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Abstract 

BORUNDIYA AMIT ,M.S., March 2008, Electrical Engineering 

Implementation of Hopfield Neural Netwrok Using Double Gate MOSFET (94 pp.) 

Director of Thesis: Janusz A. Starzyk 

Hopfield Neural Network has been used to solve the constraints satisfaction problems. To 

make these networks solve problem in real time, independent of the size, would require 

building a massively parallel structure. A CMOS circuit can be used to construct such 

network to find the solution. Current CMOS technology is reaching its physical limitation 

in deep submicron regime and new devices are explored which can provide scalability in 

accordance to Moore’s Law. To further increase the network capacity double gate 

transistors can be used. Double gate MOSFET model of the hysteresis neuron proposed 

in this thesis utilizes 8 transistors as compared to 60 transistors needed with an 

operational amplifier’s model. This structure not only reduces the count of transistors by 

86% but also demonstrates that larger circuits of double gate MOSFETs can be built, 

bolstering the faith in double gate MOSFET devices as a possible substitute of CMOS 

devices in a near future.  
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1. Introduction 

1.1 Background and Motivation 

Constraint satisfaction problems have been the subject of research for many years. Efforts 

have been made to solve them by writing efficient algorithms [Sosi90] and coding 

efficient computer programs [Fink87]. All these approaches were hampered by the 

sequential nature of the computer simulation. J.J. Hopfield proposed the Neural Network 

approach to find the solution for these NP hard problems [Hopf85]. In recent times the 

chaotic phenomenon was explored helping to solve these problems [Toku97]. Chaotic 

phenomenon helps to search for the global optimal solution. An example application is 

used in this thesis to illustrate this approach. In the approach that combines chaotic search 

with neural network solution, hysteresis neural network is used to solve the N-queens 

problem [Naka99]. The solution can be efficiently implemented based on hysteresis 

neurons whose analog implementation uses just a few components. The silicon chips are 

approaching VLSI scaling limit [ITRS07] and different design approaches and improved 

silicon devices are studied to extend the Moore’s laws [More69] in coming years. Double 

gate MOSFET has been studied for various digital and analog applications [Vara05] but 

this thesis is the first attempt to use it in the field of neural networks. It shows how to 

efficiently implement hysteresis neural network that can solve N-queens problem. 

 

To summarize, if we leverage the capabilities of double-gate MOSFET to build the 

hysteresis neuron with significantly less transistors, larger network can be designed in the 

same silicon area. These networks have regular structures of identical building blocks; 
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hence the size of the building block is crucial for the overall size of the network. These 

networks can be made to solve various constraint satisfaction problems in real time 

independent of the problem size.  

The objective of this thesis work is to show how double-gate MOSFET can be used to 

build a hysteresis neuron and using this neuron build a Hopfield neural network to solve a 

selected application problem.  Meeting these objectives bolsters the faith that double-gate 

MOSFET can be utilized to build larger integrated circuits helping to improve design 

efficiency, reduce the design area and internal delays. Other objective of this thesis is to 

analyze the chaotic phenomenon and study organization of the hysteresis neural networks 

to propose a circuit topology that efficiently solves the 8-queen problem.    

 

1.2 Research Goals 

Specific research goals of this thesis are  

• Broadly study the chaos phenomenon and its occurrence in electrical circuits, 

• Analyze the hysteresis neuron and its stability, 

• Analyze the hysteresis neural network for solving the N-queen problem,  

• Propose the circuit topology for solving 8-queen problem, 

• Implement the hysteresis neuron using double gate MOSFET.  

 

1.3 Thesis Organization 

 
The thesis is organized in six chapters.  
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Chapter 2, broadly studies the chaos phenomenon in nature and in the electrical circuits. 

The non-linearity of the electrical circuit characteristics is discussed to get better 

understanding of the chaos phenomenon in electric circuits. One of such nonlinear 

circuits that demonstrates various chaotic phenomenons is Chua’s circuit [Mats84]. In 

Chapter 2, Chua’s circuit is implemented and simulated using Multisim software. 

Chapter 3 discusses general principles of Hopfield neural networks. The chapter 

introduces the concept of the neural network and compares it with the conventional 

computer. Biological and artificial neuron models are explained to get better 

understanding of how the network works. Feed forward and recursive network 

architectures are explained.  The Hopfield hysteresis neuron model is analyzed with 

respect to the hysteresis activation function and its equilibrium points. This neuron model 

is implemented using operational amplifier and is simulated using Multisim, OrCAD and 

Spice3 simulators.  

Chapter 4 states the N-queen problem and discusses the stability criterion of the 

hysteresis neural network as a cost function to find the solution. The network topology 

for solving 8 queens problem is also proposed in this chapter. This approach can be easily 

extended to a general N-queens problem.  

Chapter 5 discusses the double-gate MOSFET structure and its UFDG model [UFDG06]. 

Self bias amplifier and Schmitt trigger circuits are implemented and simulated using 

Spice3. Using these blocks, a double-gate MOSFET hysteresis neuron is built and 

simulated.  

Chapter 6 provides the conclusion for the thesis work and discusses future work.   
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2. Chaos 

2.1 Introduction: 

Chaos theory describes the behavior of certain non linear dynamical systems which under 

specific conditions exhibit dynamics that are very sensitive to initial conditions [Wiki07].  

Most of the systems are deterministic, meaning that if provided with the same initial 

conditions to the system, the system could predict the final result. It is certain that, the 

result obtained for any number of iterations, using the same initial conditions, will be the 

same [Utex07]. But, in the case of non linear dynamic systems a small error in the initial 

condition can produce a different result. This is because the non linear systems are very 

sensitive in nature and as a consequence the results observed seems to be random 

[Wiki07], [Utex07].  

 

2.2 History: 

The notion of determinism was challenged with the discovery of the chaos phenomenon.  

The various laws of physics have given a good connection between cause and effect 

around us. These laws helped to get almost accurate predictions of any physical system if 

the initial conditions are known. Newton’s laws of motion best demonstrate the 

philosophy of determinism. Using these laws we can predict the time the planets take to 

orbit around sun, projectiles, time for tides [Utex07]. To make a correct prediction based 

on these laws, it is required to provide precise initial conditions to an infinite precision. 

However, providing the infinite precision is almost impossible for any known system. 
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Thus, if accurate predictions cannot be made using almost the same initial conditions the 

system can be chaotic. 

Edward Lorenz, a professor at Massachusetts Institute of Technology in early 1960 was 

the first to study the chaos phenomenon.  He wrote a simplified weather model program 

which can be simulated on a digital computer. Precisely, he studied the nature of the air 

flow current when the air is heated by the Sun rays [Utex07]. His mathematical model 

contained various equations that modeled this air current. Even though he had a primitive 

computer to work with, few weather predictions were made. While carrying out these 

experiments he accidentally discovered the phenomenon of chaos [Utex07], [Thin07].  

Lorenz code was running on a computer, which is a completely deterministic system. 

Therefore, he expected to get same results when he provided the same set of initial 

conditions. To his surprise he did not get the same results, and the patterns developed 

differed a lot from the previous iterations. Lorenz believed that he had provided the same 

numbers in all the iterations for initial conditions, but after careful study of these numbers 

he came to conclusion that what he believed as the same input values differed slightly 

from each other [Utex07]. This is due to the precision of the computer. While his print 

copy could show numbers up to three decimal places, internally the computer had six 

decimal places precision. He did not notice this difference because the values differed 

very slightly and could be taken as the same set of values. This laid the foundation for the 

study of chaotic systems [Thin07]. Thus, in the chaotic system even an imaginably small 

error in two sets of initial conditions can produce a large discrepancy with the previously 

obtained results.  
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Chaos is also manifested in some electrical circuits. Dr. Yoshisuke Ueda, Professor, 

Department of Electrical Engineering, Kyoto University, independently identified the 

chaos phenomenon using analog computer in 1961 [Ueda07]. He performed the analog 

simulation of a non linear oscillator. He stated the chaos demonstrated by the analog 

computer is truly a natural phenomenon [Ueda07]. Later in 1983, Dr. Leon O. Chua, 

Professor, Department of Electrical Engineering and Computer Science, at University of 

Berkeley, designed a simple circuit that exhibit the chaos phenomenon [Mats84]. The 

circuit was build with few basic components and became a classical example to 

demonstrate the chaotic phenomenon in the electrical circuits.  

  
2.3. Negative Resistance: 

Negative resistance, also known as negative differential resistance is a property of the 

electrical circuit elements composed of active devices in which, over a certain voltage 

ranges, current is a decreasing function of voltage [Wiki07].  This range is called 

negative resistance region. 

 
2.3.1 Negative Resistance Converter: 

The operational amplifier (opamp) based schematic diagram for negative resistance 

converter is as shown in Figure 1, redrawn as described by Chua, [Chua07] has both the 

positive feedback and the negative feedback.  
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Figure 1: Opamp based negative impedance converter.  
 
 
Equation 2.3-1 shows the relationship between current and voltage for a negative 

impendence converter and the results are plotted as shown in Figure 2  
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Figure 2: I-V graph for negative impedance converter. 
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The slope of the curve is negative, and hence the circuit is called the “negative impedance 

converter”. The opamp is operating in a linear mode; therefore the curve is a straight line. 

Opamp causes non-linearity and occurs when opamp operates in the saturated region. 

Figure 3, shows the approximate I-V characteristics of the opamp in all regions of 

operation as observed in the article by Chua [Chua07]. 

 

 

Figure 3: Approximate I-V characteristics of opamp in all regions of operations. 
 

2.4 Chua’s Circuit 

Figure 4, shows the basic Chua’s circuit. This circuit [Mats84], exhibit a chaos. The 

circuit consists of  

• A linear resistor R 

• Two capacitors C1 and C2 

• One inductor L 
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• One non-linear resistor RN 

L
C1

R

C2
RN

 

Figure 4: Chua’s circuit. 
 

This circuit can be easily built using all basic elements and non-linear resistor, which can 

be implemented using negative resistance converter [Kenn92].  The current in the non-

linear resistance depends upon the applied voltage across its terminal. Hence, it can be 

considered as a voltage controlled device. From the discussion in Section 2.3.1, opamp 

can be used to develop negative impedance converter (NIC) and the I-V characteristics 

consists of three piecewise linear segments. This NIC is the basic block for building the 

non linear resistance for Chua’s circuit.  

2.4.1 Chua’s Circuit Using Opamp 

The complete Op-amp based implementation of Chua’s circuit is as shown in the Figure 5 
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Figure 5: Opamp based implementation of Chua’s circuit. 
 

The above circuit was redrawn in Multisim software using the schematic from Chua’s 

website [ChMs07]. The two NIC in parallel provides with the non-linear resistance 

component in the Chua’s circuit as shown in Figure 5. In the above circuit the inductor, 

resistor and capacitors together implement a conventional oscillator which gives damped 

oscillations if isolated from other circuit elements [Cros07]. The opamp and other 

resistors together yield the nonlinear negative resistance. This circuit also provides the 

energy for the dynamic circuits.   
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2.4.2 Simulation Results  

The circuit was implemented and simulated using Multisim software. The voltage across 

capacitors C1 was plotted against the voltage across C2. The result was viewed using the 

simulated Agilent oscilloscope available in Multisim software and the chaos was seen 

using X-Y display on oscilloscope with probes placed across C1 and C2 as shown in 

Figure 5, 6 and 7.  

 

 

Figure 6: Simulation result for Chua’s circuit. 
 
 

From Figure 6, it can be seen that double scroll attractors can be obtained using relatively 

simple circuit proposed by Chua. 
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Figure 7: Simulation result for Chua’s circuit. 

 

Figure 7, demonstrates vertical double scroll attractors using different value resistors, 

capacitors. Depending on the values of circuit parameters used, Chua’s circuit 

demonstrates various chaos phenomenons.   

One of the important limitations of the Chua’s circuit implemented in Figure 5 is that it 

consists of an inductor which is not easily fabricated in VLSI. This motivated for 

building circuits which can exhibit chaos phenomenon using the components that can be 

easily fabricated in VLSI. One of the circuits is discussed in the Chapter 3 using opamp.    
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3. Hopfield Neural Network 

3.1 Introduction 

According to Haykin [Simo98], “neural network is a massively parallel distributed 

processor that has a natural propensity for storing experimental knowledge and making it 

available for use.”  Neural network is similar to the brain in  

• The way network acquires the knowledge through a learning process. 

• The way network used synaptic weights to store the knowledge. 

Thus, the human brain is source of inspiration for all neural networks study. The brain is 

a highly complex, non-linear, dynamic and parallel processing unit with complex 

associations between inputs, outputs and internal states. A neural network tries to 

simulate some of the properties of the brain for solving the real world problems, such as 

speech recognition, image analysis, and some NP hard problems which are difficult to 

solve using the conventional computers. This is achievable because the neural network 

structure is highly parallel (thus improving the speed of operations) and has a property to 

learn and generalize the input [Simo98]. Following are few important properties of 

artificial neural network (ANN) described by Haykin [Simo98], 

• ANN can be linear as well as non-linear. Many phenomena in the nature are non-

linear and are important. 

• The ANN learns by constructing the input-output mapping.  

• The ANN has the ability to adapt its weight to the changing ambience.  

• Each neuron in the network is affected by the activity of the other neurons. 
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• ANN has ability to self-organize and represents the information it receives during 

the learning phase.  

• The parallel nature of ANN makes it suitable for implementation in VLSI and is 

inherently fault tolerant. 

Most of the discussion in this chapter is based on a Simon Haykin’s [Simo98] book on 

neural networks and discussion presented by Wenle Zhang in his course on Neural 

Network. Some of the figures were redrawn using Microsoft Visio for the better 

understanding of the architecture. 

3.1.1 Historical Background 

McCulloch and Pitts are pioneers in the field of neural networks (NN); they introduced 

the first mathematical model of biological neurons [Pitt43].  This neuron model was 

considered as a competitor for Von Neumann model for basic computing machine as it 

was capable of performing all Boolean operations. Further development of the NN 

concepts and applications occurred with the invention of Rosenblatt’s Perceptron 

[Rose58]. The Perceptron was a single layer and single neuron with ability to perform 

binary classification for linearly separable patterns.  Perceptron model was not able to 

implement XOR function since it did not have the ability to classify the non-linearly 

separable patterns. In the last few decades there has been a greater interest in this field 

attributed to discoveries of back-propagation learning model, Hopfield neural network, 

recurrent neural networks, and associative memories. Some impressive applications such 

as image recognition, speech recognition, and associative memory were developed based 

on various neural network models.  
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3.1.2 Neural Network vs Conventional Computer 

A neural network (NN) does not use the conventional algorithmic approach like a 

computer does. The computer can solve problems that have a predefined methodology, 

thus limiting the problem solving ability. But the NN learns like the brain from the 

associations between data and hence do not have to be programmed for a specific task. 

Choosing the problem becomes important and since no predefined steps are present, the 

operation can be unpredictable as compared to computers whose behavior is completely 

predictable. On average the neuron in the brain works at a speed of 100 Hz as compared 

to several millions of instructions per second performed by a computer [Simo98]. Despite 

this slow speed compared to a computer, the brain’s network can perform some tasks like 

recognition, planning, and action control at a remarkable ease as opposed to the 

computer. Most of the computers cannot be useful if a single component is damaged but 

the brain network is able to work appreciably well even if there is a significant damage to 

the parts of the brain.  

Table 1: Brain vs Computer Comparison 
 

 
Processing 

Elements 
Size Speed Architecture

Fault 

Tolerant

Learning 

Ability 

Energy 

Per 

operation 

Brain 
1011 

neurons 

10-6 

m 

100 

Hz 

parallel, 

distributed 
Yes Yes 

10-16 

Joules/Sec

Computer 
108 

transistors 

10-7 

m 

109 

Hz 

serial, 

centralized 
No Little 

10-6 

Joules/Sec
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Above, Table 1 summaries comparison between the brain and the modern computer 

based on the readings in the book [Simo98], Wiki [Wiki07]. 

Computers can be better suited for algorithmic problems while the neural networks can 

be better for nonalgorithmic problems like classification and recognition. 

 
3.2 Biological Neuron Model 

Neurons are the basic functional elements of the neural network in the brain. It is a 

massively parallel information processing network with about 1011 neurons. Each neuron 

is connected to many (10,000 or more) synapses. 

 

 

Figure 8: Anatomy of biological neuron [Lode07].  
 

The neuron has many dendrites, an axon and a body. Neurons transmit the signals in the 

form of the electrical impulses. Dendrites act as an input source to the neuron, as they 
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carry the signal from the other neurons to the cell body of the neuron. The axon conducts 

the signals away from the cell body.  The neurons can either be in a firing or in a resting 

state. The neuron fires when the total incoming stimulus received is greater than the 

threshold. The neurons are connected through synapses. A synapse is a tiny gap between 

the axon of one neuron and a dendrite of other one. When there is an impulse through the 

neuron cell it transmits a chemical called neuron-transmitter into the synapse. The 

neurotransmitters, depending upon their strength, induce or inhibit the impulses in the 

connecting neuron [Simo98], [Wiki07], [Lode07].  

3.3 Artificial Neuron Model  

The mathematical model of an artificial neuron can be described in the following figure   

 

 
 

Figure 9: Mathematical neuron model. 
 

The general artificial neuron model has the following five components, 

1. Inputs (Xi):  the inputs to the neuron come from the external environment or 

through other neuron outputs. They can have a discrete or a real value. 
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2. Weights (Wi): The weights are the real-valued numbers. They determine the 

contribution of each neuron to the system. One of the first things the model does 

is to calculate the weighted sum of inputs [Scho07]. 

 

 
332211 xwxwxwW ++=  (3.3-1)

3. Threshold or Bias (u): This is the quantity which is subtracted from the weighted 

sum to get the input for the transfer function [Scho07]. For simplicity most of the 

time the bias is regarded as an additional input with values w0=u and x0=-1. 

 

 
33221100 xwxwxwxwW +++= (3.3-2)

4. Transfer Function: The transfer function gives the relationship between the input 

and the output of the neuron. There are various function used to describe the 

networks transfer function, most of them are nonlinear with a limited output 

range. 

• Threshold function or Step function: This transfer function was used in the 

McCulloch-Pitts [Pitts43] neuron model called as threshold logic unit (TLU) 

[Wiki07].   

 0   ,0
0    ,1)(

<=
≥=

xif
xifxf

 (3.3-3)
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Figure 10: Threshold logic function.  
 

• Piecewise  linear function: This transfer function has the form [Wiki07] 
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Figure 11: Piecewise linear function. 
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• Sigmoidal function: The most commonly used transfer function in the neural 

networks is a sigmoidal function. For instance, a sigmoidal function can be 

defined as [Wiki07] 

 ( ) axe
xf −+
=

1
1

 (3.3-5)

Where a, is the slope parameter. 

 

 

Figure 12: Log sigmoid function. 
 

5. Output (Yi): The neuron calculates the output [Scho07] according to the following 

formula 
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For the example elaborated in the Figure 9 the output can be written as  
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( )33221100 xwxwxwxwfy +++= (3.3-7)

The final output value depends upon the transfer function and can be discrete or 

continuous.  

3.4 Neural Network Architectures 

In any neural network the neurons are grouped together into layers. Data is fed through 

the input layer, processed by one or several hidden layers and finally the network 

provides the output through the output layer.  

• Feed Forward Network:  

In this kind of the Networks there is no feedback in the system [Simo98]. The 

input after processing through the hidden layers is directly given out as output.  

 

 

Figure 13: Multilayer feed forward architecture. 
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• Recurrent neural network architecture:  

Feedback occurs in almost every part of the human brain. Thus a recurrent neural 

network was introduced and can be defined as a network that has feedback to all 

the inputs [Simo98]. The feedback can be to all input neurons including the 

neuron’s own input.  

 

 

Figure 14: Recurrent neural network architecture. 
 

3.5 Hopfield neural network 

Hopfield Neural Networks (HNN) was introduced by J.J. Hopfield [Hopf82]. The 

introduction of HNN reignited the interest in the field of neural networks. The neural 

network research was making a slow progress after it began with great enthusiasm, due to 

various shortcomings of the already existing neural network models. HNN can serve as a 
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content-addressable memory (CAM). A CAM is able to retrieve the complete memory 

based on sufficient partial information provided to the network [Wiki07]. HNN was also 

used to solve optimization problems like traveling salesman problem [Hopf85].   

The unit of HNN has a single layer of processing units with binary threshold limits. This 

means that the output of HNN unit is either 0 or 1 depending whether the input is less or 

greater than the threshold value. In some cases the output can also take values -1 or 1. 

Mathematically it can be illustrated as [Wiki07] 

 
otherwise    ,0

w if    ,1
j

ij

=

≥= ∑ iji usa
 

otherwise    ,1

w if    ,1
j

ij

−=

≥= ∑ iji usa
 

(3.5-1)

where, wij is weight of connection unit i and j, sj is the state of unit j and 

 ui is the threshold of the unit. 

These activity values are called, states. At each moment the network has a specific state, 

and a state can be represented by a vector of zeros and ones, such as [Simo98] 

 ( )nuuuU ,....., 21=  (3.5-2)

In the following figure the state vectors is  

 ( )1,0,0,1=U  (3.5-3)
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Figure 15: State of Hopfield neural network. 
 

The state changes as the value of each unit changes with time. The HNN are recursive 

type of networks. The processing units in the HNN are fully connected, that is every unit 

is connected to every other unit and output of each unit has a feedback into input of each 

unit. This recursive arrangement helps HNN to be in a stable state if no external input is 

applied.  

The connections in the HNN have the following restrictions [Wiki07]: 

 iwii ∀=  ,0  (3.5-4)

In this case none of the units in HNN has connection to itself, and 

 jiww jiij , ,   ∀=  (3.5-5)

In the above case all connections are symmetric.  

The Hopfield Neural network architecture [Simo98] is as shown below 
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Figure 16: Hopfield neural network architecture. 
 

Each network state in HNN has the energy associated with it given by [Wiki07] 

 ∑∑
≠

−=
j jii

ijij uuWE
)(

21 (3.5-6)

This energy function is not any physical energy of the system but can be used as an 

objective function which is minimized by the network while updating its states. The 

successive updating of the state in the network is a convergence process and as a result of 

this, the energy of the system gets minimized [Simo98]. The energy is either reduced or 

unchanged during the updating process. Even if the units are chosen randomly to update 

their states; the network will converge to a local minima or global minima in the above 

given energy function.  The convergence conditions can be linked to a Lyapunov function 

[Wiki07]. Once the system reaches the local minima it is not possible for the system to 

reach the global minima unless the process of updating with different initial values is 
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started again. If the weights are symmetric the energy function will decrease 

monotonically and if non-symmetric weights are used in the network, the network may 

exhibit some periodic or chaotic behaviors [Wiki07]. This chaotic behavior was seen in a 

relative small phase space and did not hamper the performance of the network ability 

[Hopf85]. The HNN is used to solve many combinatorial problems but, the solutions 

obtained may or may not be the optimum based on the value of the energy function. If the 

energy function reaches the local minimum, rather than the global minimum of the 

system, the solution cannot be considered as an optimum. To enhance the search ability 

of the network chaotic neural networks (CNN) have been proposed [Toku97]. Tokuda 

observed that CNN provides an excellent search ability to find the optimal solution to the 

combinatorial problems. In the current work the hysteresis neural network is studied.  In 

related research the hysteresis phenomenon was used to solve N-queen problem 

[Naka99].  This approach is analyzed and used in this thesis. 

 

 

3.6 Hysteresis Neuron Model 

In the hysteresis neuron the activation function is a hysteretic function. This neuron is 

similar to a conventional neuron as it calculates the weighted sum of the inputs and 

weights. It differs from the conventional Neuron model by having a nonlinear hysteresis 

activation function.  The following figure illustrates the basic neuron model.  
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Figure 17: General hysteresis neuron. 
 

The weighted sum of the input functionality can be implemented using the integrator and 

a summing amplifier using the opamp. The hysteresis activation function can be 

implemented using the Schmitt trigger.  

 

3.6.1 Hysteresis Neural Network System 
 
Nakaguchi [Naka99], in his work described the implementation of hysteresis neural 

network system, shown in Figure 18. 
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Figure 18: Hysteresis neural network system. 
 

The complete analysis of the above circuit was carried out by Nakaguchi [Naka99]; some 

of the important equations are used in this section in order to understand the hysteresis 

neural network. Following is the simplified equation which represents the above circuit,  
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( )ixh  is a hysteresis function.  

3.6.2 Hysteresis Activation Function 
 
( )ixh  switches from 0 to 1 if  xi reaches the right threshold 1 and switched from 1 to 0 if 

xi reaches the left threshold 0. The region between 0<xi<1 is called hysteresis region 

[Naka99]. This is shown in Figure.19. 

 

Figure 19: Hysteresis function. 
 

3.6.3 Equilibrium Points 
 
The equilibrium point in this network is be given by Equation 3.6-2 

 i

N

j
jiji uywp −−= ∑

=1
 [Naka99]  (3.6-2)

where, ip  is the equilibrium point of the ith neuron 

iu  is the input value to the ith neuron. 
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The equilibrium points are dependent on the output of the system and remain constant in 

the system as long as the outputs are unchanged. There are two types of equilibrium 

points depending upon the output of the system.  

ip  is said to be a real equilibrium point if following condition is satisfied. 

 ( )( ) 11212 −>−− ii yp  [Naka99]  (3.6-3)

The cell (neuron) corresponding to this point is said to be stable. 

ip  is said to be a imaginary equilibrium point if following condition is satisfied. 

 ( )( ) 11212 −≤−− ii yp  [Naka99] (3.6-4)

The cell (neuron) corresponding to this point is said to be unstable. 

Hence, if 0≤ip the cell has to cross zero, the left threshold of the hysteresis region and 

the output of the cell changes from 1=iy  to 0=iy  

∴ 0≤ip  For 1=iy , iy changes from 01→  

Similarly if 1≥ip the cell has to cross the right threshold of the hysteresis region and the 

output of the cell changes from 0=iy  to 1=iy  

∴ 1≥ip  For 0=iy , iy changes from 10 →  

Thus the trajectory of the cell is always directed to the equilibrium point. 

 

3.7 Simulations of Hopfield Neuron Model 

The simulations were done using Multisim 8.0, OrCAD 10.3 and Spice3 software. 
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3.7.1 Simulation using Multisim 8.0: 
 
 

 
 

Figure 20: Multisim schematic of hysteresis neuron. 
 
 
Figure 20 shows the schematic of hysteresis neuron using Multisim, the opamp used in 

the figure is LM741 and a BZX83_C10 Zener diode is used. These models (Appendix 1 

gives the details for these models) are available in the Multisim library. The above circuit 

is based on the neural network circuit discussed in Section 3.6.1 [Naka99]. Multisim is 

very useful for this research since it contains the Simulated Agilent Oscilloscope (SAO). 

The SAO helped to work in a simulated laboratory environment without actually 

performing the experiments in a laboratory.   

For certain values of the inputs, the hysteresis neuron showed the chaotic phenomenon 

and the following simulation results that were obtained for various inputs confirm this.   
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A square waveform with the frequency of 1000 Hz and duty cycle 50% was used in the 

simulation. Only the amplitude of the square waveform was changed to observe different 

chaos and hysteresis characteristics. 

Initially the amplitude of the square wave was 70 mV and the following results was 

observed 

 

Figure 21: Double circular chaos phenomenon using HNN. 
 

The simulation was run again with the same configuration but increasing the amplitude to 

100 mV. The simulated output is as shown in the Figure 22, giving well defined double 

circular chaos. 



  45 
   

 

Figure 22: Double well defined circular chaos using HNN. 
 

If the amplitude is further increased the same circuit shows double attractors as shown in 

the following figure. 

 

Figure 23: Doubly attractors using HNN. 
 

Increasing the amplitude to 700 mV, the hysteretic characteristics can be obtained with 

the same circuit as shown in Figure 24. 
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Figure 24: Hysteresis characteristics using HNN. 
 

From the above discussion, the hysteresis neural network can be considered as a chaotic 

circuit which can go to the stable state with proper initial conditions and hence a solution 

can be obtained. 

3.7.2 Simulation using OrCAD 10.3 
 
The next step for building the hysteresis neural network circuit using double gate 

MOSFET is to build a Spice netlist for the circuit and to be able to generate the same 

kind of simulation waveforms as discussed in Section 3.7.1 using OrCAD. The approach 

taken in this thesis to move design obtained in OrCAD to Spice3 simulator. Spice3 

simulator is used because the double gate model [UFDG06] is available for simulation 

only in Spice3 simulator. OrCAD is a good tool for schematic entry for the prototype 

design and has an extensive component library, as it was necessary to have a nonlinear 

opamp 741 model. On the other hand Spice3 uses a command line interface and models 

of devices and components need to be built or acquire from CAD vendors. Thus it was 
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convenient to test the design using the symbols provided in OrCAD libraries rather than 

writing the netlist for each Opamp 741 Model in Spice3.  

 

Figure 25: Hysteresis neuron circuit with OrCAD 10.3. 
The above figure shows the schematic of hysteresis neuron using OrCAD 10.3, based on 

the discussion in the Section 3.6.1 [Naka99]. The opamps used in the figure are LM741 

and the Zener diode is IN4744A (Appendix 2 gives the details for these models). Both 

models were present in the libraries of OrCAD. The simulations were run for different 

values of the initial conditions and signal frequencies. 

 

Figure 26: OrCAD simulation for chaos. 



  48 
   
By changing the initial conditions, like increasing the amplitude, we get circular chaos as 

shown below 

 

Figure 27: Circular chaos using OrCAD. 
 

Modifying the initial conditions in the same circuit, a hysteresis characteristic is obtained 

as shown in Figure 28.  

 

Figure 28: Hysteresis characteristics using OrCAD. 
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Thus approximately the same characteristics for the hysteresis neuron like those obtained 

earlier by using Multisim were simulated using OrCAD 10.3 schematic design tool. The 

next step was to generate a netlist for this circuit and simulate it using Spice3 simulator. 

Here the double gate model [UFDG] was available in Spice3 was used in simulation.  

3.7.3 Simulation using Spice3 
 
In order to implement the hysteresis neuron using double gate MOSFET, the following 

Spice3 netlist was generated. 

VIN 4 0 PULSE (0 0.1MV 0 0 0 2MS) 

dD1 3 11 1N4744A__ZENER__1 

dD2 0 11 1N4744A__ZENER__1 

rR2 4 5 1.500e+003 

rR1 5 8 9.090e+002 

rR7 10 13 1.00e+002 

rR4 13 3 1.00e+002 

rR3 0 9 10 

rR5 9 3 10 

cC1 5 8 1.0E-6 

VV7 12 0 dc 15 ac 0 0 

xU3 10 13 0 U3_OPEN_VS- 12 OPAMP1 

rR6 10 5 4.990e+002 

VV6 0 V6_OPEN_2 dc 15 ac 0 0 

VV4 7 0 dc 15 ac 0 0 
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VV3 0 6 dc 15 ac 0 0 

xU2 9 8 0 6 7 OPAMP1 

VV2 0 2 dc 15 ac 0 0 

VV1 1 0 dc 15 ac 0 0 

xU1 8 5 0 2 1 OPAMP1 
 
The model information used in this netlist of opamp 741 and 1N4744A Zener diode and 

the methodology to run the program is detailed in the Appendix 3. This netlist was run on 

Solaris 10 operating system and results were plotted and captured using the screen shots.  

 

Figure 29: Chaotic attractor from hysteresis neuron using Spice3. 
 

In the above figure the chaotic attractor has an octagonal shape.   

Changing the amplitude of the input wave, yields double circular chaotic attractors shown 

in Figure 30. 
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Figure 30: Double circular chaotic attractors using Spice3. 
 
The following figure illustrates the Hysteretic phenomenon demonstrated with the same 

circuit but with different set of the initial conditions.  

 

Figure 31: Hysteresis characteristics using Spice3. 
 

The next step is to use the same netlist and to produce hysteretic characteristics using the 

double gate MOSFET. This simulation will be discussed in Chapter 5 after the 

description of N-queens problem.  
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4. N-queens Problem 

4.1 Introduction 

The 8-queen puzzle was proposed by a German chess player Max Bazzel [Wiki07] in 

1848. Later this puzzle was studied extensively by mathematicians and was extended to 

N-queens problem. This is one of the constraint satisfaction problems and hence it is NP-

complete. It is difficult for all classical search algorithms to find solution for the N-queen 

problem in an acceptable time. Various approaches [Sosi90], [Fink87] has been used to 

solve the N-queen problem efficiently. Since the problem has a simple and regular 

structure this can be used in finding different strategies using neural networks.    

 
4.2 System Stability for Hysteresis Neural Network: 

In the Section 3.6.3 the stability of single hysteresis neuron was introduced. The output of 

the system doesn’t change when all the cells in the network have a real equilibrium point 

and the system is believed to reach a stable state.  

Extending the conditions for the real and imaginary points in the Equations 3.6.4 and 

3.6.5 to the complete system, we obtain the following conditions: 

 
if                   ( )( ) 11212 −>−− ii yp            ( )i∀  

 
[Naka99] (4.2-1)

the system is said to be stable, and   

 
if                        ( )( ) 11212 −<−− ii yp       ( )i∃             

 
[Naka99] (4.2-2)

the system is considered to be unstable. 
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One can infer that 

• If  1>ip  )( i∀   

only 1=iy  have real equilibrium points and 0=iy  have imaginary equilibrium 

points. These imaginary equilibrium points have the possibilities to change their 

output from 0=iy  to 1=iy  

• If 0<ip  )( i∀  

only 0=iy  have real equilibrium points and 1=iy  have imaginary equilibrium 

points. These imaginary equilibrium points have the possibilities to change their 

output from 1=iy  to 0=iy  

From the above discussion, it can be concluded that it is only the imaginary equilibrium 

points which change their states. These cells try to change their output in the hysteresis 

region which is in the range [0, 1]. When these imaginary equilibrium points locate the 

hysteresis region they become stable [Naka99]. Once all these points become stable, the 

system achieves the stability, which corresponds to the solution of the problem for which 

the network is designed.    

4.3 Problem Statement and Solution 

Place N (N>3) queens, on the N x N board such that no two queens attack each other. In 

8-queen problem it is necessary to place 8 queens in such a way that no two queens are 

able to attack each other.  

One of the 8 queen problem’s solutions is as shown in Figure 32 
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Figure 32: One of the solutions for 8 queen problem. 

 
In Figure 32 (b), 1 corresponds to the place where a queen is placed while a 0 

corresponds to the place where no queen is placed. In the N-queen problem no two 

queens can occupy the same row, column and diagonal, transforming these conditions 

into various constraints.  

The sum of the outputs on the rows is 1 [Naka99].  

 1
1

=∑
=

N

m
imy       ( )ji,∀  [Naka99] (4.3-1)

The sum of outputs on the columns is 1 [Naka99] 

 1
1

=∑
=

N

m
mjy         ( )ji,∀  [Naka99] (4.3-2)

 

0 1 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 1 0 0 

0 0 1 0 0 0 0 0 
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According to Nakaguchi [Naka99] the sum of the outputs for the diagonal can be either 1 

or 0, as a queen can be in the diagonal or may not be present. 

 

∑
≤≤

≤≤
Nk-jk,-i1

k-jk,-i 1   y     0                ( )ji,∀  

∑
≤+≤

+ ≤≤
Nkjk,-i1

kjk,-i 1   y     0                 ( )ji,∀  
[Naka99] (4.3-3)

The above equations are the constraints for solving the N-queen problem. There can be 

many different solutions for the same size of chess board depending upon the initial 

conditions. The stable system is the one that has stable equilibrium point and these 

constraints can be used to obtain the equilibrium for the hysteresis neural network. 

Substituting the values from Equation 4.3-1, 4.3-2 and 4.3-3 into the Equation 3.6.3 for 

the equilibrium point becomes Equation 4.3-4 [Naka99] 
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Substituting the above value of equilibrium points into Equation 3.6.2 gives [Naka99] 
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(4.3-5) 

The solution to the N-queen problem can be obtained by having a stable system. The 

stable system can be obtained when all the equilibrium points are in the hysteresis region. 

The equilibrium point has the value inside the hysteresis region once all the constraints 

are satisfied. Using these constraints a Matlab code was written and the simulation result 

for 8 queens’ problem is shown in Figure 33 (refer Appendix 4 for Matlab code). 
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If all the equilibrium points of the system are in the hysteresis region the system is said to 

be stable and this corresponds to the solution for the N-queen problem.  

 

Figure 33: Matlab simulation results for 8x8 queen problem. 
 

There are 92 solutions for the 8-queen problem which depends on the initial condition. 

Table 2 [Naka99] gives the number of solutions for various sizes of chess board and the 

number of iterations required to obtain these solutions.  
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Table 2: Number of Solutions for Different Size of Queen Problem 
 
 

Table N # of Solutions N2CN 

4 2 1.83x103 

5 10 5.31x104 

6 4 1.94x106 

7 40 8.59X107 

8 92 4.42X109 

9 352 2.60X1011 

10 724 1.73X1013 

11 2680 1.27x1015 

12 14200 1.04x1017 

13 73712 9.18x1018 

14 365596 8.81x1020 

 

The N-queen system has a large set of differential equations and when executed in the 

software each one of them is executed sequentially. Due to the inherently sequential 

nature of computer, as the number of queens to be placed increases, the time taken to 

execute all the equations increases exponentially. The differential equations can be 

implemented using the analog circuit.  Each cell (neuron) in the system can switch its 

state in parallel, independently of each other. Thus in a resulting parallel network, the 

execution time is independent of the number of queens to be placed, considering that 

such a network is realizable physically, meaning implementation using hardware.  
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4.4 Network Topology  

The N-queen problem requires only one queen to be placed in a single row, column or a 

diagonal. As a result each neuron is connected to all the neurons whose output influences 

the output of the neuron and feedback to itself. Consider the following figure. The 

simulated circuit topology is shown for two cases (neuron number 6: yellow and 13: 

green). This can be easily extended to all neurons. 

 

 
 

Figure 34: Connection topology for 8-queen network. 
 
 
Consider the queen  at location (6).  This neuron (representing the queen) is connected to 

all neurons from row 2 (neuron numbers 5, 7, 8) and column 2 (neuron numbers 2, 10, 

14) and all the neurons along the forward diagonal (neuron number 1, 11, 16) and 
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backward diagonal (3, 9) in addition it has its own feedback. The connections are shown 

in the black line. All neurons surrounding it affect the output of this neuron. 

Neuron representing the queen at location (13), is connected to all neurons from row 4 

(neuron numbers 14, 15, 16) and column 1 (neuron numbers 1, 5, 9) and all the neurons 

along the forward diagonal (neuron number 10, 7, 4) and in addition it has its own 

feedback. The connections are shown with the red dashed line. The neuron (number 13) 

is at the corner of the 8x8 board; hence it doesn’t consider any connection with the 

backward diagonal neurons. Only the neurons in forward diagonal affect the output.  
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5. Double Gate MOSFET implementation of HNN 

5.1 Introduction  

Coming decade will have a plethora of challenges for the silicon industry which 

successfully provided us with many system improvements over the last few decades.  

Gordon More predicted that the number of transistors on a chip would double every two 

years [More65]. For more than 40 years the silicon industry proved this prediction, which 

is now commonly known as “Moore’s law”.  

 

Figure 35: Moore’s law graph [Inte07]. 
 
The number of transistors per microprocessor chip increased from some thousands in 

1970 to nearly a billion in recent times [Inte07]. The industry managed to squeeze more 

and more transistors by scaling down the size of a single transistor. Reducing the physical 

dimensions of the transistor increased the system speed and density. According to 

International Technology Roadmap for Semiconductors [ITRS07] the industry will soon 
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hit a roadblock in coming decade which will hamper the progress of device shrinking. 

The devices are reaching the physical limits of shrinking; short channel effects and 

quantum phenomenon will prohibit the smooth scaling of the devices in the near future. 

To combat such challenges, the silicon industry is using a dual approach; first, it is 

putting hard efforts to utilize the existing technology to shrink the devices as much as 

possible and second, it is also considering the feasibility for new devices, which will 

provide the same or better performance and scalability as the current MOSFET 

technology. The following figure describes new devices, their advantages, their scaling 

issues and design challenges as illustrated in the paper, “Extending the road beyond 

CMOS” [Hutc02]. 

 

Figure 36: Non classical CMOS devices  [Hutc02]. 
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5.2 Double Gate MOSFET Structure 

Sekigawa proposed the double-gate transistor structure in early 1980s [Seki84].  The 

Double gate transistor consists of a conducting channel surrounded by gates on both 

sides.  Having two gates ensures that no part of a channel is far away from a gate. This 

gives better control of the channel by the gate electrode. In addition, the voltage applied 

to the gate terminal determines the amount of current flowing through the channel. 

 

 
 

Figure 37: Double gate MOSFET structure. 
 
The salient features of the double gate are [Wong02] 

• Better control of short channel effects.  

• Reductions of Ioff ;  drain current when gate voltage is zero. 

• Higher current drive capabilities. 

The double gate can be operated in two modes. One of the common modes is switching 

both gates simultaneously. This mode is called simultaneously driven double gate 

(SDDG) MOSFET.  Another mode is applying a bias to the second gate (back-gate) to 

dynamically change the threshold voltages. This mode is called as independently driven 

double gate (IDDG) MOSFET [Wong02]. 
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Figure 38: General double gate operation modes. 

 

Kaya proposed the use of double gate MOSFET for implementing the tuneable analog 

circuit blocks via varying the bottom gate bias. The major importance of this is stated 

below [Kaya06]  

• Increasing the functionality of the device. 

• Reducing the area and other parasitic effects. 

• High-speed and low power consumption.  

Most of the devices implemented using double gates MOSFET are individual circuit 

blocks with some specific functionality. This research uses the DG MOSFET model as a 

part of the larger circuit to implement the hysteresis neuron and the entire system of cells 

based on the hysteresis neuron circuits. The DG MOSFET model used in this research 

was developed by University of Florida [UFDG06]. 

 
5.3 Double gate Spice Model UFDG 

The UFDG is a generic model for double gate developed by SOI group at University of 

Florida [UFDG06]. The model is compatible with the Spice3 simulator and is faster than 

TCAD model. The UFDG model has five terminals designated as drain, front gate, 
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source, back gate and body. The syntax for this model in the Spice3 is given [UFDG06] 

as  

MXXXX ND NGF NS NGB [NB] MNAME L=exp W=exp [M=exp] [AD=exp] 

[AS=exp] [AB=exp] [NRD=exp] [NRS=exp] [NRB=exp] [PDJ=exp] [PSJ=exp] 

[RTH=exp] [CTH=exp] [off] [IC= Vds, Vgfs, Vgbs, Vbs] 

where ND: Drain node, NGF: Front gate node, NS: Source node, NGB: Back gate node, 

NB: Body node, MNAME: Model name, L: Gate length, W: Gate width; the quantities in 

the bracket are optional and ( for the remaining device line parameters refer Appendix 5).  

In the thesis the length and width of the double gate model used are L=100E-9 and 

W=1E-6 for NMOS transistor and L=100E-9 and W=2E-6 for PMOS transistor. Various 

parameters of the model used in simulation are defined in the Appendix 6 for NMOS and 

PMOS double gate. Appendix 6 also illustrates the methodology for running the Spice3 

simulation using the UFDG model. 

 

5.4 Double Gate Structures Self Bias Amplifier 

A high-gain push pull amplifier using DG CMOS inverter, when biased in the transition 

region, using the TCAD simulator is proposed [Kaya06]. The amplifier characteristics 

can be altered by varying the bias of the bottom gate. The bias for the DG CMOS can be 

of the same voltage i.e. Vbg
p=Vbg

n or it can be of conjugate pair Vbg
p= -Vbg

n with equal 

magnitude but having opposite polarity.  A third configuration of the amplifier called self 

bias can be obtained if the output of the IDDG CMOS pair drives the bottom-gates 

respective transistors i.e. Vbg
p=Vbg

n=Vout as shown in Figure 39.  
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Figure 39: Self bias configuration of double gate MOSFET. 
 
5.4.1 Spice 3 Code  
 
Following is the spice3 netlist for the self bias configuration of double gate MOSFET. 
 
.width in=80 out=80 
 
.option post 
 
MN0 out in ss out NDG L=100E-9 W=1E-6 IC=0, 0, 0, 0 
 
MP0 out in dd out PDG L=100E-9 W=2E-6 IC=0, 0, 0, 0  
 
VSS ss 0 DC -0.5 
 
VIN in 0 DC 0.5  
 
VDD dd 0 DC 0.5 
 
.DC VIN -0.5 0.5 0.005V 
 
.PRINT DC out 
 
.OPTION 
 
+ ABSTOL=1E-18 PIVTOL=1E-30 GMIN=1E-18 ITL1=1000 
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+ VNTOL=1E-6 RELTOL=1E-3 CHGTOL=1E-18 
 
The NDG (NMOS) and PDG (PMOS) double gate model characteristics are given in the 

Appendix 6.  As seen from the code the power supply used is ± 0.5 V, which is typically 

used for the low power applications.  

 
5.4.2 Simulations Results 
 
The gain for the self bias configuration is significantly lower and the curve obtained is 

linear.  

 

Figure 40: Double gate MOSFET self-bias amplifier configuration. 
 

5.5 Double gate Structure for Schmitt Trigger  

An efficient and programmable Schmitt Trigger structure using only 4 double gate  

MOSFET using the TCAD simulator is proposed [Kaya06]. The double gate CMOS 

amplifier’s lateral shift of transfer function is demonstrated and can be easily utilized to 
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build Schmitt trigger. The Schmitt trigger is a two stage device in which the response of 

the first stage is shifted using the conjugate bias of the second stage. The width of 

hysteresis depends upon the conjugate bias of the second stage [Kaya06].   

 

Figure 41: Schmitt trigger using double gate MOSFET. 
 
5.5.1 Spice 3 Code 
 
The spice3 netlist for the Schmitt trigger configuration of double gate MOSFET is 
 
.width in=80 out=80 
 
.options post 
 
MN1 3 1 7 4 GN1 L=100E-9 W=1E-6 IC=0, 0, 0, 0  
 
MP1 3 1 2 4 GP1 L=100E-9 W=2E-6 IC=0, 0, 0, 0 
 
MN2 4 3 7 3 GN2 L=100E-9 W=1E-6 IC=0, 0, 0, 0  
 
MP2 4 3 2 3 GP2 L=100E-9 W=2E-6 IC=0, 0, 0, 0 
 
VSS 7 0 DC -0.3V 
 
VDD 2 0 DC 0.3V 
 
VIN 1 0 DC 1V 
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VIN 1 0 PWL(0nS -1 100nS 1 200nS -1 ) 
 
.OPTIONS 
 
+ ABSTOL=1E-18 PIVTOL=1E-30 GMIN=1E-10 ITL1=1000 
 
+ VNTOL=1E-6 RELTOL=1E-3 CHGTOL=1E-18 
 
The GN1 GN2 (NMOS) and GP1, GP2 (PMOS) model characteristics are given in the 

Appendix 6.  As seen from the code the power supply used is ± 0.3 V, which is typically 

used for the low power applications.  

5.5.2 Simulation Results 

The Schmitt Trigger’s width is tunable using the conjugate bias in the second stage, 

illustrated from the Figure 42 and 43. In Figure 42 the conjugate bias applied was ±0.5V. 

 

Figure 42: Schmitt trigger with conjugate bias ±0.5V. 
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In the Figure 43 the conjugate bias applied was ±0.3V. Thus it can be concluded that the 

width of the Schmitt trigger can be easily tuned by applying the proper conjugate bias 

voltages. 

 

 

Figure 43: Schmitt trigger with conjugate bias ±0.3V. 
 
5.6 Double gate Neuron Model  

Figure 44 illustrates the double gate neuron model using the self bias configuration and 

Schmitt trigger configuration. As seen from the figure this model utilizes only 8 

transistors. The transistor sizes used in the simulation are  

• NMOS  : Length = 100E-9 and Width = 1E-6 

• PMOS  : Length = 100E-9 and Width = 2E-6 
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The transistor models of NMOS and PMOS used in these simulations are given in the 

Appendix 6. A 1N4744A Zener diode is used in this simulation. The model details for the 

Zener diode are given in Appendix 3.1.   

 

 
 

Figure 44: Double gate neuron model. 
 

5.6.1 Spice 3 Code 

This spice3 netlist written for the double gate MOSFET neuron model is as follows 
 
xV5 4 0 Pulse_V_SourceV5 
 
.SUBCKT Pulse_V_SourceV5 1 2 
 
V 1 2 dc 0 ac 1 0 
 
+   pulse(-1V 1V 0NS 0NS 0NS 1MS 2MS) 
 
.ENDS 
 
dD1 3 11 1N4744A__ZENER__1 
 
dD2 0 11 1N4744A__ZENER__1 
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rR2 4 5 1.500e+003 
 
rR1 5 8 9.090e+002 
 
rR7 10 13 1.00e+002 
 
rR4 13 3 1.00e+002 
 
rR3 0 9 100 
 
rR5 9 3 100 
 
cC1 5 8 1.0E-6 
 
VV7 12 0 dc 15 ac 0 0 
 
xU3 10 13 self_bias 
 
.SUBCKT self_bias 13  10 
 
.width  in=80 out=80 
 
.option post 
 
MN01 10 13 ss 10  NDG L=100E-9 W=1E-6 IC=0,0,0,0 
 
MP01 10 13 dd 10  PDG L=100E-9 W=2E-6 IC=0,0,0,0  
 
VSS01 ss 0 DC -0.5 
 
VDD01 dd 0 DC 0.5 
 
.OPTION 
 
+ ABSTOL=1E-18 PIVTOL=1E-30 GMIN=1E-18 ITL1=1000 
 
+ VNTOL=1E-6 RELTOL=1E-3 CHGTOL=1E-18 
 
.MODEL NDG NMOS LEVEL=10 
  
 See Appendix 6 for NDG model 
 
.MODEL PDG PMOS LEVEL=10 
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 See Appendix 6 for PDG model 
 
.ENDS  
 
rR6 10 5 4.990e+002 
 
VV6 0 V6_OPEN_2 dc 15 ac 0 0 
 
VV4 7 0 dc 15 ac 0 0 
 
VV3 0 6 dc 15 ac 0 0 
 
VV2 0 2 dc 15 ac 0 0 
 
VV1 1 0 dc 15 ac 0 0 
 
xU1 8 5 self_bias 
 
xU2   9 8 schmitt_trigger  
 
.SUBCKT schmitt_trigger 9 8 
 
MN1 14 8 17 9  GN1 L=100E-9 W=1E-6 IC=0,0.5,0,0  
 
MP1 14 8 16 9  GP1 L=100E-9 W=2E-6 IC=0,0,0,0 
 
MN2 9 14 17 14  GN2 L=100E-9 W=1E-6 IC=0,-0.5,0,0  
 
MP2 9 14 16 14  GP2 L=100E-9 W=2E-6 IC=0,0,0,0 
 
VSS 17 0 DC -0.5V 
 
VDD 16 0 DC 0.5V 
 
.OPTIONS 
 
+ ABSTOL=1E-18 PIVTOL=1E-30 GMIN=1E-10 ITL1=1000 
 
+ VNTOL=1E-6 RELTOL=1E-3 CHGTOL=1E-18 
 
.MODEL GN1 NMOS LEVEL=10 
 
 See Appendix 6 for GN1 model 
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.MODEL GN2 NMOS LEVEL=10 
 
 See Appendix 6 for GN2 model 
 
.MODEL GP1 PMOS LEVEL=10 
 
 See Appendix 6 for GP1 
 
.MODEL GP2 PMOS LEVEL=10 
 
 See Appendix 6 for GP2 
 
.ENDS 
 
rR18 3 18 10 
 
.MODEL 1N4744A__ZENER__1 D  
 

See Appendix 3.1 for Zener 1N4744A model 
 
.ENDS 
 
.TRAN 0.1MS 50MS 
 
.END 
 
5.6.2 Simulation Results  
 
The methodology to run the netlist in elaborated in the Appendix 6.3. Figures 45 and 46 

are the double gate MOSFET model hysteresis characteristics, obtained after the netlist 

was run on Solaris 10 machine. The double gate hysteresis neuron can be used as a 

building block to build a larger Hopfield neural network. This network can solve several 

constraint satisfaction problems including the N-queens problem discussed in chapter 4. 

If a network with topology, suggested in Section 4.4 is implemented, the network can be 

utilized to solve the 8 queen problems.  
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Figure 45: Double gate MOSFET hysteresis neuron simulation one. 
 
 
 

 
 

Figure 46: Double gate MOSFET neuron model simulation two. 
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5.7 Summary 

Double gate MOSFET not only saves the transistor count but also operates at lower 

voltages than present CMOS devices. Suppose we build a network for solving the 8-

queen problem, using hysteresis neuron. 60 transistors are needed to build the single 

opamp based neuron, as a one LM741 operational amplifier requires 20 transistors 

[N74107]. The number of transistors required for 8x8 networks will be 3840 while the 

count of transistors using double gate neurons is 512 since it requires only 8 transistors to 

build a single neuron. This is 3328 transistors less than opamp implementation which is a 

significant reduction in the transistor count. The supply voltage required for opamp based 

neuron is between ±12V and ±15V while it is ±0.5V in double gate MOSFET based 

neuron. Any application utilizing a neural network principle has hundreds of neurons and 

the size of network is comparatively large for 8x8 neural networks. Thus, using the 

double gate neuron model, the same functionality can be obtained using less number of 

transistors operating at lower voltages. This thesis also demonstrated that we can build 

larger circuits using the double gate MOSFET rather than using it for designing small 

individual components. This attempt of implementing a neural network using double gate 

MOSFET can be considered as a proof of concept for implementing larger integrated 

circuits using double gate MOSFET.  

Double gate MOSFET can be considered as an option for futuristic device which might 

be able to replace the conventional CMOS in coming decades.  
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5.7.1 Hysteresis Neuron Model using OTA 
 

Operational transconductance amplifier (OTA) is a voltage controlled current source 

(VCCS). It takes differential input voltage and produces output current.  A simple design 

of hysteresis chaos generator using just six elements - two capacitors, two resistors, one 

linear VCCS and one hysteresis VCCS is proposed [Naka96]. Figure 47 gives a block 

level circuit design of hysteresis chaos generator using the hysteresis VCCS.  

  

 

Figure 47: RC OTA design for hysteresis chaos generator. 
 
Kim proposed the Schmitt trigger design [Kim97], using OTA and a register. Using the 

Schmitt trigger design using OTA, hysteresis OTA is build with the help of built in 

models of OTA in Multisim software. Figure 48 gives complete realization for the block 

level design of hysteresis chaos generator illustrated in the Figure 47. 
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Figure 48: OTA bases hysteresis neuron. 
 
The circuit shown in Figure 48 was simulated in the Multisim software and the results are 

shown in the Figures 49 and 50. Figure 49 demonstrated the chaos phenomenon using 

OTA based hysteresis chaos generator. 

 
 

Figure 49: Chaos using RC OTA. 
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Changing the initial conditions the hysteresis characteristics with the same circuit can be 

obtained. 

 
 

 
 

Figure 50: Hysteresis using RC OTA. 
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6. Conclusion and Future Work 

6.1 Conclusion  

The work presented in this thesis explores the relatively new devices - double-gate 

MOSFET- for the implementation of the hysteresis neural network. It is the first attempt 

to use these devices in the neural network field, presenting a large scale application of 

double gate MOSFETs.   

To conclude most of the research goals have been accomplished as mentioned in Section 

1.2.  

• Chaotic phenomenon has a good ability to search for an optimal solution of a 

problem with many local minima. The current work uses the chaos theory with 

focus on electrical circuits. Chua’s circuit is a good example to demonstrate the 

type of non-linearity in the electrical circuit which causes chaos.  

• The opamp based hysteresis neuron model is implemented and its stability is 

explained. Stability criterion of the network can be used as a cost function and 

when the network reaches its stable point, this corresponds to a solution. This is 

explained in regards to N-queens problem.  

• The circuit topology for solving 8-queens problem is proposed that can be 

extended to N-queens. 

• The hysteresis neuron model is implemented using the double gate MOSFET. 

Once we are able to build this analog circuit representation of the network, the 

solution can be obtained in a constant time irrespective of the network size. 
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6.2 Future Work  

The CMOS implementation of OTA based hysteresis chaos generator circuit has been 

designed with additional functionality to control the chaos [Naka97]. The Hysteresis 

VCCS is designed using 11 transistors. The ratio of width and length (W/L) of these 

transistors varies from 10/20 to 50/10. The bias used in simulation of the circuit is ±8.5V 

and the source voltage around ±10V. Double gate implementation of OTA has been 

proposed [Kaya06] using only one capacitor and four transistors with relatively small 

voltage levels and bias conditions. This implementation has been utilized to build the 

hysteresis neuron. The future challenge is to develop the hysteresis VCCS using double-

gate MOSFET so that it can be used to build chaos generator using less number of 

components.  

To manually implement neural network circuit in a schematic editor is a challenge. As 

the number of neurons in the circuit increases the connections between neurons are 

complex to design using schematic editor. Another area for future work would be to build 

a schematic editor tool that can be use to build neural network circuits efficiently with 

ease.    
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Appendix 1: Multisim Model Details 

 

1.1LM 741 Models Details  

.SUBCKT LM741 1 2 3 
* EWB Version 4 - 3 Terminal Opamp Model 
* A= 200000 RI= 2e+006 RO= 75 VSW+= 21 VSW-= -21 
* Vos= 0.001 Ibs= 8e-008 Ios= 2e-008 SR+= 500000 
* fu= 1.5e+006 fp2= 1e+032 CC= 3e-011 
Vos 4 1 DC 0.001V 
Ib1 4 0 9e-008A 
Ib2 2 0 7e-008A 
G1 0 5 4 2 0.0584804 
G2 0 6 5 0 0.779738 
G3 0 3 6 0 0.779738 
Ri 4 2 2e+006ohm 
R1 5 0 1000ohm 
R2 6 0 75ohm 
R3 3 0 75ohm 
C1 5 0 2.12207e-005 
C2 6 0 2.12207e-035 
Cc 5 0 3e-011 
.ENDS 
 
1.2 BZX83C10 Model Details 

.MODEL BZX83C10 D IS= 2.524e-016 RS= 0.5164 CJO= 0.999e-12 VJ= 0.75 
+ TT= 5e-009 M= 0.3333 BV= 10.11 IBV= 0.3572 N= 1 
+ EG= 1.11 XTI= 3 KF= 0 AF= 1 FC= 0.5 
+ TNOM= 27 
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Appendix 2: OrCAD Model Details 

 
2.1 Opamp 741 

.SUBCKT 741__OPAMP__1 1 2 3 4 5 
* EWB Version 4 - 5 Terminal Opamp Model 
* nodes: 3=+ 2=- 1=out 5=V+ 4=V- 
* VCC= 15 VEE= -15 CC= 3e-011 A= 200000 RI= 2e+006 
* RO= 75 VOS= 0.001 IOS= 2e-008 IBS= 8e-008 
* VSW+= 14 VSW-= -14 CMMR= 90 
* ISC= 0.025 SR= 0.5 Fu= 1e+006 Pm= 6.09112e-007 
    VC 5 15 DC 1.68573V  
    VE 12 4 DC 1.68573V  
    IEE 10 4 DC 1.516e-005A 
    R1  10  0 10Gohm  
    R6  11  0 100Kohm 
    R7   5  4 1Kohm    
    Rc1  6  5 5305.16ohm   
    Rc2  5  7 5305.16ohm   
    Re1  9 10 1839.19ohm  
    Re2  8 10 1839.19ohm  
    Ro1  1 14 37.5ohm  
    Ro2 14  0 37.5ohm  
    Ree 10  0 1.31926e+007ohm  
    Rcc  0 13 2.20906e-005ohm  
    Cee  0 10 1e-012     
    Cc  14 11 3e-011     
    C1   6  7 1e-016     
    GA  11  0  6  7 0.000188496  
    GC   0 13  1  0 45268.1  
    GB  14  0 11  0 282.942  
    GCM  0 11 10  0 5.96075e-009  
    D1  14 13 Dopamp1  
    D2  13 14 Dopamp1  
    D3   1 15 Dopamp2  
    D4  12  1 Dopamp2  
    Qt1  6 2 9 Qopamp1  
    Qt2  7 3 8 Qopamp2  
.MODEL Dopamp1 D (Is=7.53769e-014A Rs=0 Cjo=0F Vj=750mV Tt=0s M=0) 
.MODEL Dopamp2 D (Is=8e-016A Rs=0 Cjo=0F Vj=750mV Tt=0s M=0) 
.MODEL Qopamp1 NPN (Is=8e-016A BF=83.3333 BR=960m 
+       Rb=0ohm Re=0ohm Rc=0ohm Cjs=0F Cje=0F Cjc=0F 
+       Vje=750m Vjc=750m Tf=0 Tr=0 mje=0 mjc=0 VA=50) 
.MODEL Qopamp2 NPN (Is=8.30948e-016A BF=107.143 BR=960m 
+       Rb=0ohm Re=0ohm Rc=0ohm Cjs=0F Cje=0F Cjc=0F 
+       Vje=750m Vjc=750m Tf=0 Tr=0 mje=0 mjc=0 VA=50) 
.ENDS 



  88 
   
 

2.2 Zener Diode 1N4744A Model 

 
.MODEL 1N4744A__ZENER__1 D IS= 5.038e-012 RS= 0.001 CJO= 1e-012 VJ= 
0.75 
+                TT= 5e-009 M= 0.3333 BV= 15.05 IBV= 0.1087 N= 1 
+                EG= 1.11 XTI= 3 KF= 0 AF= 1 FC= 0.5 
+                TNOM= 27 
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Appendix 3: Spice3 Models Details 

3.1 Spice3 Zener Model:  

 
.MODEL 1N4744A__ZENER__1 D IS= 5.038e-012 RS= 0.001 CJO= 1e-012 VJ= 
0.75 
+                TT= 5e-009 M= 0.3333 BV= 15.05 IBV= 0.1087 N= 1 
+                EG= 1.11 XTI= 3 KF= 0 AF= 1 FC= 0.5 
+                TNOM= 27 
 
3.2 Spice3 opamp Model: 

 
.SUBCKT OPAMP1 1 2 3 4 5 
* EWB Version 4 - 5 Terminal Opamp Model 
* nodes: 3=+ 2=- 1=out 5=V+ 4=V- 
* VCC= 15 VEE= -15 CC= 3e-011 A= 200000 RI= 2e+006 
* RO= 75 VOS= 0.001 IOS= 2e-008 IBS= 8e-008 
* VSW+= 14 VSW-= -14 CMMR= 90 
* ISC= 0.025 SR= 0.5 Fu= 1e+006 Pm= 6.09112e-007 
    VC 5 15 DC 1.68573V  
    VE 12 4 DC 1.68573V  
    IEE 10 4 DC 1.516e-005A 
    R1  10  0 10Gohm  
    R6  11  0 100Kohm 
    R7   5  4 1Kohm    
    Rc1  6  5 5305.16ohm   
    Rc2  5  7 5305.16ohm   
    Re1  9 10 1839.19ohm  
    Re2  8 10 1839.19ohm  
    Ro1  1 14 37.5ohm  
    Ro2 14  0 37.5ohm  
    Ree 10  0 1.31926e+007ohm  
    Rcc  0 13 2.20906e-005ohm  
    Cee  0 10 1e-012     
    Cc  14 11 3e-011     
    C1   6  7 1e-016     
    GA  11  0  6  7 0.000188496  
    GC   0 13  1  0 45268.1  
    GB  14  0 11  0 282.942  
    GCM  0 11 10  0 5.96075e-009  
    D1  14 13 Dopamp1  
    D2  13 14 Dopamp1  
    D3   1 15 Dopamp2  
    D4  12  1 Dopamp2  
    Qt1  6 2 9 Qopamp1  
    Qt2  7 3 8 Qopamp2  
.MODEL Dopamp1 D (Is=7.53769e-014A Rs=0 Cjo=0F Vj=750mV Tt=0s M=0) 
.MODEL Dopamp2 D (Is=8e-016A Rs=0 Cjo=0F Vj=750mV Tt=0s M=0) 
.MODEL Qopamp1 NPN (Is=8e-016A BF=83.3333 BR=960m 
+       Rb=0ohm Re=0ohm Rc=0ohm Cjs=0F Cje=0F Cjc=0F 
+       Vje=750m Vjc=750m Tf=0 Tr=0 mje=0 mjc=0 VA=50) 
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.MODEL Qopamp2 NPN (Is=8.30948e-016A BF=107.143 BR=960m 
+       Rb=0ohm Re=0ohm Rc=0ohm Cjs=0F Cje=0F Cjc=0F 
+       Vje=750m Vjc=750m Tf=0 Tr=0 mje=0 mjc=0 VA=50) 
.ENDS 
 
3.3 Running the Netlist file 

1. log onto Solaris machine  

2. navigate to the folder containing the spice netlist 

3. type command spice3  

4. press return key 

5. type command source filename 

6. type command run 

7. type command plot  

To run the spice netlist, navigate to the folder that contains the netlist file and follow 

the instruction given below 

P2% spice3 (enter) 

Spice3 -> source workingSpice.in 

Spice3-> run 

Spice3-> plot -v(3) vs v(8) 
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Appendix 4: Matlab Code for N-Queen Problem 

x=random('Normal',0,1,4,4); 
N=8; 
y=zeros(N); 
cont=0; 
l=1; 
m=1; 
n=0; 
o=0; 
conty=0; 
while (cont~=8) 
cont=1; 
a=1; 
b=8; 
l =round( a + (b-a) * rand(1)) 
m =round( a + (b-a) * rand(1)) 
y=zeros(N); 
y(l,m)=1; 
for i=1:63 
   i =round( a + (b-a) * rand(1)) 
   j =round( a + (b-a) * rand(1)) 
        sumcol=sum(y(:,j)); 
        sumrow=sum(y(i,:)); 
       k=i+j; 
       sumdiag1=sum(diag(y,j-i)); 
       sumdiag2=0; 
       if (k<=N) 
           for l=1:k-1 
           sumdiag2=sumdiag2+y(l,k-l); 
           end 
       else 
           for l=k-N:N 
           sumdiag2=sumdiag2+y(l,k-l); 
           end 
       end 
         sumdiag=sumdiag1-sumdiag2; 
         p(i,j)=(1-sumrow)+(1-sumcol)+(1-sumdiag1-sumdiag2); 
         if (p(i,j)==3) 
             y(i,j)=1; 
             cont=cont+1; 
         end     
    end 
end 
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Appendix 5: DG/SOI MOSFET Device-Line Parameters 

 
Name Description Units Defaults 

M Number of gate fingers m 1 

AD Area of drain region m2 0.0 

AS Area of source region m2 0.0 

AB Area of body m2 0.0 

NRD Squares of drain region sq. 0.0 

NRS Squares of source region sq. 0.0 

NRB Squares of body-contact region sq. 0.0 

PDJ Perimeter of drain-body junction m W 

PSJ Perimeter of source-body junction m W 

RTH Thermal resistance kW 0.0 

CTH Thermal capacitance kW 0.0 

IC Initial conditions V 0.0 
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Appendix 6: DG MOSFET Model Line and Structural Parameters used in Simulation  

6.1 NMOS Double Gate Model  

.MODEL GN1 NMOS LEVEL=10 
+ WKFG=4.40 
+ WKBG=4.40 
+ NSF=1e10 
+ NSB=1e10 
+ TOXF=2n 
+ TOXB=2n 
+ TSI=10.0n 
+ NBODY=1E15 
+ UO=1400./500. 
+ THETA=1.0 
+ VSAT=1e7 
+ VO=0 
+ BLIM=0 
+ QMX=1.0 
+ QMD=1.0 
+ NDS=1E20 
+ JRO=1E-11 
+ M=2 
+ SEFF=1E5 
+ SCEB=0 
+ DL=1e-9 
+ LES=0.0n 
+ LED=0.0n 
+ RD=5E-6 
+ RS=5E-6 
+ SFACT=5 
+ WFACT=5 
+ SO=1 
+ BJT=0 
+ DG=1 
 
6.2 PMOS Double Gate Model 

.MODEL GP1 PMOS LEVEL=10 
+ WKFG=4.80 
+ WKBG=4.80 
+ NSF=1e10 
+ NSB=1e10 
+ TOXF=2n 
+ TOXB=2n 
+ TSI=10.0n 
+ NBODY=1E15 
+ UO=1400./470. 
+ THETA=0.8 
+ VSAT=1e7 
+ VO=0 
+ BLIM=0 
+ QMX=1.0 
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+ QMD=1.0 
+ NDS=1E20 
+ JRO=1E-11 
+ M=2 
+ SEFF=1E5 
+ SCEB=0 
+ DL=1e-9 
+ LES=0.0n 
+ LED=0.0n 
+ RD=5E-6 
+ RS=5E-6 
+ SFACT=5 
+ WFACT=5 
+ SO=1 
+ BJT=0 
+ DG=1 
 
6.3 Running UFDG Simulation on Spice3 

• Go to the directory where your spice file is located  

• On console type command     run ufdg –r <filename.in  

• After simulation is complete use command nutmeg, this is used to plot the 

results. 

 

 

 


