

Global Positioning System Signal Acquisition and Tracking

Using Field Programmable Gate Arrays

A Dissertation Presented to the Faculty of the

Fritz J. and Dolores H. Russ

College of Engineering and Technology

Ohio University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Abdulqadir A. Alaqeeli

November, 2002

Copyright 2002

Abdulqadir Alaqeeli

All rights reserved

THIS DISSERTATION ENTITLED

“Global Positioning System Signal Acquisition and

Tracking Using Field Programmable Gate Arrays”

by Abdulqadir Alaqeeli

has been approved

for the School of Electrical Engineering and Computer Science
and the Russ College of Engineering and Technology

Janusz Starzyk, Professor
School of Electrical Engineering and Computer Science

Dennis Irwin, Dean
Fritz J. and Dolores H. Russ

College of Engineering and Technology

iii

Acknowledgement

In the Name of Allah, the Most Beneficent, the Most Merciful. All praise

and thanks to Allah, Lord of the universe and all that exists. Prayers and peace be upon

His prophet Mohammed, the last messenger for all humankind.

First, I thank Allah for His infinite blesses. Allah blessed me with loving

parents, brothers, sisters, relatives, and friends. Allah’s guidance made the com-

pletion of this work possible.

I want to thank my parents for their love, education, support, encourage-

ment, and prayers. Thanks goes to my wife and my daughter. Their support gave

me spiritual strength in pursuing my ambition and staying in the United States.

Thanks also goes to my brothers and sisters. Life has no taste to me without my

parents and my family.

I would like to thank my advisor, Prof. Janusz Starzyk, for his constant

patience, great assistance, and guidance during my Masters and Ph.D. degrees.

Prof. Starzyk was an unusual advisor who helped me in the academic and the per-

sonal matters. His way of teaching and problem solving changed me from an ordi-

nary student to a knowledge seeker.

Thanks goes to my other committee members, Dr. Frank van Graas, Dr. Jef-

frey Dill, Dr. Michael Braasch, and Dr. Nicolai Pavel. This committee is a blessing

from Allah. Their advice and support helped me in solving many problems during

this work. I would like to say again “Thanks” for your precious time, valuable help

iv

and support. Special thanks goes to Prof. Frank van Graas who acted as a co-advi-

sor for me during the last year. Thanks also goes to Dr. Maarten Uijt de Haag. His

friendship, advice, and discussions were very helpful to me.

Dr. Ahmad Alsolaim, my dear friend, cannot be forgotten. He helped me in

all of my courses. He was my main supporter during the difficult days. He was a

real brother who has given me advices since I came to the US in 1995. “Thank you

Ahmad” is not enough for such a close friend.

I am very thankful to all of my friends in the VLSI and the Software Radio

research groups for their help, discussions, and advice. I especially thank Sanjeev

Gunawardena, Jing Pang, and Zhu Zhen for their support. In addition to their

helpful discussions, they provided me with useful Matlab codes and synthesizable

VHDL codes.

I would like to thank my friends Dr. Saleh Aloteawi and Dr. Mohammed

Alsharekh. Their friendship was helpful for me during my study. “Thank You” goes

to my friends Hamad Albrethin, Abdulrahman Alsebail, Mazyad Almuhaileb,

Saleh Alawirdy, Mohammed Altamimi, Hamed Alsharari and Ahmad Alahmadi.

Finally, I want to thank all friends who assisted me upon request and were

very helpful in their suggestions.

v

Table of Contents

Acknowledgement .. iii

Table of Contents .. v

List of Tables .. ix

List of Figures ... x

List of Abbreviations ... xiii

Chapter 1... 1

Introduction .. 1

Chapter 2... 6

Background ... 6

2.1 Introduction .. 6

2.2 Spread Spectrum and Code Division Multiple Access 6

2.3 Global Positioning System ... 8

2.4 GPS Signal Structure .. 8

2.5 GPS Receiver Architecture .. 10

2.5.1 Signal Tracking ... 12

2.5.2 Signal Acquisition ... 14

2.6 Block Processing .. 19

2.7 Advantages and Disadvantages of the Current Signal Processing 19

Chapter 3... 22

Convolution Algorithms Using Real and Binary Transforms 22

3.1 Introduction .. 22

3.2 Fermat Number Transform and Convolution .. 23

vi

3.2.1 Fermat Number Transform .. 23

3.2.2 Convolution using Fermat Number Transform 24

3.3 Convolution and Walsh Transform .. 27

3.3.1 Introduction ... 27

3.3.2 Walsh Transform and PN Sequences ... 27

3.3.3 Convolution Algorithm .. 29

3.3.4 Hardware Implementation ... 32

3.3.4.1 Permutation Generators.. 33

3.3.4.2 Walsh Transform ... 35

3.4 Implementation of a Walsh-Based Convolver for a 1,023-bit PN Code ... 37

Chapter 4... 42

Averaging Method for Block Processing .. 42

4.1 Introduction .. 42

4.2 Averaging Correlator ... 43

4.3 Averaging Correlator with Zero-Padding ... 46

4.4 Averaging Correlator with Modified C/A Code .. 48

4.5 Characteristics of Using the Modified-Code Averaging Correlation 53

4.6 Proposed Architecture for Block Processing Using the Modified-Code Aver-

aging Correlator .. 57

Chapter 5... 60

FPGA Implementation of Acquisition and Tracking Processes 60

5.1 Introduction .. 60

5.2 GPS Block Processing Algorithm for Hardware Implementation 61

5.3 Required Components for the Implementation of the Averaging-Correlator

GPS Block Processing ... 63

5.3.1 Numerically Controlled Oscillator (NCO) 63

5.3.2 Carrier-Wipe-off .. 65

5.3.3 The Averager ... 66

5.3.4 Fast Fourier Transform (FFT) and Its Inverse 68

vii

5.3.5 Local Code Component ... 69

5.3.6 Complex Multiplier ... 72

5.3.7 Peak Searcher ... 76

5.3.8 Carrier Phase Estimator ... 78

5.3.8.1 Simple Digital ATAN... 79

5.3.8.2 Computing ATAN Function Using CORDIC.......................... 81

5.3.9 Time-Domain Serial Correlators .. 82

5.4 FPGA Implementation of GPS Block Processor 83

5.5 Overall Performance and Discussion of the Results 89

Chapter 6... 93

Summary, Conclusion, and Recommendations ... 93

6.1 Summary .. 93

6.2 Conclusion .. 95

6.3 Recommendations .. 95

References .. 98

Appendix A ... 106

The Ballynuey FPGA Board ... 106

Appendix B ... 108

Matlab Codes .. 108

B.1 Walsh Hadamard Based Convolution with PN sequences 108

B.2 Approximation of ATAN Function ... 110

B.3 Averaging Correlation Method ... 112

B.4 Modified-Code Averaging Method .. 113

Appendix C ... 114

VHDL Codes .. 114

viii

C.1 Walsh-Based Convolution ... 114

C.2 Modified-Code Averaging Correlator (Acquisition) 126

C.2.1 Carrier Wipe-Off and Downsampling .. 126

C.2.2 The FFT Block ... 134

C.2.3 Frequency Domain Multiplication ... 145

C.2.4 The IFFT Block ... 148

C.2.5 The Peak Searcher .. 148

C.3 Serial Correlators (Tracking-Like Estimator) 153

Appendix D ... 158

C Codes .. 158

D.1 C Code for Carrier Wipe-off and Averaging .. 158

D.2 C Code for FFT Block .. 162

D.3 C Code for Frequency Domain Multiplication 166

D.4 C Code for FFT Block .. 171

D.5 C Code for Peak Search .. 175

D.6 C Code for Tracking .. 177

Appendix E ... 180

FPGA Layout of the Mapped Designs ... 180

E.1 Modified-Code Averaging Correlator (Acquisition) 181

E.2 Serial Correlators of the GPS Block Processing 186

Abstract ... 187

ix

List of Tables

Table 5-1. Implementation Cost (Virtex Resources) ... 91

Table 5-2. Maximum Net Delays in (nsec) for Each Partition 92

x

List of Figures

Figure 2-1: Block Diagram of a GPS Receiver ...11

Figure 2-2: Code Tracking Using Delay-Lock-Loop (DLL) ...13

Figure 2-3: Carrier Tracking Using Frequency-Lock-Loop (FLL)13

Figure 2-4: Serial Search Technique ..16

Figure 2-5: Parallel Carrier-Frequency Search Technique ..17

Figure 2-6: FFT-Based Circular Correlator ...18

Figure 2-7: Parallel Code-Phase Search Technique ..18

Figure 3-1: FNT-Based Convolver ..25

Figure 3-2: Example for the Walsh-Based Convolution ..30

Figure 3-3: Hardware Implementation of the Generator of the Permutations S33

Figure 3-4: Implementation of the Inverse Permutations of S ...34

Figure 3-5: Implementation of Generator of Permutations Q ..35

Figure 3-6: 4-Point Walsh-Hadamard Butterfly Structure ..36

Figure 3-7: Implementation of 1024-Point WHT ...38

Figure 4-1: Zero-Padding Circular Correlation Problem ..47

Figure 4-2: C/A Code Auto Correlation Function ..49

Figure 4-3: C/A Code Auto Correlation Peak Shape ...49

xi

Figure 4-4: C/A Code and the Modified Code ..50

Figure 4-5: Modified-Code Winner Correlation Function ...51

Figure 4-6: Peak Shape of a Winner Correlation Function for the Modified-Code51

Figure 4-7: SNR Loss in 200-ms of a GPS Signal Using the Modified-Code Averaging

Method ..53

Figure 4-8: Code-Phase Error Using Modified-Code Averaging Method.54

Figure 4-9: Code-Phase Error Using 5000-Point FFT Method. ..55

Figure 4-10: Carrier-Phase Error Using Modified-Code Averaging Method56

Figure 4-11: Proposed Architecture for Block Processing Using Modified-Code Averaging

Method ..58

Figure 5-1: Acquisition Using Averaging-Correlator ..61

Figure 5-2: Typical NCO Implementation. ..64

Figure 5-3: Carrier Wipe-off Circuit ...65

Figure 5-4: Simplified Circuit for the Averager ..66

Figure 5-5: Local Code Generator ..70

Figure 5-6: Distribution of the Values of the FFT of the Local Modified-Code71

Figure 5-7: Efficient Implementation of a Complex Multiplier ..73

Figure 5-8: FPGA-Based Architecture of the Complex Multiplier74

Figure 5-9: The Implemented Complex Multiplier ...76

Figure 5-10: Simplified Diagram of the Peak Searcher ..77

xii

Figure 5-11: ATAN Function and Its Approximation ...80

Figure 5-12: ATAN Function’s Approximation Error ...81

Figure 5-13: Serial Correlators Based Process ..82

Figure 5-14: System Partitioned into Small Components ..84

Figure 5-15: Carrier Wipe-off and Averager (Downsampler) ...85

Figure 5-16: FFT Block ...85

Figure 5-17: Frequency Domain Multiplier Block ...86

Figure 5-18: Peak Searcher Block ..87

Figure 5-19: Estimator Block (Serial Correlators) ..88

Figure 5-20: FPGA Layout of the Mapped Design of the Averager and the Carrier Wipe-

off Components. ..89

Figure 5-21: Hardware-Based Results of the Averaging Correlation.90

xiii

List of Abbreviations

ADC: Analog to Digital Converter

ASIC: Application Specific Integrated Circuits

BPSK: Binary Phase Shift Keying

C/A: Coarse Acquisition

CDMA: Code Division Multiple Access

CORDIC: Coordinate Rotation Digital Computer

DLL: Delay Lock Loop

DSP: Digital Signal Processor

DS-SS: Direct Sequence-Spread Spectrum

EPL: Early Prompt Late

FFT: Fast Fourier Transform

FIR: Finite Impulse Response

FLL: Frequency Lock Loop

FNT: Fermat Number Transform

FPGA: Field Programmable Gate Array

GPS: Global Positioning System

IFFT: Inverse Fast Fourier Transform

IP: Intellectual Propriety

LFSR: Linear Feedback Shift Register

NCO: Numerically Controlled Oscillator

xiv

NTT: Number Theoretic Transform

PLL: Phase Lock Loop

PN: Pseudo Noise

PPS: Precise Positioning Service

PRN: Pseudo Random Noise

PSK: Phase Shift Keying

RF: Radio Frequency

SMS: Single Memory Setup

SNR: Signal to Noise Ratio

SPS: Standard Positioning Service

TOA: Time of Arrival

VHDL: VHSIC Hardware Description Language

VHSIC: Very High Speed Integrated Circuit

VLSI: Very Large Scale Integration

1

Chapter 1

Introduction

With the global positioning system (GPS) a user can get accurate position-

ing information at any location on Earth (French, 1996). GPS can accurately guide

airplanes by providing navigational information at any stage of takeoff, flight, and

landing (Kayton, 1997). GPS receivers perform many signal processing steps to

synchronize the received GPS signal with a local code to enhance the positioning

accuracy (Braasch, 1999). The time required to acquire satellite signals is the main

problem in most GPS receivers; therefore, many researchers have investigated dif-

ferent designs of such receivers.

Many algorithms for acquisition of GPS signals have been developed and

evaluated (Lin, 2000). Until now, the developed algorithms were not fast enough

to acquire GPS signals in real time (Tsui, 2000 and Molyneux, 2002). The slow

acquisition process is due to many reasons, one of them is the large computation

cost of the circular correlation. Computing the correlation function in the time-

domain is a very time-consuming process (Braasch, 1999). Performing the correla-

tion of two N-point sequences using frequency domain multiplication reduces the

2

calculations N/logN times, which is a significant reduction of the computation cost

and facilitates real-time GPS signal acquisition (Van Nee, 1991).

However, direct implementation of fast Fourier transform (FFT) based cir-

cular correlation on digital signal processor (DSP) or microprocessor does not sat-

isfy the requirements of real-time acquisition. The computation time is very long

due to the slow calculation of the required FFT. The processing technique in a DSP

or a microprocessor uses sequential executions of all the operations. This software-

based technique processes all the multiplications of the FFT one at a time, which

is not appropriate for real-time applications.

The speed of finding the correlation is affected, not by only the processing

technique but by the selected correlation method as well. The FFT based correla-

tion method requires approximately 3NlogN complex multiplications and 3NlogN

complex additions (Smith W., 1995). These complex operations are time consuming

and need to be simplified. A simpler correlation algorithm is preferable for fast

GPS signal acquisition. In addition, parallel operations may reduce the total acqui-

sition time making real-time processing feasible. A parallel processing implemen-

tation of signal acquisition is possible using a field programmable gate array

(FPGA).

With fast acquisition, the use of software-based GPS receivers can be

extended to additional real-time applications. Providing these information in real

time will lead to major advancement in many civilian and military applications.

3

The main challenging problem is to build a GPS receiver that has a simple,

fast, and non-computationally extensive algorithm which satisfies real-time

requirements.

The purpose of this dissertation is to tackle this problem. Specifically, algo-

rithms and field programmable gate array (FPGA) based architectures are devel-

oped for real-time acquisition and tracking of GPS signals. This dissertation uses

the parallel processing concept supported in the FPGA to replace the current

sequential processing platform. Also, this work investigates many algorithms to

reduce the computations required by the correlation function in order to shorten

the acquisition time. One algorithm uses an averaging correlation for GPS signal

acquisition that simplifies the implementation and reduces the required computa-

tions. This method is implemented in FPGA to benefit from the parallel processing

of this technology. The implemented architecture solves the presented problem of

the GPS receivers by significantly reducing the acquisition time. The performance

of this implementation enables real-time acquisition of one satellite in less than

one millisecond. Comparing this performance with the performance of the current

GPS receivers where the acquisition time is more than 1 second, the developed

architecture minimizes the acquisition time 1000 times. The presented solution is

very important since it extends the use of GPS to both civilian and military appli-

cations. As a result, precise and stable navigational systems are achievable.

Chapter 2 presents a necessary and brief background to provide enough

information to understand the problem. First, a brief description of a code division

multiple access (CDMA) system is provided. Then the global positioning system is

described. The GPS signal structure is also presented. The GPS receiver architec-

4

ture is presented along with its main processes. The main processes of the GPS

receiver, signal tracking and acquisition, are explained. Different acquisition

search techniques are also presented along with their advantages and disadvan-

tages.

Chapter 3 presents two algorithms to replace the necessity of the FFT com-

putations to calculate the correlation function. The presented algorithms, use

transforms that require simpler operations than the FFT. These transforms are

the Fermat number transform (FNT) and the Walsh Hadamard transform (WHT).

Descriptions of both algorithms are presented with examples to show how the cor-

relation functions are computed. The possibility of using these algorithms in the

GPS signal acquisition is discussed.

Chapter 4 describes an averaging correlation method that re-sizes the 5000-

point correlation function to the size of the C/A code, which is 1023-points. The

averaging correlation method is inspected and compared against the regular cor-

relation method. The effects of the averaging method on detection and misdetec-

tion probabilities are also provided. The limitation of implementing the averaging

method is explained. Different algorithms were suggested to ease the implementa-

tion of this method in an FPGA. One fast and easy-to-implement algorithm for

averaging correlation is developed and explained in detail. The algorithm is called

modified-code averaging correlation based GPS block processing. The advantages

and the limitations of using the developed algorithm for block processing of the

GPS signals are also presented in this chapter.

Chapter 5 provides the implementation of the developed algorithm. Each

component implementation is described. Circuits for those components are pro-

5

vided. The whole system was partitioned and implemented to fit into a small

FPGA. The size, speed, and accuracy of the implemented circuits are verified for

real-time applications. Full design analysis is also provided in Chapter 5.

Chapter 6 presents a summary, conclusion, description of future work and

recommendations. First, the summary of this work is presented. It briefly

describes the problem, the developed solutions and the performance. The conclu-

sion is presented next. The accomplished improvements and advantages in the

acquisition and the tracking implementations are stated. Possible future work and

recommendations are then suggested.

The FPGA platform used during the design development and testing is

described in Appendix A. The Matlab, VHDL, and C codes that were developed

during this work are presented in Appendices B, C, and D. The FPGA layout (of the

mapped designs) are shown in Appendix E.

6

Chapter 2

Background

2.1 Introduction

Chapter 2 presents an overview of the Global Positioning System (GPS).

However, an important related issue, the telecommunication techniques involved

with signal processing, needs to be discussed prior to the presentation of the GPS.

These techniques include a description of the carrier signal, navigation data, sat-

ellite codes, and modulation techniques. Already existing communication systems

that are useful for GPS transmission are presented first. The GPS system and its

signal structure are discussed next. The final section is an overview of the main

GPS signal processes.

2.2 Spread Spectrum and Code Division Multiple Access

A spread spectrum communication system uses larger frequency bandwidth

than is needed to transmit information. Therefore, the transmission bandwidth is

much larger than the information bandwidth (Peterson, 1995). The transmission

bandwidth is found by using a spreading signal, which is independent of the infor-

mation data. Military applications have used the spread spectrum techniques for

7

more than fifty years because it offers a system that rejects intentional and unin-

tentional interference (Gibson, 1993). Additionally, a spread spectrum delivers

multi-user random access and a high resolution range. These traits were a catalyst

for commercial applications switching to spread spectrum communication tech-

niques in the last decade. These applications include mobile radio applications,

satellite communications, and positioning systems. The most widely used spread

spectrum is the direct sequence spread spectrum (DS-SS) (Dixon, 1994). DS-SS is

achieved by multiplying a radio frequency (RF) carrier and a pseudo-random noise

code (PRN code). Every user or transmitter uses a different code which is orthogo-

nal to the codes of the other users or transmitters. This method is called the Code

Division Multiple Access (CDMA) (Hassan, 1998).

In the transmitter, a PRN code is modulated with the information using

phase shift keying (PSK) techniques. The PRN-modulated-information signal is

then mixed with the carrier. Therefore, the RF signal is substituted with a wide

bandwidth signal with the spectrum equivalent to a noise signal. The demodula-

tion process is then simply carried out by multiplying a local copy of the PRN mod-

ulated carrier with the incoming signal. The local copy of the code and the carrier

must be synchronized in order to demodulate the signal (Cook, 1983). A peak is

achieved when the two signals are aligned. The correlated signal is then filtered

and sent to a PSK demodulator.

A simple form of direct sequence spread spectrum (DS-SS) uses binary

phase shift keying (BPSK). BPSK modulation changes the carrier phase by 180

degrees if the PRN code chip is -1. Otherwise, the carrier phase is not changed.

More details pertaining to these techniques can be found in (Proakis, 1995).

8

2.3 Global Positioning System

A Global Positioning System (GPS) is a satellite-based system. It uses the

concept of one-way time-of-arrival (TOA) ranging. The range is computed by mul-

tiplying the speed of light by the amount of delay that a GPS signal needs to travel

from the satellite (or the transmitter) to the user (or the receiver) (Braasch, 1999).

Calculating a three-dimensional position requires utilizing three satellites. An

additional satellite is necessary to solve for the receiver clock bias (Misra, 2001).

Since the US military is considered a global force, the GPS system is designed to

provide accurate positioning information anywhere in the world 24 hours a day.

The GPS system uses 24 satellites that are placed in six orbital planes with four

satellites in each plane (Kaplan, 1996 and Parkinson, 1996).

The transmitter in each satellite sends the navigation data along with rang-

ing codes using the CDMA scheme. All GPS satellites use two frequencies for nav-

igation purposes, known as L1 and L2. L1, with a carrier frequency of 1575.42

MHz, is used for both civilian (standard) and military (precise) positioning ser-

vices, SPS and PPS respectively. Whereas L2, which uses 1227.6 MHz signal, is

primarily used for military service (Kaplan, 1996 and Parkinson, 1996). L2 is used

in 90% of all surveying receivers (civilians). Civilians have access to the L2 carrier,

but not to the encrypted Y-code.

2.4 GPS Signal Structure

Each GPS satellite has a unique PRN code that is orthogonal to the codes of

other satellites. This code is called the coarse acquisition code (C/A code). The C/A

9

code has a rate of 1.023 MChips/s with a code period of 1ms. The navigation data

is binary and has a rate of 50bits/s. This data is sent using a direct sequence spread

spectrum and CDMA techniques. The navigation data is bi-phase shift keyed onto

the carrier signal and the C/A code is also bi-phase shift keyed onto the resulting

signal. A simplified model for the transmitted signal is written as:

where, is the amplitude of the signal.

is the C/A code for satellite number i

is the navigational data

 is the L1 carrier frequency which is 1575.42 MHz

The C/A code is a gold-code type, which has noise-like auto-correlation and

cross correlation characteristics. Therefore, identical codes at the exact same chip

phase are necessary to produce the maximum correlation peak, otherwise they are

not correlated. Each satellite’s unique C/A code is used to distinguish the satellite

signals from each other. The C/A code phase of the received satellite signal pro-

vides important ranging information. To calculate the range from the satellite to

the receiver, one can multiply the code phase difference (which is the time a signal

spends between satellite and receiver) by the speed of light (Braasch, 1999 and

Kaplan, 1996).

At the receiver, the signal changes due to the Doppler effect and noise. A

simplified model of a received GPS SPS signal is:

where is the received GPS SPS signal

 2-1. Si t() AiCi t()D t()sin 2πft φo+()=

Ai

Ci t()

D t()

f

Ri t()

10

 is the time delay (the time required for the signal to travel to the receiver)

 is the carrier frequency offset (due to doppler and LO frequency uncer-

tainties).

 is the carrier phase offset. (due to oscillator, sampler, and hardware)

n(t) is a white noise.

For a more accurate model of the received signal read (Kaplan, 1996 and

Parkinson, 1996).

2.5 GPS Receiver Architecture

The design of a digital GPS receiver is divided into two parts. One part is

the front-end component which consists of an antenna, filters, amplifiers, and a

down conversion step. The signal is then digitized by an analog to a digital con-

verter (ADC). After the signal is digitized, digital signal processing is performed in

the second part of the receiver. The second part of a GPS receiver is the base-band

processor of the digitized GPS signal (Tsui, 2000). The base-band processor is

responsible for many signal processing steps that include, but are not limited to,

PRN code synchronization, demodulation, and range calculation. Figure 2-1 shows

a block diagram of a GPS receiver. This research will only investigate the base-

band processing aspect of the GPS software-radio. Thus, the various designs of the

front-end will not be discussed in this dissertation. However, a novel implemented

design of a GPS receiver front-end can be found in (Akos, 1997 and Akos, 1996).

 2-2. Ri t() AiCi t ∆t+()D t ∆t+()sin 2π f ∆f+()t ∆φ+() n t()+=

∆t

∆f

∆φ

11

The base-band still needs major advances and new algorithms to speed up

the position calculation for real-time applications. Such applications are currently

under intense research to determine how much integration with the available GPS

services can be accomplished. Navigational systems will benefit from being able to

have high speed calculations and quick updates regarding their position and direc-

tion.

Therefore, a description of the major and necessary base-band processes of

a GPS receiver is presented next. The most important and critical signal process-

ing steps are the acquisition and the tracking processes. Acquisition is sometimes

referred to as a search or detection process. It searches for the satellite code and

for its code phase and the carrier frequency offset. Whereas, tracking is sometimes

referred to as synchronization. Synchronization of the code and the carrier are nec-

essary for a GPS receiver to be able to read the navigation data (Braasch, 1999).

Figure 2-1: Block Diagram of a GPS Receiver

Front-End

Pre-amplification

Filtering

Down-conversion

ADC

Digital Signal Processing

Acquisition

Tracking

Demodulation

Position Solution

Antenna
Front-End

Pre-amplification

Filtering

Down-conversion

ADC

Digital Signal Processing

Acquisition

Tracking

Demodulation

Position Solution

Antenna

12

Moreover, acquisition and tracking processes provide information about detected

satellites, pseudo-ranges, and precise carrier frequencies. The position computa-

tion becomes a straight forward problem in these cases.

2.5.1 Signal Tracking

As was previously stated, tracking needs acquisition information to be able

to start functioning. Signal tracking is the process that a receiver does all the time

to synchronize or lock-in the GPS signal (Tsui, 2000). Therefore, a description of

this process is presented before the description of the acquisition process. If the

acquisition estimations are available, tracking processes (or loops) synchronize the

local generated code and carrier with the received signal. Tracking loops then

remove the carrier and the code to read the navigational data. They also provide

critical timing information used in the position solution.

One of the tracking loops is the code tracking loop. The code tracking loop

is important due to its role in the range calculation. This loop generates a synchro-

nized copy of the C/A code to remove the spread spectrum modulation. A delay-

lock-loop (DLL) can be used for code tracking. Figure 2-2 shows a code tracking

loop using a DLL architecture.

The other tracking loop is the carrier tracking loop. This loop tracks either

the phase or the frequency of the incoming signal. It is also responsible for decod-

ing the data encoded on the carrier. Frequency and/or phase lock loops are used for

carrier tracking (Uijt, 1998). A FLL-based carrier tracking loop is shown in Figure

2-3.

13

Figure 2-2: Code Tracking Using Delay-Lock-Loop (DLL)

Local
Carrier
NCO

Local Code Generator

Accumulate &
Dump

Accumulate &
Dump

Accumulate &
Dump

Code
Tracking Loop
Discriminator

Early Prompt Late

From Carrier-Tracking To Carrier-Tracking
Q-phase is omitted

for drawing
simplicity

sin

I-phase

I L

I P

I EDigitized
GPS

Signal

Receiver
Processor

Local
Carrier
NCO

Local Code Generator

Accumulate &
Dump

Accumulate &
Dump

Accumulate &
Dump

Code
Tracking Loop
Discriminator

Early Prompt Late

From Carrier-Tracking To Carrier-Tracking
Q-phase is omitted

for drawing
simplicity

sin

I-phase

I L

I P

I EDigitized
GPS

Signal

Receiver
Processor

Figure 2-3: Carrier Tracking Using Frequency-Lock-Loop (FLL)

Local code
(prompt) local carrier

NCO

Accumulate

& Dump

Accumulate

& Dump

From Code-Tracking To Code -Tracking

I-phase

Digitized
GPS Signal

Q-phase

sin cos

Carrier
Tracking Loop
Discriminator

Receiver
Processor

Local code
(prompt) local carrier

NCO

Accumulate

& Dump

Accumulate

& Dump

From Code-Tracking To Code -Tracking

I-phase

Digitized
GPS Signal

Q-phase

sin cos

Carrier
Tracking Loop
Discriminator

Receiver
Processor

14

A code-tracking loop requires a precise carrier frequency or phase. Whereas,

a carrier-tracking loop requires precise code phase estimation. Therefore, the two

tracking loops are coupled in (Akos, 1997 and Uijt, 1998). These techniques are

well known and have been studied extensively. These tracking loops were used in

GPS receivers. Their characteristics and performances were presented in detail in

(Braasch, 1999 and Uijt, 1998).

Tracking loops require initial estimations of the code phase and the carrier

frequency. This is usually the task of the acquisition process. Also, when a tracking

loop loses lock at any time, a re-acquisition process is required. The next section

presents the acquisition process and some of its search methods.

2.5.2 Signal Acquisition

In a CDMA system, when the received signal is multiplied by a synchro-

nized version of the PRN code, the signal is despread. Its power increases over the

noise floor. Therefore it appears as a correlation peak. However, in order for a

receiver to synchronize to the received signal, an initial estimation of the code and

carrier is calculated. The acquisition process is the first process required by the

GPS receiver (Kaplan, 1996). The acquisition process conducts a three dimensional

search. The three elements (or search bins) are the available C/A code, the code

phase, and the carrier frequency offset. If we assume that a GPS receiver knows

which satellite code it is searching for, then a 2-D search is required (Ward, 1996).

One dimension is the code phase in range of 1,023 chips. The code phase res-

olution is half of a code chip. This resolution is required since the correlation peak

is considered a true peak only if the code phase is within a half chip. The second

15

search dimension is for the carrier frequency. Its range is ±10kHz centered at an

intermediate frequency (IF) of 1.25MHz. The resolution of the carrier frequency is

typically 667Hz for 1-ms integration (Ward, 1996). Searching with 500Hz steps can

be used (Uijt, 1998).

Therefore, in a GPS receiver, this search detects the correlation peak and

compares it to a certain threshold to determine whether a satellite was detected or

not. When a satellite is detected the auto-correlation result provides a rough esti-

mation of the code phase and the carrier frequency. The acquisition process should

provide this data. However, if the search process does not locate a peak that passed

the detection threshold, a satellite is considered “not-acquired” and the search con-

tinues.

These searches are very slow especially when the GPS receiver does not

know anything about its last position and the satellites’ orbits. When this occurs,

the receiver searches all of the satellites in a certain order. This procedure is called

a “cold start.” Whereas, if the receiver has knowledge regarding a previous position

and an approximation of the satellites’ orbits, this data aids the search process.

This is known as a “warm start.” Many different search algorithms were investi-

gated and tested in (Lin, 2000 and Akos, 1997).

A serial search can be done by evaluating each unknown until a correct com-

bination of the parameters is achieved. If there is no correct combination of carrier

frequency and code phase, the receiver searches for a different PRN code. Figure

2-4 shows a simplified diagram of the serial search technique. The disadvantage of

this search is that it might necessitate exploring all of the combinations of the 2-D

search plane serially. Thus, it tests 2,046 half chips on the code phase dimension

16

for 21 carrier frequency search steps (bin resolution= ±500Hz). This means search-

ing approximately 40,000 combinations, which is time consuming (Akos, 1997 and

Uijt, 1998).

The acquisition process time is shortened when the search dimensions can

be searched in parallel. Consider that the incoming signal is multiplied by a local

copy of the PRN code, assuming that the correct code phase is utilized, a fast fou-

rier transform (FFT) is performed to the signal after wiping off the code (see Figure

2-5). The acquisition is complete if there is a peak in the output of the FFT after

its magnitude is squared. This means the search is performed in parallel for all of

the frequencies. In the worse case scenario, the FFT is repeated 2,046 times to

cover all of the code phase bins (Akos, 1997 and Uijt, 1998). However, the calcula-

tion of one FFT requires much more effort than one serial search.

Figure 2-4: Serial Search Technique

Accumulate
& Dump

Code
Generator

carrier
generator

more code
bins?

more freq.
bins?

Acquisition
Result

failed acquired

>
threshold

N

N

N

Y

Y

Y

Digital
IF Accumulate

& Dump

Code
Generator

carrier
generator

more code
bins?

more freq.
bins?

Acquisition
Result

failed acquired

>
threshold

N

N

N

Y

Y

Y

Digital
IF

17

Since the total number of code phase search bins (2,046) is greater than the

frequency search bins (21), then searching the code phase dimension in parallel

will speed up the acquisition process. This is carried out by using the frequency

domain circular correlation. The circular correlation is performed by using the FFT

convolution property. FFT-based circular convolution is achieved by multiplying

the two sequences (or signals) in the frequency domain. Equation 2-3 shows how

the convolution is calculated using the FFT/IFFT functions.

Conjugate in frequency domain is similar to signal reversal in time domain.

Therefore, circular correlation is implemented in the same fashion by conjugating

one signal in the frequency domain before the multiplication. Equation 2-4 shows

the FFT-based circular correlation formula.

Figure 2-5: Parallel Carrier-Frequency Search Technique

¦ ¦ 2

C ode
G enerator

mo re
code bins

?

Acquisition
R esu lt

acquired

peak
detected

?

N

N Y

Y

D igital
IF

FFT

failed

 2-3. y IFFT FFT x1() FFT x2()×()=

18

A block diagram of the FFT-based correlator is shown in Figure 2-6.

A parallel code phase search diagram is shown in Figure 2-7. This type of

search greatly minimizes the search time since it evaluates all of the code phases

in one single search cycle. Therefore, it does the FFT/IFFT correlation a total of 21

times in the worse case scenario (Van Nee, 1991 and Coenen, 1992).

 2-4. y IFFT FFT x1() conj FFT x2()()×()=

Figure 2-6: FFT-Based Circular Correlator

Conj. FFT

FFT IFFT
a

b

A

B B*

A×B*

a b

Conj. FFT

FFT IFFT
a

b

A

B B*

A×B*

a b

Figure 2-7: Parallel Code-Phase Search Technique

C arrier
G enerator

m ore
freq. b ins

?

Acquisition
R esu lt

acqu ired

peak
detected

?

N

N Y

Y

D igital
IF

FF T-based
C ircu lar

C orrelator

failed

C ode
G enerator

C arrier
G enerator

m ore
freq. b ins

?

Acquisition
R esu lt

acqu ired

peak
detected

?

N

N Y

Y

D igital
IF

FF T-based
C ircu lar

C orrelator

failed

C ode
G enerator

19

2.6 Block Processing

In the previous section, most of the presented acquisition search methods

and the tracking loops are processed sequentially. This means that the samples of

the received signal are treated sample by sample. Processing the data sequentially

has some disadvantages. One disadvantage is that the receiver may lose the lock

of signal due to anomalies (Feng, 1999). Tracking the lost signal needs a re-acqui-

sition step. This problem is considered critical in some conditions such as weak

signal tracking or in high-dynamic applications.

One possible solution was introduced in (Feng, 1999). The authors pre-

sented a method based on block processing of the data. Block processing has a

better performance than the sequential processing. The block size is usually equal

to the length of the C/A code. Thus, the block size is 1-ms. If a weak signal detection

is desired then a multiple of this size can be used (Lin, 2001). 20-ms block size is

used for weak signal processing. Block addition is one of the block processing tech-

niques that helped in weak signals detection (Uijt, 1998). The FFT-based correla-

tor is also employed with block processing to have a fast search method. More

information about the GPS block processing can be found in (Feng, 1999 and Tsui,

1997).

2.7 Advantages and Disadvantages of the Current Signal
Processing

The block processing method was implemented in software in (Feng, 1999).

It is easier to implement algorithms in software because a designer can modify the

20

algorithms at any stage of the design development. The important issue in the

above reference was the validation of the algorithm and the study of the signal

quality monitoring system. Therefore, the delay of software processing was not an

issue. However, since the acquisition of the GPS signal is the most time consuming

process, the hardware implementation is a necessary step to shorten the acquisi-

tion time. Application specific integrated chips (ASICs) have been used in GPS

receivers for a long time. They complete the sequential search quickly compared to

the software based implementation.

There are two primary sources of trouble connected with slow acquisition.

One of them is related to the large computation count in the search algorithm. This

can be seen in the FFT-based convolution algorithm. While it is a fast search

method, it requires the computation of two FFTs and one IFFT. These functions

require a large number of multiplication and addition operations for the 1ms data.

Thus, the correlation function takes most of the computation time in the GPS

receiver (Gunawardena, 2000). Therefore, investigating different methods for con-

volution (or correlation) that require less computation time is an important

research topic. Using parallel processing concepts along with digital design tech-

niques in a reconfigurable platform such as a field programmable gate array

(FPGA) would be the optimum and easily available solution. The advantages of

using FPGAs are clear since they provide flexibility of software and performance

of ASIC that shorten the acquisition time.

This chapter introduced the GPS system and the current GPS receiver

implementations. The required processes for a GPS receiver were introduced. They

are the acquisition and the tracking processes. Current search techniques were

21

presented in the chapter. Block processing technique which replaces the ordinary

acquisition process and tracking loops was explained. The problems and the chal-

lenges of designing a GPS receiver were presented. Two primary and challenging

tasks will be covered in this work. One task is the development of a new fast algo-

rithm for acquisition and especially for performing fast circular correlation. The

development of such algorithms is discussed next. This is followed by a fast acqui-

sition method and its effect on detection probability in chapter 4. The other chal-

lenging task is the hardware implementation of such a method in an FPGA. The

implementation of the method in the hardware is presented in Chapter 5.

22

Chapter 3

Convolution Algorithms Using Real

and Binary Transforms

3.1 Introduction

Signal processing applications usually require complex and numerous oper-

ations. Therefore, fast and easy-to-implement algorithms have been sought by

research groups and industries to cope with the advancement in the very large

scale integrated circuits (VLSI) technology. Fast Fourier transforms (FFTs) have

gained a tremendous amount of appreciation. They were used in most of the fast

algorithms for DSP applications. Despite the fact that FFTs are efficient, they still

require a large amount of processing time and a large silicon area when the size of

the required FFTs is large. This is due to the complex multiplication computations

that the FFTs have to perform.

This chapter investigates two other transforms for their use in calculating

circular correlation or convolution. The next section presents a real transform

called Fermat number transform (FNT). The FNT-based convolution method is

presented along with the method limitations. Another useful transform is pre-

23

sented later in the chapter. It is a binary transform and is called the Walsh Had-

amard transform (WHT).

3.2 Fermat Number Transform and Convolution

3.2.1 Fermat Number Transform

Number theoretic transforms (NTTs) are discrete transforms defined over

finite rings. All the arithmetic in this finite ring is modulo the number of elements

in the finite ring (Agarwal, 1974). Choosing the modulus as a Fermat number Ft

makes the NTT a Fermat number transform (FNT). Fermat number transform

(FNT) is defined as

where is the sequence length, is a root of unity of order , is the

Fermat number or the modulus describing the finite ring (Agarwal, 1974). Similarly

the inverse Fermat number transform is defined as

The FNT can be implemented as a butterfly structure of power-of-two where

 as presented in (Li, 1990). In this case, FNT changes to a simpler transform.

This transform was defined by Rader and was called Rader transform (Rader, 1972

 (3-1) X k() x n()α kn

n 0=

N 1–

∑〈 〉Ft……k 0 1 … N 1–, , ,==

Ft 2b 1 b,+ 2t= =

N α N Ft

 (3-2) x n() N 1– X k()α k– n

k 0=

N 1–

∑〈 〉Ft……k 0 1 … N 1–, , ,==

α 2=

24

and Agarwal, 1974). Only addition, subtraction, and shift operations are used to

implement this FNT. All these operations are simple operations for digital imple-

mentation. When they are compared to the complex operations in FFT butterflies,

the advantages of using FNTs are clear.

Fermat number transform (FNT) is one of the candidate transforms for

speeding up the correlation calculations since it only requires additions and logic

shifts. Logic shift operation is a replacement of a multiplication by a power-of-two

number. Therefore, FNTs do not need multiplications. The FNTs can be easily

implemented in a butterfly structure. Also, the convolution property is available in

the FNTs without round-off errors (Turimella, 1991). FNTs were used to imple-

ment linear and circular convolutions, FIR filters, and other important DSP appli-

cations. Since the circular correlation is the core of the GPS acquisition process, its

implementation using FNTs may reduce the acquisition time. Therefore, descrip-

tions of the convolution algorithm and the architecture of the FNT-based convolver

are presented next.

3.2.2 Convolution using Fermat Number Transform

A FNT-based convolution algorithm is shown in Figure 3-1. This architec-

ture is similar to the well-known FFT-based convolution (Arambepola, 1989 and

Xu, 1992). The two sequences are changed to transform domain, multiplied, and

then changed back to time domain. This way, a convolution is performed as a mul-

tiplication in the Fermat transform domain.

25

To convolve two sequences x=(2,-2,1,0) and h=(1,2,0,0), F2 =17 is used to

avoid any overflow for N=4 (Agarwal, 1974). The transform matrix is

 (mod 17) and therefore the matrix of the inverse transform is

Figure 3-1: FNT-Based Convolver

FNT

FNT IFNT
a

b

A

B

A×B
a b*

FNT

FNT IFNT
a

b

A

B

A×B
a b*

T

1 1 1 1
1 4 42 43

1 42 44 46

1 43 46 49

1 1 1 1
1 4 1– 4–
1 1– 1 1–
1 4– 1– 4

mod17()

1 1 1 1
1 4 16 13
1 16 1 16
1 13 16 4

mod17()= = =

4 1– 4–=

T 1– 4 1–

1 1 1 1
1 4 1– 4 2– 4 3–

1 4 2– 4 4– 4 6–

1 4 3– 4 6– 4 9–

4

1 1 1 1
1 4– 1– 4
1 1– 1 1–
1 4 1– 4–

mod17()– 13

1 1 1 1
1 13 16 4
1 16 1 16
1 4 16 13

mod17()= = =

26

The transforms of the input sequences are

Thus, . Y = (3, 90, 80, 90) = (3, 5, 12, 5) mod 17

Taking the inverse transform of Y, y = (2, 2, 14, 2) mod 17. Integers are assumed to be

within -8 to +8. Therefore, y = (2, 2, (14-17), 2) = (2, 2, -3, 2), which is the correct answer

for the convolution.

Similarly longer sequences can be convolved efficiently. The longer the

input sequences, the longer the word size required. This means the numbers

should be represented by a large number of bits. The addition circuits become

bigger and the routing becomes a problem. Therefore, using FNTs to implement

correlation of long sequences such as the GPS C/A code is not efficient, if not impos-

sible (Dimitrov, 1994 and Selesnick, 1998 and Proakis, 2002).

Since the FNTs are not useful for the implementation of the C/A code corr-

elator, then another transform must be tested. Each FFT (or IFFT) in the FFT-

based correlator requires NlogN complex multiplications and NlogN complex addi-

tions. Therefore, this algorithm requires approximately 3N(logN)+N complex mul-

tiplications and 3N(logN)+N additions. A binary transformation (such as the

X Tx

1 1 1 1
1 4 16 13
1 16 1 16
1 13 16 4

2
15
1
0

18
78

243
213

=×=

1
10
5
9

mod17()= =

H Th

1 1 1 1
1 4 16 13
1 16 1 16
1 13 16 4

1
2
0
0

3
9

33
27

=×=

3
9

16
10

mod17()= =

Y X H×=

27

Walsh transform) is suggested since it requires only NlogN additions and subtrac-

tions. Finding a method to perform the convolution using only Walsh transforms

and then implementing it using parallel processing units such as those in the

FPGAs will definitely speed up the acquisition process.

3.3 Convolution and Walsh Transform

3.3.1 Introduction

This section presents a Walsh-based convolution algorithm. First, the

Walsh transform is briefly presented. The similarity between the Walsh transform

and the PN sequences is then described. The Walsh-based convolution algorithm

is provided. This algorithm requires functions that need to be implemented effi-

ciently in hardware to build a very fast convolver. The hardware implementation

of the main functions are presented next. A discussion of the design and its results

is provided. Evaluations of the design performance, based on clock frequency and

system latency, are presented.

3.3.2 Walsh Transform and PN Sequences

The Walsh transform is an orthogonal binary matrix. Its elements contain

1’s and 0’s, which are (-1) and (+1) in real number representation (Zehavi, 1995).

This means that the required operations are addition and subtraction. The Had-

amard transform is a Walsh transform and its matrix can be written as

28

For n=8, the Walsh Hadamard matrix is

The Walsh function can be transformed into a set of different phase shifts

of a single PN sequence using suitable permutations (Cohn, 1977 and Lempel,

1979). This can be accomplished if the first row and the first column of a Walsh

matrix are omitted. Reordering the remaining rows and columns using a specific

permutation method will produce a different matrix. The produced matrix has a

PN code in the first row and all the shifted copies of this code comprise the remain-

ing rows (Budisin, 1989). This is a useful property since all the PN code shifts are

available in one matrix. If a received signal contains this PN code, then it is clear

that multiplying the signal by the obtained matrix will generate a vector that has

a large multiplication value with only one of the PN shift copies (or Walsh rows).

This means that the Walsh transform can be used to implement a convolution with

a PN sequence (Budisin, 1989).

Hn
Hn

2

Hn
2

Hn
2

H n–
2

=

H8

1 1 1 1 1 1 1 1
1 1– 1 1– 1 1– 1 1–
1 1 1– 1– 1 1 1– 1–
1 1– 1– 1 1 1– 1– 1
1 1 1 1 1– 1– 1– 1–
1 1– 1 1– 1– 1 1– 1
1 1 1– 1– 1– 1– 1 1
1 1– 1– 1 1– 1 1 1–

=

29

3.3.3 Convolution Algorithm

The proposed convolution algorithm requires two additional steps in order

to use the Walsh transform to implement a convolution. The complete procedure,

which includes these two steps, is as follows:

• The input sequence must be permuted to simulate the reordering of the rows.

• The Walsh function is applied.

• The results need to be permuted back to correctly reorder the convolution values to

their original locations.

The two steps of permutation processes require two different permutation

vectors, S and C (Budisin, 1989). For example, a PN code with a period of 7 is used

to illustrate the algorithm. This example is presented in detail in (Budisin, 1989)

and is illustrated on Figure 3-2. The PN code is generated using a 3-bit linear feed-

back shift register (LFSR). An 8-point Walsh transform is used for the 7 bit-length

PN code. After omitting the first row and the first column, the Walsh transform

becomes a 7-point transform. For the PN code such as (1001110), the input permu-

tation S is generated by reading the contents of the LFSR bits every clock cycle.

Initially the LFSR has “001” which means “1”. One clock cycle later, the contents

of the LFSR becomes “100” which means “4”. Continue reading the LFSR contents

until the code repeats itself. The generated S permutation values therefore become

(1,4,6,7,3,5,2) as shown in Figure 3-2. By sorting these values and keeping in mind

their original order, the inverse permutation values of S can be computed. For

example sorting S requires that the reordering of its values lead to (1,2,3,4,5,6,7).

In order to have this reordering, the S values need to be reordered such as the first

30

value is the same, the second value comes from the last location (which is 7), and

continues until the last element of S. The generated inverse permutation of S is

then (1,7,5,2,6,3,4). The output permutation Q, or C as in (Budisin, 1989) is

(1,2,4,5,7,3,6) as shown in Figure 3-2. The hardware generation of this permuta-

tion can be performed using a one-to-many LFSR as described in the next section.

The resulting sequence Q can be obtained from LFSR shown in Figure 3-2. To per-

form the correlation using this method, the input sequence is first permuted by the

inverse permutation of S.

Figure 3-2: Example for the Walsh-Based Convolution

n : 1 2 3 4 5 6 7
X0(n) : 1 0 0 1 1 1 0
X1(n) : 0 0 1 1 1 0 1
X2(n) : 0 1 1 1 0 1 0
X3(n) : 1 1 1 0 1 0 0
X4(n) : 1 1 0 1 0 0 1
X5(n) : 1 0 1 0 0 1 1
X6(n) : 0 1 0 0 1 1 1

1 2 4 5 7 3 6
1 0 0 1 1 1 0
0 1 0 0 1 1 1
1 1 0 1 0 0 1
0 0 1 1 1 0 1
1 0 1 0 0 1 1
0 1 1 1 0 1 0
1 1 1 0 1 0 0

1
4
6
7
3
5
2

1
4
6
7
3
5
2

1
4
6
7
3
5
2

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

WT
0
1
2
3
4
5
6
7

0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

WT
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 0
0 0 1 1 1 1 0 0
0 1 1 0 1 0 0 1

WT
0
1
2
3
4
5
6
7

S Q

+

Q2 Q1 Q 0

+

Q2 Q1 Q 0

Generator of S permutations Generator of Q permutations

1001110… 1 0 0

LFSR

1001110… 1 0 01 0 0

LFSR

31

Suppose that the original and the received PN codes are as follows,

PN code: (1 0 0 1 1 1 0)

PND code: (0 1 1 1 0 1 0) (delayed code)

Using inverse permutations of S we will get

PND (S-1) = X= (0 0 0 1 1 1 1)

where S-1 = (1 7 5 2 6 3 4),

and Q = (1 2 4 5 7 3 6)

The convolution of PN code with PND is obtained by computing Walsh

transform of X. Since the Walsh transform row is larger than the sequence by one,

the permuted sequence must be appended with (0) at the beginning of the

sequence. After that, the Walsh transform is applied as follows.

Y=X.W= (-1 -1 -1 7 -1 -1 -1)

The results are not in the order they should be in Qs compared to the con-

volution results. Thus, the output should be reordered based on the permutations

of Q. Therefore we use the output permutation sequence to obtain the final value

of convolution as follows:

Y(Q) = (-1 -1 7 -1 -1 -1 -1)

where W =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

32

This result gives the correct estimate of shift (2) with respect to the original

PN sequence.

This method requires only NlogN real additions and/or subtractions. In

comparison, the FFT-based method requires 3 FFTs and N complex multiplications

and N complex additions. If the FFT of the PN code was stored in the computer

memory, then only 2 FFTs plus N complex multiplications and additions are

required with the incoming signal. This is approximately 2NlogN+N complex mul-

tiplications and 2NlogN+N complex additions, which is approximately 6NlogN real

multiplications and 14NlogN real additions (Smith, 1995). Therefore, the Walsh-

based correlation method is preferred especially in real-time applications where

the acquisition process needs to be very fast. More details about the Walsh-based

convolution algorithm and its in-depth theory can be found in (Budisin, 1989 and

Sari, 1995).

3.3.4 Hardware Implementation

The permutation generators and the Walsh transform are the primary steps

that need to be implemented carefully. The permutations usually can be stored in

lookup tables (LUTs). This type of implementation is not efficient since it will

require additional hardware to store and time to retrieve. Therefore, the permuta-

tions need to be generated on the fly whenever possible in order to minimize the

required silicon area and to speedup the permutation process. However, the imple-

mentation of a Walsh transform in an FPGA has two requirements. A Walsh trans-

form needs to use the parallel processing method as much as possible and chose

optimum smaller transform block sizes for building very large transforms.

33

3.3.4.1 Permutation Generators

PN sequences are generated using linear feedback shift registers (LFSRs)

(Golomb, 1967). If the permutations are related to the state of the LFSR, then the

permutations are generated from the same LFSR. This is true for permutations S,

which are the decimal values of the binary bits in the register. When initializing

the LFSR with (001) for the previous example, the current state and the next six

states (or values) of the register will be (001, 100, 110, 111, 011, 101, 010), or (1, 4,

6, 7, 3, 5, 2) in decimal which are the required permutations sequence of S. There-

fore, the permutations S can be generated easily. A hardware implementation of

the generator of the permutations S is shown in Figure 3-3. The RAM and the

counter are only needed when storing permutations is desired. However, in the cor-

relation algorithm, only the inverse permutation of S is used. Therefore no hard-

ware is used to store S.

Figure 3-3: Hardware Implementation of the Generator of the Permutations S

Address 3

D ata In

RAM
W A

+

Y (2:0) 3

3-bit
C ounter

LFSR

Address 3

D ata In

RAM
W A

+

Y (2:0) 3

3-bit
C ounter

LFSR

34

The hardware implementation of the generator of the inverse permutations

S is shown in Figure 3-4. The only change made to Figure 3-3 is that the LFSR is

used to deliver a RAM address while the counter output is fed to RAM as data in.

As previously mentioned, storing permutations is not efficient. However, since

generating inverse permutations of S is required only once in the beginning of the

design, this implementation is accepted. Permutations Q, are related to the con-

tent of the LFSR. Each PN code has its unique permutation of LFSR bits to produce

Q. Reordering the content of the LFSR (i.e. b2b1b0 becomes b2b0b1) will generate

the necessary Q sequence. Whereas, reordering the bits of the content of the LFSR

can be implemented using one-to-many type of LFSR as shown in Figure 3-5 (M.

Cohn, 1977)

Figure 3-4: Implementation of the Inverse Permutations of S

Data In

RAM

WA
+

Y(2:0)

3 Address

3-bit
Counter 3

LFSR

Data In

RAM

WA
+

Y(2:0)

3 Address

3-bit
Counter 3

LFSR

35

3.3.4.2 Walsh Transform

Designing transforms in a parallel processor platform such as a field pro-

grammable gate array (FPGA) is recommended since transforms need a large

number of operations that can be easily mapped into an FPGA. The hardware

design of a Walsh transform using a butterfly structure is very efficient for numer-

ous reason. The most important reason is that a Walsh butterfly has only one type

of operations which is addition, subtraction operations can be performed on the

same hardware as addition (see Figure 3-6). Therefore, when a designer wants to

partition the Walsh butterfly, the primary concerns are the locations of the inputs,

intermediate values, and outputs.

Figure 3-5: Implementation of Generator of Permutations Q

+

Q2 Q1 Q0

+

Q2 Q1 Q0

36

The fastest Walsh butterfly should be implemented in parallel fashion in

order to reach the maximum speed. Unfortunately, the Walsh transform size can

be huge when employing DSP applications. The number of processors required to

implement a completely parallel transform is very large and requires a large

number of input and output pads. Therefore, a completely parallel design is impos-

sible since at the time of this writing there is no chip that can support these

requirements. One possible solution to this problem would be partitioning the but-

terfly into smaller butterflies. The size and number of the required smaller butter-

Figure 3-6: 4-Point Walsh-Hadamard Butterfly Structure

+

+

+ +

+

+ +

+

P o s i t iv e C o n n ec tio n

N e g a t iv e C o n n e c tio n

+

+

+ +

+

+ +

+

P o s i t iv e C o n n ec tio n

N e g a t iv e C o n n e c tio n

37

flies will affect the design organization and performance of the Walsh transform

chip.

For a 1,024-point Walsh butterfly, a designer can use partitions of 128, 64,

32 or 16-point butterflies. A 128-point butterfly may not be a good choice because

8-point butterflies will also be required to build the 1,024-point Walsh transform.

Therefore, choosing a different size of butterfly could assist in reducing the number

of blocks and will help in designing a well-organized structure. Another factor that

controls the design is the available resources in the board or the chip. If an opti-

mum size of smaller butterflies is found, and is still too big for parallel implemen-

tation, a designer may need to divide it into smaller butterflies due to the lack of

resources. Using large FPGAs, such as the Virtex FPGA series, will provide more

resources for designs as large as 1,024-point transforms. For a 1024-point Walsh

butterfly, 64 blocks of 32-point Walsh butterflies is the optimum solution if the 32-

point Walsh block is designed completely in parallel method.

3.4 Implementation of a Walsh-Based Convolver for a
1,023-bit PN Code

To implement a Walsh-based convolver for a PN code of period 1,023, a

1,024-point Walsh transform is necessary. The optimum size of smaller blocks of

butterflies is 32-point. A 32-point Walsh butterfly needs to be processed 64 times

and no other smaller size of butterflies are required. This is not the case if a differ-

ent size was chosen for the implementation.

Since the design platform is the 0.8 million gate Virtex FPGA, the 32-point

butterfly is implemented in parallel and used to calculate the first 5 levels of the

38

1,024-point butterfly. A similar block is also used to calculate the second 5 levels

of the 1,024-point butterfly (Figure 3-7). The second block is used to provide a pipe-

line structure that reduces the latency of the designed system.

The completed design used more components to be able to provide an

updated evaluation of the phase shifts every 3 code lengths (3,069 clock cycles).

These components are required to perform Walsh transform computations, permu-

tations generation, correlation peak search, RAMs to store intermediate butterfly

results, counters for RAM addresses, and state machines to control the whole

system to continuously provide phase information in constant time space. The

whole design used approximately 264k gates (60% of the Virtex chip). The maxi-

mum frequency for this design is 96 MHz (Alaqeeli, 2001).

Figure 3-7: Implementation of 1024-Point WHT

#1

RAM

#2

RAM

32-point
WT

32-point
WT

controllers

Peak-search
circuit

Incoming
samples

1st 5 levels of butterfly 2nd 5 levels of butterfly

#1

RAM

#2

RAM

32-point
WT

32-point
WT

controllers

Peak-search
circuit

Incoming
samples

1st 5 levels of butterfly1st 5 levels of butterfly 2nd 5 levels of butterfly2nd 5 levels of butterfly

39

To evaluate the performance of this design compared to a FFT-based design,

an assumption is necessary. If we assume that a multiplication computation takes

as much as two additions, then the total number of operations in the FFT-based

method is approximately 18 times larger than the Walsh-based algorithm. Fur-

thermore an N-bit multiplier requires N times more area than an N-bit adder.

Therefore, if the input signals are 8-bit long, then the time-area efficiency of this

algorithm is approximately 144 times better than an FFT-based method (A.

Alaqeeli, 2001). This is the case if the whole transforms are computed completely

in parallel. However, this is not the case. Therefore, a design analysis within a lim-

ited area is more appropriate.

One assumption would be that the design is limited to the area necessary

for a 32-point Walsh butterfly. Thus, using the Walsh-based method, the convolver

of a 1023-length PN code requires 64 blocks of 32-point Walsh transforms. There-

fore, it will take 64*32 (=2048) clock cycles. Whereas, the maximum size of an FFT

butterfly that can be mapped to the same limited area is only a 4-point FFT. This

means that 4*256*5 (=5,120) clock cycles are necessary to compute a 1,024-point

FFT. Furthermore, each clock cycle required in a 32-point Walsh butterfly requires

performing 5 consecutive additions, while a 4-point FFT requires 6 multiplications

and 10 additions. Calculating a 1024-point FFT is approximately 10 times longer

than calculating a 1024-point Walsh transform. Since an FFT-based convolver

requires two FFTs, the minimum time required for an FFT-based convolution is

approximately 20 times larger than that required for a Walsh-based method

(Alaqeeli, 2001). Therefore, a Walsh-based method is at least 20 times faster than

40

a FFT-based method when the design area is limited (as in a Virtex FPGA imple-

mentation).

When comparing this implementation with a software-based implementa-

tion of the Walsh transform on Matlab, the FPGA-based implementation was

approximately 2,500 times faster than Matlab implementation on a 233MHz pro-

cessor. This is using a 1MHz clock in the FPGA design. To speed up the processing

time, a fast clock with internal processing parts and multiplexers to switch

between the two clocks can be used. For example, if loading incoming samples uses

1MHz clock frequency, then the convolution process can be accelerated by allowing

the internal parts of the design (such as reading from memories, 32-point Walsh

transform, and finite state machines) to use a different clock frequency (such as

16MHz). This insures that the system can be used efficiently and the design can

provide a new phase shift every 2 code periods instead of three code periods. How-

ever, this may cause synchronization problems. Therefore it will need to be studied

carefully. The implemented design has sped up the acquisition of the CDMA sig-

nals many times. The design has also opened new research topics for the applica-

tions where real-time acquisition is needed.

However, regarding the GPS case, this method cannot be directly used,

because C/A codes are gold codes which are generated by combining two PN codes

using XOR operations. Therefore, the C/A code does not follow the permutational

relations of Walsh transforms and PN codes. However, based on the literature, it

was not proven that the Walsh transforms cannot be used for gold code’s correla-

tion implementation. In addition, the number of ones and zeros in a gold code are

equal to the number of ones and zeros in any row of the Walsh transform after

41

omitting the first column. The possibility of finding a way to extend the use of the

Walsh-based correlation method to the C/A code correlation still exists. Finding

such a way would help speeding up the C/A code acquisition significantly.

42

Chapter 4

Averaging Method for Block

Processing

4.1 Introduction

Implementing a correlator using Fermat Number Transform is not applica-

ble for GPS C/A code acquisition due to the limitations on the required sequence

length and the large sample word size needed. Additionally, the Walsh Hadamard

based convolver was not intended to be used for gold codes, i.e. the C/A code. There-

fore, the FFT-based correlator was chosen for the implementation of the acquisi-

tion process.

Building power-of-two based FFTs is achieved by using uniform butterfly

structure. The GPS front-end system which was used in this research has a sam-

pling rate of 5MHz. This means that every 1-ms of the GPS signal has 5000 sam-

ples. Therefore, two 5000-point FFTs and one 5000-point IFFT are required to

implement the C/A code correlator. The size of the FFT is not a power of two, so it

43

will be very difficult to implement since it requires a mixed-radix algorithm that

includes non-power-of-two FFTs (Smith W, 1995 and Gunawardena, 2000).

The use of smaller FFTs is needed to map the acquisition process in FPGA.

One suggestion method for solving this problem is presented in the next section.

This method is called acquisition of C/A code using averaging correlators. It uses

FFTs with a similar size of C/A code, 1023 is used instead of 5000-point FFTs

(Starzyk, 2001).

4.2 Averaging Correlator

Since the parallel code phase search requires the C/A code to be up sampled

to 5000 points to match the received GPS signal, the required FFT size needs to be

5000. Similarly, when an opposite approach is carried out, the FFT size is smaller.

Thus, if the incoming sampled GPS signal is down sampled from 5000 to 1023

points then the same FFT-based correlator can be applied, but with a FFT size of

only 1023.

The correlation will be carried out by frequency transforming the 1023 aver-

aged (or down sampled) GPS signal using 1023-point FFT. This is performed on

both the in-phase and the quad-phase by considering the in-phase values as the

real input components, while the quad-phase values are used as the imaginary

input components. First, apply 1023-point FFT to the local code and perform the

conjugate operation to the FFT output. The next step is to multiply the complex

outputs of the FFTs. The results are then changed back to the time domain using

1023-point Inverse Fast Fourier Transform (IFFT). When the magnitude of the

44

IFFT result is carried out, the 1023 values are inspected for the maximum (or the

peak) value. The location of the peak reflects the code phase in chips (or in 1/1023

ms). The next step is to use triangle fitting technique to recalculate the code phase.

This process enables one to determine a better estimate for the code phase.

Since the incoming 5000 samples represents 1ms of data, it means that it

contains all of the 1023 chips of the C/A code. Averaging 5000 samples to obtain

1023 samples means that most of the C/A code chips are represented by five sam-

ples while fewer chips use four samples. Therefore, the averaging of the 5000 sam-

ples will not give an approximate representation of the C/A code unless the first

value in the 5000 samples is the first sample in a chip. However, it is very difficult

to find the starting point of a chip especially when the GPS receiver is in the cold

start mode. Therefore, to insure that the averaging method will always find the

peak, the down sampled signal needs to be approximately equal to the C/A code or

its shifted copy. Therefore, the code phase searcher should try five successive start-

ing points in order to say that one of the down sampled codes is approximately the

C/A code or its shifted copy.

The averaging method produces five correlation functions with 1023 values

each. Thus, the total number of correlation points is 5115. One of the five tests will

have a good approximation of the correlation function, while the other four have

more corruption. The best recovered code is responsible for the strongest peak

(Starzyk, 2001). Therefore, its peak is selected as the peak of the C/A code correla-

tion.

The averaging method will apply five averaging correlations using five suc-

cessive starting points. Selecting the location of the strongest peak is not sufficient

45

for the estimation of the code phase. One must include the time delay caused by

using the starting point that is responsible for the peak. The delay is in the unit of

samples which are 0.2 microsecond each. Assuming that the fifth starting point is

responsible for the strongest peak, which is at location 120, then the peak location

is corrected by adding 0.8 microseconds (or 4 samples). Therefore, the rough esti-

mate of the code phase is 120/1023 + 0.8 microseconds. When a refined code phase

estimation is required then triangle fitting method can be used for refining the

code phase estimation (Zhu, 2002).

In order to use this method for acquisition, one should study its effect on the

peak-to-second-peak ratio. This method does not reduce the peak-to-second-peak

value compared to the case of a 5000-point correlation method. Moreover, the aver-

aging method may increase the peak-to-second-peak value in some cases while

retaining it in the same level in most cases. As a result, the detection probability

is not affected by replacing the 5000-point FFT-based method by the averaging

method (Starzyk, 2001). Therefore, the acquisition time is reduced by using this

method because calculating five 1023-point FFTs and IFFTs requires less time in

software and/or hardware than the 5000-point FFTs and IFFTs.

Although this method avoided building the huge 5000-point FFT, it did not

simplify the task enough for direct implementation. This is due to the fact that a

1023-point FFT is difficult to implement using a butterfly structure since 1023 is

not a power-of-two. The 1023-point FFT is still considered large. Therefore, trying

to approximate this averaging method by using a 1024-point FFT block is a good

path to investigate. This procedure is desired for the reasons mentioned above and

for the availability of an optimized 1024-point FFT/IFFT core from Xilinx. The next

46

sections present descriptions of two methods of using a 1024-point FFT for acquir-

ing the GPS C/A code.

4.3 Averaging Correlator with Zero-Padding

Since the length of the C/A code is 1023 chips, one extra point is needed to

make it a 1024-point code that can be used with a 1024-point FFT-based correlator.

One solution is to extend the incoming averaged samples to become 1024 with zero

padding. However, this cannot be used directly because it will change the circular

correlation properties because the 0-padded C/A code is no longer periodic. Based

on the insertion location of the zero in both the incoming averaged samples and

local codes, in the worse case scenario the peak will lose 50% of its energy (Zhu,

2002). This is due to the fact that the insertion of the zero may divide the C/A code

into two sections. If one section is aligned to the part of the code that is buried in

the signal, then the other part is 1-chip shifted and vise versa (see Figure 4-1).

Therefore, the correlation function will no longer have one peak, but it will divide

its energy into two neighboring peaks. The summation of the values of these two

peaks will approximately equal the original peak value. This energy loss affects the

signal detection and increases the probability of misdetection (Zhu, 2002).

To resolve the above problem, the insertion of the zero should be chosen to

separate the C/A into two parts where one of them is long enough to hold most of

the correlation peak energy. When this occurs, the strongest peak is considered a

good approximation of the original correlation peak. One possibility for determin-

ing a good zero insertion location was presented by Zhu (Zhu, 2002). His method is

47

based on searching for three or four places for zero insertion. This enables the

peak-to-peak ratio to be recovered to approximately the same level of the 1023-

point FFT-based correlation. The signal energy loss in the worse case scenario is

equal to 1/2H, where H is the number of searched insertion places (Zhu, 2002).

Since this method needs another search dimension, which is the zero inser-

tion location, the number of operations required for acquisition increases. This

method requires five FFT-based correlation processes, repeated H times to be able

to acquire a GPS signal. For H=3, this method requires 15 FFT-based correlators.

If the FFT of the local code is precomputed and stored, then this method requires

15 1024-point FFTs and 15 1024-point IFFTs plus 1024*15 complex multiplica-

tions, which is approximately 15*2*1024(log1024)+15*1024 = 322,560 multiplica-

tions, and 15*2*1024(log1024) = 307,200 additions. The acquisition using 5000-

Figure 4-1: Zero-Padding Circular Correlation Problem

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C15C14C13C12 0

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C15C14C13C12 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C14C13C120 C15

C6 C7 C8 C9 C10 C11 0 C12 C13 C14 C15C5C4C3C2 C1

C/A CODE

C/A CODE

C/A CODE

SIGNAL

SIGNAL

SIGNAL (t-ττττ-1)

SIGNAL (t- ττττ)

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C15C14C13C12 0

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C15C14C13C12 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C14C13C120 C15

C6 C7 C8 C9 C10 C11 0 C12 C13 C14 C15C5C4C3C2 C1

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C15C14C13C12 0

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C15 0C14C13C12C11C10C9C8C7C6C5C4C3C2C1

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11C15C14C13C12 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C14C13C120 C15

C6 C7 C8 C9 C10 C11 0 C12 C13 C14 C15C5C4C3C2 C1

C/A CODE

C/A CODE

C/A CODE

SIGNAL

SIGNAL

SIGNAL (t-ττττ-1)

SIGNAL (t- ττττ)

48

point FFT-based correlator requires approximately 130,000 multiplications and a

similar number of additions and subtractions. Therefore, the averaging method

using the zero padding technique will raise the number of operations above direct

FFT based method and lengthen the acquisition time. This method should not be

used to implement the C/A code acquisition process in a GPS receiver. One possible

solution to the problem of size mismatching of the code and the available 1024-

point FFT core is presented in the next section. The new approach will show a fast

acquisition method that can be implemented much easier than the 5000-point FFT-

based method.

4.4 Averaging Correlator with Modified C/A Code

The size incompatibility of the C/A code and the available FFT core can be

solved by changing the down sampling rate to produce 1024 averaged samples

instead of 1023. So, the 5000 samples will be down sampled (or averaged) to 1024

points. A similar procedure will be done to the local code. Therefore, the local code

will be up-sampled to 5000 and then down sampled to 1024 points. The averaging

correlator will use 1024 averaged samples and 1024-point averaged C/A code

The important properties of the C/A code as they pertain to the detection

probability are the auto and cross correlation functions (Kaplan, 1995). If the cor-

relation function of the above algorithm can show an accepted approximation of the

original C/A code auto correlation function, then this can shorten the computation

time compared to the 0-padded averaging method and the 5000-point correlation

method.

49

The original C/A code is a gold code. Figure 4-2 shows its auto correlation

function. The correlation peak shape is an isosceles triangle and is shown in Figure

4-3. Therefore, the modified C/A code which was up sampled to 5000 and then down

sampled to 1024 should provide a good approximation for these figures.

Figure 4-2: C/A Code Auto Correlation Function

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0
- 2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

C / A C o d e S h i f t (c h ip s)

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0
- 2 0 0

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

C / A C o d e S h i f t (c h ip s)

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

Figure 4-3: C/A Code Auto Correlation Peak Shape

5 0 5 5 1 0 5 1 5 5 2 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

C / A C o d e S h i f t (c h i p s)

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

5 0 5 5 1 0 5 1 5 5 2 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1 0 0 0

C / A C o d e S h i f t (c h i p s)

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

50

When the C/A code was up sampled to 5000 and then down sampled to 1024,

the code was changed from a binary code to a multilevel code which contains the

values of ±1, ±.8, ±.6, ±.5, ±.4, ±.2, and 0 (Figure 4-4). However, this modified C/A

code is still considered a unique code related to the selected original C/A code. It

cannot be generated from a different original C/A code.

As previously stated, the modified code averaging correlator needs to be

applied five times with five successive starting points. When the five correlation

functions for this modified C/A code are generated, the correlation function that

contains the strongest peak keeps the important information necessary for acqui-

sition. Fig 4-5 shows the winner auto correlation function of the modified C/A code.

The peak shape is different than the true peak shape (Figure 4-6). This peak is not

Figure 4-4: C/A Code and the Modified Code

440 460 480 500 520 540 560
-2

-1

0

1

C ode C hips

M
od

ifi
ed

 C
od

e

440 460 480 500 520 540 560

-1.5

-1

-0.5

0

0.5

1

1.5

C
/A

 C
od

e

440 460 480 500 520 540 560
-2

-1

0

1

C ode C hips

M
od

ifi
ed

 C
od

e

440 460 480 500 520 540 560

-1.5

-1

-0.5

0

0.5

1

1.5

C
/A

 C
od

e

51

an isosceles triangle, as it should be in a normal C/A code. However, it is sufficient

to roughly estimate the code phase for acquisition.

Figure 4-5: Modified-Code Winner Correlation Function

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0
-1 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

C o d e P ha se (m od ified ch ip s)
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0

-1 0 0

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

C o d e P ha se (m od ified ch ip s)

Figure 4-6: Peak Shape of a Winner Correlation Function for the Modified-Code

5 1 2 5 1 3 5 1 4 5 1 5 5 1 6 5 1 7 5 1 8

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

C o d e P h a s e (m o d i f i e d c h ip s)

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

5 1 2 5 1 3 5 1 4 5 1 5 5 1 6 5 1 7 5 1 8

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

C o d e P h a s e (m o d i f i e d c h ip s)

A
ut

oc
or

re
la

tio
n

Fu
nc

tio
n

52

A close observation will reveal that each point in this correlation function is

one out of 1024 modified chips. Each modified chip is 1/1024 (ms) while the original

chip width is 1/1023 ms. To estimate the code phase, one needs to consider this

change in chip width and should adjust the value of the code phase. For example,

if the peak is at location 120 out of 1024, then the estimated code phase equals

(120/1024)*1023 original chips, or the code phase is (120/1024)*1ms.

The modified-code averaging correlator needs five times 2*1024*10 plus five

times 1024 multiplications and five times 2*1024*10 additions for the GPS signal

acquisition. Therefore, the total required number of operations equals 107,520

multiplications and 102,400 additions. Also, the averaging computation requires

approximately 20,000 additions and 5,120 divisions. The division operations will

not be counted because they can be avoided. Therefore, the total number of opera-

tions is 107,520 multiplications and 122,400 additions. This does not significantly

reduce the number of computations much compared with the 5000-point FFT-

based correlator. However, the implementation of a 1024-point FFT is much sim-

pler than the 5000-point FFT. Utilizing the modified-code averaging method will

lead to significant simplification in the hardware implementation (Alaqeeli, 2003).

In order to use this method with block processing, the effects on signal-to-

noise ratio and the other characteristics should be studied. The next section pre-

sents the characteristics of the modified-code averaging correlation method in

terms of signal-to-noise ratio (SNR) loss, code phase accuracy and carrier phase

accuracy.

53

4.5 Characteristics of Using the Modified-Code Averaging
Correlation

In the previous section, the modified-code averaging correlation method was

described. It is best-suited for the implementation of the block processing of GPS

signals. In order to confirm the ability of the modified-code averaging method to

replace the acquisition and the tracking loops, the effect the method has on the

signal power and on the calculation accuracy of the code and the carrier phases

must be checked first. For this reason, a 200 ms of GPS data is used to test the

acquisition using the modified-code averaging method. The peak-to-peak ratio is

chosen as a measure of signal strength. Matlab simulation showed that the aver-

age loss in a peak-to-peak ratio is about 12.7% as shown in Fig 4-7. This loss is

approximately 0.5 dB, and is acceptable in most cases, except in the case of a weak

signal acquisition.

Figure 4-7: SNR Loss in 200-ms of a GPS Signal Using the Modified-Code

Averaging Method

A v e r a g e lo s s = 0 .1 2 7 = 1 2 .7 %A v e r a g e lo s s = 0 .1 2 7 = 1 2 .7 %

54

For the acquisition process, the code phase estimation accuracy needs to be

within ± ½ chips. GPS-type data, which is generated using Matlab with code shift

forced to be in the middle of a chip of a C/A code, is used to check for the worse case

estimation accuracy of the averaging method. The averaging method was able to

produce the right code phase with an accuracy of ± 0.1 chip, or ± 100ns (Alaqeeli,

2003). A histogram of a code phase error based on the modified-code averaging cor-

relation is shown in Fig 4-8. The results show that the direct code phase calculation

accuracy is within the acceptable range compared with the 5000-point FFT method

(see Figure 4-9). Therefore, the averaging method is acceptable for acquisition.

A code tracking process produces a refined code phase estimation. Similar

to what occurs in block processing, the triangle fitting approach was applied to the

Figure 4-8: Code-Phase Error Using Modified-Code Averaging Method.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
-7

0

1

2

3

4

5

6

Code Phase Error in (sec.)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
-7

0

1

2

3

4

5

6

Code Phase Error in (sec.)

55

peaks of the averaging method. This approach is able to refine the code phase esti-

mation. The average error in the code phase estimation was 42.7ns. A modified tri-

angle fitting algorithm with an acquisition history feedback was developed. The

developed algorithm with the history feedback showed an improvement over trian-

gle fitting with an average error of approximately 10ns in the code phase calcula-

tion accuracy. Compared to the GPS block processing, this code error is still

considered large. The modified-code averaging method is not accurate enough to

replace the tracking loops or the block processing. Therefore, the averaging method

will be used to achieve fast acquisition.

Figure 4-9: Code-Phase Error Using 5000-Point FFT Method.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x 10

-7

0

1

2

3

4

5

6

Code Phase Error (sec)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x 10
-7

0

1

2

3

4

5

6

Code Phase Error (sec)

56

The carrier phase estimation based on the block processing using the aver-

aging method was also tested. The average accumulated carrier phase error was

+0.03 (rad) when computed from Figure 4-10.

The accumulated phase error was between -4 and +8 degrees. This error was

considered acceptable for carrier tracking. However, the limiting factor is the code

phase error, which was not acceptable. It needs to be on the level of centimeters.

Therefore, the modified-code averaging correlator method was selected for the

implementation of the acquisition process only. Another algorithm is needed to

replace the tracking loops and the huge block processing system.

Figure 4-10: Carrier-Phase Error Using Modified-Code Averaging Method

-0 .0 6 -0 .0 4 -0 .0 2 0 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1 0 .1 2 0 .1 4
0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Carrie r P hase Erro r (rad)

57

4.6 Proposed Architecture for Block Processing Using the
Modified-Code Averaging Correlator

When a GPS receiver uses the block processing technique, first it processes

blocks of GPS signals by applying the FFT-based correlation. When there is a

strong signal, the receiver gets the acquisition estimations based on the 5000-point

correlation function for every 1-ms of GPS signal. These estimations are then used

to refine the carrier frequency estimation. This refined carrier frequency is then

used to remove the carrier from the incoming signal to generate a base-band signal.

This base-band signal is applied to the FFT-based correlator. The code phase esti-

mation is refined by applying the triangle fitting for the three strongest correlation

values. These values are the nearest points to the real correlation peak. This

method (block processing) is a good replacement of the old-fashioned tracking

loops.

Each point in the correlation function can be computed in the time domain

by accumulating the point-by-point multiplication of the base-band signal (5000

samples) by the 5000 samples of the generated local code with a certain shift in it.

This means 5000 multiplications and 4999 additions are required to calculate one

correlation point. Calculating all the correlation points requires approximately

5000 times 5000 multiplications and 5000 times 4999 additions. This can be sim-

plified to about 5000 times 4999 additions because the multiplications are by +1 or

-1 values only. However, this required number of operations is still very large com-

pared to the FFT-based method. For this reason, the FFT-based correlator is used

in the acquisition process since all the correlation points, which represent a full

58

code-phase search dimension, are covered. However, the FFT-based method is not

necessary to refine the code phase and the carrier frequency estimations because

only the three correlation points near the peak have to be calculated. Therefore,

these points can be calculated using the serial time-domain correlators. Thus, only

three times 5000 additions and/or subtractions are required.

While the modified-code averaging correlator is accurate enough to replace

the 5000-point FFT method for acquisition, the use of serial correlators to refine

these estimations is logical. Therefore, the block processing concept is still valid

and the advancement on GPS block processing is applied.

The block processing concept using the averaging correlator and the three

serial correlators is used to replace the traditional acquisition and tracking loops.

Figure 4.11 shows a block diagram of the proposed architecture of the GPS block

processor using the averaging correlation method.

Figure 4-11: Proposed Architecture for Block Processing Using Modified-Code

Averaging Method

Modified-code averaging
correlator

Rough Estimates

A&D

A&D

A&D

refined φ

Tr
ia

ng
le

-f
itt

in
g

refined τ

at
an

(Q
/I)

C (t- τ-1)

C (t- τ+1)
C (t- τ)

τ facq

B
uf

fe
r

Digital IF signal

Carrier (facq)

acquisition

serial correlators
I&Q channels

Modified-code averaging
correlator

Rough Estimates

A&D

A&D

A&D

refined φ

Tr
ia

ng
le

-f
itt

in
g

refined τ

at
an

(Q
/I)

C (t- τ-1)

C (t- τ+1)
C (t- τ)

τ facq

B
uf

fe
r

Digital IF signal

Carrier (facq)

acquisition

serial correlators
I&Q channels

59

This new method uses the frequency domain and the time domain correla-

tors. It provides fast acquisition, with the same level of block processing code-

phase and carrier frequency estimations losing not more than 0.5 (dBs) of energy

on the average. This makes the method a good candidate for hardware implemen-

tation in a parallel processing platform such as an FPGA. Additionally, real-time

block processing of GPS signals is feasible with this implementation. All the

related implementation issues to build such a GPS processor are presented in

Chapter 5.

60

Chapter 5

FPGA Implementation of

Acquisition and Tracking Processes

5.1 Introduction

Chapter four showed that the modified-code averaging correlator for the

GPS block processing is the proposed algorithm for the implementation of the

acquisition process. This was due to the low loss of peak-to-second-peak value with

considerable reduction in computation count. In addition, the described method

has functions that their implementation on FPGAs can be easily achieved using

FPGA-optimized Xilinx™ cores such as the fast Fourier transforms (FFTs) and

multipliers. Therefore, the FPGA hardware implementation of the modified-code

averaging correlator will be used for acquisition. As was mentioned previously, the

averaging method is not good enough to track GPS signals. Therefore, the standard

serial early-prompt-late (EPL) correlator will be implemented for block processing

to replace the tracking loops. The hardware implementations of both correlators

(averaging and serial E-P-L correlators) along with the necessary functions are

presented in the next sections.

61

5.2 GPS Block Processing Algorithm for Hardware
Implementation

In the previous chapter, it was shown that the difference in computational

effort of the averaging correlator with the modified-code approach and the regular

5,000-point FFT-based correlators is small. However, the implementation of five

FFTs that are 1024-point each is much simpler than designing a single 5000-point

FFT. Therefore, the averaging correlator is chosen for the implementation of the

acquisition process.

A block diagram of the averaging-correlator-based acquisition is shown in

Figure 5-1.

Figure 5-1: Acquisition Using Averaging-Correlator

NCO

Data

Collection
 System

Averaging
5000 to 1024

FFT

Averaged
C/A code

FFT

IFFT

To Tracking Circuit

τ ∆φ facq

Peak Search
&

NCO Controller

62

The samples are first multiplied by in-phase (I) and quad-phase (Q) compo-

nents of the carrier signal. The I and Q channels are each averaged to 1024 points.

Then they are converted to the frequency domain using 1024-point complex FFT

and multiplied by the conjugate of the FFT of the local modified-code. A 1024-point

complex IFFT is used then to return to the time domain. A peak searcher inspects

the 1024 outputs of the IFFT and stores the location of the peak and its value. This

process is repeated four more times, each with a different starting point, as

described in the previous section. After checking all five loops, the peak searcher

compares the peak value to a threshold in order to determine if the peak (or a GPS

code) is detected. If the searcher does not detect a peak, then a new search cell with

a different frequency bin is inspected using the above described process. This is

repeated until a true peak is found or until all frequency search bins are completed.

When the GPS signal is acquired, the frequency is selected and the search is con-

ducted only in the code-phase dimension.

When the signal is acquired, the peak searcher sends the real and imagi-

nary values responsible for the peak (I and Q values) to the phase estimator which

computes the carrier phase using the “ATAN” function. Estimating the carrier

phase for two successive 1-ms blocks and then finding the change in carrier phase

will be used to refine the carrier frequency. The rough code phase and the refined

frequency are then fed to the serial correlators block to wipe off the code and the

carrier. Based on the serial correlators, a refined code phase and a more refined

carrier frequency can be achieved. In conclusion, the targeted GPS block processor

implementation is simply an averaging-correlator aiding serial correlators and no

63

ordinary tracking loops are involved. Therefore this type of implementation will be

called “averaging-correlator GPS block processor.”

5.3 Required Components for the Implementation of the
Averaging-Correlator GPS Block Processing

In this section, the necessary components for implementing the proposed

architecture are described along with their implementation methods. A numeri-

cally controlled oscillator, a code generator, a complex multiplier, an FFT and its

inverse, and a peak searcher are some of the required components. The implemen-

tation method for each required component has to be studied carefully because

they can affect the overall size, speed, and accuracy of the whole design. The func-

tionality and the implementation of each component is presented in the following

sub-sections.

5.3.1 Numerically Controlled Oscillator (NCO)

Numerically controlled oscillators (NCOs) have gained a lot of attention in

digital design because of their importance in applications such as communication

and especially in designing digital receivers. An NCO can be constructed by three

components. They are an accumulator, a register, and a look up table. A typical

NCO implementation is shown in Figure 5-2.

64

The accumulator adds a certain number, which is called a "step", each ref-

erence clock cycle and stores the sum in the register. This is a stair-up function

that will overflow at certain time to repeat the process and effectively works as a

frequency divider. The stair-up period is considered the output frequency period of

the NCO. Based on the value of the register, the NCO uses the LUT to select the

appropriate SIN or COS value. Since GPS C/A code acquisition and tracking

require only three levels of SIN wave and COS wave (Gunawardena, 2000), then

this type of implementation is used instead of Xilinx NCO core. When more levels

of SIN wave are necessary, then the Xilinx core is the choice because it is optimized

for Xilinx FPGAs (Xilinx, 1999). An NCO similar to the one shown in Fig 5-2 was

implemented by Zhen (see Appendix C.2.1).

Figure 5-2: Typical NCO Implementation.

Accumulator

(N bits)

M

clock = fs

K bits

K << N

SIN & COS

LUT

values = 2K

fout = M x fs / 2N

Accumulator

(N bits)

M

clock = fs

K bits

K << N

SIN & COS

LUT

values = 2K

fout = M x fs / 2N

65

5.3.2 Carrier-Wipe-off

The averaging method is used after removing the carrier. Therefore, a car-

rier-wipe-off circuit is implemented in front of the averager as shown in Fig 5-3.

Generally the carrier wipe-off circuit is implemented as a multiplier that multi-

plies the incoming sample by the local carrier that comes from the NCO.

Since the NCO output in this dissertation is only one of three values (1,0, or

-1), then the multiplier can be replaced by a small circuit. The circuit can be

described as a 3x1 multiplexer. It takes the input sample and passes it if the NCO

value is one. If the NCO value is -1 then it inverts the sample before passing it out.

In the remaining case(s) the NCO value is zero, so the circuit is grounded. The only

required operation is the signal inversion whenever there is a negative value of a

local carrier. Inversion here means a 2's complement operation that requires one

Figure 5-3: Carrier Wipe-off Circuit

SIN COS

NCO

Multiplier

Multiplier

To
Averaging

Circuit

Incoming
Samples

I

Q

66

addition operation plus complementing. Since complementing does not require any

extra hardware resources in Xilinx FPGAs (Xilinx, 2002), the carrier wipe off can

be constructed using a multiplexer and an adder. This implementation is efficient

and small compared to a multiplier.

5.3.3 The Averager

After the carrier is removed the averager circuit performs the operations

required to down sample (or average) the incoming 5000 samples to 1024 averaged

points. Figure 5-4 shows a simplified circuit of the averager.

The averaging algorithm chooses four or five samples per chip to average.

Thus, 120 chips will be represented by averaging four samples, while the remain-

Figure 5-4: Simplified Circuit for the Averager

Counter
CNT

0 to 4999

119

0

RAM

Address
counter
0 to 119

Contains locations of
starting points

of 4 samples/chip

FSM-AVG

add4

EN

Address
Counter

0 to 1023 1023

0

RAM
(Output)

EN

Match?

Accumulate
Averaged Values

WR Address

incoming
5000

samples
per 1-ms

Counter
CNT

0 to 4999

119

0

RAM

Address
counter
0 to 119

Contains locations of
starting points

of 4 samples/chip

FSM-AVG

add4

EN

Address
Counter

0 to 1023 1023

0

RAM
(Output)

EN

Match?

Accumulate
Averaged Values

WR Address

incoming
5000

samples
per 1-ms

67

ing 904 chips are represented by averaging five samples. Therefore, the averaging

algorithm will average five samples most of the time. However, in the 120 cases

that averaging four samples operations are required, the algorithm will average

four samples. If the circuit normally averages four samples unless average-five

occurs, then it is required that the locations of average-five operations are stored.

This means a RAM of 904 rows is required. However, if the opposite is the case,

then only 120 rows are required. This means it is cheaper to always average five

samples unless average-four operation is required.

A 120x13 RAM is used to store the locations where the average-four occurs.

A 13-bit counter is used to count all of the 5000 samples. When the counter and the

value of the RAM match then the accumulator averages the next four samples. At

the same time the address of the RAM is incremented to point to the location of the

next average-four operation. When the value of the RAM and the counter does not

match, then the accumulator averages five samples.

Averaging requires additions and a division by five or four. Division by four

is simple in digital systems, because it is simply a shift by two. However, dividing

by five is not a simple operation. Therefore, the averager will not do the division

and it will only do the additions. This approximation has a very small effect on the

accuracy of the averaging method, but it makes the circuit very simple to imple-

ment. It is important to know that this simplification is useful, because each pos-

sible simplification of any component of the acquisition architecture would

increase the possibility of implementing a complete acquisition process in a small

silicon area. This architecture needs two averagers, one for the in-phase and one

68

for the quad-phase. The averaged values are stored in a RAM. The FFT circuit then

takes over and processes them as described in the next section.

5.3.4 Fast Fourier Transform (FFT) and Its Inverse

The fast Fourier transform (or the FFT) is required twice and the inverse

FFT (IFFT) is required once in the circular correlator. One FFT is for the incoming

samples and the other is for the local code. The FFT of the local code can be

replaced by a small RAM that contains the pre-calculated values of the local code

in the frequency domain. Therefore, the correlator implementation will require

only one FFT and one IFFT. Hardware implementation of FFT has been investi-

gated for about thirty five years (Yubin,1996, Nussbaumer, 1982, and Rader,

1973). Some of the possible hardware architectures were presented in (Smith W.,

1995 and Burrus, 1985).

Many algorithms for approximating the FFT function have been developed.

One can compute the FFT using the Walsh Hadamard transform (Beauchamp,

1984), Chirp z-transform (Rabiner, 1969 and Davenport, 1991), or CORDIC

(Sarmiento, 1998). However, since the implementation is targeting the Xilinx

Virtex FPGA, then a careful design process should be applied because the FPGA

resources are not always a good choice for implementing a component. Therefore,

the optimization of the hardware implementation of a component is necessary.

Using the so called "IP cores" whenever possible is the best method for FPGA

implementation because they are optimized by Xilinx and other companies target-

ing Xilinx FPGAs.

69

One of the available Xilinx cores is the FFT/IFFT core. This core is opti-

mized for Xilinx Virtex and can perform 1024-point complex FFT in about 50

microseconds using an 80MHz clock (Xilinx, 2000). The core can be used as FFT or

IFFT by selecting a particular configuration pin. It takes a 32-bit number as 16 bits

for real part and 16 bits for imaginary part. The output is also in the same complex

number representation. Since the operations are fixed-point, then overflow may

occur in the butterfly structure. Therefore, truncation and scaling steps are done

inside the core to make sure that there is no overflow. Scaling operations require

that the output of the core is scaled by 2^N (or by 2^(N+1)). This does not create a

problem for the IFFT since this scaling is included in its equation. However, for the

FFT it means that the input values need to be large enough that the core can pro-

vide meaningful results. This problem is partially solved in the design since the

averaging implementation performs some scaling of the incoming samples. There-

fore, this problem is not significant in this work. More information about the FFT

core can be found in (Xilinx, 2000).

5.3.5 Local Code Component

Based on the method of code-averaging, the local code generation is not an

easy task to implement in an FPGA because of the required processes. The C/A

code is normally generated as shown in Figure 5-5. However, this architecture will

generate only 1023 chips per C/A code period. Averaging-code method requires the

C/A code to be up-sampled to 5000 bits and then averaged to produce 1024 points.

A 1024-point FFT is then conducted and the conjugate function is applied. The

implementation of such an algorithm is difficult in the hardware and occupies

70

large design area. Since the RAM resources in the Virtex FPGAs are large enough

for the required storage of data during the acquisition process, the averaged-code

and all the other described processes are performed externally, i.e. in a PC. The

results are then stored in an FPGA RAM. This RAM is then used in the local code

component to provide the right code value when it is requested. Using such a RAM

will ease the design and save considerable FPGA design space.

The size of the required RAM is 1024 in depth, but the word size (or the

width of the RAM) is flexible based on the data characteristics. The data that will

be stored in this RAM is the frequency domain of the averaged C/A code. The dis-

tribution of the values is shown in Figure 5-6. Since the dynamic range of these

values is between -63 and 63, seven bits are enough to represent them. Therefore,

a total of 14 bits is required since the results are in complex numbers representa-

tion. For this reason, a RAM with size of 1024 rows by 14 bits is chosen for the

implementation.

Figure 5-5: Local Code Generator

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

C/A Code
Gi(t)

G2

G1

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

C/A Code
Gi(t)

G2

G1

71

Since the Xilinx core generator has the ability to generate optimized cores

ready to be used in the designer applications, it was used to implement two 1024-

by-7 RAMs (one for real and one for imaginary values). The pre-calculated values

are also initiated in the RAM core, so there is no need to load data into RAM during

the acquisition process unless this design is time-shared to acquire multiple satel-

lites. For this work, there will be no time-sharing since the goal is to develop and

test the design.

Figure 5-6: Distribution of the Values of the FFT of the Local Modified-Code

-80 -60 -40 -20 0 20 40 60 800

20

40

60

80

100
imag. components of the conj (FFT(modified-code))

-60 -40 -20 0 20 40 600

20

40

60

80
real components of the conj (FFT(modified-code))

FFT values of the local modified code

lo

ca
l c

od
e

sa
m

pl
es

-80 -60 -40 -20 0 20 40 60 800

20

40

60

80

100
imag. components of the conj (FFT(modified-code))

-60 -40 -20 0 20 40 600

20

40

60

80
real components of the conj (FFT(modified-code))

FFT values of the local modified code

lo

ca
l c

od
e

sa
m

pl
es

72

5.3.6 Complex Multiplier

Digital multiplication can be processed by shift and adds as described in

(Roth, 1992 and Smith, 1996). Different architectures have been presented in the

literature (Smith, 1995 and Starzyk, 2000). Each architecture is suitable for a spe-

cific application and selected technology. The multiplications in this research are

applied to two sequences. These sequences are the frequency domain values of both

the incoming data and the local code. Therefore, the multiplier should provide one

result every clock cycle since the input values come every clock cycle. However, a

latency of few clock cycles would not harm the design. The latency will occur

because we are not implementing a real multiplier, which is a relatively easy task,

but a complex multiplier, which requires serial multiplications and additions.

Each complex multiplication can be directly represented by four real multi-

plications and two real additions (or subtractions).

Since the real multiplier requires more space and/or time compared with

real additions, then another efficient implementation is used. One can perform a

complex multiplication by using three real multiplications and five real additions,

or subtractions (Smith, 1995, and Myers, 1990). This saves some space compared

 = (5-1) xr jxi+() yi jyi+()×

xr yr×() xi yi×()–() j xr yi×() xi yr×()+()+

73

with the direct implementation. The operation can be mathematically written as

shown in equation 5-2:

Figure 5-7 shows a diagram of the efficient complex multiplication circuit.

The implementation of such a circuit is required to use combinational real multi-

pliers and combinational real adders to keep the intermediate results synchro-

nized.

 = (5-2) xr jxi+() yr jyi+()×

yr xr xi+()× yr yi+() xi×–() j yi xr xi–()× yr yi+() xi×+()+

Figure 5-7: Efficient Implementation of a Complex Multiplier

Adder

Adder

Adder

Adder

Adder

Multiplier

Multiplier

Multiplier

neg.

yr

yi

neg.xi xr

imag

real

Adder

Adder

Adder

Adder

Adder

Multiplier

Multiplier

Multiplier

neg.

yr

yi

neg.xi xr

imag

real

74

However, the overall efficient architecture of the complex multiplier is con-

sidered large. Therefore the routing of the intermediate signals may cause some

synchronization problems. Such a problem would put a longer delay on one bit of

an intermediate value than the delays on the other bits. Thus, a generated error

will accumulate and cause an error in the complex multiplication. This error is crit-

ical for the chosen FPGA implementation because routing signals in FPGA are not

predictable. One possible solution is to place some registers to hold the intermedi-

ate results of these combinational circuits. This technique causes the results of the

complex multiplication to be generated after a few clock cycles which in turn

increases the latency. Figure 5-8 shows the FPGA-based architecture of the com-

plex multiplier.

Figure 5-8: FPGA-Based Architecture of the Complex Multiplier

Adder

Adder

Adder

Adder

Adder

M ultiplier

M ultip lier

M ultiplier

neg.

yr

yi

neg.xi xr

im ag

real

register
(delay)

Adder

Adder

Adder

Adder

Adder

M ultiplier

M ultip lier

M ultiplier

neg.

yr

yi

neg.xi xr

im ag

real

Adder

Adder

Adder

Adder

Adder

M ultiplier

M ultip lier

M ultiplier

neg.

yr

yi

neg.xi xr

im ag

real

register
(delay)

75

Further reduction of the circuit size can be achieved by investigating the

data path sizes. Matlab simulations showed that the outputs of the FFT of the

incoming data require only six bits of representation because the FFT output is

scaled by 1024. The output of the complex multiplier should be represented in 16

bits for each part of the complex number. Therefore, a Matlab simulation of possi-

ble truncation and scaling stages was carried out. The results showed that the fre-

quency components of the incoming GPS data can be scaled by four bits which is

similar to multiplication by 16. Therefore, the six bits of each component of the

complex number is increased by four and becomes 10 bits each. This means that

the complex multiplier takes two complex numbers represented by 20 bits and 14

bits respectively and then produces a complex number with 16-bit real and 16-bit

imaginary parts. After truncating and scaling the necessary data paths, modifica-

tion to the sizes of the adders and the real multipliers were made. Figure 5-9 shows

the implemented complex multiplier using these size-modified components and

paths. The results of the complex multiplier are then fed to the Inverse FFT com-

ponent to calculate the correlation function.

76

5.3.7 Peak Searcher

After the Inverse Fourier transform is performed, the 1024 complex results

are searched for the strongest energy (correlation peak). This process will be

repeated each time the averaging method starts from a different starting point.

Thus the peak searcher must search all of the 5x1024 (or 5120) complex numbers

to find the location of the peak (code phase), the peak value, and the carrier phase.

Since the correlation values come serially from the IFFT block, the serial mecha-

nism is not critical for the processing time. Therefore, a serial peak searcher will

be used.

Figure 5-9: The Implemented Complex Multiplier

Adder

Adder

Adder

Adder

Adder

M ultiplier

M ultiplier

M ultiplier

neg.

yr

yi

neg.xi xr

imag

real

7 7

7

8

8

11

10

10

17

17

17

18

18

16

16

for drawing simplicity registers are not shown

Adder

Adder

Adder

Adder

Adder

M ultiplier

M ultiplier

M ultiplier

neg.

yr

yi

neg.xi xr

imag

real

7 7

7

8

8

11

10

10

17

17

17

18

18

16

16

for drawing simplicity registers are not shown

77

A simplified diagram of the peak searcher is shown in Figure 5-10. First the

incoming complex number is held in a register. The most important information of

the peak searcher is not the value of the peak itself, but its location. Rather than

computing the absolute value of the complex number, which is difficult to do in

hardware, a simplification can be used by squaring both real and imaginary values

and then summing them to have the magnitude squared. Thus, the circuit can be

simplified without affecting the desired information. For this reason, two real mul-

tipliers and an adder are used to compute peak values. Initially, the stored peak

value is set to zero.

Each clock cycle will bring a new squared magnitude value. The new value

is compared against the current stored peak. If the new value is larger than the

stored peak, it will be stored and its location is also stored. The location value is

Figure 5-10: Simplified Diagram of the Peak Searcher

REG

A=x^2+y^2

REG
x +j(y)

A>P ? REG

REG
Counter

τ (0 – 1023)

temp Last Max

P > thr ?

Counter

Loop (0 – 4)

Recalculate τ
in samples

To

ATAN (y/x)

Code phase
(samples)

Peak^2

REG

A=x^2+y^2

REG
x +j(y)

A>P ? REG

REG
Counter

τ (0 – 1023)

temp Last Max

P > thr ?

Counter

Loop (0 – 4)

Recalculate τ
in samples

To

ATAN (y/x)

Code phase
(samples)

Peak^2

78

computed using a counter that counts the incoming values from the correlator. Two

counters are used in the peak searcher because it is required to check the location

peak in each averaged sequence and to check which starting point (which

sequence) is responsible for the peak. The starting point counter counts from zero

to 4, while the other counter counts from zero to 1023 to search the IFFT output of

each loop of five. The code phase in samples can be computed by using the following

formula

where is the code phase, is the peak location in 1024 samples, and k is the

starting point count. This can be implemented using an adder and a LUT. The LUT

contains all the 1024 possible multiplication results.

Another calculation that is necessary for the peak searcher to do, is the cal-

culation of the carrier phase. The next section covers the implementation options

that are investigated to use for the carrier phase estimation in the acquisition pro-

cess.

5.3.8 Carrier Phase Estimator

The carrier phase is an important measure that the acquisition process pro-

vides. It indicates where the GPS information is concentrated. If the GPS informa-

tion is concentrated in the in-phase components, then the carrier phase is almost

zero. Whereas, if the majority of the information is in the quad-phase components,

then the carrier phase is almost . However, in many cases the GPS information

 (samples) (5-3)τ τ 1024
5000
1024
------------× k+

 =

τ τ 1024

90°

79

is divided between the in-phase and quad-phase components. Therefore, the acqui-

sition process must provide the carrier phase information to the tracking process

which is replaced by serial correlators in this work. These serial correlators use the

carrier phase estimation to synchronize the carrier. Therefore, the GPS informa-

tion is concentrated in the in-phase components. Two implementable carrier phase

calculation methods are presented in the next sections.

5.3.8.1 Simple Digital ATAN

A simple calculation of the ATAN function for the acquisition process can be

achieved by one addition and one division. In the acquisition process the carrier

phase is calculated by computing ATAN(Q / I). However, a simplification is done

by approximating the ATAN function. The function ATAN(Q / I) can be approxi-

mated by computing 90*(Q/ (Q+I)). Figure 5-11 shows the ATAN function and its

approximation. This method requires one addition and one division plus scaling by

90. It calculates the phase when it is bounded by zero and 90. However, it can be

extended to cover the whole phase plane with a small circuit that converts the cal-

culated value to its correct form based on the signs of I and Q.

80

Using this type of approximation in hardware is fast and requires a very

small area compared with the CORDIC method which is presented in the next sec-

tion. The only disadvantage of this method is the approximation error which can

vary from -4 to +4 degrees as can be seen in Figure 5-12. However, this error is

acceptable for the acquisition process. Since the averaging method causes addi-

tional 4 to 8 degrees error then the total error can vary from -8 to +12 degrees. The

approximation error can be reduced by using lookup tables but it is difficult to

remove all the error using small lookup tables. So one needs to use either a large

look up table or a more accurate algorithm. The latter solution can be implemented

Figure 5-11: ATAN Function and Its Approximation

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

(Q / I)

A
TA

N
(Q

/I)

de

gr
ee

s

ATAN Function

90*(Q/(Q+I))

True
ATAN(Q/I)

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

(Q / I)

A
TA

N
(Q

/I)

de

gr
ee

s

ATAN Function

90*(Q/(Q+I))

True
ATAN(Q/I)

81

using the CORDIC method, since the calculation of the carrier phase must be very

accurate for the tracking process lock-in requirement.

5.3.8.2 Computing ATAN Function Using CORDIC

Coordinate Rotation Digital Computer or CORDIC is a method for perform-

ing elementary operations such as trigonometric functions. It calculates the trigo-

nometric functions by rotating the coordinates through angle steps until the angle

goes to zero (Kharrat, 2001). It can be performed using add and shift operations

only. CORDIC is a well known method that is usually used in hardware because of

its simplicity and compact size (Kantabutra, 1999). Also, it is considered a very

accurate method for computation of elementary functions and hence it is widely

Figure 5-12: ATAN Function’s Approximation Error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5
error between atan(x) and direct calculation of (pi/2)*v

Q/(Q+I) (or " v ")

er
ro

r i
n

de
gr

ee
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

-4

-3

-2

-1

0

1

2

3

4

5
error between atan(x) and direct calculation of (pi/2)*v

Q/(Q+I) (or " v ")

er
ro

r i
n

de
gr

ee
s

82

used in calculators. No description for CORDIC will be discussed in this work. The

CORDIC algorithm is implemented in the FPGA using the available rectangular-

to-polar open core from (opencores.com).

5.3.9 Time-Domain Serial Correlators

Since the acquisition process gives a rough estimate of the code phase and

carrier phase and frequency every millisecond, then it would be easier to use the

serial-correlator based tracking process. The tracking process will re-generate a

refined version of the carrier every millisecond based on the acquisition informa-

tion. It uses the early-prompt-late type of architecture to track the GPS signal.

Using the triangle fitting described in (Uijt, 1998), a refined code phase can be com-

puted and used later to demodulate the Navigational data. A simplified block dia-

gram of the serial correlators based process is shown in Figure 5-13.

Figure 5-13: Serial Correlators Based Process

In c o m in g s a m p le s

A c q u is i t io n B lo c k

L o c a l C o d e

N C O

1 m s o f
G P S
D a ta

τfa c q ∆ φ

R A M

A & D

A & D

A & D

Tr
ia

ng
le

 F
itt

in
g

To
 re

fin
e

τ

F o r f ig u re s im p lic ity Q -p h a s e is n o t s h o w n

I-p h a se

E P L -ba s e d T ra c k in g
u s ing S e r ia l C o r re la to rs

L P E

R E G R E G

In c o m in g s a m p le s

A c q u is i t io n B lo c k

L o c a l C o d e

N C O

1 m s o f
G P S
D a ta

τfa c q ∆ φ

R A M

A & D

A & D

A & D

Tr
ia

ng
le

 F
itt

in
g

To
 re

fin
e

τ

F o r f ig u re s im p lic ity Q -p h a s e is n o t s h o w n

I-p h a se

E P L -ba s e d T ra c k in g
u s ing S e r ia l C o r re la to rs

L P E

R E G R E G

83

Using serial correlators will not affect the real-time performance of the

receiver because the processing clock can be as high as 200 MHz. However, a good

realistic estimate of the clock speed is about 45-50 MHz since the acquisition and

tracking architectures are too large to implement in one FPGA. The large design

will fit in the FPGA, but the problem is in the unpredictable routing which leads

to clock speed limitations.

Since the correlator needs approximately 5000 clock cycles, the tracking

process will take approximately 100 microseconds for 50MHz clock. The advantage

of using the serial correlators is that they use a very small area of the FPGA and

require only additions (or accumulations). The NCO is similar to the one used in

the acquisition process. Feeding back the corrections of the carrier based on the

last estimations using the block processing concept produces a refined version of

the carrier. The CORDIC or the implemented ATAN architecture is time shared

between acquisition and tracking processes. Triangle fitting equation is simpler to

be done inside the PC, but it is preferred to have all the computations performed

inside the FPGA. In this case, the PC will be responsible for collecting the block

processing values every 1 millisecond.

5.4 FPGA Implementation of GPS Block Processor

The FPGA platform used has a Virtex FPGA that provides 800k logic gates.

This FPGA cannot implement the whole block processing system. Therefore, the

system was partitioned into smaller parts as shown in Figure 5-14. Each block is

mapped to the FPGA and then is tested separately.

84

In the first part, the data are read from the data collection memory to apply

to the averaging method. The data are multiplied by the SIN and COS components

of the carrier coming from the NCO. The carrier wipe-off multiplication is replaced

by the adder and the multiplexer.

Then the averaging circuit takes the 5000 baseband values and averages

them to 1024 values. The resulting values are stored in the output RAM. The car-

rier wipe-off and averager block diagram is shown in Figure 5-15.

Figure 5-14: System Partitioned into Small Components

Input
RAM Averaging

5000 to 1024

τ facq

Input RAM
Inter-calc. RAM

IFFT Core
Output RAM

Conj of FFT
of Averaged

C/A code

Input RAM
Inter-calc. RAM

FFT Core
Output RAM

1

2

3

45

NCO

Peak Search

Input RAM
Complex Mult.
Output RAM

Tracking Using
Serial Correlators

6

τ ftrck

refined values

Input
RAM Averaging

5000 to 1024

τ facq

Input RAM
Inter-calc. RAM

IFFT Core
Output RAM

Conj of FFT
of Averaged

C/A code

Input RAM
Inter-calc. RAM

FFT Core
Output RAM

1

2

3

45

NCO

Peak Search

Input RAM
Complex Mult.
Output RAM

Tracking Using
Serial Correlators

6

τ ftrck

refined values

85

The second section is the FFT component that reads 1024 averaged values

and provides their spectrum. The averaged signal data are stored in the memory

by the preceding operation. The FFT core is implemented using the SMS-imple-

mentation as described in (Xilinx, 2000) then the outputs of the FFT are stored in

an output RAM. Figure 5-16 shows the block diagram of the FFT component.

Figure 5-15: Carrier Wipe-off and Averager (Downsampler)

RAM

5000x12

RAM

1024x32

NCO

Carrier Wipe-Off
Downsampler

Downsampler

I

Q

12

12

16

16

3212

Incoming
samples

COSSIN

RAM

5000x12

RAM

1024x32

NCO

Carrier Wipe-Off
Downsampler

Downsampler

I

Q

12

12

16

16

3212

Incoming
samples

COSSIN

Figure 5-16: FFT Block

RAM

1024x32

Incoming
1024

values RAM

1024x32

RAM

1024x32
FFT Core

32

32

32

32

32

32

32

SM S-FFT Configuration

RAM

1024x32

Incoming
1024

values RAM

1024x32

RAM

1024x32
FFT Core

32

32

32

32

32

32

32

SM S-FFT Configuration

86

The third component is the complex multiplier of both the data and the code.

The data are the output of the FFT component and are available in the memory.

These values are read and then scaled by 16 for each channel using a shift-by-four

operation. Therefore, the scaled data becomes 10 bits per channel, or a 20-bit com-

plex number. In this operation, four ones are padded instead of zeros in the case of

negative numbers to keep the 2’s complement representation valid. Then these

values and the local code values from the other RAM are both fed to the complex

multiplier. The output values are stored in the output RAM. Figure 5-17 shows the

implemented fequency-domain complex multiplier.

The next part, is the IFFT component. Similar to the FFT component, the

IFFT is built using the SMS-implementation. Therefore, the IFFT core reads the

results of the complex multiplications which are assumed to be in the input RAM

Figure 5-17: Frequency Domain Multiplier Block

Conj and
FFT of

modefied-
code

RAM

1024x14

Incoming
1024

values
RAM

1024x32

RAM

1024x32 Complex
Multiplier

32
Scaling

32

14

20
32

Conj and
FFT of

modefied-
code

RAM

1024x14

Incoming
1024

values
RAM

1024x32

RAM

1024x32 Complex
Multiplier

32
Scaling

32

14

20
32

87

of this part. The output of the IFFT is stored in the output RAM. The block diagram

for this component is similar to the FFT component with FFT replaced by IFFT

operation.

The fifth component is the peak searcher block. In this section, the results

of the IFFT component were stored in the input RAM. The values are read from the

RAM sequentially and the peak is searched using the peak searcher architecture

described earlier in this chapter (Figure 5-10). The output of the peak searcher are

stored in registers since they have two values, the peak location and the real and

imaginary values of the IFFT point responsible for the peak (I and Q). The I and Q

values are fed to the ATAN component to calculate the carrier phase. The ATAN

function was excluded from the peak searcher circuit to make it accessible for both

acquisition and tracking circuits. Figure 5-18 shows the implemented peak

searcher part.

Finally, the serial-correlator section is implemented. This section assumes

that the current 1-ms GPS samples are stored in the input RAM. The samples are

read sequentially and multiplied by the NCO’s sin and cos components. The mul-

Figure 5-18: Peak Searcher Block

In c o m in g
1 0 2 4

v a lu e s
R A M

1 0 2 4 x 3 2

P e a k S e a rc h e r

C irc u i t
3 2

R E G

R E G

R E G

R e p e a te d F iv e T im e s

τ 1 0 2 4

k o u t

P
3 1

3

1 0In c o m in g
1 0 2 4

v a lu e s
R A M

1 0 2 4 x 3 2

P e a k S e a rc h e r

C irc u i t
3 2

R E G

R E G

R E G

R e p e a te d F iv e T im e s

τ 1 0 2 4

k o u t

P
3 1

3

1 0

88

tiplication is implemented by an adder and a multiplexer as described earlier. The

base-band results then enter the E-P-L serial correlators component where the

samples are multiplied by three shifted copies of the local code. These copies are

late, prompt, and early copies of the code. This section assumes that the local code

is upsampled to 5000 samples in PC and then stored in a RAM during FPGA con-

figuration. The early, prompt, and late code copies are generated with the guidance

of the rough code estimation that is already stored in a register. Figure 5-19 shows

the implemented architecture for the serial-correlators block.

The serial correlators provide the three points around the peak. These

values are then used with the triangle fitting and carrier phase estimator to pro-

vide accurate estimations of code phase and carrier frequency.

Figure 5-19: Estimator Block (Serial Correlators)

Incoming
samples

Local Code
RAM

NCO

1ms of
GPS
Data

5000x12

facq

∆φ

RAM

A&D

A&D

A&D

For figure simplicity Q-phase is not shown

I-phase

L P E

REG REG

τ Address
Generator4999-τ

RD Address

Incoming
samples

Local Code
RAM

NCO

1ms of
GPS
Data

5000x12

facq

∆φ

RAM

A&D

A&D

A&D

For figure simplicity Q-phase is not shown

I-phase

L P E

REG REG

τ Address
Generator4999-τ

RD Address

89

5.5 Overall Performance and Discussion of the Results

The description of how the whole architecture was partitioned for imple-

mentation was presented in the previous section. Each block was mapped to the

FPGA and tested separately. Figure 5-20 shows the mapped implementation of the

data averager and carrier wipe-off partition. One can see how the routing was

unpredictable. It uses routing resources from left to right and from top to bottom

even though the used logic resources occupy small area.

The other figures for the mapped implementations of all the parts are pre-

sented in Appendix E. The implemented parts were tested in sequence with real

GPS data, and acquisition and tracking (serial-correlators zooming function) were

Figure 5-20: FPGA Layout of the Mapped Design of the Averager and the

Carrier Wipe-off Components.

90

verified. Figure 5-21 shows the hardware simulation for the correlation functions

of the averaging-based acquisition. Five correlation peaks are shown. They are

approximately similar to the Matlab simulation using fixed-point operations.

The required FPGA resources (or implementation area) for each part of the

design are shown in Table 5-1. To estimate the required FPGA resources for the

whole system, we cannot simply add the numbers of the logic slices used and the

used block RAMs of all the blocks. The reason is each block contains data collec-

tion, intermediate calculation handling, and result storage that can be reduced for

the complete system implementation to avoid redundancy. Therefore, an estima-

Figure 5-21: Hardware-Based Results of the Averaging Correlation.

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

τ (modified code chips)

co
rr

el
at

io
n

en
er

gy

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

0 200 400 600 800 1000 1200
0

100

200

τ (modified code chips)

co
rr

el
at

io
n

en
er

gy

91

tion of the required FPGA resources of the whole system which implements acqui-

sition and tracking is approximately 7,500 programmable logic slices and 84 Block

RAMs. Adding two RAMs for data collection changes the required number of block

RAMs to 114. More area is also needed since the whole system requires more con-

trollers plus the carrier phase estimator which has not yet been implemented.

Therefore, using 8,000 programmable logic slices and 114 block RAMs is a logical

estimation.

With the availability of such resources in one FPGA such as the

VirtexE1600, the implementation of such a system may be possible. The whole

design will take about 50% of the available slices and 80% of the available Block

RAMs. This leaves more room for routing that could affect the maximum clock

speed. Routing in FPGA is one of the main problems since it is not predictable.

However, based on the already implemented blocks and the above estimations, a

system clock of 45MHz may be used without having timing problems (Table 5-2).

Table 5-1. Implementation Cost (Virtex Resources)

17824 18 24 25 Block RAMs
(max. 28)

697862 2288 6492288 704Configurable Logic
Slices

(max. 9408)

54321Part.# TrackingAcquisition

92

The acquisition process requires about 42,000 clock cycles. The serial corr-

elators block requires about 5,000 clock cycles. If the clock speed is equal to or more

than 47MHz, the averaging correlation and serial correlators of 1-ms GPS data is

computed in 1-ms or less. Assuming that the carrier frequency is known, the acqui-

sition is conducted in the code phase dimension and therefore processing blocks of

1-ms GPS data can be achieved in real time.

Table 5-2. Maximum Net Delays in (nsec) for Each Partition

15.61

Peak
Searcher

17.39

IFFT
Block

17.52

Tracking
E-P-L

(I-phase only)

15.7717.3914.69

Freq.
Domain

Multiplier

FFT
Block

Carrier wipe
off and
averager

15.61

Peak
Searcher

17.39

IFFT
Block

17.52

Tracking
E-P-L

(I-phase only)

15.7717.3914.69

Freq.
Domain

Multiplier

FFT
Block

Carrier wipe
off and
averager

93

Chapter 6

Summary, Conclusion, and

Recommendations

6.1 Summary

The goal of this work was to develop an implementable algorithm for GPS

block processing. The most important characteristics of the developed block pro-

cessing are a short acquisition time, and a high accuracy of code and carrier phase

estimations.

The current implementation of the GPS block processing (acquisition and

tracking) are too slow for the high accuracy estimations. The main cause of slow

processing is the large amount of operations needed to implement the correlator

and the FFT functions. Implementing the correlations using a microprocessor-

based method is another factor.

This work investigated possible fast algorithms for implementing the corre-

lation function using a real and binary transforms in an FPGA. The correlation

algorithm using real transform (the Fermat number transform) is limited to short

codes. Therefore, it was not used for the implementation of the GPS receiver. The

94

other transform investigated in this dissertation was the Walsh Hadamard trans-

form. The provided method used only one Walsh transform, LFSRs, and RAMs. The

method was implemented in an FPGA. It showed an improvement in correlation

computation speed of 20 times compared to the FFT-based implementation. Com-

paring the Walsh Hadamard correlation implemented in an FPGA (with a 1MHz

processing clock speed) against its implementation with a microprocessor-based

architecture (with a 233MHz clock speed), the FPGA-based method was approxi-

mately 2500 times faster. The only limiting factor for this algorithm was the type

of codes that can be used. The Walsh Hadamard based method was suitable for

maximum length pseudo random codes. However, this method cannot be directly

applied to gold codes because of the additional XOR operation used to generate the

gold codes. Therefore, extending this method to gold codes needs more research

since it is not directly applied.

The FFT method was then used for the implementation of acquisition pro-

cess. The required size of the FFTs are 5000 points each. Implementing 5000-point

FFT was a complicated task. Therefore, the averaging correlation method was

used. The averaging correlation method requires computing 5 of 1023-point FFTs

(or IFFTs) instead of every 5000-point FFT (or IFFT). Direct implementation of the

1023-point FFT was also very difficult. One possible method for extending the

averaging correlation concept to a 1024-point correlation function was developed

in this dissertation. This method is named modified-code averaging correlation.

The modified-code method was used for the acquisition process and connected to

time-domain serial correlators to refine the code phase and carrier frequency esti-

mations. The whole design could not fit into a single FPGA. Therefore, it was par-

95

titioned into smaller blocks and the acquisition and tracking-like estimators were

verified.

6.2 Conclusion

In conclusion, various transforms were able to speed up the acquisition pro-

cess significantly when they were implemented using parallel processing hard-

ware. There were limitations for using some of these transforms in the code length

and the code type. The modified-code averaging method, however, shortened the

acquisition time significantly using the FFT-based correlation concept. The imple-

mentation of this new architecture provided fast acquisition with accurate syn-

chronization without losing much of the signal energy. The implementation was

able to process 1-ms of a normal GPS signal in less than 1-ms. Real-time acquisi-

tion was achieved when the carrier frequency was determined by a frequency

search step. Therefore, the modified-code correlator based block processing archi-

tecture is considered a viable solution to the described problems of the slow acqui-

sition and tracking with the current GPS receivers.

6.3 Recommendations

It is recommended that the whole architecture of the block processing using

the modified-code averaging correlation is implemented in a single FPGA. Then a

real GPS signal will be applied to the architecture to test the mis-detection proba-

96

bility. Availability of such a measure helps to decide which applications would ben-

efit from such an implementation.

Software block processing requires that the GPS samples are first stored

and then processed in a group. Until the time of this writing, this was done using

slow software-based processing. Applying the gained techniques of software block

processing to the implemented architecture makes use of the high performance

design to implement real-time processing of GPS data. Using such techniques with

this fast method helps to design a receiver for applications where high doppler

occurs. For example, an airplane will benefit from having a high rate updating

system that continuously gives values of speed, direction and altitude.

Additionally, an extension of this work to acquire weak signals is very

important. In some situations, most of the satellites are in positions that make

their signals weak. With the extension of the implemented design to work for weak

signals, a receiver with such an architecture can detect the satellites very quickly,

thus providing navigational and positioning information most of the time. Since

weak signals need longer blocks of data, specialized weak signal block processing

techniques are needed.

Developing an architecture using the presented solution to build a GPS

receiver that processes the GPS data for multiple satellites in real-time is an

important issue. Time-sharing of the implemented functions to acquire or track

multiple satellites needs to be studied. Designing a board with larger and multiple

FPGAs is recommended since it will facilitate real-time GPS block processing.

Attaching this board to a front-end system and a microprocessor based system sim-

plifies the GPS processing for flight testing.

97

Developing different algorithms for circular correlations without using the

FFTs is still a valid future research direction. Even with the limitations found

when using the other transforms, a viable solution may exist. Extension of Walsh-

based algorithm to C/A codes is an open area for research. Using approximations

and other transforms may lead to a break-through in the GPS acquisition. With

such a development, a time-sharing concept of multi-satellite acquisition and

tracking will become feasible.

98

References

[1] Agarwal R.and Burrus C., “Fast Convolution Using Fermat Number Trans-

forms with Applications to Digital Filtering,” IEEE Transactions on Acous-

tics, Speech, and Signal Processing, Vol. ASSP-22, No. 2, April 1974, pp. 87 -

97.

[2] Akos D. and Tsui J., “Design and Implementation of a Direct Digitization

GPS Receiver Front End,” IEEE Transactions on Microwave Theory and

Techniques, Vol. 44, No. 12, Dec. 1996, pp. 2334-2339.

[3] Akos D., “A Software Radio Approach to Global Navigation Satellite System

Receiver Design”, Ph.D. Dissertation, Ohio University, August 1997.

[4] Alaqeeli A. and Starzyk J., “Hardware Implementation for Fast Convolusion

with a PN Code Using Field Programmable Gate Array,” Proc. of 33rd

Southeastern Symposium on System Theory, Athens, OH, March 2001, pp.

197 -201.

[5] Alaqeeli A., Starzyk J., and F. van Graas, “Real-Time Acquisition and

Tracking for GPS Receivers”, Submitted to ISCAS2003, Bangkok, Thailand,

May 2003

99

[6] Arambepola B., “VLSI Architecture for Convolver Design Using Number

Theoretic Transforms,” Electronics Letters, Vol. 25, No. 23, November 1989,

pp. 1604 -1606.

[7] Beauchamp K., Applications of Walsh and Related Functions, Aca-

demic Press Inc., 1984.

[8] Braasch M. and Van Dierendonck A., “GPS Receiver Architectures and Mea-

surements,” Proceedings of the IEEE, Vol. 87, No.1, January 1999, pp. 48 -

64.

[9] Budisin S., “Fast PN Sequence Correlation By Using FWT,” Mediterranean

Electrotechnical Conf. Proc., Lisbon, Portugal, April 1989, pp. 513 -515.

[10] Burrus C. and Parks T., DFT/FFT and Convolution Algorithms, Wiley-

Interscience Publication, New York, 1985.

[11] Coenen A. and Van Nee D., “Novel Fast GPS/GLONASS Code-Acquisition,”

Electronics Letters, Vol. 28, No. 9, April 1992, pp. 863 -865.

[12] Cohn M. and Lemple A., “On Fast M-Sequence Transforms,” IEEE Transac-

tions on Information Theory, January 1977, pp. 135 -137.

[13] Cook C., Ellersick F., Milstein L., and Schilling D., Spread Spectrum

Communications, IEEE Press, New York, 1983.

100

[14] Dimitrov V., et al., “Generalized Fermat-Mersenne Number Theoretic

Transform,” IEEE Transactions on Circuits and Systems-II: Analog and Dig-

ital Signal Processing, Vol. 41, No. 2, February 1994, pp. 133 -139.

[15] Dixon R., Spread Spectrum Systems with Commercial Applications,

3rd ed., John Wiley & Sons Inc., New York, 1994.

[16] Feng G. and van Graas F., “GPS Receiver Block Processing,” ION GPS-99,

Nashville, TN, September 1999, pp. 307 -316.

[17] French G., Understanding the GPS An Introduction to the Global

Positioning System, 1st ed., Bethesda, MD, GeoResearch, Inc., 1996.

[18] Golomb S., Shift Register Sequences, Holden-Day Inc., 1967.

[19] Gunawardena S., “Feasibility Study for the Implementation of Global Posi-

tioning System Block Processing Techniques In Field Programmable Gate

Arrays,” MS. Thesis, Ohio University, June 2000.

[20] Gibson J., Principles of Digital and Analog Communications, 2nd ed.,

Prentic Hall, 1993.

[21] Hassan A., Hershy J., and Saulnier G., Perspectives in Spread Spec-

trum, Kluwer Academic Pub., 1998.

101

[22] Herveille R., “CORDIC Core Specification,” OpenCores, www.opencores.org,

Rev. 0.4, December 12, 2001.

[23] Kantabutra V, “High-Radix CORDIC for Vector Rotation with Pipelined

FPGA Implementation,” IEEE ICECS1999, Pafos, Cyprus, Sept. 1999, pp.

1131 -1134.

[24] Kaplan E., Understanding GPS Principles and Applications, Artech

House Inc., MA, 1996.

[25] Kayton M. and Fried W., Avionics Navigation Systems, 2nd ed., New

York, John Wiley & Sons, Inc., 1997.

[26] Kharrat W., et al., “A New Method To Implement CORDIC Algorithm,”

IEEE ICECS2001, Malta, Sept. 2001, pp. 715 -718.

[27] Lempel A., “Hadamard and M-Sequence Transforms are Permutationally

Similar,” Applied Optics, Vol. 18, No. 24, December 1979, pp. 4064 -4065.

[28] Li W., “The Modified Fermat Number Transform and Its Application,” IEEE

ISCAS1990, New Orleans, Vol. 3, May 1990, pp. 2365 -2368.

[29] Lin D. and Tsui J., “Comparison of Acquisition Methods for Software GPS

Receiver,” ION GPS-2000, Salt Lake City, UT, September 2000, pp. 2385 -

2390.

102

[30] Lin D. and Tsui J., “A Software GPS Receiver for Weak Signals,” IEEE

MTT-S Digest, THIF-37, 2001, pp. 2139 -2142.

[31] Misra P. and Enge P., Global Posistioning System: Signals, Measure-

ments, and Performance, Ganga-Jamuna Press, MA, 2001.

[32] Molyneux D. and Pratt A., “Post Processing Algorithms for Translator-Type

GPS Receivers,” IONGPS2002, Portland, OR, Sept. 2002.

[33] Myers D., Digital Signal Processing: Efficient Convolution and Fou-

rier Transform Techniques, Prentic Hall, New York, NY, 1990.

[34] Nallatech Inc, “Ballynuey 2 Virtex PCI Card User Guide,” Ref.: NT107-0045,

Dec. 1999.

[35] Nussbaumer H., Fast Fourier Transform and Convolution Algorithms,

Springer-Verlag, New York, 1982.

[36] Parkinson B. and Spilker J., Global Positioning System: Theory and

Applications, Volume I, American Institute of Astronautics and Aeronau-

tics, Inc., Washington, DC, 1996.

[37] Peterson R., Ziemer R., and Borth D., Introduction to Spread Spectrum

Communications, Prentic Hall, 1995.

103

[38] Proakis J., Digital Communications, 3rd ed., McGraw-Hill, New York,

1995.

[39] Proakis J., et al., Algorithms for Statistical Signal Processing, Pren-

tice-Hall, Inc., Upper Saddle River, NJ, 2002.

[40] Rader C., “Discrete Convolution via Mersenne Transforms,” IEEE Trans.

Comput., Vol. C-21, pp. 1269-1273, 1972.

[41] Roth C., Fundamentals of Logic Design, 4th ed., West Publishing Com-

pany, 1992.

[42] Sari H. and Cochet P., “Transform-Domain Signal Processing in Digital

Communications,” Tirrenia International Workshop on Digital Communica-

tions, Viareggio, Italy, 1995, pp. 364 -384.

[43] Sarmiento R., et al., “A CORDIC Processor for FFT Computation and Its

Implementation Using Gallium Arsenide Technology,” IEEE Transactions

on VLSI Systems, Vol. 6, No. 1, March 1998, pp. 18 -30.

[44] Selesnick I., and Burrus C., “Fast Convolution and Filtering”, Chapter 8 in

The Digital Signal Processing Handbook, CRC Press, Boca Raton, FL,

1998.

[45] Smith D., HDL Chip Design, Madison, AL, Doone Publications, 1996.

104

[46] Smith W. and Smith J., Handbook of Real-Time Fast Fourier Trans-

forms, IEEE Press, 1995.

[47] Starzyk J., “Matlab Self-Organizing NN Project,” v.2, Ohio University, from

http:\\www.ent.ohiou.edu\~starzyk, 2000.

[48] Starzyk J. and Zhu Z., “Averaging Correlation for C/A Code Acquisition and

Tracking in Frequency Domain,” MWSCS Conf., Fairborn, OH, August 2001.

[49] Tsui J., Fundamentals of Global Positioning System Receivers: A

Software Approach, John Wiley & Sons Inc., 2000.

[50] Turimella S. and Skavantzos A., “Implementation Aspects of Convolvers

Using Non-Binary Arithmetic,” Asilomar Conference on Circuits, Systems

and Computers, Pacific Grove, CA, Nov. 1991, pp. 90 -94.

[51] Uijt de Haag M., “An Investigation Into The Application of Block Processing

Techniques for the Global Positioning System,” Ph.D. Dissertation, Ohio

University, August 1999.

[52] Van Nee D. and Coenen A., “New Fast GPS Code-Acquisition Technique

Using FFT,” Electronics Letters, Vol. 27, No. 2, January 1991, pp 158 -160.

[53] Ward P., “GPS Receiver Search Techniques,” IEEE PLANS, 1996, pp. 604 -

611.

105

[54] Xilinx FFT, “High-Performance 1024-Point Complex FFT/IFFT,” V 2.0,

Product Specification, Xilinx Inc., July, 2000.

[55] Xilinx Inc., “Numerically Controlled Oscillator,” V. 1.0.3, Product Specifica-

tion, Xilinx Inc., December, 1999.

[56] Xilinx Inc, “Virtex 2.5V Field Programmable Gate Arrays,” DS003-2 Product

Specification, Xilinx Inc., September, 2002.

[57] Xilinx Inc, “Parallel Multipliers - Performance Optimized,”, Product Specifi-

cation, Xilinx Inc., July, 1998.

[58] Xu S., Dai L., and Lee S., “Autocorrelation Analysis of Speech Signals Using

Fermat Number Transform (FNT),” IEEE Transactions on Signal Process-

ing, Vol. 40, No. 8, August 1992, pp. 1910-1914.

[59] Yubin Z. and Turner L., “Report for FFT Processor Design,” University of

Calegary, April, 1996.

[60] Zehavi E., “Applications of Walsh Functions and the FHT in CDMA Technol-

ogy,” Tirrenia International Workshop on Digital Communications, Viareg-

gio, Italy, 1995, pp. 28 -38.

[61] Zhu Z., “Averaging Correlation for Weak GPS Signal Processing”, MS. The-

sis, Ohio University, April 2002.

106

Appendix A

The Ballynuey FPGA Board

Appendix A contains a description of the design platform used in this dis-

sertation. The Board was designed by Nallatech Inc, England. Nallatech produces

different DSP and FPGA boards for different applications, video processing for

instance. This board is called a Ballynuey PCI card. The Ballynuey card is a gen-

eral purpose data processing interface card for the PC. It has four DIME module

sites to provide the designer with different interfaces that satisfy certain applica-

tions. It also has a ZBT SSRAM that is directly attached to the user’s FPGA.

Ballynuey has two Xilinx FPGAs. An XLA FPGA is pre-configured with a

PCI interface IP core to abstract the interfacing between the board and the PC.

Also an on-board Virtex FPGA is available for the user designs. It is connected to

the PC through the interfacing XLA FPGA.

The Virtex FPGA is ready for the user’s developed designs. An interface

design is provided to the user. This interface circuit is responsible for data move-

ment between the Ballynuey card and the PC through the XLA FPGA. The inter-

face design is compact and easy to use. A design developer needs to include this

interface circuit in the top level of the implemented design. This permits the devel-

107

oped design to read the data from the PC or write them back. This simplicity of

communicating between PC and Virtex makes Ballynuey a good choice for the

problem in hand. More information about the Ballynuey can be found in (Nalla-

tech, 1999).

The Virtex FPGA provides a high performance and a large area of program-

mable resources. This allows the user to process the data before passing them to or

from the PC. The Virtex FPGA is a member of the second generation of the Xilinx

FPGAs. It provides the user with the flexibility of a DSP and the performance of

an ASIC. It has an array of configurable logic blocks (CLBs) surrounded by pro-

grammable input/output blocks (IOBs). This FPGA is a SRAM-based FPGA. It also

has a built-in clock management circuitry. For example, it has four delay locked

loops (DLLs) for advance clock control. The main difference between Virtex and the

first generation of Xilinx FPGA, is the additional user RAMs. Virtex has the old

type of RAM which is the distributed RAMs available inside every CLB. The new

FPGA RAMs are called Block RAMs. These RAMS are larger, which enables each

block RAM to implement up to 4096 bits. More information about the Virtex FPGA

can be found in (Xilinx, 2002).

108

Appendix B

Matlab Codes

B.1 Walsh Hadamard Based Convolution with PN
sequences

This Matlab code was written to verify the algorithm of the Walsh Had-

amard transform based convolution. This method was described in detail in Sec-

tion 3.3. This Matlab code uses a Walsh function that is also written for the

verification of this method.

clc;clear;

PN=[1 0 0 1 1 1 0];

n=3;

p=2^n-1;

PNex=[PN PN(1:2)];

for i=1:p

S(i)=PNex(i)+2*PNex(i+1)+4*PNex(i+2);

end;

% the inverse S sequence

for i=1:p

S_1(S(i))=i;

end;

X=[];

PN1=PN;

for i=1:p

X=[X;PN1];

PN1=[PN1(2:p) PN1(1)];

end;

109

W=hadamard(8);

W7=(1-W(2:8,2:8))/2;

Xperm=X(1:p,S_1(1:7));

for i=1:7

for j=1:7

if Xperm(i,:)==W7(j,:)

Q(i)=j;

end;

end;

end;

% the inverse Q sequence

for i=1:p

Q_1(Q(i))=i;

end;

shift=3;

input=[PN(shift:p) PN(1:shift-1)];

% permute the input sequence

input_perm=[0 input(S_1)];

% calculate the Walsh transform of the permuted sequence

Y=walsh(input_perm);

[Z1,I1]=max(abs(Y(2:p+1)));

%II=Q_1(I1-1);

% II is the location of the maximum convolution

Result=Y(Q+1);

% -----------------------------

% Walsh generates Walsh transform of the binary input sequence x

function y=walsh(x);

x1=-2*x+1;

y=x1*(hadamard(length(x));

110

B.2 Approximation of ATAN Function

The following code was developed to find a simple method to calculate the

ATAN function needed for the carrier phase estimation. The developed method was

described in Section 5.3.8.1. Another Matlab code was written to verify the

CORDIC method for calculating the ATAN function as described in Section 5.3.8.2.

This code follows the ATAN approximation matlab code.

% this matlab code is done to check the error of approximating ATAN(Q/
I).

% from previous simulations, atan(x) can be approximated by (pi/2)*v

% where v=1-z, and z= 1(1+x), x is (Q/I) ===> v=Q/(Q+I)

% I assume that Q and I are only positives.

clc;clear;

Q=0.01 :0.01:100;

n=length(Q);

I=ones(1,n);

v=(Q./(Q+I));

x=(Q./I);

y=(180/pi)*atan(x);

v1=v;

y1=(90).*(v1); % y1 is the approximation of atan(Q/I)

figure(1);

plot(x,y-y1);

title('error between atan(x) and direct calculation of (pi/2)*v');

xlabel(' x (or Q/I)');

ylabel(' error in degrees');

% ---

% the error is based on the PC calculations of (pi/2)*v compared to
atan(x);

111

% % testing cordic

xo=2;

yo=1;

zo=0;

% % xnew=x(i+1), ynew=y(i+1);

n=32

% rotation mode: --------------------

xi=xo;yi=yo;zi=zo;

for i=0:n;

if zi<0 ,

di=-1;

else

di=1;

end;

xnew=xi-yi*di*(2^-i);

ynew=yi+xi*di*(2^-i);

znew=zi-di*taninv(i);

xi=xnew;yi=ynew;zi=znew;

xr(i+1)=xi;yr(i+1)=yi;zr(i+1)=zi;

end;

[0 xo yo zo ; (1:n+1)' xr' yr' zr'];

% vectoring mode: --------------------

xi=xo;yi=yo;zi=zo;ai=1;

for i=0:n;

if yi<0 ,

di=1;

else

di=-1;

end;

anew=ai*sqrt(1+2^-(2*i));

xnew=xi-yi*di*(2^-i);

ynew=yi+xi*di*(2^-i);

znew=zi-di*taninv(i);

ai=anew;xi=xnew;yi=ynew;zi=znew;

av(i+1)=ai;xv(i+1)=xi;yv(i+1)=yi;zv(i+1)=zi;

end;

disp (' i xi yi zi Ai abs=(xi/ai)');

[0 xo yo zo 1 xo*1; (1:n+1)' xv' yv' zv' av' xv'./av']

112

B.3 Averaging Correlation Method

The averaging correlation method was developed by Starzyk and Zhen

(Starzyk, 2001). This method averages the 5000 GPS samples to 1023 and perform

five correlations. Then the best recovered version of these averaged correlations

contains the strongest peak. This method was described briefly in Section 4.2.

More information can be found in (Starzyk, 2001, and Zhu, 2002). The following

part of the Matlab code was prepared by Starzyk and Zhen

% sv_u contains 5000 samples of the GPS signal

uprate=5000/1023;

maxp5=zeros(1,5);

for k=1:5 %shift of the beginning

if (k-1)==floor(k-1)

sv_up=[sv_u(k:length(sv_u)) sv_u(1:k-1)];

i=1;

for j=1:p%1023

sum=0;

cnt=0;

while (floor(i/uprate)+1==j) & i<pu

cnt=cnt+1;

sum=sum+sv_up(i);

i=i+1;

end;

avg=sum/cnt;

sv_av(j)=avg;

end;

%finishing average

113

B.4 Modified-Code Averaging Method

This is part of the Matlab code that was used to develop the modified-code

averaging method for the GPS acquisition. This method was then verified for its

performance and its effect on signal-to-noise-ration (SNR), error in the code phase

and error in the carrier phase. These matlab codes were developed based on the

block processing Matlab code written by Dr. Frank van Graas and Gang Feng. The

following code is the Matlab code used to average the up-sampled C/A code.

downrate=1024/5000;

i=1;

for j=1:1024

sumy=0;

cnt=0;

while (floor((i-1)*downrate)==j-1) & i<=pu

cnt=cnt+1;

sumy=sumy+ca_code(i);

i=i+1;

end; % while

ca1024(j)=sumy/cnt;

end; % for j

ca_conj = conj(fft (ca1024));% conj of fft of 1024-bit ca code

114

Appendix C

VHDL Codes

Appendix C contains parts of the VHDL codes for both the Walsh-based cor-

relator and the modified-code averaging method for GPS block processing. The first

section is the design of the Walsh-based correlator.

C.1 Walsh-Based Convolution

The top-level VHDL code for the Walsh-based correlator is presented here.

It contains the Walsh butterfly of size 32 that is used to build the whole 1024-point

Walsh-Hadamard for the convolution

-- top design of the 1024-point Walsh-based convolver

libraryIEEE;

use IEEE.std_logic_1164.all;

entity walshconv is

port (CLK, RST, STRT:in std_logic;

A_INP: in std_logic_vector (7 downto 0);

Q1,Q2,Q3,Q4: out std_logic_vector (9 downto 0));

end entity;

115

architecture walshtop_arch of walshconv is

component topcrkt

port (CLK, RST, CE, CE1, CE2, CE3,
CE4,CE5,CE6,CE7,CER1,CER2,CER3,CER4:in STD_LOGIC;

WE1,WE2, WE3, L2, L3,L7, CLR,CLR1,CLR2,CLR3,CLR4,CLR5,CLR6:in
std_logic;

IN_A: in std_logic_vector (7 downto 0);

phase1 : out std_logic;

Q1,Q2,Q3,Q4: out std_logic_vector (9 downto 0);

count1k,count2,count3,count4,count5: out std_logic_vector (9
downto 0));

end component ;

component main_fsm

port (CLK, RST: in std_logic;

STRT, DONE, GOTIT, STEPDONE, READYSIG: in std_logic;

STRT2, STRT4: out std_logic);

end component ;

component s_perm_fsm

port (CLK, RST,STRT: in std_logic;

count1k: in std_logic_vector (9 downto 0);

CLR1,CLR2,CE1,CE2,WE: out std_logic;

DONE: out std_logic);

end component ;

component fdsmpls_fsm

port (CLK, RST,STRT2: in std_logic;

count2: in std_logic_vector (9 downto 0);

CLR,CE,WE2,nextstep,gotit: out std_logic);

end component ;

component walsh1_fsm

port (CLK, RST,STRT3: in std_logic;

count3,count4: in std_logic_vector (9 downto 0);

CLR3,CLR4,CE3,CE4,CER1,CER2,L2,WE3,stepdone: out
std_logic);

end component ;

component walsh2_fsm

port (CLK, RST,STRT4, phasefound: in std_logic;

count5: in std_logic_vector (9 downto 0);

CLR5,CLR6,CLR7,CE5,CE6,CE7,CER3,CER4,L3,L7,readysig:
out std_logic);

end component ;

signal
c,c1,c2,c3,c4,c5,c6,c7,cr1,cr2,cr3,cr4,w1,w2,w3,ll2,ll3,ll7,cl,cl1,cl
2,cl3,cl4,cl5,cl6,cl7: std_logic;

116

signal don,gott,stdon,rdy,st,st2,st3,st4,ph: std_logic;

signal cnt1,cnt2,cnt3,cnt4,cnt5:std_logic_vector (9 downto 0);

begin

U1: topcrkt port map (CLK=>CLK, RST=>RST, CE=>c, CE1=>c1,
CE2=>c2, CE3=>c3,
CE4=>c4,CE5=>c5,CE6=>c6,CE7=>c7,CER1=>cr1,CER2=>cr2,CER3=>cr3,CER4=>c
r4,

WE1=>w1,WE2=>w2, WE3=>w3, L2=>ll2, L3=>ll3,L7=>ll7,
CLR=>cl,CLR1=>cl1,CLR2=>cl2,CLR3=>cl3,CLR4=>cl4,CLR5=>cl5,CLR6=>cl6,I
N_A=>A_INP,phase1=>ph,Q1=>Q1,Q2=>Q2,Q3=>Q3,Q4=>Q4,

count1k=>cnt1,count2=>cnt2,count3=>cnt3,count4=>cnt4,count5=>cnt5);

U2: main_fsm port map (CLK=>CLK, RST=>RST, STRT=>st, DONE=>don,
GOTIT=>gott, STEPDONE=>stdon, READYSIG=>rdy, STRT2=>st2, STRT4=>st4);

U3: s_perm_fsm port map (CLK=>CLK, RST=>RST,STRT=>st,
count1k=>cnt1, CLR1=>cl1,CLR2=>cl2,CE1=>c1,CE2=>c2,WE=>w1,DONE=>don);

U4: fdsmpls_fsm port map (CLK=>CLK,
RST=>RST,STRT2=>st2,count2=>cnt2,CLR=>cl,CE=>c,WE2=>w2,next-
step=>st3,gotit=>gott);

U5: walsh1_fsm port map (CLK=>CLK,
RST=>RST,STRT3=>st3,count3=>cnt3,count4=>cnt4,CLR3=>cl3,CLR4=>cl4,CE3
=>c3,CE4=>c4,CER1=>cr1,CER2=>cr2,L2=>ll2,WE3=>w3,stepdone=>stdon);

U6: walsh2_fsm port map (CLK=>CLK, RST=>RST,STRT4=>st4, phase-
found=>ph,count5=>cnt5,CLR5=>cl5,CLR6=>cl6,CLR7=>cl7,CE5=>c5,CE6=>c6,
CE7=>c7,CER3=>cr3,CER4=>cr4,L3=>ll3,L7=>ll7,readysig=>rdy);

end architecture;

-- this is the top level circuit which will be placed in the top level
design

-- this circuit will be the target of all the FSMs in the design later.

libraryIEEE;

use IEEE.std_logic_1164.all;

entity topcrkt is

port (CLK, RST, CE, CE1, CE2, CE3,
CE4,CE5,CE6,CE7,CER1,CER2,CER3,CER4:in STD_LOGIC;

117

WE1,WE2, WE3, L2, L3,L7, CLR,CLR1,CLR2,CLR3,CLR4,CLR5,CLR6:in
std_logic;

IN_A: in std_logic_vector (7 downto 0);

phase1 : out std_logic;

Q1,Q2,Q3,Q4: out std_logic_vector (9 downto 0);

count1k,count2,count3,count4,count5: out std_logic_vector (9
downto 0));

end entity;

architecture archtop of topcrkt is

component s_block

port (CLK,CE,CE1,CE2,CLR,CLR1,CLR2,WE1: in std_logic;

Q, count1k,count2 : out std_logic_vector (9 downto 0));

end component;

component wt32reg

port (clock: in std_logic;

CER1,CER2,L,WE: in std_logic;

A: in std_logic_vector (7 downto 0);

WA, RA: in std_logic_vector (9 downto 0);

B: out std_logic_vector(7 downto 0)

);

end component;

component count_1k

port (CLK: in STD_LOGIC;

CE,CLR: in STD_LOGIC;

Q: inout STD_LOGIC_VECTOR (9 downto 0));

end component ;

component maxconv

port (clock: in std_logic;

COUNT6: in std_logic_vector (9 downto 0);

A_IN:in std_logic_vector(7 downto 0);

A_GRT_B: out std_logic

);

end component ;

component q_reordr

port (clock: in std_logic;

L,L7,CE6,CE7,CLR6: in std_logic;

COUNT6: out std_logic_vector (9 downto 0);

phasefound: out std_logic

);

end component ;

component phase_reg

port (CLR : in std_logic;

CE : in std_logic;

118

LOAD : in std_logic;

CLK : in std_logic;

DATA : in std_logic_vector (9 downto 0);

Q1 : out std_logic_vector (9 downto 0);

Q2 : out std_logic_vector (9 downto 0);

Q3 : out std_logic_vector (9 downto 0);

Q4 : out std_logic_vector (9 downto 0));

end component ;

signal sbar, sig6, wa2,ra2,ra3: std_logic_vector (9 downto 0);

signal wmid, wfin: std_logic_vector (7 downto 0);

signal newphase,agb: std_logic ;

begin

U1: s_block port map (
CLK=>CLK,CE=>CE,CE1=>CE1,CE2=>CE2,CLR=>CLR,CLR1=>CLR1,CLR2=>CLR2,WE1=
>WE1,Q=>sbar ,count1k=>count1k,count2=>count2);

U2: wt32reg port map (
clock=>CLK,CER1=>CER1,CER2=>CER2,L=>L2,WE=>WE2,A=>IN_A,WA=>sbar,RA=>r
a2,B=>wmid);

U3: count_1k port map (CLK=>CLK, CE=>CE3,CLR=>CLR3,Q=>ra2);

U4: wt32reg port map (
clock=>CLK,CER1=>CER3,CER2=>CER4,L=>L3,WE=>WE3,A=>wmid,WA=>wa2,RA=>ra
3,B=>wfin);

U5: count_1k port map (CLK=>CLK, CE=>CE4,CLR=>CLR4,Q=>wa2);

U6: count_1k port map (CLK=>CLK, CE=>CE5,CLR=>CLR5,Q=>ra3);

U7: maxconv port map (clock=>CLK,COUNT6=>sig6,A_IN=>wfin,
A_GRT_B=>agb);

U8: q_reordr port map
(clock=>CLK,L=>agb,L7=>L7,CE6=>CE6,CE7=>CE7,CLR6=>CLR6,COUNT6=>sig6,p
hasefound=>newphase);

U9: phase_reg port map (CLR=>RST,CE=>newphase,LOAD=>new-
phase,CLK=>CLK,DATA=>sig6,Q1=>Q1,Q2=>Q2,Q3=>Q3,Q4=>Q4);

count3<=ra2;

count4<=wa2;

count5<=ra3;

phase1<=newphase;

end archtop;

119

-- higher level that contain WT32 and necessary registers

-- this will simplify building higher levels later.

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity WT32REG is

port (clock: in std_logic;

CER1,CER2,L,WE: in std_logic;

A: in std_logic_vector (7 downto 0);

WA, RA: in std_logic_vector (9 downto 0);

B: out std_logic_vector(7 downto 0)

);

end entity;

architecture LOGIC of WT32REG is

component wt32

port (X1, X2, X3, X4, X5, X6, X7, X8: in std_logic_vector(7
downto 0);

X9, X10, X11, X12, X13, X14, X15, X16: in
std_logic_vector(7 downto 0);

X17, X18, X19, X20, X21, X22, X23, X24: in
std_logic_vector(7 downto 0);

X25, X26, X27, X28, X29, X30, X31, X32: in
std_logic_vector(7 downto 0);

Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8: out std_logic_vector(7
downto 0);

Y9, Y10, Y11, Y12, Y13, Y14, Y15, Y16: out
std_logic_vector(7 downto 0);

Y17, Y18, Y19, Y20, Y21, Y22, Y23, Y24: out
std_logic_vector(7 downto 0);

Y25, Y26, Y27, Y28, Y29, Y30, Y31, Y32: out
std_logic_vector(7 downto 0));

end component;

component sinpout1

port (CLK: in STD_LOGIC;

CE: in STD_LOGIC;

D: in STD_LOGIC_VECTOR(7 downto 0);

Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q10,Q11,Q12,Q13,Q14,Q15,Q16:
inout STD_LOGIC_VECTOR (7 downto 0);

Q17,Q18,Q19,Q20,Q21,Q22,Q23,Q24,Q25,Q26,Q27,Q28,Q29,Q30,Q31,Q32:
inout STD_LOGIC_VECTOR (7 downto 0));

end component;

component pinsout1

120

port (CLK: in STD_LOGIC;

CE,L: in STD_LOGIC;

D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16:
in STD_LOGIC_VECTOR (7 downto 0);

D17,D18,D19,D20,D21,D22,D23,D24,D25,D26,D27,D28,D29,D30,D31,D32: in
STD_LOGIC_VECTOR (7 downto 0);

QQ: out STD_LOGIC_VECTOR (7 downto 0));

end component;

component ram1k8d

port (WE : in STD_LOGIC;

CLK : in STD_LOGIC;

ADDRrd : in STD_LOGIC_VECTOR (9 downto 0);

ADDRwr : in STD_LOGIC_VECTOR (9 downto 0);

DATA : in STD_LOGIC_VECTOR (7 downto 0);

Q : out STD_LOGIC_VECTOR (7 downto 0));

end component;

signal x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15 :
std_logic_vector (7 downto 0);

signal
x16,x17,x18,x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,x29,x30,x31,x32 :
std_logic_vector (7 downto 0);

signal y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15 :
std_logic_vector (7 downto 0);

signal
y16,y17,y18,y19,y20,y21,y22,y23,y24,y25,y26,y27,y28,y29,y30,y31,y32 :
std_logic_vector (7 downto 0);

signal temp_a: std_logic_vector (7 downto 0);

begin

U1: wt32 port map (X1=>x1, X2=>x2, X3=>x3, X4=>x4, X5=>x5, X6=>x6,
X7=>x7, X8=>x8, X9=>x9, X10=>x10, X11=>x11, X12=>x12,

X13=>x13, X14=>x14, X15=>x15, X16=>x16, X17=>x17,
X18=>x18,X19=>x19, X20=>x20, X21=>x21, X22=>x22,

X23=>x23, X24=>x24, X25=>x25, X26=>x26, X27=>x27,
X28=>x28, X29=>x29, X30=>x30, X31=>x31, X32=>x32,

Y1=>y1, Y2=>y2, Y3=>y3, Y4=>y4, Y5=>y5,
Y6=>y6, Y7=>y7, Y8=>y8, Y9=>y9, Y10=>y10, Y11=>y11, Y12=>y12,

Y13=>y13, Y14=>y14, Y15=>y15, Y16=>y16, Y17=>y17,
Y18=>y18,Y19=>y19, Y20=>y20, Y21=>y21, Y22=>y22,

Y23=>y23, Y24=>y24, Y25=>y25, Y26=>y26, Y27=>y27,
Y28=>y28, Y29=>y29, Y30=>y30, Y31=>y31, Y32=>y32);

U2: sinpout1 port map (CLK=>clock,CE=>CER1,D=>temp_a,

Q1=>x1, Q2=>x2, Q3=>x3, Q4=>x4, Q5=>x5, Q6=>x6,
Q7=>x7, Q8=>x8, Q9=>x9, Q10=>x10, Q11=>x11, Q12=>x12,

Q13=>x13, Q14=>x14, Q15=>x15, Q16=>x16, Q17=>x17,
Q18=>x18,Q19=>x19, Q20=>x20, Q21=>x21, Q22=>x22,

121

Q23=>x23, Q24=>x24, Q25=>x25, Q26=>x26, Q27=>x27,
Q28=>x28, Q29=>x29, Q30=>x30, Q31=>x31, Q32=>x32);

U3: pinsout1 port map (CLK=>clock,CE=>CER2,L=>L,

D1=>y1, D2=>y2, D3=>y3, D4=>y4, D5=>y5, D6=>y6,
D7=>y7, D8=>y8, D9=>y9, D10=>y10, D11=>y11, D12=>y12,

D13=>y13, D14=>y14, D15=>y15, D16=>y16, D17=>y17,
D18=>y18,D19=>y19, D20=>y20, D21=>y21, D22=>y22,

D23=>y23, D24=>y24, D25=>y25, D26=>y26, D27=>y27,
D28=>y28, D29=>y29, D30=>y30, D31=>y31, D32=>y32,

QQ=>B);

U4: ram1k8d port map
(WE=>WE,CLK=>clock,ADDRrd=>RA,ADDRwr=>WA,DATA=>A,Q=>temp_a);

end architecture LOGIC;

-- this is a higher level that is responsible for

-- the generation of permutations S-1

-- by connecting the necessary components

libraryIEEE;

use IEEE.std_logic_1164.all;

entity s_block is

port (CLK,CE,CE1,CE2,CLR,CLR1,CLR2,WE1: in std_logic;

Q, count1k,count2 : out std_logic_vector (9 downto 0));

end entity;

architecture arch1 of s_block is

component CNT_1K_1

port (CLK: in STD_LOGIC;

CE,CLR: in STD_LOGIC;

Q: inout STD_LOGIC_VECTOR (9 downto 0));

end component;

component lfsr1

port (CLK: in STD_LOGIC;

CE,CLR: in STD_LOGIC;

Q: inout STD_LOGIC_VECTOR (9 downto 0));

end component ;

component ram1k10d

port (WE : in STD_LOGIC;

122

CLK : in STD_LOGIC;

ADDRrd : in STD_LOGIC_VECTOR (9 downto 0);

ADDRwr : in STD_LOGIC_VECTOR (9 downto 0);

DATA : in STD_LOGIC_VECTOR (9 downto 0);

Q : out STD_LOGIC_VECTOR (9 downto 0));

end component ;

signal ra, wa, a: std_logic_vector (9 downto 0);

begin

U1: CNT_1K_1 port map (CLK=>CLK,CE=>CE1,CLR=>CLR1,Q=>a);

U2: CNT_1K_1 port map (CLK=>CLK,CE=>CE,CLR=>CLR,Q=>ra);

U3: lfsr1 port map (CLK=>CLK,CE=>CE2,CLR=>CLR2,Q=>wa);

U4: ram1k10d port map (WE=>WE1, CLK=>CLK, ADDRrd=>ra,
ADDRwr=>wa,DATA=>a ,Q=> Q);

count2<=ra;

count1k<=a;

end arch1;

--

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity maxconv is

port (clock: in std_logic;

COUNT6: in std_logic_vector (9 downto 0);

A_IN:in std_logic_vector(7 downto 0);

A_GRT_B: out std_logic

);

end entity;

architecture LOGIC of maxconv is

component absolut8

port (A : in std_logic_vector (7 downto 0);Q : out
std_logic_vector (7 downto 0));

end component;

component nor10

port (X: in std_logic_vector (9 downto 0);Y: out std_logic);

end component;

component max_val

port (CLR, LOAD, CLK : in std_logic;DATA : in std_logic_vector
(7 downto 0);

Q : out std_logic_vector (7 downto 0)

123

);

end component;

component comp8bit

port (AGB : out STD_LOGIC;

A :in STD_LOGIC_VECTOR(7 downto 0);

B : in STD_LOGIC_VECTOR(7 downto 0));

end component;

signal temp_a, temp_b : std_logic_vector (7 downto 0);

signal temp_c, clr : std_logic;

begin

U1: max_val port map (CLR=>clr, LOAD=>temp_c, CLK=>clock,
DATA=>temp_a, Q=>temp_b);

U2: comp8bit port map (AGB=>temp_c, A=>temp_a, B=>temp_b);

U3: absolut8 port map (A=>A_IN, Q=>temp_a);

U4: nor10 port map (X=>COUNT6, Y=>clr);

A_GRT_B<=temp_c;

end architecture LOGIC;

library IEEE;

use IEEE.STD_LOGIC_1164.all;

entity q_reordr is

port (clock: in std_logic;

L,L7,CE6,CE7,CLR6: in std_logic;

COUNT6: out std_logic_vector (9 downto 0);

phasefound: out std_logic

);

end entity;

architecture LOGIC of q_reordr is

component q_count

port (CLK: in STD_LOGIC;

CE,CLR: in STD_LOGIC;

Q: inout STD_LOGIC_VECTOR (9 downto 0));

end component;

component qmax_reg

port (LOAD : in std_logic;

CLK : in std_logic;

DATA : in std_logic_vector (9 downto 0);

124

Q : out std_logic_vector (9 downto 0));

end component;

component comp10b

port (AEB : out STD_LOGIC;

A : in STD_LOGIC_VECTOR(9 downto 0);

B : in STD_LOGIC_VECTOR(9 downto 0));

end component;

component qlfsr

port (CLK: in STD_LOGIC;

CE,L: in STD_LOGIC;

DATA: in STD_LOGIC_VECTOR (9 downto 0);

Q: out STD_LOGIC_VECTOR (9 downto 0));

end component;

component reg_q

port (Q : out std_logic_vector (9 downto 0));

end component;

signal temp_a, temp_b, temp_c, temp_d : std_logic_vector (9 downto 0);

signal qinit: std_logic_vector (9 downto 0);

begin

U1: q_count port map (CLK=>clock, CE=>CE6, CLR=>CLR6, Q=>temp_c
);

U2: qmax_reg port map (LOAD=>L, CLK=>clock, DATA=>temp_d,
Q=>temp_b);

U3: comp10b port map (AEB=>phasefound, A=>temp_a, B=>temp_b);

U4: qlfsr port map (CLK=>clock, CE=>CE7, L=>L7, DATA=>qinit,
Q=>temp_a);

U5: reg_q port map (Q=>qinit);

COUNT6<=temp_c;

temp_d<=temp_c(4 downto 0)&temp_c(9 downto 5);

end architecture LOGIC;

-- this is a register that will store the code shifts each loop.

-- the size is 4regs each 10bits.

-- it will be used to store the last 4 computed phase shifts.

-- incoming new result will be pushed in and the result of 4 loops ago

-- will be pushed out from the other side.

libraryIEEE;

use IEEE.std_logic_1164.all;

125

entityphase_reg is

port (

CLR : in std_logic;

CE : in std_logic;

LOAD : in std_logic;

CLK : in std_logic;

DATA : in std_logic_vector (9 downto 0);

Q1 : out std_logic_vector (9 downto 0);

Q2 : out std_logic_vector (9 downto 0);

Q3 : out std_logic_vector (9 downto 0);

Q4 : out std_logic_vector (9 downto 0)

);

end entity;

architecture struct_arch of phase_reg is

signal qq1,qq2,qq3,qq4: std_logic_vector(9 downto 0);

begin

process (CLK,CLR)

begin

if (CLR='1') then

qq1<="0000000000";

qq2<="0000000000";

qq3<="0000000000";

qq4<="0000000000";

else

if (rising_edge(CLK)) then

if (CE='1')and (LOAD='1') then

qq1<=DATA;

qq2<=qq1;

qq3<=qq2;

qq4<=qq3;

end if;

end if;

end if;

end process;

Q1<=qq1;

Q2<=qq2;

Q3<=qq3;

Q4<=qq4;

end architecture;

126

C.2 Modified-Code Averaging Correlator (Acquisition)

The acquisition design was partitioned into five parts. Each part was imple-

mented independently. A necessary interface VHDL code is included in each part.

This interface was provided with the FPGA board and therefore will not be

included here.

C.2.1 Carrier Wipe-Off and Downsampling

The following VHDL codes are the top level code that was responsible for the

first part of the acquisition algorithm. It contains an input RAM, an NCO, a carrier

wipe-off circuit, an averager circuit, and an output RAM. The RAM components

were generated using the Xilinx core generator. Therefore, only parts of the VHDL

codes are shown here. The NCO VHDL code is named nco_3.vhdl and was written

by researchmate Zhu Zhen. All the VHDL codes are available on the network at :

http:\\www.ent.ohiou.edu\~webcad\alaqeeli.

--

-- Title : dwn_smplr

-- Design : nco_dwnsplr_ballynue

-- Author : 0

-- Company : 0

--

--

-- File : dwn_smplr.vhd

-- Generated : Tue May 21 06:01:47 2002

-- From : interface description file

127

-- By : Itf2Vhdl ver. 1.20

--

--

-- Description :

library IEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.std_logic_unsigned.all;

entity dwn_smplr is

port(

CLK : in STD_LOGIC;

INI : in STD_LOGIC;

Din : in STD_LOGIC_VECTOR (11 downto 0);

RST : in STD_LOGIC;

AVGD : out STD_LOGIC_VECTOR(15 downto 0);

RAM_WA : out STD_LOGIC_VECTOR(9 downto 0);

RAM_WE : out STD_LOGIC

);

end dwn_smplr;

architecture dwn_smplr_arch of dwn_smplr is

component rm13x120

port (

addr: IN std_logic_VECTOR(6 downto 0);

clk: IN std_logic;

din: IN std_logic_VECTOR(12 downto 0);

dout: OUT std_logic_VECTOR(12 downto 0);

en: IN std_logic;

we: IN std_logic

);

end component;

--

signal ZERO,ONE,ADD4,tempWE : std_logic;

signal ZERO16,DBB,SUM, AVGD1 : std_logic_vector (15 downto 0);

signal cnt5k,rm13x120_Q,ZEROS13: std_logic_vector (12 downto 0);

signal TEMP120_Q : std_logic_vector (6 downto 0);

signal TEMP_Q: std_logic_vector(9 downto 0);

signal Din1:std_logic_vector(11 downto 0);

128

type statetype is (ST0,ST1,ST2,ST3,ST4,ST5);

signal fsm_stat : statetype;--signal

--signal

begin

ZERO <= '0';

ONE <= '1';

ZERO16 <="0000000000000000";

--Din1<= not(Din);

--

DBB_gnration:process(CLK)

begin

if CLK'event and CLK='1' then

if INI='1' then

if Din(11)='1' then

DBB <= "1111" & Din;

else

DBB <= "0000" & Din;

end if;

else

DBB <= ZERO16;

end if;

end if;

end process;

--

-- counter 0 to 1023 to generate RAM_WA

cnt1024:process(CLK, RST)

begin

if RST = '1' then

TEMP_Q <= "0000000000";

elsif rising_edge(CLK) then

if tempWE = '1' then

TEMP_Q <= TEMP_Q + 1;

end if;

end if;

end process;

registeredproc:process (CLK)

129

begin

if CLK'event and CLK='1' then

RAM_WA <=TEMP_Q;

AVGD <= AVGD1;

RAM_WE <= tempWE;

end if;

end process;

FSM: process(CLK,RST)

begin

if RST='1' then

fsm_stat <= ST0;

cnt5k <= (others =>'0');

tempWE <='0';

SUM <=ZERO16;

AVGD1 <=ZERO16;

ADD4 <='0';

elsif CLK'event and CLK='1' then

case fsm_stat is

when ST0 =>

if INI='1' then

fsm_stat <=ST1;

else

fsm_stat <=ST0;

end if;

tempWE <='0';

SUM <=ZERO16;

AVGD1 <=ZERO16;

ADD4 <='0';

cnt5k <= (others =>'0');

when ST1 =>

if rm13x120_Q=cnt5k then

ADD4 <='1';

fsm_stat <= ST3;

else

fsm_stat <= ST2;

ADD4 <='0';

end if;

cnt5k <= cnt5k+1;

SUM <= DBB;

tempWE <='0';

when ST2 =>

130

fsm_stat <= ST3;

SUM <= SUM+DBB;

cnt5k <= cnt5k+1;

tempWE <='0';

ADD4 <='0';

when ST3 =>

fsm_stat <= ST4;

SUM <= SUM+DBB;

cnt5k <= cnt5k+1;

tempWE <='0';

ADD4 <='0';

when ST4 =>

fsm_stat <= ST5;

SUM <= SUM+DBB;

cnt5k <= cnt5k+1;

tempWE <='0';

tempWE <='0';

ADD4 <='0';

when ST5 =>

AVGD1 <= SUM+DBB;

tempWE <='1';

ADD4 <='0';

if cnt5k = 4999 then

fsm_stat <= ST0;

else

fsm_stat <= ST1;

end if;

cnt5k <= cnt5k+1;

when others => null;

end case;

end if;

end process;

-- counter 0 to 119 used to address ADD4 locations

cnt120:process(CLK, RST)

begin

if RST = '1' then

TEMP120_Q <= "0000000";

elsif rising_edge(CLK) then

if ADD4 = '1' then

if (TEMP120_Q ="1110111") then

TEMP120_Q <= "0000000";

else

131

TEMP120_Q <= TEMP120_Q + "0000001";

end if;

end if;

end if;

end process;

ADD4_RAM: rm13x120port map (

addr => TEMP120_Q,

clk => CLK,

din => ZEROS13,

dout => rm13x120_Q,

en => ONE,

we => ZERO

);

end dwn_smplr_arch;

-- this component generates I and Q by multipling sin and cos values to
incoming samples.

-- Therefore, it produces the in-phase and quad-phase components.

-- Or in other words, it changes the inoming signal to its baseband.

-- sin and cos are represented using (-1 0 1) values only (2 bits are
enough)

-- "X0" is zero------- 0

-- "01" is one------- 1

-- "11" is minus one -- -1

library IEEE;

use IEEE.STD_Logic_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity carr_wipe_off is

port (

CLK : in std_logic;

Xin : in std_logic_vector(11 downto 0);

NCO_COS: in std_logic_vector(1 downto 0);

NCO_SIN: in std_logic_vector(1 downto 0);

I : out std_logic_vector(11 downto 0);

Q : out std_logic_vector(11 downto 0)

);

end entity carr_wipe_off;

architecture ARCH_IQ of carr_wipe_off is

132

signal I1,Q1: std_logic_vector(11 downto 0);

begin

-- in-phase

process (CLK)

begin

if CLK'event and CLK='0' then

case NCO_SIN is

when "00" =>I1<=(others =>'0');

when "10" => I1<=(others =>'0');

when "01" =>I1<=Xin;

when "11" =>I1<=(NOT(Xin)+'1');

when others => null;

end case;

end if;

end process;

process (CLK)

begin

if CLK'event and CLK='0' then

case NCO_COS is

when "00" =>Q1<=(others =>'0');

when "10" => Q1<=(others =>'0');

when "01" =>Q1<=Xin;

when "11" =>Q1<=(NOT(Xin)+'1');

when others => null;

end case;

end if;

end process;

registered:process (CLK)

begin

if CLK'event and CLK='1' then

I <= I1;

Q <= Q1;

end if;

end process;

end ARCH_IQ;

-- This component is an NCO which is responsible for generating the sin
-- and the cos values

library IEEE;

133

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

-- a 32 bit nco

-- written by Zhu Zhen

-- algorithms from sanjeev's thesis and kaplan's book

-- amp=2bit, -1 0 1, acquisition only

-- no absolute phase, relative phase only

-- source=10 Mhz, if=1.25+- Mhz

entitynco_3 is

port (

clk: in std_logic; --5 Mhz --30

phasein: in std_logic_vector (31 downto 0); --phase, 0-2pi

m:in std_logic_vector (30 downto 0); --adding step

srst:in std_logic; --reset, input phase

clo:out std_logic; --a clock out at the
freq

sino: out std_logic_vector(1 downto 0);

coso: out std_logic_vector(1 downto 0)

) ;

end entity;

architecture nco_3 of nco_3 is

signaladding:std_logic_vector (31 downto 0);

signal counter: std_logic_vector (31 downto 0);

signal addingfull, clo1:std_logic;

signal coso1,sino1: std_logic_vector(1 downto 0);

begin

addg: process (clk,srst)

begin

if (clk'event and clk='1') then

if srst='1'then

counter<=phasein;

clo1<='0';

addingfull<='0';

sino1<="00";

coso1<="01";

else

counter<=counter+m;

if (counter(31)='1') then

134

addingfull<='1';

else

addingfull<='0';

end if;

clo1<=addingfull;

sino1<=counter(31) & counter(30);

coso1<=counter(31) & (not counter(30));
--first 2 digits

end if;

end if;

end process;

registerdproc:process (clk)

begin

if clk'event and clk='1' then

clo <= clo1;

sino <= sino1;

coso <= coso1;

end if;

end process;

end nco_3;

C.2.2 The FFT Block

This part is responsible for converting the averaged incoming GPS samples

to frequency domain. This section prepares one of the branches of the FFT-based

correlator. This section contains the top level design, the input RAM, the output

RAM, and the SMS RAM that has to be connected to the FFT core. Only VHDL code

of the SMS configuration of the FFT core is shown here. This part was initially pre-

pared by my friend Jing Pang. All the other parts are available on the network at

http:\\www.ent.ohiou.edu\~webcad\alaqeeli.

--

135

-- Title : FWDFFT

-- Design :

-- Original Author : Pang Jing

-- Cleaned and modified by: Abdulqadir Alaqeeli

--

--

-- File : FWDFFT.vhd

-- Generated : Sun Mar 31 19:48:50 2002

-- From : interface description file

-- By : Itf2Vhdl ver. 1.20

--

--

-- Description : This file contains the fft core and two RAMs

(SMS-Configuratin with output RAM)

-- Also it containes a Data-Collection-RAM (CRAM)

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_UNSIGNED.all;

entity fwdfft is

port(

RST: in std_logic;

CLK: in std_logic;

READ_EN: in std_logic;

WRITE_EN: instd_logic;

READ_DONE: instd_logic;

D: in std_logic_vector(31 downto 0);

RESULT_RDY: out std_logic;

Q: out std_logic_vector(31 downto 0)

);

end fwdfft;

architecture fwdfft_ARCH of fwdfft is

component RM1024x32 is

port (

RCLK : in std_logic;

136

WCLK : in std_logic;

WEA : in std_logic;

ENA : in std_logic;

WEB : in std_logic;

ENB : in std_logic;

ADDRA : in std_logic_vector (9 downto 0);

ADDRB : in std_logic_vector (9 downto 0);

DIAR : in std_logic_vector(15 downto 0);

DIAI : in std_logic_vector(15 downto 0);

DIBR : in std_logic_vector(15 downto 0);

DIBI : in std_logic_vector(15 downto 0);

DOAR : out std_logic_vector(15 downto 0);

DOAI : out std_logic_vector(15 downto 0);

DOBR : out std_logic_vector(15 downto 0);

DOBI : out std_logic_vector(15 downto 0)

);

end component;

component vfft1024

port(

clk : in std_logic;

rs : in std_logic;

start : in std_logic;

ce : in std_logic;

scale_mode: in std_logic;

di_r : in std_logic_vector(15 downto 0);

di_i : in std_logic_vector(15 downto 0);

fwd_inv : in std_logic;

io_mode0: in std_logic;

io_mode1: in std_logic;

mwr : in std_logic;

mrd : in std_logic;

ovflo : out std_logic;

result : out std_logic;

mode_ce : out std_logic;

done : out std_logic;

edone : out std_logic;

io : out std_logic;

eio : out std_logic;

bank : out std_logic;

busy : out std_logic;

wea : out std_logic;

wea_x : out std_logic;

wea_y : out std_logic;

137

web_x : out std_logic;

web_y : out std_logic;

ena_x : out std_logic;

ena_y : out std_logic;

index : out std_logic_vector(9 downto 0);

addrr_x : out std_logic_vector(9 downto 0);

addrr_y : out std_logic_vector(9 downto 0);

addrw_x : out std_logic_vector(9 downto 0);

addrw_y : out std_logic_vector(9 downto 0);

xk_r : out std_logic_vector(15 downto 0);

xk_i : out std_logic_vector(15 downto 0);

yk_r : out std_logic_vector(15 downto 0);

yk_i : out std_logic_vector(15 downto 0));

end component;

signal ZERO: std_logic;

signal ZERO16: std_logic_vector(15 downto 0);

signal ONE: std_logic;

signal start: std_logic;

signal ce: std_logic;

signal scale_mode: std_logic;

signal di_r: std_logic_vector(15 downto 0);

signal di_i: std_logic_vector(15 downto 0);

signal fwd_inv: std_logic;

signal io_mode0: std_logic;

signal io_mode1: std_logic;

signal mwr: std_logic;

signal mrd: std_logic;

signal ovflo: std_logic;

signal result: std_logic;

signal mode_ce: std_logic;

signal done: std_logic;

signal edone: std_logic;

signal io: std_logic;

signal eio: std_logic;

signal bank: std_logic;

signal busy: std_logic;

signal wea: std_logic;

signal wea_x: std_logic;

signal wea_y: std_logic;

signal web_x:std_logic;

signal web_y: std_logic;

signal ena_x: std_logic;

138

signal ena_y: std_logic;

signal index: std_logic_vector(9 downto 0);

signal addrr_x: std_logic_vector(9 downto 0);

signal addrr_y: std_logic_vector(9 downto 0);

signal addrw_x: std_logic_vector(9 downto 0);

signal addrw_y: std_logic_vector(9 downto 0);

signal xk_r: std_logic_vector(15 downto 0);

signal xk_i: std_logic_vector(15 downto 0);

signal yk_r: std_logic_vector(15 downto 0);

signal yk_i: std_logic_vector(15 downto 0);

signal CRAM_REA: std_logic;

--signal CRAM_REAi: std_logic;

signal CRAM_WEB: std_logic;

signal CRAM_ADDRA: std_logic_vector(9 downto 0);

signal CRAM_ADDRB: std_logic_vector(9 downto 0);

signal CRAM_DOA: std_logic_vector(31 downto 0);

signal SMSRM2_REA: std_logic;

signal SMSRM2_WEB: std_logic;

signal SMSRM2_ADDRA: std_logic_vector(9 downto 0);

signal SMSRM2_ADDRBi: std_logic_vector(9 downto 0);

signal SMSRM2_ADDRB: std_logic_vector(9 downto 0);

signal SMSRM2_DOA: std_logic_vector(31 downto 0);

signal DATA_RDY: std_logic;

type fsm_type is (STinit, STload, STfft, STdelay, STunload, STre-
sult);

signal fsm: fsm_type;

begin

ZERO <= '0';

ZERO16 <= (others=>'0');

ONE <= '1';

fwd_inv <= '1';-- forward fft

scale_mode <= '1';

io_mode0 <= '0';

io_mode1 <= '1';

CRAM_WEB <= '1' when WRITE_EN ='1' else '0';

Q <= SMSRM2_DOA;

SMSRM2_REA <= '1' when READ_EN ='1' else '0';

-- CRAM is data collection RAM

CRAM: RM1024x32 port map (

139

RCLK => CLK,

WCLK => CLK,

WEA => ZERO,

ENA => CRAM_REA,

WEB => CRAM_WEB,

ENB => ONE,

ADDRA => CRAM_ADDRA,

ADDRB => CRAM_ADDRB,

DIAR => ZERO16,

DIAI => ZERO16,

DIBR => D(15 downto 0),

DIBI => D(31 downto 16),

DOAR => CRAM_DOA(15 downto 0),

DOAI => CRAM_DOA(31 downto 16),

DOBR => OPEN,

DOBI => OPEN

-- DOAR => OPEN,

-- DOAI => OPEN,

-- DOBR => CRAM_DOA(15 downto 0),

-- DOBI => CRAM_DOA(31 downto 16)

);

SMS1RM: RM1024x32 port map (

RCLK => CLK,

WCLK => CLK,

WEA => wea,

ENA => ce,

WEB => io,

ENB => ONE,

ADDRA => addrw_x,

ADDRB => addrr_x,

DIAR => xk_r,

DIAI => xk_i,

DIBR => CRAM_DOA(15 downto 0),

DIBI => CRAM_DOA(31 downto 16),

DOAR => OPEN,

DOAI => OPEN,

DOBR => di_r,

DOBI => di_i

);

SMSRM2: RM1024x32 port map (

140

RCLK => CLK,

WCLK => CLK,

WEA => ZERO,

ENA => SMSRM2_REA,

WEB => SMSRM2_WEB,

ENB => ONE,

ADDRA => SMSRM2_ADDRA,

ADDRB => SMSRM2_ADDRB,

DIAR => ZERO16,

DIAI => ZERO16,

DIBR => di_r,

DIBI => di_i,

DOAR => SMSRM2_DOA(15 downto 0),

DOAI => SMSRM2_DOA(31 downto 16),

DOBR => OPEN,

DOBI => OPEN

);

FFT: component vfft1024

port map(

clk => CLK ,

rs => RST ,

start => start ,

ce => ce ,

scale_mode => scale_mode ,

di_r => di_r ,

di_i => di_i ,

fwd_inv => fwd_inv ,

io_mode0 => io_mode0 ,

io_mode1 => io_mode1 ,

mwr => mwr ,

mrd => mrd ,

ovflo => ovflo ,

result => result ,

mode_ce => mode_ce ,

done => done ,

edone => edone ,

io => io ,

eio => eio ,

bank => bank ,

busy => busy ,

wea => wea ,

wea_x => wea_x ,

wea_y => wea_y ,

141

web_x => web_x ,

web_y => web_y ,

ena_x => ena_x ,

ena_y => ena_y ,

index => index ,

addrr_x => addrr_x ,

addrr_y => addrr_y ,

addrw_x => addrw_x ,

addrw_y => addrw_y ,

xk_r => xk_r ,

xk_i => xk_i ,

yk_r => yk_r ,

yk_i => yk_i

);

-- controlling write and read addresses of CRAM

CRAM_A: process(CLK, RST)

begin

if RST='1' then

CRAM_ADDRA <= (others=>'0');

elsif CLK'event and CLK='1' then

if CRAM_REA ='1' then

if(CRAM_ADDRA < "1111111111")then

CRAM_ADDRA <= CRAM_ADDRA + 1;

elsif (CRAM_ADDRA = "1111111111")then

CRAM_ADDRA <= (others =>'0');

end if;

else

CRAM_ADDRA <= (others =>'0');

end if;

end if;

end process CRAM_A;

CRAM_B: process(CLK, RST)

begin

if RST='1' then

CRAM_ADDRB <= (others=>'0');

DATA_RDY <= '0';

elsif CLK'event and CLK='1' then

if CRAM_WEB ='1' then

if(CRAM_ADDRB < "1111111111")then

CRAM_ADDRB <= CRAM_ADDRB + 1;

elsif (CRAM_ADDRB = "1111111111") then

142

DATA_RDY <= '1';

CRAM_ADDRB <= (others=>'0');

end if;

elsif CRAM_WEB='0' and CRAM_ADDRB="0000000000" then

DATA_RDY <= '0';

end if;

end if;

end process CRAM_B;

-- controlling write and read addresses of SMSRM2

SMSRM2_A: process(CLK, RST)

begin

if RST='1' then

SMSRM2_ADDRA <= (others=>'0');

elsif CLK'event and CLK='1' then

if SMSRM2_REA ='1' then

if(SMSRM2_ADDRA < "1111111111")then

SMSRM2_ADDRA <= SMSRM2_ADDRA + 1;

elsif(SMSRM2_ADDRA = "1111111111")then

SMSRM2_ADDRA <= "0000000000";

end if;

end if;

if READ_DONE='1' then

SMSRM2_ADDRA <= "0000000000";

end if;

end if;

end process SMSRM2_A;

SMSRM2_Bi: process(CLK, RST)

begin

if RST='1' then

SMSRM2_ADDRBi <= (others=>'0');

elsif CLK'event and CLK='1' then

if SMSRM2_WEB ='1' then

if(SMSRM2_ADDRBi < "1111111111")then

SMSRM2_ADDRBi <= SMSRM2_ADDRBi + 1;

elsif (SMSRM2_ADDRBi = "1111111111") then

SMSRM2_ADDRBi <= (others=>'0');

end if;

else

143

SMSRM2_ADDRBi <= (others=>'0');

end if;

end if;

end process SMSRM2_Bi;

-- SMSRM2_ADDRB <= SMSRM2_ADDRBi;

SMSRM2_B: process(CLK, RST)

begin

if RST='1' then

SMSRM2_ADDRB <= (others=>'0');

elsif CLK'event and CLK='1' then

SMSRM2_ADDRB <= SMSRM2_ADDRBi;

end if;

end process SMSRM2_B;

-- FSM finite state machine to control loading data/ fft compu-
tation / unloading data

fsm_machine: process (CLK, RST)

variable cnt: INTEGER range 0 to 1025;

begin

if RST='1' then

fsm <= STinit;

cnt := 0;

mwr <= '0';

start <= '0';

mrd <= '0';

ce <= '0';

SMSRM2_WEB <= '0';

CRAM_REA <='0';

elsif CLK'event and CLK = '1' then

mwr <= '0';

start <= '0';

mrd <= '0';

case fsm is

when STinit =>

RESULT_RDY <='0';

cnt:= 0;

if DATA_RDY ='1' then

mwr <= '1';

CRAM_REA <='1';

144

ce <= '1';

fsm <= STload;

end if;

when STload =>

if addrr_x="1111111111" then

start <= '1';

fsm <= STfft;

CRAM_REA <='0';

else

fsm <= STload;

CRAM_REA <='1';

end if;

when STfft =>

if done='1' then

fsm <= STdelay;

else

fsm <= STfft;

end if;

when STdelay =>

mrd <= '1';

fsm <= STunload;

when STunload =>

if cnt=1025 then

SMSRM2_WEB <= '0';

ce <= '0';

fsm <= STresult;

cnt := 0;

elsif cnt<1025 then

SMSRM2_WEB <= '1';

fsm <= STunload;

cnt := cnt+1;

end if;

when STresult =>

RESULT_RDY <='1';

if READ_DONE='1' then

145

fsm <= STinit;

else

fsm <= STresult;

end if;

when others =>

fsm <= STinit;

end case;

end if;

end process;

end fwdfft_ARCH;

C.2.3 Frequency Domain Multiplication

The frequency domain multiplier reads the output of the FFT block and

multiplies it by the conjugate of the FFT of the local code. The multiplication is

achieved using the complex multiplier implementation described in Chapter 5. The

complete VHDL code that contains the top level of this section including the input

RAM, the output RAM, the local code RAM, and the complex multiplier compo-

nents are available on the network at

http:\\www.ent.ohiou.edu\~webcad\alaqeeli.

The main VHDL code of the complex multiplier component is shown here.

libraryIEEE;

use IEEE.STD_LOGIC_1164.all;

use IEEE.STD_LOGIC_UNSIGNED.all;

entity cmplxmult_registerd is

port (

CLK:in std_logic;

A: in std_logic_vector(19 downto 0);

B: in std_logic_vector(13 downto 0);

146

R: out std_logic_vector(15 downto 0);

I: out std_logic_vector(15 downto 0));

end entity cmplxmult_registerd;

architecture cmplxmult_registerd_arch of cmplxmult_registerd is

component mult10x8

port (A: in std_logic_vector(9 downto 0);

B: in std_logic_vector(7 downto 0);

Y: out std_logic_vector(16 downto 0));

end component;

component mult11x7

port (A: in std_logic_vector(10 downto 0);

B: in std_logic_vector(6 downto 0);

Y: out std_logic_vector(16 downto 0));

end component;

component add17s

port (A: in std_logic_vector(16 downto 0);

B: in std_logic_vector(16 downto 0);

Y: out std_logic_vector(17 downto 0));

end component;

component add10s

port (A: in std_logic_vector(9 downto 0);

B: in std_logic_vector(9 downto 0);

Y: out std_logic_vector(10 downto 0));

end component;

component add7s

port (A: in std_logic_vector(6 downto 0);

B: in std_logic_vector(6 downto 0);

Y: out std_logic_vector(7 downto 0));

end component;

signal ar,ar1,arreg: std_logic_vector (9 downto 0);

signal ai,ai1,aireg: std_logic_vector (9 downto 0);

signal br: std_logic_vector (6 downto 0);

signal bi,bi1,bireg: std_logic_vector (6 downto 0);

signal bi_comp: std_logic_vector (6 downto 0);

signal arsumai,arsumaireg: std_logic_vector (10 downto 0);

signal brsumbi,brsumbireg: std_logic_vector (7 downto 0);

signal brsubbi,brsubbireg: std_logic_vector (7 downto 0);

signal tmp1,tmp1reg: std_logic_vector (16 downto 0);

signal tmp2,tmp2reg,tmp2reg_comp: std_logic_vector (16 downto 0);

signal tmp3,tmp3reg: std_logic_vector (16 downto 0);

signal Rtmp,Rtmpreg: std_logic_vector (17 downto 0);

signal Itmp,Itmpreg: std_logic_vector (17 downto 0);

147

signal Rx,Ix: std_logic_vector (15 downto 0);

begin

ar<=A(9 downto 0);

ai<=A(19 downto 10);

br<=B(6 downto 0);

bi<=B(13 downto 7);

bi_comp<=NOT(bi)+1;

Rx(15) <=Rtmpreg(17);

Rx(14 downto 0) <=Rtmpreg(15 downto 1);

Ix(15) <=Itmpreg(17);

Ix(14 downto 0)<=Itmpreg(15 downto 1);

ar1<=NOT(ar);

ai1<=NOT(ai);

bi1<=NOT(bi);

-- registering each stage to fix timing problems when this file is
called by top-level design

process (CLK)

begin

if CLK'event and CLK='1' then

arsumaireg <= arsumai;

brsumbireg <= brsumbi;

brsubbireg <= brsubbi;

arreg <= NOT(ar1);

aireg <= NOT(ai1);

bireg <= NOT(bi1);

tmp1reg <=tmp1;

tmp2reg <=tmp2;

tmp3reg <=tmp3;

Rtmpreg <=Rtmp;

Itmpreg <=Itmp;

R <= Rx;

I <= Ix;

end if;

end process;

tmp2reg_comp <= NOT(tmp2reg)+1;

U1_ADD10: add10s port map (A => ar, B => ai, Y => arsumai);

U2_ADD7: add7s port map (A => br, B => bi, Y => brsumbi);

U3_ADD7: add7s port map (A => br, B => bi_comp, Y => brsubbi);

H1_MULT: mult10x8 port map (A => arreg ,B => brsumbireg , Y => tmp1);

H2_MULT: mult11x7 port map (A => arsumaireg ,B => bireg , Y => tmp2);

H3_MULT: mult10x8 port map (A => aireg ,B => brsubbireg , Y => tmp3);

148

U1_ADD17: add17s port map (A => tmp1reg ,B => tmp2reg_comp , Y => Rtmp
);

U2_ADD17: add17s port map (A => tmp2reg ,B => tmp3reg , Y => Itmp);

end architecture cmplxmult_registerd_arch;

C.2.4 The IFFT Block

The IFFT block is responsible for returning the frequency domain multipli-

cation to the time domain as part of the FFT-based correlator. This section has a

similar structure as the FFT Block. The only change as compared to the FFT block

is the selection of the inverse FFT mode, which requires the following change in

the VHDL code:

fwd_inv <= '0';-- inverse fft

C.2.5 The Peak Searcher

This is the last part in the acquisition process. The top level VHDL code con-

tains the input RAM, the peak searching circuit including a multiplier used to cal-

culate the square values, and registers to store the acquisition information. All

these codes are available at http:\\www.ent.ohiou.edu\~webcad\alaqeeli. Only

the peak searching circuit’s VHDL code is shown here.

--

-- Title : pksrchr_no_atan

-- Design : peak_search_may22

-- Author : 0

-- Company : 0

-- File : pksrchr_no_atan.vhd

-- Generated : Wed May 22 11:55:40 2002

library IEEE;

use IEEE.STD_LOGIC_1164.all;

149

use IEEE.STD_LOGIC_UNSIGNED.all;

entity pksrchr_no_atan is

port(

RST : in STD_LOGIC;

CLK : in STD_LOGIC;

START : in STD_LOGIC;

DINreal : in STD_LOGIC_VECTOR(15 downto 0);

DINimag : in STD_LOGIC_VECTOR(15 downto 0);

new_gps1ms: in STD_LOGIC;

RDY: out STD_LOGIC;

KOUT : out STD_LOGIC_VECTOR(2 downto 0);

TAO1024 : out STD_LOGIC_VECTOR(9 downto 0);

P : out STD_LOGIC_VECTOR(30 downto 0);

RESULT_AVAILABLE:out STD_LOGIC

);

end pksrchr_no_atan;

architecture pksrchr_no_atan_arch of pksrchr_no_atan is

component mult15

port (

clk: IN std_logic;

a: IN std_logic_VECTOR(14 downto 0);

b: IN std_logic_VECTOR(14 downto 0);

q: OUT std_logic_VECTOR(29 downto 0));

end component;

signal A16,B16,Atmp,Btmp :std_logic_vector(15 downto 0);

signal A15,B15: std_logic_vector(14 downto 0);

signal AA,BB,AAreg,BBreg: std_logic_vector(29 downto 0);

signal AAplusBB: std_logic_vector(30 downto 0);

signal cntr1024,cntr1024_dly,tmp1: std_logic_vector(9 downto 0);

signal kcount,kcount_dly,tmp2: std_logic_vector(2 downto 0);

signal DONE,DONEdly,EN,ENdly,tmp3 : std_logic;

signal PMAXreg : std_logic_vector(30 downto 0);

signal TAOreg: std_logic_vector (9 downto 0);

signal Kreg: std_logic_vector(2 downto 0);

type statename is (ST0,ST1);

signal fsm : statename;

begin

A16<=DINreal;

B16<=DINimag;

150

A15 <=Atmp(14 downto 0); -- abs(A)

B15 <=Btmp(14 downto 0); -- abs(B)

process (CLK)

begin

if CLK'event and CLK='1' then

if A16(15)='1' then

if A16="1000000000000000" then

Atmp<=not(A16);

else

Atmp <= not(A16)+1;

end if;

else

Atmp <= A16;

end if;

if B16(15)='1' then

if B16="1000000000000000" then

Btmp<=not(B16);

else

Btmp <= not(B16)+1;

end if;

else

Btmp <= B16;

end if;

end if;

end process;

U1: mult15 port map (clk =>CLK, a => A15, b => A15, q => AA); -
- A^2

U2: mult15 port map (clk =>CLK, a => B15, b => B15, q => BB); -
- B^2

process(CLK)

begin

if CLK'event and CLK='1' then

AAreg <=AA; -- A^2 registered

BBreg <=BB; -- B^2 registered

end if;

end process;

AAplusBB <= (('0'&AAreg) + ('0'&BBreg)); -- A^2 + B^2

fsm_stat:process (CLK,RST)

begin

if RST='1' then

fsm <= ST0;

151

cntr1024 <=(others =>'0');

kcount <=(others =>'0');

EN<='0';

DONE <='0';

RDY <='1';

elsif CLK'event and CLK='1' then

case fsm is

when ST0 =>

if START='1' then

fsm <= ST1;

else

fsm <= ST0;

end if;

cntr1024 <=(others =>'0');

DONE <='0';

RDY <='1';

EN<='0';

when ST1 =>

if cntr1024="1111111111" then

if kcount="100" then

cntr1024 <=(others =>'0');

fsm <= ST0;

kcount <=(others =>'0');

DONE <='1';

RDY<='1';

else

cntr1024 <=(others =>'0');

fsm <= ST0;

kcount <=kcount+1;

RDY <='1';

end if;

else

fsm <= ST1;

cntr1024 <= cntr1024+1;

EN<='1';

RDY <='0';

end if;

when others => null;

end case;

end if;

end process;

152

process(RST,CLK)

begin

if RST='1' then

PMAXreg <= (others =>'0');

TAOreg <= (others =>'0');

Kreg <=(others =>'0');

elsif CLK'event and CLK='1' then

if new_gps1ms='1' then

PMAXreg <= (others =>'0');

TAOreg <= (others =>'0');

Kreg <=(others =>'0');

else

if ENdly='1' then

if AAplusBB > PMAXreg then

PMAXreg <= AAplusBB;

TAOreg <= cntr1024_dly;

Kreg <= kcount_dly;

end if;

end if;

end if;

end if;

end process;

delay_proc:process(CLK)

begin

if CLK'event and CLK='1' then

tmp1<= cntr1024;

cntr1024_dly<=tmp1;

tmp2<=kcount;

kcount_dly <= tmp2;

ENdly <= EN;

tmp3 <= DONE;

DONEdly <= tmp3;

end if;

end process;

process(RST,CLK)

begin

if RST='1' then

P <=(others =>'0');

TAO1024 <=(others =>'0');

KOUT <= (others =>'0');

RESULT_AVAILABLE <='0';

elsif CLK'event and CLK='1' then

if DONEdly='1' then

153

P <=PMAXreg;

TAO1024 <=TAOreg;

KOUT <= Kreg;

RESULT_AVAILABLE <='1';

else

if START='1' then -- new data comes, clear values;

P <=(others =>'0');

TAO1024 <=(others =>'0');

KOUT <= (others=>'0');

RESULT_AVAILABLE <='0';

end if;

end if;

end if;

end process;

end pksrchr_no_atan_arch;

C.3 Serial Correlators (Tracking-Like Estimator)

This section of the design is responsible for implementing the serial corre-

lators that zoom in around the peak for accurate estimations of the code and carrier

phases. The top level VHDL code contains input RAM, NCO, RAM for local code,

registers for the Early-Prompt-Late design, the accumulators, and registers for the

output results. The VHDL code of the NCO is similar to the one used in the acqui-

sition process, therefore it will not be shown here. The local code is generated and

upsampled with Matlab and then pre-stored in a RAM that was generated by

Xilinx core generator. Only a part of the VHDL code is shown here. The complete

VHDL code is available at http:\\www.ent.ohiou.edu\~webcad\alaqeeli.

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entitytrackctrl is

port (

datain: in std_logic_vector (11 downto 0);

154

clk: in std_logic; --5 Mhz

m:in std_logic_vector (30 downto 0); --freq to nco

phasein:in std_logic_vector (31 downto 0); --input phase to
nco

tao:in std_logic_vector (12 downto 0); --code phase

readyi: in std_logic;--start track 010 1=start

ek_o:out std_logic_vector(24 downto 0); --epl acc results I part

pk_o: out std_logic_vector(24 downto 0);

lk_o: out std_logic_vector(24 downto 0);

addresssig: out std_logic_vector(12 downto 0);

readyo: out std_logic

) ;

end entity;

architecture trackctrl of trackctrl is

--componentnco

componentnco_3

port (

clk: in std_logic; --10 Mhz

phasein: in std_logic_vector (31 downto 0); --phase, 0-2pi

m:in std_logic_vector (30 downto 0); --adding step

srst:in std_logic; --reset, input phase

clo:out std_logic; --a clock out at the freq

sino: out std_logic_vector(1 downto 0);

coso: out std_logic_vector(1 downto 0)

) ;

end component;

component cacodram

port (

addr: IN std_logic_VECTOR(12 downto 0);

clk: IN std_logic;

dout: OUT std_logic_VECTOR(0 downto 0);

en: IN std_logic);

end component;

constant N: integer :=11;--highest bit pos of input signal

signal ONE,localcode,ramclk,tracking,localcode3, localcode1,
localcode2: std_logic; --1 working

signal counter: std_logic_vector (15 downto 0); --counter1 is
for the signal

signal mreg: std_logic_vector (30 downto 0);

155

signal phaseinreg: std_logic_vector (31 downto 0);

signal taoreg: std_logic_vector (12 downto 0); --registered
values for tracking address

--in the 1st version 11 downto 0 is taken is the input

--should be changed to mem output

signal sigcurl, sigcurp, sigcure, sigdemod,
sigcur,sigcurd:std_logic_vector (11 downto 0); --current tao tao-1 e
tao p tao+1 l inputs

--sigdemod is demodulated

--sigcur and sigcurd are delayed

--sigcurl p e are despread

signal sin_trk,cos_trk: std_logic_vector(1 downto 0);

signal datain1: std_logic_vector(11 downto 0);

signal ek, lk, pk, sigcurl1, sigcurp1,
sigcure1:std_logic_vector(24 downto 0);

signal Qek, Qlk, Qpk, Qsigcurl1, Qsigcurp1,
Qsigcure1:std_logic_vector(24 downto 0);

signal CA6: std_logic_vector(0 downto 0);

--temp for acc output

begin

ONE <='1';

nco: nco_3 port map (clk=> clk, srst=>readyi, phasein => phasein, m =>
m,clo => OPEN, sino => sin_trk, coso=>OPEN);

addresssig <=counter(12 downto 0)-1;

ek_o <= ek; pk_o <= pk; lk_o <= lk;

process (clk)

begin

if (clk'event and clk='1') then

datain1<=datain;

localcode1 <= localcode; localcode2 <= localcode1;
localcode3 <= localcode2;

if readyi='1' then

ek <=(ek'range=>'0');

pk <=(pk'range=>'0');

lk <=(lk'range=>'0');

sigcure <=(sigcure'range=>'0');

sigcurp <=(sigcurp'range=>'0');

sigcurl <=(sigcurl'range=>'0');

sigcure1 <=(sigcure1'range=>'0');

sigcurp1 <=(sigcurp1'range=>'0');

sigcurl1 <=(sigcurl1'range=>'0');

sigcur <=(sigcur'range=>'0');

sigcurd <=(sigcurd'range=>'0');

taoreg <= 4999 - tao;

156

phaseinreg <=phasein;

mreg <=m;

counter <=(counter'range=>'0');

readyo <='0';

tracking <='0';

else

if taoreg <5000-1 then

taoreg <= taoreg+1;

else

taoreg <= taoreg + 1-5000;

end if; --circular correlation

--corr

if sin_trk = "01" then

sigdemod <= datain;

elsif sin_trk="11" then

sigdemod <= not(datain)+'1';

else

sigdemod <="000000000000";

end if;

sigcur <=sigdemod;

sigcurd <=sigcur;

if localcode3='0' then

sigcure <=sigdemod;

sigcurp <=sigcur;

sigcurl <=sigcurd;

else

sigcure <= not(sigdemod)+'1';

sigcurp <= not(sigcur)+'1';

sigcurl <= not(sigcurd)+'1';

end if;

if counter=5 then

tracking <='1';

end if;

if counter>=5005 then-- change this to the
right value (may be 5008)

tracking<='0';

readyo<='1';

else

counter<=counter+1; -- I put this here
instead of puting it later

end if;

157

if sigcure(N)='0' then

sigcure1<="0000000000000" & sigcure;

else

sigcure1<="1111111111111" & sigcure;

end if;

if sigcurp(N)='0' then

sigcurp1<="0000000000000" & sigcurp;

else

sigcurp1<="1111111111111" & sigcurp;

end if;

if sigcurl(N)='0' then

sigcurl1<="0000000000000" & sigcurl;

else

sigcurl1<="1111111111111" & sigcurl;

end if;

if tracking = '1' then

ek<=ek+sigcure1;

pk<=pk+sigcurp1;

lk<=lk+sigcurl1;

end if;--tracking

-- counter<=counter+1; I put this up a little
bit

end if; -- readyi

end if; -- clk

end process;

ramclk<=not(clk);

-- 5000 samples of ca code stored in ram

U_CACOD: cacodram

port map (

addr => taoreg,

clk => ramclk,

dout => CA6,

en => ONE);

localcode <= '1' when CA6=1 else '0';

end trackctrl;

158

Appendix D

C Codes

Appendix D contains the C codes that were used for communicating between

the PC and the FPGA board. These interface codes were responsible for resetting

the board, and downloading the bit-stream implementation files into the FPGA. In

addition, these C codes were responsible for sending the GPS data and the inter-

mediate data to the FPGA. Reading the results back to the PC were also called

from these C codes.

D.1 C Code for Carrier Wipe-off and Averaging

#include <stdio.h>

// Include Header, note that this also includes "dimesdl.h"

#include "vidime.h"

#include <conio.h>

#include <math.h>

#define m_in 5000

#define m_out 1024

FILE *stream;

void initialize(DIME_HANDLE hDIME)

{

159

DWORD Cntr;

DWORD NumModules;

DIME_SetOscillatorFrequency(hDIME,1,50.000,NULL); // Set SYSCLK
to 50Mhz

DIME_SetOscillatorFrequency(hDIME,2,40.000,NULL); // Set DSPCLK
to 40Mhz

DIME_SetOscillatorFrequency(hDIME,3,50.000,NULL); // Set PIXCLK
to 50Mhz

if(DIME_SmartScan(hDIME) != ssOK)

{

printf("Error in Smart Scan!\n");

exit(2);

}

NumModules = DIME_GetNumberOfModules(hDIME);

printf("Found %d Modules\n",NumModules);

printf("The Modules are:\n");

for(Cntr=0 ; Cntr<NumModules ; Cntr++)

printf("Module %d is a
%s\n",Cntr,DIME_GetModuleDescription(hDIME,Cntr));

if(DIME_BootDevice(hDIME,"nco_dwnsmplr_ballynue3.bit",NumMod-
ules-1,0,NULL) != cfgOK_STATUS)

{

printf("Error configuring on board Virtex!\n");

exit(3);

}

}

int main(int argc, char **argv)

{

DIME_HANDLE hDIME;

DWORD Data_in[5004];

DWORD DataFPGA_out[m_out],Data0[m_in];

DWORD Data1[m_in],Data2[m_in];

DWORD Data3[m_in],Data4[m_in];

DWORD done;

int error, i, j;

DWORD Cntr2,pcaddrs;

FILE * stream;

error = 0;

160

pcaddrs = 0;

stream = fopen("gps1ms7.txt", "r");

for(Cntr2=0 ; Cntr2<m_in ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

if((hDIME = OpenDIMEBoard()) == NULL)

{

printf("No DIME Carrier Card Found!\n");

exit(1);

}

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

Data_in[5000]=Data_in[0];

Data_in[5001]=Data_in[1];

Data_in[5002]=Data_in[2];

Data_in[5003]=Data_in[3];

for (j=0; j<5000; j++)

{

Data0[j]=Data_in[j];

Data1[j]=Data_in[j+1];

Data2[j]=Data_in[j+2];

Data3[j]=Data_in[j+3];

Data4[j]=Data_in[j+4];

}

// ------------ k=0 ------------

viDIME_DMAWrite(hDIME,Data0,m_in,0,NULL,NULL,5000);

do {

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("DBB1024k0.txt", "w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

161

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// ------------ k=1 ------------

viDIME_DMAWrite(hDIME,Data1,m_in,0,NULL,NULL,5000);

do {

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("DBB1024k1.txt", "w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// ------------ k=2 ------------

viDIME_DMAWrite(hDIME,Data2,m_in,0,NULL,NULL,5000);

do {

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("DBB1024k2.txt", "w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// ------------ k=3 ------------

viDIME_DMAWrite(hDIME,Data3,m_in,0,NULL,NULL,5000);

do {

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("DBB1024k3.txt", "w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// ------------ k=4 ------------

viDIME_DMAWrite(hDIME,Data4,m_in,0,NULL,NULL,5000);

162

do {

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("DBB1024k4.txt", "w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

printf("GPS signal was downsampled successfully");

CloseDIMEBoard(hDIME);

getch();

exit(0);

}

D.2 C Code for FFT Block

#include <stdio.h>

// Include Header, note that this also includes "dimesdl.h"

#include "vidime.h"

#include <conio.h>

#include <math.h>

#define m 1024

FILE *stream;

void initialize(DIME_HANDLE hDIME){

DWORD Cntr;

DWORD NumModules;

DIME_SetOscillatorFrequency(hDIME,1,50.000,NULL); // Set SYSCLK
to 50Mhz

DIME_SetOscillatorFrequency(hDIME,2,40.000,NULL); // Set DSPCLK
to 40Mhz

163

DIME_SetOscillatorFrequency(hDIME,3,50.000,NULL); // Set PIXCLK
to 50Mhz

if(DIME_SmartScan(hDIME) != ssOK)

{

printf("Error in Smart Scan!\n");

exit(2);

}

NumModules = DIME_GetNumberOfModules(hDIME);

printf("Found %d Modules\n",NumModules);

printf("The Modules are:\n");

for(Cntr=0 ; Cntr<NumModules ; Cntr++)

printf("Module %d is a
%s\n",Cntr,DIME_GetModuleDescription(hDIME,Cntr));

if(DIME_BootDevice(hDIME,"fftblock.bit",NumModules-1,0,NULL) !=
cfgOK_STATUS)

{

printf("Error configuring on board Virtex!\n");

exit(3);

}

}

int main(int argc, char **argv)

{

DIME_HANDLE hDIME;

DWORD Data_in[m];

DWORD DataFPGA_out[m];

DWORD fftdone;

int error, i, k;

DWORD Cntr2;

FILE * stream;

error = 0;

if((hDIME = OpenDIMEBoard()) == NULL){

printf("No DIME Carrier Card Found!\n");

exit(1);

}

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

viDIME_DMAAbort(hDIME);

164

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

// -------- k=0 -------------//

stream = fopen("DBB1024k0.txt", "r");

//stream = fopen("DBB0.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("fftout0x.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=1 -------------//

stream = fopen("DBB1024k1.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("fftout1x.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

165

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=2 -------------//

stream = fopen("DBB1024k2.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("fftout2x.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=3 -------------//

stream = fopen("DBB1024k3.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("fftout3x.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

166

// -------- k=4 -------------//

stream = fopen("DBB1024k4.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("fftout4x.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -----------------------------------

printf(" --- fft completed ---- ");

CloseDIMEBoard(hDIME);

getch();

exit(0);

}

D.3 C Code for Frequency Domain Multiplication

#include <stdio.h>

// Include Header, note that this also includes "dimesdl.h"

#include "vidime.h"

#include <conio.h>

#include <math.h>

#define m_out 1024

167

FILE *stream;

void initialize(DIME_HANDLE hDIME){

DWORD Cntr;

DWORD NumModules;

DIME_SetOscillatorFrequency(hDIME,1,50.000,NULL); // Set SYSCLK
to 50Mhz

DIME_SetOscillatorFrequency(hDIME,2,40.000,NULL); // Set DSPCLK
to 40Mhz

DIME_SetOscillatorFrequency(hDIME,3,50.000,NULL); // Set PIXCLK
to 50Mhz

if(DIME_SmartScan(hDIME) != ssOK)

{

printf("Error in Smart Scan!\n");

exit(2);

}

NumModules = DIME_GetNumberOfModules(hDIME);

printf("Found %d Modules\n",NumModules);

printf("The Modules are:\n");

for(Cntr=0 ; Cntr<NumModules ; Cntr++)

printf("Module %d is a
%s\n",Cntr,DIME_GetModuleDescription(hDIME,Cntr));

if(DIME_BootDevice(hDIME,"freq_domain_multip_reg.bit",NumMod-
ules-1,0,NULL) != cfgOK_STATUS)

{

printf("Error configuring on board Virtex!\n");

exit(3);

}

}

int main(int argc, char **argv)

{

DIME_HANDLE hDIME;

DWORD Data_in[m_out];

DWORD Data_out[m_out];

DWORD DataFPGA_out[m_out];

DWORD done;

168

int error, i;

DWORD Cntr2;

FILE * stream;

error = 0;

if((hDIME = OpenDIMEBoard()) == NULL){

printf("No DIME Carrier Card Found!\n");

exit(1);

}

// ----- k=0 ------- //

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

stream = fopen("fftout0x.txt", "r");

for(Cntr2=0 ; Cntr2<m_out ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m_out,0,NULL,NULL,5000);

do{

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("mult0.txt","w");

for(i=0; i<m_out; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

// ----- k=1 ------- //

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

stream = fopen("fftout1x.txt", "r");

for(Cntr2=0 ; Cntr2<m_out ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

169

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m_out,0,NULL,NULL,5000);

do{

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("mult1.txt","w");

for(i=0; i<m_out; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

// ----- k=2 ------- //

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

stream = fopen("fftout2x.txt", "r");

for(Cntr2=0 ; Cntr2<m_out ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m_out,0,NULL,NULL,5000);

do{

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("mult2.txt","w");

for(i=0; i<m_out; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

// ----- k=3 ------- //

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

stream = fopen("fftout3x.txt", "r");

for(Cntr2=0 ; Cntr2<m_out ; Cntr2++)

170

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m_out,0,NULL,NULL,5000);

do{

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("mult3.txt","w");

for(i=0; i<m_out; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

// ----- k=4 ------- //

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

stream = fopen("fftout4x.txt", "r");

for(Cntr2=0 ; Cntr2<m_out ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m_out,0,NULL,NULL,5000);

do{

done = viDIME_ReadRegister(hDIME,3,5000);

} while(done != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m_out,0,NULL,NULL,5000);

stream = fopen("mult4.txt","w");

for(i=0; i<m_out; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

printf(" I am done from testing");

CloseDIMEBoard(hDIME);

getch();

exit(0);

171

}

D.4 C Code for FFT Block

#include <stdio.h>

// Include Header, note that this also includes "dimesdl.h"

#include "vidime.h"

#include <conio.h>

#include <math.h>

#define m 1024

FILE *stream;

void initialize(DIME_HANDLE hDIME){

DWORD Cntr;

DWORD NumModules;

DIME_SetOscillatorFrequency(hDIME,1,50.000,NULL); // Set SYSCLK
to 50Mhz

DIME_SetOscillatorFrequency(hDIME,2,40.000,NULL); // Set DSPCLK
to 40Mhz

DIME_SetOscillatorFrequency(hDIME,3,50.000,NULL); // Set PIXCLK
to 50Mhz

if(DIME_SmartScan(hDIME) != ssOK)

{

printf("Error in Smart Scan!\n");

exit(2);

}

NumModules = DIME_GetNumberOfModules(hDIME);

printf("Found %d Modules\n",NumModules);

printf("The Modules are:\n");

for(Cntr=0 ; Cntr<NumModules ; Cntr++)

printf("Module %d is a
%s\n",Cntr,DIME_GetModuleDescription(hDIME,Cntr));

if(DIME_BootDevice(hDIME,"ifftblock.bit",NumModules-1,0,NULL)
!= cfgOK_STATUS)

{

printf("Error configuring on board Virtex!\n");

172

exit(3);

}

}

int main(int argc, char **argv)

{

DIME_HANDLE hDIME;

DWORD Data_in[m];

DWORD DataFPGA_out[m];

DWORD fftdone;

int error, i, k;

DWORD Cntr2;

FILE * stream;

error = 0;

if((hDIME = OpenDIMEBoard()) == NULL){

printf("No DIME Carrier Card Found!\n");

exit(1);

}

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

viDIME_DMAAbort(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

// -------- k=0 -------------//

stream = fopen("mult0.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("ifftout0.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

173

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=1 -------------//

stream = fopen("mult1.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("ifftout1.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=2 -------------//

stream = fopen("mult2.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("ifftout2.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

174

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=3 -------------//

stream = fopen("mult3.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("ifftout3.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -------- k=4 -------------//

stream = fopen("mult4.txt", "r");

for(Cntr2=0 ; Cntr2<m ; Cntr2++)

{

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

viDIME_DMAWrite(hDIME,Data_in,m,0,NULL,NULL,5000);

do{

fftdone = viDIME_ReadRegister(hDIME,3,5000);

} while(fftdone != 5);

viDIME_DMARead(hDIME,DataFPGA_out,m,0,NULL,NULL,5000);

stream = fopen ("ifftout4.txt","w");

for(i=0; i<1024; i++)

{

fprintf(stream,"%d\n",DataFPGA_out[i]);

}

fclose (stream);

viDIME_WriteRegister(hDIME,2,1,5000);

// -----------------------------------

printf(" --- ifft completed ---- ");

CloseDIMEBoard(hDIME);

175

getch();

exit(0);

}

D.5 C Code for Peak Search

#include <stdio.h>

// Include Header, note that this also includes "dimesdl.h"

#include "vidime.h"

#include <conio.h>

#include <math.h>

#define totcnt 5120

#define part1 1024

FILE *stream;

void initialize(DIME_HANDLE hDIME){

DWORD Cntr;

DWORD NumModules;

DIME_SetOscillatorFrequency(hDIME,1,50.000,NULL); // Set SYSCLK
to 50Mhz

DIME_SetOscillatorFrequency(hDIME,2,40.000,NULL); // Set DSPCLK
to 40Mhz

DIME_SetOscillatorFrequency(hDIME,3,50.000,NULL); // Set PIXCLK
to 50Mhz

if(DIME_SmartScan(hDIME) != ssOK)

{

printf("Error in Smart Scan!\n");

exit(2);

}

NumModules = DIME_GetNumberOfModules(hDIME);

printf("Found %d Modules\n",NumModules);

printf("The Modules are:\n");

for(Cntr=0 ; Cntr<NumModules ; Cntr++)

printf("Module %d is a
%s\n",Cntr,DIME_GetModuleDescription(hDIME,Cntr));

176

if(DIME_BootDevice(hDIME,"pksrch_top.bit",NumModules-1,0,NULL)
!= cfgOK_STATUS)

{

printf("Error configuring on board Virtex!\n");

exit(3);

}

}

int main(int argc, char **argv)

{

DIME_HANDLE hDIME;

DWORD Data_in[totcnt];

DWORD Data_in1[part1];

DWORD RDY,RESULT_AVAILABLE;

int error, i,ii,k;

DWORD Cntr2,KOUT,TAO,PK;

FILE * stream;

error = 0;

stream = fopen("ifftouts7.txt", "r");

for(Cntr2=0 ; Cntr2<totcnt ; Cntr2++){

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n"); }

fclose(stream);

if((hDIME = OpenDIMEBoard()) == NULL){

printf("No DIME Carrier Card Found!\n");

exit(1); }

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

for (k=0 ; k<5 ; k++) {

for (ii=0 ; ii<1024; ii++){

Data_in1[ii]=Data_in[(k*1024)+ii]; }

do{

getch();

RDY = viDIME_ReadRegister(hDIME,2,5000);

177

printf(" K= %d, REG2= %d\n", k, RDY);

} while(RDY != 1);

viDIME_DMAWrite(hDIME,Data_in1,1024,0,NULL,NULL,5000);

}

getch();

do{

RESULT_AVAILABLE =
viDIME_ReadRegister(hDIME,3,5000);

} while(RESULT_AVAILABLE != 1);

KOUT=viDIME_ReadRegister(hDIME,4,5000);

TAO=viDIME_ReadRegister(hDIME,5,5000);

PK=viDIME_ReadRegister(hDIME,6,5000);

printf("PK= %d, TAO = %d KOUT= %d \n",PK, TAO,KOUT);

printf(" I am done from testing");

CloseDIMEBoard(hDIME);

getch();

exit(0);

}

D.6 C Code for Tracking

#include <stdio.h>

// Include Header, note that this also includes "dimesdl.h"

#include "vidime.h"

#include <conio.h>

#include <math.h>

#define m_in 5000

#define m_out 1024

FILE *stream;

void initialize(DIME_HANDLE hDIME)

{

178

DWORD Cntr;

DWORD NumModules;

DIME_SetOscillatorFrequency(hDIME,1,50.000,NULL); // Set SYSCLK
to 50Mhz

DIME_SetOscillatorFrequency(hDIME,2,40.000,NULL); // Set DSPCLK
to 40Mhz

DIME_SetOscillatorFrequency(hDIME,3,50.000,NULL); // Set PIXCLK
to 50Mhz

if(DIME_SmartScan(hDIME) != ssOK)

{

printf("Error in Smart Scan!\n");

exit(2);

}

NumModules = DIME_GetNumberOfModules(hDIME);

printf("Found %d Modules\n",NumModules);

printf("The Modules are:\n");

for(Cntr=0 ; Cntr<NumModules ; Cntr++)

printf("Module %d is a
%s\n",Cntr,DIME_GetModuleDescription(hDIME,Cntr));

if(DIME_BootDevice(hDIME,"track_top6.bit",NumModules-1,0,NULL)
!= cfgOK_STATUS)

{

printf("Error configuring on board Virtex!\n");

exit(3);

}

}

int main(int argc, char **argv)

{

DIME_HANDLE hDIME;

DWORD Data_in[5000];

DWORD done,ce,cp,cl;

DWORD Cntr2;

DWORD RAMdata;

FILE * stream;

stream = fopen("samples5000.txt", "r");

for(Cntr2=0 ; Cntr2<5000 ; Cntr2++)

{

179

//Data_in[Cntr2]=Cntr2;

fscanf(stream, "%d", &Data_in[Cntr2]);

fscanf(stream, "\n");

}

fclose(stream);

if((hDIME = OpenDIMEBoard()) == NULL)

{

printf("No DIME Carrier Card Found!\n");

exit(1);

}

initialize(hDIME);

DIME_VirtexResetEnable(hDIME);

DIME_PCIReset(hDIME);

DIME_VirtexResetDisable(hDIME);

viDIME_DMAWrite(hDIME,Data_in,m_in,0,NULL,NULL,5000);

do {

done = viDIME_ReadRegister(hDIME,2,5000);

} while(done != 1);

ce=viDIME_ReadRegister(hDIME,3,5000);

cp=viDIME_ReadRegister(hDIME,4,5000);

cl=viDIME_ReadRegister(hDIME,5,5000);

printf(" %d, %d, %d \n",ce,cp,cl);

printf("GPS signal was tracked successfully");

//viDIME_WriteRegister(hDIME,2,1,5000);

//viDIME_WriteRegister(hDIME,7,1,5000);

//getch();

//RAMdata=viDIME_ReadRegister(hDIME,8,5000);

//printf(" %d \n",RAMdata);

CloseDIMEBoard(hDIME);

getch();

exit(0);

}

180

Appendix E

FPGA Layout of the Mapped

Designs

Appendix E contains the layout or the chip view of the mapped designs. This

appendix is divided into two sections. Thr first section shows the layout figures of

the mapped design blocks of the modified-code averaging algorithm. The second

section presents the layout design figure for the serial correlators based tracking

block.

181

E.1 Modified-Code Averaging Correlator (Acquisition)

The implemented circuit has five subcircuits. First subcircuit is responsible

for averaging the data from 5000 points to 1024. In addition to the averager circuit,

this part includes the data collection RAM, the NCO, and the carrier wipe-off cir-

cuit.

Figure E-1: FPGA Layout of the Averaging and Carrier Wipe-off Circuit

182

The layout of the mapped implementation of the FFT-block circuit is pre-

sented. This part contains the Xilinx FFT core configured as Single-Memory-Sys-

tem, Input RAM, and Output RAM.

Figure E-2: FPGA Layout of the FFT Block Used in the Acquisition Circuit.

183

The frequency domain multiplication subcircuit is implemented. This part

includes a complex multiplier, a RAM for the FFT values of the local code, a data

collection RAM for the results of the previous circuit (FFT-block), and an output

RAM.

Figure E-3: FPGA Layout of the Frequency Domain Multiplication Circuit.

184

The mapping layout of the implemented IFFT-block is shown here. This

part is identical to the FFT-block circuit in the top level design, but the only differ-

ences are in the mapping and routing since they are based on the implementation

tools.

Figure E-4: FPGA Layout of the IFFT Block Used in the Acquisition Circuit

185

The last subcircuit in the acquisition block is the peak-searcher. The FPGA

layout of the peak searcher is presented here. It contains all the counters and reg-

isters that were used to count and store the peak’s location and its magnitude. The

ATAN function which computes the carrier phase was not included in this impl-

mentation.

Figure E-5: FPGA Layout of the Peak Searcher.

186

E.2 Serial Correlators of the GPS Block Processing

This section shows the FPGA layout of the serial correlators which replace

the tracking with the block processing concept. This part contains the input RAM,

the three serial accumulators, the NCO, and the carrier wipe-off circuit.

Figure E-6: FPGA Layout of the Estimator (Serial Correlators)

187

Abstract

Alaqeeli, Abdulqadir Abdulaziz. Ph.D. Nov. 2002

Electrical Engineering and Computer Science

Global Positioning System Signal Acquisition and Tracking Using Field Programma-

ble Gate Arrays (188 pp.)

Director of Dissertation: Professor Janusz Starzyk

GPS receivers spend much of their time on acquisition and tracking. Slow

acquisition is due to the large computation time of the correlation function. The

correlation function searches for the code phase between the GPS receiver signal

arrival time and the GPS satellite’s signal transmission time. The computation of

the correlation function in frequency domain is speed up N/logN times compared

with the time domain implementation.

The long computation time for the correlation function is due to the compu-

tation of the FFT functions. One possible solution to speed up the calculations of

the correlation function is by replacing the FFTs with simpler transforms. Two

transforms were studied in this work. A real transform called the Fermat number

transform (FNT) was presented. The FNT-based convolution algorithm was shown.

However, the FNT-based convolution has a sequence length restriction that makes

it not applicable to the GPS case. A binary transform called the Walsh Hadamard

transform (WHT) was also investigated. The WHT-based correlation algorithm

was presented and verified. This method shows a significant reduction in the com-

188

puting time of the correlation function by approximately 20 times compared to the

FFT method. The Walsh Hadamard method is not directly applicable to the GPS

C/A code, so was not used for GPS signal acquisition.

This dissertation also illustrates a realistic solution to the slow acquisition

of the GPS receivers. It uses the FPGA technology along with an averaging method

to speed up the calculations of the FFT-based correlation function and to reduce

the hardware requirements. The developed method approximated the correlation

function by using a modified version of the C/A code. This approximation was accu-

rate enough to use in the acquisition process while maintaining an acceptable level

of signal power. This algorithm was used to guide three serial correlators to zoom-

in around the correlation peak and provide refined versions of the acquisition esti-

mates. This unique algorithm was implemented and then successfully acquired a

GPS signal in less than 1-ms.

Approved:__

