based Classifier with Feature Level Fusion 
(StaF)
Mitchell, in his dissertation [22] introduced the Statistical Feature Based Classifier

with Feature Level Fusion (StaF) to solve some of the problems associated with the

constrained quadratic classifier. In Mitchell’s classifier a sixth order Daubechies mother

wavelet [Table 5-1, Db6] is used to provide noise cleaning of the signal. The features are

extracted using of an auto regressive filter and selecting features using peak amplitude

thresholding, as Mitchell says “on the fly”, making no assumptions on the location or

number of features. The features are the location and magnitude of peaks in the signal.

Mitchell then uses a combination of Bayesian and Dempster-Schaeffer evidence theory to

accumulate evidence resulting in classification.

There are several problems with Mitchell’s approach. First is that several probability den-

sity functions (PDFs) are required in order for this classifier to work. Specifically, the peak

location probability function (PLPF) and the peak amplitude probability density function

(PAPDF). These are then used to calculate the class likelihoods and the class a posteriori

probabilities for individual extracted features. The PLPF is estimated from the training data

µik σik

hj x( ) min hk x( )
k

x ωj∈→=

ωj
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ensemble using a Parzen estimator. The PAPDF assumes that the distribution within a

given range bin is Gaussian. Mitchell says that the distribution is known to be Rician, how-

ever, the Gaussian assumption is reasonable if a power transform is performed. Then in

order to increase performance Mitchell uses a five look sequence to achieve his results.

The research presented here is quite different from Mitchell’s work. First, this research uses

a Haar wavelet to enrich the feature space, not for noise cleaning. Second, no assumption

is made concerning the PDF of the data. The probabilities are computed directly from the

training data. Third, the data is not partitioned into an ensemble of 5o windows for classi-

fication purposes, there is only one large window so no pose estimation is required. Fourth,

only one snapshot of the target is required, not a five image sequence. Last, Mitchell

required the use of 50% of his available data for training. This research uses 25% for train-

ing and 75% for testing.

1.3 Research Objectives
The author has been working in the area of machine intelligence for over twenty years. He

has been leading a research group in the area of automatic target recognition for over twelve

years. He is very familiar with current research techniques. During this tenure it has become

apparent that there are many areas which could be improved upon, especially in the area of

statistical pattern recognition as applied to ATR of HRR signals. The most glaring problem

is the assumption or estimation of PDFs. Applying emerging machine intelligence and data

mining techniques to overcome these estimations and assumptions in current statistical

classifiers is highly desirable. A relatively new approach to data mining was introduced by

Pawlak [29]. Although this method has been around since the early 1980s it has not

received much notice in the United States. This new theory has the potential to produce a

more robust classifier. rough set theory assumes that the training set is all that is known and

all that needs to be known to do the classification problem. Techniques to find the minimal
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set of attributes (range bins) to do the classification are available in the theory. Further,

since the theory will find all the classifiers, the system should be robust.

The primary objective of this research is to develop a workable, robust classification meth-

odology using machine learning and data mining techniques. Specifically the approach

should

     •   generate features for the purpose of classification.

     •   determine which features are important.

     •   generate a multiplicity of classifiers.

     •   determine a method of fusing classifiers for robustness.

     •   be computationally appropriate for deployment.

Once the data is labeled rough set theory guarantees that all possible classifiers using that

training data set will be generated! There is no equivalent statement that can be made using

statistical pattern recognition. However, generating all the classifiers has been shown to be

a NP-hard problem [40]. Therefore, this research had a secondary objective to find ways to

overcome this problem and make rough set theory (RST) usable in real world size prob-

lems.

One of the strongest requests for this research comes from [32] where Pawlak states in the

foreword:

It is especially important to develop widely accessible, effi-
cient software for rough set based data analysis, particularly
for large collections of data. Despite of many [sic] valuable
methods, based on rough set theory, for efficient generation
of optimal decision rules from data, developed in recent
years, more research is needed here, particularly, when
quantitative attributes are involved. In this context also new
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discretization methods for quantitative attribute values are
badly needed.

1.4 Dissertation Outline
This dissertation provides background material on rough set theory in Chapter 2 and feature

selection techniques and fusion in Chapter 3. Chapter 4 introduces the data preprocessing

required to develop a classifier and presents original research on how to preform the label-

ing task required by RST. In addition, original research is introduced adding fuzziness to

the test data to improve classifier performance. Chapter 5 introduces wavelets in the context

of enhancing the feature space of a classifier. Original research determining which wavelet

to use and a new concept of an iterative wavelet is presented here.

Chapter 6 discusses ways to reduce the dimensionality of the data to allow RST to be

applied. This requires introducing some new definitions to extend RST. In addition, origi-

nal research on partitioning the data to produce more robust classifiers is introduced along

with a new fusion technique for combining the resulting classifiers. One of the more impor-

tant original research contributions is discussed, a method of determining near minimal

reducts, which allows RST to be applied to real world size problems.

The dissertation provides the results of computer simulations in Chapter 7 confirming that

the postulated theories work together to produce a robust rough set classifier. This chapter

also shows that the near minimal reduct is close to minimum size (number of attributes).

The dissertation concludes with suggestions for further studies and research to determine

the limits of improvements possible with the new methods and theory introduced.
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An appendix is included which completely defines all the reducts and their associated core

for each of the partitions. This appendix provides data which can give the reader insight into

the results summarized in the tables, graphs, and narratives of the dissertation.
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2Rough Set Theory

A great deal of time and effort has been used by companies and governments since the

advent of computers to acquire and store data in large repositories. It is easy enough to see

that this has been a strong trend by just looking at the evolution in storage media. When the

first IBM PC was introduced in the early 1980s it came with a cassette interface and it was

possible to get 5.25 inch floppy disks which stored 160K bytes of information. When the

first hard disk was introduced for this same computer, it would hold five megabytes of

information. People would talk about what could one possibly put on the disk that would

require that much space. Now in 2001 disk drives are readily available for the PC which

will hold 80 gigabytes. As more data has become available, the storage media has increased

in size and reduced in cost to accommodate this information. The military is increasingly

worried about a problem known as the pixel to pupil ratio. This problem relates to the fact

that there is now a capability of receiving and storing data at a rate that is greater than the

ability of analysts to interpret. It is the interpretation that turns the data into knowledge.

rough set theory was developed by Zdzislaw Pawlak in the 1980s [29] as a formal method

to turn data into knowledge. This is also termed data mining. The basic premise is that the

data in the training set is all that one knows about the problem at hand. All that can be

observed is contained in the data set. Turning data into knowledge is not an easy task. The

data will likely be redundant and contain far too much detail to be useful for decision pur-

poses. For example, some attribute values may come from the real numbers. If these

attributes are used as is, it will be difficult to find patterns and make groups of similar

classes. The data needs to be quantified or labeled. Often rough sets are compared to fuzzy

sets. A simple analogy is the easiest way to illustrate the difference. If one thinks about set

elements as picture elements (pixels), fuzzy sets are concerned with how gray a pixel is
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while rough sets are focused on the size of the pixel [29]. The idea here is that if one can

only describe the aircraft shape in Figure 2-1 in terms of the pixels on the left, the shape

would not be as well defined as it would using the pixels on the right. This concept is used

in determining the labeling discussed in Section 4.4.

Figure 2-1 Pixel Size Effect

rough set theory has features applicable to the classification problem. Some of these fea-

tures are:

     1.  it is an algebraic method.

     2.  it is applicable to problems with both numeric and descriptive attributes.

     3.  it is capable of finding all minimal knowledge representations.

     4.  it is highly automated based on strict rules.

     5.  it is discrete (unlike fuzzy computing).

     6.  it is applicable to statistical as well as rule based learning.

     7.  it is robust.

     8.  it is normally limited to small size problems.

Some of the features listed are problematic with real world sized problems. This research

presents a methodology to exploit the strengths and resolve the problems.

2.1 Information Systems
Frequently data is stored as a relational database. This takes the form of a table where the

rows are records and each column contains some observed information about the object

associated with the record. In rough set theory this is called an information system (U,A)
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where  is a non-empty finite set called the universe, and

 is a non-empty set. The elements of A, called attributes (in our case

range bins), are functions

(2-1)

where  is called the value set of . In a practical rough set system  is a discrete and

finite set of values. In the case of binary labeling used in this work . Often in

an information system there are two different kinds of attributes, one is called a condition

attribute and the other is called a decision attribute. In this case the information system

is  where di are the decision attributes. Condition attributes represent what

is observable while the decision attributes are things which are to be determined from the

observations. For this research the condition attributes are the range bins and the decision

attribute is the target class. Frequently it is possible to remove some of the condition

attributes and not introduce any ambiguities into the information system. An ambiguity is

when two rows have identical attribute values but one row is associated with one decision

attribute and the other row with a different decision attribute. When condition attributes are

removed without creating ambiguities, the information system is said to have been reduced

(without loss of information) and the reduced system is said to be a reduct (a term that will

be formally defined in Section 2.3).

2.2 Definition of Discernibility Matrix
Skowron [40] proposed representing an information system in the form of a discernibly

matrix. The discernibility matrix is then used to extract knowledge (and reduce it to a min-

imal form) from the information system by simple algebraic manipulations. The discern-

ibility matrix of A is the n x n matrix with i, jth entry

(2-2)

In the most general case each xi represents a separate class. So an element of cij of a dis-

cernibility matrix contains all the attributes that differentiate between two given objects xi

and xj. Since the discernibility matrix contains all groups of attributes that differentiate

U x1 … xn, ,{ }=

A a1 … an, ,{ }=

a1:U Vi→

Vi ai Vi

Vi 0 1,{ }=

U A di{ }∪,( )

cij a A:a(xi ) a xj( )≠∈{ }=
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between all objects of the universe (all classes of interest to the information system) it can

therefore be used to derive all of the classification rules. It is this feature of the discernibil-

ity matrix that is of primary interest in machine learning and classification methods in par-

ticular. Let  and let P(A) be the power set of A. The Boolean-valued function  is

(2-3)

Let . It is desired to write the discernibility function. This is nor-

mally written using the Boolean symbols for conjunction and disjunction. However, these

symbols do not mean what they mean in the normal Boolean sense. Therefore definitions

of these operators must be included so that there is no misunderstanding. Additionally, the

associative and distributive property must also be defined. A complete development of this

section with mathematical proofs may be found in [45]. Define the binary operator ,

called conjunction, by

(2-4)

where

(2-5)

The associative property

(2-6)

allows the dropping of parenthesis without any possibility of confusion; moreover now 

define  for any finite collection of functions by recursion

(2-7)

The discernibility function of the information system is:

B A⊆ χ B

χB:P(A) 0 1,→

: C |
1 when B C ∅≠∩
0 when B C ∅=∩




→

Sx χB:B P A( )∈{ }=

  ∧

 : Sx Sx Sx→×∧

         : (χB χC ) |, χB χC∧→

χB χC : P(A) 0 1,{ }→∧

: D | χB→ D( )χC D( )

χB χC∧( ) χD χB χC χC∧( )∧=∧

  ∧ χ B{ }
j 1=

p

 

i 1 … j, ,=

   χBi

 
i 1 … p 1–, ,=

    χBi
∧ 

   χBP
∧=∧
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(2-8)

where “ “is the constant function

(2-9)

If fA is an empty conjunction, define fA to be the constant zero function. This is an uninter-

esting case therefore assume throughout that fA is not an empty conjunction.

The condition  used in the definition of the discernibility function is equivalent to

the condition that  since

(2-10)

Using the fact that the discernibility matrix is symmetric and that  it follows that

the discernibility function simplifies to . It is also known [44] that 

fa(A) = 1.

Let . The B-indiscernibility relation is:

(2-11)

The B-discernibility relation is the complement of Ind(B) in U x U,

Dis(b) = U x U - Ind(B) (2-12)

The following lemma is an immediate consequence of the definition.

Lemma. Let . Then

(2-13)

Consequently, if  and Dis({a})=Dis({b}) then

Dis(B) = Dis(B - {a}) = Dis(B - {b}). (2-14)

fA : P(A) 0 1,{ }→

    : C |  

1 i j n≤,≤
χci j

0≠

     χcij
∧

 
 
 

C( )→

0

         0 : P(A)01 ,{ }→
 : C | 0→

χcij
0≠

cij ∅≠

χcij
0 χcij

A( )⇔≠ 1 cij A ∅ ak cij cij ∅≠⇔∈∃⇔≠∩⇔=

cij ∅=

fA   

1 i j n≤<≤
χcij

∅≠

    χcij
∧=

B A⊆

Ind(B) x y,( ) U U : a B∈∀( )× a x( ) a y( )=( )∈{ }=

B A⊆

Dis B( ) Dis a{ }
a B∈
∪( ) Dis a{ }( )

a B∈
∪==

a b B∈,
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Not all knowledge presented in the information system is necessary to describe it. Reduc-

tion of knowledge in the information system (which results in generation of reducts) is anal-

ogous to mathematical independence of vectors in linear algebra. Reduction of knowledge

will be based on the expansion and simplification of the discernibility function. Basic tools

for this simplification are the absorption and expansion laws discussed in this section.

These tools will be used to produce a specific form of the discernibility function defined

here as a simple form.

As before, let . Define the binary operator , called disjunc-

tion, by

 (2-15)

where

(2-16)

It is easy to prove that the operator  satisfies associativity, commutativity, and distrib-

utes with respect to conjunction,

 (2-17)

Likewise it distributes with respect to disjunction,

(2-18)

These last two properties are called the distribution laws.

Using these two special operators it is now possible to define methods to determine some

important properties of rough sets.

Sχ χB: B P A( )∈{ }=   ∨

 : Sx Sx→∨

    :χB χC,( ) χB χC∨→

χB χC : P(A) 0 1,{ }→∨

                                                         : D
1  if  χB D( ) 1 or χC D( ) 1==

   0  if  χB D( ) 0 and χC D( ) 0==



→

  ∨

χB χC1
… χCk

∨ ∨( ) χB χC1
∧( ) … χB χCk

∧( )∨ ∨=∧

χB χC1
… χCk

∧ ∧( ) χB χC1
∨( ) … χB χCk

∨( )∧ ∧=∨
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2.3 Definition of a Reduct
In any information system it may be possible to discern all the objects in the system without

using all the condition attributes. In other words, some of the columns may be eliminated

and it is still possible to “classify” all the classes in the system. Generally what is desired

is to find the minimal number of condition attributes that maintain all the information in the

information system. Essential for the information system are the reducts that describe

knowledge represented in the system. Since a single reduct can differentiate between all

distinguishable elements of the universe it effectively represents a set of independent rules

for classification of objects in the knowledge system. A set  is a discern in A if

Ind(B) = Ind(A). A discern is called a reduct if , where

“ “denotes a proper subset relation. This means that a reduct is a minimal set of rules

for classification and if any rule is removed from a reduct some ambiguities in classification

will result. The set of all reducts of A is denoted Red(A). Thus, if one has Red(A) one can

derive all possible minimum classifiers and their classification rules. The reduct generation

procedure developed in [40] is based on the expansion of the discernibility function into a

disjunction of its prime implicants by applying the absorption and multiplication laws. This

procedure is not sufficiently efficient to allow its use in real world size problems and will

be subject to modification in this dissertation to make it more efficient.

2.4 Definition of a Core
The core of the information system is defined as a set  such that

(2-19)

In simple terms the core is the most essential part of a reduct. A core consists of attributes

that are common to all reducts. If the core is empty, this means that no single attribute is

critical for classification. Since the core must be included in all classifiers it is quite often

selected first when generating the set of minimal reducts.

B A⊆

a B∈∀( )Ind B a{ }–( ) Ind B( )⊃

  ⊃

P A⊆

P B
B Red A( )∈

∩=
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2.5 Reduct Determination
There are few methods in the literature for determining reducts. Three of the methods will

be described here. It should be noted that finding all the reducts is a NP-hard problem [40].

That is, the solution grows in non-polynomial time as the problem size increases. For real

world problems this has made the use of rough set theory impractical. The size of the infor-

mation systems typically found in the literature have been small (problem size is expressed

as number of rows (records) x condition attributes); i.e., 70x4 [30], 100 x 30 [5], 80 x 22

[41], 114 x 27 [51]. Even the largest problems 5416 x 22 and 2130 x 36 [16] are small in

comparison to the HRR problem described here 6426 x 1024.

2.5.1 Brute Force
The brute force method uses no sophistication to determine reducts. All possible combina-

tions of condition attributes are tried to see if they are a reduct. This means that there are:

(2-20)

where n is the total number of attributes and k is the number of attributes in each potential

reduct. It should be noted that the number of combinations to be tried grows extremely

(almost exponentially) fast as n increases.

The brute force process of reduct generation is best described through an illustration. Table

2-1 is an example of a typical information system. The column entitled Target ID is a deci-

sion attribute and the columns entitled Range Bin 1 - Range Bin 4 are condition attributes.

Notice that each row is unique and each condition attribute is a real number. This kind of

table is not very useful because it is difficult to generalize and see patterns. Normally we

convert real numbers into some meaningful labels. For example, if a person has a temper-

ature of 98.6o a doctor would label that normal. If the temperature is less than 96o, a doctor

would label that low. If the temperature was 101o, the doctor would label it a fever. Cars

are grouped as sub-compact, compact, mid-size, full size, and sport utility vehicles. This

labeling makes it easier to handle data while bringing out patterns and trends. However, it

Number of Combinations = n!
k! n k–( )!
------------------------

k 1=

n

∑
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should be noted that once this is done, some discrimination power has been lost. In general

this is not critical and is in fact desirable. For the labeling in Table 2-1 the following label-

ing scheme was chosen: Label = 1 if value is <.25, Label 2 if value is >=.25 and <=.45, and

Label = 3 if value is >.45. Table 2-2 shows the results of this labeling. It should be noted

that there is no requirement for the labeling ranges to be the same across all columns. Fur-

thermore, there is no requirement for the number of labels to be the same across all col-

umns.

Table 2-2  Labeled Data

Table 2-1 Raw Dat a
Signal Target ID Range Bin 1 Range Bin 2 Range Bin 3 Range Bin 4

1 1 .680 .127 .121 .446

2 1 .948 .248 .022 .440

3 1 .821 .189 .139 .423

4 2 .396 .680 .237 .239

5 2 .441 .851 .184 .239

6 2 .394 .201 .338 .564

7 2 .775 .401 .006 .617

8 2 .241 .359 .412 .773

9 3 .113 .097 .449 .450

10 3 .896 .327 .122 .927

Signal Target ID Range Bin 1 Range Bin 2 Range Bin 3 Range Bin 4

1 1 3 1 1 2

2 1 3 1 1 2

3 1 3 1 1 2

4 2 2 3 1 1

5 2 2 3 1 1

6 2 2 1 2 2

7 2 3 2 1 3

8 2 1 2 2 3
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Once the labeling is complete there is the possibility that the resulting table may be ambig-

uous. The table is said to be ambiguous if signals from two different target IDs are the

same; i.e., signals are ambiguous if  where xi is signal i and ci is the

target ID of signal i. In the case presented here signals 7 and 10 are the same while having

different Target IDs. Therefore, both signals are eliminated. The resulting table with no

ambiguities is said to be consistent. Only a consistent decision table can be a basis for

unique classification rules. Following this elimination if there are signals which are the

same, this information is redundant and only one signal will be retained for computational

efficiency. In this example duplicates will not be removed to illustrate equivalence classes.

Table 2-3  Consistent Information System with Duplicates

The reducts of the information system can now be computed. Reducts will be determined

which preserve all the information in the information system (even reducts which differen-

tiate signals in the same class). This is accomplished by trying all possible combinations of

attributes and determining if the signals composed of only the selected attributes maintain

a consistent information system. In this example there are 15 possible reducts (Equation

9 3 1 1 2 2

10 3 3 2 1 3

Signal Target ID Range Bin 1 Range Bin 2 Range Bin 3 Range Bin 4

1 1 3 1 1 2

2 1 3 1 1 2

3 1 3 1 1 2

4 2 2 3 1 1

5 2 2 3 1 1

6 2 2 1 2 2

8 2 1 2 2 3

9 3 1 1 2 2

Signal Target ID Range Bin 1 Range Bin 2 Range Bin 3 Range Bin 4

xi xj  and  ci cj≠=
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2-20). There are two reducts: Range Bin 1 and Range Bin 2; Range Bin 1 and Range Bin

4. It is obvious that the core (Equation. 2-19) is Range Bin 1. Using these reducts there are

five equivalence classes. An equivalence class is the set of all signals which are indiscern-

ible from each other i.e., e1={x1,x2,x3}, e2={x4,x5}, e3={x6}, e4={x8}, and e5={x9} where

e represents the equivalence class. Therefore, the target classification consists of all equiv-

alence classes associated with one Target ID (decision attribute); i.e. c1={e1}, c2={e2, e3,

e4}, and c3={e5}.

2.5.2 Discernibility Matrix
As in the prior example, the data must be labeled. For computational efficiency duplicate

signals are removed resulting in the information system represented by Table 2-4. The next

step is to construct the discernibility matrix. This matrix is an n x n matrix where n repre-

sents the number of signals left after the information is labeled and made consistent, in this

case a 5 x 5 matrix. It should be noted that this matrix is symmetric with no entries on the

diagonal. Therefore, for conservation of space only the lower triangular portion and its

entries will be shown (this will be represented as a 4 x 4 table for clarity) in Table 2-5. As

before, the information in the system will be preserved in the reduct determination and clas-

sification can be determined from the reducts.

Table 2-4  Consistent Information System without Duplicates

In a discernibility matrix any cell with only one entry means that attribute is part of the core.

A core is the one attribute (the only attribute) that allows two different signals to be distin-

guished from each other. Without this attribute some information will be lost which con-

tradicts the idea of a reduct as a minimal set of attributes without information loss. In Table

Signal Target ID Range Bin 1 Range Bin 2 Range Bin 3 Range Bin 4

1 1 3 1 1 2

4 2 2 3 1 1

6 2 2 1 2 2

8 2 1 2 2 3

9 3 1 1 2 2
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2-5 there is one entry (signal 9 vs. signal 6) with only one attribute. Therefore, Range Bin

1 is the core. This is the same answer found by the brute force method, Section 2.5.1

To compute the reduct from the discernibility matrix requires the use of the definition:

B is a reduct if

i)  is minimal with respect to inclusion

ii) 

Entries in the discernibility matrix will be referred to by the row and then the column labels.

For example, entry (6,4) has the set {2, 3, 4}. The procedure then is to select the smallest

entry (in this example the entry (9,6) containing only {1}). All other entries (the entry itself

is not removed) which contain a 1 are eliminated; i.e., (4,1), (6,1), (8,1), (9,1), (8,4), (9,4),

(9,6). This would proceed for entries of size 2 then 3 etc. In the example, at the conclusion

of this process there are only two entries left, one containing {1} (9,6) and the other {2, 4}

(9,8). The next step is to create the discernibility function by “or-ing” the entries in each

cell and then “and-ing” those together (using the definitions of these two operators from

Section 2.2. 

(2-21)

Using this definition there are two reducts:

1) Range Bin 1 and Range Bin 2

2) Range Bin 1 and Range Bin 4.

Table 2-5 Discernibility Matrix
Signal 1 4 6 8

4 1, 2, 3, 4

6 1, 3 2, 3, 4

8 1, 2, 3, 4 1, 2, 3, 4 1, 2, 4

9 1, 3 1, 2, 3, 4 1 2, 4

B cij∩

B cij ∅    c ij 0≠∀≠∩

fA 1 2 4∨( )∧=



23
In [40] this is still proven to be a NP-hard problem which means that it cannot be applied

to most real world sized problems.

2.5.3 Expansion Algorithm
A new algorithm was devised which would improve upon the time required to compute the

reducts using either the brute force method or the discernibility matrix method. The com-

plete development of this algorithm may be found in [44]. Several laws need to be intro-

duced and some definitions need to be made before proceeding.

2.5.3.1 Absorption Law
Let . Suppose . If  then .

2.5.3.2 Factorization Law
Let  and suppose  for i= 1,...,k.

Then 

2.5.3.3 Expansion Law
Suppose . Let  and suppose

, and . Then

(2-22)

Letting

(2-23)

 

the conclusion reads , where both f1 and f2 are conjunctions of the Boolean-val-

ued functions . Since each  is a function , both f 1 and f2 are

functions . This suggests the following definitions:

B A⊆ ∅ C D A⊆ ⊆≠ χC B( ) 1= χD B( ) 1=

a A∈ χ Ci
a{ }( ) 1=

χC1
… χCk

χ a{ } χC1 a{ }– … χCk a{ }–∧ ∧( )∨=∧ ∧

fA χC1
… χCk

χCk 1+
… χCs

∧ ∧ ∧ ∧ ∧= a A∈

 χCi
a{ }( ) 1 for i= 1,… k,= χCi

0 for i k 1 … s, ,+==

fA χC1
… χCk

∧ ∧( ) χCk 1+
… χCs

∧ ∧( )∧=

    χ a{ } χC1 a{ }–
… χCk a{ }–

∧ ∧( )∨( ) χCk 1+
… χCs

∧ ∧( )∧( )=

    χ a{ } χCk 1+
… χCs

∧ ∧( )∧( ) χC1 a{ }–
… χCt a{ }–

∧ ∧( ) χCk 1+
… χCs

∧ ∧( )∧( )∨=

f1 χ a{ } χCk 1+
… χCs

∧ ∧( )∧=

f2 χC1 a{ }–
… χCt a{ }–

∧ ∧( ) χCk 1+
… χCs

∧ ∧( )∨=

fA f1 f2∨=

χ χB Sx∈ χ B : P(A) 0 1,{ }→

fi : P(A) 0 1,{ }→
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A simple cover of a discernibility function fA is a family of Boolean-valued functions

{f1,...,fk} satisfying:

(2-24)

where each  is a conjunction of Boolean-valued functions.

A simple cover {f1,...,fk} is called a simple form of the discernibility function if for each

 the indexing sets are pairwise disjoint, .

Given any two subsets  and 

 (2-25)

Two such subsets are called equivalent.

Let . If there exists an attribute  such that  then B is said to be

strongly equivalent. 

Let {f1,...,fp} be a simple form of fA.   Let  and . If there exists an index i and

an attribute  such that  and  then it is said that B and C are locally

equivalent. For any subset   for j= 1,...,k j.

Let . If there exists an attribute  such that , then it is said that B is  a

locally strongly equivalent subset. When it is necessary to emphasize the particular index

i, B is said to be a locally strongly equivalent subset of fi. Two subsets, A and B, can be

locally strongly equivalent without being strongly equivalent and vice versa. The

fA f1 … fk∨ ∨=

fi P A( ) 0 1,{ }→=

fi χC1
… χCki

∧ ∧= Ci Cj ∅   for ij ≠=∩

B A⊆ C A⊆

B a[ ]   and  Ca [ ]⊆⊆( ) Dis B( ) Dis C( )=⇒

B A⊆ a A∈ B a[ ]⊆

B A⊆ C A⊆

a A∈ B a[ ] i⊆ C a[ ] i⊆

B a[ ] i⊆ b B∈∀( )   χDj
B( ) χDj

b{ }( )=

B A⊆ a A∈ B a[ ] i⊆
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terminology chosen here is intuitively based; like the terms connected and locally con-

nected used in topology where neither one implies the other. They are chosen because they

address the same issue and one is “local” in nature.

At each stage of the following algorithm elements of a locally strongly equivalent subset

will be replaced by a single attribute from the subset.

2.5.3.4 Reduct Generation Algorithm
Given:  where  is a simple cover of fA.

Step 1. In each component fi of the simple cover, apply the absorption law to eliminate all

conjuncts  where there exists a conjunct  such that .

Step 2. Replace each locally strongly equivalent subset of attributes in each simple cover

component Ji by a single attribute that represents this class. A strongly equivalent subset is

identified in each component Ji if the corresponding set of attributes is simultaneously

either present or absent in each indexing subset of its conjuncts.

Step 3. In each component Ji of the simple cover select an attribute  which belongs

to the largest number of indexing sets Ci, numbering at least two, and apply the expansion

law. Note . Write the resulting form as a disjunction .

Step 4. Repeat steps 1 through 3 until fA is in simple form.

fA f1 … fk∨ ∨= f1 … fk, ,{ }

χD χC C D⊆

a A∈

a Ci χCi
a{ }( ) 1=⇒∈ fi fi1 fi2∨=
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Step 5. For each component fi of the resulting simple form substitute all locally strongly

equivalent classes for their corresponding attributes; i.e., replace each function  by 

where .

Step 6. Calculate the reducts Red(fi).

Step 7.  Determine the minimal elements, with respect to the inclusion relation,

of the set, where . These minimal elements are the elements of Red(A).

2.5.3.5 Example
To illustrate the reduct generation algorithm consider the discernibility function (without

the explicit  notation)

(2-26)

1. Since  and  the absorption law is used to eliminate

conjuncts 4 and 5 and get an equivalent discernibility function:

(2-27)

2. is a strongly equivalent class so we can represent it by a single attribute g which

yields:

(2-28)

3. In the remaining function, attribute d is the most frequent so apply the expansion law

with respect to this attribute to obtain:

χC χ
Ĉ

C  a[ ] i : a C∈{ }∪=

Red(fi )
i 1=

p

∪
JA J1 … Jp∨ ∨=

χ

fA a b c f, , ,{ } b d,{ } a d e f, , ,{ } b c d, ,{ } b d e, ,{ } d e,{ }∧ ∧ ∧ ∧ ∧=

b d,{ } b d e, ,{ }⊂ b d,{ } b c d, ,{ }⊂

fA a b c f, , ,{ } b d,{ } a d e f, , ,{ } d e,{ }∧ ∧ ∧=

a f,{ }

fA g b c, ,{ } b d,{ } g d e, ,{ } d e,{ }∧ ∧ ∧=
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(2-29)

where the simplification in the last step resulted from the absorption law.

4. All functions fi are in simple form.

5. Substituting all strongly equivalent classes for their equivalent attributes:

(2-30)

6. Reducts which correspond to the simple cover functions are

Red(f1)={{a,d},{d,f},{b,d},{c,d}}

Red(f2)={{b,e}}

7. The reducts of A are obtained by determining the minimal elements of the set

(2-31)

from which it can be concluded . (The

reducts of A are obtained by “throwing away” supersets in ; in this example

there are no supersets.)

             fA f1 f2∨=

                   =d{ } g b c, ,{ } g b c, ,{ }∨ b{ } g e,{ }∧ ∧ e{ }∧ ∧
                   =d{ } g b c, ,{ } b{ }∧ e{ }∨∧

 fA f1 f2∨=

  { } a f b c, , ,{ }∧ b{ }∨ e{ }∧=

Red(fi )
i 1=

2

∪ a d,{ } d f,{ } b d,{ } c d,{ } b e,{ }{ }=

Red A( ) a d,{ } d f,{ } b d,{ } c d,{ } b e,{ }{ }=

Red(fi )
i 1=

p

∪
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2.5.3.6 Results of Computer Simulation
Simulations were run using MATLAB 5.2 on test data generated randomly. A random

number generator provided uniformly distributed numbers to represent each attribute of

each record. These values were multiplied by eight and then the fractional part was trun-

cated. This resulted in integer attribute values between zero and eight. The number of

attributes varied from 10 to 40 in steps of 5 and the number of records varied from 10 to 40

in steps of five. All simulations were accomplished using a dual Pentium Pro 200 MHz

computer using 256MB of memory. Figure 2-2 illustrates how the run times increase with

problem size using the Expansion Algorithm. Note the abscissa is log10 of the run time. The

curves shown are for 10, 15, 20, 25, 30, 35, and 40 attributes. Note that the computational

time is growing exponentially.

Figure 2-3 shows the difference in time to run the problems using the Elimination Method

and the new Distribution Algorithm. The graph only shows the results for 10 and 15

attributes. This is because when the problem size was larger than this, the elimination

method required so much time that results could not be obtained without the simulation run-

ning for many days! Note that the time expressed is the log10 of the time. 

Figure 2-2 Expansion Algorithm Run Times
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Figure 2-4 shows the run times for the Distribution Algorithm with and without strong

equivalence. Incorporating strong equivalence into the Expansion Algorithm does cost

computational time. However, as seen in Figure 2-4, the time savings can be significant (as

much as 50%) when strong equivalence is present.

2.5.4 Summary
All the methods presented in this chapter provide a means to calculate reducts. Skrowron

[40] has shown that the process of calculating all reducts is NP-hard. That is, the time

required grows non-polynomially as the number of attributes increases. Researchers have

Figure 2-3 Time Savings of the Distribution Algorithm vs. the Elimination Method

Figure 2-4 Time Savings When Strong Equivalence is Present vs. When it is Not
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found that this limits rough set theory to problems with few attributes. Even algorithms

based on the discernibility matrix or the expansion method, though saving time, still have

not solved the computation time problem. A more efficient method of finding near mini-

mum (minimal) reducts will be introduced in Section 6.4.5
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3Feature Selection and 
Fusion

The performance of a classifier has an interdependent relationship between sample sizes,

number of features, and classifier complexity. If a simplistic table look-up technique is

employed, where the feature space is divided into labeled classes, then an exponential func-

tion of the number of features is required for the training set [2]. Since in real world prob-

lems, especially in the area of military target recognition the amount of data is limited, it is

important to limit the number of features required by the classifier. This is the first reason

to keep the number of features small. The second reason is that a limited yet salient feature

set simplifies the classifiers [15]. One must be careful that a reduction in the number of fea-

tures does not lead to a loss in discrimination power and reduced accuracy of the classifier.

It should be noted that rough set theory assures that this does not happen. This chapter will

review three methods of feature generation; principal component analysis, auto-associative

neural networks, and the self organizing map. Three methods of feature selection; exhaus-

tive search, branch and bound search, and sequential forward selection are also summa-

rized.

One area of great interest to the military is the area of information fusion. Information from

disparate sources, even of low quality, when combined can yield a synergistic effect and

provide very good results. This method of combining results has been used by many

researchers to improve classifier performance. Mitchell [22] in his StaF classifier used

fusion of information from observations within a signal and then fused this with results

from five consecutive observations to improve performance of his classifier. One of the

more popular methods in machine intelligence and expert systems is the Dempster-Shafer

approach which will be summarized. Since rough set theory generates many classifiers a



32
means of combining the results must be developed or determined and will be described in

Section 6.6.

3.1 Feature Generation
Feature generation, or as it is sometimes referred to in the literature feature extraction, dif-

fers from the idea of feature selection, although these terms are frequently used inter-

changeably. Feature selection is a process wherein the best subset of features is selected

from the input feature set. Feature extraction refers to methods that create new features

through the use of transformations or some combination of the original feature set and then

selects the best from this new set. In most feature generation methods a new dimensional

space, of dimensions less than the original space is determined. Thus feature extraction and

dimensionality reduction are achieved. Several of the more popular methods of feature gen-

eration are covered in the following sections. The research in this dissertation uses wavelets

to generate a richer feature space of higher dimensionality relying on multi-class entropy

(Section 4.5) and rough set theory (Section 2.5) to perform salient feature selection.

3.1.1 Principal Component Analysis
Principal component analysis (PCA) is probably the best known orthogonal transform

based feature generator. This is also known as the Karhunen-Loeve transform. PCA

transforms a set of n dimensions into another set of  uncorrelated dimensions while

maintaining as much of the variance as possible. PCA produces the eigenvalues and eigen-

vectors of the system under study. In reducing dimensionality only the eigenvectors asso-

ciated with the largest eigenvalues are retained. The process of PCA is computationally

intensive and is often not feasible for real time applications. PCA is useful for data com-

pression, feature generation, and classification. Since PCA reduces the dimensionality of

the data, classifiers based on PCA can be simple and fast.

Mathematically PCA involves solving the equation  where R is any real square

matrix, W is the eigenvector matrix, and  is the diagonal eigenvalue matrix. For signal

processing applications R is the full covariance matrix of a zero-mean stationary random

d n≤

RW WΛ=

Λ
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signal [35]. Thus, PCA is a linear method which projects data into a set of eigenvectors with

scale proportional to the eigenvector’s magnitude.

One of the problems with PCA is that it is sensitive to “outliers” [28] or data that appears

to be far from the mean. This problem is often addressed by removing these samples from

the data. In the case of HRR data it is difficult to determine if such a signal is corrupt or is

a valid training sample. The process of elimination may not be straightforward.

Techniques for performing PCA include singular value decomposition (SVD) [33], Hotell-

ing’s power method [13], and Hebbian techniques such as Oja’s rule [9]. These analytical

techniques are computationally intensive and may not be feasible for real time applications.

Further these techniques rely on basic assumptions regarding data, such as a zero mean sta-

tionary random process which may or may not be true. PCA should be primarily limited to

Gaussian distributions. The resulting eigenvectors while orthogonal and uncorrelated are

not necessarily selected to optimize classifier performance.

3.1.2 Auto-associative Neural Networks
Neural networks have achieved a lot of press as to their capabilities. Dr. Steve Gustafson

of the Air Force Institute of Technology has stated that “neural networks are just statistics

for the uninitiated.” Regardless, they have found their way into the tool box of researchers

[6]. In order to be used as a feature generator and dimensionality reducer a special neural

network called an auto-associative neural network is used. Figure 3-1 shows an example

of an auto-associative neural network. In this example the same training signals are applied

to the input and output side. Training proceeds as for a typical neural network using back-

ward error propagation. If the node transfer functions are linear, then the network will find

the first three principal components as in PCA analysis. The addition of two hidden layers

using sigmoidal transfer functions will yield a nonlinear subspace mapping [15]. The

amount of nonlinearity is limited to the size of the middle layer. The illustrated network will

reduce the dimensionality of the problem from five dimensions to three dimensions. 
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3.1.3 Self-Organizing Map
Another method of feature generation is the self organizing map also known as the

Khonen Map [17]. This method can be used for nonlinear feature extraction. This type of

network is interesting in that it will learn to detect regularities and correlations in the inputs

and adapt its response accordingly. A further feature of this network is that classes that are

physically close together in the input space are also close together in the network.

This network is normally arranged in a one, two, or three dimensional grid. Every neuron

is connected to all the inputs. Therefore the weights on the connections for the neurons form

a d dimensional weight vector. The input signals are presented to the network in random

order during the training phase. The first step is to identify the neuron whose vector is clos-

est to the input vector. Once this is accomplished then all the neurons in the neighborhood

(which is defined by the structure of the network grid) of that vector have their weights

changed to move their vectors closer to the training vector. The farther away from the “win-

ning” neuron the less the weights are adjusted. This means that the weight vectors of neigh-

boring nodes would have been close in the original input space. Effectively a Kohonen

Figure 3-1 Auto-associative Neural Network

Input Layer

Output Layer

Input Layer

Output Layer



35
network represents an unsupervised nonlinear mapping from the original input space to the

feature space of neurons with dimensionality which corresponds to the dimensionality of

the neuron grid. One problem with this approach is that the optimum grid dimensionality

and the number of neurons are unknown. This may be a serious drawback if the dimension-

ality of the problem feature space is large and the number of features is undetermined. ATR

is this type of problem. Self organizing maps are similar to k-means clustering where

during training only a single neuron weight is modified and the grid dimension is the same

as the input dimension.

3.1.4 Summary of Feature Generation
The methods presented in this section are both linear and nonlinear. These methods seek to

produce dimensionality reduction and thus a more concise method of describing the train-

ing set. They result in transforming the input space to a set of orthogonal vectors with little

or no cross correlation. What these methods lack is that the final basis vector set has not

been optimized to do classification nor to maintain the information in the training set. Often

to work well outliers are removed from the training set. The problem is that they may be

valid data points and not “outliers.” This may result in the loss of information. It is entirely

possible that the features generated while being orthogonal are not the best for the classifi-

cation problem. Feature generation using wavelets suffers from none of these problems

while showing a great benefit as discussed in Chapter 5.

3.2 Feature Selection
Feature selection involves a process where features, either generated or natural, are

selected such that classification using this subset results in the smallest classification error.

Feature selection becomes more important as the number of features increase. This increase

may come from increased resolution of sensors or the fusion of multiple sensors.
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3.2.1 Exhaustive Search
The obvious simplest approach to feature selection is to try all possible combinations of

features of a selected size. Based upon some criterion, such as classifier performance on the

test set, the subset with the best performance would be selected for the classifier. This

approach is combinatorically explosive where for even modest numbers of attributes and

small subsets of attributes computations become prohibitive. Cover and Van Capenhout [4]

related that in order to guarantee the optimality of a 12 feature subset selected out of 24 pos-

sible features would require approximately 2.7 million possible subsets to be evaluated.

The only optimal (based on monotonic criterion functions) that avoid exhaustive search are

methods based on the branch and bound algorithm.

3.2.2 Branch and Bound Search
The artificial intelligence community has long been struggling with how to solve NP-hard

problems. A typical approach that has been used on this kind of problem is the branch and

bound search [36]. One problem of the NP-complete genre is the traveling salesman prob-

lem. 

The Traveling Salesman Problem

A salesman has a list of cities, each of which he must visit
exactly once. There are direct roads between each pair of
cities on the list. Find the route the salesman should follow
so that he travels the shortest possible distance on a round
trip, starting at any one of the cities and then returning there.

Using exhaustive search as in the previous section the time required to perform this search

is O(N!). A better strategy is to use a branch and bound search. In this method paths are

generated and the shortest path is recorded. As soon as a path exceeds this length, it is aban-

doned. This guarantees that the shortest path will be found. Although more efficient than

exhaustive search it is still exponential in time complexity but can be used for solving larger

problems. In general, branch and bound search is guided in the process of finding the best

set of features by determining bounds on the final criterion value at each intermediate stage.

This method requires the use of a criterion function which is monotonic. This means that
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the performance of a feature subset should improve when a feature is added to it. Most cri-

terion functions do not satisfy this property since they are not monotonic[15] [12]. The

main advantage of the branch and bound technique is that search paths that are worse than

others can be abandoned early. A portion of this technique will be used in the reduct deter-

mination of section 6.4.5.

3.2.3 Sequential Forward Selection
One of the non-optimal methods for feature selection is the sequential forward search. In

this method, starting from the initial state, the best single feature is selected and then one

feature at a time is added which in combination with the other selected features maximizes

the criterion function. This process continues until the goal state is reached [36][15]. The

main attraction to this method is that it is computationally fast. The main drawback is that

once a feature is added to the subset it cannot be removed. Once the goal state is reached a

branch and bound procedure can be used to find all other paths to the goal stopping each

subsequent search when it exceeds the shortest path found so far.

3.3 Fusion - Dempster-Shafer Method
In the area of fusion of information, the theory of evidence [38] developed by Dempster

and Shafer (D-S) is one of the earliest and still best used methods today. D-S is a general-

ization of Bayesian theory. D-S assumes that the hypotheses it deals with are singleton,

mutually exclusive, and there is no level of uncertainty assigned to the decision. D-S uses

singleton hypotheses regarding a system being examined and associates a belief with each

one. D-S provides a mechanism where the beliefs associated with a hypothesis can be com-

bined to make a statement regarding the overall belief. This is the method used by Mitchell

in the StaF classifier [23] to combine beliefs regarding features to yield a classification and

a confidence associated with that classification. Mitchell went to great lengths to establish

the probability density functions associated with the feature position and magnitude. Since
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these probabilities are not known they can only be estimated resulting in a potential source

of error.

Rough set theory will yield a multiple number of classifiers based on the number of reducts

found. It is well known that by combining the advice of many advisors one can reach a

better decision. Therefore it seems logical that if a way can be devised to combine the

output of many classifiers the result should be better. The D-S method does not fit well for

this application. The main problem is estimating the PDFs and calculating the probabilities

associated with each classification. Therefore, in Section 6.6 a new method for fusing the

results of the classifiers for a given partition and the classifiers for all the partitions is intro-

duced.

3.4 Summary
Feature selection is one of the most important steps in the construction of a classifier. In

rough set theory the process of feature selection is called reduct generation. In Section 2.5.1

the process of finding a reduct is the same as discussed for exhaustive search. All possible

combinations are tried. The faster reduct finding method as discussed in Section 6.4.5 more

closely resembles a combination of sequential forward feature selection and a branch and

bound search. The criterion function is not based on classification ability but on informa-

tion preservation (reducing the number of ambiguities).

Fusion is important to achieve robustness in the RST classifier. Many partitions and many

reducts must be combined to achieve high declaration rates and a high probability of correct

classification. The Dempster-Shafer approach has been successfully used by other

researchers. The primary problem is that D-S requires that probability density functions be

approximated. This is difficult due to a lack of data and the fact that the shape of distribu-

tion itself is unknown. Rather than make arbitrary assumptions a radically different and

new method is presented in Section 6.6.
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4Data Preprocessing

As in any application, the proper preprocessing of the data is essential to solving a problem.

Data is normally preprocessed to remove noise, enhance, and equalize the signals. This

chapter will present the procedures used for this effort.

4.1 Data
The data set used in this research consists of synthetic HRR returns on six targets. For each

target there are 1071 range profiles consisting of 128 range bins. The value of each range

bin is an integer between 0 and 255. The pose of the target is head-on with an azimuth range

of ±25o and elevations of -20 o to 0 o in 1o increments as illustrated in Figure 4-1.

This data is divided into two sets, one for training and the other one for testing. The training

set consists of 25% of the data, randomly selected, and the test set 75% of the data (the

remaining data). The small training set permits faster training, facilitating algorithm devel-

opment, and debugging. The training set was constructed by using a random number gen-

erator to select 25% of the azimuth and elevation angles and then by selecting signals from

each target class with these values. All remaining signals were placed into the test set.

Figure 4-1 Target Viewing Aspect
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4.2 Partitioning - Focused Reducts
One of the problems with rough set classification is that the determination of all the reducts

(as described in Chapter 2) is a NP-hard problem [40]. Even using methods described in

[44] the HRR ATR problem is much too large. Therefore, it is necessary to only use a small

subset of the available range bins. It was hypothesized that by careful selection this sub-

selection may also be advantageous to the classification process as the smaller data sets

would force the rough set classifier to focus on either local or more global features depend-

ing on how the data is partitioned. The range bins used were selected in a number of differ-

ent ways. A signal was divided into partitions consisting of all the data, one-half of the data,

one-quarter of the data, and one-eighth of the data. There were two ways of selecting data

from each partition size. On the partition using one-half of the data, the first selection con-

sisted of two sets, the first 64 range bins, and the last 64 range bins, Figure 4-2. The second

selection consisted of two sets, the even numbered range bins, and the odd numbered range

bins, Figure 4-3. For the partitions where the data is in fourths, range bins 1-32, 33-64, 65-

96, 97-128 were selected. The second selection consisted of range bins {1, 5, 9, 13, …,

125}, {2, 6, 10, 14, …, 126}, {3, 7, 11, 15, …, 127}, {4, 8, 12, 16, …, 128}. Similar pro-

cedures were used for the other partition sizes. These two types of partitions are called

block partitioning and interleave partitioning. Other partitions and selection schemes are

possible although were not considered for this research.

Figure 4-2 Block Partitioning
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4.3 Normalization
Radar signals can have a lot of variability due to the various radar parameters and other fac-

tors exogenous to the ATR system. In an attempt to remove these effects and focus on the

relative signal strengths in the range bins the signal is normalized. The signal is normalized

following the partitioning described in Section 4.2. This is accomplished by dividing each

signal value by the L2 norm across the signal's range bins. The L2 norm is defined as:

( 4-1)

Normalization facilitates numerical analysis of the results and effectively reduces noise

introduced by round off errors. It also facilitates hardware implementation by keeping

signal values within specified machine precision.

4.4 Quantification
Rough sets are different than fuzzy sets. Where fuzzy sets may be characterized as being

concerned with how gray a pixel is rough sets are concerned with how large a pixel is [3].

This concept of size translates into labeling for the HRR problem. Therefore, we must

choose a scheme to label the data. The greater the number of labels the finer the division of

the classification space and presumably better performance.The process of labeling range

Figure 4-3 Interleave Partitioning
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bin value ranges is known as quantification. The normalized values in the range bins rep-

resent an infinite quantification in that every label is drawn from the real numbers. Using

this original labeling each signal is unique and belongs to its own equivalence class. What

is desired is a labeling where targets of the same class have the same signal after labeling.

It is highly unlikely that this is possible. To determine an optimum labeling one would have

to try placing dividing points between each division of data in each range bin. A classifier

would need to be developed and tested against each possible labeling scheme. Obviously

for any problem representative of the real world this would take much too long. Skowron

[39] showed that this problem of quantizing real valued attributes is NP-hard. Handling real

valued attributes has vexed rough set researchers for a long time. As stated earlier, rough

set theory is more concerned with the size of a pixel rather than how gray it is. This concept

of “size of a pixel” is the quantification problem. The finer the resolution the better job of

defining the boundaries of the target classes will be. However, as the class boundaries

become of finer resolution, more training data points must be used to define the boundary.

In many problems this quantity of data may not be available.

4.5 Binary Multi-Class Entropy
For this effort a method of binary labeling based on multi-class information entropy was

chosen.

Information entropy is a concept introduced by Shannon [50]. He considered a single

random variable taking n values with probabilities p1,...,pn and defines its entropy as:

( 4-2)

This concept of entropy will be expanded to multi-class entropy to define a point with the

range of values for a single range bin which will be the point of maximum information for

discriminating among the various target classes.

H pi pi( )log
i 1=

n

∑=
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Now assume a range bin (attribute) across all training signals is defined as:

( 4-3)

Let

( 4-4)

Rather than forcing an assumed distribution on the data an approximation can be used to

obtain the probabilities. Thus the probability that a given attribute satisfies the threshold xt

can be estimated at each point xt as the quotient of cardinalities:

( 4-5)

For simplicity of notation for each threshold value xt, Pt will be represented as P1 and its

complement P0 = 1-P1 will represent the probability that a given attribute does not satisfy

the threshold. Likewise for each class the probabilities that a given attribute of a selected

class satisfies a threshold can be estimated as:

( 4-6)

where  and c represents a set of signals belonging to class C.

Finally class probabilities are estimated from:

( 4-7)

where .

Each column (range bin) of the training set is searched sequentially to establish the opti-

mum point which best separates signals of the various training classes. The quality of the

range bin partition is measured by the entropy-based information index defined as:

ai x1 … xn,{ , }=

at xj xt xj ai∈( )>{ }≡

Pt

at

ai
-------=

Ptc

atc

ai

---------=

atc xj xt xj ai j c∈,∈>{ }=

Pc

ac

ai
-------=
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( 4-8)

where relative entropy  is defined as:

( 4-9)

and

( 4-10)

where nc is the number of classes in the training set, pc, pt, ptc are the probabilities of each

class, thresholded attribute probabilities, and joint probabilities respectively.

The point at which the relative entropy is minimum for the range bin is the division point

that will provide the maximum amount of information for separating all the target classes.

It would be informative to visually determine if the entropy truly provides a good labeling

division point. Further, it would be informative to determine if higher entropy index values

are associated with range bins which do a better job of separating classes. Figure 4-4 illus-

trates how entropy works at defining a division point. In this figure one target class is

clearly separable from the rest. The vertical line represents the best division point for label-

ing. It appears to be at the point where one would visually put it. This point will be used as

the labeling break because it is optimum for separating all six target classes. Figure 4-5

shows another range bin. This one is not as clear but the division point appears to make

sense. Figure 4-6 shows a range bin where there is no discernible point at which it makes

sense to make a division. Also shown with each figure is the entropy index for that range

bin. The greater the index value the more useful the range bin for the classification process.

Figure 4-4 is by far the best choice while Figure 4-6 is so low that it makes no sense to select

this range bin. Note that the highest entropy index is two orders of magnitude better than

the low entropy index. These figures clearly show that multi-class information entropy

I 1
E∆
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provides a good theoretical division point for labeling the range bins as well as the measure

of quality of the range bin.

Figure 4-4 High Entropy (Entropy Index =.138810)

Figure 4-5 Medium Entropy (Entropy Index =.035594)

Figure 4-6 Low Entropy (Entropy Index =.006740)

- 0 . 2 5 - 0 . 2 - 0 . 1 5 - 0 . 1 - 0 . 0 5 0 0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5
0

2

4

6

8

1 0

1 2

1 4

1 6

1 8
t a r g e t  1
t a r g e t  2
t a r g e t  3
t a r g e t  4
t a r g e t  5
t a r g e t  6

- 0 . 1 - 0 . 0 5 0 0 . 0 5 0 . 1 0 . 1 5
0

2

4

6

8

1 0

1 2

1 4
t a r g e t  1
t a r g e t  2
t a r g e t  3
t a r g e t  4
t a r g e t  5
t a r g e t  6

0 . 0 0 4 0 . 0 0 6 0 . 0 0 8 0 . 0 1 0 . 0 1 2 0 . 0 1 4 0 . 0 1 6 0 . 0 1 8 0 . 0 2
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0
t a r g e t  1
t a r g e t  2
t a r g e t  3
t a r g e t  4
t a r g e t  5
t a r g e t  6



46
4.6 Fuzzification
In dealing with measured data there are problems associated with noise introduced by the

measurement equipment itself, variability among different pieces of the same equipment,

round-off error, and the physics of the problem. When developing ATR systems, one

cannot expect that the data upon which the system is based will match exactly the measure-

ment taken by operational systems. Therefore, most ATR systems allow for some variabil-

ity through the concept of fuzzification. Fuzzy systems account for the uncertainty

associated with the real world by providing a way to quantify the set membership function.

In other words it provides a means to express the degree of uncertainty of the classification

process.

4.6.1 Relation Between Fuzzy Classification and Rough Set Theory
Vagueness is represented in fuzzy sets by membership functions which map the universe

to a unit interval containing membership values [31]. This idea is shown graphically in

Figure 4-7. Each class represented has an overlap region where class membership is less

than one. Values along the x-axis may belong to a given class or they may belong only par-

tially to that class. The degree of membership may vary between 0 and 1. In RST the x-axis

would represent values of an attribute. This research proposes only two labellings for an

attribute 1 or 0. If fuzziness were to be used, a membership function would be set-up around

the division point and would represent how 1 or 0 the labeled attribute was, based upon the

test set original attribute value. This, however, does not give sufficient information to deter-

mine the target class of the test signal. It must be combined with other attributes of the

reduct to determine the class of that signal according to its partition. Then the partitions are

fused to yield a classification. A complete explanation of this process may be found in

Chapter 6.
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The normal concept of fuzzy sets would not work well for this version of a rough set clas-

sifier. Therefore another way to introduce imprecision, vagueness, and noise into the clas-

sification needed to be developed.

The training set is assumed to be pristine in nature and therefore the information entropy

determined division point is assumed to be crisp. However, test set signals are labeled

somewhat differently than the training signals. The division point for each range bin in the

test signal must be the same as for that same range bin in the training signal. Using this

method yields a sharp labeling of the data. Values close to this division point could possibly

be “mislabeled” due to noise or some other reason. Therefore a provision was made in

developing the classifier to provide a buffer zone around the division point. This buffer

zone is defined:

( 4-11)

where d is the distance from the division point, b (fuzz factor) is the portion of the smallest

distance to be used, xd is the division point, and xi is the range bin value. The buffer zone

is then defined as the distance . Any value in the buffer zone is treated as “don’t

care”; i.e., that range bin will not be considered in the classification process for that signal.

Notice that this labeling (with do not care) is not a typical use of the membership function

and indicates uncertainty in the rough set boundary. Thus “roughness” of the rough set

Figure 4-7 Fuzzy Relationship
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boundary is explicitly exploited to improve recognition accuracy. The effect of this “fuzz

factor” on the classification performance is shown in Figure 7-7.

4.6.2 Bar Graph of Distance Values
In order to better understand how the fuzz factor affects the performance of the classifier

histograms were generated from the test data for each of the various data partitions and are

presented in Figure 4-8 through Figure 4-36. The y-axis is the frequency count. The x-axis

represents the ratio of the distance from the labeling point to the actual value divided by

minimum of the distance from the labeling point to the maximum bin value or the minimum

value from the training set; i.e.,

( 4-12)

where dx is the bar-graphed distance, xd is the actual value of the range bin from the test

set, and xit are the values of the range bin from the training set. These distance values are

calculated and histogrammed for each range bin in the reduct and each signal in the test set.

The way to interpret the histograms is that if the fuzz factor was 0.05 then the number of

values (range bins in all the signals) as represented by the first bar would be marked as

“don’t car.” If the fuzz factor was 0.10 then the number of values indicated by the first two

bars would be marked as “don’t care.”

In reviewing these histograms it is apparent that there are many cases where most values

are in the first bin such as in Figure 4-13. What this means is that when the fuzz factor is

0.05 then those range bins will not be considered in the classification process for that par-

tition. Partitions where this is most evident, Figure 4-13, Figure 4-16, Figure 4-21, Figure

4-22, Figure 4-27, and Figure 4-28 are also found (Table 7-2) to have poor classification

performance. These figures represent block partitioning at the beginning and end of the

signal which is known to contain mostly noise. Therefore, it not surprising to find that the

test values fall close to the labeling point as these range bins are likely to have a small

dx

xi xd–

 min( xd min(xit )– , max(xit ) xd– )
-----------------------------------------------------------------------------------------=
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dynamic range. In many of the partitions, especially the better performing ones, the dis-

tance values are more distributed. This indicates that there is more likely to be more infor-

mation in that partition.

Figure 4-8 Histogram Partition Tst1-1

Figure 4-9 Histogram Partition Tst2-1st Figure 4-10 Histogram Partition Tst2-2nd

Figure 4-11 Histogram Partition Tst2-1 Figure 4-12 Histogram Partition Tst2-2
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Figure 4-13 Histogram Partition Tst4-1st Figure 4-14 Histogram Partition Tst4-2nd

Figure 4-15 Histogram Partition Tst4-3rd Figure 4-16 Histogram Partition Tst4-4th

Figure 4-17 Histogram Partition Tst4-1 Figure 4-18 Histogram Partition Tst4-2

Figure 4-19 Histogram Partition Tst4-3 Figure 4-20 Histogram Partition Tst4-4
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Figure 4-21 Histogram Partition Tst8-1st Figure 4-22 Histogram Partition Tst8-2nd

Figure 4-23 Histogram Partition Tst8-3rd Figure 4-24 Histogram Partition Tst8-4th

Figure 4-25 Histogram Partition Tst8-5th Figure 4-26 Histogram Partition Tst8-6th

Figure 4-27 Histogram Partition Tst 8-7th Figure 4-28 Histogram Partition Tst8-8th
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Figure 4-29 Histogram Partition 8-1 Figure 4-30 Histogram Partition 8-2

Figure 4-31 Histogram Partition Tst8-3 Figure 4-32 Histogram Partition Tst8-4

Figure 4-33 Histogram Partition Tst8-5 Figure 4-34 Histogram Partition Tst8-6

Figure 4-35 Histogram Partition Tst8-7 Figure 4-36 Histogram Partition Tst8-8
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4.7 Summary
This chapter has covered many areas associated with the data preprocessing steps to ensure

that the information in the data is most useful to the classification process. The data was

block partitioned in order to force the classifiers to focus on various portions of the signal

for local classification power. The interleave partitioning forces more global classification.

Signals were normalized to remove some of the effects of the radar and radar parameters

and produce a more unified dynamic range. Since rough set theory does not work with real

numbers a method was introduced to quantify or label these numbers using a binary

scheme. Finally a unique method was introduced to handle uncertainty in the data by cre-

ating a “don’t care” region which effectively removes those range bins from consideration

in the classification process. Effect of this data preprocessing is revealed in Chapter 7, Clas-

sification Results.
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5Wavelets

Most of the work in HRR target recognition has been done by or sponsored by the military.

The approaches taken by various researchers as summarized in [1] appear to ignore the ben-

efits that can be gained by proper transformations of the input signal. The wavelet trans-

form [2][3][4] is a new tool that has been used in image compression, edge detection,

image classification, and more recently in target recognition. When wavelet transforms are

used for image compression the most important goal is to minimize the loss of information.

In Automatic Target Recognition (ATR) the most important objective is to separate the var-

ious target classes [5]. Some researchers have explored the use of wavelets to provide a

richer feature space [5][6][7][8]. However, there is little evidence of widespread use of this

technique. Mitchell [22] explored the use of a sixth order Daubechies transformation but he

limited the analysis to an autoregressive approach to remove low information data from the

signature.

Famili [9] found that preprocessing the data allows easier subsequent feature extraction and

increased resolution. In the past engineers have used transforms such as the Fourier trans-

form to transform the signal from a time base to a frequency base [10]. Although this is

useful for some applications target recognition of HRR signals improved only a little under

this transform. The reason for this lies in the fact that the Fourier Transform tells us that a

feature occurs somewhere in the signal but not where. Wavelets bring a new tool to HRR

signal classification. The benefits of using wavelets [11] are that the new transforms are

local; i.e., the event is connected to the time when it occurs. Researchers who have used

wavelets for target recognition (especially for HRR) have found that the original feature

space can be augmented by the wavelet coefficients and will yield a smaller set of more

robust features in the final classifier [7][8][12]. In addition to computational savings [8]
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investigators have also found that wavelet methods can improve the probability of correct

classification (Pcc) [6][7]. However, even with improvement in Pcc there can be a bias of

the wavelets toward one or two classes to the detriment of others [7].

In considering wavelets for ATR serious consideration must be given to the selection of a

wavelet family and a wavelet in the family. Lu [13] explored this issue in the context of

image coders. In his paper Lu compared two wavelets, one from the Biorthogonal family

and the other from the Daubechies family. Using two different metrics Lu observed a slight

advantage of the Biorthogonal versus the Daubechies. Stirman using wavelets for ATR

explored the use of different wavelets from the Daubechies family and found that the results

were similar among the three wavelets [7]. Using the criterion of improving the probability

of correct classification it will be demonstrated that there is no statistical advantage of one

family (out of four) over any other family thus generalizing Stirman's observation. Any dif-

ference in performance that can be observed in a particular application is due to the statis-

tical nature of normal variations in the data.

Other researchers have employed wavelets to assist in HRR target identification [14][15].

Devaney's approach used a sequential decision process where the log likelihood ratios are

computed at each scale in the discrete wavelet transform (DWT) and then hypothesis test-

ing is applied at each scale to yield the target identification. Etemad used the multi-scale

DWT to reduce the dimensionality of the classification problem. He used the coefficients

to build a set of basis functions that yield the largest class separability. These basis func-

tions result in simple and efficient algorithms for classification. The work presented here

differs from the efforts of these two researchers. A classifier is employed in this chapter but

the focus is not on the classifier but on a method to improve upon the DWT itself. Etemad

and Devaney applied the multi-scale DWT one time. This chapter introduces the iterated

wavelet transform. After the first application of the DWT a subset of coefficients equal to

the original number of range bins in the signal is down-selected using the box classifier. A
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DWT of this “new signal” is then accomplished. Doing this many times yields a new

pseudo wavelet constructed for the problem presented by the training data.

It is not the purpose of this chapter to explore the development of a classifier. However, in

order to have a means to test the usefulness of the data transforms a classifier must be used

to test the performance and determine which features to select for further transformation.

The simple generalized box classifier [16][17][18] has been chosen to evaluate the results.

The main objective was to determine which, if any, family of wavelets provided the best

feature set for a classifier. A secondary objective was to determine if further wavelet trans-

formations would produce even better classification results. The secondary objective

required a method for down selecting features from which to perform further wavelet anal-

ysis. In this chapter, using wavelet transformations, it will be shown:

1) wavelets are useful for generating features that improve classifier performance.

2) what family and which wavelet in the family is best.

3) how to mitigate or eliminate wavelet bias towards some target classes.

5.1 Generalized Box Classifier
The classifier used in this chapter is a version of the generalized box classifier [16]. The

training set is used to construct the classifier. Each row of the training and test sets is

referred to as a signal. The training set S consists of signals having 1024 pseudo range bins.

The first step in constructing the classifier is to sort each column of  from the smallest

value to largest value creating a new matrix . A matrix  is constructed with each ele-

ment of  corresponding to the target type of each element of .

The algorithm for constructing the classifier is as follows:

S

S M

M S
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Let i denote the target class, and j the feature number. Set i = j = 1.

The elements aij are called individual attributes. The attribute set A is defined as the set of

all aij. A transformed signal z is said to be classified as target class i when there exists an

attribute aij such that .

The classifier is tested by classifying each of the transformed test signals, z. An nc x nc con-

fusion matrix C is constructed to represent the results. To construct the confusion matrix

first set C = [0]. Each test signal is classified and C is modified as follows. If the test signal

i known to be of class j is classified as target type j then Cjj = Cjj + 1. If the test signal i

known to be of class j is classified as target type k, then Cjk = Cjk + 1. This process contin-

ues until all transformed test signals are classified. In this chapter equal numbers of signals

were used to represent each target class for both training and test. Therefore, to obtain the

final confusion matrix each element of C is divided by the number of signals for a target

class. It should be noted that some test signals may not be classified as any target type.

Therefore, it is possible that the rows and columns of the confusion matrix will not sum to

one. To evaluate the overall performance of the classifier the probability of correct classi-

fication, Pcc, is calculated. Pcc is defined for n target classes as:

 ( 5-1)

Generalized Box Classifier Algorithm

Step 1 Search all columns of  to find the column with the largest contiguous cluster of the 
selected target class i. Let  denote the column determined by this procedure  ( is a 
permutation of the columns of ). Let  denote the minimum value in the contig-
uous cluster and let  denote the maximum value in the contiguous cluster. The 
indices n and k correspond to the row indices of  with the minimum and maximum val-
ues. All signals contained in this cluster are removed from further consideration.

Step 2 Define the jth feature of target class i as the set aij = ( , ). Set 
and repeat this process (go to step 1) until there are no more training signals 

from target class i.

Step 3 Increment target class i and set j = 1. Repeat this process (go to step 1) until all target 
classes are accounted for.

M
σ j( ) σ

S Sn σ j( ),
Sk σ j( ),

S

S
n σ j( ), Sk σ j( ),

i j 1+=

z aij∈

Pcc
1
nc
----- Cii

i 1=

nC

∑=



58
Pcc is a random variable value which represents a classifier performance on a given set of

data. Therefore, care must be used in utilizing this measure in comparing two different clas-

sifiers.

5.2 Wavelet Families
Wavelet transforms have been found useful in a variety of applications. This is because

they provide the analyst with an approximation of the signal and a detail of the signal as

well. This helps to identify small anomalies that might be useful. For a complete description

of wavelet analysis the reader should refer to [10][11]. A brief summary of how the wave-

lets were used is presented here. 

The 1-D discrete wavelet transform (DWT) of a signal yields an approximation and a

detail of the original signal. Passing the original signal through a low-pass filter then down

sampling produces the approximation. Passing the original signal through a high-pass filter

then down sampling produces the detail. The corresponding wavelet functions may be

obtained by an iterative process involving convolution of the filter coefficients.

Discrete wavelet packet (DWP) analysis begins with the DWT of the original signal. The

next level of the DWP analysis calculates the DWT of the resulting approximation and the

DWT of the resulting detail. Subsequent levels calculate the DWT of all the approximations

and details of the previous level. Since the number of samples of each approximation and

detail is approximately half of the number of samples of the input signal to the DWT, DWP

analysis must cease when the approximations and details each contain a single sample.

The discrete wavelet packet (DWP) analysis is performed as follows. The length, L, of the

normalized signal must be a power of 2. The number of levels of the DWP analysis is

, beginning with level N, and ending with level 1. At level j the 1-D discrete

wavelet transform of a signal of length 2j is calculated using DWT.m from the MATLAB

N L( )2log=
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Wavelet Toolbox. The outputs of DWT are an approximation and a detail each of length at

least 2j-1. The tails of the approximation and detail are all zero-valued, so zero values are

trimmed from each tail to obtain lengths of 2j-1. The trimmed approximations and details

are used as inputs to the DWT at subsequent levels. The trimmed approximations and

details at each level are appended to the normalized signal and placed in the training set.

This process is depicted in Figure 5-1. The wavelet functions used in this chapter for the

DWT are shown in Table 5-1.

Prior to selecting features for the target classifier it is useful to preprocess the original sig-

nal. Any operation that increases our ability to separate the classes is desirable. In this chap-

ter feature selection is based on transformations derived from wavelets in Table 5-1.

Training and test sets were constructed using each of the functions. The utility of each of

these wavelets for enhancing performance of a classifier was then analyzed. An example of

Figure 5-1 Discrete Wavelet packet Analysis [11]
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the power of a wavelet transformation is illustrated in Figure 5-2 using the Haar wavelet

transform on the original signal.

In Figure 5-2 the original signal is contained in the first 128 feature index points. The coef-

ficients of the Haar transform are contained in the remaining feature index points. A perfect

feature would have a cluster size of 60. This means that this one feature could correctly

classify all 60 training signals of that one target class. The original signal features show that

the largest number of signals in the training set that can be classified by a single feature is

20 out of a maximum of 60. Selecting a single feature from the wavelet coefficients, it is

possible to classify 50 out of 60 signals. This is a significant improvement!

Table 5-1 Wavelet Functions Used in Wavelet Transform
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5.3 Wavelet Family Dependence
As observed in the prior discussion, a wavelet transform improves feature selection for

target recognition. The natural question is to identify which wavelet family improves target

recognition the most. In this section it is demonstrated that there is no single wavelet family

that out performs all others in this task.

Proposition 1: No single wavelet family transform has a statistically significant advantage

over any other wavelet family in extracting features for target classification.

To verify Proposition 1 classifiers were constructed using training sets from all the wavelet

families. Table 5-2 shows the results obtained testing the classifier built from the original

signal and the associated wavelet transform. In addition, the mean and standard deviation

of Pcc for the wavelet family are presented in Table 5-2. To determine if there is any sig-

nificant difference between the families hypothesis testing of the means [19] is used. The

mean, , and the standard deviation, , of the population are calculated using:

( 5-2)

Figure 5-2 Maximum Cluster Sizes
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( 5-3)

where  is the mean value and  is the standard deviation of probability of correct classi-

fication for various wavelet transforms from a selected wavelet family and nw is the number

of wavelets in the selected family. When the mean and standard deviation are computed

from samples,  is replaced by  and  is replaced by s respectively. The hypothesis;

H0:  ( 5-4)

is being tested against the alternative hypothesis;

H1: . ( 5-5)

The test statistic is computed as follows:

( 5-6)

H0 is rejected if  (1.96 is for a two-tailed test where the results are significant at

a level of 0.05). The results of this hypothesis testing are presented in Table 5-3. Table 5-3

shows the test results of the null hypothesis, H0, for means of various wavelet families

based on the sample means and standard deviations from Table 5-2.

From the analysis presented, the null hypothesis, that there is no difference in the mean val-

ues, must be accepted. This means that there is no statistically significant difference in the

performance of the classifiers when different families of wavelets are used to transform the

input data. Since there is no difference between the families the question arises is there sig-

nificant difference within each family? Since the standard deviations are small, 1.4% to

3.8%, it appears that there is no significant difference between the wavelets within the fam-

ilies. It is safe to conclude that classifier performance would be the same no matter which

wavelet was chosen. It would be most efficient (from a computational standpoint) to use

the simplest wavelet possible. Therefore it is best to use the Db1 (Haar) wavelet.
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Normally this type of analysis is limited to large samples where the standard deviations of

the samples are known. This is not the case in this analysis so additional hypothesis testing

must be performed. 

Table 5-2 Performance of Wavelets

Name Pcc Name Pcc Name Pcc Name Pcc

Bior1.3 0.72488 Db1 (Haar) 0.77130 Coif1 0.76115 Sym2 0.79153

Bior1.5 0.78045 Db2 0.79576 Coif2 0.78231 Sym3 0.75886

Bior2.2 0.75760 Db3 0.75886 Coif3 0.77133 Sym4 0.77458

Bior2.4 0.78150 Db4 0.79160 Coif4 0.78770 Sym5 0.75800

Bior2.6 0.77400 Db5 0.77567 Coif5 0.76943 Sym6 0.76345

Bior2.8 0.78600 Db6 0.78120 Sym7 0.76591

Bior3.1 0.70550 Db7 0.77460 Sym8 0.78275

Bior3.3 0.77030 Db8 0.76760

Bior3.5 0.78020 Db9 0.79410

Bior3.7 0.79410 Db10 0.77630

Bior3.9 0.79290 Db11 0.75598

Bior4.4 0.72990 Db12 0.76300

Bior5.5 0.74150

Bior6.8 0.73010

Mean 0.76064  0.77550 0.77438 0.77073

Std. Dev. 0.02890 0.01329 0.01060 0.01272

Table 5-3 Wavelet Family Hypothesis Test

Wavelet
Name

Wavelet
Name

Accept or 
Reject H0

Biorthogonal Daubechies 1.723060 Accept

Biorthogonal Coiflet 1.516130 Accept

Biorthogonal Symlet 1.109050 Accept

Daubechies Coiflet 0.183654 Accept

Daubechies Symlet 0.775505 Accept

Coiflet Symlet 0.540601 Accept

Z
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A t-test is used when either or both of the populations are small and the population vari-

ances are unknown. However, it must be assumed that the standard deviations of both pop-

ulations are the same. The t statistic is defined as:

( 5-7)

and the null hypothesis, H0, is rejected if the value of t is greater than 2.074 or 2.85 depend-

ing on the level of significance chosen. The t-test was performed on different pairs of wave-

let families, Table 5-4, and gives the same results as before. This indicates that the small

number of samples did not give a false acceptance of H0.

Table 5-4 Wavelet Family Comparison - Hypothesis t-Test

5.4 Feature Size Dependence
When constructing the classifier, there are times when the classifier is selecting features to

classify just a few training signals. However, each new feature increases the dimensionality

of the statistical feature space in which the signal classification is performed. The increase

in space dimensionality reduces the accuracy of the statistical representation of the training

data. As a result, it is possible that when the classifier is choosing a feature to classify a few

signals, the classifier performance may decrease on the test set. Based on this the following

proposition is made:

Proposition 2: Features which classify a small number of training signals do not signifi-

cantly improve classifier performance.

Wavelet
Family

Wavelet
Family

t
Accept or 
Reject H0

Biorthogonal Daubechies -1.6356 Accept

Biorthogonal Coiflet -1.0226 Accept

Biorthogonal Symlet -0.87359 Accept

Daubechies Coiflet 0.166612 Accept

Daubechies Symlet 0.766102 Accept

Coiflet Symlet 0.523066 Accept

t
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An analysis was performed to determine what size feature (the number of signals that were

classified from the training set) could be safely ignored. Elimination of features classifying

a small number of signals allows for much faster training of the classifier and better gener-

alization. Table 5-5 shows the results of the analysis for the Daubechies wavelet family.

Each column in the table shows the probability of correct classification with the minimum

feature size eliminated as indicated in the first row.

Using the Z test (Equation 5-6), as before, it was found that eliminating features that clas-

sify only one signal produces a statistically significant difference in the classifiers. How-

ever, it was suspected that because of the small sample size it might be necessary to perform

a t-test (Equation 5-7). As seen in Table 5-5, all features which classify less than five train-

ing signals can be safely eliminated.

The t-test depends on the standard deviations being equal so a test for this was also made.

This is accomplished by using the statistic

( 5-8)

If this value is less than 2.85 the null hypothesis, that the variances are equal, must be

accepted. As seen from Table 5-5, the null hypothesis for all the tests (the standard devia-

tions are equal) can be accepted.

The results for the other families of wavelets are presented in Tabl e5-6 through Tabl e5-8.

The analysis was performed as before. These results show that no matter what family of

wavelet is used there is no statistical performance difference between the classifiers when

features that classify four signals or less are removed from the classifier. Removing these

features significantly reduces the time required to create the classifier.
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Table 5-5 Significance of Eliminating Features of Daubechies Wavelets

Name Test >1 >2 >3 >4 >5 >6 >7
Pcc Pcc Pcc Pcc Pcc Pcc Pcc Pcc

Db1 0.77130 0.76903 0.75369 0.71595 0.67470 0.64463 0.61022 0.58327

Db2 0.79576 0.79474 0.77753 0.75514 0.71347 0.67884 0.65625 0.62203

Db3 0.75886 0.75762 0.73772 0.70496 0.67241 0.64131 0.61124 0.58242

Db4 0.79160 0.79060 0.77318 0.73483 0.70124 0.67408 0.65355 0.62640

Db5 0.77567 0.77443 0.75888 0.72965 0.69026 0.65667 0.63760 0.61002

Db6 0.78120 0.78065 0.76759 0.73462 0.69689 0.67035 0.62702 0.60214

Db7 0.77460 0.77381 0.75784 0.72695 0.69378 0.66351 0.63739 0.61624

Db8 0.76760 0.76655 0.74748 0.71327 0.68113 0.63822 0.61313 0.58058

Db9 0.79410 0.79247 0.77712 0.74913 0.70974 0.68175 0.65666 0.62411

Db10 0.77630 0.77526 0.75764 0.72073 0.68549 0.65522 0.62993 0.61210

Db11 0.75598 0.75452 0.73192 0.69771 0.65687 0.62743 0.58783 0.56087

Db12 0.76300 0.76157 0.74456 0.71409 0.66391 0.64318 0.61478 0.56875

Mean 0.77550 0.77427 0.75710 0.72475 0.68666 0.65627 0.62797 0.59908

Std. Dev. 0.01329 0.01340 0.01496 0.01708 0.01762 0.01762 0.02146 0.02285

Z 0.22515 3.18521 8.12297 13.94261 18.71136 20.24809 23.11965

Alpha=.05 1.96 NOT sig. Sig. Sig. Sig. Sig. Sig. Sig.

Alpha=.01 2.58 NOT sig. Sig. Sig. Sig. Sig. Sig. Sig.

t s1=s2,normal 0.02601 0.37924 1.00870 1.75033 2.34906 2.74159 3.21468

t .05/22 2.074 NOT sig. NOT sig. NOT sig. NOT sig. Sig. Sig. Sig.

t .01/22 2.819 NOT sig. NOT sig. NOT sig. NOT sig. NOT sig. NOT sig. Sig.

F 1.00785 1.12539 1.28459 1.32554 1.32564 1.61402 1.71875

Alpha=.05 2.85 (11,12) Accept Accept Accept Accept Accept Accept Accept

Alpha=.01 4.54 (11,10) Accept Accept Accept Accept Accept Accept Accept
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Table 5-6 Significance of Eliminating Features for Symlet Wavelets
Name Test >1 >2 >3 >4 >5 >6 >7

Pcc Pcc Pcc Pcc Pcc Pcc Pcc Pcc

Sym2 0.79153 0.79039 0.77297 0.74601 0.70704 0.68008 0.64691 0.61726

Sym3 0.75886 0.75762 0.73772 0.70496 0.67241 0.64131 0.61124 0.58242

Sym4 0.77458 0.77277 0.75763 0.72985 0.69129 0.65314 0.60380 0.58390

Sym5 0.75800 0.75701 0.73855 0.71056 0.67428 0.64194 0.62079 0.58409

Sym6 0.76345 0.76261 0.74665 0.71949 0.69461 0.65853 0.61811 0.59883

Sym7 0.76591 0.76509 0.74830 0.71927 0.67822 0.63571 0.60585 0.58118

Sym8 0.78275 0.78148 0.76801 0.73919 0.70975 0.67762 0.63906 0.61418

Mean 0.77073 0.76957 0.75283 0.72419 0.68966 0.65548 0.62082 0.59455

Std. Dev 0.01272 0.01261 0.01384 0.01492 0.01526 0.01773 0.01646 0.01564

Z 0.22402 3.29655 8.22262 14.13325 18.29834 24.95777 30.26778

Alpha=.05 1.96 NOT Sig. Sig. Sig. Sig. Sig. Sig. Sig.

Alpha=.01 2.58 NOT Sig. Sig. Sig. Sig. Sig. Sig. Sig.

t s1=s2,normal 0.02521 0.38028 0.96966 1.67871 2.28800 3.03959 3.62363

t .05/22 2.074 NOT Sig. NOT Sig. NOT Sig. NOT Sig. Sig. Sig. Sig.

t .01/22 2.819 NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. Sig. Sig.

F 1.00860 1.08822 1.17248 1.19974 1.39325 1.29408 1.22955

Alpha=.05 2.85 Accept Accept Accept Accept Accept Accept Accept

Alpha=.01 4.54 Accept Accept Accept Accept Accept Accept Accept
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Table 5-7 Significance of Eliminating Features for Coiflet Wavelets
Name Test >1 >2 >3 >4 >5 >6 >7

Pcc Pcc Pcc Pcc Pcc Pcc Pcc Pcc

Coif1 0.76115 0.75991 0.74104 0.71139 0.67635 0.64028 0.60566 0.57041

Coif2 0.78231 0.78147 0.76551 0.72819 0.69896 0.67346 0.63241 0.60877

Coif3 0.77133 0.77008 0.75225 0.72675 0.69461 0.65937 0.62371 0.59240

Coif4 0.78770 0.78625 0.77008 0.73835 0.70456 0.68030 0.66371 0.62743

Coif5 0.76943 0.76862 0.74954 0.71699 0.68859 0.65541 0.63386 0.60753

Mean 0.77438 0.77327 0.75568 0.72433 0.69261 0.66176 0.63187 0.60131

Std. Dev 0.01060 0.01056 0.01191 0.01047 0.01081 0.01572 0.02105 0.02128

Z 0.25889 4.06272 11.63783 18.70997 20.58158 20.95222 25.22373

Alpha=.05 1.96 NOT Sig. Sig. Sig. Sig. Sig. Sig. Sig.

Alpha=.01 2.58 NOT Sig. Sig. Sig. Sig. Sig. Sig. Sig.

t s1=s2,normal 0.02663 0.43176 1.19448 1.93590 2.40503 2.77536 3.35826

t .05/22 2.074 NOT Sig. NOT Sig. NOT Sig. NOT Sig. Sig. Sig. Sig.

t .01/22 2.819 NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. Sig.

F 1.00351 1.12434 1.01191 1.02042 1.48319 1.98604 2.00790

Alpha=.05 2.85 Accept Accept Accept Accept Accept Accept Accept

Alpha=.01 4.54 Accept Accept Accept Accept Accept Accept Accept
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5.5 Iterated Wavelet Transform
A single wavelet transform using any of the previous families improves classification per-

formance. Is it possible to improve upon this performance? If the original signals are trans-

formed and then 128 of the most informative pseudo range bins selected for further

Table 5-8 Significance of Eliminating Features for Biorthogonal Wavelets

Name Test >1 >2 >3 >4 >5 >6 >7

Pcc Pcc Pcc Pcc Pcc Pcc Pcc Pcc

Bior1.3 0.72488 0.72466 0.71160 0.68548 0.64961 0.61934 0.58160 0.55175

Bior1.5 0.78045 0.77899 0.76178 0.72985 0.68486 0.65355 0.62349 0.60048

Bior2.2 0.75760 0.75639 0.73255 0.70332 0.65377 0.62744 0.59385 0.56337

Bior2.4 0.78150 0.77961 0.76365 0.73047 0.69253 0.66288 0.63697 0.59634

Bior2.6 0.77400 0.77194 0.75577 0.72591 0.69584 0.65874 0.64091 0.60566

Bior2.8 0.78600 0.78397 0.76551 0.73006 0.69482 0.66248 0.63345 0.59551

Bior3.1 0.70550 0.70455 0.68008 0.64484 0.60440 0.56750 0.53391 0.49556

Bior3.3 0.77030 0.76944 0.75182 0.71823 0.68195 0.64381 0.61188 0.58534

Bior3.5 0.78020 0.77899 0.76406 0.73462 0.69461 0.66807 0.63883 0.62515

Bior3.7 0.79410 0.79226 0.77567 0.75224 0.71783 0.69316 0.65936 0.62120

Bior3.9 0.79290 0.79247 0.77837 0.74789 0.70891 0.68361 0.65189 0.62349

Bior4.4 0.72990 0.72944 0.71783 0.69067 0.66848 0.62744 0.60753 0.58473

Bior5.5 0.74150 0.74146 0.73192 0.70869 0.68755 0.65167 0.61622 0.59736

Bior6.8 0.73010 0.73006 0.72032 0.69565 0.66538 0.63553 0.61936 0.58680

Mean 0.76064 0.75959 0.74364 0.71414 0.67861 0.64680 0.61780 0.58805

Std Dev 0.02890 0.02844 0.02857 0.02855 0.02887 0.03113 0.03232 0.03386

Z 0.08970 1.44924 3.96527 6.95551 9.28304 11.41263 13.42897

Alpha=.05 1.96 NOT Sig. NOT Sig. Sig. Sig. Sig. Sig. Sig.

Alpha=.01 2.58 NOT Sig. NOT Sig. Sig. Sig. Sig. Sig. Sig.

t s1=s2,normal 0.01518 0.24566 0.67206 1.18217 1.60943 1.99979 2.38636

t .05/22 2.074 NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. Sig.

t .01/22 2.819 NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig. NOT Sig.

F 1.01615 1.01172 1.01229 1.00088 1.07728 1.11825 1.171765

Alpha=.05 2.85 (11,12) Accept Accept Accept Accept Accept Accept Accept

Alpha=.01 4.54 (11,10) Accept Accept Accept Accept Accept Accept Accept
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transformation, a new linear transformation of the input data is created [20]. Therefore, it

is proposed:

Proposition 3: By iteratively selecting the most informative pseudo range bins and trans-

forming them the informative value of the range bins increase and therefore yields a better

classifier.

 

An experiment was performed to verify this proposition. The original 128 range bin signal

was transformed (using the Haar wavelet) as previously discussed creating 1024 pseudo

range bins. A box classifier was constructed. The range bins used as features were chosen

for further transformation. If there are more than 128 pseudo range bin features, then the

features that classify the most training signals are selected. If there are fewer than 128 fea-

tures, then additional pseudo range bins are selected from the middle of the pseudo signal.

These 128 range bins are wavelet transformed and a classifier is constructed and tested.

This procedure is repeated a total of 12 times and the results are presented in Table 5-9 and

Figure 5-3.

When using just one wavelet transform on the original signal, Stirman showed an increase

in Pcc of 6 percentage points [6] and 7.53 percentage points over the baseline classifier [7].

This difference, over the baseline classifier, may have resulted from changing the type of

classifier or the use of wavelets. Stirman did not attribute the increase in performance to

one or the other, neither did he analyze the significance of using the wavelet transform. In

the results presented here, it was found that using the same classifier, the improvement in

Pcc after one application of the wavelet transform is 4.2 percentage points.    This improve-

ment is smaller than the one observed by Stirman but this difference can be attributed to the

use of a different classifier. The most important curve in Figure 5-3 is the one for Pcc. This

curve shows an increase in overall classifier performance from 0.7713 to 0.89717 by itera-

tion 10. This represents an improvement of 12 percentage points. Furthermore, Target 2
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improved by 25 percentage points and Target 6 by 18 percentage points. This is a signifi-

cant improvement in performance over a single wavelet transform and confirms the benefit

of using the iterated wavelet transform.

A question arose as to why there would be a decrease in performance on some of the targets

such as seen on Target 2 between iterations 7 and 8. It is apparent that the iterated wavelet

transforms yield an increasing performance in the entire classifier. Individual targets may

sacrifice performance while overall performance increases. In general, the momentary

decreases are recovered in later iterations. This may be a manifestation of the biasing prob-

lem reported by Stirman [7]. If so, by iterating the wavelet transform this problem appears

to either be mitigated or eliminated. For this problem the maximum advantage of iterating

the wavelets happens at about 10 iterations. 

Performance increase was anticipated as fewer features are required and the features that

are chosen classify more signals. This supposition was confirmed by experiment and is

Table 5-9 Results of Iterative Application of Haar Transform

Iteration Pcc Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

0 .7713 .9490 .6219 .8219 .6853 .8134 .7363

1 .81361 .9552 .6741 .8555 .6692 .8893 .8383

2 .84762 .9552 .7724 .9128 .7027 .9104 .8321

3 .86421 .9453 .7823 .9452 .7363 .9154 .8607

4 .87976 .9453 .7935 .9465 .7774 .9328 .8831

5 .88618 .9453 .8172 .9552 .7550 .9316 .9129

6 .88453 .9453 .8197 .9601 .7376 .9316 .9129

7 .89095 .9391 .8507 .9664 .7450 .9316 .9129

8 .89261 .9391 .8246 .9664 .7799 .9316 .9142

9 .88867 .9391 .8346 .9651 .7488 .9316 .9129

10 .89717 .9391 .8706 .9639 .7512 .9391 .9192

11 .89365 .9353 .8570 .9639 .7512 .9391 .9154

12 .90049 .9353 .8483 .9689 .7749 .9465 .9291
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graphically illustrated in Table 5-4. It is easily seen that the targets with the fewest features

have the highest performance (Table 5-3). The targets with the lowest performance require

the most features. This happens when two targets are very similar and the same range bins

contain the information required to segment the targets. In such cases an individual feature

provides little differentiation between targets and additional features are required.   It

should be noted that performance on a given target improves most significantly when the

number of features required for classification decreases as in Target 2, Target 5, and

Target 6.

Figure 5-3 Iterated Wavelet Results
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Figure 5-4 Feature Sizes

5.6 Summary
In this chapter it was shown that for the HRR target recognition problem the use of wavelets

to enrich the feature space improves classifier performance. In addition, it was shown that

there is no statistically significant difference in performance of the classifier when different

wavelets are chosen. This means that the simplest wavelet implementation will do as good

a job as any other wavelet, at least for the HRR target recognition problem. Results were

presented that show that (using a box classifier) features that classify fewer than five train-

ing signals can safely be ignored without producing a statistically significant change in the

classifier's performance.

The most significant contribution of this chapter is the idea of using iterated wavelet trans-

forms to improve classifier performance. Information content methods to down select the

pseudo range bins, instead of using the box classifier features, were presented in Chapter

4. This information-based method has shown similar improvement in classification perfor-

mance.
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The application of the iterative wavelet method used here to improve performance could

potentially be used in other problem domains.



75
6Rough Set Classification

As previously discussed in Chapter 2, rough set theory (RST) is not capable of being used

on very large problems such as the HRR classification problem used in this research. The

initial problem is large considering the number of signals in the training set and 128 range

bins. By expanding the number of range bins through wavelet feature generation to a total

of 1,024 the problem becomes intractable for RST. Therefore, in this chapter methods are

developed for selecting an appropriate subset of range bins for RST analysis and classifier

development. Since this is only a subset of the full information system RST must be

extended to include this kind of partitioning.

Even the partitioned data is much too large for conventional RST analysis. In this Chapter

a new algorithm for computing reducts is introduced. This algorithm is an O(n2) algorithm

which is vastly superior to the non-polynomial methods currently available in RST.

6.1 Definition of Focused Reducts
The data set partitioning scheme was discussed in Section 4.2. The reasons and advantages

of this partitioning were discussed in that section also. This partitioning results in the orig-

inal information system (U, A) being transformed to a focused information system (U, B)

that represents local properties of the information system. A focused reduct F is a reduct

of the focused information system where Ind(F) = Ind(B). A focused reduct in general is

not a reduct of the original system as it may not differentiate all objects and in general

. Ind A( ) Ind B( )⊆
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6.2 Definition of Power Information System
The power information system is defined as a set of all focused information systems. 

 (6-1) 

In other words the power information system of a given information system (U, A) is a

super set of information systems defined on the power set of A. The power information

system is more robust than the original information system and can extract useful knowl-

edge from incomplete or corrupted data.

6.3 Definition of Covered Information system
Using the previous definitions it is now possible to define covered information system as:

(6-2) 

In order to reduce computational cost focused reducts will be chosen from a covered infor-

mation system. In general a covered information system is redundant which means that

. This redundancy is what creates the more robust classifier. How-

ever, a means must be developed to properly amalgamate or fuse this data into a classifier.

This will be discussed in Section 6.6.

Conjecture. A covered information system yields a combined classification performance

of focused reducts exceeding performance of the reducts of the original information sys-

tem. In addition, the obtained classification is more robust to signal distortion and can work

with partially determined signals.

The correctness of this conjecture is addressed in Section 7.1
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6.4 Determination of Reducts
The method of determining reducts as described in Chapter 2 are too computationally inten-

sive to support a problem of the size used in this dissertation. In this section a new method-

ology is presented with significantly enhanced performance. Once the data has been

partitioned and labeled the following procedure is used. The first step is reducing the

number of range bins considered. Next a consistent training set must be created. Once this

is accomplished it is possible to calculate the core and reducts.

6.4.1 Selection of Salient Range Bins
Even with efficient methods of determining near minimal reducts the enhanced feature set

generated in this research is still too large. It was determined that by using uncompiled

MATLAB computer code running on a 400 MHz processor that a reasonable number of

attributes to be considered would be approximately 50.

In Section 4.5 an entropy index was developed which provides information as to the value

of a given range bin in the process of separating the various target classes. The higher the

index value the more valuable the range bin. The 50 range bins with the highest entropy

index will be selected for the determination of the reducts.

Figure 6-1 through Figure 6-29 are the graphs of the entropy index for each partition. The

data is sorted in descending entropy order so that the effect of selecting the 50 highest

entropy index range bins can be determined. Obviously the partitions with more range bins

show a greater spread in the entropy index, as in Figure 6-1, where all the range bins are in

the partition. It is interesting to note the partitions which have little information, Figure 6-6,

Figure 6-9, Figure 6-14, Figure 6-15, Figure 6-20, and Figure 6-21. These partitions show
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little value in the classification process which will be shown later in Table 7-2. In these

cases the 50 highest entropy index range bins contain most of the information.

It is important to note that the partitions which are based on the interleave partitioning tend

to spread the information as expected across the range bins. It should also be noted that in

every case the graphs tend to be generally concave or at the very least a steep negative slope

meaning that as more range bins are selected the benefit is decreasing at an ever higher rate.

This effect is most pronounced in figures like Figure 6-3 and Figure 6-8. In partitions of

small size selecting the first 50 bins results in having virtually all the information in the par-

tition. This would suggest that a scheme where the number of range bins selected for reduct

generation would be a function of the total range bins in the partition and the area under the

entropy index curve should be explored.

Figure 6-1  Partition Trn1-1 Entropy

Figure 6-2  Partition Trn2-1st Entropy Figure 6-3  Partition Trn2-2nd Entropy
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Figure 6-4  Partition Trn2-1 Entropy Figure 6-5  Partition Trn2-2 Entropy

Figure 6-6  Partition Trn4-1st Entropy Figure 6-7  Partition Trn4-2nd Entropy

Figure 6-8  Partition Trn4-3rd Entropy Figure 6-9  Partition Trn4-4th Entropy

Figure 6-10  Partition Trn4-1 Entropy Figure 6-11  Partition Trn4-2 Entropy
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Figure 6-12  Partition Trn4-3 Entropy Figure 6-13  Partition Trn4-4 Entropy

Figure 6-14  Partition Trn8-1st Entropy Figure 6-15  Partition Trn8-2nd Entropy

Figure 6-16  Partition Trn8-3rd Entropy Figure 6-17  Partition Trn8-4th Entropy

Figure 6-18  Partition Trn8-5th Entropy Figure 6-19  Partition Trn8-6th Entropy
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Figure 6-20  Partition Trn8-7th Entropy Figure 6-21  Partition 8-8th Entropy

Figure 6-22  Partition Trn8-1 Entropy Figure 6-23  Partition Trn8-2 Entropy

Figure 6-24  Partition Trn8-3 Entropy Figure 6-25  Partition Trn8-4 Entropy

Figure 6-26  Partition Trn8-5 Entropy Figure 6-27  Partition Trn8-6 Entropy
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6.4.2 Elimination of Duplicates
The first step toward efficiency is to eliminate duplicates from the training set. A duplicate

is defined as:

(6-3) 

which simply means that two signals of the same class have the same valued attributes.

Basically duplicates add no additional information while increasing computational costs

and all but one can be eliminated. Table 6-1 shows the number of duplicates for each par-

tition and each target class in the training set.

Figure 6-28  Partition Trn8-7 Entropy Figure 6-29  Partition Trn8-8 Entropy

Table 6-1 Number of Duplicate Signals
Partition
Name

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total # of
Duplicates

Trn1-1 226 189 103 126 161 104 909

Trn2-1 214 146 112 135 100 59 766

Trn2-2 178 144 84 43 138 92 679

Trn2-1st 117 41 6 5 33 33 235

Trn2-2nd 225 226 248 213 200 201 1313

Trn4-1 161 142 53 92 81 74 603

Trn4-2 146 95 69 43 93 110 556

Trn4-3 166 100 140 95 122 78 701

Trn4-4 185 158 152 83 122 132 832

Trn4-1st 157 179 131 118 98 94 777

Trn4-2nd 65 17 0 0 16 9 107

Trn4-3rd 88 150 141 74 86 125 664

Trn4-4th 192 162 132 170 153 140 949
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6.4.3 Elimination of Ambiguities 
The next step is to eliminate ambiguities from the training set. An ambiguity is defined as:

(6-4) 

which means that two signals are identical but represent different classes. Therefore both

of the offending signals are removed from the training set. Often duplicates and ambiguities

are artifacts of the labeling, partitioning, and bin selection processes. Table 6-2 shows the

ambiguities.

Trn8-1 189 175 93 82 97 151 787

Trn8-2 169 158 84 47 128 128 714

Trn8-3 129 91 112 49 118 94 593

Trn8-4 146 34 110 18 59 51 418

Trn8-5 174 51 101 52 83 55 516

Trn8-6 108 43 65 40 29 121 406

Trn8-7 132 79 50 106 99 120 586

Trn8-8 194 155 49 70 153 150 771

Trn8-1st 237 234 228 228 225 226 1378

Trn8-2nd 174 181 132 133 116 122 858

Trn8-3rd 50 40 22 7 30 191 340

Trn8-4th 3 15 2 3 0 3 26

Trn8-5th 0 9 23 2 34 24 92

Trn8-6th 228 41 22 65 57 207 620

Trn8-7th 242 197 183 224 210 210 1266

Trn8-8th 239 233 215 237 237 239 1400

Table 6-2 Number of Ambiguities
Partition Name Target 1 Target 2 Target 3 Target 4 Target 5 Target 6
Trn1-1 0 19 10 19 8 15
Trn2-1 5 17 13 19 10 19
Trn2-2 4 23 27 22 18 21
Trn2-1st 0 3 0 3 0 0
Trn2-2nd 19 18 13 18 18 18
Trn4-1 11 21 16 22 10 24

Table 6-1 Number of Duplicate Signals (Continued)
Partition
Name

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total # of
Duplicates

xi xj where ci cj≠=
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Once all the ambiguities and duplicates are removed the final training signals are ready for

the reducts to be found. Table 6-3 shows the number of training signals remaining.

Trn4-2 12 21 18 25 20 15
Trn4-3 16 26 12 18 7 27
Trn4-4 8 28 24 27 22 23
Trn4-1st 71 61 82 88 85 87
Trn4-2nd 0 1 0 1 0 0
Trn4-3rd 20 21 22 22 30 31
Trn4-4th 61 81 88 76 78 85
Trn8-1 11 23 30 27 17 24
Trn8-2 25 18 37 26 24 32
Trn8-3 29 39 31 43 25 48
Trn8-4 35 35 20 29 41 32
Trn8-5 25 48 43 66 41 34
Trn8-6 23 40 33 32 42 23
Trn8-7 18 40 38 36 27 31
Trn8-8 19 25 35 35 26 30
Trn8-1st 27 27 29 30 36 35
Trn8-2nd 83 72 102 105 100 94
Trn8-3rd 12 32 11 14 5 22
Trn8-4th 0 4 0 2 20 0
Trn8-5th 2 5 10 6 21 26
Trn8-6th 19 40 28 39 39 24
Trn8-7th 24 38 48 36 34 43
Trn8-8th 28 26 26 25 26 24

Table 6-3 Number of Training Signals
Partition Name Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Signals

Trn1-1 41 59 154 122 98 148 622

Trn2-1 48 104 142 113 157 189 753

Trn2-2 85 100 156 202 111 154 808

Trn2-1st 150 223 261 259 234 234 1361

Trn2-2nd 23 23 6 36 49 48 185

Trn4-1 95 104 198 153 176 169 895

Trn4-2 109 151 180 199 154 142 935

Trn4-3 85 141 115 154 138 162 795

Table 6-2 Number of Ambiguities (Continued)
Partition Name Target 1 Target 2 Target 3 Target 4 Target 5 Target 6
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6.4.4 Calculation of the Core
After all the duplicates and ambiguities are eliminated the next step is to calculate the core.

Recall from Chapter 2 that the core is the intersection of all the reducts. Remember that

when a discernibility matrix is produced the singleton entries are attributes that form the

core. This means that the core can be determined by removing one attribute at a time and

then seeing if there are any ambiguities introduced into the training set. If ambiguities are

found, that means that the removed attribute is the only attribute able to discriminate

between the two signals of different classes. Therefore, it must be in every reduct and there-

fore part of the core. This operation is of O(n) time complexity.

Trn4-4 74 81 91 157 123 112 638

Trn4-1st 39 27 54 61 84 86 351

Trn4-2nd 202 249 267 266 251 258 1493

Trn4-3rd 159 96 104 171 151 111 792

Trn4-4th 14 24 47 21 36 42 184

Trn8-1 67 69 144 158 153 92 683

Trn8-2 73 91 146 194 115 107 726

Trn8-3 109 137 124 175 124 125 992

Trn8-4 86 198 137 220 167 184 829

Trn8-5 68 168 123 149 143 178 829

Trn8-6 136 184 169 195 196 123 1003

Trn8-7 117 148 179 125 141 116 826

Trn8-8 54 87 183 162 88 87 661

Trn8-1st 3 6 10 9 6 6 40

Trn8-2nd 10 14 33 29 51 51 188

Trn8-3rd 205 195 234 246 232 54 1166

Trn8-4th 264 248 265 262 265 264 1568

Trn8-5th 265 253 234 259 212 217 1440

Trn8-6th 20 186 217 163 171 36 793

Trn8-7th 1 32 36 7 23 14 113

Trn8-8th 0 8 26 5 4 4 47

Table 6-3 Number of Training Signals (Continued)
Partition Name Target 1 Target 2 Target 3 Target 4 Target 5 Target 6 Total Signals
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6.4.5 Calculation of the Reducts
Calculation of the reducts is more complicated and time consuming than calculation of the

core. Recall that reducts are required to preserve all the information in the training data.

That is, all signals must be correctly classified using only the attributes in the reduct. Let

 represent the set of all attributes in a partition. Let R represent the set of all reducts for

a given partition. Let  represent one of the reducts of the partition and let  represent

the attributes currently in the reduct being constructed. Let c represent the core of the par-

tition. Since all reducts must contain the core the process begins from there,  and

. Now for each  calculate the number of ambiguities in the training set

and call this number ba. If there are no ambiguities then  is a reduct. If there are ambigu-

ities, then set . Repeat until there are no ambiguities. If

bai=baj meaning that the addition of attributes i and j resulted in the same number of ambi-

guities, add attribute i to and save attribute j for processing as part of another reduct. When

processing saved attributes, the saving process is not performed. Two reducts are equiva-

lent if they contain the same attributes. In other words the ordering of the attributes is not

important. In essence what happens if the saving process is performed after the first reduct

is determined is that equivalent reducts can be generated. Note that this process must ter-

minate because the use of all the attributes would be a reduct by definition. If the process

terminates prior to using all the attributes (i.e., there are no ambiguities), then this is a

reduct by definition. The only question remaining is whether this is a minimal reduct. A

minimal reduct is defined as the reduct(s) of locally minimum cardinality (containing the

fewest attributes). By examining Table 6-4 reducts are found as small as two more

attributes than the core. Since the core is not a reduct (if it were then there would only be

one reduct) the absolute minimum size for a reduct would be one more attribute than the

core. However, this was tested and there were no reducts found of this size. Therefore, the

minimal reduct could at best be of size two more than the core. This means that the proce-

dure described was able to determine a reduct within two attributes of the smallest possible

size. Furthermore when the procedure returns several reducts, typically they are of the same

minimal size or close to it. Check Table 6-4 for the largest reduct found in each category.

Only in two categories of data partitions, Trn8-1st and Trn8-2nd, are the difference

B
ˆ

r R∈ r

r c=

B
ˆ

B
ˆ

c–= b B
ˆ∈

r

r r min ba( ) and  B
ˆ∪= B

ˆ r–=

r
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between the smallest and the largest reduct more than one attribute. As shall be shown,

these two partitions contain very little information about the problem.

6.5 Method of Classification
Once a reduct has been determined the process of classification can proceed. Given an

unknown signal the first step is to normalize and perform the wavelet feature generation

resulting in . Using the notation to indicate only the attributes of the reduct r from 

Table 6-4 Reduct Results
Partition Name Core Size # of Reducts Smallest Reduct Largest Reduct
Trn1-1 15 12 25 26
Trn2-1 20 2 28 28
Trn2-2 26 5 31 31
Trn2-1st 16 11 27 28
Trn2-2nd 14 3 30 30
Trn4-1 24 31 31 31
Trn4-2 21 7 31 31
Trn4-3 18 3 30 31
Trn4-4 23 13 30 31
Trn4-1st 23 13 33 34
Trn4-2nd 3 1 25 25
Trn4-3rd 25 21 32 33
Trn4-4th 12 1 23 23
Trn8-1 24 1 32 32
Trn8-2 28 9 37 38
Trn8-3 33 5 39 40
Trn8-4 29 13 36 37
Trn8-5 40 1 42 42
Trn8-6 39 8 42 42
Trn8-7 37 7 40 40
Trn8-8 31 8 35 36
Trn8-1st 2 14 11 37
Trn8-2nd 5 7 26 32
Trn8-3rd 30 3 32 33
Trn8-4th 10 1 28 28
Trn8-5th 30 3 35 35
Trn8-6th 29 3 34 35
Trn8-7th 7 1 17 17
Trn8-8th 6 1 12 12

x x r( ) x
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a search is performed to find where x(r) are the signals from the consistent

training set. Any attributes labeled as “don’t care” from the fuzzification process are not

considered in determining equality of the signals. If a match is found, then cx(r) is assigned

as the class of the unknown signal. If no match is found, then the target is of the unknown

class.

All the reducts of R are tested against the full training set to determine the performance of

each reduct. The Pcc and Pdec for testing against the training data will not necessarily result

in a perfect score. This is due to the elimination of ambiguities and duplicates from the data

which was used to determine the reducts. The Pcc for each reduct is saved for use in the

fusion process.

6.6 Merging the Focused Reducts
Once all the reducts have been determined each one is tested against the full training set (all

ambiguities and duplicates included) and the performance (Pcc and Pdec) determined. In

some cases a reduct based on a data partition which contains mostly noise will have a low

Pcc and a high Pdec. Even though the performance is low this reduct may be able to be used

to improve classifier performance if it is combined in the right way with other reducts.

As described in the previous section, a set of reducts will be generated for each partition.

In a sense each of these reducts is a classifier. Some of these classifiers will yield a high

probability of correct classification (Pcc) while others will yield a low Pcc. What is desired

is to have a scoring function that will weight the votes of each of the classifiers for each

target class. This function provides a score for each target class based upon the performance

of each reduct voting for that target class. Some of the properties that are desired of this

function are:

If all the Pcc(s) are zero, the weight should be zero.

If all the Pcc(s) are one, the weight should be one.

x r( ) x r( )=
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If there are several “votes” of low confidence for a given target class, the

weight should be higher than any of the low confidence votes.

If there is one high confidence vote and several low confidence votes, the

weight should be higher than the highest score.

The total weighting function for a given target class is given as:

(6-5) 

Where Pmax is the maximum Pcc of all reducts “voting” for target class i, Pi is the Pcc of

each “vote” for target class i, n is the number of “votes” for target class i, and  is a small

number to prevent division by zero if all Pi are 1.

In order to determine if the goals for the formula are being met and to get a physical feel

for how the weighting formula performs a simple table of examples was created. Table 6-5

illustrates the weight generated for a target class based on the “votes” and their Pcc.

As can be seen from the table, all the desirable features of the function are achieved. The

maximum value 1 is achieved if all the values are 1 and the minimum value 0 is achieved

Table 6-5 Results of Weighting Formula
Pcc(1) Pcc(2) Pcc(3) Pcc(4) Pcc(5) Wt
0.00 0.00 0.00 0.00 0.00 0.00

1.00 1.00 1.00 1.00 1.00 1.00

0.10 0.10 0.00 0.00 0.00 0.15

0.80 0.10 0.30 0.00 0.00 0.84

0.80 0.20 0.00 0.00 0.00 0.83

Wt 1

Pmax 1 Pi–( )
i 1=

n

∑ 1 Pmax–( )+

1
1 Pi– ε+
----------------------

i 1=

n

∑
---------------------------------------------------------------------------–=

ε
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if all the values are 0. Further when there are several small values, the Wt value is higher

than any of the small values. The Wt is also larger than the largest of the Pcc values. When

the sum of the Pcc(s) are the same, the Wt value is the same.

6.7 Summary
This chapter introduced extensions to the rough set theory by defining new terms and con-

cepts. A means to reduce the number of attributes being considered was presented and illus-

trated through graphs of the entropy index content of the various partitions.A new method

of determining near minimal reducts was presented along with the method of using these

reducts to perform classification. Since many reducts were generated and in order to make

a robust classifier a fusion formula was developed. The culmination of these technical

developments will be tested in the next chapter.
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7Classification Results

The proof of the concept presented for performing classification using rough set theory

(RST) comes from the classification results. The process for training the classifier and test-

ing the results is shown in Figure 7-30

7.1 Basic Focused Reduct Results
The results presented in the following sections are the results of computer simulations. The

appendix contains the full output of the rough set classifier which is only summarized in

this chapter.

Figure 7-30 Classification and Testing Process
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7.1.1 Training Results
The Performance of the classifier on the training data is shown in Table7-1.

Table 7-1 Classifier Performance on Training Data

Partition Name Pcc Pdec Pcc Pdec Pcc Pdec Pcc Pdec

Trn1-1 0.89207 0.93695

Trn2-1 0.94536 0.83396

Trn2-2 0.9691 0.82834 0.96991 0.97503

Trn2-1st 0.99875 0.9975

Trn2-2nd 0.5505 0.68602 0.9975 0.99938 0.99875 1

Trn4-1 0.96208 0.83958

Trn4-2 0.9598 0.88514

Trn4-3 0.8877 0.87828

Trn4-4 0.95036 0.69164 0.96998 0.99813

Trn4-1st 0.79693 0.32584

Trn4-2nd 0.99938 1

Trn4-3rd 0.88203 0.78839

Trn4-4th 0.54545 0.29526 0.99938 1 0.98065 1

Trn8-1 0.90902 0.75468

Trn8-2 0.92612 0.70974

Trn8-3 0.94781 0.66979

Trn8-4 0.96107 0.7216

Trn8-5 0.95 0.64919

Trn8-6 0.95584 0.79151

Trn8-7 0.90096 0.71848

Trn8-8 0.97834 0.49001 0.99001 1

Trn8-1st 0.22995 0.23346

Trn8-2nd 0.42586 0.36205

Trn8-3rd 0.98691 0.8583

Trn8-4th 0.99875 0.99563

Trn8-5th 0.99012 0.94757

Trn8-6th 0.7984 0.8608

Trn8-7th 0.46296 0.23596

Trn8-8th 0.30547 0.19413 0.99813 1 1 1 1 1
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The table has a separate row for each partition. Note that none of the partitions has perfect

performance. As discussed earlier, this is due to the elimination of ambiguities and dupli-

cates prior to constructing reducts. For testing purposes all signals are included for perfor-

mance determination. Going across the columns of the table the first set of Pcc and Pdec are

for the individual partitions. The next set of Pcc and Pdec use the fusion formula to combine

all the reducts of all the partitions of a given type (interleave or block) and size. The next

set of columns combines all the reducts of all the classifiers of a given partition size. Finally

the last set of columns has the results of combining all the reducts of all the partitions. Note

that this final combination results in perfect performance. Generally speaking, ATR sys-

tems should have perfect performance on the training set.

7.1.2 Test Results
The results of testing the classifier are shown in Table 7-2. This table is constructed the

same way as the table for results on the training data. It is interesting to note that the best

classifier performance on any partition group is on the partition with four divisions and the

second interleave. In operational scenarios a high Pcc of above 90% and a Pdec of over 85%

is normally required. There is no partition, without using fusion, that even comes close to

meeting this criteria. Following the fusion of all partitions the classification performance

improves markedly to an acceptable level. Of special interest is that the classifier declares

almost 100% of the time. This is very unusual in that the classifier has very good perfor-

mance even at this level of declaration.

There are some partitions which have a P cc of 0. As expected, this occurs with the smaller

partitions and is located at the beginning and ends of the signals which contain mostly

noise.

What these results reveal is that it is possible to construct a classifier using rough set theory.

This classifier is able to achieve acceptable performance through the use of fusion.
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Table 7-2 Classifier Performance on Testing Data

Partition Name Pcc Pdec Pcc Pdec Pcc Pdec Pcc Pdec

Tst1-1 0.7922 0.90381

Tst2-1 0.79095 0.79726

Tst2-2 0.79381 0.75705 0.81229 0.94424

Tst2-1st 0.91704 0.73964

Tst2-2nd 0.43967 0.7954 0.79694 0.94942 0.88116 0.992

Tst4-1 0.72369 0.80949

Tst4-2 0.74261 0.85531

Tst4-3 0.7574 0.83313

Tst4-4 0.63639 0.75311 0.82266 0.9971

Tst4-1st 0 0

Tst4-2nd 0.88051 0.80846

Tst4-3rd 0.65241 0.76575

Tst4-4th 0 0 0.83239 0.94983 0.882 0.999

Tst8-1 0.63722 0.81882

Tst8-2 0.58947 0.78317

Tst8-3 0.59995 0.75808

Tst8-4 0.51747 0.65858

Tst8-5 0.49859 0.80618

Tst8-6 0.50673 0.72367

Tst8-7 0.51172 0.7073

Tst8-8 0.53631 0.64511 0.77047 0.99979

Tst8-1st 0 0

Tst8-2nd 0 0

Tst8-3rd 0.66444 0.68138

Tst8-4th 0.81829 0.51451

Tst8-5th 0.70485 0.41439

Tst8-6th 0.37494 0.82546

Tst8-7th 0 0

Tst8-8th 0 0 0.75351 0.97388 0.84906 0.999 0.923 0.999
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An analysis was conducted to ascertain the effect of various parameters on the performance

(Pcc) of the various classifiers. The first area explored was the effect of the number of train-

ing signals. Figure 7-2 shows the results. Training was consistent while testing was not.

There was no obvious trend. As the number of training signals increases, there is a higher

probability that a test signal will match. Obviously if there are few training signals it will

be harder for the test signals to match a training signal. Logically it would seem that there

would be an optimal point between too few and too many training signals. The results could

be influenced by the partitioning scheme which may account for the inconsistent results.

Another plot was generated to determine if the size of the core had any effect on the clas-

sifier performance. This is shown in Figure 7-3. Here it is seen that the size of the core does

influence the classifier performance. Recall that a core attribute is the only attribute capable

of distinguishing between at least two signals in the training set. This means that there is no

redundancy. If that attribute is eliminated through fuzzification then incorrect classification

will result. Basically as the core increases the classifier is more dependant on single

attributes to do classification. As a result, the more attributes in the core the worse the per-

formance.

Figure 7-2 Effect of Number of Training Signals on Performance
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Another plot was made to determine the effect of minimum reduct size on classifier perfor-

mance. The results are presented in Figure 7-4. It was conjectured at the beginning of this

research that smaller reducts (fewer attributes) would result in better classification. This is

because it is easier to match a few attributes than many attributes. The plot bears this out

and confirms the conjecture.

Figure 7-3 Effect of Size of Core on Performance

Figure 7-4 Effect of Minimum Reduct Size on Performance
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Another question was whether more reducts would result in better classification. This is the

idea of many advisors being better than a few. Figure 7-5 shows the results of this analysis.

There is an apparent effect that too many reducts is not good. Recall that multiple reducts

result when several attributes are found to reduce the same number of ambiguities in the

training set. This means that all are roughly equivalent. The reducts generated instead of

being independent of each other are approximately the same. When these are fused together

they may all have had fairly poor performance on the training set and result in poor perfor-

mance on the test set.

Another area explored was whether there was a relationship between the size of the reducts

and the number of reducts. Figure 7-6 confirms that there appears to be a connection. This

might be expected because as the number of attributes increases the likelihood that more

attributes which produce the same number of ambiguities would be found, thus increasing

the number of reducts. As the number of reducts increases and the reduct size increases, as

found previously, the performance decreases. It should be noted that the largest reducts and

the largest core sizes occur in the interleave partitioning. This may indicated that this par-

titioning is not particularly good at classification (by itself). Note that when fused with

Figure 7-5 Effect of Number of Reducts on Performance
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block partitioning of the same size that there is significant improvement in classification

performance.

7.2 Fuzzification Results
The process of fuzzification was described in Section 4.6. Fuzzification was introduced to

handle uncertainty regarding data points that are close to the entropy labeling division

point. Figure 7-7 shows the effect of different size fuzz factors on classifier performance.

Since it only makes sense to use fuzzification on the test data that is what is shown. There

is a clear maximum occurring at the 10% point resulting in a 4 percentage point increase in

performance. This means that making a buffer or “don’t care” zone of 10% of the mini-

mum distance between the dividing point and the terminus values of the attribute yields the

best performance. This is interesting because a significant number of attributes are removed

but the performance increases. Even though attributes are eliminated others remain which

perform the classification task. Apparently these are sufficient when fused with other clas-

sifiers to do a good job of classification.

Figure 7-6 Relationship of Number of Reducts to Reduct Size
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7.3 Comparison with Quadratic Classifier
The quadratic classifier is a very popular means of performing the HRR ATR function. A

quadratic classifier was trained on the same training data used for this research. It was then

tested against the test set. The results, a confusion matrix, are represented in Table 7-3

which has a Pcc of 0.8812. This is five percentage points lower than the rough set classifier.

On other data with an unknown target class the performance of the quadratic classifier

would be much lower. This is due to the fact that the quadratic classifier will classify every

signal no matter how close the match. This could be changed through the use of threshold-

ing. The rough set classifier’s performance (Pcc) would probably not degrade as much as a

quadratic classifier because the rough set classifier does not classify a signal if there is no

match. The Pdec would decrease in this case.

Figure 7-7 Effect of Fuzz Factor on Pcc and Pdec
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7.4 Summary
In this chapter the results of using a rough set classifier on testing data were presented. The

classifier was found to have acceptable performance when all the focused reducts from the

power information set were fused together. Relationships between the size of the core and

reducts was explored. In general, reducts with more attributes and more reducts were found

to have lower performance. Some of this was due to the particular partition on which these

were based having low target information content.

The use of fuzzification on the test data resulted in a four percentage point increase in accu-

racy of the classifier. This increase in performance was due to the uncertainty present in

some of the range bins when the value was too close to the labeling point. Range bins are

only used in the classification process when it is clear which is the correct label to use.

The rough set classifier was found to be better than the most popular method in widespread

use today, the quadratic classifier. If unknown targets were included it is likely that this per-

formance difference would increase.

Table 7-3 Quadratic Classifier Confusion Matrix - Test Data

Target 1 Target 2 Target 3 Target 4 Target 5 Target 6

Target 1 0.8236 0 0.0112 0.0062 0.0137 0.1456

Target 2 0 0.7738 0.0012 0.2090 0 0.0162

Target 3 0.0025 0.0012 0.9318 0.0547 0.0087 0

Target 4 0 0.0921 0.0037 0.9019 0.0012 0.0012

Target 5 0.0037 0.0025 0.0311 0.0187 0.9430 0.0012

Target 6 0.0149 0 0.0124 0.0485 0.0112 0.9131
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8Conclusions and 
Recommendations for 
Future Studies

8.1 Conclusions
This research met the research objectives as described in Section 1.2 of this dissertation.

Specifically, a workable robust classification methodology was developed. The approach

used wavelets as a feature generator to enrich the feature set from which a classifier could

be developed. The most important features were determined through the use of information

entropy. Using these features and rough set theory a multiplicity of minimal classifiers was

found. These classifiers were fused together using a formula that was based on the number

of classifiers “voting” for a target and their performance to properly weight their effect on

the answer. Once a classifier is developed the resulting system is computationally fast and

requires little memory for deployment.

Since rough set theory was chosen as a method of finding individual classifiers based on a

subset of the attributes, a method had to be developed and the theory itself extended to

allow use on larger problems. A method for determining minimal reducts which is polyno-

mial in time complexity greatly increased the number of attributes that could be considered.

In fact, the problem used in this research is about two orders of magnitude larger than what

has been found in the literature.

These advances produced a software system as evidenced by the output contained in Table

A-1 through Table A-29. These tables are included to provide completeness to the results

of the research and to illustrate the detail of output from the computer program. Whereas
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the information contained in the appendix is summarized in the dissertation body the

appendix provides additional information which can be used to develop further analysis of

this methodology.

This research addressed the serious concerns as quoted in Section 1.3 from the father of

rough sets, Zdzislaw Pawlak Specifically, a means to handle large data sets, efficient gen-

eration of rules based on quantitative attributes, and an effective discretization method for

quantitative attributes.

8.2 Original Contributions
The following is a list of the original contributions developed as a result of this research:

1. The first original contribution developed in this dissertation was the concept of iterated

wavelets. Wavelets and their properties have been well known in the literature and used

successfully in pattern recognition. In this research the advantages of iterated wavelets

were revealed. It was statistically shown that of the many families of wavelets, no family

performed better than another. It was further shown that no wavelet in a family was better

than another. Many researchers have used a multilevel wavelet decomposition. An iterated

wavelet is different in that after a multilevel wavelet decomposition the most salient wave-

let coefficients are chosen and another multilevel decomposition is done. This is repeated.

This resulted in an 11 percentage point improvement in overall classifier performance after

6 iterations.

2. The expansion algorithm for the discernibility function is an original contribution.

Through the use of this algorithm and the concept of strong equivalence the algorithms for

computing the reducts using the discernibility relation were vastly improved.
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3. The concept of multi-class entropy used in rough set based classification is an original

contribution. Although others have used entropy and some even multi-class entropy the

way the entropy is computed to provide binary labeling is original. It is through the use of

this labeling and bin selection based upon it that rough set theory can be used for target clas-

sification.

4. The concept of focused reducts is original. It is not possible to consider enough range

bins to achieve adequate performance without the use of the partitioning providing focused

reducts which greatly improve classifier performance. It was combined with the develop-

ment of a new direction in rough set theory which defined and successfully used the power

information system.

5. The means of computing reducts is original. The problem of finding all reducts is a non-

polynomial time problem. The developed method for finding near minimal reducts makes

it of polynomial time complexity. Also shown was that the reducts found are sufficient to

solve the given problem.

6. The method of fusing focused reducts is original. The fusion scheme is instrumental in

increasing the performance of a classification scheme based on rough set theory.

7. The method of adding fuzziness to the rough set classifier is original. Since there is some

doubt of labeling near the dividing point the idea of ignoring those range bins within a small

distance of the division point is unique to this method.

8.3 Publications
The following publications resulted from this work:
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8.3.1 Journal Articles:
J. A. Starzyk, D. E. Nelson, and K. Sturtz, “Reduct Generation in Information Systems,”
Bulletin of the International Rough Set Society, vol. 3, Mar.1999.

J. A. Starzyk, D. E. Nelson, and K. Sturtz, “A Mathematical Foundation for Improved
Reduct Generation in Information Systems,” Knowledge and Information Systems, vol 2.,
pp. 131-146, 2000.

D. E. Nelson and J. A. Starzyk, “Iterative Wavelet Transformation and Signal Discrimina-
tion for HRR Radar Target Recognition,” IEEE Journal on Systems, Man, and Cybernetics,
in review.

D. E. Nelson, J. A. Starzyk, and D. D.Ensley, “Wavelet Transformation and Signal Dis-
crimination for HRR Radar Target Recognition,” Multidimensional Systems and Signal
Processing, in review.

D. E. Nelson, J. A. Starzyk, “Fusion of Focused Rough Set Classifiers,” Pattern Analysis
and Applications, in review.

8.3.2 Patent:
Object Identification System and Method, Letters Patent of the United States serial number
60/220,768 filed July 21, 2000.

8.3.3 Conferences Papers:
J. A. Starzyk and D. E. Nelson., “Independent Classifiers in Ontogenic Neural Networks
for ATR,” Adaptive Distributed Parallel Computing Symposium, Fairborn, OH, 1996. 

D. E. Nelson and J. A. Starzyk, “Advanced Feature Selection Methodology for Automatic
Target Recognition,” Proc. Southeastern Symposium on System Theory, Cookeville, TN,
1997.

D. E. Nelson, J. A. Starzyk, and K. Sturtz, “Reduct Generation in Information Systems,”
The 6th Int. Workshop on Rough Sets, Data Mining and Granular Computing RSD-
MGrC'98, Oct. 1998.

D. E. Nelson and J. A. Starzyk, “Fusing Marginal Reducts for HRR Target Identification,”
Proc. of the 4th World Multiconference on Systemics, Cybernetics, and Informatics, Jul.
2000. (Best Paper Award)
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D. E. Nelson and J. A. Starzyk, “High Range Resolution Radar Signal Classification: A
Partitioned Rough Set Approach,” Proc. of the 33rd Southeastern Symposium on System
Theory, Athens, OH, Mar. 2001.

D. E. Nelson and J. A. Starzyk., “High Range Resolution Radar Extensions to Rough Set
Theory for Automatic Target Recognition,” Proc. of the 5th World Multiconference on Sys-
temics, Cybernetics, and Informics, Orlando, FL, Jul. 2001.

8.4 Recommended Future Studies
In any research there is always more research that can and should be done. The following

sections describe areas which still need to be verified and methods found for overcoming

known problems.

8.4.1 Sensitivity to Registration
The HRR signals used in this research were synthetically generated by a computer program

known as XPATCH. The images were all perfectly registered. That is, all signals began at

exactly the same point. This makes classification easier. If the signals are mis-registered

then the new signals’ range bin 1 could be range bin 0 or range bin 2 if the signal was mis-

registered by one bin. It is possible for the image to be mis-registered by more than that.

Because this research used focused reducts with a block and an interleave scheme it is felt

that it should be able to deal with small amounts of mis-registration. With the use of binary

labeling the effect of mis-registration should also be somewhat mitigated.

Although mis-registration could be a serious shortcoming of this method there are ways to

handle the registration problem. Statistical methods such as proposed by Mitchell [22]

could handle this problem. A pure statistical approach matching centroids could also be

used.
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8.4.2 Different Data Sets
This effort used synthetic data. There is never enough measured data to satisfy ATR

researchers. Also in world conflict we can seldom convince our adversary to provide us

with a copy of their military hardware to get sufficient measured data. Therefore it is likely

that it would be necessary to train using synthetic and then test using measured data. This

should be explored. In the interest of keeping this research unclassified this was not accom-

plished.

In this dissertation 25% of the data was used for training and 75% for testing. Frequently,

the larger amount of data is used for training and the smaller for testing. The effect of the

size of these two data sets should be explored. The training data was selected randomly and

the rest of the data was used for testing. Since random selection was used there is no guar-

antee that there were not areas with large gaps in the data. Uniform sampling should also

be accomplished to determine the effect this may have on performance.

Since the data was generated synthetically there was no noise component. This method

should be tested to determine the effect of noise on classification performance. In a real

world environment one could expect to encounter noisy signals. It is believed that because

of the binary labeling and the effect that wavelets have on the signals that this method

should be robust to noise.

The data used in this research was air-to-air targets. This has the effect that there is no clut-

ter in the background to confuse the ATR system. The military has strong interest in iden-

tifying ground targets from the air. Future research could determine how effective this

method would be against these ground targets. It is possible that methods would need to be

developed to eliminate ground clutter before performing identification.
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Other researchers such as Mitchell [22] have used a multi-look approach to increase clas-

sifier performance. This should be explored as a means to increase the performance of the

rough set classifier developed in this research.

8.4.3 Number of Range Bins Selected for Reduct Determination
As discussed in Section 6.4.1, the number of range bins to be considered for calculation of

the reducts should probably be based on the distribution of the information entropy index.

When the curve appears to be very flat, more range bins should be used. When the curve is

very steep (large negative slope), fewer range bins should be considered. It is recommended

that a method be developed based on covering a percentage of the area under the informa-

tion entropy index curve. The sensitivity of classification based on this could be an addi-

tional study.
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Appendix

This appendix contains the details of the reducts for each of the partitions.

Table A-1 Partition Trn1-1

Range bins considered = 800  798  671  541  796  794  667  394  275  164  165  772  517  774  647  776 
923  643  922  409  901  770  904   73  925  928  814  687  816   72  899  557  943  942  306  516  410 
810  773  898  683  812  274  646  775  273  927  926  307  393 

Core size = 15 
Core consists of original bin numbers: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393 

Reduct size = 25 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  923  926  773  273  925  683  
794  774  798  770 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  925  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  776  928  796  
164  165  901  770  942 
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Table A-1 Partition Trn1-1 (Continued)

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  776  928  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  557  798  901  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  557  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  770  942 

Reduct size = 26 
Reduct consists of bins: 
394  275  772  643  409   73   72  943  306  410  810  898  274  307  393  922  927  516  647  928  796  
164  165  901  770  942 
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Table A-2 Partition Trn2-1

Table A-3 Partition Trn2-2

Range bins considered = 138   83  287  350  352   37  221  410  411  324  259  346  283  197  348  322  
389  392  263  326  328  154  368  387  303  366  325  415  414  237  262  327  386  362   27  299   81  
196  364  330   82  267  332  336  205  271  334   34  115   36 

Core size = 20 
Core consists of original bin numbers: 
138   83   37  410  411  259  389  326  154  325  414  327   27   81  196   82  334   34  115   36  

Reduct size = 28 
Reduct consists of bins: 
138   83   37  410  411  259  389  326  154  325  414  327   27   81  196   82  334   34  115   36  368  
350  267  362  387  324  346  386 

Reduct size = 28 
Reduct consists of bins: 
138   83   37  410  411  259  389  326  154  325  414  327   27   81  196   82  334   34  115   36  368  
350  267  362  387  324  346  386 

Range bins considered = 352  350  287  221  346  283  348  153   36  324  389  387  326  386  392  263  
328  197   83   82  138  259   37  325  416  413  262  327  196  322  137  411  410   81  430  431  154  
114  323  365  367  302   21  236  258  368  303  366  429  432 

Core size = 26 
Core consists of original bin numbers: 
153   36  324  389  326  386  328  197   83   82  138  259   37  325  196  322  137  411  410   81  154  
114  323   21  258  429 

Reduct size = 31 
Reduct consists of bins: 
153   36  324  389  326  386  328  197   83   82  138  259   37  325  196  322  137  411  410   81  154  
114  323   21  258  429  416  368  430  346  236 
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Table A-4 Partition Trn2-1st

Table A-3 Partition Trn2-2 (Continued)

Reduct size = 31 
Reduct consists of bins: 
153   36  324  389  326  386  328  197   83   82  138  259   37  325  196  322  137  411  410   81  154  
114  323   21  258  429  416  368  430  346  236  

Reduct size = 31 
Reduct consists of bins: 
153   36  324  389  326  386  328  197   83   82  138  259   37  325  196  322  137  411  410   81  154  
114  323   21  258  429  413  368  430  346  236 

Reduct size = 31 
Reduct consists of bins: 
153   36  324  389  326  386  328  197   83   82  138  259   37  325  196  322  137  411  410   81  154  
114  323   21  258  429  413  368  430  346  236 

Reduct size = 31 
Reduct consists of bins: 
153   36  324  389  326  386  328  197   83   82  138  259   37  325  196  322  137  411  410   81  154  
114  323   21  258  429  413  303  430  346  236 

Range bins considered = 206  267  271  387  157  324  388  117  187  260   87  139   46   43   49  280   
53  215  398  334  397   86   89  408  407  344  263  198  336  400  399  140  123   42  259  142  119   
56  143   93   92  272  223  121  118   85   91  342  406  405 

Core size = 16 
Core consists of original bin numbers: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91 

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91   93  408   89  398  336  223  
142  342  387  334   42 
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Table A-4 Partition Trn2-1st (Continued)

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  408  223  397  336   49  206  
387   42  342  157  142 

Reduct size = 28 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  260  400   49  
342  206   42  387  157  142 

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  336   49  206  
387   42  342  157  142 

Reduct size = 28 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  334  157  336   89  342
398  206   42  142  387   92 

Reduct size = 28 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  260  400   49  
342  206   42  387  157  142 

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  336   49  206
387   42  342  157  142 

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  336   49  206  
387   42  342  157  142 

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  336   49  206  
387   42  342  157   92 
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Table A-5 Partition Trn2-2nd

Table A-4 Partition Trn2-1st (Continued)

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  336   49  206  
387   42  406  157  142 

Reduct size = 27 
Reduct consists of bins: 
117  187   87  139   46   43   53  215   86  140  123  119   56  143  121   91  344  223  397  336   49  206
387   42  342  157  142 

Range bins considered = 400  335  399  129  269  333  398  397  201   68   69   65   95   62   92   61  
144   56  143  200   59   93   57   55   58  260   63   94   96   60  322   64  142   52  199  141   49   89   
90   91   53   48   54   50  140   47   51   88  261  198 

Core size = 14 
Core consists of original bin numbers: 
335  399  129  397  201   68   69   65   61  142  141   47   51  261 

Reduct size = 30 
Reduct consists of bins: 
335  399  129  397  201   68   69   65   61  142  141   47   51  261  200   64  333  143   49   89  400   92  
269  398   95   62  144   56   59   58 

Reduct size = 30 
Reduct consists of bins: 
335  399  129  397  201   68   69   65   61  142  141   47   51  261  143   64   54  333   49   89  400   95  
269  398   62   92  144   56   59   58 

Reduct size = 30 
Reduct consists of bins: 
335  399  129  397  201   68   69   65   61  142  141   47   51  261  143   64   91  333   49   89  400   95  
269  398   62   92  144   56   59   58 
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Table A-6 Partition Trn4-1

Range bins considered = 42   19  142  111  144   77   58  140  168  107  138  165  133  102  132   99  
186  135  187  169   14  172   55   69  160  130  127  158  189  192  174  175   13   68   93  163  153  
122  155  162  134   78  103   41  136  123  156  154   92  178 

Core size = 24 
Core consists of original bin numbers: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  186  169  168  142  132  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  186  169  168  142  132  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  169  168  142  132  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  168  142  132  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  168  142  132  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 
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Table A-6 Partition Trn4-1 (Continued)

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  158  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  155 
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Table A-6 Partition Trn4-1 (Continued)

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  136  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  142  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  158  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 
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Table A-6 Partition Trn4-1 (Continued)

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  155 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  136  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  155 

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  127  122 
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Table A-7 Partition Trn4-2

Table A-6 Partition Trn4-1 (Continued)

Reduct size = 31 
Reduct consists of bins: 
42   19   58  107  138  102  135   14   55  130  189  192  174  175   13   68   93  163  153   78   41  156   
92  178  187  172  134  111  165  158  122 

Range bins considered = 19   42  127  158  160   93  133   58  165  168  102  123  156  135  154   91   
83   68   54   99  187  186  132  130  163  162   69   11   40   59   75   78   12  147  114  142  144  111 
145  134  103   94  136   38   77   86  138  140  107   67 

Core size = 21 
Core consists of original bin numbers: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67 

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  127  114
91  187  186  102  142  158  165  103 

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  127  114
91  187  186  102  142  165  156  103 

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  127  114
91  187  186  102  142  158  165  103 

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  158  147
187   54   75  142  165  102  136  135 
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Table A-8 Partition Trn4-3

Table A-7 Partition Trn4-2 (Continued)

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  158  147  
186   54  156  136  165   19  102  144 

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  158  147
186   54  156  136  165   19  102  142 

Reduct size = 31 
Reduct consists of bins: 
42  133   58  168   68   99  132  130  162   69   11   40   59   78   12   94   38   77   86  138   67  158  147
186   54  156  136  165   19  102  142 

Range bins considered = 127  160  158  132   93  103  136  134  154  123  156   69  192  189   18   57   
91  187  186   54  163   99   83  191  162  190  177  180   17   41  165  168  130   11   68  152  119  150  
170  159  137  126  157   85  171  106  148  115  146  182 

Core size = 18 
Core consists of original bin numbers: 
132  136   57  163  190   17   41  165  168  130   11   68  137  157   85  171  106  182 

Reduct size = 30 
Reduct consists of bins: 
132  136   57  163  190   17   41  165  168  130   11   68  137  157   85  171  106  182  187  177  154  
192   18  127   54  152   93  103  148  189 

Reduct size = 31 
Reduct consists of bins: 
132  136   57  163  190   17   41  165  168  130   11   68  137  157   85  171  106  182  186  177  154  
192   18  127   54  152  103  148   93  189   99 
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Table A-9 Partition Trn4-4

Table A-8 Partition Trn4-3 (Continued)

Reduct size = 31 
Reduct consists of bins: 
132  136   57  163  190   17   41  165  168  130   11   68  137  157   85  171  106  182  186  180  154  
192   18  127   54  152  103  148   93  189   99  

Range bins considered = 57   18   93  132  136  134  103  160   69  123  156  127  154  158   99   41  
162  163  152  119  165  150   85  168  148   39  115  146  192  189  130  170  171   68   14  138  107  
140   17  106  137  139   77  142  111   76  144  133  131  102 

Core size = 23 
Core consists of original bin numbers: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131 

Reduct size = 30 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  152  133  146  171  160  142  148 

Reduct size = 30 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  152  133  146  171  160  142  148 

Reduct size = 30 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  152  133  146  171  160  142  148 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  152  133  171  148  160  163   85  106 
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Table A-9 Partition Trn4-4 (Continued)

Reduct size = 30 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  133  146  171  160  142  148 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  146   39  142  160  148  170 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  160  142  170 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  160  142  170 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  160  142  170 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  160  111  170 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  160  142  170 

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  156  142  170 
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Table A-10 Partition Trn4-1st

Table A-9 Partition Trn4-4 (Continued)

Reduct size = 31 
Reduct consists of bins: 
57   18  132  136  158   99   41  162  165  168  192  189  130   68   14  138   17  137  139   77   76  144  
131  119  102  148   39   85  156  111  170  

Range bins considered = 48   32  161   72  100   31  129  162  132  134   30   47  130  165   97   98   29  
163   35  104  169   80  166   66   68    6  108   65   36  138   28   34    7   33    4    2   37   46    3   67  
10    1   11   99    9   40    5   15   39 

Core size = 23 
Core consists of original bin numbers: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39 

Reduct size = 33 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
162    3   66   31   10   98  129  134   68  138 

Reduct size = 33 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
162    3   66   31   10   98  129   68   65  138 

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
162  134   31   34   10   98   66  129   68   65  138 

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   98   35   67   97   68   65   37 
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Table A-10 Partition Trn4-1st (Continued)

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   98   35   67   97   65   37   40 

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   98   35   67   97   68   65   37 

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   98   35   67   97   68   65   37 

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   35   67   40   97   65   37   15 

Reduct size = 33 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130   34   97   35   68   15   67   65   37 

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   35   68   67   97   65   37   15  

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   35   67   40   97   65   37   15 

Reduct size = 33 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130   34   97   35   68   15   67   65   37 
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Table A-11 Partition Trn4-2nd

Table A-12 Partition Trn4-3rd

Table A-10 Partition Trn4-1st (Continued)

Reduct size = 34 
Reduct consists of bins: 
32  132   30   47  165   29  163  104  169   80  166  108   28    7   33    4    2   46   11   99    9    5   39  
134  130  138   34   35   68   67   97   65   37   15 

Range bins considered = 102  133  135  162   77   53   91  130   39   67   11   14   17  140  107  167   21   
38   41  172  131   98  168   68   59  129   10   70   55   24   45   71   44  136  111   57   54   37   43  171   
85   78  104   26   25  103   92  165  108  157 

Core size = 3 
Core consists of original bin numbers: 
14  167   55 

Reduct size = 25 
Reduct consists of bins: 
14  167   55  162   44  133  135  102   21  136   11   77   53  172   45   85  157  140  165   78   54   24   
92  171  168 

Range bins considered = 168   65  135  167  101   36   33   37   67  131   74  172  163  164  139    8   32 
98   48  171    9   31   72   47  102   30   29   75  100   28   46   27   71   34   45   26   25  105    1   44   
24   23  141  173  174   70  130   22   43   97 

Core size = 25 
Core consists of original bin numbers: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97 
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Table A-12 Partition Trn4-3rd (Continued)

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   48   25  168   72  100  141   30   44 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   48   25  168   72  100  141   30   44 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   48   25  168   72  100  141   28   44 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22  
43   97   31   27   72  168   44  141   30 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   72  168   44  141   30 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   72  168   44  141   30 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   65   30   44  168   28  141 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   72  168   44  141   30 



131
Table A-12 Partition Trn4-3rd (Continued)

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   32   28   65  100  168   44  141 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   72  168   44  173   30 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22  
43   97   31   27   72  168   44  141   30 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22  
43   97   31   27   72   65   44  135   30  141  

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   32   28   65  100  135   44  141 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   72   65   44  135   30  173 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   72   65   44  135   30  141 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   32   28   65  100  135   44  141 
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Table A-13 Partition Trn4-4th

Table A-12 Partition Trn4-3rd (Continued)

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22  
43   97   31   27   65   30   44  135   28  173  

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   65   30   44  135   28  141 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   65   30   44  135   28  141 

Reduct size = 33 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   65   30   44  135   28  173 

Reduct size = 32 
Reduct consists of bins: 
101   36   33   37   67  131   74  172  163  164    8   98  171    9  102   75   34  105    1   23  174  130   22
43   97   31   27   65   28   44  135  173 

Range bins considered = 161  130  162   97  129   33   65    3    2   34  131   27  133   45    1   71   26   
70   25   44    4   24   23   31  100   46  165   72   48   32   28   47   30   66   43  137  102   99   29   35    
5  163   22  101    6   21  16 9  106   76   67 

Core size = 12 
Core consists of original bin numbers: 
130  162   27    1  165  137   29  101    6   21  169   76 



133
Table A-14 Partition Trn8-1

Table A-15 Partition Trn8-2

Table A-13 Partition Trn4-4th (Continued)

Reduct size = 23 
Reduct consists of bins: 
130  162   27    1  165  137   29  101    6   21  169   76  161  131  106   97   99   33   26   25   65   23   31  

Range bins considered = 10  64  62  47  29  58  60  43  78  79  55  38  53  74  75  20  69  72  73  76  77  
80  35   8  50  52  66  67  46  61  63  21  51  59   7  57  42  28  34   9  54  30  39  49  56  27  70  71   6  
68 

Core size = 24 
Core consists of original bin numbers: 
62  47  29  78  53  74  75  77  80  35   8  50  52  66  63  21   9  30  49  27  70  71   6  68 

Reduct size = 32 
Reduct consists of bins: 
62  47  29  78  53  74  75  77  80  35   8  50  52  66  63  21   9  30  49  27  70  71   6  68  76  57  69   7  
54  60  55  46 

Range bins considered = 10  62  64  47  29  60  43  58  75  74  80  77  53  38  55  27  20  69  72  70   8   
6  71  79  78  52  19  35  66  67  50  34  21  59  57  30  42  51  54  39  56  49  63  46  61   9  28  73  76  
11 

Core size = 28 
Core consists of original bin numbers: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
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Table A-15 Partition Trn8-2 (Continued)

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
53  34  60  80  63  67  76  38  69 

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
53  34  60  80  63  67  76  38  69 

Reduct size = 38 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11  
38  34  60  80  63  76  55  69  72  67 

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11  
49  55  80  69  60  63  72  66  73 

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
49  55  77  69  60  63  72  66  73 

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
49  55  80  69  60  63  72  66  73 

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
49  55  80  69  43  63  72  66  73 

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
49  55  77  69  43  63  72  66  73 
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Table A-16 Partition Trn8-3

Table A-15 Partition Trn8-2 (Continued)

Reduct size = 37 
Reduct consists of bins: 
10  62  29  75  74  27  20  70   8   6  71  79  78  52  19  35  50  59  30  42  51  54  39  56  61   9  28  11 
49  55  77  69  43  46  72  66  73 

Range bins considered = 77  80  27  70   6  71  19  74  75  62  47  64  10  29  60  43  58  54  52  56  39   
9  53  38  55  49  34  21  66  67  69  72  46  61  63  20   8  35  24   1  16  15  59  57  17  51  42  30  36   
2 

Core size = 33 
Core consists of original bin numbers: 
77  80  27  70   6  71  19  74  75  62  64  10  54  56   9  38  55  49  34  21  66  67  46  20   8  35   1  16  
15  51  30  36   2 

Reduct size = 39 
Reduct consists of bins: 
77  80  27  70   6  71  19  74  75  62  64  10  54  56   9  38  55  49  34  21  66  67  46  20   8  35   1  16  
15  51  30  36   2  59  69  58  39  61  57 

Reduct size = 39 
Reduct consists of bins: 
77  80  27  70   6  71  19  74  75  62  64  10  54  56   9  38  55  49  34  21  66  67  46  20   8  35   1  16  
15  51  30  36   2  59  69  58  39  61  42 

Reduct size = 39 
Reduct consists of bins: 
77  80  27  70   6  71  19  74  75  62  64  10  54  56   9  38  55  49  34  21  66  67  46  20   8  35   1  16  
15  51  30  36   2  57  69  58  39  61  42 

Reduct size = 40 
Reduct consists of bins: 
77  80  27  70   6  71  19  74  75  62  64  10  54  56   9  38  55  49  34  21  66  67  46  20   8  35   1  16  
15  51  30  36   2  57  72  43  47  39  63  42 
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Table A-17 Partition Trn8-4

Table A-16 Partition Trn8-3 (Continued)

Reduct size = 40 
Reduct consists of bins: 
77  80  27  70   6  71  19  74  75  62  64  10  54  56   9  38  55  49  34  21  66  67  46  20   8  35   1  16  
15  51  30  36   2  57  72  43  47  39  61  42 

Range bins considered = 77  80   7  74  75   9  62  47  29  64  39  56  54  66  52  67  58  60  43  21  69  
20  72  34  51  53  35  55  38  49  61  63  46  50  28  27   6  10  59  42  57  19  70  71  30   8  68  11   5  
22 

Core size = 29 
Core consists of original bin numbers: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  59  80  61  29  27  47  53 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  59  80  61  29  27  47  53 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  59  80  61  29  27  47  53 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  61  29  27  47  53 
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Table A-17 Partition Trn8-4 (Continued)

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  61  29  27  47  53 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  29  27  47  38 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  29  27  47  53 

Reduct size = 37 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  29  47  53  63   6 

Reduct size = 36 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  29  27  47  53 

Reduct size = 37 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  53  47  63   6  11 

Reduct size = 37 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  38  47  63   6  11 

Reduct size = 37 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  53  47  63   6  11 
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Table A-18 Partition Trn8-5

Table A-19 Partition Trn8-6

Table A-17 Partition Trn8-4 (Continued)

Reduct size = 37 
Reduct consists of bins: 
7  74  75   9  62  54  66  52  67  60  43  21  20  72  34  51  55  49  50  28  10  19  70  71  30   8  68   5  
22  42  77  46  53  64  63   6  11 

Range bins considered = 69  72  20   7  53  38  67  66  55  35  52  21  51  50  74  57  42  39  59  34  54  
56  75  28  49   9  10  27  76  73  63  46  61  80  77   6  47  64  62  29  58  43  60  70  19  71  79  30  78 
8 

Core size = 40 
Core consists of original bin numbers: 
69  72  20   7  67  66  35  52  21  51  50  74  57  59  34  54  56  75  28  49   9  10  27  76  73  46  61  80 
77   6  62  29  58  60  70  19  71  30  78   8 

Reduct size = 42 
Reduct consists of bins: 
69  72  20   7  67  66  35  52  21  51  50  74  57  59  34  54  56  75  28  49   9  10  27  76  73  46  61  80 
77   6  62  29  58  60  70  19  71  30  78   8  64  53 

Range bins considered = 52  35  50  21  67  69  72  66  53  54  38  39  55  56  20  10  36  23  16  27  14  
24  15  22  11  13  51  12   1  17  65  30   2  33   9   6   3  34  18  75  74  70  19   8   4  71  68   5  79  78  

Core size = 39 
Core consists of original bin numbers: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78 
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Table A-19 Partition Trn8-6 (Continued)

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  39  52  33 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  39  52  33 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  56  52  33 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  56  52   3 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  56  52  33 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  56  52  33 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  56  38  33 

Reduct size = 42 
Reduct consists of bins: 
35  50  21  67  69  72  66  53  54  55  20  10  36  16  27  14  15  22  11  13  51  12   1  65  30   2   9   6  
34  75  74  70  19   8   4  71  68   5  78  56  38  33 
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Table A-20 Partition Trn8-7

Range bins considered = 52  54  39  56  21  35  66  67  50   9  69  58  43  72  60  29  62  64  47  20   7  
73  28  10  76  57  51  61  42  59  46  63  75  79  78  74   8  34  65  49   2  24  17  36  53  16  15   1  38  
68 

Core size = 37 
Core consists of original bin numbers: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68  73  43  29 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68  73  43  29 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68  76  43  29 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68  76  43  62 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68  76  43  29 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49   
2  24  36  53  16  15   1  38  68  76  43  29 
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Table A-21 Partition Trn8-8

Table A-20 Partition Trn8-7 (Continued)

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49   
2  24  36  53  16  15   1  38  68  76  60  29 

Reduct size = 40 
Reduct consists of bins: 
52  56  35  66  67  50   9  69  58  72  47  20   7  28  10  57  51  42  59  63  75  79  78  74   8  34  65  49  
2  24  36  53  16  15   1  38  68  76  60  29 

Range bins considered = 39  56  54  52   9  21  66  67  35  43  58  64  60  29  62  47  34  51  50  73  76  
49   7  69  72  74  75  28  20  77  80  57  42  79  78  59   8  63  46  61  38  53  55  68   6  19  27  71  70  
10 

Core size = 31 
Core consists of original bin numbers: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10 

Reduct size = 35 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  42  39  43  54 

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  39  43  57  35  64 

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  39  58  57  54  35 
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Table A-22 Partition Trn8-1st

Table A-21 Partition Trn8-8 (Continued)

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  39  43  57  54  35 

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  39  43  57  54  35 

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  54  43  57  56  35 

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  54  43  57  56  35 

Reduct size = 36 
Reduct consists of bins: 
9  21  66  67  60  34  51  50  76  49  69  75  28  20  80  79  59   8  63  46  61  38  53  55  68   6  19  27  
71  70  10  54  58  57  56  35 

Range bins considered = 36  24  16   2  66  50  49   4  65  33  17   1  18   3  15  34   6  54  19   5  67   7 
52  20  56  69  40  70  71  23  14   8  11  22  12  68  35  72  57  13  21   9  10  74  73  59  41  58  61  79 

Core size = 2 
Core consists of original bin numbers: 
40  72 
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Table A-22 Partition Trn8-1st (Continued)

Reduct size = 37 
Reduct consists of bins: 
40  72  20  22   4  54  16  15   6   7  10  71  70  79  36  24   2  66  50  49  65  33  17   1  18   3  34  19   5
67  52  69  23  14   8  56  73 

Reduct size = 35 
Reduct consists of bins: 
40  72   4   7   6  54  10  71  15  70  79  36  24  16   2  66  50  49  65  33  17   1  18   3  34  19   5  67  52  
69  23  14   8  56  73 

Reduct size = 35 
Reduct consists of bins: 
40  72   4   7   6  54  10  71  15  70  79  36  24  16   2  66  50  49  65  33  17   1  18   3  34  19   5  67  52  
69  23  14   8  56  73 

Reduct size = 34 
Reduct consists of bins: 
40  72   4   7   6  54  10  71  70  79  36  24  16   2  66  50  49  65  33  17   1  18   3  34  19   5  67  52  69 
23  14   8  56  73 

Reduct size = 34 
Reduct consists of bins: 
40  72   4   7   6  54  10  71  15  70  79  36  24  16   2  66  50  49  65  33  17   1  18   3  19   5  67  52  69  
23  14   8  56  73 

Reduct size = 14 
Reduct consists of bins: 
40  72   4   7   6  69  15  12  10  71  70  79  58  68 

Reduct size = 12 
Reduct consists of bins: 
40  72   4   7   6  54  10  70  79   8  56  73 

Reduct size = 13 
Reduct consists of bins: 
40  72   6  12  15   7  34  10  71  70  79  58  68 

Reduct size = 12 
Reduct consists of bins: 
40  72   6  12  34   7  10  71  70  79  58  68 
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Table A-23 Partition Trn8-2nd

Table A-22 Partition Trn8-1st (Continued)

Reduct size = 13 
Reduct consists of bins: 
40  72  34   7   5  12  15  10  71  70  58  68  79 

Reduct size = 13 
Reduct consists of bins: 
40  72   6  12  15   7  34  10  71  70  79  58  68 

Reduct size = 11 
Reduct consists of bins: 
40  72   6  12  15  56  73  70   8  21  68 

Reduct size = 11 
Reduct consists of bins: 
40  72   6  12  15  56  73  70   8  21  68 

Reduct size = 11 
Reduct consists of bins: 
40  72   6  12  34  56  73  10  70   9  79 

Range bins considered = 24  36  16  65  49  67  15  66  33  50  14  52  40  54  18   4  34   1   5  23  69  
17  51  68  19  35   2   3  70  58  22  12  13  56  73   6  53  20  32  39  11  44  38  55   8  74   7  71  10  
61 

Core size = 5 
Core consists of original bin numbers: 
69  17  19  58  39 

Reduct size = 32 
Reduct consists of bins: 
69  17  19  58  39  51  61   2  14  55   5  74  40   1   3  68   6  35  54  66  18  32  23  38  70  24  52  65  
49  67  16  44 
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Table A-24 Partition Trn8-3rd

Table A-23 Partition Trn8-2nd (Continued)

Reduct size = 27 
Reduct consists of bins: 
69  17  19  58  39  35  74  52  53  18  11  34  14  55  54  33  16  40  73  70  56  24  44   1  36  65   4 

Reduct size = 28 
Reduct consists of bins: 
69  17  19  58  39  13  10  35  74  55  11   1   6   4  34  70  52  33  44  23  24  32  65  14  38  36  16  73  

Reduct size = 26 
Reduct consists of bins: 
69  17  19  58  39  13   8   3  68  11  18   1  14  70  52  74  53  56  55  24  23  32  54  73  49   6  

Reduct size = 27 
Reduct consists of bins: 
69  17  19  58  39  13   8  10  20  53  18  54  32  16  68  65  34  38  23  70  56  73  36  35  24  33  44  

Reduct size = 27 
Reduct consists of bins: 
69  17  19  58  39  13   8  10  20  53  18  54  32  16  68   6  65  34  70  23  38  56  33  73  24  36  35  

Reduct size = 27 
Reduct consists of bins: 
69  17  19  58  39  13   8  10  20  53  18  54  32  16  68   6  65  34  70  23  38  56  33  73  24  36  35 

Range bins considered = 52  67  68  29  35  47  36  11  22  10  21  14  30   1  15  17   2  33   3   4  18  23
5  48  24  49  19  66  31   6  79  34  64  80   7  39   9  20  12   8  65  55  40  43  38  28  32  42  46  16 

Core size = 30 
Core consists of original bin numbers: 
29  47  36  11  22  10  21  14  30  15   2  23  48  24  66  31   7  39   9  12   8  55  40  43  38  28  32  42  
46  16 
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Table A-25 Partition Trn8-4th

Table A-24 Partition Trn8-3rd (Continued)

Reduct size = 32 
Reduct consists of bins: 
29  47  36  11  22  10  21  14  30  15   2  23  48  24  66  31   7  39   9  12   8  55  40  43  38  28  32  42  
46  16  35  18 

Reduct size = 33 
Reduct consists of bins: 
29  47  36  11  22  10  21  14  30  15   2  23  48  24  66  31   7  39   9  12   8  55  40  43  38  28  32  42  
46  16  52  67  18 

Reduct size = 33 
Reduct consists of bins: 
29  47  36  11  22  10  21  14  30  15   2  23  48  24  66  31   7  39   9  12   8  55  40  43  38  28  32  42  
46  16  52  67  18 

Range bins considered = 37  70   1   5  53  17  52  68  27  65  55  35  25  21  19   8  34  24  41  20  38  
13  51  10  36  26  54   9  31   4  16  78  46  40  59  67  48  15  72  74  76  44  11  50   7  49  28  39  61  
22 

Core size = 10 
 Core consists of original bin numbers: 
17  21  78  67  48  44  11   7  61  22 

Reduct size = 28 
Reduct consists of bins: 
17  21  78  67  48  44  11   7  61  22   5  70  25  38  26   9   8  39  19  41  20   4  76  53  52  68  55  31  
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Table A-26 Partition Trn8-5th

Table A-27 Partition Trn8-6th

Range bins considered = 33  68  51  17  20  21  35  66  38  70   8  50   9  52  39  18  53   1  71  49   2  56  
54  10   3  37  34  67  55  28  22   7   4  42  11  69  65  12  29  43  41  36  16  25  23  46  58  60   5  24  

Core size = 30 
Core consists of original bin numbers: 
51  17  66  38   8  50   9  18  53   1  71   2  54  10   3  34  67  55  22   4  11  65  12  41  16  25  23  58  
24 

Reduct size = 35 
Reduct consists of bins: 
51  17  66  38   8  50   9  18  53   1  71   2  54  10   3  34  67  55  22   4  11  65  12  41  16  25  23  58  
24  28  56  69  20  49 

Reduct size = 35 
Reduct consists of bins: 
51  17  66  38   8  50   9  18  53   1  71   2  54  10   3  34  67  55  22   4  11  65  12  41  16  25  23  58  
24  28  56  69  20  49 

Reduct size = 35 
Reduct consists of bins: 
51  17  66  38   8  50   9  18  53   1  71   2  54  10   3  34  67  55  22   4  11  65  12  41  16  25  23  58   5  
24   7  56  49  33  42 

Range bins considered = 65  50  35  66  51  36  33  22  67  21  23  17  16  24  12  13  14  68  11  15   9  
10  20   8   7  53  34   1  69  37  70   6   2  19  55  41  57  71  73   5  72  59  74  75  49  25  76   3  26  45 

Core size = 29 
Core consists of original bin numbers: 
65  66  67  17  16  12  14  68  11   9  10   8  53  69  37  70   6   2  19  73   5  72  74  75  49  76   3  26  45 
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Table A-28 Partition Trn8-7th

Table A-29 Partition Trn8-8th

Table A-27 Partition Trn8-6th (Continued)

Reduct size = 34 
Reduct consists of bins: 
65  66  67  17  16  12  14  68  11   9  10   8  53  69  37  70   6   2  19  73   5  72  74  75  49  76   3  26  45   
7  23   1  51  33 

Reduct size = 34 
Reduct consists of bins: 
65  66  67  17  16  12  14  68  11   9  10   8  53  69  37  70   6   2  19  73   5  72  74  75  49  76   3  26  45   
7  23  55  25  51 

Reduct size = 35 
Reduct consists of bins: 
65  66  67  17  16  12  14  68  11   9  10   8  53  69  37  70   6   2  19  73   5  72  74  75  49  76   3  26  45 
1  23  71  51  21  25 

Range bins considered = 36  24  16  65   2  18   3  50  66  49  67  17  33   1   4  15  69  52  23  51  13  14
19   5  34  54  40  22  12  56   6  53  35  44   7  62  20   8  73  76  11  21  31  68  77  48  58  72  10   9 

Core size = 7 
Core consists of original bin numbers: 
2  51  40   6  77  72   9 

Reduct size = 17 
Reduct consists of bins: 
2  51  40   6  77  72   9  73  53  69  68  19  16  67  56  52   7 

Range bins considered = 33  73  17  51  35  11  10  68  21  79  18  25  66  50  49  80  20  45  15  78  58   
7   3   9  57   2  65  24  16  36  67   8  74  22   1   5  75  62  12  23  14  19   6   4  34  13  71  63  69  53  
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Table A-29 Partition Trn8-8th (Continued)

Core size = 6 
Core consists of original bin numbers: 
11  68  18   9  67  53 

Reduct size = 12 
Reduct consists of bins: 
11  68  18   9  67  53  71  10  78  51  25  66 



150
Index of Defintions
A

Absorption Law 23
ambiguity 13, 83
ambiguous 20
attributes 13
auto-associative neural network 33

B

B-discernibility 15
B-indiscernibility 15
Box Classifier 56
Branch and Bound Search 36
buffer zone 47

C

condition attribute 13
confusion matrix 57
conjunction 14
consistent 20
constrained quadratic classifier 5
core 17
covered information system 76

D

Data 1
data mining 11
decision attribute 13
Dempster-Shafer Method 37
discern 17
discernibly matrix 13
Discrete wavelet packet 58
discrete wavelet transform 58
disjunction 16
distribution laws 16
duplicate 82

E

equivalence class 21
equivalent 24
Exhaustive Search 36
Expansion algorithm 23
Expansion Law 23



151
F

Factorization Law 23
Feature extraction 32
Feature generation 32
Feature selection 32, 35
focused information system 75
focused reduct 75
Focused Reducts 40
fuzz factor 47

H

H0 62
H1 62
HRR radar 2

I

Information 2
Information entropy 42
information system 12
iterated wavelet transform 55

K

Karhunen-Loeve transform 32
Khonen Map 34
Knowledge 2

L

L2 norm 41
locally equivalent 24
locally strongly equivalent 24

M

minimal reduct 86
multi-class information entropy 42

P

Pcc 57
power information system 76
Principal component analysis 32

Q

Quadratic Classifier 5

R

reduct 13, 17
Reduct Generation Algorithm 25



152
S

Sequential Forward Selection 37
simple cover 24
simple form 24
Statistical Feature Based Classifier 6
strongly equivalent 24

U

Understanding 2
universe 13

W

wavelet transform 54



NELSON, DALE, EDWARD. Ph.D. June 2001

Electrical Engineering

High Range Resolution Radar Target Classification: A Rough Set Approach (pp. 152)

Director of Dissertation: Dr. Janusz A. Starzyk

High Range Resolution (HRR) radar is one sensor of interest to the military. This sensor

collects data which is a range profile of an aircraft, the result of electromagnetic scattering

from the target as a function of the line of sight range. Conventional means of developing

an ATR system fail to give adequate results and learning techniques must be used. The pri-

mary objective of this research was to develop a workable, robust classification methodol-

ogy using machine learning and data mining techniques. Specifically the approach should:

generate features for classification, determine important features, generate multiple classi-

fiers, determine a method of fusing classifiers for robustness, and be computationally

appropriate. Rough Set Theory (RST) guarantees that all possible classifiers using a

labelled training set will be generated! There is no equivalent statement for statistical pat-

tern recognition. However, generating all classifiers has been shown to be a NP-hard prob-

lem. Therefore, this research had a secondary objective, to find ways to overcome this

problem for real world size problems.

To meet these objectives first the data was partitioned using a block and an interleave

scheme. This provides classifiers that focus on local and global features. Following parti-

tioning wavelets were used to enrich the feature space for the classification procedure. A

subset of the most important classification features was selected using information

entropy. This calculation was also used to determine the division point for binary labeling

of each range bin. A polynomial time complexity RST method was developed to compute

minimal classifiers for each partition. A fusion formula was developed which fused the

classifications for all partitions. This was the HRR rough set classifier.



During this research it was found that which wavelet family was used made no statistical

difference. It was also determined that an iterated wavelet transform would, in essence,

result in a new wavelet tailored to the given problem. This new wavelet produces a 12 per-

centage point improvement in classifier performance. The rough set classifier produces

93% probability of correct classification and almost 100% probability of declaration.

These results are five percentage points better than the most popular method, the quadratic

classifier.
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	1 Introduction
	The United States Army, Navy, Air Force, and the intelligence community have all been actively re...
	There is a hierarchy associated with converting data into knowledge or understanding [34].
	Data - Data is at the bottom of the hierarchy and normally consists of raw numbers. This could be...
	Information - In order to turn data into information the data must be associated, organized, and ...
	Knowledge - Information becomes knowledge when it is combined with context, education, and experi...
	Understanding - Understanding is at the top of the hierarchy. When knowledge and intuition are co...
	It is the goal of machine intelligence and data mining to turn data into knowledge and perhaps un...
	1.1 Background
	Although not a new sensor, High Range Resolution (HRR) radar is becoming increasingly more import...
	HRR radar target identification is not an easy task. Figure 1-1 shows that a three dimensional ob...
	For small numbers of targets the targets have been shown to exhibit good separability using stand...
	a) high probability of declaration (Pdec).
	b) high probability of correct classification (Pcc).
	c) low probability of misidentifying an unknown target.
	Known targets are those that are contained in the training data set. Unknown targets are anything...
	Amplitude
	A HRR is considered a nonliteral sensor. That is it does not match signals humans are familiar wi...

	1.2 Related Research
	The literature reviewed on classifiers for identifying HRR signatures for this research effort co...
	Current approaches for HRR use the entire range profile as a feature vector. The training of this...
	The parameters to be estimated will depend on the algorithm to be used.
	1.2.1 Quadratic Classifier
	One of the most frequently chosen techniques for classification of HRR signatures is the constrai...
	(1-1)

	where xi, , and are the observation, mean, and variance of the ith range bin for target class k. ...
	(1-2)

	where is the maximum likelihood target class. Another variant of this technique is to use mean sq...

	1.2.2 Statistical Feature Based Classifier with Feature Level Fusion (StaF)
	Mitchell, in his dissertation [22] introduced the Statistical Feature Based Classifier with Featu...
	There are several problems with Mitchell’s approach. First is that several probability density fu...
	The research presented here is quite different from Mitchell’s work. First, this research uses a ...


	1.3 Research Objectives
	The author has been working in the area of machine intelligence for over twenty years. He has bee...
	The primary objective of this research is to develop a workable, robust classification methodolog...
	Once the data is labeled rough set theory guarantees that all possible classifiers using that tra...
	One of the strongest requests for this research comes from [32] where Pawlak states in the foreword:

	1.4 Dissertation Outline
	This dissertation provides background material on rough set theory in Chapter 2 and feature selec...
	Chapter 6 discusses ways to reduce the dimensionality of the data to allow RST to be applied. Thi...
	The dissertation provides the results of computer simulations in Chapter 7 confirming that the po...
	The dissertation concludes with suggestions for further studies and research to determine the lim...
	An appendix is included which completely defines all the reducts and their associated core for ea...


	2 Rough Set Theory
	A great deal of time and effort has been used by companies and governments since the advent of co...
	rough set theory was developed by Zdzislaw Pawlak in the 1980s [29] as a formal method to turn da...
	rough set theory has features applicable to the classification problem. Some of these features are:
	1. it is an algebraic method.
	2. it is applicable to problems with both numeric and descriptive attributes.
	3. it is capable of finding all minimal knowledge representations.
	4. it is highly automated based on strict rules.
	5. it is discrete (unlike fuzzy computing).
	6. it is applicable to statistical as well as rule based learning.
	7. it is robust.
	8. it is normally limited to small size problems.

	Some of the features listed are problematic with real world sized problems. This research present...
	2.1 Information Systems
	Frequently data is stored as a relational database. This takes the form of a table where the rows...
	(2-1)

	where is called the value set of . In a practical rough set system is a discrete and finite set o...

	2.2 Definition of Discernibility Matrix
	Skowron [40] proposed representing an information system in the form of a discernibly matrix. The...
	(2-2)

	In the most general case each xi represents a separate class. So an element of cij of a discernib...
	(2-3)

	Let . It is desired to write the discernibility function. This is normally written using the Bool...
	(2-4)

	where
	(2-5)

	The associative property
	(2-6)

	allows the dropping of parenthesis without any possibility of confusion; moreover now define for ...
	(2-7)

	The discernibility function of the information system is:
	(2-8)

	where ““is the constant function
	(2-9)

	If fA is an empty conjunction, define fA to be the constant zero function. This is an uninteresti...
	The condition used in the definition of the discernibility function is equivalent to the conditio...
	(2-10)

	Using the fact that the discernibility matrix is symmetric and that it follows that the discernib...
	fa(A) = 1.
	Let . The B-indiscernibility relation is:
	(2-11)

	The B-discernibility relation is the complement of Ind(B) in U x U,
	Dis(b) = U x U - Ind(B) (2-12)

	The following lemma is an immediate consequence of the definition.
	Lemma. Let . Then
	(2-13)

	Consequently, if and Dis({a})=Dis({b}) then
	Dis(B) = Dis(B - {a}) = Dis(B - {b}). (2-14)

	Not all knowledge presented in the information system is necessary to describe it. Reduction of k...
	As before, let . Define the binary operator , called disjunction, by
	(2-15)

	where
	(2-16)

	It is easy to prove that the operator satisfies associativity, commutativity, and distributes wit...
	(2-17)

	Likewise it distributes with respect to disjunction,
	(2-18)

	These last two properties are called the distribution laws.
	Using these two special operators it is now possible to define methods to determine some importan...

	2.3 Definition of a Reduct
	In any information system it may be possible to discern all the objects in the system without usi...

	2.4 Definition of a Core
	The core of the information system is defined as a set such that
	(2-19)

	In simple terms the core is the most essential part of a reduct. A core consists of attributes th...

	2.5 Reduct Determination
	There are few methods in the literature for determining reducts. Three of the methods will be des...
	2.5.1 Brute Force
	The brute force method uses no sophistication to determine reducts. All possible combinations of ...
	(2-20)

	where n is the total number of attributes and k is the number of attributes in each potential red...
	The brute force process of reduct generation is best described through an illustration. Table 2-1...
	Table 2-1 Raw Data�
	Table 2-2 Labeled Data

	Once the labeling is complete there is the possibility that the resulting table may be ambiguous....
	Table 2-3 Consistent Information System with Duplicates

	The reducts of the information system can now be computed. Reducts will be determined which prese...

	2.5.2 Discernibility Matrix
	As in the prior example, the data must be labeled. For computational efficiency duplicate signals...
	Table 2-4 Consistent Information System without Duplicates

	In a discernibility matrix any cell with only one entry means that attribute is part of the core....
	Table 2-5 Discernibility Matrix

	To compute the reduct from the discernibility matrix requires the use of the definition:
	B is a reduct if
	i) is minimal with respect to inclusion
	ii)
	Entries in the discernibility matrix will be referred to by the row and then the column labels. F...
	(2-21)

	Using this definition there are two reducts:
	1) Range Bin 1 and Range Bin 2
	2) Range Bin 1 and Range Bin 4.
	In [40] this is still proven to be a NP-hard problem which means that it cannot be applied to mos...

	2.5.3 Expansion Algorithm
	A new algorithm was devised which would improve upon the time required to compute the reducts usi...
	2.5.3.1 Absorption Law
	Let . Suppose . If then .

	2.5.3.2 Factorization Law
	Let and suppose for i= 1,...,k.
	Then

	2.5.3.3 Expansion Law
	Suppose . Let and suppose , and . Then
	(2-22)

	Letting
	(2-23)

	the conclusion reads , where both f1 and f2 are conjunctions of the Boolean-valued functions . Si...
	A simple cover of a discernibility function fA is a family of Boolean-valued functions
	{f1,...,fk} satisfying:
	(2-24)

	where each is a conjunction of Boolean-valued functions.
	A simple cover {f1,...,fk} is called a simple form of the discernibility function if for each the...
	Given any two subsets and
	(2-25)

	Two such subsets are called equivalent.
	Let . If there exists an attribute such that then B is said to be strongly equivalent.
	Let {f1,...,fp} be a simple form of fA. Let and . If there exists an index i and an attribute suc...
	Let . If there exists an attribute such that , then it is said that B is a locally strongly equiv...
	At each stage of the following algorithm elements of a locally strongly equivalent subset will be...

	2.5.3.4 Reduct Generation Algorithm
	Given: where is a simple cover of fA.
	Step 1. In each component fi of the simple cover, apply the absorption law to eliminate all conju...
	Step 2. Replace each locally strongly equivalent subset of attributes in each simple cover compon...
	Step 3. In each component Ji of the simple cover select an attribute which belongs to the largest...
	Step 4. Repeat steps 1 through 3 until fA is in simple form.
	Step 5. For each component fi of the resulting simple form substitute all locally strongly equiva...
	Step 6. Calculate the reducts Red(fi).
	Step 7. Determine the minimal elements, with respect to the inclusion relation, of the set, where...

	2.5.3.5 Example
	To illustrate the reduct generation algorithm consider the discernibility function (without the e...
	(2-26)

	1. Since and the absorption law is used to eliminate conjuncts 4 and 5 and get an equivalent disc...
	(2-27)

	2. is a strongly equivalent class so we can represent it by a single attribute g which yields:
	(2-28)

	3. In the remaining function, attribute d is the most frequent so apply the expansion law with re...
	(2-29)

	where the simplification in the last step resulted from the absorption law.
	4. All functions fi are in simple form.
	5. Substituting all strongly equivalent classes for their equivalent attributes:
	(2-30)

	6. Reducts which correspond to the simple cover functions are
	Red(f1)={{a,d},{d,f},{b,d},{c,d}}
	Red(f2)={{b,e}}
	7. The reducts of A are obtained by determining the minimal elements of the set
	(2-31)

	from which it can be concluded . (The reducts of A are obtained by “throwing away” supersets in; ...

	2.5.3.6 Results of Computer Simulation
	Simulations were run using MATLAB 5.2 on test data generated randomly. A random number generator ...
	Figure 2-3 shows the difference in time to run the problems using the Elimination Method and the ...
	Figure 2-4 shows the run times for the Distribution Algorithm with and without strong equivalence...


	2.5.4 Summary
	All the methods presented in this chapter provide a means to calculate reducts. Skrowron [40] has...



	3 Feature Selection and Fusion
	The performance of a classifier has an interdependent relationship between sample sizes, number o...
	One area of great interest to the military is the area of information fusion. Information from di...
	3.1 Feature Generation
	Feature generation, or as it is sometimes referred to in the literature feature extraction, diffe...
	3.1.1 Principal Component Analysis
	Principal component analysis (PCA) is probably the best known orthogonal transform based feature ...
	Mathematically PCA involves solving the equation where R is any real square matrix, W is the eige...
	One of the problems with PCA is that it is sensitive to “outliers” [28] or data that appears to b...
	Techniques for performing PCA include singular value decomposition (SVD) [33], Hotelling’s power ...

	3.1.2 Auto-associative Neural Networks
	Neural networks have achieved a lot of press as to their capabilities. Dr. Steve Gustafson of the...

	3.1.3 Self-Organizing Map
	Another method of feature generation is the self organizing map also known as the Khonen Map [17]...
	This network is normally arranged in a one, two, or three dimensional grid. Every neuron is conne...

	3.1.4 Summary of Feature Generation
	The methods presented in this section are both linear and nonlinear. These methods seek to produc...


	3.2 Feature Selection
	Feature selection involves a process where features, either generated or natural, are selected su...
	3.2.1 Exhaustive Search
	The obvious simplest approach to feature selection is to try all possible combinations of feature...

	3.2.2 Branch and Bound Search
	The artificial intelligence community has long been struggling with how to solve NP-hard problems...
	Using exhaustive search as in the previous section the time required to perform this search is O(...

	3.2.3 Sequential Forward Selection
	One of the non-optimal methods for feature selection is the sequential forward search. In this me...


	3.3 Fusion - Dempster-Shafer Method
	In the area of fusion of information, the theory of evidence [38] developed by Dempster and Shafe...
	Rough set theory will yield a multiple number of classifiers based on the number of reducts found...

	3.4 Summary
	Feature selection is one of the most important steps in the construction of a classifier. In roug...
	Fusion is important to achieve robustness in the RST classifier. Many partitions and many reducts...


	4 Data Preprocessing
	As in any application, the proper preprocessing of the data is essential to solving a problem. Da...
	4.1 Data
	The data set used in this research consists of synthetic HRR returns on six targets. For each tar...
	This data is divided into two sets, one for training and the other one for testing. The training ...

	4.2 Partitioning - Focused Reducts
	One of the problems with rough set classification is that the determination of all the reducts (a...

	4.3 Normalization
	Radar signals can have a lot of variability due to the various radar parameters and other factors...
	( 4-1)

	Normalization facilitates numerical analysis of the results and effectively reduces noise introdu...

	4.4 Quantification
	Rough sets are different than fuzzy sets. Where fuzzy sets may be characterized as being concerne...

	4.5 Binary Multi-Class Entropy
	For this effort a method of binary labeling based on multi-class information entropy was chosen.
	Information entropy is a concept introduced by Shannon [50]. He considered a single random variab...
	( 4-2)

	This concept of entropy will be expanded to multi-class entropy to define a point with the range ...
	Now assume a range bin (attribute) across all training signals is defined as:
	( 4-3)

	Let
	( 4-4)

	Rather than forcing an assumed distribution on the data an approximation can be used to obtain th...
	( 4-5)

	For simplicity of notation for each threshold value xt, Pt will be represented as P1 and its comp...
	( 4-6)

	where and c represents a set of signals belonging to class C. Finally class probabilities are est...
	( 4-7)

	where .
	Each column (range bin) of the training set is searched sequentially to establish the optimum poi...
	( 4-8)

	where relative entropy is defined as:
	( 4-9)

	and
	( 4-10)

	where nc is the number of classes in the training set, pc, pt, ptc are the probabilities of each ...
	The point at which the relative entropy is minimum for the range bin is the division point that w...

	4.6 Fuzzification
	In dealing with measured data there are problems associated with noise introduced by the measurem...
	4.6.1 Relation Between Fuzzy Classification and Rough Set Theory
	Vagueness is represented in fuzzy sets by membership functions which map the universe to a unit i...
	The normal concept of fuzzy sets would not work well for this version of a rough set classifier. ...
	The training set is assumed to be pristine in nature and therefore the information entropy determ...
	( 4-11)

	where d is the distance from the division point, b (fuzz factor) is the portion of the smallest d...

	4.6.2 Bar Graph of Distance Values
	In order to better understand how the fuzz factor affects the performance of the classifier histo...
	( 4-12)

	where dx is the bar-graphed distance, xd is the actual value of the range bin from the test set, ...
	In reviewing these histograms it is apparent that there are many cases where most values are in t...


	4.7 Summary
	This chapter has covered many areas associated with the data preprocessing steps to ensure that t...


	5 Wavelets
	Most of the work in HRR target recognition has been done by or sponsored by the military. The app...
	Famili [9] found that preprocessing the data allows easier subsequent feature extraction and incr...
	In considering wavelets for ATR serious consideration must be given to the selection of a wavelet...
	Other researchers have employed wavelets to assist in HRR target identification [14][15]. Devaney...
	It is not the purpose of this chapter to explore the development of a classifier. However, in ord...
	1) wavelets are useful for generating features that improve classifier performance.
	2) what family and which wavelet in the family is best.
	3) how to mitigate or eliminate wavelet bias towards some target classes.
	5.1 Generalized Box Classifier
	The classifier used in this chapter is a version of the generalized box classifier [16]. The trai...
	The first step in constructing the classifier is to sort each column of from the smallest value t...
	The algorithm for constructing the classifier is as follows:
	Let i denote the target class, and j the feature number. Set i = j = 1.
	Generalized Box Classifier Algorithm
	The elements aij are called individual attributes. The attribute set A is defined as the set of a...
	The classifier is tested by classifying each of the transformed test signals, z. An nc x nc confu...
	( 5-1)

	Pcc is a random variable value which represents a classifier performance on a given set of data. ...

	5.2 Wavelet Families
	Wavelet transforms have been found useful in a variety of applications. This is because they prov...
	The 1-D discrete wavelet transform (DWT) of a signal yields an approximation and a detail of the ...
	Discrete wavelet packet (DWP) analysis begins with the DWT of the original signal. The next level...
	The discrete wavelet packet (DWP) analysis is performed as follows. The length, L, of the normali...
	Prior to selecting features for the target classifier it is useful to preprocess the original sig...
	Table 5-1 Wavelet Functions Used in Wavelet Transform

	In Figure 5-2 the original signal is contained in the first 128 feature index points. The coeffic...

	5.3 Wavelet Family Dependence
	As observed in the prior discussion, a wavelet transform improves feature selection for target re...
	Proposition 1: No single wavelet family transform has a statistically significant advantage over ...
	To verify Proposition 1 classifiers were constructed using training sets from all the wavelet fam...
	( 5-2)
	( 5-3)

	where is the mean value and is the standard deviation of probability of correct classification fo...
	H0: ( 5-4)

	is being tested against the alternative hypothesis;
	H1: . ( 5-5)

	The test statistic is computed as follows:
	( 5-6)

	H0 is rejected if (1.96 is for a two-tailed test where the results are significant at a level of ...
	From the analysis presented, the null hypothesis, that there is no difference in the mean values,...
	Table 5-2 Performance of Wavelets
	Table 5-3 Wavelet Family Hypothesis Test

	Normally this type of analysis is limited to large samples where the standard deviations of the s...
	A t-test is used when either or both of the populations are small and the population variances ar...
	( 5-7)

	and the null hypothesis, H0, is rejected if the value of t is greater than 2.074 or 2.85 dependin...
	Table 5-4 Wavelet Family Comparison - Hypothesis t-Test


	5.4 Feature Size Dependence
	When constructing the classifier, there are times when the classifier is selecting features to cl...
	Proposition 2: Features which classify a small number of training signals do not significantly im...
	An analysis was performed to determine what size feature (the number of signals that were classif...
	Using the Z test (Equation 5-6), as before, it was found that eliminating features that classify ...
	The t-test depends on the standard deviations being equal so a test for this was also made. This ...
	( 5-8)

	If this value is less than 2.85 the null hypothesis, that the variances are equal, must be accept...
	The results for the other families of wavelets are presented in Table�5-6 through Table�5-8. The ...
	.
	Table 5-5 Significance of Eliminating Features of Daubechies Wavelets
	Table 5-6 Significance of Eliminating Features for Symlet Wavelets
	Table 5-7 Significance of Eliminating Features for Coiflet Wavelets
	Table 5-8 Significance of Eliminating Features for Biorthogonal Wavelets


	5.5 Iterated Wavelet Transform
	A single wavelet transform using any of the previous families improves classification performance...
	Proposition 3: By iteratively selecting the most informative pseudo range bins and transforming t...
	An experiment was performed to verify this proposition. The original 128 range bin signal was tra...
	When using just one wavelet transform on the original signal, Stirman showed an increase in Pcc o...
	Table 5-9 Results of Iterative Application of Haar Transform

	A question arose as to why there would be a decrease in performance on some of the targets such a...
	Performance increase was anticipated as fewer features are required and the features that are cho...

	5.6 Summary
	In this chapter it was shown that for the HRR target recognition problem the use of wavelets to e...
	The most significant contribution of this chapter is the idea of using iterated wavelet transform...
	The application of the iterative wavelet method used here to improve performance could potentiall...


	6 Rough Set Classification
	As previously discussed in Chapter 2, rough set theory (RST) is not capable of being used on very...
	Even the partitioned data is much too large for conventional RST analysis. In this Chapter a new ...
	6.1 Definition of Focused Reducts
	The data set partitioning scheme was discussed in Section 4.2. The reasons and advantages of this...

	6.2 Definition of Power Information System
	The power information system is defined as a set of all focused information systems.
	(6-1)

	In other words the power information system of a given information system (U, A) is a super set o...

	6.3 Definition of Covered Information system
	Using the previous definitions it is now possible to define covered information system as:
	(6-2)

	In order to reduce computational cost focused reducts will be chosen from a covered information s...
	Conjecture. A covered information system yields a combined classification performance of focused ...
	The correctness of this conjecture is addressed in Section 7.1

	6.4 Determination of Reducts
	The method of determining reducts as described in Chapter 2 are too computationally intensive to ...
	6.4.1 Selection of Salient Range Bins
	Even with efficient methods of determining near minimal reducts the enhanced feature set generate...
	In Section 4.5 an entropy index was developed which provides information as to the value of a giv...
	Figure 6-1 through Figure 6-29 are the graphs of the entropy index for each partition. The data i...
	It is important to note that the partitions which are based on the interleave partitioning tend t...

	6.4.2 Elimination of Duplicates
	The first step toward efficiency is to eliminate duplicates from the training set. A duplicate is...
	(6-3)

	which simply means that two signals of the same class have the same valued attributes. Basically ...
	Table 6-1 Number of Duplicate Signals�


	6.4.3 Elimination of Ambiguities
	The next step is to eliminate ambiguities from the training set. An ambiguity is defined as:
	(6-4)

	which means that two signals are identical but represent different classes. Therefore both of the...
	Table 6-2 Number of Ambiguities�

	Once all the ambiguities and duplicates are removed the final training signals are ready for the ...
	Table 6-3 Number of Training Signals�


	6.4.4 Calculation of the Core
	After all the duplicates and ambiguities are eliminated the next step is to calculate the core. R...

	6.4.5 Calculation of the Reducts
	Calculation of the reducts is more complicated and time consuming than calculation of the core. R...
	Table 6-4 Reduct Results�



	6.5 Method of Classification
	Once a reduct has been determined the process of classification can proceed. Given an unknown sig...
	All the reducts of R are tested against the full training set to determine the performance of eac...

	6.6 Merging the Focused Reducts
	Once all the reducts have been determined each one is tested against the full training set (all a...
	As described in the previous section, a set of reducts will be generated for each partition. In a...
	If all the Pcc(s) are zero, the weight should be zero.
	If all the Pcc(s) are one, the weight should be one.
	If there are several “votes” of low confidence for a given target class, the weight should be hig...
	If there is one high confidence vote and several low confidence votes, the weight should be highe...
	The total weighting function for a given target class is given as:
	(6-5)

	Where Pmax is the maximum Pcc of all reducts “voting” for target class i, Pi is the Pcc of each “...
	In order to determine if the goals for the formula are being met and to get a physical feel for h...
	Table 6-5 Results of Weighting Formula

	As can be seen from the table, all the desirable features of the function are achieved. The maxim...

	6.7 Summary
	This chapter introduced extensions to the rough set theory by defining new terms and concepts. A ...


	7 Classification Results
	The proof of the concept presented for performing classification using rough set theory (RST) com...
	7.1 Basic Focused Reduct Results
	The results presented in the following sections are the results of computer simulations. The appe...
	7.1.1 Training Results
	The Performance of the classifier on the training data is shown in Table7-1.
	Table 7-1 Classifier Performance on Training Data

	The table has a separate row for each partition. Note that none of the partitions has perfect per...

	7.1.2 Test Results
	The results of testing the classifier are shown in Table 7-2. This table is constructed the same ...
	There are some partitions which have a Pcc of 0. As expected, this occurs with the smaller partit...
	What these results reveal is that it is possible to construct a classifier using rough set theory...
	Table 7-2 Classifier Performance on Testing Data

	An analysis was conducted to ascertain the effect of various parameters on the performance (Pcc) ...
	Another plot was generated to determine if the size of the core had any effect on the classifier ...
	Another plot was made to determine the effect of minimum reduct size on classifier performance. T...
	Another question was whether more reducts would result in better classification. This is the idea...
	Another area explored was whether there was a relationship between the size of the reducts and th...


	7.2 Fuzzification Results
	The process of fuzzification was described in Section 4.6. Fuzzification was introduced to handle...

	7.3 Comparison with Quadratic Classifier
	The quadratic classifier is a very popular means of performing the HRR ATR function. A quadratic ...
	Table 7-3 Quadratic Classifier Confusion Matrix - Test Data


	7.4 Summary
	In this chapter the results of using a rough set classifier on testing data were presented. The c...
	The use of fuzzification on the test data resulted in a four percentage point increase in accurac...
	The rough set classifier was found to be better than the most popular method in widespread use to...


	8 Conclusions and Recommendations for Future Studies
	8.1 Conclusions
	This research met the research objectives as described in Section 1.2 of this dissertation. Speci...
	Since rough set theory was chosen as a method of finding individual classifiers based on a subset...
	These advances produced a software system as evidenced by the output contained in Table A-1 throu...
	This research addressed the serious concerns as quoted in Section 1.3 from the father of rough se...

	8.2 Original Contributions
	The following is a list of the original contributions developed as a result of this research:
	1. The first original contribution developed in this dissertation was the concept of iterated wav...
	2. The expansion algorithm for the discernibility function is an original contribution. Through t...
	3. The concept of multi-class entropy used in rough set based classification is an original contr...
	4. The concept of focused reducts is original. It is not possible to consider enough range bins t...
	5. The means of computing reducts is original. The problem of finding all reducts is a non- polyn...
	6. The method of fusing focused reducts is original. The fusion scheme is instrumental in increas...
	7. The method of adding fuzziness to the rough set classifier is original. Since there is some do...
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	8.3.1 Journal Articles:
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	J. A. Starzyk, D. E. Nelson, and K. Sturtz, “A Mathematical Foundation for Improved Reduct Genera...
	D. E. Nelson and J. A. Starzyk, “Iterative Wavelet Transformation and Signal Discrimination for H...
	D. E. Nelson, J. A. Starzyk, and D. D.Ensley, “Wavelet Transformation and Signal Discrimination f...
	D. E. Nelson, J. A. Starzyk, “Fusion of Focused Rough Set Classifiers,” Pattern Analysis and Appl...

	8.3.2 Patent:
	Object Identification System and Method, Letters Patent of the United States serial number 60/220...
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	J. A. Starzyk and D. E. Nelson., “Independent Classifiers in Ontogenic Neural Networks for ATR,” ...
	D. E. Nelson and J. A. Starzyk, “Advanced Feature Selection Methodology for Automatic Target Reco...
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	8.4 Recommended Future Studies
	In any research there is always more research that can and should be done. The following sections...
	8.4.1 Sensitivity to Registration
	The HRR signals used in this research were synthetically generated by a computer program known as...
	Although mis-registration could be a serious shortcoming of this method there are ways to handle ...

	8.4.2 Different Data Sets
	This effort used synthetic data. There is never enough measured data to satisfy ATR researchers. ...
	In this dissertation 25% of the data was used for training and 75% for testing. Frequently, the l...
	Since the data was generated synthetically there was no noise component. This method should be te...
	The data used in this research was air-to-air targets. This has the effect that there is no clutt...
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	As discussed in Section 6.4.1, the number of range bins to be considered for calculation of the r...
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	High Range Resolution (HRR) radar is one sensor of interest to the military. This sensor collects...



