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 CHAPTER 1

INTRODUCTION

1.1 Automated Handwritten Character Recognition

Automated handwritten character recognition has increasingly gained

popularity in the area of pattern recognition in recent years. The need for fast

processing of handwritten documents, due to the increasing amount of produced

information, makes this area more important than ever. For example, the great

demand for fast classification of letters by the post office requires a fast automated

recognition system to do the task. Traditionally, the handwritten character recognition

algorithms were implemented on a digital computer. However, since character

recognition is computationally intensive, using the digital computer does not meet the

demand of fast processing of the task. Digital computers are good at handling

problems which are explicitly formulated, but handwritten character recognition is

not such a problem. Since the advent of neurocomputing technology, great research

effort has been devoted to using it to perform recognition tasks. The neural network

is known for its ability of parallel computing since each neuron in the network is able
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to perform local computations. Simulating the operations of the biological nervous

system, the artificial neural networks can be used in problems which are not explicitly

formulated, such the handwritten character recognition.

A number of research techniques for handwritten character recognition in

various languages (e.g., [1], [2]) have been developed in recent years. Since features

of the characters in a language may be quite different from those in other languages,

methods for recognition depend on the languages involved. However, handwritten

numerals are probably the most commonly used characters, and methods for

recognizing them can be universally applied. On the other hand, since Arabic

numerals are written by people in various cultures, their writing appearances vary

over a large range. In other words, a numeral written by different people may look

quite different and be confused with other numerals. This results in their partial

inseparability, which means that different numeral classes may partly overlap each

other in the feature space (see Fig. 1.1). Therefore, character recognition for

handwritten numerals is a challenging task to tackle.

1.2 Conventional Pattern Recognition Approach

The conventional approach to the area of pattern recognition utilizes a digital

computer to implement the pattern recognition algorithms. An object image is first
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taken by a camera and then image digitization is performed. The process of

digitization is to vertically and horizontally partition the image pixels, and assign a

value to each pixel. The value assigned to a pixel of a monochrome image varies

according to its brightness or gray level. The digitized image may need further

processing using image processing techniques in order to perform the recognition

task. To perform the pattern recognition, the digital computer must first learn to

distinguish objects of all types based on a set of learning samples. After learning, the

computer is ready to classify the input samples.

However, pattern recognition is a computationally intensive and time

consuming task due to the vast amount of image data and large number of

computation steps. Using the conventional approach always demands a very high

speed computer or a parallel computer system to perform a satisfactory recognition.

1.3 Neural Network Approach

Development of the artificial neural networks is driven by study of biological

neurons. The neurons in the human body are known by their large parallelism, which

gives them the incredible capability of information processing. The number of

neurons in a human brain is estimated at approximately in the order of 1011, which

makes the computational ability of the brain as high as 1014 interconnects per second
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[3]. Biological neurons not only can process information concurrently, but also have

the ability to accommodate new knowledge. Once trained, neural networks can

recognize similar objects according to their learned knowledge. With the properties

of computational parallelism and learning ability, the artificial neural networks are

widely used in pattern recognition. Examples of the neural network approaches to

pattern recognition are presented in [4] and [5].

However, the large number of neurons required and the sophisticated

interconnections of the networks used for the recognition task complicate the

hardware implementation. For example, a neural network called Neocognition

developed by Fukushima, Miyake, and Ito [5] contains 14,529 neurons in the 9

neuron layers to perform the pattern recognition. The design challenge is to build

pattern recognition systems with less complexity of connections and smaller number

of neural elements while preserving the same performance.
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1.4 Combinational Approach

The approach used in this research uses the advantages of the conventional

pattern recognition and the neural network approaches to complete the task. Since an

object recognition system consists of the learning and the classification stages, one

of the stages can be completed by the conventional approach, and the other stage by

the neural network. The learning process can be implemented by the conventional

approach using a digital computer, even though the process may take a long

simulation time. Once the learning is completed, the system is switched to the

classification phase. For time invariant tasks, there is no need to involve neural

networks in the learning stage so that the hardware complexity can be reduced.

On the other hand, with parallel computational ability, neural networks can

perform efficient classification tasks. Hardware organization of a neural network

depends on the learning results, and it is much simpler than that of a learning system.

In addition to the classification task, in the feature based object recognition, a neural

network has to perform the feature extraction. This complicates the hardware of the

network even more. An illustration of a neural network feature extractor is shown in

Fig. 1.2 [6]. In the combinational approach, the feature extraction can be performed

on a digital computer and preprocessed data fed to a neural network. From the

experimental results, the system developed in this research consumes the time in the
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order of 10-2 seconds to perform the feature extraction of a 20×20 binary image.

Therefore, for many applications, there will be no need to construct additional

hardware for feature extraction.

1.5 Feature-based Recognition

Object recognition is generally performed on either the raw image in the image

plane or on the feature representation in the feature space. In the earlier case, known

as the low level image recognition, the system learns and recognizes an object

according to the information given by all the pixels in the image plane. In an N×N

image plane, the object is described by an image vector which consists of N2 pixel

values. The size of the image vector increases as the resolution of the object image

increases. One of the drawbacks of this approach is a huge dimensionality which

deepens the computational burden of the system. Moreover, the image vector of the

shifted object image may be quite different from the original one. On the other hand,

not all the pixels of the object image reveal crucial information of the object

characteristics, and there is a large redundancy in the image vector.

The feature-based recognition uses only the information that best characterizes

the object. It extracts the important information conveyed by some pixels and

processes it to obtain the feature representation. The object in the image plane is then
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represented by its feature vector in the feature space. In this case, the learning and the

recognition is done in the feature space. Dimensionality of the input vector is greatly

reduced, and the recognition can be invariant to some image transformations, such

as image translation, rotation, and scaling, if the object features are properly selected.

A feature-based recognition system usually distinguishes objects by their

shapes since they reveal the geometric attributes of the objects. Various methods for

object recognition based on object features have been proposed [7]-[23]. Moments

of the object image are often used as the feature representations. For example,

Perantonis and Lisboa [7] proposed a moment-based method for feature

representations. They used a finite number of Zernike moments to describe an object

shape in the 2-D image plane. The Zernike moments are obtained by projecting the

object image on a class of Zernike polynomials, which are orthogonal over the unit

disk in the polar coordinates. In [8], Sardana et al. described a type of moments

called edge standard moments for object contour description. These moments are

found by normalizing the regular moments of the object contour so that they are

invariant to transformations of scaling, rotation, and translation.

Using autoregressive (AR) models [9] to characterize object features is

another approach in object recognition. An object in the 2-D image plane is sampled

to obtain a 1-D discrete signal, which is to be modeled by an autoregressive process.
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The coefficients of the AR model are then used for the contour description. Sekita,

Kurita, and Otsu [10] suggested a complex AR model for object recognition. This

method samples the contour to a number of points using an equal arc length. These

points, represented in complex coordinates, are then fitted to an AR model to acquire

an AR coefficient sequence, which is used for contour feature representation.

Fourier-based method is an alternative way to describe the object contour [11]-

[13]. In their research,  Zahn and Roskies [11] have proposed a type of Fourier

descriptors for feature representations of the object shape. The object contour is

represented as a parametric function of its arc length expressed by the accumulated

direction change since the starting point. This function is then expanded in a Fourier

series to obtain the Fourier descriptors for contour representations. In a method for

Arabic character recognition, Mahmoud [12] used the Fourier descriptors as one of

the feature representations. The contour of the object is represented by a periodic

function which is obtained by tracing the contour in the 2-D plane. The Fourier

descriptors, then, are the coefficients of the Fourier expansion of the function. In the

algorithm developed by Taxt et al. [13], after approximation of a 2-D curve by B

splines, the object contour is divided into a number of intervals, and the mean

curvature in each interval is calculated. Together with these curvature values, the

coefficients of the Fourier expansion of the object contour are used for the
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descriptors of the shape.

A structural description of the object shape is also employed in some research

[14]-[16]. In structural object recognition, the geometric structure of the object is

described in terms of a number of its simple parts, such as line segments or arcs. In

[15], Nishida and Mori described an algebraic description for the structural pattern

recognition. The curve of the object contour is hierarchically decomposed into its

primitive parts which are encoded to obtain primitive sequences. The primitive

sequences, their connections, and the neighboring structures of a primitive sequence

on the branch points are then used for the description of the object shape. In the

method suggested by Rom and Medioni [16], each decomposed part is described by

its symmetry axes, which are defined as the midpoint loci of the curve cross sections.

The cross section is the line between two contour points forming a local symmetry.

The symmetry axes and the relationships between each part serve as the description

of object shape.

There is a number of research projects on the object representation which are

based on the algorithms which sample the object contour and encode it to form a 1-D

discrete signal or sequence [17]-[22]. For example, Bebibs and Papadourakis [21]

used the centroidal profile function to express the object contour in a 1-D

representation. The centroidal profile function is a function of distance from the
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object boundary to the centroid whose coordinates are the ratio of first order

moments to the zeroth order moments. In the discrete plane, this function is an

ordered sequence in which each value is the Euclidean distance from a boundary

pixel to the object's centroid. In the method suggested by Dinstein, Landau, and Guy

[22], the object contour is detected by a number of 3×3 templates, and each contour

pixel is assigned a record which contains the address of and the distance to its

immediate neighboring contour pixel in clockwise direction. Both the address in each

contour pixel and its length increment are then encoded in two sequences to represent

the contour.

Another contour-based feature representation described by Lin, Dou, and

Wang represents the object contour by an arc height function [23]. The height of an

arc is defined as the length of the line segment from the midpoint of the arc's chord

to the arc itself. The line segment is perpendicular to the chord of the arc. Tracing the

contour once to find the height of each arc with the fixed length, starting from the

current tracing point, results in a set of height values. This set of arc height values is

used as the description of the object shape.

1.6 Clustering-based Learning

Clustering is a process that groups a set of data into a number of subsets such
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that data in a subset are more similar to each other than to data from other subsets.

Learning based on clustering groups a set of patterns from different object classes

into clusters which can best represent these patterns. Various clustering techniques

have been developed over the past decades.

One of the common approaches is k-means clustering algorithm [24], [25]. It

begins with randomly selecting k samples as one-sample clusters and then assigning

the rest of the samples to their nearest clusters. The nearest cluster to a sample is the

one whose center is nearer to that sample than other cluster centers are. After all the

assignments, the center of each cluster is to be recalculated. All the samples are then

checked to see if they are in their nearest clusters due to the changes of the cluster

centers. If their nearest clusters are changed, another assignment are applied to these

samples. The check-and-assign procedure repeats until no new assignment is

required, and the clustering is completed.

Agglomerative clustering is a class of hierarchical clustering techniques and

has been employed by some researchers [26], [27]. Hattori and Torii [27] proposed

nearest neighbor algorithms based on the agglomerative clustering. Initially, the

number of clusters is first set to the number of learning samples, which means all the

samples are singleton clusters at the beginning. Then, the nearest neighboring clusters

are found and merged. The distance between two clusters is defined by the distance
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between the nearest pair of data points from the two clusters, respectively. The

process of cluster merging continues until the specified number of clusters is

obtained. The merging of two clusters corresponds to linking them with an edge

between their closest pair of data points. When the merging is completed, this results

in a spanning tree with each data or node connected through a path to other nodes.

Clustering can be viewed as finding the optimal data partition under a

minimum cost or error function. However, clustering can easily be trapped in local

minima, which means that the process terminates at a point which is not the global

minimum, and the clustering result is not optimal. To avoid this problem, simulated

annealing ([28]) has been used in clustering. It simulates the process of annealing, in

which metals are first heated up to a high temperature and then gradually cooled by

lowering the temperature according to a specified schedule in order to obtain certain

alloys. In the simulated annealing, the activation of the clustering is inversely

proportional to the "temperature", according to the Boltzmann probabilities. At high

temperatures, the memberships of the learning samples toward clusters are updated

very frequently. This is to avoid the clustering residing at a local minimum. It is like

an atom which is very unstable at a high temperature and is not trapped in a local

minimum. By slowly decreasing the temperature, the clustering mechanism becomes

stable and moves toward the global minimum. A well known neural network called
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the Boltzmann machine [28] uses the simulated annealing to learn the weights of the

network.

The methods described above are all in the category of "hard" or crisp

clustering [29], in which a pattern can only be a member of one cluster. There are

other clustering approaches based on fuzzy theory, in which an object sample belongs

to more than one cluster according to the membership function [30]-[34]. The

membership function indicates the degree of membership of a sample to each cluster.

Kamel and Selim [31] described algorithms for clustering according to the fuzzy-c-

means (FCM) algorithms. An FCM algorithm is an optimization approach to

minimize an objective function, which is the sum of weighted variances between the

samples and the cluster centers. In order to increase the speed of convergence, the

membership grade for each sample and cluster center is checked and updated more

often. The learning stops when the object function is at minimum. In the networks

developed by Tsao, Bezdek, and Pal [32], the FCM algorithm is incorporated into the

Kohenon clustering network (KCN) [33] to improve the performance of KCN. The

learning rate for KCN updating at each iteration is evaluated by using the

membership updating strategy in the FCM algorithm. Beni and Liu described a fuzzy

clustering algorithm [34] which employed the maximum entropy principle to adjust

the clustering process. The entropy in the communication areas is used to measure the
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average information a group of data contains. In clustering, the entropy can be used

to measure the learning effect of the system. At the beginning, the entropy is very

high since the system is unlearned and tries to gain as much knowledge as possible.

While the learning proceeds, the entropy gets smaller and smaller as the learning

effect is reaching saturation. The entropy becomes zero at the end of learning.

The conventional clustering techniques are unsupervised learning techniques,

which means no "teacher" during the learning. The system in unsupervised learning

has no knowledge about the correct outputs of the corresponding input learning

samples. In other words, without a priori probability for each object class, the

clustering attempts to find the natural structure in the data in order to partition them

into subclasses. This usually leads to a computationally intensive task due to the large

number of iterations so that a good partition can be achieved. The problem of the

convergence is also a great issue in the unsupervised learning, since the clustering

may not converge to the global minimum. In addition, a number of clusters need to

be provided to the clustering process by a human, and this may result in a misleading

or an unnatural clustering.

In supervised learning, the learning process is under the supervision of a

"teacher" that monitors the intermediate learning results. The learning samples

associated with their states of nature or class labels are provided to the learning
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process. This means that each learning example is provided with an input and its

corresponding output, so that the learning effect can be evaluated for classification

correctness. During learning, the system can be corrected if the output in response to

an input sample is wrong. Learning is completed when the system produces the

correct output to each learning sample. The time required for supervised learning is

small compared to that for unsupervised learning since there is no waste of time in

"guessing"  what kind of adjustment needs to be made to obtain the desired results.

On the other hand, clustering techniques greatly reduce the size of the data set by

representing the learning samples with a small number of clusters. This reduces the

computational complexity and eases the classification task in the recognition phase.

Therefore, incorporating clustering techniques into supervised learning can result in

accurate and efficient learning at a small computational cost.

In this research, clustering-based supervised learning techniques are

developed, in which the clustering mechanisms are under supervision, so that each

cluster contains a single class of samples. The learning techniques developed are

described in Chapter 5.
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1.7 Research Objective

As described in Chapter 2, automated handwritten character recognition is a

highly challenging and difficult problem to tackle. The difficulties come from various

writing styles, image transformations, image resolution, and noise in the image plane.

To facilitate the solution of this problem, the objective of this dissertation is aimed

at accomplishing two goals, addressed as follows.

A. Recognition Invariant to Writing Style and Image Transformations

The first goal is to develop various handwritten character recognition systems

which perform the recognition task invariant to image scaling, translation, and

rotation, as well as different writing styles. This objective is realized in three main

stages: feature extraction, learning, and classification. The feature extraction stage

is aimed at simple but effective extraction algorithms that fetch both global and local

features of the object. The learning stage is focused on adaptation of the clustering

techniques to the supervised learning, so that good learning results can be achieved.

The classification stage is devoted to development of both single and multiple

classifier systems in order to obtain good classification performances.
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B. Development of Multiclassifier Systems

Each single classifier system has its strength and weakness in handwritten

character recognition. Great effort made to optimize the performance of each stage

in a single classifier system may not result in a great improvement in recognition by

the whole system. To significantly enhance the recognition performance, the second

goal of this dissertation is to develop multiclassifier systems which contain various

single classifiers. The multiclassifier systems are to organize the developed single

classifiers so that their weaknesses can be mutually compensated by the strength of

each other. In this way, the classification decision of the multiclassifier can be made

based on proper judgement, and the recognition rate can be greatly improved.

The rest of this dissertation is organized as follows. Chapter 2 gives an

overview of the handwritten character recognition systems. The problems involved

in handwritten character recognition are addressed. The feature extraction technique

and the feature representations are described in Chapter 3.  Chapter 4 discusses

various similarity measures developed for the different feature representations. In

Chapter 5, two learning processes based on supervised clustering techniques are

described. A number of recognition strategies and classifier systems are depicted in

Chapter 6. The experimental results are presented in Chapter 7.  Finally, the
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discussion and conclusions are given in Chapter 8.
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CHAPTER 2

GENERAL DESCRIPTION OF HANDWRITTEN

CHARACTER RECOGNITION

In this chapter, a general description of the handwritten character recognition

is given. The problems encountered in handwritten character recognition are first

identified and discussed. The organization of the system is then presented to

generally describe the strategies to tackle these problems.

2.1 Problem Identification

The great variations in handwritten characters make the recognition task hard

to be automated [35]. A handwritten character may appear differently from picture

to picture due to the image transformations of size, orientation, or location. In

addition, the diversity of writing styles results in vast variations in the appearances

of characters. A handwritten character presented in the image plane should be

correctly recognized by the system in spite of these circumstances. These problems

are described in detail in the following sections.

2.1.1 Recognition in the Presence of Image Transformations
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One of the recognition problems encountered due to image transformations

is the scaling of the object in the image plane. This problem results from the change

of size of the object image. As such a change is very common in handwritten

documents, it should be overcome by the recognition system. For example, the three

upper case A's with different sizes in Fig. 2.1(a) should be recognized as the same

one. One way of dealing with this problem is performing an image normalization,

so that all handwritten characters presented in the two dimensional image plane are

of the same size before recognition. Another way is to extract from the character

unique features which are invariant to scaling, so that the system responds strongly

to the selected features, no matter what size the character is. In recognition system,

once the features of a character are detected by the system, the character can be

correctly identified. Fig. 2.1(b) illustrates the features which can be used to

characterize the letter A independently of the scaling.

Though the methods described above can solve the scaling problem, they

give no help in recognizing the rotated images. When the orientation of the letter

A changes, as shown in Fig. 2.1(c), the features selected as parts of 2D image also

change since they are not independent of rotation. Consequently, the response of

the system to the character may be improper and may lead to a wrong recognition.

In this case, normalization of image orientation can be applied so that all the
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L 
 PPR
r 2f(x,y)dxdy (2.1)

characters have the same orientation. In the orientation normalization, the

elongation axis [36] of the object must be obtained in order to find the direction in

which the object is elongated. The elongation axis of an object can be defined by

the axis of least second moment, which is given by

where r is the perpendicular distance to the axis from the pixel at (x,y), f(x,y) is the

characteristic function. The integral is taken over the whole object image region R.

The function f(x,y) is zero for all the background pixels and is 1 for the object

pixels. The axis to be found is the line for which the second moment is minimum.

Fig. 2.2 illustrates the elongation axis of an object image. Orientation normalization

is done by adjusting the elongation axes to a certain direction, so that all the

characters can have the same orientation.

However, the normalization is based on the assumption that different images

which represent the same object have similar elongation axes. While this is true for

the images of some tools, this is not true for the case of handwritten characters

because of the great variation of their shapes. This means that the elongation axis

may not properly define the orientation of a handwritten character. Applying the

orientation normalization on the elongation axes may not result in a reliable
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recognition under the influence of image rotation.

Fig. 2.2  A scissor

and its elongation

axis.

Another way to

solve the orientation problem is using a vast amount of samples, which include

characters of various orientations, to train the recognition system. This needs a huge

data base and results in a large time overhead for training, testing, and even for

recognition of a single character.

In addition to the problems described above, the change of the object
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location in the image plane may also cause a false recognition. The location of a

character image is important for the systems which perform the recognition on low

level images, such as raw images. In this case, each pixel in the image plane is

supposed to give some image information. For a 20×20 binary image, the image

vector contains 400 elements each of which is a pixel value. Character image

change in location results in a new image vector, which may be quite different from

its original. In high level image recognition, the problem can be solved by edge

detection techniques which detects the object boundary, and the system uses the

object boundary for recognition task. However, the boundaries of handwritten

characters are not all the same, and size normalization must be employed.

In summary, the problems resulting from image scaling, rotation, and

translation are common and complicated in handwritten character recognition, and

they can not be solved independently. Character features which are invariant to

these image transformations are to be obtained in order to perform good

recognition.

2.1.2 Recognition under the Variations of Writing Style

Great shape variations of handwritten characters due to different writing

styles yield another recognition problem. Shape variations are the most important



30

reason why it is much harder to recognize handwritten characters than to recognize

printed characters. Handwritten characters have a very wide range of variations

from their prototypes. Different people writing the same character may produce

incredibly different images. Fig. 2.3 illustrates some groups of handwritten

characters which are quite different from each other. Thus, a handwritten character

recognition system must have the flexibility to recognize the various writing

appearances of the same character without losing the accuracy of distinguishing

different characters which have similar appearances. This problem can be overcome

by exploiting supervised clustering techniques for the learning process used in this

research. Supervised clustering groups similar objects of the same type into clusters.

All the characters in a cluster are of the same type. In other words, different

writings of the same character may be grouped into several clusters, and the

deviation between characters in a cluster is small. Different writings of a character

can be clustered together if they are similar to each other, though quite different

from their prototype. In this way, the system can be equipped with both the

flexibility and the accuracy of correct handwritten character recognition. The

supervised learning using clustering techniques is depicted in detail in Chapter 5.

2.2 Organization of Recognition System



32

The organization of the handwritten character recognition system is

described in two phases, which are the learning and the testing (or classification)

phases. These two phases are functionally different. The system first obtains the

classification knowledge of handwritten characters of different types. Once the

learning is done, the system switches to the testing phase to perform the recognition

task.

2.2.1 The Learning Phase

The learning phase is composed of four stages: image segmentation, feature

extraction, similarity measurement, and learning. The block diagram of the learning

phase is shown in Fig. 2.4.

A. Image Segmentation

The term image segmentation in the areas of conventional image processing

is used for the process that partitions an image into regions of different categories.

In neural network applications, it is the task that extracts individual objects which

are contained in an image, so that only one object is in a subimage. In other words,

segmentation is to separate individual objects in an image from each other, so that

the recognition system can process them individually. Images of handwritten
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characters are obtained by applying image segmentation to picture images of survey

sheets, as illustrated in Fig. 2.5(a). A threshold process then operates on each

character image to obtain the binary image form in which the object pixels and the

background pixels are assigned 1s and 0s, respectively, as shown in Fig. 2.5(b). The

resolution of the binary image is 20×20, which means that a binary image is in a

20×20 matrix form. After the image segmentation, the binary images of objects are

ready for feature extraction.

B. Feature Extraction

The developed system performs the recognition task based on the object

features instead of the raw object images. This is due to the fact that object features

provide distinguishing characteristics useful for character recognition. Employing

critical object features results in more effective performance of the recognition

process. In addition, the dimensionality of the feature representation is much

smaller than that of the raw binary image. This greatly reduces the learning and the

classification time [37]. Therefore, feature based object recognition has the

advantages of effectiveness and efficiency.

The stage of feature extraction is to define the useful features and extract

them from the binary image of the object. As discussed in section 2.1.1, the selected
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features must provide the unchangeable information under image transformations.

Also, the features must be easily extracted. When the feature extraction is done, the

object is transformed from the two dimensional image plane to a vector

representation in the feature space.

C. Similarity Measurement

The purpose of similarity measurement is to define how similar two objects

are, based on their feature representations. In other words, it uses quantitative

expressions, which are known as similarity measures, to describe the degree of

analogy between objects. The similarity measure has to sharpen the likeness of the

objects of the same type and deepen the differences between objects of different

types.

D. Learning

The learning process considered in this dissertation is under supervision.

This means that utilizing the similarity measurement techniques, the system learns

to recognize handwritten characters under instructions and uses the given

knowledge to incorporate similarity criteria. Learning is not to memorize all the

learning samples with their class identifications. It is to accumulate the
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classification knowledge under supervision, so that the system can not only identify

the learning samples without errors, but also correctly recognize the object samples

as different from the learning samples. Learning results in a number of clusters

which serve as the prototypes of different classes of samples.

2.2.2 The Classification Phase

As shown in Fig. 2.6, the first three stages in the classification phase are the

same as those in the learning phase. All the test images are to go through those

three stages before they can be tested. The classification stage performs the

recognition based on the knowledge from the learning phase. A test sample is

compared to all the cluster centers generated in the learning phase, and the

classification decision is made in accordance with the classification criteria. The

decision made on a test sample is either to recognize or to reject this sample. The

rejection is made when a sample can not be assigned to a unique object class.

Otherwise, the classification is made. In multiclassifier systems, samples which are

rejected by a single classifier may still be subject to the recognition process in other

parts of the system.

In the following chapters, the principles and the algorithms of the feature

extraction, the learning process, and the classification process are described in
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detail.
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 CHAPTER 3

FEATURE EXTRACTION AND REPRESENTATIONS

The objectives of the feature extraction are to obtain critical features which

best characterize the object in the image plane. In other words, it is desired to

extract object features which can be used to distinguish objects of different types.

Features that are common to different kinds of objects provide no important

information for classification and are to be avoided. Due to the fact that the size, the

location, and the orientation of an object may change when presented in various

pictures, features which are invariant to scaling, translation, and rotation are the

most desirable for object recognition. In this research, we take the shape

information of the object as the fundamental feature since it possesses the desired

invariant characteristics.

A feature representation is formed by directly organizing or further

processing the extracted features in proper ways. After the process of obtaining

feature representation, an object on the two dimensional image plane is transformed

to its feature representation in the feature space. An object recognition is then

performed on the feature representations of objects rather than on the raw images.

In this dissertation, three types of feature representations are developed, which are
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the angle sequence, vector contour representation [19], and Fourier transform

representation.

3.1 Angle Sequence

On the two dimensional binary image plane, an object is composed of black

pixels, and the background consists of all the white pixels. Fig. 3.1 illustrates the

binary images of a numeral 2 and a numeral 3. The shape information of the object

on the image plane can be obtained by finding the geometric relationships between

the pixels on the contour (or the boundary). A boundary pixel is defined as the

black pixel with at least one of its four sides adjacent to a white pixel. A pixel side

is called a boundary side, if it is a side of a boundary pixel which is adjacent to a

white pixel. In Fig. 3.2, the pixels which are marked by the letter B are boundary

pixels, and the pixel sides which are pointed to by an arrow are the boundary sides.

The geometric relationship between two adjacent boundary sides can be expressed

in relative orientation. In this way, an object shape is described by a sequence of

angle values, each of which represents the orientational relation between two

adjacent boundary sides of a pixel or two pixels on the contour.

The sequence of angles of an image can be formed by arbitrarily selecting

a boundary pixel side as the starting place and tracing each pixel along the contour
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A 
 �n , n 
 1, 2, ..., N (3.1)

n)


0, for �n
 0o

1, for �n
 90o

	1, for �n
	90o

n 
 1, 2, ..., (3.2)

until the starting side is reached. Suppose that we have an object image with N

boundary pixel sides. The sequence of angles formed after tracing the image is

given by

where �n is the angle between the nth and the (n+1)th pixel sides. �n can be

categorized to three angle values equal to 0o, 90o, or -90o, respectively. The angle

0o means that there is no change of direction when tracing from a pixel side to its

neighboring side. The 90o indicates that the tracing direction changes by a positive

right angle. This happens when tracing two pixel sides which belong two different

pixels. On the other hand, -90o results from tracing two adjacent sides of the same

pixel. The three angles 00, 900, and  -900 degrees can be represented by three integer

numbers called angle values 0, 1, and -1, respectively, as shown in Fig. 3.3. The

sequence consisting of these angle values is called the angle sequence, which is

given by

Fig. 3.4 shows the angle sequence of the binary image of a handwritten numeral 2.



45

xN(n) 
 x(n�kN), k 
 0, ±1, ±2, ±3, ... (3.3)

The angle sequence is circular. In the sequence, the last value, x(N), is the

angle value from the last boundary side to the starting side. This is to say that by

starting from a pixel side and traveling the object boundary a number of times, we

will obtain a periodic sequence xN(n) with period N, which is

As a result, two angle sequences which are obtained by tracing the same object

image from different starting pixel sides are circularly identical. One sequence is

a circular shift of the other. Suppose that the starting point of one sequence is a

circular shift of the second sequence shifted by r points. Circularly shifting the first

sequence r points in the opposite direction results in exactly the same sequence as

the second one. Circular shift of an angle sequence corresponds to a rotation of its

object image. The angle sequence is invariant to rotation, since the change of

orientation of an object results only in a different starting point of the same angle

sequence. It is also independent of translation, since the angle sequence depends

only on the boundary pixels of the object, regardless of its location in the image

plane.

3.1.1 Angle Sequence Extraction
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As described above, the angle between two adjacent pixel sides can be

categorized by three different angles, 0o, 90o, -90o. As shown in Fig. 3.3, these

angles are measured with respect to the north side of the lower-right pixel (pixel 4)

in the 2x2 window. The three templates in Fig. 3.3 are the basic angle extraction

templates used to fetch the angle value between two pixel sides. In the same

manner, three more sets of the basic angle extraction templates are developed to

extract the angle values for the south side of pixel 1, the west side of pixel 2, and

the east side of pixel 3. These 12 angle extraction templates are shown in Fig. 3.5.

According to the patterns of the angle extraction templates, only the boundary sides

of the pixels on the contour are to be assigned angle values. The next neighboring

boundary side of the current boundary side may be a side of the same pixel or of the

adjacent pixel, depending on the local pattern of the window. For instance, the next

neighboring side of the north side of pixel 4 in Fig. 3.3(a) is the north side of the

pixel 3 while the west side of the pixel 4 in Fig. 3.3(c) is the next neighboring side

of the north side of the same pixel. By moving a 2x2 window only once over the

whole image and applying these templates at each window position, the angle

sequence of the object image can be easily obtained.

When performing angle extraction of an object image, there is no need to

distinguish whether or not a pixel is on the contour. After the process of angle
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extraction, the boundary pixels will produce angle values while no angle values will

be yielded by the non-boundary pixels. It is due to the fact that when applying the

extraction templates to an object image, a boundary pixel at a certain window

position will match one of the 12 template patterns, but a non-boundary pixel will

not match any of the them at any window position.

The angle sequence can be used as a description of the object shape since it

contains the geometric information of the object contour. It also can be further

processed to obtain a vector contour representation described in section 3.2. The

angle sequence contains detailed local information of the object shape, since it

records the orientation relationships between adjacent boundary pixel pairs. On the

other hand, the vector contour representation developed provides global

information of the object shape. A local change of orientation affects slightly the

vector contour representation of an object. Thus, the angle sequence is sensitive to

local changes, while the vector representation is subjected to global deviation of the

object shape. In order to take advantages of their strengths and compensates for the

weakness of each form, both angle sequence and vector contour representation are

used in this research for different recognition systems, and are combined to achieve

good recognition results.
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3.2 Vector Contour Representation (VCR)

In order to minimize the influence of local geometric changes on the object

shape and to maintain invariance to the object size, the angle sequence is further

processed to obtain the vector contour representation. First, smoothing procedure

smoothes out the local noise, so that the sequence can more closely represent the

object shape. Next, the integration procedure establishes the total variation of

tracing directions. Finally, magnitude and length normalizations make the sequence

independent of object size. The final form of this further processed sequence is

called the vector contour representation.

3.2.1 Angle Sequence Smoothing

In the procedure of angle sequence smoothing, noise which is associated

with local angle information is removed from the object contour function. The

noise results from finite resolution of the pixel level representation, and from the

associated coarse changes in the local angle information. For the example shown

in Fig. 3.6, the angle sequence of a circle contains a number of local angles of 90o

and requires smoothing to obtain a closer shape approximation. The smoothing

technique is achieved by applying a moving window of size h to the angle

sequence. All the h consecutive angle values covered by the current window
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(n) 

1
hM

h

m
1
x(pm), pm 
 (m�n	1) MOD N (3.4)

position are averaged. The first value in the window is replaced by the averaged

value. The smoothing process repeats as the window moves until all angle values

are updated. Specifically, the averaged angle sequence of x(n) in equation (3.2) is

given by
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x(5) 

1
4

[ x(5) � x(6) � x(7) � x(0) ] (3.5a)

x(6) 

1
4

[ x(6) � x(7) � x(0) � x(1) ] (3.5b)

x(7) 

1
4

[ x(7) � x(0) � x(1) � x(2) ] (3.5c)

The way of calculating the pm in the above equation is to retain the circularity for

the smoothed sequence. To update the last (h-1) angle values in the angle sequence,

the first (h-1) values need to be taken into account. For example, the last 3 values

of an angle sequence of length 8 are to be updated by an averaging window of size

4 in the following manner providing the first angle value is x(0):

The larger the window size h (h < N), the smoother the angle sequence. However,

if h is too large, the necessary local angle information will be lost, and the smoothed

sequence can not properly represent the object shape. On the other hand, with a

small h, the noise cannot be minimized.

3.2.2 Integration

Integration of the smoothed angle sequence results in the accumulated angle

variation of the object contour. The angle variation observed at a point of the angle

sequence indicates the cumulative angle change starting from the initial point. The
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(0) 
 x(0),
(1) 
 x(0) � x(1) 
 y(0) � x(1),
(2) 
 x(0) � x(1) � x(2) 
 y(1) � x(2),

. . . . . . . . . . . . . .
(n) 
 x(0) � x(1) � ... � x(n) 
 y(n	1) � x(n

(3.7)

integral of the angle sequence can be carried out by summation. At any point, the

integral is the sum of all the angle values from the first point to this point. Let y(n)

denote the integral of the N-point smoothed angle sequence in equation (3.4). Then,

y(n) is given by

and

As an example, the original angle sequence, the average sequence, and the

integrated sequence of a numeral 2 are shown in Fig. 3.7. The curve shown in Fig.

3.7(c) is actually the enveloping line of the integrated sequence.

3.2.3 Normalization

In order to measure similarities between objects with different sizes, their

feature representations need to be normalized. It is due to the fact that different
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n
N

, n 
 1, 2, ..., N (3.8)

objects may have different lengths of angle sequences, and the integral of an angle

sequence may result in an angle variation larger than 2�. Therefore, the length

normalization and the magnitude normalization must be applied to the angle

sequences prior to their comparison. Length normalization makes all the sequences

of the same length. Magnitude normalization keeps the total variation from the

starting point to the end at 0, so that the circularity is preserved.

A. Magnitude Normalization

Let ym(n) denote the magnitude normalized angle sequence. The equation is

given by

where y(n) is the integrated angle sequence in equation (3.6), h is the size of the

smoothing window depicted in equation (3.4), and N is the number of elements in

the angle sequence. The decision to perform either addition or subtraction in the

equation (3.8) is according to the contour tracing direction. If the sequence results

from tracing the object contour in a counterclockwise direction, addition is

performed; otherwise, subtraction is performed.

After the magnitude normalization, the total variation after tracing back to
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the initial point is zero, maintaining circular property of the angle sequence. The

magnitude-normalized version of the signal in Fig. 3.7(c) is presented in Fig. 3.8(a).

B. Length Normalization

The length of a sequence is defined as the number of points (or elements) in

the sequence. Length normalization is achieved by resampling the magnitude

normalized sequences, so that all the sequences have the same number of elements.

Resampling a sequence can be done by first finding a higher order polynomial

which fits all the data points, and then resampling this curve to obtain a predefined

number of points. However, obtaining a higher order polynomial to fit all the data

points of the sequence results in a high computational cost and unreliable results

due to roundoff errors [38]. To achieve good results of interpolations and

resampling, the technique of piecewise interpolation is employed. Instead of fitting

all the points of the sequence, the sequence is divided into a number of four-point

intervals, and the points in each interval are approximated by a cubic Lagrange

interpolating polynomial. The intervals are divided in such a way that each interval

overlaps its immediate neighboring intervals by three points. Denote an interval by

[n, n+3], which includes the points n, n+1, n+2, and n+3. Its preceding interval is

[n-1, n+2], and its succeeding interval is [n+1, n+4].
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[n	(n�1)][n	(n�2)][n	(n�3)]


 	
1
6M

3

j
0
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g1(ñ) 
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g2(ñ) 

[ñ	n][ ñ	(n�1)][ñ	(n�2)][ñ	(n�3)]

[(n�2)	n][(n�2)	(n�1)][(n�2)	(n�3)]


 	
1
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3

j
0
[ñ	(n�j)]

(3.12)

The Lagrange interpolating polynomial pn(ñ) for the interval [n, n+3] to fit

the data points ym(n), ym(n+1), ym(n+2), and ym(n+3) is given by

where n = 1, 2, ..., N-1, ni = (n+i) mode N, and ñ is continuous in [n, n+3]. The

Lagrange fundamental polynomials of degree 3, gi(ñ), are:
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pn(ñ) 
 6[	ym(n0) � 3ym(n1) 	 3ym(n2) � y (3.15)

Substitute the equations (3.10), (3.11), (3.12), and (3.13) into equation (3.9), to

obtain

Applying equation (3.15) to all the (N-1) intervals results in a composite

polynomial fitting all the data points ym(n)'s from n=1 to N. The resulting

polynomial is then sampled to obtain an equally spaced discrete sequence having

a predefined number of points and retaining the characteristics of the sequence

ym(n). Fig. 3.8(b) shows the result of the length normalization of the signal in Fig.

3.8(a). Normalizations are completed at this stage.

After smoothing, integration, and normalization, the angle sequence is
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transformed to a curve which is called the vector contour representation (VCR). At

this point, the contour of a pattern in the 2-D image plan is characterized by its

VCR. All objects have their distinct VCRs with the same length. In training and

classification, the similarity between two objects are measured by comparing their

VCRs according to certain criteria.

3.3 Fourier Transform Representation (FTR)

The Fourier based methods for object contour representations are invariant

to image rotation and translation [9], [12], [37]. They can also be independent of

image scaling by length normalization. In this dissertation, the Fourier transform

representation of an object is developed by taking the Fast Fourier transform of its

angle sequence. Let x(n) be an angle sequence having N elements, the FTR of x(n)

is given by

where k=0,1, 2, ..., N-1. In feature domain, objects are compared according to their

FTRs. The Fourier transform representation is not scale invariant. If an object

image is scaled M times (M>1), the resulting spectrum is M repetitions of the

original FTR. Let x and xs be the angle sequences of the original and the scaled
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image, and X and Xs be their corresponding FTRs. Then the enlarged angle

sequence xs(ns), which contains MN elements, has the following property:

According to (3.16), the FTR of the scaled image is given by

where ks=0, 1, 2, ..., MN-1. From (3.17) and (3.18), we obtain
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N)
X(0), Xs(N�1)
X(1), ..., Xs(2N	1)
X(N	1)

2N)
X(0), Xs(2N�1)
X(1), ..., Xs(3N	1)
X(N	
. . . . . . . . . . . . . .

Xs[(M	1)N]
X(0), . . ., Xs(MN	1)
X(N	1).

(3.23)

In the similar way,

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

The first (N-1) components of Xs are exactly the same as the whole spectrum of X.

In the same manner we can show that the spectrum of X repeats (M-1) times:

As a result, the spectrum of the scaled image consists of M repetitions of the

original spectrum. This is illustrated in Fig. 3.9, which shows the FTRs of the

original object image and its enlarged (2 times larger) version. Note that Fig. 3.9

shows the magnitudes of the FTRs for simplicity. In the classification systems
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developed, the samples are in the complex form of FTR. In the similarity evaluation

of FTRs, the effect of image scaling must be considered so that the recognition is

independent of the object's size. This is discussed and solved in Chapter 4. The

FTRs of a numeral 3 and a numeral 5 are shown in Fig. 3.10.
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CHAPTER 4

SIMILARITY MEASURES IN FEATURE SPACES

To measure how similar a group of objects is in the feature space is crucial

in pattern recognition. Even when desired features are extracted, the recognition

may still fail if the similarity between objects is not properly evaluated. A similarity

measure must result in a great analogy between two patterns of the same type and

a significant distinction between patterns from different classes [24].

The similarity measures developed are based on the distances between image

patterns. Two patterns of different types should have a large distance from each

other, while two patterns from the same object class should have a small distance

to each other. However, there is no universal similarity measure which is adequate

for all the different feature representations. Different feature representations may

need different measures for similarity evaluation. The similarity measures used in

this research for different feature representations are the Euclidean distance,

correlation, and string matching cost.

4.1 Euclidean Distance as a Similarity Measure

Since an object presented in the image plane is transformed to a multi-
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dE(V1,V2) 
 M
n

i
1
(v1i	v2i)

2 (4.1)

dimensional feature vector in the feature space, the Euclidean distance between two

feature vectors can be used as a similarity measure. Let V1 and V2 be two VCRs.

The Euclidean distance between them is given by

where v1i and v2i are the components of V1 and V2, respectively, and n is the number

of  components in each vector. This distance is used particularly for measuring the

similarity between VCRs but not for the original angle sequences, which are

hereafter referred to as angle sequences. The reason is clear. The angle sequence

contains detailed local information of the object shape, unlike the VCR, which

provides the global information of the object. Since each value in the angle

sequence represents the orientational relationship between two adjacent boundary

pixels, a slight shift of the sequence may result in a great Euclidean distance to its

original sequence. Therefore, in order to properly measure the similarities between

angle sequences, another method is developed in section 4.3.

4.2  Correlation as a Similarity Measure

Correlation is another technique which can be used for similarity

measurement since it shows how correlated a vector is to another [39]. The
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 cos� (4.2)

correlation of two VCRs V1 and V2 is defined as

where � is the angle between V1 and V2. It is clear that the value of correlation

ranges from -1 to 1. The more similar the two VCRs are, the more positive the

value of C(V1, V2) is. The correlation technique actually evaluates how close the

pointing directions of two vectors are in the feature space. If two patterns are

similar, the pointing directions of their feature vectors must be very close, which

means � is small and the value of C is large.

4.3 Matching Cost as a Similarity Measure

The technique of string matching is exploited so that the matching cost of

two angle sequences indicates the degree of analogy between them. In string

matching developed in this research, the angle sequence is viewed as an ordered

integer string consisting of 0, -1, and 1. The matching cost of two angle sequences

is defined as the minimum degree of effort used to make one sequence exactly the

same as the other.
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Nn 
 Np � 4, M
N

n
1
x(n) 
 	4 (4.3)

Before describing this measure, a property that the angle sequence possesses

must be first examined. Recall that in section 3.1, an angle sequence is circular.

This means that the total angle change in tracing any object contour once is ±2� (or

±4 represented in angle value) no matter what size the object is. In other words,

summing all the angle values in an angle sequence results in an angle value of ±4.

The sign of it depends on the tracing orientation. This property can be expressed

mathematically. Let Np and Nn be the numbers of positive and negative angle

values, respectively. Then,

where x(n) is the angle value of the nth element, and N is the total number of

elements in the angle sequence. The negative sign in equation (4.3) indicates the

tracing is in the counterclockwise direction. This property described by equation

(4.3) can be illustrated by Fig. 4.1, in which there are two object images and their

angle sequences are of different lengths. The equation (4.3) is satisfied by both

sequences.

Due to the fact that two angle sequences most likely have different lengths,

they are resampled before the matching can be performed. The process of

resampling is done by magnifying the two sequences by different factors so that
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xr(m) 


x(n) when m
 M#n

0 otherwise

(4.4)

they have the same length. Both sequences are resampled to (M×N) number of

elements, where M and N are their lengths, respectively. Magnification of the angle

sequence is accomplished by adding the same number of 0s between each two

consecutive angle values. Let x(n) be an N-element angle sequence, where n=1, 2,

3, ..., N. Its resampled version is given by

where M is the magnification factor and m = 1, 2, 3, ..., (M×N). Magnifying the

angle sequence is actually equivalent to enlarging its object image by putting the

same number of black pixels between each pair of boundary pixels. This kind of

resampling preserves the properties and characteristics of the original angle

sequence. Fig. 4.2 shows the original and its resampled sequences alone with their

images.

It appears that the resampling results in a huge sequence and greatly

increases the number of nodes in the input layer of the neural network. However,

it is not the case in the implementation. In fact, the angle sequence is not enlarged

physically; only the address of each point is changed M times. In the matching

algorithm, only the position of each nonzero angle value in the original sequence
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 x1 	 x2 
 � x1(n) 	 x2(n) : n 
 1, 2, ..., N (4.5)

is of interest. Specifically, only the addresses of +1s and -1s in the angle sequence

are to be used for matching. This is further discussed in the description presented

of angle sequence matching.

To match two angle sequences of the same length means to make them

identical through local contour modification. The local contour modification is

applied to the place where the mismatch of two angle sequence occurs. Let x1 and

x2 be two angle sequences of the same length N, and x3(n) be their difference

sequence, which is given by

This is to say, that the sequence x2 can be modified to x1 by adding the difference

sequence x3. The condition x3(n) = 0 means a match of x1(n) and x2(n) at the nth

position. On the other hand, a nonzero element in x3 indicates a mismatch of two

angle values at that address. Either one or both of angle the sequences must be

modified in order to eliminate the mismatch. However, the modification can not be

done randomly. It must be done in such a way that the minimum modification cost

can be achieved. To find out the extent of the modification needed, matching

between positive elements and negative elements of x3 must be obtained such that
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x1(n)	x2(n) (4.6)

x1(i) � x1(j) 
 x2(i) � x2(j) (4.7)

is minimized, where di is the address displacement between two elements of

opposite signs in x3, and K is the number of nonzero elements in x3 and is given by

Matching of two opposite signed elements of

x3 may be either the case of matching two

opposite signed elements of the same angle sequence, x1 or x2, or the other case of

matching two elements of the same sign of two different sequences. For example,

suppose that two nonzero elements x3(i) and x3(j) are to be matched, and x3(i) = -

x3(j) g 0 ( i g j). From equation (4.5), x3(i) = x1(i) - x2(i), and x3(j) = x1(j) - x2(j).

This yields x1(i) - x2(i) = - [ x1(j) - x2(j)] g 0, or

From equation (4.7), if x2(i) = x2(j) = 0, then x1(i) = - x1(j) g 0. This is the case of

matching two opposite signed elements of the same sequence. If x2(i) = x1(j) = 0,

then x1(i) = x2(j) g 0, and this is the case of matching two elements of the same sign

of different sequences. Any other possible combinations will fall into these two

cases. Therefore, in the matching algorithm, the difference, x3, does not need to be

obtained. Instead, matching is done by matching the (1, -1) paris in each sequence
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as well as matching the nonzero pairs [x1(i), x2(j)], where x1(i) = x2(j) g 0 and i, j

= 1, 2, ..., N. Since matching each pair results in an address displacement, the

matching cost can be defined as the square of the address displacement. The total

cost of matching two angle sequences is the sum of the costs of matching individual

angle values. Consequently, matching two angle sequences is the task of finding out

address displacement of each matching pair and obtaining the best match which

minimizes the total cost. The algorithm of matching two angle sequences x1, and

x2 is described as follows.

First, since the address displacement is greatly involved in string matching,

the address of each nonzero element in both sequences is used to establish two

address vectors for systematic matching. Address vector A consists of the

subvectors a+ and a-, which contain the addresses of the positive values in x1 and

the addresses of the negative values in x2, respectively. Vector B is composed of b-

and b+, which contain the addresses of the negative values of x1 and the addresses

of the positive values of x2, respectively. By doing so, the case of matching two

opposite signed elements in x1 is equivalent to the case of matching their addresses,

one of which is in a+, and the other is in b-. In a similar way, the matching of two

positive element pairs [x1(i), x2(j)] is the same as matching their addresses, which

are in  a+ and  b+, respectively. Therefore, matching of x1 and x2 is actually
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A 
 a� | a	 , B 
 b� | b	 . (4.8)

Np1 � Nn2 
 (Nn1	4) � (Np2�4) 
 Nn1 � Np2 (4.9)

cij 
 (ai 	 bj)
2 (4.10)

matching of the address vectors A and B, which are expressed as

The two address vectors, A and B, both have the same number of elements.

To prove this statement, let Np1 and Nn2 be the number of elements in a+ and the

number of elements in a-, respectively. Similarly, let Nn1 and Np2 be the number of

elements in b- and the number of elements in b+, respectively. Then, the number of

the elements in A is (Np1+Nn2), and the number of the elements in B is (Nn1+Np2).

From equation (4.3), we know that Nn1 = Np1 + 4, and Nn2 = Np2 + 4. Therefore,

Equation (4.9) shows that vectors  A and B are of the same dimension.

Next, the cost matrix C is to be found, in which each element cij is the square

of the address displacement between the ai and bj of A and B, respectively. The

dimension of C is (Np1+Nn2)×(Np1+Nn2). The element cij, which is given by

is the cost of matching ai with bi. If x1 and x2 are identical, the cost matrix is
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C(i) , L 
 Np1 � Nn2 (4.11)

TN 

T

MN
2

2 (4.12)

symmetric and the elements on the diagonal are all 0s since there is no mismatch

and cij = cji, and cii = 0. On the other hand, the cost matrix for matching two

different angle sequences is not symmetric, and not all cii are zero. With the

individual matching costs provided by C, the best matching assignments are to be

found in order to minimize the total cost T, which is given by

where C(i)s are the selected cost from each row so that T is minimum.

Normalization can be applied to the minimum matching cost, T, so that it ranges

from 0 to 1. The value 0 indicates two angle sequences are exactly the same while

the value 1 indicates they are totally different. For an M-element angle sequence

and an N-element angle sequence, the normalized matching cost is given by

where (MN/2) is the maximum possible address displacement. The maximum

possible address displacement in a sequence is its half length since the distance

between two angle values is computed circularly.
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C 


0 4 16 4 1

4 0 4 16 1

9 1 1 9 4

9 9 1 1 16

1 9 9 1 4

(4.13)

The matching algorithm can be illustrated by the following example.

Suppose there are two angle sequences

  address    (1)  (2)   (3)  (4)  (5)  (6)  (7)  (8)

x1 = [-1  0  -1  0  -1  0  -1  0], and

x2 = [-1  1  -1 -1  0  -1  0  -1]

whose images are shown in Fig. 4.3. The address vectors for matching are A=[1 3

4 6 8], and B=[1 3 5 7 2]. The cost matrix is given by

The minimum matching cost can be obtained by the following matching

assignments:

(1 5), (2 2), (3 3), (4 4), (5 1).

These matching assignments correspond to matching the following pairs from angle

sequences x1 and x2:

[x2(1) x2(2)], [x2(3) x1(3)], [x2(4) x1(5)], [x2(6) x1(7)], [x2(8) x1(1)]
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T 
 c15 � c22 � c33 � c44 � c51


 1 � 0 � 1 � 1 � 1

 4

(4.14)

TN 

4

8
2

2



1
4 (4.15)

or graphically

The minimum matching cost in this case is calculated as follows:

and from equation (4.12), the normalized cost is

The routine, written in Fortran code, to obtain the best assignments in the matrix C

is developed in [40].

4.3.1 An Application of String Matching

The string matching technique developed above can be applied for various
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recognition tasks based on the object shape. This section presents an example of

recognizing puzzles which are quite similar to each other. In Fig. 4.4(a), an area is

puzzled into eight regions, which are shown in Fig. 4.4(b). All of the puzzles'

shapes are different but quite similar to each other, especially if they are arranged

in the same orientation, as shown in Fig. 4.4(c). If all the parts are scattered around,

it is not easy for a human to put them back to their correct positions in a short time.

However, the recognition system using the developed string matching technique

can do the job without any difficulty. In Fig. 4.5, the original positions of these

puzzles are labelled with the letters from A to H, and all the puzzles are randomly

labelled with numbers. The original regions and their corresponding puzzles are

(A, 3)  (B, 5)  (C, 2)  (D, 1)  (E, 7)  (F, 4)  (G, 8)  (H, 6).

The system has no knowledge about the above original pairs in advance. In

recognition, the system puts all the puzzles back to their original places correctly.

This is demonstrated by the cost matrix and the matching assignments, which are

shown in Table 4.1. Each element of the cost matrix, shown in Table 4.1(a), is the

cost for matching a region with a puzzle. Reordering the columns of the cost matrix

results in a symmetric matrix shown in Table 4.1(b). The values of all the elements

on the diagonal are zero, each of which represents a perfect match between the

region and the puzzle. Comparing the matching assignments in Table 4.1(c) with



89

the original pairs shows the matching results are totally correct.

4.4 Fourier Based Similarity Measure

FTRs of different object images cannot be directly compared since they may

not have the same number of components. As described in Section 3.3, scaling an

object image by n (n>1) is equivalent to repeating n times of its spectrum in

frequency domain. Directly comparing their FTRs will result in a big difference. In

this research, the similarity between two images is measured by evaluating the

differences between the lower harmonics, instead of all harmonics, of their FTRs.

This is due to the fact that the higher harmonics introduce higher noise, and

including all the harmonics for comparison results in great inaccuracy. Two object

images differing only by one pixel result in a small local difference between their

angle sequences. However, this small local difference contributes to the whole

spectrum in frequency domain, and is overly emphasized in high frequencies. This

case is illustrated in Fig. 4.6, in which two similar objects have great differences in

the high frequencies of their FTRs. The lower order harmonics show the similarity

between two FTRs.

The distance, called error norm, developed to measure the similarity between

two FTRs Xi and Xj having Ni and Nj elements, respectively, is given by
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dF(Xi, Xj) 
 M
L

k
1
� Ei j(k) �2 (4.16)

Ei j 

Xi(k) 	 Xj(k)

k .

, k 
 1, 2, ..., L (4.17)

L 

1
�

min (Ni, Nj) , � > 1. (4.18)

Eij is the weighted error signal defined as

where k. is the weight, and . controls the weighing degree. The error signal is

linearly weighted if .=1, while it is nonlinearly weighted if .>1. Weighing the error

signal is needed to reduce the error introduced by the higher order harmonics. The

number of harmonic components in each FTR to be compared  is determined by

Only the first L harmonics of the Fourier spectrum are used for similarity measure.

Fig. 4.7 shows the error rate from recognition of 700 handwritten characters under

different values of . and �. The minimum error occurs when .�1.5 and � is 7 or 8.

These optimized parameters were used to evaluate the error norm in the learning

method on FTR as described in section 7.3.1.D.

In equations (4.16) and (4.17), the dc error (when k=0) is not taken into
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 	4. (4.20)

Xi(0) 	 Xj(0) 
 0 (4.21)

account since it is always zero. Since from equation (4.3), for an N-element angle

sequence, the sum of all the element is -4, then

and

which results in

Similarity measurement for different kinds of object feature representations

usually needs different methods. In this chapter, four different similarity measures

are described. The Euclidean distance and the correlation technique, the matching

cost, and the error norm are the similarity measures for VCRs, angle sequences, and

FTRs, respectively. In the next chapter, various learning processes using different

similarity measures are described.
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CHAPTER 5

LEARNING TO CLASSIFY

5.1 Learning through Supervised Clustering

Learning to classify is a process of finding out how to distinguish patterns

of various types based on a finite number of learning samples under the direction

of the learning rules. The classification knowledge based on the learning samples

continues to be accumulated until the learning effect of the classifier is satisfied,

according to the learning rules. Different learning algorithms using clustering

techniques have been proposed [41]-[47]. Conventional clustering techniques

employ unsupervised schemes which group similar data into clusters. Based on the

concept of unsupervised clustering, self-organized neural networks are developed.

However, unsupervised learning suffers from the divergence problem and incorrect

class assignments during clustering. On the hand, supervised clustering always

converges and achieves proper data partition.

In this research, learning through supervised clustering [45]-[47] is

developed. Each learning sample is provided with its state of nature (or class label).

The mechanism of the supervised learning is shown in Fig. 5.1. During learning,

the intermediate results are checked to see if the classifier is responding correctly.
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The learning process terminates when the classifier is able to accurately classify all

the learning samples. The learning effect of the classifier depends on the learning

rule, which supervises the way of learning and determines the condition of

termination.

Clustering is a process which groups similar patterns of the same type

together into clusters, according to the similarity measures used, and represents

each group of patterns with its cluster center. Due to the fact that the shapes of

patterns in a class may deviate from each other quite a bit, patterns of the same type

are grouped more likely into several clusters rather than into a single cluster. Thus,

the clustering results in a small number of clusters which represent a vast amount

of learning samples. In classification, a test sample is compared with all the cluster

centers and identified with the most similar one. The clusters implemented in

hardware are actually neurons of the neural network. An image received by the

input layer is first transformed to its feature representation by the second layer and

is sent to the next layer which contains all the neurons. Different neurons result in

various responses to the input image, and these responses are fed to the following

layers for classification.

Therefore, in clustering based learning, the learning rules results in a small

number of clusters, which can best represent objects of different types. The pattern
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classifier can then be realized in a simple hardware structure.

5.2 Maximum Region Clustering (MRC)

The maximum region clustering developed in this dissertation maximizes the

size of each cluster with the constraint from other sample classes. Specifically,

maximum region clustering tries to include as many samples of the same type as

possible in a cluster without enclosing any alien sample. With the knowledge of

class identification of each learning sample, the MRC technique groups the

maximum number of the similar samples of the same type in a neighborhood of a

cluster center. This is achieved by extending the radius of the cluster until an alien

sample is encountered.

In learning, a sample is said to be active if it is neither a cluster center nor

enclosed in any cluster. Inactive samples are removed from the rest of the learning

process. As shown in Fig. 5.2, the clustering algorithm begins with randomly

selecting an active learning sample as a cluster center. The radius of the cluster is

equal to the distance to its nearest alien sample. All the active samples, whose

distances to the cluster center are smaller than the radius, are assigned to this cluster

and are deactivated. Once a cluster is established, a redundancy checking is applied

to determine if there is any redundant cluster. If there is a cluster whose center is
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enclosed in the current cluster, and whose radius is smaller, then this cluster is

redundant and is eliminated. Samples from the redundant cluster are reassigned to

the enclosing cluster if they are also enclosed in that cluster region. Samples which

are not covered by the replacing cluster are reactivated and used in the next learning

cycle. Fig. 5.3 visualizes the clustering algorithm in a two dimensional case. As

stated before, the radius of a cluster is the distance to its nearest alien sample. For

class j, the center of cluster 2 is inside the cluster 1, and r < R. Therefore, cluster 2

is removed, and the samples covered by both clusters are reassigned to cluster 1.

The samples which are in cluster 2 but are not covered by cluster 1 are retained for

the subsequent learning cycle. The learning cycle repeats until all the learning

samples become inactive. The learning algorithm is summarized as follows.

1. Initialization.

    (a) set N the number of learning samples

    (b) set the number of clusters, i = 0.

    (c) set class index, K = 1 (the first object class to learn.)

2. Activate all the samples in class K.

3. Increment i, i = i + 1.

    Select an active sample in class K as a cluster center Ci, and

    deactivate this sample.
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    Find the distances to all the learning samples,

d(Ci, Sj), j = 1, 2, 3, ..., N.

4. Find the radius, Ri, of the cluster i.

Ri = min { d(Ci, Sj) },  Sj Õ class K.

5. In class K, deactivate the samples Sj which satisfy the condition

d(Ci, Sj) < Ri,  Sj � class K.

6. Check for redundant clusters. Remove cluster m, if

d(Ci, Cm) < Ri, and Rm < Ri.

7. Reactivate the samples previously in cluster m but not covered by

    the current cluster i.

8. If all samples in class K are deactivated, set K = K + 1, and

    go to step 9;

    else, go to step 3.

9. If K � N, go to step 2; else, terminate the learning process.

5.3 Accumulated Potential Clustering (APC)

The other supervised clustering technique developed in this research is

accumulated potential clustering [46]. In APC, a cluster center is a potential

generating center, which generates potential to all the samples not only of the same
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type but also of other object types. Since an object class contains a number of

cluster centers, the potential generated by a class means the sum of potentials

generated by all the cluster centers in that class. During APC learning, all the

samples accumulate different amount of potential generated by all the object

classes. Potentials generated by different classes to a sample are not to be combined

so that they can indicate how strongly the sample is affected by each class. After

learning, the highest potential that the sample accumulates should come from its

own class. Any accumulated potential generated by other classes should be smaller

than that generated by the sample's class. In classification, a sample is classified to

the class from which it receives the largest amount of accumulated potential.

5.3.1 Potential Function

The potential function of the feature space can be viewed as the potential of

the electrostatic field [24]. A certain kind of sample in the feature space is analog

to an electrical charge, located at the same position, which generates an electrostatic

potential. In this algorithm, only the samples which are selected to be cluster centers

carry charges and generate potential to all other samples. The ordinary samples,

which are not the cluster centers, only receive the potential generated by the cluster

centers. The concept of this technique is illustrated in Fig. 5.4, in which the peaks

are the cluster centers which generate potentials to all the samples.
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M
m

i
1
p(S, Ci) (5.1)

 Let p(S,Ci) denote the potential function which is generated by the center

Ci to a sample S. The total potential the sample S receives from a class K, which has

m cluster centers, is given by

The potential function p(S,Ci) is inversely proportional to the distance between S

and Ci. The farther away a sample is from a cluster center, the less potential it

receives from this center. It is clear that the total potential, which S accumulates

from class K, depends not only on the distances to the cluster centers but also on the

number of cluster centers. Therefore, to protect its own samples from being

attracted to other classes, the each class should establish enough cluster centers,

while keeping the number of the cluster centers from being too large by selecting

them at proper locations. This can be accomplished by employing good learning

criterion and a learning algorithm.

5.3.2 Learning Criterion

In supervised learning, each learning sample is to be correctly classified
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Pmax(S) 
 max � PK(S) !, K 
 1, 2, ..., N (5.2)

according to the learning criterion. This is done by first finding a sample's nearest

class and then checking to see if it is the class where the sample belongs. If it is the

case, the sample is correctly classified; otherwise, it is not correctly classified and

is to be reused for subsequent learning. A class is said to be the nearest class to a

sample if it produces the highest total potential to that sample, which is from

where N is the number of object classes in the feature space. Therefore, the criterion

of correctly distinguishing a learning sample is based on the potential that the

sample collects from each object class. Once the highest potential comes from its

own class, the sample is said to be correctly classified by the system.

However, it is possible for a sample that the highest potential is only slightly

larger than the second highest potential. If the difference between the potential from

the sample's nearest class and that from its next nearest class is insignificant, then

the two classes are competing for this sample with an almost equal amount of

energy, and there is no clarity about the sample's type. This means that the

confidence to make a classification decision is very weak, and a test sample may not

be correctly recognized. To strengthen the decision making confidence, a

modification is made. Let Pnext(S) be the potential generated to the sample S by its
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D(S) 
 1 	

Pnext(S)

Pmax(S)
(5.3)

next closest class. The discriminant function, which can be used for learning

criterion, is given by

The value of D(S) ranges from 0 to 1, and it can be viewed as the confidence index.

The larger the value, the higher the confidence. In order to obtain enough

confidence, a threshold is set up during the supervised learning process. A sample

is said to be properly classified only if the class of S is nearest to it, and if D(S) is

larger than the threshold value. Let &(S) be the class label of sample S, M(S) the

nearest class to S, and T the learning threshold. The learning criterion is as follows:

If &(S) = M(S) and D(S) > T, then S is correctly classified;

otherwise, more learning is required.

5.3.3 Learning Algorithm

The flow chart of this algorithm is shown in Fig. 5.5. A sample is said to be

inactive if it is correctly distinguished from its alien classes or if it is a cluster

center; otherwise, it is active. All the active learning samples are continuously used
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in the learning process until they become inactive. Some of the active samples are

selected as cluster centers to generate potential for their classes against the potential

from the alien classes. Redundant clusters are detected and deleted during learning

to keep the number of clusters at a minimum. The APC learning algorithm is

described as follows.

1. Initialization:

    (1) Set a threshold value T;

    (2) Activate all samples;

    (3) Set all samples as non-cluster centers;

    (4) For each sample, set the potential from each class to zero.

2. If no more active samples, done;

    otherwise,

    (1) select an active sample Si of class K, and set Si to be a cluster

         center;

    (2) deactivate Si since it is a cluster center;

3. Adding new cluster centers:

    (1) Generate potential from the cluster center Si to all other

         samples.

    (2) For each sample S, add this potential to PK(S).
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4. Check each sample S, except Si, for potential change due to Si:

    (1) find its two closest classes;

    (2) if the class of S is the same as its closest class and

         if D(S) > T,

             deactivate S and set it as a noncluster-center sample;

         else if S is not a cluster center,

             activate it for the next learning cycle;

         else deactivate it.

5. Check for redundant cluster centers:

    If any cluster center is to be removed, go to step 6;

    otherwise, go to step 2.

6. If the cluster center Si of class K is to be removed: 

    (1) Remove Si;

          For each sample S, subtract the potential generated by Si

          from PK(S).

    (2) Repeat step 4 (check all samples due to potential change

by Si).

    (3) Go to (1) if more cluster centers are to be removed;

         otherwise, go to step 2.
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When the learning process is completed, each class will have a minimum

number of cluster centers to represent it. These cluster centers are implemented as

the neurons in the hardware. They should give strong response (high potential) to

the similar testing samples and weak responses to other samples.

In order to visualize the effect of APC learning, the process is implemented

in the 2-D case. The simulation is performed on three examples of different sample

distributions on the two-dimensional feature plane. All the cases are linearly

nonseparable. In the first example, which is shown in Fig. 5.6, there are two classes

of samples, each of which contains 14 samples. The learning result is shown in Fig.

5.6(b). The brightest points are the cluster centers which generate potential to all

the samples. The brighter the area is, the greater the amount of potential which the

samples in that area receive. The darkest region is the boundary region in which

D(S)'s of all the samples are equal to 0. This means that the samples in that region

receive an equal amount of potential from the cluster centers of two dominating

classes. Any samples falling in the boundary region cannot be classified to a unique

class and will be rejected in the classification phase. The learning of this case

results in 7 cluster centers.

Shown in Fig. 5.7(a) are the samples formed by adding another class of 14
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samples to the plane from example 1. This is done to see how the presence of

another class of samples affects the learning result. The result, which is shown in

Fig. 5.7(b), reveals that insertion of the extra class changes the boundary shapes of

the two previous classes. This results from the change of the potential distribution

over the whole plane due to the introduction of the potential from the third class.

Ten cluster centers are formed in this case, and locations of previously established

cluster centers are different than in example 1.

In the first two examples, the density of sample distribution of one class is

not much different from that of the other. In the third example, shown in Fig. 5.8,

some classes have densely located samples while others do not. The samples of

each class in this case are not well separated from one another. Each class contains

50 samples, and the number of cluster centers resulting from learning is 36.

The results of the above examples were obtained by performing APC

learning with no threshold. The boundary region can be broader if a threshold value

is set up during the learning, which means that a sample S is removed from learning

only when D(S) is larger than threshold. The broader the boundary region, the more

specific the learning which results in a more accurate but less flexible classification.

Fig. 5.9 shows the results obtained by using a threshold value of 0.1 for the APC

learning.
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CHAPTER 6

PATTERN CLASSIFICATION

Pattern classification is based on the knowledge obtained from the learning

process and on the classification criteria. The classification criteria are similar to

those used in the supervised learning. The classifier will either make a classification

decision on a testing sample or leave it undetermined. The classification

performance of a pattern classifier relies greatly on the learning processes.

Improvement can be made on the testing results of individual classifiers if a

multiclassifier system is used, which organizes multiple classifiers in a certain way.

The interconnections between classifiers in the multiclassifier system are built such

that the individual classifiers' strengths are preserved, and their weaknesses are

compensated. Both single classifier systems and multiclassifier systems are

developed and described in this chapter, and their performances are discussed in

Chapter 7.

6.1 Maximum Region Clustering (MRC) Classifier

The block diagram of this classifier is shown in Fig. 6.1. Binary images are

input to the feature extraction stage to obtain their feature representation forms. The
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next stage measures similarities between the input samples and cluster centers, and

the final stage makes the classification decisions.

The classification rule is based on that of the learning process which

employs the MRC technique. Recall that in MRC learning, every cluster contains

the maximum number of learning samples that it can cover without including any

alien sample. In classification, the distances between a test sample and all the

cluster centers are computed. Classification decision can be made based on the

nearest cluster center rule. According to this rule, the sample is categorized to the

object type of its nearest cluster center. However, there are two disadvantages in

using the nearest cluster center rule. First, consider the case that a test sample falls

in the region that is outside all the clusters as shown in Fig. 6.2. This region is

known as the region of decision boundary. In this case, the sample may be equally

similar to the samples in various clusters which are close to it, and it is risky to say

that the sample is most similar to its nearest cluster center. On the image plane, this

may be the case where a numeral 2 with a long and curly tail is similar both to a

numeral 2 and to a 3 as illustrated in Fig. 6.3.

The other disadvantage is when a test sample falls in a large cluster, and is

outside a small cluster as shown in Fig. 6.4. The test sample is closer to the center

of the small cluster than to the center of the large one. Apparently, the sample is
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dmin(S) 
 min � d(S,Ci) !, i 
 1, 2, ..., N (6.1)

more similar to the samples in the large cluster than to those in the small one, since

it is encompassed by the samples in the large cluster. Therefore, it is improper to

identify the sample, according to the nearest cluster center rule, in case of a small

cluster competing with a large one.

The above problems can be eliminated by using nearest cluster rule, instead

of the nearest cluster center rule. According to nearest cluster rule, a sample is said

to be most similar to the samples in the cluster which is nearest to it in the relative

distance (or the normalized distance). The relative distance is obtained by

normalizing the absolute distance by the radius of the cluster. Let d(S,Ci) be the

absolute distance from the sample S to the cluster center Ci, and let ri be the radius

of the cluster i. The normalized distance is d(S,Ci)/ri. The shortest distance to a

sample S, among the distances from all the cluster center Ci's, is given by

where N is the number of clusters, and d(S,Ci) is a similarity measure (Euclidean

distance, the string matching cost, or Fourier-based similarity measure). Therefore,

the cluster whose center is dmin(S) away from S is the nearest cluster to S. In Fig.

6.4, the nearest cluster to S is the one which encloses it, which is cluster C2, since
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d(S,C2)

r2

<
d(S,C1)

r1

(6.2)

It is obvious that the sample is in the region of decision boundary if dmin(S) is larger

than 1.

The classification rule then can be described as follows:

If dmin(S) < 1, then S � &n;

otherwise, S is rejected (or left undetermined)

where &n denotes the object class of the nearest cluster center. A certain threshold

can also be set up to substitute for 1. Using a threshold value which is smaller than

1 results in more accurate classification results, since it rejects classifying the

samples which are in a cluster but are far away from the center. This results in the

rejection of a large number of samples during classification. On the other hand,

applying a threshold value which is larger than 1 results in a small number of

rejected samples, but the error rate may increase due to the classification of samples

from the decision boundary.

The classification algorithm for MRC classifier is stated as follows.

1. Input a test sample S.

2. Compute the normalized distances from S to all the cluster centers
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d(S,Ci)

r i

, i 
 1, 2, ..., N.

    Ci which are established after learning. That is, compute

3. Find

dmin(S) = min { d(S, Ci)/ri },  i = 1, 2, ..., N.

4. Make the classification decision.

If dmin(S) < 1, then S � &n;

otherwise, S is left undetermined.

6.2 Accumulated Potential Clustering (APC) Classifier

The classification rule of the APC classifier is quite different from that of

MRC, just as their learning rules are different. In MRC learning, samples are

removed from learning once they are enclosed by a proper cluster. In APC learning,

a sample is removed from learning if it receives enough potential from its own class

to keep it from being attracted to other classes. Due to the fact that a cluster center

is a potential generating center, there is no explicit cluster region for each cluster

center. The potential that an object class generates is actually the sum of potentials

generated by all the cluster centers in that class. Exploiting the similar rule for the
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D(S) 
 1 	

P(S)next

P(S)max

(6.3)

PK(S) 
 M
m
.

i
1
p(S, Ci), K 
 1, 2, ,...,N.

classification, the APC classifier makes decisions based on the different amount of

potentials that samples accumulate from all the object classes. Having found the

largest and the second largest amount of potentials, a sample is classified according

to its discriminant function, which is

If D(S) is larger than a classification threshold, S is classified to the class from

which it receives the maximum potential. Otherwise, S is left undetermined. The

algorithm for the APC classifier is formulated as follows.

1. Input a test sample.

2. Compute the total potential received from each class &K:

    where mK is the number of cluster centers in &K,

    p(S, Ci)is the potential generated by the cluster center Ci, and

    N is the number of classes.

3. Among the N potentials, find the maximum and the next

    maximum potentials, Pmax(S) and Pnext(S).
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D(S) 
 1 	

P(S)next

P(S)max

    Identify the object class, &max which generates Pmax(S).

4. Compute the discriminant function,

5. Make the classification decision.

If D(S) > T, then S � &max

otherwise, S is left undetermined.

6.3 Multiclassifier Systems

The purpose of multiclassifier systems is to utilize the strengths of

classifiers, while bypassing their weaknesses, so that the recognition rate can be

maximized. In this research, we describe four different types of multiclassifier

systems: cascaded, vote-to-decide, decision enhancement, and hierarchical learning

systems.

6.3.1 Cascaded Multiclassifier System

The structure of the cascaded system is shown in Fig. 6.5. All the test

samples are input to the classifier at the highest level. Each level contains only one
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classifier which produces two kinds of outputs, namely, the classified and the

rejected samples.  Except for the top level, the inputs of the classifier at each level

are the samples which were rejected by the preceding classifier.

In this system, the classification threshold of a classifier is always higher

than that of the classifier at the next level. This means that the classifiers at higher

levels have less classification flexibility to the samples which are less similar to

their prototypes. In this way, the error rate at each level can be kept low, and a low

misclassification rate of the whole system can be achieved.

6.3.2 Vote-to-Decide Multiclassifier System

In this system, shown in Fig. 6.6, classification decisions are made in

accordance with the "majority opinions". Responding to a test sample, each

classifier produces its own classification decision, which in this research is called

the opinion. At this stage, no rejection is made, which means there is no

classification threshold set up for any classifier. Any test sample, which is input to

this system, will receive opinions from all the classifiers before it goes to the last

stage for final decision. The sample will be categorized to an object class if the

majority of the opinions are coincident, otherwise it will be rejected. The majority

is defined as the number which is larger than a half. A sample is assigned to the
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O 
 o1, o2, ..., oM
T (6.4)

class to which the majority of the classifiers classify. The classification algorithm

of this system can be organized as follows.

Let oi be the classification opinion that classifier i gives for a sample S, and

let  be the set of class labels. In the classification of handwritten numerals,  =

{ & | & is an integer, and 0 � & � 9.} The opinion oi  is actually the object class to

which S is suggested to belong, and oi � . For example, oi = 6 means that sample

S should be recognized as a numeral 6, in the opinion of classifier i. The input to

the voting layer, then, is an opinion vector given by

where M is the number of classifiers in the system. The classification decision to

sample S is made according to the following rule:

If K number of opinions, oi's, in O agree to assign S to

class & and K > M/2, then

S � &,

otherwise,

S is rejected.

In the realization of the system, various deviations from the classification criterion

are also used and compared. The descriptions of the deviation and the results are
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�L 
 �L1, �L2, �L3, ..., �LN
T (6.5)

presented in the next chapter.

6.3.3 Confidence Enhancement Multiclassifier System

The structure of this multiclassifier system is organized as the input layer, the

preclassification layer, the confidence enhancement layer, and the classification

layer. As indicated in the Fig. 6.7, the input layer transforms the input image to its

feature representation, and then sends it to the preclassification layer, which

contains a number of classifiers. Instead of making classification decisions, each

classifier generates a vector which contains the indices of decision confidences to

all classes for the test sample. A sample's confidence index to a class indicates the

degree of confidence to categorize the test sample to that class. The larger the index

value, the stronger the classification confidence. The index vector generated by the

classifier L can be expressed as

The index vectors generated by all the classifiers are then output to the confidence

enhancement layer, which sums up the indices in each dimension to produce a

vector of combined indices:
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D(S) 
 1 	

�min

�max

(6.7)

where wL is the weight for classifier L. Let �max, and  �min be the maximum and the

second maximum values among all the components of �. The decision function is
then given by
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The classification decision made by the output layer is in accordance with the

following rule.

If D(S) is larger than the threshold, then S � &i;

otherwise, S is rejected.

This system actually amplifies the differences between indices so that the

classification decision can be more precise. For example, if the difference between

the highest index and the second highest index produced by a classifier is small, the

decision which categorizes a sample to the class with the highest index is weak. By

combining the values of indices generated by other classifiers, their differences may

become bigger or smaller. In the former case, the classification decision will be

made with larger confidence. In the latter case, the sample needs to be rejected,

since the combined values of the indices show that it is unsafe to make a

classification.

6.3.4 Hierarchical Learning Multiclassifier System

This is a compound system, which contains two classifier subsystems, the

initial learning and further learning systems. Each system consists of its own

learning and classification stages. However, the classification stage of the initial

learning system does not make final classification decisions. Instead, it generates
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�H

 �1, �2, �3, ..., �M

T (6.8)

other feature representations of images to be used as the inputs to the further

learning system. Fig. 6.8 shows the system in the learning phase and the testing

phase. In the learning phase, each classifier in the initial learning system produces

a confidence index vector �L, as the one in equation (6.5). All the � vectors from

different classifiers are appended together, in order to form a hybrid vector �H with

M×N elements,

where M is the number of classifiers, and N is the number of classes. Each input

image is represented by its �H, generated by this subsystem. The �H of an input

image is taken as the second form of feature representation, which is to be sent to

the further learning subsystem as an input.

The further learning subsystem can be either a single classifier or a

multiclassifier system which takes �H's as inputs for its learning stage to generate

the learning results. Once the learning in this stage is completed, the whole system

is ready for classification. As shown in Fig. 6.8(b), a test image goes through the

first learned subsystem to obtain its final form of feature representation. The second

learned subsystem then takes the feature representation for classification to

determine which object class the input image belongs to. Since the second
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subsystem can be any of the systems we developed above, the classification rule is

the same as the one which is employed for the chosen system.

Having had the knowledge of distinguishing various object classes after

learning, and having been equipped with the classification rules, the classifiers

developed are ready to perform the classification on different objects. The next

chapter describes computer simulation of different classifier systems, and presents

the results of classification for handwritten character recognition.
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CHAPTER 7

COMPUTER SIMULATION RESULTS

7.1 Computer Simulation Environment and Data Base

The neural network based handwritten recognition systems developed in this

dissertation are simulated on a Sun Sparc 2 computer in order to evaluate their

learning results and the classification performances. The feature extraction,

learning, and testing processes of each system are implemented in C programs to

run on the computer. The image samples for learning and classification used for the

computer simulation are handwritten numerals from the data base established by the

National Institute of Standards and Technology (NIST) in Washington, D. C. These

handwritten numerals are obtained by collecting a number of survey sheets which

are filled out by different people. Images of the survey sheets are then stored in a

computer for an image processing to generate the binary images of the handwritten

numerals. All the binary images of the handwritten numbers are in the 20×20 matrix

from.

7.2 Simulation Results of Feature Extraction
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The stage of feature extraction transforms the binary raw images to their

feature representations. In other words, an image in the 20×20 matrix form whose

elements are either 0 or 1 is transformed by the feature extraction stage into a vector

of its feature representation.

In this research, three types of object feature representations are developed:

the angle sequence, vector contour representation (VCR), and Fourier transform

representation (FTR). The simulation results of this stage are to evaluate the

efficiency of transformation. As shown in Table 7.1, the average simulation time

consumed by the extraction of a single handwritten digit to form the angle

sequence, VCR, and FTR is 0.028, 0.083, and 0.683 seconds, respectively. The

time used to extract 700 samples is also indicated in Table 7.1. As expected, to form

FTR takes the longest time due to the large number of computation steps needed for

Fourier transformation.

7.3 Learning Results of Different Single Classifier Systems

7.3.1 MRC Learning

In MRC, the similarity measures used are the Euclidean distance, the vector

correlation, the cost of string matching, and Fourier-based method. The learning

results using these four different similarity measures are presented in Table 7.2.
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A. Euclidean Distance as Similarity Measure

As described in section 4.1.1, the Euclidean distance between two VCRs V1

and V2 is given by

where v1i and v2i are the components of V1 and V2, respectively, and n is the number

of  components in each vector. The number of learning samples used for the MRC

learning is 700. As shown in Table 7.2, the learning results in 165 clusters which

represent 10 object classes, digits 0 to 9. This number is 23% of the total number

of the learning samples. Also, the number of clusters that each class has is also

shown. The time taken for the learning is 2.2 minutes.

B. Correlation as Similarity Measure
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 The correlation of two VCRs V1 and V2 is defined as

where � is the angle between V1 and V2. Results of MRC learning using correlation

as similarity measure for  VCRs are indicated in Table 2. Again, 700 samples are

applied to the learning process which results in 182 clusters (26% of all samples)

and takes 1.16 minutes of CPU time. We may conclude that both Euclidean

distance and vector correlation produce similar results during learning and require

similar simulation time.

C. Cost of String Matching as Similarity Measure

String matching is particularly useful to evaluate the degree of similarity

between angle sequences. As stated in Chapter 4, the matching cost of two angle

sequences is defined as the minimum degree of effort used to make one sequence

exactly the same as the other. The detailed description of string matching is made

in section 4.3. As shown in Table 7.2, MRC learning employing this technique as

the similarity measure results in 143 clusters formed to represent 700 different

learning samples from 10 classes. The ratio of the number of clusters to that of

learning samples is 20.43%. The learning time is 19.18 minutes. This result

indicates that matching cost gives slightly better results than Euclidean distance and

vector correlation; however, learning time is significantly longer.
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D. Fourier Based Similarity Measure

Similarity between two FTRs Xi and Xj, whose lengths are Ni and Nj,

respectively, is evaluated by

In learning and testing, the values of . and � are set to 1.5 and 7 to obtain the best

learning and classification results. MRC learning with 700 learning samples in FTR

form generates 136 clusters and takes 1.23 minutes. Learning in this case is better

than in other cases. The number of clusters in this case is smaller than in any other

case, and the time required for learning is also little.

7.3.2 APC Learning

In APC learning, the similarity measurement is not the sample-to-sample

based evaluation which is employed in the MRC learning, which is a traditional

approach. The similarity measurement in APC learning is based on the relationship

between a sample and each object class. A sample is said to be most similar to an

object class if that object class generates a potential to the sample which is higher

than a potential generated by any other object class. Thus, the similarity measure for
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Pmax(S)
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APC learning is based on the total accumulated potential.

As described in 5.3, the learning criterion is according to the discriminant

function given by

where S is a sample in the feature space, and Pmax(S) and Pnext(S) are the highest and

the next highest potential S receives, respectively. The results of APC learning

using 700 handwritten character images in both VCR and angle sequence forms are

presented in Table 7.3. APC learning differs from MRC learning by the way

similarity measures are used in the clustering process. In generating potential, we

can use Euclidean distance, vector correlation, matching cost, and norm of error

Fourier transform spectrum. This will result in learning techniques which

correspond to MRC techniques. Learning with the APC technique using VCR as

the feature representation results in 188 clusters in four days. In the case of angle

sequence as the object feature, the number of clusters is 150. The time consumed

in this case is 14 hours.

The learning results presented above characterize different learning

processes applied to single classifier systems. The learning results of multiclassifier
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systems presented together with the corresponding classification results are

discussed in the following sections.

7.4 Classification Performances

The classification or the testing results are obtained from different systems

which include the MRC, APC, cascaded, vote-to-decide, confidence enhancement,

and hierarchical learning classification systems.

Classification performance of a classifier is evaluated by the recognition and

the acceptance rates. There are two types of recognition rates: the raw recognition

rate, Rraw, and the net recognition rate, Rnet. They are given by

where Nc, Nt, and Na denote the number of correctly classified samples, the total

number of test samples, and the number of accepted samples, respectively. Rnet is

actually the recognition rate resulting from classifying the accepted samples and is

referred as to the recognition rate hereafter. The acceptance rate, A, is given by
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which indicates how many percents of the test samples are accepted for

classification. The acceptance rate shows the classification flexibility of the

recognition system to variations of samples.

7.4.1 MRC Classification

A. Classification of Characters in VCR Form

Table 7.4 shows the results from classification of test samples in their VCR

form using Euclidean distance as the similarity measure. The recognition rate of

classifying the 700 learning samples is 100% without any rejection. This means that

the MRC algorithm properly clusters all the learning samples, such that no alien

sample falls in a given cluster. Applying 700 test samples which are different from

the learning samples results in the recognition rate of 94.65% at the 90.90%

acceptance rate.

Classification, using correlation as similarity measure, results in a 89.57%

acceptance rate with 92.50% of the accepted handwritten numerals correctly

classified. The results are also shown in Table 7.4.
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B. Classification of Characters in Angle Sequence Form

Classification of 700 test samples in the form of angle sequence is also

tested. Matching cost is employed as the similarity measure in this classification.

90% of the test samples are accepted for classification, and 93.65% of them are

correctly identified, as shown in Table 7.4.

C. Classification of Characters in FTR Form

Test samples in FTR forms are compared by using the Fourier based

similarity measure, called error norm. As shown in Table 7.4, 92.14% of the test

samples are accepted for classification. The acceptance rate of this method is higher

than that of any other method. This reduces the gap between Rnet and Rraw, which are

94.57% and 87.14%, respectively.

7.4.2 APC Classification

A. Classification of Characters in VCR Form

Results from testing 700 samples using an APC classifier with the Euclidean

distance of VCR as the basis to evaluate potentials are shown in Table 7.5. Without

thresholding, the net recognition rate is 87.27% with the acceptance rate as high as

99.86% (only one test sample is rejected). The net recognition rate increases to
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94.64% in the case of a 0.05 threshold value, but the acceptance decreases to 80%.

B. Classification of Characters in Angle Sequence Form

APC classification for the characters in angle sequence form accepts 99.86%

of test samples for identification. 90.99% of the accepted samples are correctly

recognized, in the case of zero threshold. With the 0.015 threshold value, the

recognition rate becomes 91.32%, and 95.44% of test samples are accepted for

classification. The results are shown in Table 7.5.

7.4.3 Cascaded Multiclassifier System

This system employs three single classifiers which include two MRC

classifiers performing on VCRs and angle sequences, respectively, and an APC

classifier on VCRs. The system used for handwritten character recognition is shown

in Fig. 7.1. As shown in Table 7.6, classification of 700 test handwritten numerals

results in a 91.70% recognition rate and a 99.86% acceptance rate. The first stage

accepts 89.71% of the test samples and correctly recognizes 94.43% of them. The

rejected samples are applied to the next stage for classification. Up to the second

stage, the total recognition rate becomes 93.38%, and the acceptance rate increases

to 97.14%. The number of the accepted samples up to this stage rises from 628 to

680. Classifying the remaining 20 rejected samples by the third classifier results in
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a final recognition rate of 91.70% and an acceptance rate of 99.86%. 699 samples

are accepted for classification by the whole system, and only one sample is rejected.

Replacing the second classifier, MRC classifier for angle sequence, with the

image matching (IM) classifier developed in [45], results in the performance shown

in Table 7.7. With the 99.43% acceptance rate, 91.52% of the accepted samples are

correctly recognized. The IM classifier performs the classification based on the raw

images. The image is thinned and partitioned into several segments. Each segment

of the original image contains one of the three basic features, which are the line,

circle, and arc. The similarity between two images is measured by matching their

segments and finding the total distance resulting from the best match. The IM

classifier then employs the APC algorithm for the learning and the classification.

7.4.4 Vote-to-Decide Multiclassifier System

The vote-to-decide handwritten character recognition system is shown in

Fig. 7.2. The system is composed of three classifiers which are the MRC classifier,

the APC classifier, and the IM classifier. The MRC and APC classifiers in this

system use the VCR as object feature representation. The classification opinions

suggested by the individual classifiers are sent to the last stage for final

classification decision. As shown in Table 7.8, at the 94.57% acceptance rate, the



161

recognition rate is 95.47%. The recognition rate and the acceptance of each

individual classifier are also included for references.

7.4.5 Confidence Enhancement System

The system, shown in Fig. 7.3, contains two single classifiers which are the

APC classifier operating on VCRs, and the IM classifier operating on raw images.

Confidence index vectors generated by the two classifiers are combined for the last

stage to make the classification decision. As shown in Table 7.9, 90% of the test

samples are correctly classified, and all the samples are accepted in the case of no

classification threshold. With a threshold value of  0.05, 95.50% of the samples are

accepted for classification, and 93.19% of them are correctly recognized. Increasing

the threshold value to 0.1 results in a 97.70% recognition rate and an 87.0%

acceptance rate.

7.4.6. Hierarchical Learning Multiclassifier System

The organization of the learning and testing phases of the hierarchical

learning multiclassifier system is shown in Fig. 7.4. The system uses two MRC

classifiers and one hypercube (HP) [47] classifier in the initial learning stage. The

classifier in the further learning uses the MRC algorithm. One of the MRC
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classifiers in the initial learning operates on VCRs of the objects and uses the

Euclidean distance as the similarity measure. The other MRC classifier operates on

angle sequences and employs the string matching technique to measure the

similarity.

The hypercube classifier, developed in [47], in the initial learning performs

the learning using images in the binary form. In this approach, the entire image is

described by a hypercube vector, which contains 0s, 1s, and don't cares. 0 and 1

represent the white and the black pixels, respectively, which contain the essential

features. Pixels which provide no feature information are regarded as don't cares.

The dimensionality of the hypercube is determined by the number of don't cares.

Each hypercube in the feature space contains a number of similar samples. After

learning, all the samples are assigned to different hypercubes which are represented

by their cube centers. In classification, the test sample is checked to see if it falls in

a hypercube. If this is the case, the sample is compared to the cube center by

calculating the distance between them. The sample is identified with the cube center

if the distance is within a predefined value.

A set of 700 learning samples is applied to each classifier in the initial

learning stage. Each classifier establishes its own clusters to represent all the

learning samples. After the initial learning is done, another 1000 learning samples
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�H

 �1, �2, �3, ..., �29, �30

T (7.7)

along with the previous 700 learning samples are applied to the initial learning

stage. At this point, instead of learning, the learned classifiers in this stage produce

their own confidence index vector for each learning sample. The three confidence

index vectors for each sample are appended together to form a second form of

feature representation of that sample. This feature representation for a sample is

given by a 1×30 vector,

as described in section 6.3.4 of Chapter 6. The 1700 �H's are then applied to the

classifier in the next stage for further learning.

In classification, a test sample is applied to the first stage of the system to

obtain its �H feature representation, which is input to the next stage for

classification. Note that each classifier of the first stage generates a different feature

representation for each test sample.

Learning using 1700 samples with a zero threshold results in 163 clusters on

the second stage. The number of clusters increases to 231 in the case of learning

with a 0.1 threshold value. Recognition of 700 test samples with a zero threshold

produces a 93.09% recognition rate at the 97.14% acceptance rate. In the case of

a 0.1 threshold, 95.98% of the samples are correctly classified among the 92.43%
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of the accepted samples. In this hierarchical system, the single classifier which

gives the highest recognition rate is the MRC classifier using VCRs. In this

classifier used without threshold, 94.84% of the test samples are correctly

identified, and 91.43% are accepted. With a 0.1 threshold value, a 97.47%

recognition rate is achieved at the 79.00% acceptance rate. The testing results are

summarized in Table 7.10.

In Chapter 8, comparison and discussion of the computer simulation results

from different classifier systems are presented. Evaluation of system level solutions

is given with general observations and recommendations for future research.

Finally, the dissertation work is summarized and conclusions are made.
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CHAPTER 8

DISCUSSION AND CONCLUSIONS

Several handwritten character recognition systems have been developed, and

their performances have been simulated. Each system contains feature extraction,

similarity measure, learning, and classification stages. The performance of each

stage is affected by the operating efficiency of its preceding stages. For example,

a good feature extraction will not result in proper learning if the similarity measure

is poor. Good performance can not be achieved by the classification stage if the

learning results are inadequate. Therefore, the analysis of the simulation results

should be made on the performances of individual stages and the classification

performance of the whole system.

8.1 Feature Extraction

Two types of feature representation developed in this work are the angle

sequence representation and the vector contour representation. The angle sequence

of an object reveals the geometric relationships between boundary pixel pairs. The

vector contour representation, obtained by further processing the angle sequence,

describes the total angle variation of a complete contour tracing. As shown in Table
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7.1 of the previous chapter, the average time for feature extraction of each

representation is small. This means that, with a little computational cost, a raw

image can be transformed into its feature representation which provides critical

object information for the following stages. With little cost, not only is the

dimensionality reduced from 400 to 120, but the useless information is bypassed as

well. Consequently, the system takes less time than the one which operates on raw

images in learning and classification.

8.2 System Learning

The supervised learning processes for the developed systems are based on

the supervised clustering techniques. Clustering process groups similar patterns into

clusters according to the similarity measures used. As described in Chapter 7,

different learning processes with different similarity measures were tested.

In the MRC method, the learning process which takes VCRs or FTRs as

object feature representation is more efficient than the process which takes angle

sequences as representation. The learning process using Euclidean distance as the

similarity measure is 8.6 times faster than the one using matching cost (2.2 min. /

19.18 min.), and learning using correlation is 17 times faster (1.16 min / 19.18

min.). Using FTRs for learning takes 15.6 times shorter than using angle sequences
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whose similarity is measured by string matching technique. This is due to the fact

the string matching of angle sequences needs more time to compare the individual

angle values between two angle sequences in order to obtain the best match.

As far as the number of clusters is concerned, learning using FTRs gives the

smallest number of clusters among the four. It forms 136 clusters to represent the

700 learning samples. Learning using angle sequences generates 143 clusters, and

learning using VCRs with Euclidean distance and correlation as similarity measures

produces 165 and 182 clusters, respectively. The smaller number of clusters to

represent all learning samples indicates better learning ability by methods based on

angle sequences. This is a desired feature with respect to hardware costs. However,

the learning results also need to be evaluated by the performance of the

classification stage.

In the APC method, whose learning results are shown in Table 7.3 of

Chapter 7, the learning time of each process is much longer than the MRC learning.

This is because every time a cluster center is established, the potential distribution

in the feature space is also changed, and the membership of each learning sample

must be reevaluated. This reevaluation of memberships due to the potential

distribution change demands a larger number of iterations. This results in a longer

time for the APC learning process to converge. However, the learning time is not
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of great importance for the whole recognition system, since the system only goes

through the learning once. Once the learning is done, the system does not learn any

more, and it switches to the classification to recognize all the input samples. Like

the MRC learning, the APC learning with angle sequences results in a smaller

number of clusters than those with VCRs. The number of clusters formed in the

learning depends also on the threshold set up for the process. The larger the

threshold value, the larger the number of clusters. This is because the larger the

threshold value, the stronger the internal similarity of a cluster, and the more

clusters needed to cover all the learning samples in the feature space.

A remark worth being made is that both the APC and MRC learning can be

used as fuzzy learning. In the APC method, the potential generated by each object

class to a sample is accumulated and recorded. The potential function can serve as

the membership function in the fuzzy method. In other words, the accumulated

potential from each class can be interpreted as the degree of membership of the

sample in that class. In a similar way, the similarity measures used in MRC learning

can also serve as the membership function in fuzzy algorithms. In this sense,

various fuzzy algorithms can be applied to the APC and MRC learning.

8.3 Classification
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Rraw 
 Rnet 
 A 
 100% (8.1)

Rraw � Rnet, Rnet � 100%, A � 100% (8.2)

The classification results reflect the learning effect and show the

performance of the whole handwritten character recognition system. As described

in section 7.4, classification performance of the classifier can be evaluated by the

recognition and the acceptance rates given by equations (7.1), (7.2), and (7.3).

In evaluating the performance of a pattern recognition, the higher these three

rates, the better the system. Ideally, a system rejects no test sample and recognizes

all the test samples, which means

Practically, a trade-off must be made between these factors. That is to say, with a

reasonable acceptance rate, a system can give a recognition rate as high as possible,

and Rraw must be closed to Rnet. A good system, therefore, is expected to meet the

following condition:

8.3.1 Single Classifier Systems

In the MRC classifier, a test image is to be compared with all the clusters to

see which cluster it most parallels. The sample is then categorized to the object
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class of that cluster. In the APC classifier, a test image is classified according to the

different amounts of potential it accumulates from each object class which contains

a number of potential generating centers, the clusters. It is classified to the object

class that gives it the highest amount potential among all the classes.

Table 8.1 includes the results from testing different classifiers for

comparison. The MRC classifier which performs recognition on VCRs using

Euclidean distance gives the highest recognition rate, 94.65%, and a 90.90%

acceptance rate. The MRC classifier recognizing test samples which are in FTR

form produces a slightly smaller recognition rate, 94.57%, but a higher acceptance

rate, 92.14%. The APC classifier, running on the VCRs with a 0.05 threshold value,

gives a 94.64% recognition rate and a lower acceptance rate, 80%. On the other

hand, while the APC classifier performing on the angle sequences with no threshold

has a 88.98%, it produces a very high acceptance rate, 99.86%.

Among the developed single classifier systems, the MRC system for FTRs

and the APC system for angle sequences are considered the best two classifiers. The

former recognizes 94.57% of the accepted samples, which are 92.14% of the total

test samples. The latter gives a smaller recognition rate (91.32%) and a higher

acceptance rate (95.43%). It is desired that both the net recognition and acceptance

rates be high. A high recognition rate means the system can recognize most of the



178

accepted samples, and a high acceptance rate reduces the gap between Rraw and Rnet.

However, it makes the recognition task more difficult if more test samples are

accepted for classification. If some highly distorted handwritten characters which

cannot even recognized by human eyes are accepted for recognition, the recognition

rate will not be high. On the other hand, a high recognition rate becomes

meaningless if it is achieved under a low acceptance rate. Under this consideration,

the APC classifier for angle sequence can be considered better than the MRC

classifier for FTRs since the acceptance rate is high enough, and the gap (4.18%)

between Rraw and Rnet is closer than that (7.43%) in the MRC system.

8.3.2 Multiclassifier Systems

The recognition performance of the cascade multiclassifier systems is shown

in Table 8.2. Two systems with different single classifiers in the second

classification stage are tested. They all show the improvement on the raw

recognition acceptance rates over the single classifier systems. In Table 8.2(a),

Rraw : 84.71% � 90.71% � 91.57%

A    : 89.71% � 97.14% � 99.86%

Rraw is greatly improved, and is very close to Rnet (only 0.13% lower) with the cost

of a 2.73% drop of Rnet. A is lifted up to 99.86%. In fact if the second stage is the
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final output of the system, the performance of this cascade system is still good. At

the 2nd stage, the acceptance rate is still very high (97.14%), and Rraw (90.71%) is

close to Rnet (93.38%). The performance of the system with IM classifier in the

second stage gives a similar result, as shown in Table 8.2(b).

In this system, the raw recognition and acceptance rates are increased by

6.86% and 10.15%. This is a significant improvement, which shows that this

multiclassifier system utilizes the proficiency of the individual classifiers to

accomplish a higher performance in handwritten character recognition.

As for the vote-to-decide multiclassifier system, the performance is also

better than that of any single classifier system. In Table 8.3, the classification results

of each single classifier as well as the whole system are included. Rraw is lifted up

from 87.14% to 90.29%, and Rnet also increases from the highest value among the

three (94.65%) to a even higher value, 95.47%. The results show that even though

two of the single classifiers (APC and IM) have much less net recognition rates

than MRC has, Rraw does not drop but is improved. On the other hand, the three

Rraw's are close to each other, but the resulting Rraw is much higher. The acceptance

rate of the whole system is better than that of MRC and IM, though it drops from

99.86% to 94.57%, which is still in a good range.

The computer simulation results show that the vote-to-decide system is
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worth being developed since it increases the both raw and net recognition rates. It

is obvious that the APC classifier in this system compensates the other two single

classifiers in the acceptance rate so that the whole system reaches a good acceptance

rate. If the correlations between the single classifiers can be evaluated so that only

uncorrelated single classifiers are incorporated into the vote-to-decide system, the

recognition performance can be improved.

The classification results of the remaining multiclassifier systems are

summarized in Table 8.4. The classification performance of the confidence

enhancement systems are not as good as those described above, though they are

better than single classifier systems. The same is true in the system which is the

combination of the vote-to-decide and the confidence enhancement systems. The

classification performance of the hierarchical learning multiclassifier system is

close to the performances of the cascaded and vote-to-decide systems. At zero

threshold, the system produces a 90.43% raw recognition rate, a 93.09% net

recognition rate, and a 97.14% acceptance rate. If there are enough single

classifiers, the network can be organized to more hierarchical levels, and the

learning can be tuned at each level. In this case, the final learning effect can be

expected to be much improved.

From the computer simulation results, thresholding controls the flexibility
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of the recognition systems. High thresholding causes clustering groups samples

with small variance. This results in more clusters after learning since clusters reject

including learning samples with large variance, and more clusters need to be

formed to cover all the learning samples. In testing, samples are likely to be rejected

for classification if they are far away from the clusters in the feature space. As a

result, Rnet is increased since once samples are accepted, they are very likely to be

correctly recognized. On the other hand, Rraw is decreased since more test samples

are rejected. Normally, there are some handwritten characters which are highly

confusing with other characters due to bad writing. In this case, it is good to leave

them undetermined rather than to recognize them. This is done by thresholding as

long as the acceptance rate is not affected too much.

8.4 Conclusions

Automated handwritten character recognition is a very difficult problem to

tackle. It demands fast and accurate processing of the considerably different

handwritten characters. In this research, the developed handwritten character

recognition systems use the conventional pattern recognition techniques for

learning and the neural networks for classification. The learning process employing

conventional pattern recognition techniques requires a little computational cost, but
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greatly reduces the complexity of the neural network hardware. The clustering-

based supervised learning is very efficient due to its small computational

complexity. The number of iterations required for the optimal supervised clustering

is small in comparison to the unsupervised clustering. The clustering looks for the

best partitions in each object class so that each cluster contains only the samples of

the same class. The clustering is completed when each object sample is assigned to

a proper group of its own type. This is not the case in unsupervised clustering, in

which data partitioning must be readjusted very frequently to obtain an optimal

clustering based on the similarity criterion used. This usually requires a large

number of iterations to reach the convergence, and there is no guarantee that each

cluster contains no alien object patterns since the class labels of all the learning

samples are unknown.

In the testing phase, the neural network is used as the classifier so that its

parallelism and computational ability are fully utilized. All the neurons serving as

the cluster centers respond concurrently to the sample which is identified with the

class of the neuron that gives the strongest response. This results in an efficient and

fast process. Therefore, it is expected that the handwritten character recognition

systems which combine the conventional pattern recognition and neural network

approaches will be very useful.
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The two goals as the research objective have been achieved. The first goal,

recognition invariant to writing style and image transformations, is accomplished

by extracting useful object features with proper similarity measures used in learning

processes. The angle sequence is invariant to image scaling, translation, and

rotation, as proven in Chapter 2 and illustrated with the puzzles in Chapter 4. The

similarity measures for different feature representations to be used in learning and

recognition are well developed. The two supervised clustering techniques

developed, MRC and APC, generate a relatively small number of cluster centers to

represent all the learning samples. This results in a fast classification in the testing

phase.

The second goal, development of multiclassifier systems, is achieved by

organizing the developed single classifiers in different systems. From the computer

simulation results, the multiclassifier system successfully lifts up the recognition

rate and keeps the acceptance rate high. In this sense, multiclassifier systems are

promising organizations for neural networks in the area of object recognition. Every

single classification system has its limit in handwritten recognition. Only the system

with multiple classifiers can achieve a higher recognition rate at a high acceptance

rate.

Therefore, with a good design, a multiclassifier system can be expected to
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produce a near 100% raw recognition rate. In such a system, there are three

conditions to be satisfied. First, the learning and classification algorithms used in

different single classifiers should be as much uncorrelated to each other as possible

in order to have the effect of mutual compensation. This means that it is hard for

one of the single classifiers to make a classification decision, the object can still be

correctly recognized if it is not confusing to other classifiers. In this way, the

recognition performance of the whole system can be better than any of the single

classifiers in the system. To fulfill this second condition, mathematical tools are

needed to evaluate the independency of individual classifiers' learning. The second

condition is that the single classifiers in the system must be of the same level of

recognition performance (high Rraw) so that their "opinions" can be considered

equally important. This means that the overall classification is made based on single

classifiers with the same recognition ability but from different points of view. If it

is not the case, the opinions must be weighted so that the final classification

decision will not be misled by the classifiers with less recognition ability.

The final condition is the hardware consideration. The hardware cost

depends on the size of each single classifier. It is reflected by the number of clusters

and the computational ability required for each cluster center. Since each cluster

center evaluates the similarity to a test sample, it needs physical space for the
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computation hardware. Therefore, the hardware of each single classifier should be

kept simple. In addition, single classifiers in the multiclassifier system should be

organized in a hierarchical structure so that the system can be expanded in a most

cost effective fashion. This means a multilayer neural network recognition system

can be built based on the single layer hardware with a minimum cost. Satisfying

these three conditions, the multiple classifier system is expected to produce

satisfactory results in the area of handwritten character recognition.
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APPENDIX

ORGANIZATION OF COMPUTER PROGRAMS

The organization of all the computer programs developed in this dissertation are

described in this section. Most of the programs are written in C codes. For string

matching, an assignment program [40] written in Fortran is included. Matlab is also

employed to perform FFT for Fourier-based feature representation and similarity

measure. The home directory is /home/bobcat/project.

1. README file:

Description of the procedures of compiling and running different 

programs. This file also includes brief description of different c l ass i f i e r

systems and their computer simulation programs.

2. Directories

Directories at the first level include:

1. Image/

2. Feature/

3. Single/
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4. Multi/

3. Directory Image (Image/)

(1) img700l: 700 binary images for learning.

(2) img700t: 700 binary images for testing.

(3) img1700h: 1700 binary images for hierarchical learning.

4. Directory Feature (Feature/)

(1) angle.c: extracts the angle sequences of objects.

(2) vcr.c: extracts the angle sequence and forms the vector contour 

representation (VCR).

(3) ftr.m: a matlab program which takes FFT of angle sequences.

5.Directory Single (Single/)

This directory has three subdirectories: MRC, APC, and Function.

(1) Single/MRC/: contains MRC classifier programs using different 

feature representations.

* mrc_learna.c: MRC learning using angle sequences.

   mrc_classa: MRC testing using  angle sequences.
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* mrc_learnf.c: MRC learning using FTRs.

   mrc_classf.c: MRC testing using FTRs.

* mrc_learnv.c: MRC learning using VCRs.

   mrc_classv.c: MRC testing using VCRs.

(2) Single/APC/: contains APC classifier program

* apc_learna.c: APC learning using angle sequences.

   apc_classa.c: APC testing using angle sequences.

* apc_learnv.c: APC learning using VCRs.

   apc_classv.c: APC testing using VCRs.

(3) Single/Function/: contains function for string matching.

* assct.f: assignment program written in Fortran [40].

* cost.c: program to find the minimum cost of string matching.

6. Directory Multi  (Multi/)

This directory contains programs for multiclassifier systems organized

in four subdirectories: CAS, VOTE, CE, and HIER.

(1) Multi/CAS/: program for cascaded multiclassifier system.

* cas_class.c: testing program.

(2) Multi/VOTE/: program for vote-to-decide multiclassifier system.
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* vote_class: testing program.

(3) Multi/CE/: program for confidence enhancement multiclassifier 

system.

* ce_class: testing program.

(4) Multi/HIER/: programs for hierarchical learning multiclassifier 

system.

* hier_learn.c: learning program.

* hier_class.c: testing program.
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Handwritten character recognition is a highly challenging area in the field of

pattern recognition. In performing recognition, any single classifier system has its

strengths and weaknesses. The objective of this dissertation is to develop

multiclassifier systems which utilize the combined strength of several classifiers to

make a significant improvement in recognition over the single classifiers. The

multiclassifier systems developed were cascaded, vote-to-decide, confidence

enhancement, and hierarchical learning systems. In each multiclassifier system, the

single classifiers contained their own feature extraction, similarity measure,

learning, and classification stages.

Feature extraction extracted object features and formed feature representations.

Three feature representations were developed, which were the angle sequence,

vector contour representation (VCR), and Fourier transform representation (FTR).

To evaluate the similarity of objects in different representation forms, measures

based on Euclidean distance, vector correlation, string matching cost, and Fourier

transform were developed.
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For learning, two supervised clustering techniques were developed: maximum

region clustering (MRC) and accumulated potential clustering (APC). The MRC

learning maximized the clustering regions by including as many samples of the

same type as possible in each cluster without enclosing any alien sample. In APC

learning, the feature space was viewed as an electrostatic field in which each cluster

served as a potential generating center. Each object class established the minimum

number of cluster centers necessary to protect its members from being attracted to

other classes.

In the classification stage, the MRC classifiers identified a test sample with the

class of its nearest cluster center. The APC classifiers assigned a test sample to the

object class which attracted it the most. In a multiclassifier system, the final

classification decision was made based on the individual decisions made by the

single classifiers. The rules of making a final classification decision depended on

the multiclassifier system and differed from system to system.

All the developed single classifier and multiclassifier systems have been

simulated on a Sun computer, and the results were presented. The computer

simulation results showed that the multiclassifier system significantly improved the

recognition performance.
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