
A SWITCHED-CAPACITOR ANALYSIS

METAL-OXIDE-SILICON CIRCUIT SIMULATOR

A Dissertation Presented to

The Faculty of the

Fritz J. and Dolores H. Russ
College of Engineering and Technology

Ohio University

In partial Fulfillment

of the Requirement for the Degree

Doctor of Philosophy

by

Ying-Wei Jan

March, 1999

THIS DISSERTATION ENTITLED

“A SWITCHED-CAPACITOR ANALYSIS METAL-OXIDE-SILICON

CIRCUIT SIMULATOR”

by Ying-Wei Jan

has been approved

for the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology

Janusz A. Starzyk, Professor

Warren K. Wray, Dean

Fritz J. and Dolores H. Russ
College of Engineering and Technology

ii

Acknowledgments

I would first like to thank School of Electrical Engineering and Computer Science

of Ohio University that offered me graduate associateship from September 1994 to

August 1995. This financial support had been an essential encouragement in my graduate

study, and paid most of the tuition in that period. The tuition would have been a heavy

financial burden to me.

I am very grateful to the establishment of my family fund which is provided by Dr.

San-Chu’an Jan, M.D., Mr. San-Shen Jan, Mr. Wu-Fu Jan, Dr. Lee M. Chen, Ph.D. and

Mrs. Whei-Jen Chen. This family fund has been supporting my living expense in USA

since 1991. I am the first one that uses this fund, and very willing to become one of the

donors of this fund for the younger members of my family. For my parents: Mr. San-Shen

Jan and Ms. Yi-Ching Chang, I wish I can fulfill part of the expectation they have had on

me since I was born. I wish I can make them happy by presenting this dissertation. I live

on their love and I will always fight for their glory and honor.

I also wish to thank my advisor Professor Janusz A. Starzyk, Ph.D., who has

provided the brilliant ideas which are the mainframe of this research, and precious

guidance both in academy and life, when I needed it most.

I would also like to thank the members of my graduate committee -- Professor

Robert A. Curtis, Ph.D., P.E., Professor Jeffrey J. Giesey, Ph.D., Professor Earle R. Hunt,

Ph.D. and Professor Henryk J. Lozykowski, D.Sc., Ph.D. -- for their gracious

iii

participation. The priceless knowledge they provided in classes is the important

foundation of this research.

I owe special thanks to Professor Liang-Gee Chen, Ph.D., Mr. Kuan-Tao Yu, Mr.

George Barnes and Mr. Chi-She Chen. Professor Chen taught me concepts of such

contemporary digital computer programming techniques as algorithm analysis, dynamic

memory allocation managed by linking lists and pointers, when I was a freshman in

National Cheng Kung University, Tainan, Taiwan. Since then, a window of my mind has

been opened to a whole new world. Our world is meant by how we look at it, rather than

what it actually is. Thanks to Mr. Yu’s suggestion and encouragement that I began to

learn C++ and MFC programming, which are the essential tools for developing SAMOC.

The technical writing support of writing this dissertation is offered by Mr. Barnes. Several

hundred-million-bytes of memory modules installed in my computer for SAMOC

development, simulation and SPICE simulation are sponsored by Mr. Chen.

I also wish to thank my close friends during these years -- Mr. Cheng-Hu Chang

(Ph.D. to be), Mr. Chi-She Chen, Dr. Da-Ming Chiang, Ph.D., Dr. Long-Bin Hsieh,

Ph.D., Dr. Po-Lin Huang, Ph.D., Dr. Hewjin Jiau, Ph.D., Mr. Yung-Tsan Jou (Ph.D. to

be), Dr. Yen-Ching Lai, Ph.D., Dr. Wei-Yang Lee, M.D., Mr. Chung-Chi Li, Dr. David

Lin, D.O., Dr. Heng Ma, Ph.D., Mr. Kerry Dale Schutz, Miss Yu-Lin Shao, Mr.

Cheng-Hung Tsai, Dr. Sinko Tsai, Ph.D., Miss Pei-Lien Wu (D.M.A. to be) and Mr.

Kuan-Tao Yu -- for the precious friendships, mental supports, being my role models and

being the ones I adore. Thanks to their ample knowledge, words of wisdom and brilliant

minds, I lean to know, although not entirely, what to do, how to do, what to love, how to

iv

love and be courageous, patient and persistent to utilize my limited intellect and talent to

finish a work and present this dissertation.

Lastly, I would like to thank Mr. Kerry Dale Schutz for his decent technical

writing help for my M.S. thesis, and Dr. Sinko Tsai for his ingenious clustering algorithm,

which summarized the computer simulation results of my research. Without their help, I

would neither have been able to finish my M.S. thesis nor have had the change to enter the

doctoral program in Ohio University. I should have thanked them four years ago,

however I just turned out to be reckless at that time.

v

TABLE OF CONTENTS

1. INTRODUCTION . 1

1.1 Overview . 4
1.2 Circuit Simulators . 4

 1.3 Device Modeling . 6
 1.4 Circuit Equation Formulation . 8

1.5 DC Solutions . 11
1.6 Digital Circuits . 13
1.7 Analog VLSI and Neural Computing . 16
1.8 Time Domain Analysis . 18
1.9 Simplified Timing Analysis . 19

1.9.1 Simplified Device Models . 21
1.9.2 Circuit Partitioning and Event-Driven Simulation 23
1.9.3 Relaxation Techniques . 23
1.9.4 Moment Matching and
 Asymptotic Waveform Evaluation (AWE) . 24

1.10 SAMOC Simulator . 24

2. DATA STRUCTURE, MODIFIED NODAL ANALYSIS AND
PIECEWISE LINEAR SEMICONDUCTOR DEVICE MODELS
OF SAMOC . 29

2.1 Building Data Structures in SAMOC . 30
2.1.1 Device Classes . 33
2.1.2 Node Class . 36
2.1.3 Circuit Class . 38

2.2 Modified Nodal Analysis (MNA) . 38
2.3 Piecewise Linear Models of Semiconductor Devices for MNA 40

2.3.1 Ideal Switch . 40
2.3.2 Ideal Diode . 41
2.3.3 MOS Transistor . 44

2.4 Summary . 50

3. PIECEWISE LINEAR APPROACHES AND THE
KATZENELSON ALGORITHM . 52

3.1 The Katzenelson Algorithm . 53
3.2 tmin in SAMOC . 56

vi

3.2.1 Ideal diode . 57
3.2.2 MOS Transistors . 59

3.3 Simulation Examples of SAMOC . 64
3.4 Comparison with SPICE Simulation via DC Sweep 66
3.5 Summary . 69

4. SAMOC SIMULATION IN Q-V REALM 72

4.1 Q-V Realm Analysis . 73
4.2 MNA for SC Networks and Device Stamps in Q-V Analysis 76

4.2.1 Capacitor . 77
4.2.2 Ideal OPAMP . 78
4.2.3 Ideal Switch . 79
4.2.3 Ideal Diode . 80
4.2.4 Ideal Voltage Source and Ideal Voltage-Controlled

Voltage Source . 80
4.3 Simulation Examples . 81

4.3.1 SC integrator . 81
4.3.2 SC Implementation of a Second-Order Bandpass Filter 83

4.4 Summary . 87

5. SAMOC APPLICATIONS I: DC-DC SWITCHED-CAPACITOR
BASED CHARGE PUMP CIRCUIT SIMULATIONS 90

5.1 SC Based Charge Pump Designs . 91
5.2 Time Domain Analysis . 95

5.2.1 Comparing with SPICE simulation . 96
5.2.2 The SAMOC Simulation of SC Charge Pumps 97

5.3 Consumed Power Analysis Based on a Resistive Load 99
5.4 Summary . 106

6. RESISTIVE-CAPACITIVE NETWORK ANALYSIS, AND
CIRCUIT PARTITIONING . 107

6.1 I-V Realm Nodes and Q-V Realm Nodes . 108
6.2 Circuit Partitioning to I-V Realm and Q-V Realm Circuit Blocks 110

6.2.1 I-V Realm Blocks . 111
6.2.2 Shareable Devices and Shareable Nodes . 112
6.2.3 I-V Realm Devices . 113
6.2.4 I-V Realm Block Extraction . 116
6.2.5 Including Controlled Sources and MOS Transistors into an I-V

 Realm Block . 118

vii

6.2.6 Adding Voltage Sources into An I-V Realm Block 121
6.2.7 Data Structure for I-V Realm Block Partitioning 122
6.2.8 Posterior-Prior Relationships Between Circuit Blocks for

 Analysis . 124
6.3 Device Stamps Modification for Analyzing I-V Realm Blocks 127

6.3.1 MOS Transistors (M) . 127
6.3.2 Voltage Controlled Voltage (E) and Current Sources (G) 128
6.3.3 Current controlled voltage source (H) . 132
6.3.4 Current controlled current source (F) . 133

6.4 Q-V Realm Blocks . 134
6.4.1 Q-V Realm Block Extraction . 135
6.4.2 Including Voltage Sources and OPAMPs into a Q-V Realm
 Block . 138
6.4.3 Analyzing Q-V Realm Blocks Incident with I-V Realm Blocks 140
6.4.4 The Q-V realm Block Class . 141

6.5 Summary . 142

7. ANALYSIS OF INDIVIDUAL CIRCUIT BLOCK AND
CIRCUIT SIMULATION VIA
BLOCK-SIGNAL DIAGRAM . 144

7.1 Analysis of an Individual Circuit Block . 145
7.1.1 Solving Class for I-V realm block analysis . 145
7.1.2 Solving Class for Q-V realm block analysis . 147

7.2 MOS-Capacitor Modeling for Q-V Realm Analysis 149
7.3 Mixed Mode Solving Class and Modification of Simulation Queue 152

7.3.1 Mixed Mode Multi-Block Solving Class . 152
7.3.2 Modification of the Simulation Queue . 154

7.4 Simulating a Circuit with an Acyclic Block-Signal Diagram 156
7.4.1 Setting the Order Number of Block in the Block-Signal Diagram . . 157
7.4.2 The Activated Blocks . 158
7.4.3 From a Fired Block to an Activated Block and

 Definition of Events . 159
7.4.4 Computer Implementation of Activated and Fired Block 162

7.5 Timing Analysis of a Circuit with a Cyclic Block-Signal Diagram 163
7.6 Summary . 166

8. SAMOC APPLICATIONS II: EVENT DRIVEN TIMING
SIMULATION EFFICIENCY ANALYSIS AND
BENCHMARK CIRCUIT SIMULATION 170

8.1 Small CMOS Sequential Logic Circuits . 171

viii

8.1.1 CMOS NAND gate . 171
8.1.2 Positive Edge-Triggered D Flip-flop . 172
8.1.3 Master-Slave J-K Flip-flop . 174
8.1.4 4-bit Binary Ripple Counter . 176

8.2 Benchmark Circuit Simulation . 178
8.2.1 voter25 . 179
8.2.2 sqrt . 181
8.2.3 ram2k . 182

8.3 Summary . 184

9. CONCLUSION . 186

9.1 Research Summary . 188
9.2 Software Implementation Summary . 190
9.3 Future Works . 191

9.3.1 Simulation Techniques Part . 191
9.3.2 Software Technique Part . 192

BIBLIOGRAPHY . 196

APPENDIX I
SUPPORTED DEVICES IN SAMOC . 202

APPENDIX II
BENCHMARK CIRCUIT SIMULATION AND
COMPARISON . 207

ABSTRACT

ix

LIST OF TABLES

Table 3.1, State transition table . 66

Table 5.1, Required number of devices for

charge pumps with voltage gain AV = 8. 105

Table 6.1, An I-V block extraction example. 117

Table 6.2, The descriptions of including devices into an I-V realm circuit block. 119

Table 6.3, The rules for inclusion of devices into a Q-V realm block. 136

Table 7.1 Gate capacitors of a MOS transistor. 150

Table I.i The 2-terminal circuit devices supported in SAMOC. 205

Table I.ii The multi-terminal circuit devices supported in SAMOC. 206

Table II.i SPICE simulation results of the bemchmark circuits. 208

Table II.ii SAMOC simulation results of the bemchmark circuits. 209

x

LIST OF FIGURES

Fig. 1.1 Piecewise constant MOS model used by SPEC. 22
Fig. 1.2 Piecewise constant approximation. 25

Fig. 2.1 A simple MOS circuit . 31
Fig. 2.2 Class inheritance graph of SAMOC . 34
Fig. 2.3 Data structure of the device objects. 36
Fig. 2.4 SAMOC nodes and devices data structure of the circuit in Fig. 2.1. 37
Fig. 2.5 Circuit symbol of a voltage controlled ideal switch . 41
Fig. 2.6 V-I characteristic of an ideal diode. 42
Fig. 2.7 An ideal diode. 43
Fig. 2.8 The equivalent circuit of a MOS transistor in the cutoff region. 46
Fig. 2.9 The equivalent circuit of a MOS transistor in the linear region. 47
Fig. 2.10 The equivalent circuit of a MOS transistor in the saturated region. 48
Fig. 2.11 3D illustration of Muller and Kamins MOS model. 49
Fig. 2.12 3D illustration of SAMOC MOS model . 50

Fig. 3.1 A voltage controlled resistive device. 53
Fig. 3.2 Dynamic state transition diagram of an ideal diode. 59
Fig. 3.3 Dynamic state transition diagram of a MOS transistor 63
Fig. 3.4 Schematic of the wide-range transconductance amplifier. 65
Fig. 3.5 The output voltage as a function of iteration step index. 67
Fig. 3.6 PSPICE DC sweep . 68
Fig. 3.7 SAMOC DC sweep . 69

Fig. 4.1 A node “a” incident only to capacitors. 74
Fig. 4.2 Connecting two nodes via an ideal switch . 76
Fig. 4.3 A capacitor C. 77
Fig. 4.4 The circuit symbol of an ideal OPAMP . 79
Fig. 4.5 A switch capacitor integrator . 82
Fig. 4.6 The Vin and Vout plots of SC simulation . 83
Fig. 4.7 An SC implementation of a second-order bandpass filter. 85
Fig. 4.8 Power spectral densities of input and output signals and their ratio. 86
Fig. 4.9 Transfer function of the second order bandpass filter. 87

Fig. 5.1 An 8x Dickson charge pump. 92
Fig. 5.2 An 8x Makowski charge pump . 93
Fig. 5.3 An 8x TPVD Starzyk charge pump . 93
Fig. 5.4 An 8x MPVD Starzyk charge pump . 94
Fig. 5.5 Comparison of SPICE and SAMOC simulation . 97
Fig. 5.6 Time domain SAMOC simulation result. 98
Fig. 5.7 The equivalent circuit of a charge pump circuit with a resistance load. 100

xi

Fig. 5.8 Illustration of the closed circuit charge Qd (a), and the
 open circuit output voltage VO (b). 101
Fig. 5.9 The 4-stage (16x) TPVD charge pump output voltage with
 different values of Rload. 102
Fig. 5.10 The output power as a function Rload for TPVD charge
 pumps with different number of stages. 104
Fig. 5.11 Output power of 2-stage TPVD charge pumps as a function
 of load resistance and pump capacitance. 104
Fig. 5.12 The output power as a function of Rload. 105

Fig. 6.1 A simulated circuit is partitioned into 3 I-V realm blocks. 112
Fig. 6.2 An example of sharing node 1, 0 and V1 in circuit partitioning. 113
Fig. 6.3 Resistive devices. 114
Fig. 6.4 Current devices. 115
Fig. 6.5 (a) A diode link between two I-V realm nodes, (b) a diode link between
 two Q-V realm nodes, (c) a diode link between an I-V realm node and
 a Q-V realm node. 116
Fig. 6.6 Data structure organization of a circuit block. 124
Fig. 6.7 An example of posterior-prior setting of two circuit blocks. 126
Fig. 6.8 A block-signal diagram of a circuit which contains 7 circuit blocks. 127
Fig. 6.9 A voltage controlled source with its controlling node in many circuit blocks. 131
Fig. 6.10 A current controlled voltage source whose controlling nodes and
 controlled nodes do not belong to the same circuit block. 132
Fig. 6.11 A current controlled current source whose controlling nodes and
 controlled nodes do not belong to the same circuit block. 134
Fig. 6.12 A capacitor C connects with two I-V realm nodes. 136
Fig. 6.13 Feedback link and OPAMPs. 139
Fig. 6.14 Illustration of an interface between an I-V realm block and a Q-V
 realm block and pseudo voltage sources V1 and V2. 141

Fig. 7.1 A simulation queue. 149
Fig. 7.2 Parasite capacitance of a MOS transistor. 149
Fig. 7.3 A MOS transistor with its gate connecting to a Q-V realm node. 151
Fig. 7.4 A class designed for analyzing multi-block is derived from CSolveIVCB 153
Fig. 7.5 Building of a new device list from two device lists. 154
Fig. 7.6 A multi-block analysis of two circuit blocks “g” and “d”. 155
Fig. 7.7 The modification of the simulation queue. 155
Fig. 7.8 A multi-block analysis of three circuit blocks “b”, “f” and “g”. 156
Fig. 7.9 Order numbers of blocks in the acyclic block-signal diagram. 157
Fig. 7.10 A activated block fires at two blocks. 158
Fig. 7.11 A posterior-prior relationship between 5 blocks. 160
Fig. 7.12 A posterior-prior relationship induced by a voltage controlled switch. 161
Fig. 7.13 The topological depth setting of a block-signal diagram. 165

xii

Fig. 7.14 The simulation queue. 166

Fig. 8.1 CMOS NAND gate. 172
Fig. 8.2 Positive edge-triggered D flip-flop. 173
Fig. 8.3 The timing simulation results of the positive edge-triggered D flip-flop. 174
Fig. 8.5 Master-Slave J-K flip-flop . 175
Fig. 8.6 The SAMOC timing simulation results of the master-slave J-K flip-flop. . . . 176
Fig. 8.7 4-bit binary ripple counter. 177
Fig. 8.9 The SAMOC timing simulation results of the 4-bit ripple counter. 178
Fig. 8.10 Partitioning results: histograms of numbers of nodes and elements. 180
Fig. 8.11 Number of analyzed blocks as a function of simulation instance. 180
Fig. 8.12 Partitioning results: histograms of numbers of nodes and elements. 181
Fig. 8.13 Number of analyzed blocks as a function of simulation instance. 182
Fig. 8.14 Partitioning results: histograms of numbers of nodes and elements. 183
Fig. 8.15 Number of simulated blocks as a function of simulation instance. 183

xiii

ABBREVIATIONS AND ACRONYMS

operational amplifierOPAMP

new technology: an operating system from
Microsoft

NT

n-channel MOS NMOS

Microsoft: a software companyMS

multi-phase voltage doublerMPVD

metal-oxide-siliconMOS

modified nodal analysisMNA

mega Hurtz (106 Hz)MHz

Microsoft foundation classesMFC

mega bytes (106 bytes)MB

Kirchhoff’s voltage lawKVL

Kirchhoff’s current lawKCL

current-voltageI-V

giga bytes (109 bytes)GB

field effect transistorFET

extended data outEDO

dynamic random access memoryDRAM

directed currentDC

complementary MOSCMOS

computer aided designCAD

bipolar junction transistorBJT

branch constitutive relationsBCR

asymptotic waveform evaluationAWE

a binary tree name after Adelson-Velskii
and Landis

AVL tree

artificial neural networkANN

xiv

very large scale integratedVLSI

voltage-currentV-I

simulation program with integrated circuit
emphasis

SPICE

switched-capacitorSC

switched-capacitor analysis of MOS circuitSAMOC

two-phase voltage doublerTPVD

register-transfer logicRTL

reduced instruction set computerRISC

resistor-capacitorR-C

resistor-capacitor-inductorRCL

charge-voltageQ-V

piecewise linearPWL

power spectral densitypsd

p-channel MOSPMOS

personal computerPC

operating systemOS

xv

Chapter 1

INTRODUCTION

Simulation is one of the most important techniques in designing, improving and

optimizing engineering systems. Simulation, based on known physical theories and

mathematical models of an engineering system, describes the behavior and estimates the

performance of the engineering system before it is practically implemented. Simulation

can also help engineers to adjust the controllable parameters of an already built or

designed system and change the system’s structure in order to improve or optimize its

system performance. Consequently, simulations can decrease real world trial and error

procedures during the research, design, improvement and optimization stages of

development, thus reducing costs and improving productivity. The key to a feasible

simulation is the use of adequate mathematical models based on appropriate physical

theories, well constructed mathematical representations and efficient numerical methods to

solve the mathematical problems. The better the mathematical models, the more likely the

1

engineering problems are translated into a well defined set of mathematical equations. The

better the mathematical representations and the more efficient the solution-finding

methods, the less effort and computational expense is required at the simulation stages.

Circuits are the most fundamental and essential entities of electrical systems.

Circuit analysis is one of the primary tasks of circuit design. Good circuit simulation

analyzes the circuit and efficiently estimates the electrical details of the circuit’s

performance before the circuit is even built. Fast circuit simulation requires a powerful

computer, well organized data management, an efficient simulation engine and

experienced design engineers. By employing fast circuit analysis, a circuit designer

discovers design errors and determine the best circuit organization and parameters in order

to satisfy the design specifications in a short period and with reduced effort. One of the

most critical missions of circuit simulation is to analyze very large circuits, because the

trend of circuit design is to produce smaller, yet more sophisticated systems with low

power consumption. The most successful approach to constructing a sophisticated system

in a small volume and with low power dissipation is to utilize up-to-date semiconductor

technology for very large scale integrated (VLSI) circuits. Due to the increasing

complexity of VLSI circuits and new semiconductor circuit fabrication technologies, the

study, development and modernization of VLSI circuit simulation techniques has become

more and more important.

Circuits, from the most simple examples which can be found in high school level

text books to the most complex VLSI circuits, are constructed of interconnected electrical

devices. The behavior of circuits can be characterized by the amount of current, which

2

passes through each device and the magnitude of voltage at each interconnection node. In

order to translate the electrical design problems to mathematical formulas, the amounts of

electric current and the voltage magnitude are represented by numerical values, and

mathematical models of different electrical devices are studied and developed. In addition,

Kirchhoff’s laws associated with the interconnection of electrical devices are applied to

formulate the circuit equations. Electrical device models link the practical world with the

mathematical representation. Development of these models must either follow established

physical theories or be based on the experimental measurements of the electrical device.

Kirchhoff’s laws are fundamental electrical laws which are derived based on the laws of

energy and electric charge conservation (Different methods of formulating circuit

equations will be introduced in the later part of this dissertation). Circuit analysis is

therefore achieved by formulating and solving the circuit equations.

Circuit simulation depends on the type of circuit design category to be used, and

may require DC analysis, sensitivity analysis, time domain analysis, small signal analysis,

frequency domain analysis and timing analysis. Circuit simulation can be divided into

linear and nonlinear, lumped or distributed, stationary or time varying analyses in which

specialized simulators are developed and used depending on the application area. The

type of simulation is determined by the presence of linear distributed line elements, time

varying components, and so on. The following sections focus on different aspects of

circuit simulation.

3

1.1 Overview

The present research is about circuit simulation techniques and strategies with

emphasis on analyzing analog VLSI circuits. In order to verify and evaluate the proposed

circuit simulation techniques and strategies, a new circuit simulator “SAMOC” was built

in the form of a digital computer program. This work contains the development details of

the new simulator: “SAMOC” both in the aspects of circuit analysis and digital computer

software implementation techniques. These details underline the data structure for

representing a circuit in the computer program, device modeling, circuit partitioning,

equation formulation and solution, organization of the event queue and practical

implementation of the simulator in C++ computer language. In addition, application

examples which illustrate the precision, power and efficiency of the simulator are also

presented. In particular benchmark circuits are analyzed to compare this simulator with

other programs used in the microelectronic industry.

1.2 Circuit Simulators

Circuit simulators are designed to automatically process mathematical models of

the electrical device as well as to formulate and solve circuit equations. By employing

dependable circuit simulators and examining the statistical results, circuit designers can

focus their efforts more on circuit organization, design and performance optimization and

less on circuit analysis.

4

Modern digital computers (Von Neumann machines) which offer leading edge

information and arithmetic processing abilities are the best platforms to implement circuit

simulators by means of computer programming. Large memory modules in modern digital

computers can store and process massive mathematical representations of device models

and device interconnection information. The programmable procedures in modern

computers offer a wide variety of processes which can formulate and solve circuit

equations according to different circuit simulation algorithms. The robust numerical

processing abilities of modern digital computers can be utilized to determine or

approximate the numerical solutions of circuit equations in a short time. The study and

development of circuit simulators require intimate interaction with device modeling. New

device models may trigger new methods of equation formulation and numerical techniques

for solving circuit equations.

The development of circuit simulators emphasizes the importance of cooperation

between circuit designers and software engineers. Although, a digital computer can

manage a larger amount of data and perform much faster arithmetic operations than

human brain, it is much weaker in inducing theories or performing symbolic calculus. For

this reason, circuit analysis algorithms must be developed in simple and straightforward

ways for digital computer applications. Computers may also be slowed down by very

complex and massive tasks, but they won’t get tired or complain. In order to exploit this

advantage, iterative solution seeking algorithms are invented for computer applications.

5

1.3 Device Modeling

Electrical device modeling, which represents the characteristics of electrical

devices in mathematical or numerical forms, is used to translate electrical problems into

mathematical problems and make circuit analysis feasible both for engineers and

computers. Circuit simulation techniques must be adaptable to device models. Research in

device modeling and simulation techniques should closely interact with one another.

Different categories of simulations require different kinds of models for the same device.

For example, AC analysis requires AC device models, DC analysis requires DC models

and high frequency analysis requires high frequency models. On the other hand, new

models developed for new devices or to improve simulation accuracy may induce

innovations in simulation techniques. For example, in order to employ nonlinear models, a

simulation must involve nonlinear analysis techniques, and in order to handle high

frequency interconnect models, partial differential equations may be needed.

Device models can be represented by mathematical equations, combinations of

other modeled devices and lookup tables. The representation of a device model for one

category of circuit simulation is not unique. The more accurate the model, the more

reliable are the obtained simulation results. On the other hand, a complex model which

offers precise device behavior descriptions may cost simulation effort and prolong the

circuit design period. In some situations, not all internal details of a complex device are

important to a simulation; therefore, to the decrease complexity of a simulation, the device

is treated like a black box and only the device’s terminal behavior is characterized and

used.

6

In contemporary circuit implementations, most of the devices used are fabricated

from semiconductor material, and semiconductor devices are all nonlinear. Chua [1]

addresses two approaches to nonlinear device modeling - the physical approach and the

black box approach. The modeling of such essential semiconductor devices as pn junction

diodes and GaAs FET (field effect transistor) are physical approaches and are presented in

[2]-[6]. Ebers and Moll [7] express a set of equations which describe the relationship of

voltage and current for BJT (bipolar junction transistors). The Ebers-Moll model is one of

the best known BJT models. In contemporary VLSI designs, MOS (metal-oxide-silicon)

field effect transistors, which consume lower power than BJTs, and can be highly

integrated, dominate. The MOS model had been introduced with the development of

SPICE [8]. The SPICE “level 1” model, which contains less than 10 model parameters and

describes the behavior of an MOS transistor by a set of equations, are discussed by Muller

and Kamins [9]. Muller and Kamins’s equations are quadratic and can be found in most

primary semiconductor text books. With the improvement of MOS technology and the

discovery of device-characteristic geometry, “level 2”, “level 3” and “level 4” (BSIM) [10]

models were introduced and employed in commercial simulators such as PSPICE from

MicroSim. With the progress in MOS fabrication that has already stepped into submicron

technology, BSIM31 [11] for SPICE and Level 282 for HSPICE [12] models that contain

50 to 100 model parameters are employed to describe some phenomena discovered in

deep submicron semiconductor physics. The more model parameters are used, the more

7

2 Level 28 model is proprietary and belongs to Meta Software Corp.

1 The information about the newest development of BSIM3 can be found in
http://www-device.EECS.Berkeley.EDU/~bsim3/

complex and difficult the simulation is. Therefore, with the increasing number of MOS

transistors in a single die, modern circuit simulation has already become a critical

application and has created a challenge to circuit simulator developers, software engineers

and computer hardware manufacturers.

1.4 Circuit Equation Formulation

The description of a circuit contains a set of electrical devices, the traits of these

devices and the interconnection of these devices. The interconnection of devices creates a

specific circuit topology. While the device models translate the characteristics of electrical

devices into mathematical forms, the circuit topology determines the formulation of circuit

equations. Kirchhoff’s current law (KCL) and voltage law (KVL) are the basic electrical

laws used to formulate the circuit’s equations. As mentioned before, the behavior of a

circuit can be characterized by a voltage value in each interconnection node and the

current value through each terminal of all included electrical devices. Estimating these

voltage and current values is the purpose of the circuit analysis. Among Kirchhoff’s laws,

KCL indicates that the algebraic sum of currents that flow into an interconnection node of

an electrical device in a circuit must be zero. Kirchhoff’s current law, KVL indicates that

algebraic sum of the voltage drops around any closed loop in a circuit must be zero. Most

of the time, KCL involves the nodal formulation and KVL involves mesh formulation.

The interconnection organization of a circuit can be treated as a topology entity

which contains nodes (connection points of different devices), branches (devices) and

meshes (loops of branches). To describe a linear circuit that contains only linear devices,

8

such as ideal resistors, ideal capacitors and ideal inductors, Bashkow introduced the “A

matrix” [13] formulation. The “A matrix” consists of a current matrix and a voltage

matrix. To describe the behavior a circuit that contains energy storage devices, a

first-order linear differential equation in a matrix form can be used. The “A matrix” circuit

network description is also the basic formulation of the state-variable approach [14] to

dynamic network analysis.

For systematic procedures which are adequate for computer applications, Branin

[15] combined Ohm’s and Kirchhoff’s laws associated with the principle of superposition,

and introduced algorithms for digital computers to formulate network equations. Branin

introduced four methods: “the mesh method”; “the node method”; “the cutset method”;

and “the mixed method.” The circuit analysis program TAP [16]-[19] was created

developed from Branin’s work in the 1950s. In late the 1960s, the “sparse tableau”

formulation was introduced by Hachtel et al. [20]. The “sparse tableau” formulation

employs very simple and straightforward algorithms adequate to be implemented by a

computer programming language. For a circuit network which contains n+1 nodes and b

branches, a sparse tableau matrix contains n KCL equations, b KVL equations and b BCR

(branch constitutive relations) equations. The n KCL equations are applied to the n nodes

of the analyzed circuit. The b KVL equations indicate the relationship between branch

voltages and node voltages. The b BCR equations indicate the relationship between

branch currents and branch voltages. BCR equations are related to properties of electrical

devices other than circuit topology. If all devices are linear, then BCR equations can be

represented in a matrix form. The matrix size or the number of total equations is much

9

bigger when the sparse tableau formulation is employed. Although the sparse tableau

formulation is not designed to produce a concise system matrix, it is sufficient for used in

computer-generated formulations.

The sparse tableau formulation was employed in the circuit analysis program

ASTAP [21]-[22] developed by IBM. The sparse tableau formulation in general a creates

large number of equations and, in most situations, a large matrix with a relatively small

number of non-zero elements. Sparse matrix techniques for computer exploits the

dynamic memory allocation mechanism and information theories in computer science.

Information about sparse matrix manipulation, computer programming algorithms and

adjustment for circuit analysis can be found in [23]-[30].

Modified nodal analysis (MNA) introduced by Ho et al. [31]-[32] is another circuit

formulation algorithm designed for computer programming. MNA as well as nodal

analysis creates a matrix stamp (also called an element stencil) for each device. MNA can

overcome the normal nodal analysis problems caused by voltage sources, floating sources

and inductive elements. MNA can also take good care of controlled sources which are

useful in modeling semiconductor and other nonlinear or active devices. Compared to the

sparse tableau approach, MNA creates a smaller matrix and uses a smaller number of

circuit variables. Many important circuit analysis programs such as CANCER [33] by

Nagel and Rohrer, SLIC [34] by Idleman et al. and ICD [31]-[32], [35] by Ho et al.,

employ MNA as the circuit equation formulation algorithm. With the broader usage of

semiconductor circuits, one of the most important contemporary circuit simulators SPICE

[36] was introduced by Nagel and Pederson in 1973. SPICE evolved techniques of

10

CANCER, which is the collection of Rohrer’s work about circuit analysis which includes

circuit formulation, linearization, integration techniques, Gaussian elimination and LU

decomposition. SPICE was placed in the public domain and gained attention and

recognition from developers and users worldwide. In 1975, SPICE2 [8] was introduced

and come to match the popularity of ASTAP developed by IBM. Pederson [37] made a

brief comparison between ASTAP, which employs sparse tableau formulation, and

SPICE2, which employs MNA. Compared with ASTAP, SPICE2 requires less time to set

up, but ASTAP is easier to used for repeated analysis. ASTAP is said to be good for

statistical analysis of a circuit, but it takes more effort to perform its sparse tableau

formulation.

1.5 DC Solutions

Finding the DC solution of a circuit is a basic element of circuit simulation. DC

solution is the key to determine the operating point when analyzing nonlinear circuits. DC

solution of a circuit can be determined by formulating and solving the linear and nonlinear

circuit equations. Formulating the circuit equations, such as the sparse tableau approach

and MNA, was introduced in the previous section. For a circuit that contains only linear

devices, the circuit equations are linear. Cramers’ rule can be employed for direct solution

for a linear system, but only in a nonsingular system matrix. For computer programming,

Gaussian elimination is easier to implement than Cramer’s rule. One of the best traits of

the Gaussian elimination is that the Gaussian elimination can identify reasons for matrix

singularity. Most of the time, a singular matrix is caused by isolated nodes which result

11

from open circuits or the presence of floating devices. In some situations, Gaussian

elimination can identify and remove isolated nodes and gather information from the well

connected nodes. If a matrix equation must be solved several times for different inputs,

then LU decomposition for a nonsingular matrix is the best algorithm and can be easily

implemented by a computer. Modern simulators may use QR factorization, singular value

decomposition and other numerically stable algorithms to effectively solve systems of

linear network equations and identify closely related equations.

Besides the direct answer-seeking methods discussed above, some iterative

methods, such as the Gauss-Jacobi method and the Gauss-Seidel method, are adequate for

computer implementations of very large circuits. These iterative methods can frequently

reach a close answer by using relatively few computation steps. The iterative methods are

useful for solving circuit networks with limited computer resources, simulating circuits in

higher abstraction levels, or in applications where accuracy is not as important as

simulation time.

For nonlinear circuits, if the models of nonlinear devices are presented in nonlinear

continuous function forms, the Newton-Raphson method is one of the simplest methods

used to determine the numerical solution of a nonlinear system. The Newton-Raphson

method is an efficient iterative procedure which uses a first order derivative approach to

locate the next iteration point. The drawbacks of the Newton-Raphson method are that it

may occasionally diverge or oscillate, and it is computationally expensive. The divergence

and oscillations are caused by an improper initial guess. The creation and inversion of the

Jocobian matrix required by the Newton-Raphson method at each iteration step creates a

12

heavy computational burden, especially for a “big” circuit. Branin and Wang [38] applied

Broyden’s method to control the scaling of the correction vector in Newton-Raphson’s

iteration and improve the efficiency of the Newton-Raphson method. The

Newton-Raphson method is also employed in SPICE [8].

One other way to represent a nonlinear characteristic of electrical devices is to use

piecewise linear approximation; that is, to represent a nonlinear curve by several linear

segments. As a result, the more segments are that used, the more accurate the

approximation and the more complex the analysis. The piecewise linear approximation

also gives device modeling more variety for different requirements. For example, in order

to reach a more accurate simulation, a model with more segments is applied.

The Katzenelson algorithm [39], is used to solve a piecewise linear circuit. This

approach is an iterative approach to determine the DC solution of a piecewise linear

circuit, provided that all nonlinear devices are either voltage- or current-controlled. For

nonlinear devices which are neither voltage nor current controlled, a parameteric

representation of circuit components [40]-[41] was introduced. An ideal diode is one

where the devices are neither voltage- nor current-controlled. Tadeusiewicz [42]

presented analyzed ideal diode circuits with a proof of existence and uniqueness of the

solution by using a parameteric representation.

1.6 Digital Circuits

In the real world, all circuits have continuous-time and arbitrary input and output

signals. Circuit designers should prevent input and output exceeding the electrical

13

devices’ tolerance in order to avoid damaging the circuits. In addition to physical

limitations on upper and lower bounds of the circuit’s inputs and outputs, there is a special

category of signals with only two signal levels specified. These signals are processed by a

special category of circuit design: a digital circuit [43]. With the development of the

digital circuits, conventional circuits been called analog circuits. Unlike analog circuits

which are designed to have continuous time input and output signals, digital circuits use

discrete time signals. That is, the signals are important only at several distinct moments,

and at the other instances the signals are discarded. The other trait of digital circuits is

that all the signals are digitized. The digitization is realized by dividing possible signal

values into finite number of regions, and a signal with a value included in one region is

represented by a “digit” or “symbol” which is assigned to that region. The employment of

digital circuits moves part of circuit design from continuous time and values to discrete

time and digitized values.

Contemporary digital circuit design uses two signal levels and therefore there are

only binary symbols in digital circuits. For example, in a 5V system, a voltage signal

between 4.5V to 5V can be assigned to represent one symbol, and a voltage signal

between 0V to 0.5V can be assigned to represent the other symbol. The remaining part

(0.5V - 4.5V) is used to indicate the improper design or infidelity of signals which could

be caused by environmental or transmission noise. Most of time, the binary symbols are

represented by two digits “0” and “1”. Based on Boolean algebra for digital circuits

organizations and designs, and technologies of VLSI manufacturing, the digital circuits

14

thrive and are used by electrical engineers to implement the most sophisticated systems

such as the newest Von Neumann machines (modern computers).

The major advantage digital circuits is that the information in a binary signal form

can be accurately stored and easily reproduced. Furthermore, information in a binary

signal form combined with information and coding theories [44] can withstand a much

larger error tolerance in signal transmission. The precise restoration, exact reproduction

and high transportation tolerance of information are the crucial conditions of building

sophisticated systems. In addition, binary signals can be used to represent numerical

values both in integer and real number forms. Many arithmetic operations designed for

numerical values in binary form - such as increment, decrement, add, subtract, multiply

and divide - have been well studied and developed. A digital system can be easily

programmed to do a wide variety of jobs. Information processing and transportation,

robust arithmetic operations and programmability are traits of digital systems.

In digital systems, the numerical values are represented by a finite number of

binary signals (bits) in registers. The truncation error of numerical values caused by finite

bits representation are inevitable and can only be decreased by prolonging the registers.

That is, using more bits to represent numerical values. The longer the register, the more

circuit elements and the more demanding processing speed is required.

Compared to analog circuits, digital circuits need many more circuit elements and

more time to process the same amount of information. The larger design area and lower

speed are compensated by the high efficiency of modern VLSI technologies which can

highly integrate circuit elements and provide high speed capabilities of designed systems.

15

In the late 1990s, a single chip which contains 9 million MOS transistors working at 450

MHz and has many powerful arithmetic and 3-dimensional graphic functions and

sophisticated hierarchy memory management mechanisms is common in the consumer

electronic market. In the information storage part, a single chip with less 10 ns access

time and 64 millions storage units (bits) is also common in consumer electronic market.

Digital circuits can be designed to set their own initial conditions. The DC analysis

of digital circuits is not as important as in analog circuits. The design of digital circuits

has moved from circuit level through gate level, register-transfer logic (RTL) level and

functional level to system level.

1.7 Analog VLSI and Neural Computing

Digital circuits have become the dominating hardware used to implement

information and arithmetic processing systems. People depend more and more on digital

systems, but digital systems require very sophisticated programs and powerful digital

systems to process some jobs which are quite easy and intuitive for humans such as voice

and image recognition. Consequently, some electrical engineers have investigated using

existing VLSI technologies to imitate real life neural systems. The imitated life systems

are called artificial neural networks (ANN). ANN can be implemented by a digital circuit

approach which uses binary signals and memory. Another approach to ANN is the use of

analog circuits. Since in ANN application the relative values of signals are much more

important than absolute values, it is too expensive and not necessary to prepare long

register arrays to store numerical values.

16

Numerical information in analog circuits can be represented by magnitudes of node

voltages or branch currents. Voltage signals are good for low power designs, because a

voltage signal can be stored in a single capacitor device instead of being represented by a

binary code and stored in a capacitor array or a long register in digital systems. Current

signals can be easily added by just wiring two lines; the addition takes no time, while in a

digital system a large binary adder is required to do the same job and the process of

carry-in and carry-out signals may be very time costing.

Mead [45] used nature of analog circuit organizations - such as current signal

duplication, R-C integration and differentiation, algebraic averaging, comparison, and

arithmetic functions (addition, subtraction, absolute value, multiplication, exponential,

logarithm and square root) - to build a sophisticated system. Fang [46] presented several

analog circuit organizations which are useful to build an analog ANN and a design

example which is an image processor. The circuit organizations Fang introduced are

multipliers, digital to analog converters and winner-take-all circuits. Mead and Fang

asserted that the arithmetic operations are natural to the circuits and theoretically take

almost light speed to complete.

The difference between digital systems and analog ANNs is that analog ANNs

have massive internal interconnections, high parallelism and accept more inputs at a time

than do common digital systems. Most of the time an analog ANN does not work at as

high frequency as a common digital systems. The final output values caused by changing

inputs are more important than the way they evolved from initial conditions (transient

analysis). Analog ANNs may still contain millions of MOS transistors and can be

17

implemented by VLSI technologies. The VLSI implementation of an analog circuit is

called analog VLSI. Analog VLSI circuits still suffer from a lack of programmability,

precise analog memory and noise tolerance which have been overcome by most digital

systems. Perhaps a fusion of digital and analog circuits in a system would create a new

design methodology of faster and more sophisticated new systems.

1.8 Time Domain Analysis

The major task of time domain analysis is to evaluate the waveform of specified

outputs as functions of time. The output waveform is most frequently evaluated with a

time varying circuit excitation vector. Time domain waveform evaluation is an important

method of analysis in analog circuit design. By inspecting the output waveforms, a circuit

designer can verify his designs and estimate the performance of the designed circuit.

For circuits that contain no energy storage devices, the output waveform can be

easily estimated by direct transformation of the circuit excitation vector. If the circuit is

linear, the output of interest is a linear combination of circuit excitation vector. If the

circuit contains nonlinear devices, some nonlinear transformation techniques, or a general

purpose method such as Newton-Raphson iteration or the Katzenelson algorithm, are

applied to evaluate the output waveform.

If the circuit contains energy storage devices such as capacitors and inductors, then

the equations can be presented in the form of differential equations and the initial

conditions can be found by evaluating the circuit DC solution. In order to solve

differential equations with initial conditions in a digital computer, several one-step implicit

18

integration techniques based on first order Taylor series approximations - such as forward

Euler integration, backward Euler integration and trapezoidal integration,- are employed

to solve the circuit in time domain numerically. To improve the accuracy of numerical

integration, higher order Taylor series approximation techniques were introduced by

Brayton [47]. For time domain waveform analysis of nonlinear circuits, the Newton-

Raphson method is employed to solve the nonlinear nonlinear equations at each time step.

The integration methods for solving differential equations with very sophisticated time

step selecting algorithms are employed by such general purpose and accuracy oriented

circuit simulators as SPICE, SABER and ASTAP.

For linear circuits, one approach, other than direct numerical integration to

evaluate the output waveform of the formulated differential equations, uses Laplace

transforms. Laplace transformation can transfer a differential problem into an algebraic

problem. This approach determines the transfer function of a circuit in the s-domain. The

Laplace transform of the output can be obtained by the algebraic product of the Laplace

transform of the input signal with the transfer function. The output time domain

waveform can be evaluated by the numerical Laplace transform inversion [48]. By

applying this approach, the non-numerical-presentable signals, such as Dirac impulse, can

be easily addressed.

1.9 Simplified Timing Analysis

Using modern semiconductor technologies, VLSI circuits which contain millions

of MOS transistors can be created by a single die to decrease manufacturing costs. In the

19

circuit designer stage, it is too strenuous and not practical to obtain the time domain

waveforms by applying the accurate methods which include Newton-Raphson iteration,

Jacobian matrix evaluation, implicit numerical integration and direct linear system solving

algorithm for every simulation instance. The simulation can be accelerated by either a

faster digital computer system, such as a super computer, or by employing simplified

simulation techniques which trade accuracy for simulation speed. Practically, not all

circuit designers can afford to use super computers. Furthermore, accurate simulation is

not always necessary if it costs too much to obtain, especially in the early stage of the

design and verification process. There are several approaches to achieve a simplified

simulation, including:

1. Employing simplified device models: Simplified models for nonlinear devices

which help simulators formulated easier-to-solve circuit equations.

2. Partitioning the simulated circuit: The average computational effort of

solving an n by n linear system is O(n2.81). For simulating a large nonlinear circuit,

the situation can be even worse. Finding solutions for several small circuits is

easier than for a large circuit. By partitioning the simulated circuit into connected

subcircuits, the simulator addresses several smaller circuits one at a time.

3. Employing event-driven simulation techniques: A portion of the simulated

circuit is static under some situations, or in some situations the output of that

portion is not significant. Event-driven simulation can avoid the redundancy of

simulating the not-significant part of a circuit to improve the simulation’s

efficiency.

20

4. Using relaxation: The relaxation technique is an iterative method to

approximate the solution of a partitioned circuit. Although finding an exact

solution by using relaxation technique may take as much or even more

computational effort than a direct method, a close solution beneath acceptable

tolerance can be swiftly obtained.

5. Using waveform evaluation techniques: The impulse responses of a linear

R-C circuit are a linear combinations of the exponential functions of time with

different time constants. Waveform evaluation employs the moment matching

technique to determine several dominant time constants which can be used to

approximate the waveform.

6. Simulating at a higher abstraction level: For a portion of a circuit, if its

electrical behavior has been well studied, then this portion of the circuit can be

represented by higher abstraction level using an analog hardware description

language. The simulator can then focus on the behavior of the other parts of the

circuit.

1.9.1 Simplified Device Models

Simplified models are often presented by a piecewise linear or a piecewise constant

method to exploit the well-known linear system techniques. In piecewise methods, the

nonlinear device characteristics are divided into several linear or constant regions. Linear

circuit analysis is employed inside each linear region and the Katzenelson algorithm [39]

21

or a piecewise linear version of Newton-Raphson algorithm like POPCORN [49] is used

to handle the nonlinearity between linear regions.

Several simplified MOS transistor models were developed for fast timing MOS

circuit simulation. MOTIS [50] uses a two-dimensional table representation of drain to

source current (IDS) as a function of MOS transistor’s terminal voltages (VGS and VDS).

SPECS [51] (Simulation Program for Electronic Circuits and Systems) uses a piecewise

constant representation of drain to source current (IDS) as a function of MOS transistor’s

terminal voltages (VGS and VDS). The area in which IDS has a constant value is a rectangle

defined by specified intervals of VGS and VDS as shown in Fig. 1.1. The number of total

defined area and size of each constant areas are changeable according to requirement of

simulation accuracy.

IDS
IDS

DSV

GSV

Fig. 1.1 Piecewise constant MOS model used by SPEC.

22

1.9.2 Circuit Partitioning and Event-Driven Simulation

Circuit partitioning and event-driven simulation are two important techniques used

to accelerate the timing simulation. MOTIS [50] was designed to simulate digital circuits

which contain only MOS transistors. MOTIS employs a backward Euler formula to

determine the change of a logic gate output. This change will propagate to the inputs of

gates of the next stage to see if the change causes an event.

SAMSON [52] is an analog and digital circuit simulator which partitions the

simulated circuit into subcircuits. Each subcircuit is simulated by using independent time

steps from other subcircuits. When solutions of subcircuits reach some predefined pattern,

the subcircuits interact with each other. A subcircuit can be “alert” when there is a

simulation event or become “dormant” when there is no simulation event. The

computational effort of the simulation can be saved by the appearance of the “dormant”

subcircuits.

1.9.3 Relaxation Techniques

Relaxation techniques [53]-[54] using Gauss-Jacobi or Gauss-Seidel iterative

methods can approximate a close network solution with less effort than direct solution

seeking methods. In analyzing a nonlinear circuit or system, relaxation techniques help to

avoid using the Newton-Raphson iteration. Timing simulation using relaxation techniques

usually combines with circuit partitioning to avoid redundant computation.

23

1.9.4 Moment Matching and Asymptotic Waveform Evaluation (AWE)

The poles of a transfer function are the time constants of Laplace inversion of an

impulse response. The time domain response of a linear system can be obtained by

convoluting the input with the impulse response. Moment matching techniques can

approximate the dominant poles of the transfer function of a RCL circuit. Asymptotic

waveform evaluation [55] (AWE) is the qth order extension of dominant pole

approximation.

1.10 SAMOC Simulator

MOS transistors are the most popular devices used in VLSI circuits. Many circuit

simulators such as SPICE, ASTAP, SAMSON and Rsim [57] can already analyze MOS

circuits with different computational characteristics, such as speed or precision. However,

simulating a VLSI circuit containing more than ten thousand MOS transistors at the circuit

level has become impractical on current computer systems. Simulation of a VLSI circuit

is performed either exactly taking portion by portion of the whole circuit or performed in

higher abstraction levels.

In the current circuit design paradigm, digital circuits or analog neural systems are

the most sophisticated systems used perform arithmetic operations and process signals and

information. The common trait of both digital circuits and analog neural systems is that

the DC solution conveys the most desired information about a state of the system with

specified inputs. That is, the processed essential information is presented and stored in

form of DC currents or voltage levels but not the signal frequency or signal delay time.

24

However, the existing circuit simulators may spend too much effort in finding “how the

signals reach their steady states.” Although the existing circuit simulators may provide

very likely prediction the system state, the large computational effort used limits the

capability and speed of the simulator in analyzing larger circuits.

The main objective of developing SAMOC (Switched-capacitor Analysis of MOs

Circuits) simulator is to develop the fastest method of approximating the DC solution of a

VLSI circuit according to the time varying circuit excitation. While SPICE and other

simulators evaluate the exact output waveform, SAMOC concentrates the computational

effort and computing resource to determine the approximate DC solutions in different time

intervals as illustrated in Fig. 1.2. By using SAMOC, a circuit designer can determine

functional design flaws in a short time before exhaustive precise simulation is performed,

therefore, short the circuit design period is achieved.

t

SPICE

SAMOC

Fig. 1.2 Piecewise constant approximation.

25

In simulating VLSI circuits, SAMOC employs an extremely simplified MOS

transistor piecewise linear model to push the capability of MOS circuit simulator to the

limit of a computer system. Time consuming integration procedures mentioned in section

1.8 are not employed. SAMOC finds the final DC solution directly. In order to further

accelerate the simulation, SAMOC employs circuit partitioning and event-driven

mechanisms, which can eliminate redundant calculations in analyzing a VLSI circuit.

Circuit partitioning and event-driven mechanisms are equipped with fast simulators

introduced in section 1.9. For circuit equation formulation, SAMOC employs a the

modified nodal analysis (MNA) circuit formulation algorithm which can handle the

presence of operational amplifiers, ideal switches and controlled sources. MNA is also

adequate for the piecewise linear models which are adopted in SAMOC to fit in. Since

ideal switches might cause floating nodes and a singular equations matrix, Gaussian

elimination is more adequate in SAMOC than LU decomposition for solution seeking. To

solve the piecewise linear system, the Katzenelson algorithm is included in SAMOC.

In order to verifying the simulation results at the development stage of the

SAMOC simulator, SAMOC was designed to read the SPICE circuit description format.

After verifying the SAMOC simulation by using small SPICE format circuits, large SPICE

format circuits can be used to compare the simulation capability, precision and required

time. SAMOC is written in Microsoft Visual C++ combining Microsoft foundation

classes (MFC) application framework, compiled into a 32 bit application with the

Microsoft Windows 95/98 or Windows NT operating systems. The object-oriented

programming language C++ is powerful, versatile and adequate for writing and

26

maintaining large and sophisticated programs. The MFC offers simple ways to build data

structures and graphical user interfaces. Low cost IBM PCs are popular in general

applications and are becoming the preferable domain for computer aided design (CAD)

tools. Both Microsoft Windows 95/98 and Windows NT operating systems have

easy-to-use graphical user interfaces, and offer programmers up to 2GB of addressable

memory that allows the simulator to handle large amount of circuit devices and nodal

equations. Windows NT, which provides robust, crash proof, multithread, multitasking

abilities and supports computers with multiprocessors, is an excellent platform for

developing and executing circuit simulation programs as well as other computing resource

and power demanding applications.

Details of the development of SAMOC and some SAMOC applications are

presented in the following chapters. Chapter 2 presents the piecewise linear device

resistive model for semiconductor devices and the circuit equation formulation by filling

device stamps to the circuit matrix. Chapter 3 presents the modified Katzenelson

algorithm for the piecewise linear model presented in Chapter 2. Chapter 4 presents the

simulation techniques used to analyze switched-capacitor networks via capacitor equation

formulation and direct solution seeking method. Both Chapters 3 and 4 present simple

simulation examples. Chapter 5 presents an example design and simulation of

switched-capacitor charge pump circuits using SAMOC. Chapters 6 and 7 present the

methods and algorithms of circuit partitioning and event-driven simulation. By applying

algorithms in Chapter 6 and 7, SAMOC transfers the traditional device-node circuit

simulation problems into block-signal problem. Chapter 8 contains benchmark circuits

27

simulation examples which exploit the circuit partitioning and event-driven simulation

mechanisms built into SAMOC. Chapter 9 contains the conclusion.

28

Chapter 2

DATA STRUCTURE, MODIFIED NODAL ANALYSIS AND

PIECEWISE LINEAR SEMICONDUCTOR DEVICE

MODELS OF SAMOC

The goal of developing SAMOC is to investigate and test some MOS circuit

simulation ideas which can aid in handling thousands or even millions of MOS transistors

by using low cost personal computers. Before any circuit analysis subroutines are

executed in SAMOC, SAMOC must construct a data structure to handle the whole circuit

device information. Because the memory in a computer is limited, the data structure is

crucial to the maximum number of devices SAMOC can handle. After the data structure

is built, a subroutine will formulate the circuit equations using the information of

SAMOC’s data structure and device models. Presently, SAMOC formulates the circuit

by the method of modified nodal analysis (MNA) and models the nonlinear device by

29

means of a piecewise linear approach. MNA, which is easy for computer programming

implementation and can handle controlled devices and ideal switches, is an adequate

choice. The piecewise linear model can avoid the complex Newton-Raphson root seeking

routine. It is a good approach to simulating large circuits which contain many nonlinear

devices. The following sections of this chapter will present the SAMOC data structure,

piecewise linear models and MNA.

2.1 Building Data Structures in SAMOC

In a computer program, the organization of program data and memory is called the

data structure. The first consideration in coding for SAMOC is the data structure and the

memory management which prepares a working area (memory block) for such device

information as connections, type, model and parameters. The data structure and the

memory management define the first limitation of how many devices SAMOC can handle.

The construction of the data structure in SAMOC is based on a circuit description. The

circuit description, which is the core media of the computer aided circuit design, presents

all details of a circuit design in an electronic form which is easy to be duplicated, modified,

exchanged, archived and distributed. The most popular circuit description is used by

SPICE. A typical SPICE circuit description consists of a list of script lines. Each script

line represents one device in the circuit. Each script line contains the information about

the type of the device, parameters of the device and connecting nodes of the terminals of

30

the device. Fig. 2.1 shows the schematic of a simple MOS circuit. The SPICE description

of the circuit is:

Vin 1 0 4V
VDD 5 0 5v
M1 5 1 2 5 l=1u w=2u pmos
M2 2 1 0 0 nmos

+
-

+
-

M1

M2

DDV

inV

5

0

2
1

Fig. 2.1 A simple MOS circuit

The circuit shown in Fig. 2.1 contains 4 devices: 2 voltage sources and 2 MOS

transistors. The description contains 4 lines. Different devices are recognized by the first

character of these lines. In the description

Vin 1 0 4V

“V” means this device is an independent voltage source and “Vin” is the device name.

There are two terminals of an independent voltage source. The two terminals of “Vin”

are connected to node “1” and node “0”. Different types of devices have different

31

numbers of terminal connections, different types of parameters and specified device types

and models. For example, in the description

M1 5 1 2 5 l=1u w=2u pmos

“M” indicates the device is a MOS transistor. The MOS transistor contains 4 terminals

and the terminals are drain, gate, source and substrate which are connected to node “5”,

“1”, “2” and “5” respectively. In addition, “l=1u w=2u” indicates the geometric

information (channel size) of the MOS transistor, and “pmos” indicates that this is a

positive type MOS transistor. In order to handle the device information which contains

multitype, variable numbers of device terminals and other extra device information such as

voltage values, channel sizes or models, the programming language C++, which contains

the function of class derivation and inheritance, can handle the complex data type quite

well. In C++ programming [61]-[62], the custom defined data type can be implemented

by means of using class. A class is a group of data and functions. The data and the

functions are used to represent features of the class. For example, a MOS transistor is a

class and the data of a MOS transistor can be the channel conductance and the connecting

nodes. Voltage-current relationships can be described by one of a MOS transistor class

member functions. A new class can be built from nothing or can inherit data from existing

class(es) and new feature can be added in addition to the features of the existing class(es)

which the new class is derived from. In this sense, the existing class is called the base

class and new class is called a derived class. The derived class inherits selected features

from the base class. Inheritance can be single inheritance or a multiple inheritance. For a

single inheritance, the derived class is derived only from one base class. In a multiple

32

inheritance, a derived class can inherit from many other classes. A class is used to

represent the characteristics of an object; an object is an instance of its associated class.

For an example in SAMOC, when SAMOC needs to manipulate a MOS transistor,

SAMOC creates an object from the MOS transistor class which contains information

about the specific MOS transistor. That is, a MOS transistor is an object and the idea of

the MOS transistor is a class. Therefore, if SAMOC reads a circuit description which

contains 100 MOS transistors, then SAMOC creates 100 objects from the MOS transistor

class and gives them different attributes according to the connecting nodes, transistor

type, geometric information and model of each transistor in the circuit description.

2.1.1 Device Classes

Inheritance in SAMOC is single; the inheritance graph is shown in Fig. 2.2. The

12 supported device types in SAMOC are categorized into 6 classes. In C++

programming custom, all class names begin with an uppercase ‘C’. The base class is

C2Term, which represents the simplest circuit devices. C2Term contains data about the

name of the device, 2 connected terminals and 1 numerical datum. The devices

represented by C2Term are a capacitor (C), an inductor (L) and an independent

current source (I). The class C2VTerm is derived from C2Term. Similar to

C2Term, C2VTerm is also used to represent devices with 2 terminals, but the devices

represented by C2VTerm need additional current information in MNA. C2VTerm is used

to represent a resistor (R) and an independent voltage source (V). The class CDiode,

33

derived from C2Term, is designed for an ideal diode (D). In addition to 2 terminal

connections and current information, 2 important voltage values, turn on voltage and

break down voltage are included in the CDiode. Class C4Term is designed to represent

controlled sources such as voltage controlled voltage source (E), current controlled

current source (F), voltage controlled current source (G) and voltage controlled

switches (S). For the other controlled source, current controlled current source (H),

another class C4HTerm is derived from C4Term for the additional current information

needed by current controlled current source.

C2Term
C, L, I

C4Term
E,F,G,S

CDiode
D

C2VTerm
V,R

CMos

M
C4HTerm

H

Fig. 2.2 Class inheritance graph of SAMOC

The most important class: CMos is used to represent and store data about MOS

transistors. CMos is derived from the C4Term. In addition to device name and the 4

34

terminals’ names, CMos contains the geometric information, type of transistor and a

pointer to the MOS model. A MOS model is also an object of the class CMosModel.

C++ programming language has strong type checking. That is, even a pointer

(address variable) is constrained to point to a specified type of datum. The pointer used to

locate the address of an object of the base class can be used to locate an object of the

derived class but not vice versa. The main reason for using derived classes instead of

defining whole new classes is that the base class C2Term and all the derived classes such

as C2VTerm, C4Term, CDiode, C4HTerm and CMos can be all located by the same

pointer and exploit usage of virtual functions. This simplifies programming, upgrading

and maintaining of SAMOC.

Memory management is also handled by functions of C++: new and delete.

When SAMOC reads a device description, SAMOC checks the first character of the

device description and determines type of the device. Then, SAMOC creates an object of

the associated class according to the type of the device by the function new, and records

the address of this object in an address variable, which is also called a pointer. The

function new will find a proper space to accommodate the created object and return the

address of the object. If there is no memory available, i.e., there are too many devices, an

error message will be returned and the program will be terminated. The collection of

pointers of all devices is managed by a class named “CTypedPtrList”, which is one

of the Microsoft Foundation Classes (MFC). An object of CTypedPtrList is a list of

pointers. The list can be arbitrarily long in case the computer system has enough memory

or contains less than 232 pointers. MFC offers many convenient access functions for

35

CTypedPtrList. Fig. 2.3 shows the SAMOC data structure which represents the

device information created for the circuit in Fig. 2.1. There are 4 devices in the circuit

shown in Fig. 2.1. Two objects of class C2VTerm are created to represent the

information of two independent voltage sources, VDD and Vin. Two objects of class

CMos are created for 2 MOS transistors M1 and M2. The pointers of these four objects

are collected and managed by a list of pointers; the list is an object of class

CTypedPtrList. Many further procedures such as forming circuit equations begin

with visiting every device objects pointed by this list.

VDD Vin M1 M2

C2VTerm C2VTerm CMos CMos

A list of pointers

Fig. 2.3 Data structure of the device objects.

2.1.2 Node Class

One very important class other than the device classes presented in the above

section in SAMOC is the node class, CNode. A node is an interconnection of terminals

of different devices. An object of the class CNode contains a double precision floating

36

point value for node voltage value. The objects of the class CNode are created at the

moment the objects of devices are created. The pointers of CNode are also collected and

managed by a list of pointers which is also an object of the class CTypedPtrList.

To speed up data manipulation, details of which will be presented in the following

chapters, a node must indicate which devices are connected to it; therefore, an object of

class CNode has a list of pointers which contains the addresses of the connected device

objects. Unlike the device class, which has a definite number of connected nodes, a node

can be an interconnection of indefinite number of devices; therefore, a list of device object

pointers is built at each node object. That is, an object of CNode also contains an object

of CTypedPtrList.

VDD Vin M1 M2

A list of device pointers

5 1 2

A list of node pointers

device
objects

node
objects

An object
of CCircuit

Fig. 2.4 SAMOC nodes and devices data structure of the circuit in Fig. 2.1.

37

2.1.3 Circuit Class

Fig. 2.4 illustrates the data structure of devices and nodes of the circuit schematic

shown in Fig. 2.1. Since C++ is an object oriented programming language, SAMOC also

creates a circuit class CCircuit for each simulated circuit. For each circuit object,

there are two lists of pointers that are objects of CTypedPtrList. One is the device

list (list of pointers of device objects), and the other is the node list (list of pointers of

node objects). Each device object contains a definite number of pointers that point to its

connecting node objects, and the node objects point back to an indefinite number of

device objects via a list of pointers to the device objects. With the massive pointing

structure in SAMOC, the addresses of device objects and node objects can be obtained by

several direct methods that improve the speed of accessing data inside SAMOC. The

node ‘0’ is the default ground. Typically, there is no need to generate an object for the

node ‘0’.

2.2 Modified Nodal Analysis (MNA)

After the data structure for the device and node pointer lists are completed,

SAMOC begins to formulate the circuit by means of MNA. The first step in performing

MNA is to decide how many equations are needed to analyze the circuit. Typically, the

number of equations N can be evaluated from:

N = Nnode + NR + NV + Ndiode + Nc-source + NH (2.1)

where

38

Nnode = number of nodes in the node list

NR = number of resistors in the device list

NV = number of voltage source in the device list

Ndiode = number of diodes in the device list

Nc-source = number of controlled sources in the device list

NH = number of current controlled current sources in the device list.

By knowing N, SAMOC can ask the operating system to allocate a memory block

for space to process the circuit equation

T X = W, (2.2)

where T is an N by N circuit matrix, X is an N by one solution vector and W is an N by

one excitation vector. In SAMOC, all elements in MNA matrix equations are represented

by double precision floating point numbers for highly accurate computation. It is very

clear that the memory required to solve equation (2.2) is the second limitation of a

computer system to simulate a circuit. A large N not only consumes computer memory

but also slows down the answer-seeking procedure of equation (2.2), because even in the

best conditions, when (2.2) is a purely linear system, solving this N by N linear system the

computation complexity is O(N3) operations. A method for decreasing N will be

discussed in Chapter 6.

After the required memory space is obtained, SAMOC begins to formulate the

circuit equations by filling the circuit matrix T with device stamps. The devices are

located by visiting all device objects in the device list. Each device object which

represents a device in the simulated circuit, and contains such required information as

connecting nodes, device parameters and even model information. For linear devices, the

39

device stamps for MNA are presented in Appendix I. For nonlinear devices, SAMOC so

far supports ideal diodes, ideal switches and MOS transistors. A nonlinear device is

modeled by a piecewise linear approach presented in section 2.3.

2.3 Piecewise Linear Models of Semiconductor Devices for MNA

A piecewise linear approach to nonlinear device modeling eliminates the need for

the computationally expensive Newton-Raphson method so that the solution procedure

can be accelerated. The nonlinear devices modeled by the piecewise linear MNA

supported by SAMOC are ideal switches, ideal diodes and MOS transistors.

2.3.1 Ideal Switch

Rigorously speaking, MNA’s ideal switch modeling is natural but not a piecewise

linear. The ideal switch model is used to derive the piecewise linear model of an ideal

diode. The ideal switch modeling used by SAMOC is presented by Vlach [58]. For an

ideal switch connecting nodes denoted j and j’, the device stamp is

(2.3)

j j m
j

j

m F F F

' +

+
−

− −

L

N
MMM

O

Q
PPP

1

1

1

1

1

where m +1 is an additional equation dedicated for the ideal switch, while the switch is an

open circuit F=0 and F=1 while the switch is a short-circuit.

40

Voltage or current controlled ideal switch is a controllable way to implement a

switch in a circuit. SAMOC accepts a voltage controlled ideal switch whose circuit

symbol is shown in Fig. 2.5. The input format of the voltage controlled ideal switch is:

S[s]_name s1 s2 n1 n2

where S or s indicates the type of the device is voltage controlled voltage, _name is the

name extension or ID of this voltage controlled ideal switch, s1 and s2 are two nodes

the switch has to short or to open, and n1 and n2 are the two controlling nodes. That

is, If V(n1) > V(n2), then F = 1, else F=0.

Note, that voltage controlled switch can be described by (2.3) if columns and rows j and j’

are replaced by n1 and n2,

s1

s2

n1

n2

Fig. 2.5 Circuit symbol of a voltage controlled ideal switch

2.3.2 Ideal Diode

The ideal switch that has the voltage current (V-I) characteristic shown in Fig. 2.6

is used to obtain a model of an ideal diode. The input format of ideal diode in SAMOC is

41

D[d]_name n1 n2 E1 E2

E1 is the cut-in voltage and E2 is the breakdown voltage. SAMOC expects that E1 and

E2 are numerical values and E1 > E2. As Fig. 2.6 shows, the ideal diode is neither a

voltage controlled nor a current controlled resistive device. SAMOC models the ideal

diode by assigning 3 regions in the V-I characteristic. Region 1 is the cutoff region.

Region 2 is the turned on region and region 3 is the breakdown region. While the

operating point is in region 1, the ideal diode is modeled as an open circuit and presented

by an ideal switch with F=0. While the operating point is in region 2 and 3, the ideal

diode is modeled by two segments of independent voltage sources with different voltages.

E1

E2

V

I

1

2

3

Fig. 2.6 V-I characteristic of an ideal diode.

42

n2n1

+ -V

I

Fig. 2.7 An ideal diode.

The circuit symbol of an ideal diode is shown in Fig. 2.7. The device stamps an

ideal diode in region 1, that is E2 < V < E1, is shown equation (2.4). The (m+1)th

equation is the additional equation dedicated for this ideal diode.

(2.4)

n n m
n

n

m

1 2 1
1

2

1

1

1

0 0 1

+

+
−
−

L

N
MMM

O

Q
PPP

excitation vector
0

0

0

L

N
MMM

O

Q
PPP

While an ideal diode is in the turned on state, V > E1, the ideal diode is modeled by

an independent voltage source with voltage equal to the turned on voltage E1. The device

stamp is shown in equation (2.5).

(2.5)

n n m
n

n

m

1 2 1
1

2

1

1

1

1 1 0

+

+
−

−

L

N
MMM

O

Q
PPP

excitation vector
0

0

1E

L

N
MMM

O

Q
PPP

While an ideal diode is in the break down state, the device stamp in MNA is shown in

equation (2.6).

43

(2.6)

n n m
n

n

m

1 2 1
1

2

1

1

1

1 1 0

+

+
−

−

L

N
MMM

O

Q
PPP

excitation vector
0

0

2E

L

N
MMM

O

Q
PPP

2.3.3 MOS Transistor

MOS transistors used to implement majority of contemporary VLSI circuit are the

most important devices to SAMOC. MOS transistors can be categorized by two types,

PMOS and NMOS, according to the different doping material in the silicon channel. The

MOS transistor models were briefly introduced in section 1.2. The simplest model is

Muller and Kamins model, also known as the level-1, and is the default model in SPICE.

In order to obtain a fast simulation, the MOS transistor model used by SAMOC is even

simpler than Muller and Kamins model presented in [9]. Muller and Kamins MOS

transistor equations are:

Cutoff or subthreshold region:

IDS = 0 VGS ≤ Vt. (2.7)

The linear or triode region:

0 < VDS < VGS - Vt (2.8)I V V V
V

DS GS t DS
DS= − × −

L
NM

O
QPβ b g

2

2

The saturation region:

44

0 < VGS- Vt < VDS (2.9)I
V V

DS
GS t= −L

NM
O
QPβ ()2

2

where

β: MOS transistor gain factor

Vt : the threshold voltage.

Muller and Kamins equations describe the electrical behavior of MOS transistors in

quadratic polynomial with two variables, VGS and VDS. Solving network equations with

Muller and Kamins equations may force computers to utilize the Newton-Raphson method

and Jacobian matrix evaluation for each iteration. If the simulated circuit contains many

MOS transistors, then the solution seeking procedure may become a heavy burden to the

computer system. SAMOC addresses the bottleneck of MOS circuit simulation in MOS

modeling by using a piecewise linear resistive approach. The MOS equations used in

SAMOC are:

Cutoff region:

VGS ≤ Vt. (2.10)I
V
RDS

DS=
max

In this region, SAMOC models an open circuit with an large resistor. The

equivalent circuit of a MOS transistor in the cutoff region is illustrated in Fig. 2.8 and the

corresponding device stamp is shown equation 2.11.

45

D

S

G

Rmax

Fig. 2.8 The equivalent circuit of a MOS transistor in the cutoff region.

(2.11)

V V
D

S

G G

G G

D S

min min

min min

−
−
L
NM

O
QP

Linear region:

(2.12) I
V
RDS

DS=
min

V V

V V
V R R

g R R

GS t

GS t
DS

m

>

− >
−

R
S|
T|

()max min

max min

In the linear region, a MOS transistor is modeled by a small resistor. The

equivalent circuit of a MOS transistor in the cutoff region is illustrated in Fig. 2.9 and the

corresponding device stamp is shown in equation (2.13).

46

D

S

G

Rmin

Fig. 2.9 The equivalent circuit of a MOS transistor in the linear region.

(2.13)
V V

D

S

G G

G G

D S

max max

max max

−
−
L
NM

O
QP

Saturated region:

(2.14)
I g V

V
RDS m GS

DS= +
max

V V

V V
V R R

g R R

GS t

GS t
DS

m

>

− <
−

R
S|
T|

()max min

max min

In the saturated region, a MOS transistor is modeled by a large transistor Rmax and

a voltage controlled current source with transconductance gm. The equivalent circuit of a

MOS transistor in the saturated region is illustrated in Fig. 2.10 and the corresponding

device stamp is shown in equation 2.15.

47

D

S

G

Rmax

gm

Fig. 2.10 The equivalent circuit of a MOS transistor in the saturated region.

(2.15)

V V V

D

S

G g G

G g g G

g V

g V

D G S

m

m m

m t

m t

 g

excitation vector
mmin min

min min

− −

− − +

L

N

MMMMM

O

Q

PPPPP
−

L

N

MMMM

O

Q

PPPP

For approximation,

(2.16)
G V VDD tmax = −βb g

(2.17)
g Gm = ×0 5. max

(2.18)
G

G
min

max=
1000

where

β: MOS transistor gain factor

Vt : the threshold voltage.

VDD : the power supply voltage.

48

0
2

4

0

2

4

0

0.02

0.04

0.06

VdsVgs

Id
s

linear region

saturated region

cutoff region

Fig. 2.11 3D illustration of Muller and Kamins MOS model.

Both Muller and Kamins and SAMOC models are expressed by IDS as a function

of VDS and VGS. A comparison of Muller and Kamins with SAMOC MOS models can be

visualized by 3 dimensional plots of both sets of equations about IDS. Fig. 2.11 shows the

3D visualization of Muller and Kamins MOS model and Fig. 2.12 shows the 3D

visualization of the SAMOC model. Lines marked by ‘+’ on the 3D surfaces represent the

borderlines of different regions.

49

0
2

4

0

2

4

0

0.05

0.1

VdsVgs

Id
s saturated region

linear region

cutoff region

Fig. 2.12 3D illustration of SAMOC MOS model

2.4 Summary

SAMOC uses the dynamic memory allocation technique in C++ to restore and

manipulate the indefinite number of devices and nodes in a simulated circuit. The devices

in the simulated circuit are represented by circuit classes which are derived in hierarchical

fashion in order to simplify the use of pointers. Massive inter-pointing data structure

between device objects and node objects provide direct and fast object allocation.

The modified nodal analysis (MNA), which can handle the controlled sources and

the ideal switches, and which creates relatively small size of system matrix (for instance as

compared to the “sparse tableau approach”), is employed by SAMOC. SAMOC reads the

circuit description in SPICE format which consists of a list of electrical devices. Each

50

listed device item contains information about the type and parameters of the device and

the symbols or numbers which represent the connecting nodes respectively. SAMOC

assigns a number to each interconnection node and creates a space for manipulation of the

circuit matrix, the excitation vector and the solution vector. Device stamps are mapped

into the circuit matrix and the excitation vector according to the type of the device. The

locations of stamps are determined by the assigned numbers of the interconnecting nodes.

The nonlinear semiconductor devices, such as the ideal diodes and MOS transistors, are

modeled by the piecewise linear approaches in order to achieve a fast circuit simulation

mechanism. In the next chapter, the Katzenelson algorithm, which is used to solve

piecewise linear systems, will be introduced.

51

Chapter 3

PIECEWISE LINEAR APPROACHES AND THE

KATZENELSON ALGORITHM

In Chapter 2, the piecewise linear approaches to modeling ideal diodes and MOS

transistors for MNA were presented. By employing the piecewise linearization technique,

the operating area of each piecewise linearized device is divided into several regions and

the characteristic of each device appears linear inside every region. The Katzenelson

algorithm presented in [39] finds solutions of linearized circuits with voltage or current

controlled resistive devices. This chapter presents the Katzenelson algorithm and

introduces some minor modifications which can make the Katzenelson algorithm solve the

circuit equations in MNA form with the piecewise linear device models presented in

Chapter 2.

52

3.1 The Katzenelson Algorithm

The Katzenelson algorithm was developed for simulating circuits with piecewise

linear resistive devices which contain many linear regions. Each region can be modeled by

an independent source and a resistive device. For example, in the voltage controlled

piecewise linear resistive device shown in Fig. 3.1, the working regions are established by

the boundary voltage values Vl-2, Vl-1, Vl, Vl+!, Vl+2.... . In this device, the working

region l has the V-I relationship formulated by

I = Il + (V- Vl) gl (3.1)

or

I = glV + Il - Vl gl (3.2)

∆V

I

region l

Vl
V

V
(k) V

(k+1)^

regionl+1

regionl-1

I l

slop = gl

l+1

Fig. 3.1 A voltage controlled resistive device.

53

The Katzenelson algorithm adopts an iterative method. The iterative method

begins with an initial guess. The initial guess assumes which region a piecewise linear

resistive devices is in. After all piecewise linear resistive devices have their initial regions

determined, system equations can be written in linear system form:

Tl xl = wl + w (3.3)

The subscript l indicates the region determined by the initial guess. The matrix Tl

is the resistive matrix which contains the resistive information of devices in the assumed

regions, e.g. gl in equation (3.1). xl is the solution vector. wl is the piecewise linear

excitation vector, e.g. Il - Vl gl in equation (3.2). w is the source vector.

The Katzenelson algorithm does not solve xl directly as in

xl =Tl
-1 (wl + w), (3.4)

since Tl remains valid only in a limited region. The Katzenelson algorithm adopts an error

vector

f = Tl xl - wl - w, (3.5)

and the answer is obtained by reducing the error vector f to zero. For an iterative

approach, equation (3.5) can be modified to

fk = Tl
k xl

k - wl
k - w, (3.6)

where the superscript k denotes the kth iteration. That is, fk indicates the error in the kth

iteration and when k =0, f0 is the error of the initial guess.

The update of equation (3.6) begins with finding solution of linear system in (3.7).

Tk
l ∆ xk = -fk (3.7)

The attempted solution is found by (3.8)

54

, (3.8)x x x
^ k

k k
+

= +
1

∆

for which

. (3.9)0 T x w w= − −
+

l
k

k

l
k

^ 1

However, may not stay inside the linear region l. In this case, the update of thex
^ k +1

solution vector ∆xk can not be fully applied. A scaling factor t must be applied to

constrain the new solution to lie inside the linear region l, reaching the boundary of one or

more regions.

xk+1 = xk + tk ∆xk (3.10)

Equation (3.10) shows the scaling factor tk makes the new solution xk+1 lie on the boundary

between two linear regions denoted by l and l+1. In order to cross the boundary, the

matrix and the excitation vector have to be replaced by Tl+1
k+1

 and wl+1
k+1. After the

replacement, the iteration continues to change the error vector shown in equation (3.6),

which can be easily evaluated using equation (3.11) or (3.12)

fk+1 = Tl
k xl

k+1 - wl
k - w, (3.11)

fk+1 = (1- tk) fk . (3.12)

The solution vector is updated using (3.10) until it reaches the scaling factor tk =1.

Equation (3.12) is satisfied, provided that the device is continuous at the region’s

boundaries.

55

The purpose of employing the scaling vector is to constrain the updated solution

inside the linear region l. One example of evaluating tl is shown by the voltage controlled

resistive device whose portion of V-I characteristic is illustrated in Fig. 3.1. While at the

kth iteration, it has the operating point V(k) (V(k) is one element of the solution vector xl
k)

located at linear region l. If the attempted amendment calculated by (3.7) is ∆V (∆V is the

corresponding element of ∆xk), then the scaling vector contributed by this device at the

kth iteration is evaluated by:

, (3.13)t
V V

Vl
k l

k

= −+1
()

∆

where Vl+1 is the boundary between region l and l+1 as illustrated by Fig. 3.1. tk must be

smaller than 1 to have the effect of iteration constraint. If there is more than one

piecewise device, then there will be as many scaling factors. In that case, the smallest tl

will be adopted. For this reason, only one device is allowed to change its working region

(state) at an iteration. The solution seeking procedure is finished when the error vector

fk=0.

3.2 tmin in SAMOC

SAMOC employs the Katzenelson algorithm for simulating circuits which contain

the piecewise linear devices. The piecewise linear devices supported by SAMOC are the

ideal diodes and MOS transistors. Their models were presented in Chapter 2. This

56

section discusses the determination of the initial guess, and the evaluation of the scaling

factor contributed by the presentence of ideal diodes and MOS transistors.

3.2.1 Ideal diode

The Ideal diode model in SAMOC has 3 linear regions and is neither a voltage nor

a current controlled device. If there is a way to determine the scaling factor t limiting the

change inside each of the 3 regions, then employing the Katzenelson algorithm with the

SAMOC ideal diode model is still feasible. While in the initial guess stage, an ideal diode

is treated as an open switch and the voltage across the ideal diode VD can be determined.

The working area of an ideal diode is V ∈ (E2, E1) and I ∈(-∞ , +∞). The V-I

characteristic of an ideal diode is illustrated in Fig. 2.6 and contains the turned on region,

the cutoff region and the breakdown region. The determination of which region a diode

operating point lies in is made by the voltage across the diode VD. If VD is greater than the

turned on voltage E1, then the diode is in the turned on region and it is modeled by an

independent voltage source with voltage E1. If VD is smaller than the turned on voltage E1

and greater than the breakdown voltage E2, then the diode is in the cutoff region and

modeled by an open switch. If VD is smaller than the breakdown voltage E2, then the

diode is in the breakdown region and modeled by an independent voltage source with

voltage E2.

The scaling factor t of the SAMOC ideal diode model which limits the change at

the boundary of regions, is state dependent. The formulas to evaluate t are:

57

1. In state 1, the diode is modeled by an opened ideal switch. That is ID = 0, ∆ID = 0

and VD ∈(E2, E1) and ∆VD can be any value.

If VD + ∆VD > E1, then . (3.14)t
E V

V
D

D

= −1

∆

2. In state 2, the diode is modeled by an independent voltage source. That is VD =

E1, ∆VD = 0 and ID ≥ 0 and ∆ID can be any value.

If ID + ∆ID < 0, then . (3.15)t
I
I
D

D

= −
∆

3. In state 3, the diode is modeled by an independent voltage source. That is VD = E2,

∆VD = 0 and ID ≤ 0 and ∆ID can be any value.

If ID + ∆ID > 0, then . (3.16)t
I
I
D

D

= −
∆

With scaling factor t evaluated by formulas (3.14-16), 0< t <1 and constrains the changing

of the states of an ideal diode. The ideal diode has to stay at the boundaries at least for one

iteration and change the device parameters. The boundaries are either VD = E1, VD = E2 or

ID = 0.

After the initial state is set and the scaling factor t is obtained, there are dynamic

state transition rules for the ideal diode during the solution seeking procedure. In this

procedure, each piecewise linear device has a chance to change its state. Fig. 3.2

illustrates the state transition rules of an ideal diode. In state 1, the diode is modeled by an

opened switch, i.e. ID = 0 and VD can be of any value. If a diode was previously in state 1

58

and |VD - E1| < ε3, then the state shifts from 1 to 2. If a diode is previously in state 1 and

|VD - E2| < ε, then the state shifts from 1 to 3. In state 2, the diode is modeled by an

independent voltage source; i.e., VD = E1 and ID can be of any value.

1 23

turned oncut offbreakdown
VD ≤ 2E E1VD ≥

I
D ≤ 0≥I

D 0

Fig. 3.2 Dynamic state transition diagram of an ideal diode.

If a diode is originally in state 2 and |ID - 0 | < ε, then the state shifts from 2 to 1.

In state 3, the diode is also modeled by an independent voltage source; i.e., VD = E2 and ID

can be of any value. If a diode is originally in state 3 and |ID - 0 | < ε, then the state shifts

from 3 to 1. Note that there is no direct transition from state 3 to 2 or from 2 to 3. The

scaling factor t is formulated according to different states and constrains the transition.

3.2.2 MOS Transistors

The initial guess of the state of a MOS transistor assumes all MOS transistors are

in the cutoff state at the beginning of the iterations. After the gate to source voltage, VGS,

and drain to source voltage VDS are evaluated, the state of the MOS transistor can be

determined by:

59

3 ε is a relatively small numerical value. In SAMOC, ε = 10-12.

If VGS < Vt, then the MOS transistor is in state 1 (the cutoff region).

If VGS ≥ Vt and VGS-Vt < k VDS, then the MOS transistor is in state 2 (the saturation

region).

If VGS ≥ Vt and VGS-Vt > k VDS, then the MOS transistor is in state 3 (the linear

region).

Vt is the threshold voltage of the MOS transistor and

 . (3.17)k
R R
g R Rm

= −max min

max min

The SAMOC MOS transistor model is presented in voltage controlled resistive

device. The current IDS is a function of VDS and VGS; therefore, the evaluation of the

scaling factor t is in the 2-dimensional VDS and VGS plain. The scaling factor t of the

SAMOC MOS transistor model, which limits the change at the boundary of regions, is

state dependent. The formulas which evaluate t are:

1. In state 1 (the cutoff region), the gate to source voltage, VGS, must be less than Vt

for NMOS and greater than Vt for PMOS. The transistor is modeled as a big

resistor, Rmax, between drain and source and ∆VGS can have any value. For NMOS,

if VGS + ∆ VGS > Vt, then

. (3.18)t
V V

V
t GS

GS

= −
∆

For PMOS, if VGS + ∆ VGS < Vt, then

60

. (3.18a)t
V V

V
t GS

GS

= −
∆

2. In state 2 (the saturation region), the gate to source voltage VGS > Vt and VGS -Vt<

k VDS for NMOS and VGS < Vt and VGS -Vt > k VDS for PMOS. The transistor is

modeled as a large resistor, Rmax, in parallel with a voltage controlled current

source with transconductance gm between drain and source and ∆ VGS and ∆ VDS

can be any value.

For NMOS, if VGS + ∆ VGS < Vt, then

. (3.19)t
V V

V
t GS

GS
1 = −

∆

For PMOS, if VGS + ∆ VGS > Vt, then

. (3.19a)t
V V

V
t GS

GS
1 = −

∆

If VGS + ∆ VGS -Vt < k (VDS + ∆ VDS) for NMOS or VGS + ∆ VGS -Vt > k (VDS + ∆ VDS)

for PMOS, then

VGS -Vt+ t2 ∆ VGS = k (VDS +t2 ∆ VDS), (3.20)

hence,

(3.21)t
V V kV
k V V
GS t DS

DS GS
2 = − −

−∆ ∆

If conditions in both (3.19) and (3.21) are true, then t is the smaller one of t1 and

t2.

61

3. In state 3 (the linear region), the gate to source voltage VGS > Vt and VGS-Vt > k VDS

for NMOS and VGS < Vt and VGS-Vt < k VDS for PMOS. The transistor is modeled

as a small resistor, Rmin, between drain and source and ∆ VGS and ∆ VDS can have

any value.

For NMOS, if VGS + ∆ VGS < Vt, then

. (3.22)t
V V

V
t GS

GS
1 = −

∆

For PMOS, if VGS + ∆ VGS > Vt, then

. (3.22a)t
V V

V
t GS

GS
1 = −

∆

If VGS -Vt + ∆ VGS < k (VDS + ∆ VDS) for NMOS and VGS -Vt + ∆ VGS > k (VDS + ∆

VDS), then

VGS -Vt + t2 ∆ VGS = k (VDS +t2 ∆ VDS), (3.23)

hence,

(3.24)t
V V kV
k V V
GS t DS

DS GS
2 = − −

−∆ ∆

If conditions in both (3.22) and (3.24) are true, then t is the smaller one of t1 and

t2.

62

1

cutoff

3 2

linear saturated

VGS < VtVGS < Vt

VGS > Vt

VGS -V < kVDSt

VGS -V > kVDSt

Fig. 3.3 Dynamic state transition diagram of a MOS transistor.

After the scaling factor t is obtained by formulas (3.18-24), SAMOC begins to

update the states of the MOS transistors. The state transition diagram of the MOS

transistors is illustrated in Fig. 3.3. A MOS transistor can switch from any state to any

other state. Among the possible transitions, checking VGS has higher priority. That is, if

previously a MOS transistor is in state 2 and after an iteration the new VGS is approaching

the threshold voltage Vt, | VGS -Vt | < ε, then SAMOC will set the MOS transistor to state 1

without checking the other condition. If VGS >Vt and | VGS -Vt -k VDS | < ε, then the new

state will be 3. The same situation happens when the MOS transistor is in state 3.

SAMOC checks | VGS -Vt | < ε to determine whether to shift to state 1 or not and then

checks | VGS -Vt -k VDS | < ε to determine whether to the shift to state 2 or not. On the

other hand, if in the previous iteration the MOS transistor was in state 1 and the new VGS

63

is approaching the threshold Vt, | VGS -Vt | < ε, then SAMOC will compare VGS - Vt and

kVDS to determine whether the MOS transistor will shift to state 2 or 3.

3.3 Simulation Examples of SAMOC

With the device models presented in Chapter 2 and the simulation techniques

presented in Chapter 3, SAMOC can analyze DC solutions of MOS circuits. In order to

test the models and the simulation techniques, some simple circuits are selected to be

analyzed by SAMOC.

One of the most important circuit parts in analog CMOS circuit design is the

differential amplifier. A differential amplifier is usually used in comparing two voltage

signals. Typically, a differential amplifier has two inputs and its output is a function of the

difference of two inputs. Most of the time, the output gain is designed to be large to

emphasize the difference of two inputs.

One of the best differential amplifiers that can work well inside the allowed range

is the wide-range transconductance amplifier presented in [45]. The schematic of the

wide-range transconductance amplifier which is constructed by 4 PMOS and 5 NMOS

transistors, is shown in Fig. 3.4.

By adding some extra code, it is possible to monitor the state change details while

SAMOC determines the DC solution of a circuit. Table 3.1 shows the state changing

detail of 9 MOS transistors in the wide-range transconductance amplifier shown in Fig. 3.4

with V+ = 1.05V and V- = 1.00V.

64

M5 M6

V- M2

MbVb

M3

V+

M1

M7

M4

M8

Vo

Fig. 3.4 Schematic of the wide-range transconductance amplifier.

The first column of the Table 3.1 is the iteration index. SAMOC’s solution

seeking algorithm discoveries that the solution in the 7th and 8th steps confirm the

convergence of the algorithm. At the first step, all MOS transistors were set to be in state

1 (cutoff region). Step 2 is the preset region and each MOS transistor’s state was directly

set by the terminal voltages calculated by the states set by step 1. After step 2, the

Katzenelson algorithm is applied. From step 2 to step 1, the minimum scaling factor tmin

limits the state changes. Only one MOS transistor is allowed to change its state at each

iteration step. Sometimes, if two MOS transistors have identical gate and drain, then

these two MOS transistors can change states at the same time. Table 3.1 shows from step

2 to 3, M7 and M8 change states at the same step. After step 3, only one MOS transistor

changes working region (state) at each iteration step. Fig. 3.5 shows the change of the

output voltage (Vo) during the solution seeking procedure of SAMOC. Note that there is

65

no state change from step 7 to 8 in Table 3.1 and there is no numerical value change in the

plot presented in Fig. 3.6, either. Vo is low and according to V+ =1.05V and V- =1.00V,

the answer is acceptable.

Table 3.1 State transition table

no change, f is
small, iteration

stops

3223222228

M1 changed3223222227

M8 changed3123222226

M2 changed2123222225

Mb changed2123122224

M7, M8 changed2122122223

preset1112122222

initial guess1111111111
remarksM8M1M7MbM2M4M3M6M5

3.4 Comparison with SPICE Simulation via DC Sweep

Fig 3.5 shows a likely acceptable result of the SAMOC simulation. One question

may be asked at this point: “How much similar the result is to the SPICE simulation?”

This section presents and compares the functional analyses of SAMOC and SPICE

simulations. The best way to compare the DC analyses is to perform a linear DC sweep

analysis of a circuit by both SAMOC and SPICE simulators. The analyzed circuit is still

the wide-range transconductance amplifier illustrated in Fig. 3.4. The DC sweep analyses

were performed 5 times with V- =0.5V, 1.5V, 2.5V, 3.5V and 4.5V respectively and V+

values are swept from 0V to 5V. The SPICE simulation was performed by PSPICE®

version 8.0 of MicroSim®. Both SAMOC and PSPICE were executed on the same

66

computer with the Microsoft® Windows95® operating system, 64 Megabytes of SDRAM

and a Cyrix® 6x86MX® PR200 CPU.

Fig. 3.6 shows the PSPICE DC sweep results obtained by using level-3 model. All

PMOS transistors have device geometry specified by w = 6u and l = 2u. All NMOS

transistors have w = 2u and l = 2u. The values marked on the lines are the values of V-.

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration step

V
o

(V
)

Fig. 3.5 The output voltage as a function of iteration step index.

67

0 1 2 3 4 5
0

1

2

3

4

5

V
o

V+

V-=0,5 1,5 2,5 3.5 4,5

Fig. 3.6 PSPICE DC sweep

Fig. 3.7 shows the DC sweep analyses obtained by SAMOC simulation. Since the

sophisticated DC sweep algorithm has not yet been built in SAMOC, for functional

verification SAMOC calls the same DC analysis subroutine and changes the V+ values to

record the result. Fig. 3.7 shows that the DC sweep results approach the SPICE results.

The big difference happens when V- =0.5V and V+ is smaller than 0.7V. The difference

may be caused by the SAMOC MOS models does not take subthreshold behavior into

account.

68

0 1 2 3 4 5
0

1

2

3

4

5

V+

V
o

0.5

V-=0.75 1.5 2.5 3.5 4.5

Fig. 3.7 SAMOC DC sweep

3.5 Summary

This chapter presented the modification of the Katzenelson algorithm and

piecewise linear approach to MOS and ideal diode circuit simulation. The Katzenelson

algorithm adopts an error correcting solution seeking routine. Each piecewise linearized

device that needs to change working region would contribute a scaling factor t < 1 to limit

the error correcting vector. The Katzenelson algorithm chooses the smallest scaling factor

t, so that most of the time, only one piecewise linearized device is allowed to change its

working region (state). After the chosen one changes its state and model parameters, the

new circuit equation can change the state of another piecewise linear device. The iteration

69

ends when no piecewise linear device changes states and the error vector f becomes very

small.

SAMOC supports piecewise linear models for ideal diodes and MOS transistors.

There are several main procedures for the solution seeking algorithm:

1. Both categories of piecewise linear devices are set to the cutoff region for

determining the initial guess.

2. According to the initial guess, all piecewise linear devices are directly set to the

new states.

3. New circuit equations are formulated by following the state information of each

piecewise linear device. The desired correcting vector is evaluated.

4. Scaling factor t is calculated by the piecewise linear regions’ boundary information

and the desired correcting vector for each piecewise linear device.

5. The smallest t is selected to update the answer.

6. Check if there is any piecewise linear device near the boundary of another working

region. If there is, change the working region, then go to 3. If there is none and

error vector f is small, then a solution vector is found.

In addition to the modification of the Katzenelson algorithm, this chapter also

presented analysis details about states (working regions) during the solution seeking

procedure of a MOS circuit. Most of the time, only one piecewise linear device’s state

changes during one iteration thanks to the tmin restriction. Functional verification and

comparison with SPICE simulation were also presented. In the DC sweep analysis

70

example, SAMOC simulation showed the absence of subthreshold concerning the MOS

transistors causes the biggest difference with SPICE simulation.

71

Chapter 4

SAMOC SIMULATION IN Q-V REALM

The SAMOC simulation presented in Chapters 2 and 3 is based on resistive

network analysis. The device models focused on the current-voltage (I-V) relationship

and the circuit formulation algorithm, while the modified nodal analysis (MNA) is based

on Kirchhoff’s current law (KCL). This chapter presents simulations of another category

of circuit design - switched-capacitor (SC) networks. SC networks, which are built with

CMOS transistors and capacitors, can be highly integrated and fit today’s VLSI

technologies.

Unlike resistive networks which rely on continuos time current levels to transfer

and to transform energy, SC networks rely on charge transfers between capacitors during

specified clock periods and remain steady at other times. SC networks hold information in

the form of energy stored in capacitors. While SC networks are in steady state and

72

holding the charges between capacitors, they do not consume any energy. SC networks

can be built with CMOS transistors and capacitors. SC networks can be looked upon as a

design category to implement low power information processing systems or subsystems.

The major application of SC networks is in implementing active filters, charge pumps and

analog neural network circuit designs.

Since there is no steady current in SC networks, the allowed circuit components in

SC networks are ideal capacitors, ideal switches, ideal independent sources, ideal

voltage-controlled voltage sources and ideal operational amplifiers (OPAMPs). SAMOC

contains a simulation engine for simulating resistive networks in the I-V realm, which was

shown in Chapter 2. The same simulation engine can be used for Q-V realm simulation,

provided some physical theories and proper modification from I-V realm analysis

techniques are considered.

4.1 Q-V Realm Analysis

Since SC networks do not contain any resistive device to transfer a voltage signal

into a current signal, KCL is no longer as useful as in resistive networks. Although KCL

can not be used, conservation of charge still stands at each node in SC networks. For this

reason, analyzing SC networks, one can apply charge conservation equations as the

counterpart of KCL equations used in analyzing resistive networks. While the charge is

used instead of current, the simulation territory moves from I-V realm to Q-V realm.

The most important component in SC networks is the capacitor. A capacitor

which has two terminals can transfer a voltage signal into a charge variable. The

73

relationship between charge Q stored inside the capacitor C and the voltage V between

two terminals of a linear capacitor is

(4.1)C
Q
V

=

A charge Q can be stored in a node incident only to capacitors. The charge Q can be

evaluated algebraically. For a node which is only connected to capacitors, such as node a

in Fig. 4.1, the charge stored in node a, Qa, can be evaluated by

(4.2)Q V V Ca a i i
i

n

= − ×
=

∑[()]
1

Voltage Va may be changed by varying any of the voltages Vi in Fig. 4.1, because Qa must

remain the same according to conservation of charge Qa will remain the same, unless a is

connected to a voltage source or the ground with a resistive device.

a

C
C

C

C

V

V
V

VVn

n

1

2

1

2

3

3

a

Fig. 4.1 A node “a” incident only to capacitors.

In an SC network, a voltage like Va in Fig. 4.1 can be changed by changes of

voltages incident nodes. For example, Va can be changed by varying any of Vi, i=1,2, .. n

74

shown in Fig. 4.1 in order to keep Qa conserved. The new voltage values of Vi, i=1,2, .. n

are the controllable variables which are set up by the circuit designers by hard wiring,

switching or the outputs of the other part of the circuit in order to store, manipulate or

process the circuit data. The new voltages are denoted by Vi’, i= a, 1,2, .. n. In this

scenario, Qa remains the same according to the conservation of charge and an equation

based on this law can be used to evaluate Va’:

. (4.3)Q V V C V V Ca a i i
i

n

a i i
i

n

= − × = − ×
= =
∑ ∑[()] [(' ')]

1 1

Since Vi, i=1,2, .. n and Va are know and Vi’, i= a, 1,2, .. n are controllable or can be

evaluated by other analyses, the altered voltage Va’ can be evaluated by (4.3).

The other method to change voltages between capacitors like Va in Fig. 4.1 is to

connect two nodes by an ideal switch as shown in Fig. 4.2. Before the switch is closed, Qa

can be evaluated by (4.2) and Qb can be evaluated by (4.4), which is

. (4.4)Q V V Cb b i i
i n

n m

= − ×
= +

+

∑[()]
1

After the ideal switch is closed, V= Va = Vb and the new equation becomes

. (4.5)Q Q Q V V Ca b i i
i

n m

= + = − ×
=

+

∑[()]
1

The new total charge Q can be estimated by (4.2) and (4.4), and the new node voltage can

be estimated by (4.5).

75

The SC network analysis can be performed by formulating charge conservation

equations such as (4.2 - 4, 5) at each node. Nodal analysis can be adopted in the SC

network simulation. SC network designers usually use two or more phase clocks to

control the switches, either assigning voltage to some nodes such as in (4.3) or connecting

two nodes such as in (4.5) alternately. SAMOC can formulate SC networks by MNA

algorithm and estimate the new voltage value at each node before and after any switching

event in the simulated SC network. Since most of the allowed devices in SC network

design are linear, the solution vector can be obtained by a direct method such as Gaussian

elimination.

a b

C
C

C

C

V
V

V

V

V

n+m

V

V

V

C

C

n+1

Cn+1 n+2

Cn+2

n+3

n+3

n+m

ideal switch

1

1
2

2

3

3

n

n

Fig. 4.2 Connecting two nodes via an ideal switch

4.2 MNA for SC Networks and Device Stamps in Q-V Analysis

The Q-V realm MNA of SC network can written in the matrix form as

C V = W, (4.6)

76

where C is the modified capacitive matrix, V is the solution vector and W is the excitation

vector. Similar to MNA in I-V realm, MNA Q-V realm is formulated by filling device

stamps into C according to the assigned nodes, device parameters and device types. The

following subsections introduce the device stamps for different devices used to construct

SC networks.

4.2.1 Capacitor

A capacitor is a charge storage device. If two terminal voltages of a capacitor C

shown in Fig. 4.3 are Vj and Vj’, then the charges stored at the terminal j and j’ are

Qj = C (Vj - Vj’) (4.7)

Qj’ = C (Vj’ - Vj) (4.8)

C

j j'

Q j Q j'

Fig. 4.3 A capacitor C.

According to conservation of charge, Qj and Qj’ contributed by C must remain

unchanged no matter the change of Vj or Vj’. The device stamp of the capacitor C is

shown in (4.9).

77

, (4.9)

j j
j

j

C C

C C

Q

Q
j

j

'

'

−
−
L
NM

O
QP

L
NM

O
QP

excitation vector

'

where Qj and Qj’ are evaluated by (4.7-8). The initial values of Vj and Vj’ can either be

assigned to zero or specified by setting the initial condition command .ic as in SPICE,

for example:

.ic V(j) = 5V V(j’) = 2.3V

The description format of a capacitor is

C_name j j’ size_of_capacitor [in Farads]

4.2.2 Ideal OPAMP

The ideal operational amplifiers (OPAMP) which have infinite input impedance and

gain and zero output impedance are not directly supported by SPICE. Ideal OPAMPs are

frequently used in SC network design. It is necessary to define an ideal OPAMP as a new

device type in SAMOC SC network simulation. The circuit symbol of an ideal OPAMP is

illustrated in Fig. 4.4. Circuit designers should pay attention to using the ideal OPAMP,

because of the high gain of the amplifier. There must be a capacitor connecting j’ and k to

form a negative feedback loop to make the OPAMP work properly.

Vlach and Singhal [58] show the circuit stamps of the OPAMP, expressed by

(4.10) with the node notation shown in Fig. 4.4. Besides 3 terminals represented by j, j’

and k, the ideal OPAMP modeling requires one more variable marked by m’ for charge

supplied by the OPAMP.

78

+

-
k

j

j'

Fig. 4.4 The circuit symbol of an ideal OPAMP

. (4.10)

j j k m
j

j

k

m

' '

'

'

1

1 1−

L

N

MMMM

O

Q

PPPP

SAMOC defines a new symbol “O” for OPAMP in Q-V realm MNA analysis. The

description format for an ideal OPAMP is:

O_name j j’ k

The device class used to represented the OPAMP is named COpamp in SAMOC. This

class is derived from C2VTerm and one additional pointer for the third node is added to

the existing class.

4.2.3 Ideal Switch

Ideal switches which are used to alter the circuit topology in circuit networks are

essential to SC networks for changing voltage values. The model of ideal switches in I-V

realm analysis with infinite resistance while it is closed and zero resistance while it is open,

79

was presented in section 2.3.1. In Q-V realm analysis for SC networks, the model is

exactly the same. The only difference between the I-V model and the Q-V realm model is

that the (m+1)th variable in the solution vector represent the current in the I-V realm and

transferred charge in the Q-V realm.

4.2.3 Ideal Diode

An ideal diode is the only nonlinear device allowed in SC network design. The

ideal diode model in the Q-V realm is different from the one used in the I-V realm. In the

Q-V realm analysis of SAMOC, the device stamp of each ideal diode is filled in by an ideal

switch. In simulation of SC network with ideal diodes, the MNA circuit equations

expressed by (4.6) have to be solved twice. At the first analysis, each ideal diode is

treated as an open circuit. Then, according to the solution obtained at the first analysis,

SAMOC checks the voltages of the two terminals of each ideal diode. If a diode in Fig.

2.7 has V(n1) > V(n2) , then that diode is replaced by a closed circuit, otherwise that

diode remains open. If any ideal diode shifted from an open circuit to a closed circuit, the

second analysis of (4.6) has to be performed.

4.2.4 Ideal Voltage Source and Ideal Voltage-Controlled Voltage Source

An ideal voltage source in Q-V realm analysis plays a similar role to the

independent voltage source in I-V realm analysis. An ideal voltage source can directly

assign a voltage value to a node regardless how much charge was accumulated in that

80

node. The device stamp is the same as the independent voltage source in I-V realm

analysis.

 The voltage-controlled voltage source is a four terminal device with infinite input

impedance and zero output impedance. The OPAMP presented in section 4.2.2 is a

special case of voltage-controlled voltage source with output gain equal to infinity. The

model of voltage-controlled voltage source in Q-V realm analysis is the same as the one

which is used in I-V realm analysis.

4.3 Simulation Examples

The device stamps presented in section 4.2 can be verified by simulation of simple

SC networks. Two simple SC network simulation examples are presented in this section.

4.3.1 SC Integrator

The switched-capacitor integrator illustrated in Fig. 4.5 is one of the simplest SC

networks. The transfer function of the integrator is

(4.11)H s
V
V

f
C
C s

out

in
c() = = − 1

2

1

where fc is the switching frequency.

81

-

+

V
Vin

out

1C

2C

Fig. 4.5 A switch capacitor integrator

SAMOC simulation of an SC network can not give a continuous time signal of Vin

in Fig. 4.5, since all events in a computer program are discrete in time. Therefore,

SAMOC can describe Vin as a series of sampled data and obtain sampled data of Vout. By

way of observing waveforms of Vin and Vout, it is possible to verify if the integrator works

as expected. Fig. 4.6 shows the Vin and Vout plots of the SAMOC switch-capacitor

simulation. Sampled data plotted in Fig. 4.6 (a) and (c) were fed into Vin and output

results for Vout are plotted in Fig. 4.6 (b) and (d) respectively. Regardless of the switching

frequency and the capacitor ratio in (4.11), the plots in Fig. 4.6 (b) and (d) look like the

negative integration results of the plots in Fig. 4.6 (a) and (c) respectively.

82

(d)(c)

0 50 100 150 200
-6

-5

-4

-3

-2

-1

0

1

Sampling index

V
ou

t

0 50 100 150 200
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sampling index

V
in

(b)(a)

0 20 40 60 80 100
-16

-14

-12

-10

-8

-6

-4

-2

0

Sampling index

V
ou

t

0 20 40 60 80 100

-1

-0.5

0

0.5

1
V

in

Sampling index

Fig. 4.6 The Vin and Vout plots of SC simulation

4.3.2 SC Implementation of a Second-Order Bandpass Filter

A major application of SC networks is to implement filters. Since an SC circuit

can be fabricated by CMOS technology in a single chip, SC implementation of filters can

dramatically decrease the filter size which was traditionally caused by coil inductors or

later by large resistance area in active R-C circuits. SAMOC is not equipped with a

frequency domain analysis routine. However, Matlab can generate and analyze signals for

filter analysis. The estimation of a transfer function of SC filter can be done by feeding a

83

white noise signal and calculating the ratio of power spectral density of the output and

input signals. That is, the power spectral density of the input white noise is

Vin (s) = 1 (4.12)

so that the transfer function

H(s) = Vout(s) / Vin(s) = Vout(s). (4.13)

From (4.13), the transfer function of a filter can be obtained by observing the power

spectral density of the output signal while a white noise signal is the input. Since this

estimation is a statistical result, the larger the sampling space is the more objective the

results would be. For this reason, a very long series of random input is used.

SAMOC can neither generate white noise signals nor estimate the power spectral

density of signals. Therefore, the signal generation, spectrum estimation and data

visualization are finished by using Matlab.

A bandpass SC filter containing 8 ideal switches, 4 capacitors and one OPAMP is

illustrated in Fig. 4.7. It is a SC realization of an active RC filter with a transfer function

provided that fc >> f , where s = 2πf.

. (4.14)H s
V
V

f C C s
s sf C C C C f C C C C

out

in

c a

c b b c a b

()
(/)

(/ /) (/)(/)
= = −

+ + +
1

2
1 2

2
1 2

SAMOC simulation of SC networks can be performed by feeding a series of signals into

Vin and record the output from Vout.

84

-

+

V

V

C

C
C

C

in

out

1

2

a

b

Fig. 4.7 An SC implementation of a second-order bandpass filter.

A series of signals contains 10,000 random values created by the Matlab function

randn() are fed into Vin and the output Vout evaluated by SAMOC is recorded and sent

back to Matlab. The capacitors Ca and Cb are set to be 1n Farad, and capacitors C1 and

C2 are set to be 4n Farad. The power spectral densities of both signals are estimated by

the psd() function included in the Matlab signal processing toolbox. By assuming the

sampling frequency of input signal is 1 kHz. The power spectral density (psd) of the input

signal is plotted in Fig. 4.8 (a). The clock frequency is set to be 10 kHz to have a 10x

oversampling. Fig. 4.8 (b) illustrates the psd of the input signal after 10x oversampling

which contains 100,000 sampled data. These 100,000 sampled data were sent to the SC

based bandpass filter. The psd of the filter output by SAMOC simulation is illustrated by

Fig. 4.8(c). The power transfer function, H(ejω)H*(ejω), of the bandpass filter can were

85

estimated by the ratio of power spectral densities of two signals, and is plotted in Fig. 4.8

(d).

(d)(c)

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency (Hz)
0 1000 2000 3000 4000 5000

-120

-100

-80

-60

-40

-20

0

20

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

(b)(a)

0 1000 2000 3000 4000 5000
-50

-40

-30

-20

-10

0

10

20

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

0 100 200 300 400 500
-6

-5

-4

-3

-2

-1

0

1

2

3

4

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Fig. 4.8 Power spectral densities of input and output signals, and the power
transfer function.

By filling in selected filter parameters, the RC filter transfer function of the filter is

, (4.15)H s
V
V

s
s s

out

in

() = = −
+ +

10000

5000 62500002

and it can be visualized by bode() routine in Matlab, if s = jω =j 2πf. On the other hand,

the absolute value of SC filter transfer function, |H(ej2πf)|, with clock frequency fc = 10

86

kHz can be obtained by taking square root of the values plotted in Fig. 4.8(d). Fig. 4.9

illustrates the |H(2πf)| and |H(ej2πf)|. Note that, according to the SC filter approximation,

|H(ej2πf)| will be more similar to |H(2πf)| by using larger clock frequency fc, which also

implies that oversampling rate will be higher.

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Frequency (Hz)

SC filter

RC filter

Fig. 4.9 Transfer functions of the second order bandpass filters.

4.4 Summary

Q-V realm analysis of SC networks is presented in this chapter. In designing SC

networks, only capacitors, ideal diodes, OPAMP, ideal capacitors, ideal voltage sources

and ideal voltage controlled voltage sources are allowed. There is no steady state current

87

in Q-V realm analysis. By assuming ideal charge transfer between capacitors through ideal

switches, MNA is quite adequate to perform Q-V realm analysis as well as I-V analysis.

Since most of allowed devices are linear, the analysis in Q-V realm MNA can be done by

direct method.

A new type of device, OPAMP, which is not directly supported by SPICE, is

introduced in SAMOC simulation. The device stamp of an OPAMP, which was originally

introduced by Vlach and Singhal for I-V realm analysis, is also valid in Q-V realm analysis.

The device stamps used in I-V realm analysis and in Q-V realm analysis are almost

the same. A capacitor in Q-V realm analysis works virtually similar to a conductor in I-V

realm analysis. The difference is that in Q-V realm analysis, the calculation of accumulated

charge has to be done and added into the excitation vector of the circuit equations. As a

result, an SC network is a circuit in which a previous state influences the next state. An

ideal diode requires an additional solution of Q-V realm equations in order to decide the

open/closed condition of every ideal diode.

Two simple SC network simulation examples are presented to verify the validity of

the presented device stamps. One is an SC integrator and the input/output waveforms

show the validity of Q-V realm device stamps for MNA. The other is an SC bandpass

filter. In order to estimate the transfer function of the SC filter, an input signal consisted

of a series of random numbers generated by Matlab is used as a test input signal of the

filter. The output signal obtained from simulation is sent back to Matlab. The power

transfer function of the example filter is estimated from the ratio of power spectral

densities of output and input signals. The magnitude of the transfer function as a function

88

of signal frequency is obtained by taking square root of the power transfer function.

Although SAMOC does not include the power spectral density estimation subroutines,

with the combination usage of Matlab signal processing tool box, the transfer function of

the SC based filter can be verified via time series signal processing. The differences

between a SC filter with a specified switching frequency and RC filter can be visualized.

Two examples presented in this chapter were used to verify the device models and the

Q-V realm circuit formulation techniques. The next chapter will introduce another

application of SAMOC Q-V realm analysis: charge pump circuits.

89

Chapter 5

SAMOC APPLICATIONS I: DC-DC

SWITCHED-CAPACITOR BASED CHARGE PUMP

CIRCUIT SIMULATIONS

A DC-DC charge pump circuit provides a DC voltage that is higher than the DC

voltage of the power supply or a voltage of reverse polarity. In many applications - such

as Power IC, continuous time filters, and EEPROM - voltages higher than the power

supplies are frequently required. Increased voltage levels are obtained in a charge pump

as a result of transferring charges to a capacitive load and do not involve amplifiers or

transformers. For that reason, a charge pump is a device of choice in semiconductor

technology where normal range of operating voltages is limited. Charge pumps usually

90

operate at a high frequency level in order to increase their output power within a

reasonable size of total capacitance used for charge transfer. This operating frequency

may be adjusted by compensating for changes in the power requirements and saving the

energy delivered to the charge pump.

5.1 SC Based Charge Pump Designs

Among many approaches to the charge pump design, switched-capacitor circuits

charge pumps are very popular because they can be implemented on a single chip or on the

same chip together with other components of an integrated system. There are three basic

organizations of switched-capacitor (SC) DC-DC charge pumps: Dickson [63], Makowski

[64] and Starzyk charge pumps. Three of the charge pump organizations push and store

charge inside arrays of capacitors in order to reach a high voltage output. The Dickson

charge pump requires a series of diodes. Makowski and Starzyk charge pumps are purely

switched capacitor based designs which contain only capacitors and switches. All of them

require two inverted and non-overlapped clocks to work.

According to different values of desired outputs, charge pumps can be cascaded to

have higher voltage gain. That is, different numbers of cascaded stages of charge pump

have different voltage gains. The voltage gain is a function of the number of stages. For

Dickson pumps, the voltage gain is a linear function of number of stages. For an n-stage

Dickson pump, the voltage gain Av can be evaluated by (5.1).

Av = n + 1 (5.1)

91

For example, a 7-stage Dickson charge pump has voltage gain equal to 8. The schematic

of a 7-stage Dickson charge pump with voltage gain equal to 8 is shown in Fig. 4.1. The

charge pump contains two switches, 8 diodes and 7 capacitors marked by C and the

capacitive load of the charge pump is modeled by a capacitor Cload. For each additional

stage of Dickson charge pump, an ideal diode and a capacitor are needed.

C C C C C C

inV

φ1

φ
2

Cload

out
V

C

Fig. 5.1 An 8x Dickson charge pump

The voltage gain of an n-stage Makowski charge pump is the (n+1)th Fibonacci

number. The Fibonacci sequence used is : 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233

For instance, a 4-stage Makowski charge pump has a voltage gain equal to 8. The

maximum transferred power of a charge pump design is influenced by the size of its

capacitor. In addition, the number of required capacitors indicates the total required

design area. The number of required capacitors is a direct index of the charge pumps’

manufacturing costs. In all SC based charge pumps which require two phase clocks,

Makowski’s charge pump can reach the highest voltage gain with the least number of

required capacitors. Fig. 5.2 illustrates the schematic of a 4-stage Makowski charge pump

92

with input Vin, output Vout, where the capacitive load of the charge pump is modeled by

Cload. The voltage gain of the displayed Makowski charge pump is equal to 8.

C

φ1

φ1

φ2
C

φ2

φ2

φ1
C

φ1

φ1

φ2
C

φ2

φ2

φ1

Vin

loadC

Vout

Fig. 5.2 An 8x Makowski charge pump

V

2

1 2

1

CL

in

Cs

2

1 2

1

Cs2

1 CL2
Vout

2

1 2

1

Cs

CLoad

31

Fig. 5.3 An 8x TPVD Starzyk charge pump

Starzyk charge pumps are constructed by switched-capacitor voltage doublers.

Each voltage doubler doubles the input voltage. By cascading n voltage doublers, the

93

voltage gain is 2n. For instance, a 3-stage Starzyk charge pump has a voltage gain equal

to 8.

+
- C

load

+

-
E

+
-

C
load

+-

E
+

-

+
- C

load

+

-
E

+-

+

-

+
- C

load
E

+-

+

-

+-

+
- C

load

+

-
E

- +

+

-

+
- C

load
E

- +

+

-

+-

+

-

+
- C

load

+

-
E

+- - +

+

-

+
- C

load
E

+-

+

-

+-+-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Fig. 5.4 An 8x MPVD Starzyk charge pump

There are two categories of Starzyk charge pump, one is based on the two phase

voltage doublers (TPVD) and the other is based on the multiphase voltage doublers

(MPVD). Fig. 5.3 shows the schematic of a 3-stage Starzyk TPVD charge pump. The

voltage gain is 8. TPVD charge pump contains two way switches. While clock 1 is on,

the switches connect to nodes marked by 1 in Fig. 5.3. While clock 2 is on, the switches

connect to nodes marked by 2 in Fig. 5.3. The MPVD charge pump shown in Fig. 5.4

94

also has a voltage gain equal to 8. The schematic of the MPVD charge pump is the same

as TPVD, but without CL1 and CL2. The presented MPVD charge pump has 8 states. The

transition of states must follow the order indicated on Fig. 5.4. The MPVD can be

implemented by a finite state machine.

5.2 Time Domain Analysis

Three of four charge pump organizations, which contain diodes or ideal switches

are controlled by two inverted clocks, were presented in section 5.2. It is exhausting to

derive a symbolic input/output relationship in a mathematical format, especially when ideal

diodes are involved in Dickson charge pump. The best way to estimate the behavior of

charge pump circuits and determine the optimal circuit parameters is to use a computer

simulator to analyze the circuits. The Q-V realm simulation engine of SAMOC can

simulate switched-capacitor networks which contain three organizations of the charge

pumps. The analysis of SC networks in SAMOC assumes that only the ideal switches and

ideal capacitors are used in the simulated SC networks. That is, the switches do not

dissipate charge which is caused by open circuit leakage current or the closed circuit

resistance. In addition, it is assumed that all charge transfers are at the speed of light. The

time domain analysis of an SC charge pump is accomplished by analyzing switch events

one after another.

95

5.2.1 Comparing with SPICE simulation

SPICE simulation of the TPVD charge pump was performed in order to compare

it with SAMOC for accuracy and computing efficiency. Since SPICE neither supports

ideal floating capacitors nor ideal switches, additional resistors are added in order to

make the SPICE simulation feasible. A 1010 Ω leakage resistor is added in parallel with

each floating Cs capacitor in TPVD charge pump. The turned-on resistance (Ron) of all

of the voltage control switches is 1 Ω, and the turned-off resistance (Roff) is 107 Ω. In

SAMOC simulation, there is no leakage resistor of capacitor, and ideal switches have Ron

= 0 Ω and Roff = ∞ Ω. Fig. 5.5 shows both the SAMOC and SPICE simulations. The

clock period is 40ns. SPICE and SAMOC show similar results at the beginning of the

simulation. The leakage resistance of capacitors and turned-off resistance of switches

resulted in the pump reaching lower voltage value in SPICE simulation. The SPICE

simulation was performed by MicroSim PSPICE which works in Microsoft Windows

95, the same platform as SAMOC. The two simulators were run on the same computer

with the same operating system for comparison of timing efficiency. SPICE took 121.3

sec to simulate a three stage voltage doubler, while SAMOC required only 1.3 sec. This

time difference, which indicated the high performance of SAMOC program, grows

significantly larger if SPICE is run using full models of MOS switches. Full SPICE

analysis with parasitic values extracted from a layout of designed pump has to be

performed at the design stage of a silicon charge pump. However, this analysis is

extremely costly to do for the type of investigation conducted in this work. For this

96

reason, analysis using SAMOC is fully justified and facilitates study of the fundamental

properties of the proposed pumps.

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

time (micro second)

vo
lta

ge

SPICE
SAMOC

Fig. 5.5 Comparison of SPICE and SAMOC simulation

5.2.2 The SAMOC Simulation of SC Charge Pumps

The time domain SAMOC simulation results of the output waveforms of the

compared charge pumps as a function of number of iterations are illustrated in Fig. 5.6.

The fastest is the Dickson charge pump which needs about 100 switching events to reach

99% of the 8x output. The TPVD charge pump is slower and requires more than 400

iterations to reach 99% of the final voltage gain. The output of MPVD is updated after 8

iterations and its rise time is bit shorter than that of TPVD. The Makowski charge pump

97

needs about 250 iterations to reach 99% of the final voltage gain. These large numbers of

iterations translate directly into the number of required clock cycles and are indicative of

the energy transfer efficiency of the analyzed circuits. However, they should not be of a

significant concern to most of the applications for a charge pump implemented in a

modern IC technology, where a maximum frequency of operation may reach a level of

several hundred megahertz.

0 100 200 300 400
0

5

10

15

20

25

30

35

40

clock index k

V
ol

at
ge

TPVD

Dickson

Makowski
MPVD

Fig. 5.6 Time domain SAMOC simulation result.

98

5.3 Consumed Power Analysis Based on a Resistive Load

Although the resistor is not an allowed device in the Q-V realm simulation engine

of SAMOC, the analysis of the power consumed by output resistance load of a charge

pump is very important to charge pump analysis and design. The SAMOC’s Q-V realm

simulation engine can be modified to analyze the effect of only one resistor in the

simulated SC network.

Fig. 5.7 shows the equivalent circuit of a charge pump whose output is connected

to a resistive load, and the resistive load is modeled by Rload. A resistor is a power

dissipation device which drains electrical charge in the form of a current from a high

voltage node to ground as shown in Fig. 5.7. Ceq is the equivalent capacitor of the charge

pump measured at its output terminals. Since the switches of charge pump alter the

topologies of the whole charge pump circuit, Ceq is not a constant but remains unchanged

between two switching events. The electrical charge QR consumed by Rload during two

switching events can be evaluated by:

, (5.2)Q V C
T

R CR o eq
load eq

= − −(exp())1

where T is the time elapsed between two switching events and Vo is the output voltage

without the resistive load Rload.

99

Rload

QRCeq

+-

Fig. 5.7 The equivalent circuit of a charge pump circuit with a resistance load.

After evaluating QR we can modify the Q-V realm equations as follows:

CV =Q - QR d, (5.3)

where d is the selection vector, Vout = d t V =VR . That is, the load resistor in the Q-V realm

analysis is treated as a voltage dependent charge drain which removes electric charge from

the equivalent capacitance Ceq. The power PR dissipated by Rload (delivered by the charge

pump) can be estimated by

. (5.4)P V I
V
RR R R

R

load

= =
2

The equivalent capacitance Ceq is estimated by putting a dummy voltage source Vd = 0V in

the output (see Fig. 5.8 (a)). The electric charge Qd, goes through the dummy voltage

source and can be obtained from simulation of the shorted charge pump formulating the

modified nodal-like equations. Then the equivalent capacitance Ceq can be estimated

using

100

, (5.5)C
Q
Veq

d

o

=

where Vo is the open circuit output voltage which is shown in Fig. 5.8 (b) and used in

(5.5).

Charge pump +

-
Vo

(b)

Charge pump
Qd

(a)

Fig. 5.8 Illustration of the closed circuit charge Qd (a), and the open circuit output
voltage VO (b).

The resistive load analysis requires 2 Q-V realm analyses in each clock phase

instance. The first one is to evaluate the equivalent capacitance Ceq by using formula

(5.5), and the second one is to calculate the effect caused by removing QR from the output

of the charge pump by using formula (5.2). In order to understand the effect of the

resistive load on the output voltage and the amount of the output power delivered, a

TPVD charge pump with 4 cascaded voltage doublers was used for resistive load analysis

with different values of the load resistance, Rload. The capacitors CL and CS are 100pF, and

the clock period T is 40ns with power supply 5V. The load resistances used were 2kΩ,

20kΩ, 200kΩ and infinity. Fig. 5.9 shows the simulation results for the first 1500

switching events.

101

0 500 1000 1500
0

10

20

30

40

50

60

70

80

clock index

ou
tp

ut
 v

ol
ta

ge

Rload=2k ohm

Rload=20k ohm

Rload=200k ohm

no load

Fig. 5.9 The 4-stage (16x) TPVD charge pump output voltage with different
values of Rload.

Inspecting the plot, it is obvious that the charge pump can no longer supply the

16x output, while the Rload is present. The load resistor Rload drains the electric charge

supplied by the charge pump. The loss of electric charge decreases the output voltage of

the charge pump. The smaller the Rload , the more electric charge, QR, is drained by Rload

during the clock period, and the lower the output voltage is.

The resistive load analysis can be used to estimate the output power of a charge

pump according to different values of Rload and output voltages. To obtain the power and

output voltage characteristics of a charge pump, Rload values from 10 Ω to 1 mega Ω were

used in simulation.

102

The output power of charge pumps is estimated in SAMOC by finding the

maximum output voltage and then using (5.4) to evaluate the output power. Since the

time domain output of charge pump is a monotonely increasing function and with a

converged final value, SAMOC detects the increasing percentage of the output and

approximates the converged maximum output VR . Fig. 5.10-12 show the SAMOC

simulation results of the output power as a function of the load resistance Rload. Fig. 5.10

shows that increasing number of stages of a TPVD charge pump can increase the output

voltage but can not increase the output power. Fig. 5.11 shows that the output power is a

function of capacitors inside the charge pump. The larger the capacitors used, the greater

power a charge pump can deliver. Fig. 5.12 shows the same simulation applied to

different kinds of charge pump designs. The analyzed four charge pump designs have the

same size of individual capacitors and have the same voltage gain equal to 8. Analyzing

the plots, we see that a Dickson pump can deliver the largest mount of power and an

MPVD delivers the least. A more comprehensive comparison of the four charge pumps is

shown in Table 5.1.

103

10
2

10
4

10
6

10
8

0

10

20

30

40

Load Resistor ohm

O
ut

pu
t P

ow
er

 (
m

W
)

o :3 stages

+ :4 stages

* :2 stages

Fig. 5.10 The output power as a function Rload for TPVD charge pumps with
different number of stages.

10
0

10
2

10
4

10
6

10
8

0

50

100

150

200

Load Resistor (ohm)

O
ut

pu
t P

ow
er

 (
m

W
)

+ :C=400pF

o :C=200pF

* :C=100pF

Fig. 5.11 Output power of 2-stage TPVD charge pumps as a function of load
resistance and pump capacitance.

104

10
0

10
2

10
4

10
6

10
8

0

50

100

150

Load Resistor ohm

O
ut

pu
t P

ow
er

 (
m

W
)

o :TPVD

x :MPVD

+ :Makowski

* :Dickson

Fig. 5.12 The output power as a function of Rload.

Table 5.1: Required number of devices for charge pumps with the same voltage
gain AV = 8.

0080diodes

0002
grounded
capacitors

3473
floating

capacitors

1212012switches

3473
n (number of

stages)

MPVDMakowskiDicksonTPVD

105

5.4 Summary

SAMOC’s Q-V realm simulation engine can be used to analyze the charge pump

circuits as well as other switched-capacitor circuits shown in Chapter 4. The comparison

between SPICE and SAMOC simulations is presented. SAMOC is more than 10 times

faster, based on the assumption of ideal charge transferring between capacitors and

idealized models of devices.

SAMOC’s simulation of charge pumps in time domains can make a compare rising

times. The resistive load analysis of charge pumps became feasible after a minor

modification of Q-V realm simulation engine in SAMOC, although resistor is not an

allowed device in SC network designs. The consumed power is estimated by the R-C

model and the equivalent capacitor is evaluated by the ratio of closed circuit electrical

charge and the open circuit voltage. The consumed power is a function of switch

frequency, capacitors’ size and the load resistor. The maximum power a charge pump can

deliver while the output voltage is half of the maximum output voltage; i.e. ,

VPmax=V(Rload =0) / 2 (5.6)

This interesting result resembles a similar maximum power transfer condition in a linear

resistive circuit (voltage divider).

106

Chapter 6

RESISTIVE-CAPACITIVE NETWORK ANALYSIS, AND

CIRCUIT PARTITIONING

In SAMOC, there are two simulation engines for DC analysis. One is the resistive

network analyzer which is based on I-V realm analysis. The other is the switched-capacitor

(SC) network analyzer which is based on Q-V realm analysis. The resistive network

analyzer presented in Chapters 2 and 3 contains linear and piecewise nonlinear device

models and a solution seeking procedure based on the Katzenelson algorithm. The SC

network analyzer presented in Chapter 4 is based on conservation of charge. This chapter

combines resistive and switched-capacitor networks analyses.

In SAMOC, both resistive and SC network analyses employ the MNA circuit

formulation approach. The number of circuit equations for MNA, as shown in (2.1),

depends mainly on the number of nodes and devices in the simulated circuit. In

107

contemporary VLSI designs, circuits with sophisticated functions usually contain

thousands or millions of nodes and devices. Analyzing contemporary VLSI circuits

require large numbers of circuit equations to estimate circuit behavior. Solving large

numbers of circuit equations by computer demands large memory to store and process the

equations. In addition, even applying the piecewise linear approach presented in Chapter

3, the computational complexity of solving n linear equations is O(n2.81) [65]. In order to

extend the ability of circuit simulation for a resource limited computer system, many new

methods of managing and manipulating circuit equations are introduced. In the new

method employed by SAMOC, instead of formulating the MNA equations of the whole

circuit, only a portion or a block of the circuit equations are formulated and solved at a

time. By employing this method, much less memory during the circuit simulation is

required. In addition, the computational complexity for solving circuit equations in matrix

form is dramatically decreased. If analyzing a circuit needs n equations, and that circuit

can be divided into several portions which needs n1, n2 .. ,where n = n1 + n2 +.....,

equations respectively to solve then

O(n2.81) ≥ O(n1
2.81) + O(n2

2.81) + (6.1)

In order to analyze a circuit portion by portion, circuit partitioning is necessary. After a

circuit is partitioned into several blocks, the whole circuit can be analyzed block by block.

6.1 I-V Realm Nodes and Q-V Realm Nodes

The purpose of DC analysis of a circuit is to estimate the DC voltage of each node

and MNA equations are formulated on each nodes. In SAMOC DC analysis, there are

108

two types of nodes. There are I-V realm nodes and Q-V realm nodes. I-V realm nodes

connect with resistive devices. A modified nodal equation based on KCL is formulated

according to each I-V realm node and all resistive devices are connected with that node.

Q-V realm nodes, on the other hand, are nodes connected only with capacitors, ideal

switches, ideal diodes, ideal OPAMPs, and dependent and independent voltage sources. A

modified nodal equation based on conservation of charge is formulated for each Q-V

realm node and all allowed devices connected with that node. In SAMOC analysis, two

types of nodes arouse two types of circuit formulation methods demanded by different

analysis procedures. It is necessary to distinguish I-V realm nodes from Q-V nodes for

computer circuit equation generation.

In order to mark the type of node in SAMOC simulation, a Boolean variable

named m_bIsAQVNode is added into the class CNode. In SAMOC, all objects of class

CNode have their m_bIsAQVNode set to be TRUE at the initialization stage of the reading

circuit descriptions. Each node has a list of pointers (see Fig. 2.3) which can locate all

connected devices incident to that node. The variable m_bIsAQVNode is set to be FALSE,

if

1. The node is connected with a resistive device, such as resistor or the first or the

third node of a MOS transistor.

2. The node is connected with a current source, such as an independent current

source, the third or the forth node of current-controlled-current-source, or the

third or the forth node of a voltage-controlled-current-source.

109

3. The node is connected to another node by a short circuit, such as the first or the

second node of a current-controlled-voltage-source or the first or the second node

of a current-controlled-current-source,

After the Boolean variable m_bIsAQVNode in each node is set, SAMOC can

formulate different nodal equations either with the I-V model or with the Q-V model

according to the node type.

6.2 Circuit Partitioning to I-V Realm and Q-V Realm Circuit Blocks

The purpose of partitioning a circuit in simulation is to decrease the required

memory and computational effort for processing and storing circuit equations. Since there

are I-V realm simulation and the Q-V realm simulation engines in the SAMOC, it is

feasible to partition the simulated circuit into several blocks, and some blocks can be

analyzed using the I-V realm engine while different blocks can be analyzed using the Q-V

realm engine. The I-V realm engine may employ the Katzenelson algorithm for interactive

solution seeking method, and the Q-V realm engine employs a direct method. The

separation of I-V and Q-V realm blocks also avoids the interactive solution seeking

method being employed to analyze a Q-V realm block. To realize this approach, I-V realm

blocks are considered to contain only I-V realm devices, and the Q-V realm blocks contain

only Q-V realm devices. While analyzing a circuit block, an area of memory in a computer

system is allocated by SAMOC for restoring and solving circuit equations, the known

voltage values are obtained from the main node list of the circuit. After either I-V or Q-V

110

realm analysis, the new voltage values are written back to the node list and the memory

allocated for analyzing circuit equations is released back to the computer system for better

efficient usage of the computing resources. According to (6.1), the more blocks a circuit

is partitioned into, the less computational effort is demanded. By simulating a circuit one

block at a time, a resource-limited computer system can analyze a relatively large circuit.

6.2.1 I-V Realm Blocks

An I-V realm block is constructed by a group of circuit devices which can be

analyzed by KCL and MNA independently from other parts of the simulated circuit. Since

the I-V realm analysis is based on nodal analysis and KCL, an I-V realm block defined in

SAMOC is a group of interconnected nodes and devices for which the only terminals with

nonzero current are the ground and voltage source terminals. That is, if there is any

resistive link(s) between two nodes in a circuit other than voltage sources and ground

nodes, then these two nodes and the resistive link(s) should be in the same I-V realm

block.

An I-V realm block is usually surrounded by voltage sources, ground connections

and capacitors. Fig. 6.1 shows an idea of partitioning a circuit into three I-V blocks. The

capacitors which link I-V block together are treated as open circuits in DC analysis, since

there is no DC current passing through a capacitor. Note that the nodes connected with

voltage sources or ground can be shared by many I-V realm blocks, because there is no

KCL equation written at ground nor at the output of the voltage sources.

111

an I-V realm block
an I-V realm block

an I-V realm block
+
-

V1
+
-

V2

Fig. 6.1 A simulated circuit is partitioned into 3 I-V realm blocks.

6.2.2 Shareable Devices and Shareable Nodes

In MNA, there is no KCL equation written in a node which connects to a voltage

source or the ground. The voltage value of this type of node is determined before analysis

procedure is applied and the amount of current flows through this node can have any

value. The nodes connecting a voltage source can be divided into many nodes, as shown

in Fig. 6.2 and this voltage source separation will not influence the MNA applied. This

simple resistive network can be divided into two I-V realm blocks by tearing node “1” and

“0” into two nodes. In this scenario, the independent voltage source V1, node “1” and

node “0” can belong to both I-V realm blocks. SAMOC sets nodes of this kind as shared

nodes and the independent voltage sources as shareable devices, so that they can be

included in several different I-V realm blocks. A Boolean variable m_bIsASharableNode

is added to the class CNode to represent this shareable characteristic. The setting of the

112

Boolean variable m_bIsASharableNode in programming SAMOC is done by searching

the device list. Nodes connected with an independent or outputs of a controlled voltage

source have their m_bIsASharableNode set to TRUE. Otherwise, the

m_bIsASharableNode of a node is set to FALSE. For the example shown in Fig. 6.2 (a).

Nodes “1” and “4” and “0” have their m_bIsASharableNode set to TRUE. The

m_bIsASharableNode of node “2” and “4” are set to FALSE.

+
-

+
-

V1

V2

1

2 3

4

(a)
0

r1

r2 r3

+
-

+
-

+
-

V1

V2

1

2 3
V1

1

4

(b)
00

r1

r2
r3

Fig. 6.2 An example of sharing node 1, 0 and V1 in circuit partitioning.

6.2.3 I-V Realm Devices

I-V realm devices which are used to construct I-V realm blocks are resistive

devices, short circuits and current sources. The resistive devices supported by SAMOC

are resistors or MOS transistors as shown in Fig. 6.3. A resistive device is constructed by

a resistive link and two I-V connecting nodes. For a resistor shown in Fig. 6.3 (a), the

resistor itself is a resistive link and the two I-V connecting nodes are “1” and “2” . For

113

MOS transistor shown in Fig. 6.3 (b), the channel between source and drain is a resistive

link and the two I-V connecting nodes are “1” and “3” as shown in Fig. 6.3 (c) .

R

(a)

M

(b) (c)

1

2

3

1

2

3

1

2

Fig. 6.3 Resistive devices.

The current devices and short circuits supported by SAMOC are an independent

current source (Fig. 6.4 (a)), a voltage controlled current source (Fig. 6.4 (b)), a current

controlled voltage source (Fig. 6.4 (c)) and a current controlled current source (Fig. 6.4

(d)). Similar to resistive devices, the current devices also have two I-V connecting nodes.

For an independent current source shown in Fig. 6.4 (a), the two I-V connecting nodes

are “1” and “2”. For a voltage controlled current source shown in Fig. 6.4 (b), the two

I-V connecting nodes are “3” and “4”. For a current controlled voltage source shown in

Fig. 6.4 (c), the two I-V connecting nodes: “1” and “2”. For a current controlled current

source shown in Fig. 6.4 (d), there are two pairs of I-V connecting nodes are “1” and “2”

as well as “3” and “4”. The placement of the I-V connecting nodes of a current controlled

current source in different blocks will be taken cared by the I-V block extraction process

described in section 6.2.5.

114

1

2

3

4

1

2

3

4

(b)

+
-

1

2

3

4

(c) (d)

1

2

(a)

Fig. 6.4 Current devices.

The other devices which can also be included in a I-V realm block are ideal diodes,

switches, voltage controlled voltage sources, ideal voltage sources and OPAMPs. These

devices are allowed to appear in both I-V or Q-V realm blocks. If they are connected with

I-V realm devices, as in the example on Fig. 6.5 (a), they are I-V realm devices. If they

are connected with Q-V realm devices such as the example in Fig. 6.5 (b), they are Q-V

realm devices. If they are connected with both I-V and Q-V realm devices, such as the

example in Fig. 6.5 (c), they are Q-V realm devices, since in I-V realm DC analysis the

effect caused by capacitors is discarded. The diode in Fig. 6.5 (c) does not effect the

resistive network in the left part of the circuit. But the diode will influence the Q-V realm

analysis in the right part of the circuit. In such case, the I-V realm analysis has to be

performed first before the Q-V realm analysis. The ordering of interconnected circuit

blocks for simulation will be presented section 6.2.8.

115

(a) (b) (c)

Fig. 6.5 (a) A diode link between two I-V realm nodes, (b) a diode link between
two Q-V realm nodes, (c) a diode link between an I-V realm node and a Q-V
realm node.

6.2.4 I-V Realm Block Extraction

I-V realm blocks are constructed by interconnected I-V realm devices via I-V realm

nodes. The I-V realm block extraction begins with finding a non-included two-terminal

I-V realm device, (usually a resistor, a MOS transistor or an independent current source).

I-V realm devices of this kind usually connect with two I-V realm nodes and these two

nodes connect with other I-V realm devices. Then these I-V realm devices are connected

with other I-V realm nodes. The I-V realm block extraction procedure is constructed by

including new I-V realm devices connected to its I-V realm nodes, and including new I-V

realm nodes connected included I-V realm devices alternately. The included nodes and

devices must be marked to prevent infinity loops. The extraction procedure does not

include new I-V realm devices from shareable nodes. The extraction procedure stops

116

when all connected devices are included and marked. The voltage source then will be

added if a circuit block contains both nodes of the voltage source. For a simple example,

in the circuit in Fig. 6.2 (a), the extraction begins at including the resistor r1 and steps of

action are illustrated in table 6.1.

Table 6.1 An I-V block extraction example.

This block
contains node
1 and 0. V1 is

included

V1, r1, r2
1, 2 ,0

V13

node 0 is
shareable

r1, r2
1 ,2 ,0

2, 0
r2

(from node 2)
2

node 1 is
shareable

r1
1,2

1, 2r11

remark
devices and

nodes in the I-V
realm block

new nodesnew devicestep

The software implementation of I-V realm block extraction can exploit the massive

interconnected data structure of SAMOC, which are presented in Chapter 2. As

illustrated in Fig. 2.3, it is easy to locate the connecting nodes from a device and from a

node to locate its connected device. The programming technique used in SAMOC for I-V

realm extraction is recursive. The subroutine which searches and includes a device

incident to a node is applied to each new included device and its nodes. Each subroutine

ends when for all its processed device, their nodes are

1. I-V realm nodes whose all interconnected devices are included, and

2. shareable nodes

117

Next section presents more detail about including controlled source, voltage source,

switches, and OPAMPs, into an I-V realm block.

6.2.5 Including Controlled Sources and MOS Transistors into an I-V Realm Block

The initialization of an I-V realm block does not begin with a controlled source,

since a controlled source can belong to different blocks. For example, in Fig. 6.4(d), there

is no current from node “1” to node “4”. An I-V realm block which contains nodes “1”

and “2” can be analyzed independently from the I-V block which contains nodes “3” and

“4”. An I-V realm device, except the initial one, is included in an I-V realm block through

a node connection with an already included device. The including procedure depends on

the device type and connecting node. Among them, controlled sources are more complex

then other type of devices, since any two nodes of a controlled source could be a short

circuit, an open circuit, current source or voltage source.

For MOS transistors, as shown in Fig. 6.4 (b-c), there is no DC current connection

between gate to source or gate to drain. Gate can be treated as open circuit and a

separable node. In I-V realm block extraction, different rules are applied to different types

of devices and different terminals (nodes). The comprehensive descriptions of devices

inclusion are summarized in Table 6.2.

118

Table 6.2 The descriptions of including devices into an I-V realm circuit block.

do
nothing

2
Yes

will be added by
another
procedure

do
nothing

1
V

independent
voltage
source

do
nothing

2

No
it’s an open
circuit in I-V
realm analysis

do
nothing

1
Ccapacitor

include
node “1”

2
Yes

a current source
connect “1” and
“2”

include
node “2”

1
I

independent
current
source

include
node “1”

2
Yes

resistive link
between “1” and
“2”

include
node “2”

1

Rresistors

include
to the

I-V
block?

remarksaction
connection

node
number

SPICE
symbol

circuit device

include
node “3”

4
Yes

a current source
connect “3” and
“4”

include
node “4”

3

it’s an open
circuit

do
nothing

2
No

it’s an open
circuit

do
nothing

1

G

voltage
controlled
current
source
Fig. 6.4 (b)

do
nothing

4

will be added by
another
procedure

do
nothing

3

include
node “1”

2
Yes

a short circuit
connect “1” and
“2”

include
node “2”

1

H

current
controlled
voltage
source
Fig. 6.4 (c)

119

Table 6.2 (Continued)

No
not used by
SAMOC

do
nothing

4

Yes

a resistive link
between “1” and
“3”

include
node “1”

3

No
it’s an open
node

do
nothing

2

Yes
a resistive link
between “1” and
“3”

include
node “3”

1

M
MOS
transistor
Fig. 6.4 (b)

include
node “3”

4

a current source
connect “3” and
“4”

include
node “4”

3

include
node “1”

2
Yes

a short circuit
connect “1” and
“2”

include
node “2”

1

F

current
controlled
current
source
Fig. 6.4 (d)

do
nothing

4
Yes

will be added by
another
procedure

do
nothing

3

do
nothing

2
No

open circuit
between “1” and
“2”

do
nothing

1

E

voltage
controlled
voltage
source

3

2
Yes

will need another
procedure

do
nothing

1
O

(not in
SPICE)

OPAMP

include
node “1”

2
Yes

a possible short
circuit between
these two nodes

include
node “2”

1
Dideal diode

4
No

they are open
circuits

do
nothing

3

include
node “1”

2
Yes

a possible short
circuit between
these two nodes

include
node “2”

1

S
voltage
controlled
ideal switch

120

6.2.6 Adding Voltage Sources into An I-V Realm Block

Four types of voltage sources are supported by SAMOC: independent voltage

source, voltage controlled voltage source, current controlled current source and OPAMP.

Because there is no KCL equation written at the terminals of these voltage sources and

these sources are shareable device as illustrated in Fig. 6.2, including voltage source into a

circuit block requires another procedure.

An independent voltage source is a two-terminal device which connects two

nodes. It is added into an I-V block if that block contains both nodes. The voltage

controlled voltage source is a four-terminal device and connects with four nodes. Inside

the device, it is an open circuit between the first and second nodes and there is no equation

for these two nodes. Hence, the first and second nodes can be discarded. It is a voltage

source between the third and forth nodes. The voltage controlled voltage source is added

into an I-V block, if that block contains the third and forth nodes.

Similar to a voltage controlled voltage source, a current controlled voltage source

is a four-terminal device. A current controlled voltage source has a short circuit between

its first and second nodes and a voltage source between its third and forth nodes. In I-V

realm block extraction, a current controlled voltage source is divided into two parts and

can belong to different I-V realm blocks. The I-V realm block which contains the first and

second nodes has the short circuit part. The I-V realm blocks which contain the third and

forth nodes have the voltage source part. Note that similar to other voltage sources, the

voltage source part of a current controlled source can belong to many I-V blocks.

121

OPAMP is a special condition of the voltage controlled voltage source type of

device. An OPAMP connects to three nodes. Similar to a voltage controlled voltage

source, an OPAMP is added into the I-V block which contains the third node of the

OPAMP.

6.2.7 Data Structure for I-V Realm Block Partitioning

The objects representing I-V realm blocks in SAMOC are of the class of

CCircuitBlock. The organization of CCircuitBlock illustrated in Fig. 6.6 is very

similar to CCircuit presented in Chapter 2. CCircuitBlock contains two main lists of

pointers. One is the device list which can locate the devices included in the I-V realm

block. The other is the node list which is used to locate nodes in the I-V realm block. In

analyzing the I-V realm block, the known voltage and current values or initial conditions

can be obtained from the node list of object of CCircuit. The device list can be used to

generate the MNA models. One pointer which can locate the address of an object of

CCircuitBlock is added to the device class (C2Term) and the node class (CNode).

Therefore, in future data manipulation, it takes a little effort to know which circuit block a

device or a node belongs to. As illustrated in Fig. 6.6 each node and each device has a

pointer which locate its circuit block. Adding this variable helps the speed of circuit block

extraction because this variable helps avoiding infinity loops. Another function of this

variable is that it accelerates the setting the block simulation order which is presented in

the section 6.2.8.

122

A node, except a shareable node, can only be included in one circuit block. For

the shareable nodes, the embedded pointer to circuit block is useless. Nodes of all

controlled sources, voltage controlled switches, and OPAMPs can belong to different

circuit blocks. For voltage controlled current sources, voltage controlled voltage sources,

voltage switches, and OPAMPs, the controlling nodes are open circuits and there is no

equation for controlling nodes. Hence, for controlled current sources, voltage controlled

voltage sources, voltage controlled switches, and OPAMPs, their circuit block pointers

locate the circuit block which contains their output nodes. For current controlled voltage

sources and current controlled current sources, there are circuit equations for both

controlling and controlled nodes. The controlled (output) nodes of a current controlled

voltage source are shareable and can belong to many circuit blocks. Some procedures are

required to finish the work, such as adding voltage sources procedure presented in section

6.2.6. For current controlled current sources, KCL is applied to both controlling and

controlled parts of the device. One further pointer to a circuit block is added for this

device. Therefore, all device objects except the current controlled current source objects

in SAMOC have a simple pointer to a circuit block. The current controlled current source

objects have two pointers to circuit blocks. A circuit block list (list of pointers to circuit

blocks) is added into CCircuit class for managing all extracted circuit blocks.

123

A list of device pointers

A list of node pointers

device
objects

node
objects

An object
of
CCircuitBlock

Fig. 6.6 Data structure organization of a circuit block.

6.2.8 Posterior-Prior Relationships Between Circuit Blocks for Analysis

All controlled devices have controlling node(s) and controlled nodes. The device

models or parameters of the controlled parts are determined by the controlling parts of the

device. In the circuit analysis presented in Chapter 3, SAMOC creates all circuit equation

in MNA and KCL algorithms and finds solutions at one linear or piecewise linear system.

All variables of controlled devices are formulated and solved at the same time.

In the circuit block analysis, the controlling parts and the controlled parts of a

device may not belong to the same circuit block. In this scenario, the circuit block(s) with

124

the controlling parts must be analyzed prior to the circuit block(s) with the controlled

parts.

The controlled devices supported by SAMOC are voltage controlled current

sources, voltage controlled voltage sources, current controlled current sources, current

controlled voltage sources, voltage controlled switches and MOS transistors. For voltage

controlled current sources, voltage controlled voltage sources, current controlled current

sources and current controlled voltage sources, the circuit blocks containing the first and

second nodes have to be analyzed prior to the circuit blocks containing the third and

fourth nodes. For voltage controlled switches, circuit blocks containing the third and

fourth nodes have to be analyzed prior to the circuit blocks containing the first and second

nodes. For a MOS transistor, the circuit block containing the second node has to be

analyzed prior to the circuit blocks containing the first and third nodes.

The posterior-prior relationship setting of circuit blocks exploits the data structure

presented in Chapter 2 and section 6.2.7. As illustrated in Fig. 2.3, for all controlled

sources, it is easy to locate nodes. Fig. 6.6 shows that each node has a pointer to the

circuit block which contains this node. Therefore, it does not cost much effort to know if

a controlled device is connected to two different circuit blocks. For a controlled device

that connects two different circuit blocks, the posterior-prior relationship of the two

circuit blocks for analysis is easy to be found and set. For the example illustrated in Fig.

6.7, from a transistor Mx shown in Fig. 6.7(a), it is easy to know that the node “2” of Mx

belongs to a different circuit block (block a) than nodes “1” and “3” (block b) do. A

125

direction link to block b, implemented by a pointer, is added to block a to mark that

analyzing of block a has to be prior to analyzing block b, as shown in Fig. 6.7 (b).

block a block b

(a)

block a block b

(b)

1

2

3

Mx

Fig. 6.7 An example of posterior-prior setting of two circuit blocks.

For the example illustrated in Fig. 6.8, both block “a” and “b” must be analyzed

prior to block “f” and block “f” has to be analyzed prior to block “g” and “d”. For the

complex prior-posterior relationships, two circuit block lists (lists of pointers to circuit

blocks) are added to CCircuitBlock class. One circuit block list is added to locate the

circuit blocks which have to be analyzed prior to “this” circuit block. The other circuit

block list locates the circuit blocks which have to be analyzed posterior to “this” circuit

block. The massive interconnection between circuit blocks for the prior-posterior

relationships speeds up the event-driven analysis which is presented in Chapter 7. Fig. 6.8,

representing a circuit by circuit block and signal between blocks, is call a block-signal

diagram of a circuit. In computer programming, the block-signal diagram is represented

126

by a directed graph. Many algorithms invented for manipulating a directed graph direct

such as topology sorting and least cost path can be used to handle the block-signal

diagram tasks.

a

b

c

d

e

f

g

 Fig. 6.8 A block-signal diagram of a circuit which contains 7 circuit blocks.

6.3 Device Stamps Modification for Analyzing I-V Realm Blocks

In order to analyze a circuit block, the device stamps for MNA presented in

Chapter 2 have to be modified, because all nodes of some devices may not belong to the

same circuit block. The devices whose stamps have to be modified for block analysis are

MOS transistors, voltage controlled voltage sources, voltage controlled current sources,

current controlled voltage sources and current controlled current sources.

6.3.1 MOS Transistors (M)

The MOS transistor model in SAMOC has three regions. The device stamps are

illustrated by (2.11), (2.13) and (2.15). For block analysis, if the gate of the MOS

127

transistor belongs to the same block as the drain and the source belong to, then the device

model used for the block is the same as presented in Chapter 2. If the gate is not in the

same circuit block with the drain and the source, then the circuit containing the gate has to

be analyzed prior to the one containing drain and source. After Vg is obtained, the state of

the MOS transistor can be determined. If the MOS transistor is in the cutoff region, then

(2.11) is filled in to the circuit matrix of circuit block which contains drain and source of

the transistor. If the MOS transistor is in the linear region, then (2.13) is filled in to the

circuit matrix of circuit block which contains drain and source of the transistor. If the

MOS transistor is in the saturation region, then (2.15) is modified to

(6.2)

V V
D

S

G G g

G G g

g V V

g V V

D S

m

m

m t g

m t g

excitation vector

min min

min min

()

()

− −

− +

L

N

MMMM

O

Q

PPPP

−

− −

L

N

MMMM

O

Q

PPPP

and filled in to the circuit matrix of the circuit block which contains drain and source of

the transistor.

6.3.2 Voltage Controlled Voltage (E) and Current Sources (G)

The two controlling nodes of voltage controlled voltage and current sources can

be any two nodes in the circuit. There are three kinds of possible situations for a voltage

controlled source whose controlling node(s) is (are) not in the same circuit block as the

their output nodes. For the situation shown in Fig. 6.9 (a), the circuit blocks a and b

128

which contain controlling nodes of the controlled device, 1 and 2, have to be analyzed

prior to the block c which contains the output of the controlled sources. For the situation

shown in Fig. 6.9 (b), the circuit block a which contains both controlling nodes of the

controlled device, 1 and 2, must be analyzed prior to the block c which contains the

output of the controlled sources. In situations presented in Fig. 6.9 (a) and (b), the

voltages of two controlling nodes, V(1) and V(2), are estimated prior to analyzing the

circuit block containing the controlled source. While analyzing the circuit block

containing the controlled source, the controlled source is treated as an independent source

with the output value as a function of V(1) and V(2).

For the situation illustrated in Fig. 6.9 (c), the circuit block “c” contains a voltage

controlled source and one of its two controlling node, “1”, is included in another circuit

block “a”. The circuit block “a” has to be analyzed prior to “c”. The device stamps of the

voltage controlled sources in this case as follows:

1. For the voltage controlled current source with node “1” belonging to other

circuit block, V1 must be estimated prior to analyzing the block that contains this voltage

controlled current source. The device stamp for the voltage controlled current source is:

(6.3)

V
g

g

g V

g V

2

1

1

3

4

−L
NM

O
QP

×
×

L
NM

O
QP

excitation voctor

-

2. For the voltage controlled current source with node “2” belonging to other

circuit block, V2 must be estimated prior to analyzing the block that contains this voltage

controlled current source. The device stamp for the voltage controlled current source is:

129

(6.4)

V
g

g

g V

g V

1

2

2

3

4 −
L
NM

O
QP

×
− ×
L
NM

O
QP

excitation voctor

3. For the voltage controlled voltage source with node “1” belonging to other

circuit block. V1 must be estimated prior to analyzing the block that contains this voltage

controlled voltage source. The device stamp for the voltage controlled current source is:

(6.4)

V V V I

m V

2 3 4

1

2

3

4

1

1

1

1 1+
−

−

L

N

MMMM

O

Q

PPPP ×

L

N

MMMM

O

Q

PPPP
µ µ

excitation voctor

4. For the voltage controlled voltage source with node “2” belonging to other

circuit, and V2 must be estimated prior to analyzing the block that contains this voltage

controlled voltage source. The device stamp for the voltage controlled current source is:

(6.5)

V V V I

m V

1 3 4

2

1

3

4

1

1

1

1 1+
−

− −

L

N

MMMM

O

Q

PPPP − ×

L

N

MMMM

O

Q

PPPP
µ µ

excitation voctor

For the situation in Fig. 6.9 (d), where all four terminals of a voltage controlled

source belong to the same circuit block, the device stamp remains the same as presented in

Appendix I.

130

a

b

controlled
source

c

controlled
source

c

a

(a) (b)

1

2

3

4
1

2

3
4

controlled
source

c

controlled
source

c

a

(c) (d)

1

2

3
4

1
2

3
4

Fig. 6.9 A voltage controlled source with its controlling node in many circuit
blocks.

6.3.3 Current controlled voltage source (H)

For a current controlled voltage source, there is only one situation where its

controlling nodes and controlled nodes do not belong to the same circuit block. Fig. 6.10

illustrates this situation where controlling nodes (1 and 2) belong to block a, and the

controlled nodes (3 and 4) belong to block b.

131

+
-

I V=r I

block bblock a

1

2

3

4

Fig. 6.10 A current controlled voltage source whose controlling nodes and
controlled nodes do not belong to the same circuit block.

In block a, the current controlled voltage source is a short circuit. Block a must

be analyzed before block b in order to obtain the magnitude of current I in block a. The

circuit stamp for the current controlled voltage source in block a is:

(6.6)

V V I

m

1 2

1

2

1

1

1

1 1+
−

−

L

N
MMM

O

Q
PPP

The controlled nodes of the current controlled voltage source in block b are

treated as an independent voltage source. Since the current I has been obtained by

analyzing block a and r is the parameter provided by the current controlled voltage

source, the device stamp for the controlled part of the current controlled voltage source is:

132

(6.7)

V V I

m r I

3 4

3

4

1

1

1

1 1+
−

−

L

N
MMM

O

Q
PPP ×

L

N
MMM

O

Q
PPP

excitation vector

6.3.4 Current controlled current source (F)

For a current controlled current source, there is only one situation where its

controlling nodes and controlled nodes do not belong to the same circuit block. Fig. 6.11

illustrates this situation where controlling nodes (1 and 2) belong to block a, and the

controlled nodes (3 and 4) belong to block b.

In block a, the current controlled current source is a short circuit. Block a has to

be analyzed before block b in order to obtain the magnitude of current I in block a. The

circuit stamp for the current controlled current source in block a is:

(6.8)

V V I

m

1 2

1

2

1

1

1

1 1+
−

−

L

N
MMM

O

Q
PPP

The controlled nodes of the current controlled current source in block b are

treated as an independent current source. Since the current I has been obtained by

analyzing block a and α is the parameter provided by the current controlled current

source, the device stamp for the controlled part of the current controlled source is:

133

(6.9)
excitation vector

3

4

− ×
×

L
NM

O
QP

α
α

I

I

I

block bblock a

1

2

3

4
Iα

Fig. 6.11 A current controlled current source whose controlling nodes and
controlled nodes do not belong to the same circuit block.

6.4 Q-V Realm Blocks

A Q-V realm block is constructed by a group of circuit devices which can be

analyzed independently from other parts of the simulated circuit by conservation of charge

and MNA from other part of the simulated circuit. In SAMOC, a Q-V realm block

contains only Q-V realm devices which are capacitors, ideal switches, ideal diodes, voltage

controlled voltage sources and OPAMPs. The simulation engine of Q-V realm blocks is

the switched-capacitor simulator presented in Chapter 4.

Similar to analyzing procedure of I-V realm blocks, the Q-V realm simulator reads

the voltage data from the main node list that belongs to the object of the CCircuit class,

134

and after the Q-V realm block analyzing, the new voltage values are written back to the

main node list.

6.4.1 Q-V Realm Block Extraction

The extraction of a Q-V realm block is very similar to the extraction of an I-V

realm block. The extraction begins with finding a capacitor with a least one terminal

connecting with a Q-V realm node. If a capacitor is connected with two I-V nodes, as

illustrated in Fig. 6.12, then there is no conservation of charge equation for that capacitor.

That capacitor can be discarded in DC analysis, because it is treated as an open circuit. A

Q-V realm node always connects with at least two Q-V realm devices. The Q-V realm

node is included into the Q-V realm block and then the Q-V realm devices are included.

The extraction procedure is constructed by including Q-V realm devices and nodes

alternately. The location of connected devices from nodes and connected nodes from

devices can be efficiently performed in large circuit using data structure in SAMOC which

was presented in Chapter 2.

The inclusion of controlled sources into a Q-V realm block is much simpler than

their inclusion into an I-V realm block. The only allowed controlled source in a Q-V realm

block is a voltage controlled voltage source. In MNA of a Q-V node, the characteristic

between two controlling nodes of a voltage controlled voltage source is an open circuit,

and the characteristic between two controlled nodes is a voltage source.

135

C

Fig. 6.12 A capacitor C connects with two I-V realm nodes.

During the device inclusion step of the Q-V block extraction, a device is included

into the block via a connecting node. The process of including a device into a circuit

block not only depends on the type of included device but also on the node of the device.

Table 6.3 illustrates the comprehensive description of including a device into a Q-V block

via a connection node.

Table 6.3 The rules for inclusion of devices into a Q-V realm block.

 2
Yes

will need
another

procedure to
add voltages

1

V
independent

voltage
source

include
node “1”

2
Yes

capacitive link
between “1” and

“2”

include
node “2”

1
Ccapacitor

include
device

into Q-V
block?

remarksaction
connectio
n node of
the device

SPICE
symbol

device type

136

Table 6.3 (Continued)

4

needs another
procedure to
add voltages

do
nothing

3

2

Yes

open circuit
between these 2

nodes

 do
nothing

1

E

voltage
controlled

voltage
source

include
node “1”

2

yes
a possible short
circuit between

these two nodes

include
node “2”

1
DIdeal diode

no
shouldn’t

happen, it’s an
I-V realm node

do
nothing

4

no
shouldn’t

happen, it’s an
I-V realm node

do
nothing

3

yes
parasitic

capacitors

create a
Cgs, Cgd

and Cgb

2

no
shouldn’t

happen, it’s an
I-V realm node

do
nothing

1

M
MOS

transistor

4
Yes

needs another
procedure to
add voltages

do
nothing

3

2
No

a short circuit
with DC current
shouldn’t take
place in a Q-V

realm block

do
nothing

and send
an error
message

1

H

current
controlled

voltage
source

137

Table 6.3 (Continued)

3

2
will need another procedure

to decide
do

nothing

1
O

(not in
SPICE)

OPAMP

4
no

inside the
device, it’s an
open circuit

between these
nodes

do
nothing

3

include
node “1”

2

yes

a possible short
circuit between

these two nodes

include
node “2”

1

SIdeal switch

6.4.2 Including Voltage Sources and OPAMPs into a Q-V Realm Block

Adding voltage source and OPAMPs into a Q-V realm block requires an additional

procedure, because output nodes of voltage sources and OPAMPs are shareable nodes

and can belong to many different circuit blocks which may be I-V realm or Q-V realm

blocks.

Adding an independent voltage source into a Q-V realm block is done by checking

if this Q-V node has both nodes connected to the two terminals of the independent voltage

source. Adding a voltage controlled or current voltage source in to a Q-V realm block is

done by checking if this Q-V node has both nodes which connect to the two controlled

nodes of the controlled source. Note that the controlling nodes of a current controlled

voltage source can not be included into a Q-V realm block, because there is no DC current

in any Q-V realm block.

138

An ideal OPAMP is a special case of a voltage controlled voltage source and it is

not supported in SPICE. An ideal OPAMP requires a feedback link. There are several

possible feedback link organizations, as illustrated in Fig. 6.13. If the feedback link with

an OPAMP is as shown in Fig. 6.13 (a), then they can be included in an I-V realm block.

-
+

-
+

(a) (b)

-
+

-
+

(c) (d)

-
+

(e) (f)

-
+

Fig. 6.13 Feedback link and OPAMPs.

If the feedback link with an OPAMP is as shown in Fig. 6.13 (b), then it can be

included in a Q-V realm block. For situations illustrated in Figs. 6.13 (c- f), neither I-V

139

realm nor Q-V realm simulation engine can find out the DC solution. These cases will

require a frequency domain analysis or integration techniques. Note that this discussion

on feedback links with OPAMPs is greatly simplified. In general circuits, feedback links

with OPAMPs can be very complex. SAMOC will try to organize I-V and Q-V realm

block no matter how complicated the feedback loop is. Therefore, if the feedback loops

extends beyond a single block, the algorithm provides a solution which converges to a true

value only after several iterations.

6.4.3 Analyzing Q-V Realm Blocks Incident with I-V Realm Blocks

The analysis of a Q-V realm block employs the switched-capacitor simulation

engine presented in Chapter 4. To analyze a Q-V realm block which has connection to

other I-V realm blocks, such as illustrated in Fig. 6.14 (a), some pseudo voltage sources

V1 and V2 must be added to the Q-V realm block, as illustrated in Fig. 6.14 (b). Because

the values of V1 and V2 are determined by the I-V realm block, the I-V realm block has to

be analyzed prior to the Q-V realm block. The procedure to add a pseudo voltage sources

is:

1. Pseudo voltage sources are only applied to Q-V realm blocks while that Q-V realm

block is analyzed. That is, pseudo voltage sources are tentative entities in

SAMOC simulation.

2. A pseudo voltage source is added to a Q-V realm device which has one node

connected to a Q-V realm node and the other connected to an I-V realm node. The

140

added pseudo voltage source connects to the I-V realm node of the Q-V realm

device as shown in Fig. 6.14(b).

3. When a pseudo voltage source is added, a posterior-prior relationship between a

Q-V realm block and an I-V realm block needs to be set.

separation

I-V realm block "a" Q-V realm block "b"

V1

V2

+
-

(a) (b)

V1

V2

Q-V realm block "b"

+
-

Fig. 6.14 Illustration of an interface between an I-V realm block and a Q-V realm
block and pseudo voltage sources V1 and V2.

6.4.4 The Q-V realm Block Class

In C++ implementation of SAMOC, the Q-V realm block class that is used to

represent Q-V realm blocks is very similar to the I-V realm class. A Q-V realm block

contains a list of devices and a list of nodes. The lists are constructed by pointers which

locate the address of device and the node objects. In addition to the device and the node

141

lists, each block has two circuit block lists. These two lists, which contain pointers to

other circuit blocks, are used to represent the posterior-prior relationships between blocks.

One list locates the blocks which this block has to be analyzed prior to. The other list

locates the blocks posterior to which this block must be analyzed.

6.5 Summary

The KVL circuit formulation and conservation of charge are used in SAMOC.

The former is applied to I-V realm nodes of a circuit and the latter is applied to Q-V realm

nodes. All nodes in a circuit are Q-V realm nodes unless they are connected with an I-V

realm device, since an I-V realm device will inject or extract current into or from the node

it connects. There is no steady current in Q-V realm analysis.

To improve the simulation efficiency, a circuit can be partitioned into several

blocks and the circuit simulation can be achieved by analyzing circuit block individually

instead of whole simulated circuit. The massive interconnecting data structure of SAMOC

makes circuit partitioning of a circuit feasible and even easier. The circuit partitioning is

realized by circuit block extraction and a circuit block is a portion of the simulated circuit

which can be formulated and solved independently from other part of the simulated circuit.

The basic process of circuit block extraction is to include a device from a node and then

searches all devices incident with the other node(s) of the included device. The whole

circuit block extraction consists of including devices and nodes alternately. Different

types of devices have different rules of inclusion into a circuit block. There are two kinds

142

of circuit blocks: I-V realm and Q-V realm. An I-V realm block is a resistive network and

a Q-V realm block is a capacitive network.

The nodes of many kinds of devices such as controlled sources and MOS

transistors can belong to different circuit blocks. In this situation, a posterior-prior

relationship between two circuit block has to be established and represented by a directed

graph. The direct graph of a circuit presenting the circuit blocks and signals between

blocks is called the block-signal diagram. By this means, analyzing a circuit block

becomes a very important mechanism in SAMOC. MNA is used in formulating circuit

block as well as formulating the whole circuit as discussed in Chapter 2. For devices

whose nodes can belong to different circuit block, some modification of the device stamps

presented in Chapter 2 are set and presented in this chapter.

In addition to a device whose nodes may belong to different blocks, if a Q-V realm

block connects with I-V realm block(s), then the other type of posterior-prior relationship

is also created. In this situation, pseudo voltage sources have to be added to the Q-V

realm nodes while the Q-V realm block is analyzed. After all posterior-prior relationships

between circuit blocks are settled, a directed graph called block-signal diagram is created

to represent and store the information. Accordingly, the device-node problem in circuit

analysis is transfer into a block-signal problem. Chapter 7 will presents the simulation

method based on the block-signal diagram.

143

Chapter 7

ANALYSIS OF INDIVIDUAL CIRCUIT BLOCK AND

CIRCUIT SIMULATION VIA BLOCK-SIGNAL

DIAGRAM

In addition to requiring less memory, analyzing a circuit individually by block can

decrease the number of piecewise linear regions and accelerate the convergence of the

Katzenelson algorithm. With the mechanisms of circuit block extraction and settlement of

posterior-prior relationship between blocks, SAMOC transfers the device-node problem of

circuit simulation into a block-signal problem. The directed block graph, called the

block-signal diagram, represents the topology of a simulated circuit in a higher abstraction

level. In the directed block graph, the vertices are circuit blocks and the edges are the

interactive signals between blocks. The signal delay can be restored as a form of the

144

weight of an edge. This chapter presents simulation schemes and ideas about analyzing a

circuit from its block-signal diagram.

7.1 Analysis of an Individual Circuit Block

The basic process of simulation via a block-signal diagram is the analysis of

individual block. There are two types of circuit blocks: an I-V realm block and a Q-V

realm block. In the C++ implementation of SAMOC, two classes, which are categorized

as the solving classes, are designed to handle and manage the analysis tasks for two types

of circuit blocks. The tasks defined in the solving classes are memory acquisition, circuit

equation formulation and solving the equations. In a resources-limited computer system,

an object of a solving class is created when analyzing a block is required, and the created

object is destroyed after the block is analyzed. By destroying an object of a solving class

after block analysis, the computer system can recycle and reuse the computer’s resources

efficiently.

7.1.1 Solving Class for I-V realm block analysis

In SAMOC, there is a class named CSolveIVCB (class for solving an I-V realm

block) which is designed to execute and manage the equation generating and solving

procedures and memory management tasks. An object of CSolveIVCB is created when an

I-V realm circuit block is to be analyzed. After the analysis, the created object is destroyed

145

and the memory is released back to the system. The tasks which need to be done during

the life period of an object of the CSolveIVCB are:

1. Read the circuit block’s device data and node voltages: Each circuit block

has a device list and a node list. The device list and the node list offer the circuit

block topology information. Furthermore, the node list contains the initial

conditions before the circuit block is analyzed. The initial conditions are used as

the initial guess of the iterative algorithm.

2. Estimate the required memory for MNA analysis: The required memory for

solving the I-V block consists of N2 + 2N double precision words. N2 is for the

modified nodal equation matrix and 2N is for the source (excitation) vector and

the solution vector. N is estimated using (2.1), but the devices and nodes are

limited to those included in the analyzed circuit block only.

3. Formulate the circuit equations by filling in the device stamps: The MNA

analysis presented in Chapters 2 and 3 is applicable to the circuit blocks as well

as to the whole circuit. Software implementation of using the device stamps

exploits the virtual functions of the C++ language. Virtual functions also make

the coding of program brief and each virtual function can be updated

independently.

4. Determine the solution of the MNA matrix: Since the piecewise linear

approach is employed to model MOS transistors and ideal diodes, the

Katzenelson algorithm is employed to determine the solution. Virtual function

techniques in C++ programming are used to find the scaling factor for each

146

piecewise linear approached device. The smallest scaling factor, tmin, is chosen

by comparing scaling factors of all piecewise linear devices. tmin is essential to

the Katzenelson algorithm.

5. Update the solution: The data in the solution vector are written back to the

main node list of the circuit via the node list owned by the circuit block.

6. Release the acquired memory and destroy the solving object: If the object

of CSolveIVCB class is created in stack, then the object will be automatically

destroyed while the program runs out of scope. If the object of CSolveIVCB

class is created in heap by command "new", then the object have to be

destroyed by the command "delete" and free the memory. For a

resource-limited computer system, creating the object of CSolveIVCB class in

stack can save memory. For a speed-demanding occasion, creating the object of

CSolveIVCB class in heap can save time.

7.1.2 Solving Class for Q-V realm block analysis

A class named CSolveQVCB (class for solving a Q-V circuit block) is designed to

solve Q-V realm blocks. The CSolveQVCB class is very similar to CSolveIVCB presented

above. The main differences are:

1. A Q-V realm block is a memory unit and collecting initial conditions (most of

time the nodes’ voltage values) is the essential step in formulating Q-V

equations.

147

2. Pseudo voltage sources have to be added if the Q-V realm block connects with

I-V realm blocks. Since the purpose of adding pseudo voltage sources is for

solution seeking only, the added pseudo voltage sources are destroyed along

with the object of the CSolveQVCB class.

3. There is no piecewise linear device in a Q-V realm block. The solution can be

obtained by direct method instead of the Katzenelson algorithm in I-V block

analysis.

In SAMOC, a “simulation queue” is created to handle and manage the sequence of

block analysis. The queue is implemented by a list of pointers and the pointers locate the

addresses of circuit blocks. The order in the queue is determined by the rank numbers of

the circuit blocks which are presented in section 7.4. Fig. 7.1 illustrates a simulation

queue created for the circuit block graph presented in Fig. 6.8. The block analysis

proceeds from the head to the tail of the queue. To analyze a block (for example, circuit

block “a” in Fig. 7.1) a solving object of CSolveIVCB or CSolveQVCB class is created to

process the block’s device and node lists, read voltage values from the main node list,

acquire memory, formulate the circuit equations of the circuit block, solve the circuit

equations, update data back to the main node list and release the acquired memory. After

that, the solving class is destroyed and the same procedure takes place at the next circuit

block “b”. The DC analysis of the whole simulated circuit is finish while the last circuit

block of the simulation queue is analyzed.

148

begin

a b f c g d e

an object of solveing class

circuit blocks

list of pointers

Fig. 7.1 A simulation queue.

7.2 MOS-Capacitor Modeling for Q-V Realm Analysis

The most important device of a Q-V realm block is a capacitive device. A

capacitive device can either be directly specified by a circuit description as a discrete

capacitor or embedded in a MOS transistor as a parasitic capacitor. Since MOS

transistors are the most important devices in SAMOC simulation, the modeling of parasitic

capacitances of MOS transistors is very important for the Q-V realm analysis of a circuit.

source

drain

substrategate

Cgd

Cgs

Cgb

(bulk)

Fig. 7.2 Parasite capacitance of a MOS transistor.
Fig. 7.2 illustrates the parasitic capacitance model of a MOS transistor. The major

capacitances in this model are the gate-to-drain capacitor, Cgd, gate-to-source capacitor,

149

Cgs and gate-to-substrate capacitor, Cgb. In [72] the values of these capacitors depend on

the states of the MOS transistor and are illustrated in table 7.1, where

ε = ε0 εSiO2

ε0 = permittivity of free space

εSiO2 = dielectric constant of SiO2

A = gate area

tox = thickness of the SiO2 layer under the gate.

Table 7.1 Gate capacitors of a MOS transistor.

0
εA
tox20

Cgd

2

3

εA
tox

εA
tox20

Cgs

00
εA
tox

Cgb

saturatedlinearcutoff
state of the MOS transistor

capacitor

The gate of a MOS transistor is usually connected with a resistive network

composed of drains or sources of other MOS transistors. If the gate of a MOS transistor

connects with an I-V realm node, then the gate capacitors can be discarded in the DC

analysis of the entire circuit. If the gate of a MOS transistor is connected to a Q-V realm

node, as illustrated in Fig. 7.3 (a), then the gate capacitors, Cgb, Cgd and Cgs, will

participate in the Q-V realm analysis for this node as illustrated in Fig. 7.3(b).

150

g

C1

C2 C2

C1 g
d

s

d

s

C

C

C

gb

gs

gd

(a) (b)

V

Fig. 7.3 A MOS transistor with its gate connecting to a Q-V realm node.

Since the gate voltage Vg in Fig. 7.3(b) is influenced by the values of gate

capacitors, Cgb, Cgd and Cgs, the state of the MOS transistor is determined by the

gate-to-source voltage Vgs. The values of the gate capacitors Cgb, Cgd and Cgs, are

different at different states of the MOS transistor. For this reason, the Q-V realm node g

must be analyzed together with the I-V nodes d and s. In SAMOC circuit partitioning the

circuit will be separated into several I-V and Q-V realm blocks. For a situation like the

one shown in Fig. 7.3 (a), two or more blocks will be analyzed using the same set of

equations. That is, SAMOC creates a current equation for every I-V realm node and a

charge equation for every Q-V realm node. In this scenario, the gate capacitor of a MOS

transistor is state dependent. The modeling of gate capacitors is a piecewise constant as

shown in Table 7.1, and the Katzenelson algorithm is applied with a limit on the correcting

vector both in I-V and Q-V realm analyses simultaneously.

151

7.3 Mixed Mode Solving Class and Modification of Simulation Queue

As discussed in Section 7.2, the MOS capacitors DC analysis may include more

than one block at a time, and the group of circuit blocks must contain both Q-V realm and

I-V realm blocks. In this situation, a new class has to be designed to handle the

multi-block analysis. In addition, the ranking order of circuit blocks which is set may be

changed according to the multi-block analysis at one simulation instance. The analysis

ranking change would result in a rescheduling of block analysis, and hence a modification

of the simulation queue is necessary.

7.3.1 Mixed Mode Multi-Block Solving Class

In order to analyze more than one circuit block which are both I-V and Q-V realm,

a new class is designed. The processes induces reading data from the main node list (

belongs to an object of the class CCircuit), acquiring memory, formulating circuit

equations, applying the Katzenelson algorithm, etc, which are exactly the same as which

are defined by CSolveIVCB. In C++ programming implementation, the new class,

CSolveMixModMCB shown in Fig. 7.4, can be derived from the existing class,

CSolveIVCB. One list of circuit blocks is added to CSolveMixModMCB in order to locate

the circuit blocks which need to be analyzed together.

152

CSolveIVBC

CSolveMixModMBC a list of circuit blocks

a b c

Fig. 7.4 A class designed for analyzing multi-block is derived from CSolveIVCB

In addition to a list of circuit blocks, new lists of devices and nodes are added to

make the procedure defined in CSolveIVCB process the same data structures. The added

list of devices is the summation of the lists of the circuit blocks which are located by the

list of circuit block of the CSolveMixModMCB. Besides augmenting the new device list by

summing up device lists of the linked circuit blocks, some devices, such as a shareable

device, might appear in more than one circuit block. In this situation, a procedure

illustrated in Fig. 7.5 is added to remove the redundancy. After the new device lists is

built, the new node list can be built according to the new device list. Since all devices

contain node lists, the building of the new node list does not cause much effort. Fig. 7.5

illustratesa simple example of building a new device list from two device lists. Fig. 7.5(a)

shows two duplicated device lists of two circuit blocks. Fig. 7.5 (b) shows how the new

list is created by adding one list to the other list and removing such repeated devices as “e”

and “a”. Fig. 7.5 (c) shows the new device list which is ready for circuit block analysis.

153

a b c e

list 1

list 2

e f a g

a b c e

e f a g

a b c e gf

(a) (b) (c)

Fig. 7.5 Building of a new device list from two device lists.

7.3.2 Modification of the Simulation Queue

The multi-block analysis which uses more than one block at a simulation time

instance, will change the established posterior-prior relationship. Consider an example, a

circuit with block graph shown in Fig. 6.8. If a Q-V realm node in the block “g” connects

to the gate of a MOS transistor in the I-V block “d”, then one voltage of Q-V realm block

“g” influences the state of a MOS transistor in I-V block “d”, and the state of the MOS

transistor influences the gate capacitors value in the Q-V realm block “g”, (Fig. 7.6).

Hence, circuit blocks “g” and “d” should be analyzed together, and a multi-block analysis

has to be performed.

154

a

b

c

d

e

f

g

1

2

3

3 4

5

Fig. 7.6 A multi-block analysis of two circuit blocks “g” and “d”.

The multi-block analysis not only requires the creation of a solving object of

CSolveMixModMCB which would take care of the analysis task, but also influences the

simulation queue. Fig. 7.7 illustrates the modification caused by the multi-block analysis

of blocks “g” and “d”.

begin

a b f c

gd

e circuit blocks

list of pointers

CSolveMixModMCB

an object of

circuit blocks

1 2 3 3 4 5

Fig. 7.7 The modification of the simulation queue.

155

The multi-block analysis is not limited to interacting circuit blocks. In an example

illustrated in Fig. 7.8, blocks “b” and “g” are interacting but the multi-block analysis must

also involve block “f” which was scheduled to be analyzed between “b” and “g”.

a

b

c

d

e

f

g

1

2

3

5

4

Fig. 7.8 A multi-block analysis of three circuit blocks “b”, “f” and “g”.

7.4 Simulating a Circuit with an Acyclic Block-Signal Diagram

Finding the operating state of every semiconductor device in the simulated circuit

is the first step of circuit simulation. One direct and simple way to find out these

operating states is to analyze all circuit blocks of the circuit. There are several approaches

to setting the order of blocks to be analyzed. For a circuit whose block-signal diagram is

acyclic, the most economic method which costs least computation effort is to set the order

number for each block, and analyze blocks from a block with lower order numbers to a

block with higher number. A block’s order number is the topology depth of that block in

the block-signal diagram.

156

a

b

c

d

e

f

g

1

2

3

3

4

5

6

Fig. 7.9 Order numbers of blocks in the acyclic block-signal diagram.

7.4.1 Setting the Order Number of Block in the Block-Signal Diagram

Setting of the order number in SAMOC begins with setting all rank numbers to

“1”. SAMOC then chooses one block and adds 1 to the number of all the blocks that the

one has to be analyzed prior to. The same procedure is applied to each block that has its

rank number changed. The procedure ends by checking if the rank number of all blocks

are larger than the blocks they are posterior to. The simulation queue can be built on the

order number. The sequence in the queue is arranged by the blocks order number and is

the analyzing order of the block. For the block-signal diagram shown in Fig. 7.9, the

simulation queue is illustrated by Fig. 7.1 and the analyzing order can be {a -> b ->

f -> c ->g -> d -> e } or {a -> b -> c -> f ->g -> d -> e }.

DC analysis is attained by analyzing all blocks with the sequence set by the simulation

queue.

157

7.4.2 The Activated Blocks

After the DC analysis is performed and the operating points of all nonlinear devices

are found, SAMOC is ready for the time varying excitation vector. The time varying

excitation vector could directly influence the solution vector which is obtained by previous

analysis and change the states of semiconductor devices of a block. In this situation, the

block, whose solution vector and device states are about to change, is called an activated

block. In SAMOC, a new object of solving class is created to estimate the new solution

vector. The new solution vector compares with the old one before it is written back to the

main node list. If the new solution vector is different than the old one, the activated block

fires at its posterior blocks. An example is illustrated in Fig. 7.10. Block “b” is the

activated block. If there is any change in “b’s” solution vector, “b” fires at block “f” and

“c”. Block “f” and “c” are the fired blocks.

a

b

c

d

e

f

g

Fig. 7.10 A block fires at two posterior blocks.

158

7.4.3 From a Fired Block to an Activated Block and Definition of Events

A fired block is a block which has at least one prior block having a new solution

vector. A fired block may not necessarily become an activated block, since the change of

the prior block may not really influence the fired block. A simulation event happens when

a fired block becomes an activated block. The occurrence of an simulation event is

decided by the linking device between the fired block and the prior block which fired at it.

Three types of device would cause posterior-prior relationship between blocks and they

are controlled sources, voltage controlled switches and MOS transistors.

1. Controlled sources: The nodes of a controlled source can belong to more than

one block. According to the setup rule of posterior-prior relationship between

blocks, the controlling node(s) belong to the prior block which is also the activated

block and the controlled nodes belong to the fired block. If a fired block links an

activated block with a controlled source and the activated block has a changed

solution vector, then the fired block becomes activated and a simulation event is

induced. Fig. 7.11 illustrates a posterior-prior relationship between 5 blocks

induced by a voltage controlled voltage source (VCVS). Blocks “a” and “b”

contain two controlling nodes of the VCVS. Blocks “c”, ”d” and “e” have the

output node of the VCVS, since output nodes of the VCVS are sharable nodes.

the posterior-prior relationship between these 5 blocks are: Block “a” is prior to

“c”, “d” and “e”. Block “b” is prior to “c”, “d” and “e”. There is no

posterior-prior relationship between “a” and “b”. If “a” is activated and has a

159

changed solution vector, “a” fires at “c”, “d” and “e” and “c”, “d” and “e” are also

activated. The same scenario is also applicable to “b” as to “a”.

+
-

a

b

c

d

e

VCVS

Fig. 7.11 A posterior-prior relationship between 5 blocks.

2. Voltage controlled switches: For a voltage controlled switch, the controlling

nodes can belong to the activated block(s) and the switch belongs to the fired

block. If a fired block links an activated block with a controlled source and the

activated block has a changed solution vector, then the fired block becomes

activated only when the changed solution vector changes the switch’s state. If the

changed solution vector does not turn on a previously open switch or turn off a

previously closed switch, then there is no simulation event and the fired block does

not become an activated block. Fig. 7.12 illustrates a posterior-prior relationship

between two blocks “a” and “b” and the relationship is induced by a voltage

controlled switch, Sx. Block “a” has the controlling nodes, V1 and V2, and “b”

has the switch. In simulation order, block “a” is prior to “b”. If block “a” has a

160

changed solution vector, then “a” fires at “b”. Block “b” becomes activated only

when the change of V1 and V2 cause the switching state of Sx.

Sx

a b

V1

V2

+

-

Fig. 7.12 A posterior-prior relationship induced by a voltage controlled switch.

3. MOS transistors: A MOS transistor has three nodes and three linear regions.

If a MOS transistor causes a posterior-prior relationship between blocks, then the

gate must belong to the prior block and the source and drain belong to the

posterior block. That is: the prior (activated) block has Vg and the posterior (fired)

block has Vd and Vs. According to the piecewise linear model presented in

Chapter 2, while the MOS transistor is in the saturated state, a voltage controlled

current source, whose controlling node is the gate, is used for device characteristic

representation. Therefore, if the MOS transistor is in the saturated state and Vg is

changed because the prior block is activated, then the posterior block is fired and

activated. If the MOS transistor is in cutoff state or linear state, then the Ids-Vds

characteristic is modeled by a resistor only. The fired (posterior) block is activated

only when the change in Vg causes the state change of the MOS transistor.

161

An interface between I-V and Q-V realm blocks also induces posterior-prior

relationship blocks. The I-V realm block is the prior and the Q-V realm block is the

posterior. In this situation, if the prior block is activated, the posterior block is also

activated.

7.4.4 Computer Implementation of Activated and Fired Block

Two Boolean variables, m_bActivated and m_bFired are added in to the circuit

block class CCircuitBlock. Before the DC analysis subroutine is applied to the

simulated circuit, m_bActivateds of all blocks are set to TRUE and m_bFired are set to

FALSE. m_bActivated of a block is set to FALSE after the analysis. Before the analysis

results are written back to the main node list, SAMOC compares the new solutions with

the old one. If there is any difference between the old and new results, then all posterior

blocks are fired and this operating is executed by setting the m_bFired of each posterior

block TRUE.

For a fired blocks with m_bFired TRUE, if its m_bActivated has been TRUE,

then there is no further action in this part, since a block can be activated by many causes

and an activated block won’t turn to an inactivated. with a block analysis If its

m_bActivated is FALSE, then a procedure following the description in section 7.4.3 is

executed to decide the fired block becomes activated and set the new values of

m_bActivated. m_bFired is set back to FALSE after the decision making.

162

The fired-activated process may cause a chain reaction inside the block-signal

diagram. The chain may be broken by an activated block that does not fire at its posterior

blocks or a fired block that does not become activated.

The circuit analysis according to time varying excitation is accomplished by

analyzing all activated block with the order set by event queue. One variation in excitation

vector requires one walk through the simulation queue and analysis of each activated

block.

7.5 Timing Analysis of a Circuit with a Cyclic Block-Signal Diagram

For all circuits with feedback loops, block-signal diagrams are cyclic. For a cyclic

block-signal diagram, the algorithm used to set the order numbers of blocks for an acyclic

block-signal diagram will result in an infinite loop. Building a simulation queue according

to the ordered blocks becomes unfeasible. One simple approach to simulate a circuit with

a cyclic block-signal diagram is to assume that there is a signal delay between every two

blocks in the block-signal diagram. By this assumption, an integer number called

topological depth is assigned to every block in the diagram. A block must have larger

topological depth than its prior blocks. The rules of setting the topological depths of

blocks are:

1. For blocks without any prior block, their topological depth is 0.

2. For blocks which have time varying device such as time varying voltage source,

their topological depth is 1.

163

3. The topological depths of the other blocks are the shortest directed path from any

block whose topological depth is equal to 1.

4. If there are still any undetermined blocks, their topological depths are set to 1.

Fig. 7.13 illustrates an example of setting the topological depths of blocks. In Fig.

7.13, block “A” does not have any prior block, thus its topological depth is 0. Blocks

which have 0 topological depth represents block without any time varying signals. It also

implies that they are static blocks and they only need to be analyzed once. Blocks which

contain (or are directed fired by) time varying devices, such as blocks “B”, “C” and “D”,

are the sources of time varying signals in the block-signal diagram. Other blocks which

accept signals from blocks “B”, “C” and “D” have their topological depths equal to the

shortest distance from blocks “B”, “C” and “D”. Blocks such as “M”, “N”, “O”, “P” and

“Q” have no path from level 1 blocks. Although the time varying signals will never

propagate to these blocks, they can possibly create events to influence the simulated

circuit. For a block of this kind, the topological depths is set to 1 in order to make it

influence as many blocks as it can. The topological depths of its posterior blocks is not

measured by the shortest directed path from it, because the simulation discussed here is

driven by time varying input signals.

A simulation queue built based on the topological depths of blocks is illustrated on

Fig. 7.14. At each time instance of the timing simulation, all blocks with topological

depths equal to 1 will be analyzed only if the time varying input signals cause any event,

and only if the block analysis is necessary. If the new analyzed results are different from

the ones at the node list, then the analyzed blocks fire at their posterior blocks. After all

164

blocks with topological depth equal to 1 are analyzed, the same process will be applied to

all blocks with topological depth equal to 2 and so on.

1

1

1

time varying
devices

0

2

2

2

2

3

3 4

1 1

3

1

1

1

A

B

C

D

M N

E

F

G

H

I

J

K

L

O

P

Q

Fig. 7.13 The topological depth setting of a block-signal diagram.

The topological depth of a block implies the virtual time index of when the time

varying signal will propagate to that block. A block might fire at other blocks with smaller

topological depth. A possible effect of this firing will be taken in to account at the next

iteration, since all signal transferring have the same delay time.

165

B

C

D

M

N

O

P

Q

1 2 3 4

E

F

G

K

H

I

J

L

topological depth

Fig. 7.14 The simulation queue.

7.6 Summary

After the block-signal diagram is built by the methods presented in Chapter 6,

SAMOC analyzes the simulated circuit on the block-signal level instead of the device-node

level. Analyzing individual blocks becomes an important and fundamental mechanism for

block-signal analysis. There are two types of blocks: I-V and Q-V realm blocks. SAMOC

employs MNA to both types of blocks for circuit equation formulation. Solving an I-V

realm block requires the Katzenelson algorithm, which needs a subroutine to update the

equation set and to control the iteration loops. On the other hand, a linear method can be

applied to solve Q-V realm blocks, which means that only one circuit formulation

166

subroutine is required. In some cases, pseudo voltage sources are added to a Q-V realm

block which is driven by I-V realm blocks. In C++ implementation, two solving classes

according to different kinds of solving method, are designed to do the memory acquiring,

circuit formulation and numerical solution-seeking tasks.

For each analyzed block, an object of the solving class is created to do the block

analysis task. After the analysis, the created object of the solving class is destroyed and

hence the system resource acquired by the object of the solving class is returned back to

the system for another object of the solving class. Objects of the solving class can be

created and destroyed during the run time of SAMOC. The solving class, therefore, is a

run-time class. In MFC or other advanced C++ class libraries, run-time class can be

handled by multithread programming which can be transplanted to and exploit the

advantage of parallel computing in a multiprocessor environment effortlessly.

An object of the solving class reads the voltage data from the main node list as the

initial conditions. After the circuit block is analyzed, the new solutions are written back to

the main node list before the object of the solving class is destroyed. In data structure

design of SAMOC, the main node list is the interactive media between circuit blocks.

Although in DC analysis of a circuit, a capacitor is treated as an open circuit and

will not effect the results of I-V analysis, the nodes of Q-V realm blocks may be the

controlling nodes of a voltage controlled sources or may be connected to gates of MOS

transistors. For this reason, extracting and analyzing Q-V realm blocks are important in

DC analysis.

167

If the gate of a MOS transistor in an I-V realm block is driven by a Q-V realm

block via a capacitive link, multi-block analysis becomes inevitable. Multi-block analysis

not only contains mixed modes (Q-V realm and I-V realm) formulation, but also stimulates

a topological change in block-signal diagram. The existence of multi-block analysis

reduces simulation efficiency in circuit analysis by block method. In C++ implementation,

a new class which is derived from solving classes of I-V realm block is designed to do the

mixed mode multi-block analysis.

In simulating a circuit from its block-signal diagram, a simulation queue is built

from the posterior-prior relationship between blocks to manage the block simulation. A

block is activated if its input nodes have a changed input signal or its device state was

changed by any of its prior blocks. An object of solving class is created to execute the

block analysis tasks for each activated block. Before the new solutions of the block are

written back to the main node list, SAMOC checks if any solution changed. If any of

them did, then the analyzed block fires at all its inactivated posterior blocks. SAMOC

then checks all fired blocks, if they are activated by the change in the main node list.

DC analysis requires all blocks in the block-signal diagram to be analyzed. For a

block-signal diagram without feedback loops, a simulation queue can be easily created

according to the order number of each block in the diagram. The order number of each

block in the block-signal diagram is the same as the depth of the vertex in an acyclic

directed graph. The DC analysis is therefore attained by analyzing all blocks in the

block-signal diagram with the order managed by the simulation queue.

168

To handle the dynamic circuit analysis, which is caused by time varying excitations,

SAMOC adds two Boolean variables, thus suppressing insignificant block analysis. One

variable indicates if the block is activated and the other indicates if the block is fired upon,

since not all fired blocks will become activated. In dynamic analysis, SAMOC only

analyzes the activated blocks. A block is activated because its inputs are changed or any

of its MOS transistors or controlled switches have a changed state. An analyzed block

fires at its inactive posterior blocks if the analyzed block caused a change in the main node

list. A fired block becomes active if any of its device changes its state and the change is

induced by the change of data in the main node list.

For a circuit whose block-signal diagram has feedback loops, the block-signal

diagram is cyclic and it costs more computation effort to create and maintain a simulation

queue. An approach which can be easily implemented to analyze a circuit with a cyclic

block-signal diagram is to assume all signals between blocks have the same delay time and

assign a topological depth to each block. The smaller the topological depth, the earlier the

time varying signals propagate to the block. That means the block should be analyzed

prior to the blocks having larger topological depth. By applying this method, the time step

should be small enough to take care of the signals of internal loops. This approach can be

applied to both acyclic and cyclic block-signal diagrams.

169

Chapter 8

SAMOC APPLICATIONS II: EVENT DRIVEN TIMING

SIMULATION EFFICIENCY ANALYSIS AND

BENCHMARK CIRCUIT SIMULATION

This chapter presents the results of benchmark circuits simulation performed by the

SAMOC program and efficiency improvement evaluation of the event-driven timing

simulation. Simulation results are presented in the following order: small CMOS

sequential logic circuits with 40 to 150 MOS transistors; MSI CMOS logic circuits with

200 to 300 MOS transistors; VLSI benchmark circuits with over 10,000 MOS transistors;

small analog circuits with 10 to 50 MOS transistors; and large analog circuits.

170

8.1 Small CMOS Sequential Logic Circuits

Although functional simulation of logic circuits can be practiced at higher

abstraction levels such as at the gate level and register transfer level, timing analysis of

sequential logic circuits at the circuit level is a very good way to validate the simulator.

Simulation of small sequential circuit is the first step in verifying the simulation

mechanisms built in SAMOC. These include validation of the MOS model for timing

analysis, circuit block analysis and the timing analysis scheme.

8.1.1 CMOS NAND gate

CMOS NAND gates can be used in the construction of any logic circuit. Most of

the logic circuits simulated presented in this chapter are built on CMOS NAND gates.

Fig. 8.1 illustrates a CMOS implementation of a NAND gate, where Fig. 8.1 (a) shows the

logic symbol of a NAND gate in a logic circuit, Fig. 8.1 (b) shows the CMOS schematic

of the NAND gate and Fig. 8.1 (c) shows the truth table. In the truth table, symbol 1

represents high voltage and symbol 0 represents low voltage. In the circuit level

simulation presented in this chapter, 5 voltage logic is used.

171

A B

A

B

X
A

B
X

A B X
0 0 1
0 1 1
1 0 1
1 1 0

(a) (b) (c)

Fig. 8.1 CMOS NAND gate.

8.1.2 Positive Edge-Triggered D Flip-flop

D flip-flop shown by Fig. 8.2 is an essential device to construct data registers for

large logic systems and it is constructed of 3 negative R-S flip-flops. Simulating the

timing behavior of a positive edge-triggered D flip-flop exemplifies to examining

SAMOC’s cyclic block-signal diagram analysis.

SAMOC partitions the positive edge-triggered D flip-flop, which contains 29

devices and 20 nodes, into 6 blocks each containing one NAND gate. In the simulation

queue, gates N2, N3 and N4 have a topological depth equal to 1 and gates N1, N5 and N6

have a topological depth equal to 2. The depth of the whole circuit is 2. Fig. 8.3

illustrates the timing simulation results of the positive edge-triggered D flip-flop as a

function of the simulation time. There are 200 simulation instances in the results shown in

Fig. 8.3. The first plot is the clock signal. The second plot is the input signal D. The

third plot is the output Q of the positive edge-triggered D flip-flop; the plot shows that the

172

simulation results are as expected of a correctly designed flip-flop. The fourth plots shows

the number of blocks (n) which were analyzed during each simulation instance. If there is

no event-driven simulation, then all 6 blocks should be analyzed during each simulation

instance. The summation of n is 128, which means, on average, 0.64 blocks were

analyzed at each simulation instance. Event driven simulation for timing analysis of the

positive edge-triggered D flip-flop saves about 89.33% of the block analysis.

D

clock

N1

N2

N3

N4

N5

N6

Q

Q'

1

1

1

2

2

2

Fig. 8.2 Positive edge-triggered D flip-flop.

173

0 50 100 150 200

0

2

4
cl

oc
k

0 50 100 150 200

0

2

4

D

0 50 100 150 200

0

2

4

Q

0 50 100 150 200
0

2

4

n

Fig. 8.3 The timing simulation results of the positive edge-triggered D flip-flop.

8.1.3 Master-Slave J-K Flip-flop

J-K flip-flops and D flip-flops are useful in the construction of large logic systems.

Fig. 8.4 shows a master-slave J-K flip-flop which was implemented by 8 CMOS NAND

gates. The SAMOC simulation shows that the master-slave J-K flip-flop contains 40

devices, 27 nodes and 8 blocks. The topological depth of the master-slave J-K flip-flop is

3. The topological depth of each block is marked in Fig. 8.5.

174

N1

N2

N3

N4

N5

N6

N7

N8

J

K

clock

Q

Q'

1

1

2

2

2

2

3

3

Fig. 8.5 Master-Slave J-K flip-flop

SAMOC timing analysis results are shown in Fig. 8.6. Similar to the results shown

in Fig. 8.4, there are 200 simulation instances in the presented results. The functional

verification of the master-slave J-K flip-flop can be practiced by observing the fourth plot

of Fig. 8.6. The fifth plot of Fig. 8.6 shows the computational effort as a function of the

simulation instance. There were 173 blocks analyzed during the 200 simulation instances.

This means, on average, 0.865 block among 8 blocks is analyzed in each simulation

instance. The event-driven simulation shows that 89.19% of block analysis was saved

compared to simulation without event-driven approach.

175

20 40 60 80 100 120 140 160 180 200
0

2

4
cl

oc
k

20 40 60 80 100 120 140 160 180 200
0

2

4

J

20 40 60 80 100 120 140 160 180 200
0

2

4

K

20 40 60 80 100 120 140 160 180 200
0

2

4

Q

20 40 60 80 100 120 140 160 180 200
0

5n

Fig. 8.6 The SAMOC timing simulation results of the master-slave J-K flip-flop.

8.1.4 4-bit Binary Ripple Counter

When analyzing circuits with larger topological depth, event driven simulation can

avoid even larger percentage of non-significant block analysis. A simulation event caused

by time varying signals may not always propagate to the end of the circuit. Especially in a

circuit with larger topological depth, the simulation events are more likely blocked in the

middle of the signal path and can not propagate through the circuit. Fig. 8.7 shows a 4-bit

176

ripple counter constructed of four master-slave J-K flip-flops presented in section 8.1.3.

The 4-bit counter contains 146 devices (2 voltage sources and 144 MOS transistors), 77

nodes and 32 blocks. The sole time varying source is the clock signal. The topological

depth for SAMOC simulation of the counter is 12.

Q J

K

1

1

Q J

K

1

1

Q J

K

1

1

Q J

K

1

1

clock

A1A2A3A4

Fig. 8.7 4-bit binary ripple counter.

The SAMOC timing simulation results of the 4-bit binary ripple counter are

illustrated in Fig. 8.9. There are 400 simulation instances in the presented results. The

plots of signals (clock, A1, A2, A3 and A4) confirms the validation of the SAMOC

simulation. The sixth plot in Fig. 8.9 is the number of triggered blocks as a function of the

simulation instance. Observing the sixth plot, it is clear that during the timing simulation,

most blocks remain static and the number of analyzed blocks increased when the output

values of signals A1, A2, A3 or A4 are changed. Quantitatively, 961 blocks were

triggered and analyzed during the 400 simulation instances, which means, on average, 2.4

of 32 blocks were analyzed at each simulation instance. The event-driven simulation

mechanism saved about 92.49% of block analysis than without event-driven simulation

approach.

177

50 100 150 200 250 300 350 400
0

2

4
cl

oc
k

50 100 150 200 250 300 350 400
0

2

4

A
1

50 100 150 200 250 300 350 400
0

2

4

A
2

50 100 150 200 250 300 350 400
0

2

4

A
3

50 100 150 200 250 300 350 400
0

2

4

A
4

50 100 150 200 250 300 350 400
0

20n

Fig. 8.9 The SAMOC timing simulation results of the 4-bit ripple counter.

8.2 Benchmark Circuit Simulation

A number of benchmark circuits can be found in Internet4. Several types of

benchmark circuits such as BJT (bipolar junction transistor) circuits and MOS circuits in

SPICE netlist format can be downloaded from the web-site. Most of the MOS circuit

178

4 The URL (universal resource location) of the benchmark circuits is
 http://www.cbl.ncsu.edu/CBL_Docs/csim90.html

netlists contain time domain analysis (transient analysis) commands, which can be

performed by SAMOC. SAMOC timing analysis of three circuits downloaded from the

web-site is presented in subsections 8.2.1, 8.2.2 and 8.2.3. SAMOC simulation was

performed on IBM compatible personal computer running Windows NT with single Cyrix

6x86MX PR 200 processor and 64 MB SDRAM. The presented simulation results

include partitioning information, required computing resources (CPU time and required

memory) and a number of analyzed blocks at each simulation instance.

8.2.1 voter25

The circuit “voter25” contains 74 MOS transistors. SAMOC detects that

“voter25” contains 82 elements and 52 nodes. That is, without circuit partitioning, 52

circuit equations are required to analyze the circuit. SAMOC partitions the circuit into 12

blocks and histograms of numbers of nodes and elements are shown in Fig. 8.10. There

are 8 blocks containing 4 nodes 3 elements, 1 block containing 9 nodes and 14 elements

and 3 blocks containing 10 nodes and 16 elements. The topological depth of the whole

circuit is 2. SAMOC program and data structure of “voter25” occupy 3100k bytes of

computer memory. Transient analysis specified in the circuit description is performed

from t = 0 to 10-6 sec with time step 10-8 sec. The 100 simulation instances took 3

179

sec of CPU time to finish.

(b)(a)

0 5 10 15 20
0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

Fig. 8.10 Partitioning results: histograms of numbers of nodes and elements.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Fig. 8.11 Number of analyzed blocks as a function of simulation instance.

The number of analyzed blocks at each simulation instance is illustrated in Fig.

8.11. In the worst case, 11 of 12 blocks were analyzed at a simulation instance. At 3

simulation instances, because of the event-driven simulation mechanism, none of the

blocks was required to be analyzed. During the 100 simulation instances, 666 blocks were

analyzed; i.e., on average, 6.66 blocks were analyzed at each simulation instance.

180

8.2.2 sqrt

The circuit “sqrt” is a larger one which contains 1118 MOS transistors and 1022

capacitors. SAMOC detects that “sqrt” contains 2219 elements and 525 nodes. The

partitioning routine in SAMOC extracted 328 blocks from “sqrt”. Histograms of numbers

of nodes and elements are shown in Fig. 8.12. There are 3 main blocks and each one them

contains 32 nodes 69 elements. The topological depth of whole circuit is 4. SAMOC

program and data structure of “sqrt” occupy 4176k bytes of computer memory. Transient

analysis specified in the circuit description begins from t = 0 to 9x10-7 sec with time

step 10-10 sec. These 9,000 simulation instances took 39 min and 6 sec of CPU time to

finish. The number analyzed block at each simulation instance is illustrated in Fig. 8.13.

The largest amount of analyzed blocks for a simulation instance is 322. The minimum

number of analyzed blocks for a simulation instance is 168. Totally 1,538,959 blocks

were analyzed during the 9,000 simulation instances. On average, 171 blocks were

analyzed at each simulation instance.

(b)(a)

0 20 40 60 80
0

20

40

60

80

100

120

140

160

180

0 10 20 30 40
0

20

40

60

80

100

120

140

160

180

Fig. 8.12 Partitioning results: histograms of numbers of nodes and elements.

181

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
160

180

200

220

240

260

280

300

320

340

Fig. 8.13 Number of analyzed blocks as a function of simulation instance.

8.2.3 ram2k

“ram2k” contains 13880 MOS transistor and 156 capacitors. SAMOC partitions

“ram2k” into 338 blocks with total 4873 nodal equations. The data structure created for

all information of the “ram2k” circuit occupies 12,552k bytes of computer memory. The

histograms of number of nodes and number of elements are shown in Fig. 8.4 (a) and (b).

The histograms shows that the most of the devices are partitioned in 64 main blocks.

Each block contains 70 nodes and 196 devices.

The topological depth of “ram2k” is 3 and the specified transient analysis is from 0

to 600ns with 1ns time step. SAMOC analyzes the 600 simulation instances. The total

processing time in this machine is 49 min. The number of analyzed blocks is a function of

the 600 simulation instances and is illustrated in Fig. 8.5. The minimum number of blocks

which were analyzed in a simulation instance is 13 and the maximum number of blocks is

182

306. There are totally 20797 blocks analyzed during the 600 simulation instances. On

average, 34.66 of 338 blocks were analyzed in each simulation instance. The circuit

partitioning and event driven simulation mechanisms built in SAMOC saved 89.75% of

block simulation.

(b)(a)

0 50 100 150 200
0

20

40

60

80

100

0 20 40 60 80
0

20

40

60

80

100

Fig. 8.14 Partitioning results: histograms of numbers of nodes and elements.

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

Fig. 8.15 Number of simulated blocks as a function of simulation instance.

183

8.3 Summary

Section 8.1 presents SAMOC simulation results of some common CMOS based

logic circuits. Functional verification of SAMOC simulation such as circuit partitioning

and event-driven simulation can be performed by analyzing the presented logic circuits.

The programming and debugging stages of developing SAMOC are realized by analyzing

the circuits presented in section 8.1 and some other simple gates or differential pair

circuits.

The circuit simulation results presented in Section 8.2 are examples of how

SAMOC handles large simulated circuits. The information about functions of the

benchmark circuits are not provided by the web-site, where the benchmark circuits are

downloaded from. The verification of the simulation results can not be performed, since

HSPICE, SPICE2 and SPICE3 failed to analyze most of the benchmark circuits.

However, the performed simulation is helpful for the future research of large MOS circuit

analysis by presenting the circuit partitioning results and event-driven timing simulation

information of the benchmark circuits.

SAMOC can not analyze all downloaded benchmark circuits. Even after circuit

partitioning, some circuits may still contain blocks with more than 1,600 nodes and 2000

MOS transistors. The computer used for simulation needs more than 1 hour to solve a

1,600 by 1,600 matrix by using Gaussian elimination method. The computational

complexity of the iterative Katzenelson algorithm is O(n), where n is the number of

piecewise linear devices. Hence, a block containing 1,600 nodes and 2,000 MOS

transistors will require solving a 1,600 by 1,600 matrix 2,000 times and the estimated time

184

will be 2,000 hours for a block analyzed. In order to perform hundreds or thousands of

simulation instances presented in Section 8.2, it will requires months or years to finish the

simulation. It is definitely impractical and of no doubt to say: SAMOC failed the

simulation. Although the simulation results can be obtained by using better and faster

machine such as a super computer, depending on brutal force will make SAMOC no

different from SPICE, and much worse than SPICE in precision. In addition, a huge block

of such size is frequently activated, since it is the major portion of the simulated circuit.

Event-driven simulation becomes nearly useless in this scenario. Therefore, from the

simulation examples, the sizes of the simulated blocks and solving linear systems are the

bottlenecks of the SAMOC simulation. Advanced circuit partitioning according to some

bolder assumption such as adaptive partitioning from the transmission gates could be a

solution.

185

Chapter 9

CONCLUSION

Contemporary semiconductor technologies and VLSI circuit design paradigms

allow engineers to design very sophisticated systems and implement them in

finger-nail-size silicon flakes. These sophisticated systems are capable of executing fast

and complex arithmetic operations, performing signal processing, and extracting

information from data bases. Most of the processed data and information are stored in a

form of DC voltages, charges or currents.

DC solutions and other circuit responses can be evaluated theoretically by

combining KCL, KVL and device models. This theoretical evaluation is very crucial in

circuit design. Generally, the major tasks of the theoretical evaluation are formulation of

the circuit equations and solution of defined equations to predict the simulation results.

186

Computer programs designed to automatically formulate and solve circuit equations are

called circuit simulators. Circuit simulators read circuit descriptions, which contain device

characteristics and circuit topology, and formulate the circuit equations by physical laws

such as KCL, KVL and conservation of charge. After the circuit equations are prepared,

simulators can automatically analyze circuits by the defined methods. The simulation can

predict the circuit’s behavior and gather statistics.

With the rapid growth of the complexity of VLSI circuit design, using general

purpose circuit simulators such as SPICE, SABER and ASTAP for VLSI circuit

simulation has become impractical. The required computer resource grows quadraticly

with the number of nodes in the simulated circuits, and the consumed time for simulating a

circuit is proportional to the cube of the number of nodes. In additions, calculating

complex and precise device models is a considerable burden to computer systems. Hence,

simulation of VLSI circuits has moved either to higher abstraction levels or device and

waveform simplification.

The presented circuit simulation techniques and strategies in this research aimed at

improving analog simulation performance in VLSI MOS circuit with ideal capacitors. The

major application domain for the presented approach is large neural network simulation, in

which computation is performed using voltage and charges, rather than voltages and

currents. Such networks can be designed to dissipate very little energy as no DC current

will be used. In addition the network should process the information locally and forward

it to other computational centers. This will create a signal flow very much like in a digital

187

circuit with very little or no feedback. Only some computational centers will be activated

at a time which will naturally benefit from circuit partitioning and event-driven simulation.

9.1 Research Summary

The circuit simulator, SAMOC, developed in this research, is a software

implementation of the proposed circuit simulation techniques and strategies. SAMOC

employs piecewise constant approximation for time domain analysis of VLSI circuit by

using comparatively less computer resources. In device modeling, SAMOC employs

extremely simplified piecewise linear models for MOS transistors and diodes. In circuit

formulation, SAMOC employs the modified nodal analysis (MNA) method, which is

adequate to model the behavior of switches and controlled sources. The Katzenelson

algorithm and the Gaussian elimination method are employed to solve the piecewise linear

system.

There are two simulation engines built into SAMOC. One analyzes resistive

networks and the other is for switched-capacitor (SC) networks. SAMOC analyzes a SC

network by depending on the switching events, evaluating initial conditions and

formulating algebraic charge equations. By using ideal switch model and ideal OPAMP

model, SAMOC can provide very fast simulation results which are good for the functional

verification for SC network designs. Simulation examples such as an integrator and a

filter are presented. SAMOC also aids in designing and analyzing transferred power of SC

based charge pump circuits.

188

In order to analyze VLSI circuits, SAMOC is equipped with circuit partitioning

and event-driven simulation mechanisms. Circuit partitioning is made possible by defining

shareable nodes, sharable devices, by separating controlled sources and by separating

MOS transistors from gates to their drains and sources. The circuit blocks are extracted

and the prior-posterior relationships between circuit blocks are also set. Circuit

partitioning builds a block-signal diagram as a form of a directed graph for the simulated

circuit. By analyzing each block individually, the employed Katzenelson algorithm

converges easily because there are far less piecewise linear devices. In addition,

determining solution of small linear systems costs less computational effort. Hence,

analyzing a big circuit block by block costs less than analyzing the entire circuit.

Event driven simulation is realized by creating a simulation queue of the

partitioned blocks. The order of block in the simulation queue is sorted by the topological

depth of each block which assures that each block is analyzed before its posterior blocks

and after its prior blocks. After a block is analyzed, it fires at all its posterior blocks. A

procedure then checks all the fired blocks to determine if the fired blocks become

activated and require to be analyzed. The firing and becoming active process is the

“event” defined in SAMOC simulation. Note that: not all the fired blocks would become

active, therefore, some insignificant block analyses can be avoided.

Timing simulation of SAMOC exploits the circuit partitioning and event driven

simulation mechanisms. In timing simulation, the topological depths of blocks are

redefined by assuming all signals transferred between blocks have the same delay time.

Blocks without any prior block have the smallest topological depth ‘0’ and highest

189

simulation priority. Blocks of this kind will never be influenced during the timing

simulation and only need to be analyzed once at the beginning of the timing simulation.

The circuit blocks which contain or are directly influenced by time varying excitations

(inputs) have second lowest topological depth ‘1’. The time step between two simulation

instances is defined by SAMOC’s users. For every time step, the blocks with topological

depth ‘1’ are analyzed first, then block with topological depth ‘2’, ‘3’ and so on until the

process finishes analyzing ones with the largest topological depth.

From the simulation results, the circuit partitioning and event driven simulation do

help SAMOC to do timing simulation of some circuits which failed simulators such as

HSPICE, SPICE3 and SPICE2. The computational efficiency improvement induced by

employing circuit partitioning and event driven simulation essentially depends on the

topological depth of the simulated circuits. In the presented simulation example, the

computational efficiency improvement can be up to 92%. That is, on average, only 8% of

blocks are required to be analyzed during each simulation instance. More benchmark

circuit simulation comparison is presented in Appendix II.

9.2 Software Implementation Summary

From the software implementation point of view, SAMOC is written in C++

programming language and follows the paradigm of object oriented design. Programs

coded in C++ can be easily compiled to executable binary files. Some sophisticated C++

compilers can produce very efficient machine code, and can even optimize the code for a

specified computer hardware configuration. Because of the standard format of C++,

190

transplanting C++ programs across platforms (MS Windows to UNIX) and hardware (PC

to RISC Workstation) costs little effort. The object oriented design is so far the best

software technology available for developing, upgrading, and maintaining sophisticated

programs.

The class hierarchy in C++ is ideal for representing devices with 2 to 4 terminals

and with different characteristics. The virtual function techniques which accompany the

class hierarchy in C++ make device processing such as partitioning circuits and creating

matrix for MNA easy to implement, revise, reuse, extend and upgrade.

The list of pointers data structure built in Microsoft Foundation Class (MFC) is

the principal data structure for accessing and managing the device, node and block data.

MFC also provides embedded mechanisms to manage memory and prevent the memory

leaks.

9.3 Future Works

Future development of SAMOC shows promise for further improvement in its

performance and size of analyzed networks. Sections 9.3.1 and 9.3.2 list several selected

improvements for future work.

9.3.1 Simulation Techniques Part

The most needed feature in SAMOC is delay estimation for intra- and inter-blocks.

Delay estimation has been one of the most significant topics in research of circuit

simulation techniques. Currently, the most ingenious method is the asymptotic waveform

191

evaluation approach, AWE [55]. AWE begins with the frequency domain analysis and

uses qth order moment matching techniques to find out q most influencing time constants

to synthesize the time domain waveform of a linear circuit.

Finding an efficient way to employ and modify AWE for piecewise linear models

used in SAMOC can be a challenging research topic, although AWE may not be the only

approach. For instance, a method based on Padé approximation [71] shows better

approximation accuracy with similar computational effort. If the signal delay inside or

between blocks can be evaluated, then the topological depth setting presented in Chapter 7

can be replaced by real delay time instead of currently used unit delay. Hence, SAMOC is

capable of handling the signal racing problem. Furthermore, the block delay estimation

can aid in developing adaptive simulation time step selection, which will improve both

precision and efficiency of SAMOC simulation.

9.3.2 Software Technique Part

Netlist Error Detection

SAMOC is not equipped with a sophisticated error checking routine which is built

into SPICE. On the other hand, the ideal switch model used by SAMOC would eventually

cause existence of open circuits and floating nodes during circuit simulation. To overcome

this problem a simple linear system solving algorithm that can discard the singular part of a

linear system is built in SAMOC. SAMOC users will not be able to notice design error if

the block MNA matrix is singular. For this reason, the connectivity error detection could

be added to the existing programs.

192

The AVL Tree

The dynamic data structure which can provide fastest data search, access and

sorting is the AVL tree (name after Adelson-Velskii and Landis) [65] [72]. The AVL tree

is a sorted and perfectly balanced tree, which is much better for random access of huge

amount of device and node information than linear list currently used by SAMOC. For a

data structure with N elements, the average access effort for using linear list is N/2, while

the AVL tree needs log2(N)/2. Although setting up an AVL tree costs a lot more than a

linear list, and somehow adding an additional element to an AVL tree would cause a

considerable rearrangement of the AVL tree, the AVL tree can significantly speed up the

SAMOC simulation in random data access while the simulated circuit is huge and the

number of simulation instances is large.

The AVL tree can be implemented in C++ by employing template techniques as in a

similar way MFC implements linear list. AVL is not supported by the current version of

MFC.

Multithread Programming

Multithread can be explained by multiprocessing of a single program. In

multiprocessing environment, each process has its own set of instructions, data and system

resources (e.g., memory or files). All threads of a multithread program can share the same

set of data and system resource. A common example of a multithread program is a word

processor, which allows users to edit and print a document during the same period, while

the editing-thread and the print-thread belong to the same program (word processor) and

193

share the same set of data (document). Computer system can slice and distribute CPU

time to several threads. The block analysis of SAMOC can exploit the multithread

programming mechanism that allows more than one block to be analyzed at the same time;

that is, creating one thread for simulating each block. In a single CPU computer system,

there may be no advantage of using multithread for SAMOC. But for a computer with

multiprocessors and running the NT operating system, NT can automatically distribute the

job of different threads to different CPUs. This will speed up the SAMOC simulation,

especially in analyzing massively parallel interconnected circuits. MFC supports

multithread programming and provides required function for multithread programming

such as synchronizing data to make multithreading and event-driven simulation safe.

Hash

SAMOC uses device names and node names in the circuit description to identify

devices and nodes in the simulated circuits. These names are strings of characters and

string identification in SAMOC employs the member functions of the class CString of

MFC. In some cases, users could named the devices by using meaningful words which

could be very long and verbose. Furthermore, SAMOC generates devices and nodes in

subcircuit by catenating device name in the subcircuit definition with the subcircuit

identification in the circuit description. For simulating a circuit with heretical subcircuit

definition, the generated names would be very long that contain 100 - 200 characters to

identify devices and nodes which would seriously slow down the device and node

identification. The identification of devices and nodes is frequently required in block

194

extracting (circuit partitioning), MNA equation formulating and determining simulation

events. If there is a hash table (look-up table) which simplify the device and node

identification, then SAMOC simulation can be accelerated.

195

BIBLIOGRAPHY

[1] L. O. Chua, “Nonlinear circuits,” IEEE Transactions on Circuits and Systems, vol.
CAS-31, no. 1, pp. 69-87 January 1984.

[2] L. O. Chua, and C-W Tseng, “A memristive circuit model for P-N junction
diodes,” Int. J. Circuit Theory Applications , vol. 2, no. 4, pp. 367-289, December
1974.

[3] J. W. Gannett and L. O. Chua, “A nonlinear circuit model for IMPATT diodes,”
IEEE Transactions on Circuits and Systems, vol. cas-25, no. 1, pp. 299-308 May
1978.

[4] L. O. Chua and Y. W. Sing, “A nonlinear lumped circuit model for Gunn diodes,”
Int. J. Circuit Theory Applications , vol. 6, pp. 375-708, October 1978.

[5] L. O. Chua and Y. W. Sing, “Nonlinear lumped circuit model for SCR,” IEE J.
Electronic Circuit and Systems, vol. 3, no. 1, pp. 5-14, January 1979.

[6] L. O. Chua and Y. W. Sing, “Nonlinear lumped circuit model for GaAs FET,”
IEEE Transactions Electron Devices, vol. ED-30, pp. 825-833, July 1983.

[7] J. J. Ebers and J. L. Moll, “Large-Signal behavior of junction transistors”
Proceedings of the IRE 42, pp. 1761-72, December 1954.

[8] L. W. Nagel, SPICE2: A computer program to simulate semiconductor
circuits, Electron. Res. Lab., University of California, Berkeley, Rep., ERL-M520,
May 1975.

[9] R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits,
Wiley, 1977.

[10] The Design Center: Circuit Analysis Reference Manual, MicroSim
Corporation, 20 Fairbanks, Irvine, CA 92718.

[11] Y. Cheng, M. Chan, K. Hui, M.C. Jeng, Z.H. Liu, J.H. Huang, Kai Chen, P. K. Ko
and C. Hu, BSIM3v3 Manual (Final Version), Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley,
December 1996.

[12] HSPICE User’s Manual, Meta-Software, 50 Curtner Ave. Suite 16, Cambell,
CA. 95008.

196

[13] T. R. Bashkow, “The A matrix, new network description,” IRE Transactions on
Circuit Theory, vol. CT-4, pp. 117-119, 1957.

[14] E. S. Kuh and R. A. Rohrer, “The state-variable approach to network analysis,”
Proceedings of IEEE, vol. 53, no. 11, pp. 672-686, July 1965.

[15] F. H. Branin, Jr. “Computer methods of network analysis,” Proceedings of IEEE,
vol. 55, no. 11, pp. 1787-1801, November 1967.

[16] F. H. Branin, Jr., “ The relation between Kron’s method and the classic method of
network analysis,” in IRE WESCON Conv. Rec., pt. 2, pp. 3-28, 1959.

[17] F. H. Branin, Jr., “DC analysis portion of PETAP-A program for analyzing
transistor switching circuits,” IBM Development Lab., Poughkeepsie, NY, Tech
Rep. 00.701, 1960.

[18] F. H. Branin, Jr., “DC and transient analysis of networks using a digital computer,”
in IRE Int. Conv. Rec., pt. 2, pp. 236-256, March 1962.

[19] N. G. Brooks and H. S. Long, “A program for computing the transient response of
transistor switching circuits PETAP,” IBM Development Lab., Poughkeepsie, NY,
Tech Rep. 00.700, 1959.

[20] G. D. Hachtel, R. K. Brayton, and F. G. Gustavson, “The sparse tableau approach
to network analysis and design,” IEEE Transactions on Circuit Theory, vol.
CT-18, pp. 101-113, January 1971.

[21] “ASTAP -- Advanced statistical analysis program,” IBM Program Product
Document SH20-1118-0, IBM Data Processing Div., White Plains, NY, 1973.

[22] W. T. Weeks et al., “Algorithms for ASTAP -- A network analysis program,”
IEEE Transactions on Circuit Theory, vol. CT-20, pp. 628-634, November 1973.

[23] I. S. Duff, “A survey of sparse matrix research,” Proceedings of IEEE, pp.
500-535, April 1977.

[24] S. C. Eisenstat et al., Yale Sparse Matrix Package. Part 1 and 2, Research

Reports No. 112 and 114, Yale University, Dep. Computer Sciences, New Heaven
CT.

[25] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, “Algorithm and data structure
for sparse sysmetric Gaussian elimination,” SIAM Journal of Scientific and
Statistical Computing, pp. 225-237, June 1981.

197

[26] R. D. Berry, “An optimal ordering of electronic circuit equations for a sparse
matrix solution,” IEEE Transactions on Circuit Theory, vol. CT-18, pp. 40-50,
January 1971.

[27] W. F. Tinney and J. W. “Direct solution of sparse network equations by optimally
ordered triangular factorization,” Proceedings of IEEE, vol. 55, no. 11, pp.
1801-1809, November 1967.

[28] O. Wing and J. Huang, “SCAP -- A sparse matrix analysis program,” Proceedings
of the ISCAS, pp. 213-215, 1975.

[29] A. Geoge and J. Liu, Computer Solution of Large Sparse Positive Definite,
Prentice Hall Inc., Eaglewood Cliffs, NJ, 1981.

[30] E. Rothburg and A. Gupta, “Efficient sparse matrix factorization on high
performance workstation -- exploit the memory hierarchy,” ACM Transactions on
Mathematical Software, vol. 17, no. 3, pp. 313-334, September 1991.

[31] C. W. Ho, A. E. Ruehli, P. A. Brennan, and D. A. Zein, “Interactive circuit
analysis and design using APL,“ Proceedings 1975 ISCAS, pp. 216-219.

[32] C. W. Ho, A. E. Ruehli, and P. A, Brennan, “The modified nodal approach to
network analysis,” IEEE Transactions on Circuits and Systems, vol. CAS-25, pp.
504-509, June 1975.

[33] L. W. Nagel and R. A. Roher, “Computer analysis of nonlinear circuits, excluding
Radiation (CANCER),” IEEE Journal of Solid State Circuits, vol. SC-6, pp. 162-
182, August 1971.

[34] T. E. Idleman, F. S. Jenkins, W. J. McCalla, and D. O. Pederson, “SLIC- A
simulator for linear integrated circuits,” IEEE Journal of Solid State Circuits, vol.
SC-6, pp. 188-204, August 1971.

[35] D. A. Zein, C. W. Ho, and A. J. Gruodis, “A new interactive circuit design
program,” in Proceedings IEEE Int. Symposium Circuit and System, Huston, TX,
pp. 913-917, 1980.

[36] L. W. Nagel and D. O. Pederson, ”Simulation program with integrated circuit
emphasis,” in Proceedings 16th Midwest Symposium Circuit Theory, Waterloo,
Canada, April 1973.

[37] D. O. Pederson, “A historical review of circuit simulation,” IEEE Transactions on
Circuits and Systems, vol. CAS-31, no. 1, pp. 103-111 January 1984.

198

[38] F. H. Branin and H. H. Wang, “A fast reliable iteration method for dc analysis of
nonlinear networks”, Proceedings of IEEE, vol. 55, no. 11, pp. 1819-1826,
November 1967.

[39] J. Katzenelson, “An algorithm for solving nonlinear resistor networks,” The Bell
System Technical Journal, vol. 44 pp. 1605-1620, October 1965.

[40] L. O. Chua and N. N. Wang, “A new approach to overcome the overflow problem
in computer aided analysis of nonlinear resistive circuits,” Int. J. Circuit Theory
Applicat., vol. 3, pp. 261-284, 1975.

[41] P. Adorjan, “The p = x + f(x) transformation: A new approach to the analysis of
diode-transistor networks with exponential characteristics,” Int. J. Circuit Theory
Applicat., vol. 9, pp. 482-488, 1981.

[42] M. Tadeusiewicz, “DC analysis of circuits with idealized diodes considering
reverse bias breakdown phenomenon,” IEEE Transcactions on Circuits and
Systems - I: Fundamental Theory and Applications, vol. 44, no. 4, pp. 312-326,
April 1997.

[43] C. H. Roth, Jr., Fundamentals of Logic Design, 4th edition, West Publishing
Company, 1992.

[44] S. W. Golpmb, R. E. Peile and R. A. Scholtz, Basic Concepts in Information
Theory and Coding, The Adventures of Secret Agent 0011, Plenum Publish
Corp., New York, 1994.

[45] C. Mead, Analog VLSI and Neural Systems, Addison Wesley 1989.

[46] X. Fang, Small area, low power, mixed-mode circuits for hybrid neural
network applications, Ph.D. dissertation, Ohio University, November 1994.

[47] R. K. Brayton, F. G. Gustavson and G. D. Hachtel, “A new efficient algorithm for
solving differential-algebraic systems using implicit backward differentiation
formula,” Proceedings of the IEEE, vol. 60, no 1, pp. 98-108, January, 1972.

[48] K. Singhal and J. Vlach, “Computation of time domain response by numerical
inversion of the Laplace transform,” Journal of the Franklin Institute, vol. 299,
no. 2, pp. 109-126, 1975.

[49] S. Topçu, O. Ocali, A. Atalar, and M. A. Tan ``A novel algorithm for DC analysis
of piecewise-linear circuits: Popcorn,'' IEEE Trans. on Circuits and Systems--Part
I: Fundamental Theory and Applications, vol. 41, pp. 553--556, August 1994.

199

[50] B. R. Chawla, H. K. Gummel, and P. Kozah, “MOTIS - an MOS timing
simulator,” IEEE Transcactions on Circuits and Systems, vol. CAS-22, pp.
901-909, December 1975.

[51] C. Visweswariah and R. A. Rohrer, “Piecewise approximation circuit simulation,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. CAD-10(7), pp. 861-870, July 1991.

[52] K. A. Sakallah and S. W. Director, “SAMSON2: An event driven VLSI circuit
simulator,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 4 (4), pp. 668-684, July 1985.

[53] E. Lelarasamee, A. E. Ruehli and A. Sangiovanni-Vincentelli, “The waveform
relaxation method for time-domain analysis of large scale integrated circuits,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. CAD-1, no. 3, pp. 131-145, July 1982.

[54] J. K. White and A. Sangiovanni-Vincentelli, Relaxation Techniques for the
Simulation of VLSI Circuits, Kluwer Academic Publisher, 1987.

[55] L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing
analysis,” IEEE Transactions on Computer-Aided Design, vol-9, no. 4, pp.
352-366, April 1990.

[56] R. Bryant, “A switch level model and simulator for MOS digital systems,” IEEE
Transactions on Computers, vol. C-33 pp. 160-177, February 1984.

[57] R. Kao and M. Horowitz, “Timing analysis for piecewise linear Rsim,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.
13, no. 12, pp. 1498-1512, December 1994.

[58] J. Vlach, and K. Singhal, Computer Methods for Circuit Analysis and Design,
Van Nostrand Reinhold, New York 1994.

[59] L. Pillage, R. A. Rohrer and C. Visweswariah, Electronic Circuit and System
Simulation Methods, McGraw-Hill, New York 1994.

[60] F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis
on VLSI, 4th edition, John Wiley & Sons, Inc., New York 1993.

[61] B. Stroustrup, The C++ Programming Language 2nd Edition, Addison- Wesley
Publishing Company, 1991.

200

[62] S. B. Lippman, C++ Primer, Addison-Wesley Publishing Company, 1991.

[63] J. K. Dickson, “On-chip high voltage generation in NMOS integrated circuits using
an improved voltage multiplier technique,” IEEE J. Solid-State Circuits, vol.,
SC-11, pp. 374-378, June 1976.

[64] M. S. Makowski, "Realizability Conditions and Bounds on Synthesis of Switched
-Capacitor DC-DC Voltage Multiplier Circuits”, IEEE Trans. on Circuits and
Systems -1: Fundamental Theory and Applications, vol. 44 no. 8. , pp. 684-691
August 1997.

[65] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, Potomac, Md. :, c1978.

[66] Microsoft Visual C++: User’s Guide, Microsoft Press, 1996.

[67] Microsoft Visual C++: Microsoft Foundation Class Library Reference Part
One, Microsoft Press, 1996.

[68] Microsoft Visual C++: Microsoft Foundation Class Library Reference Part
Two, Microsoft Press, 1996.

[69] Microsoft Visual C++: Programming with MFC, Microsoft Press, 1996.

[70] R. L. Burden and J. D. Faires, Numerical Analysis, 5th Edition, PWS-KENT
Publishing Company, Boston, 1993.

[71] P. Feldman and R. W. Freund, “Efficient linear circuit analysis by Padé
approximation the Lanches process,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 14, no. 12, pp. 639-649,
December 1995.

[72] M. A. Weiss, Algorithms, Data Structures and Problem Solving with C++,
Addison-Wesley Publishing Company, INC, 1996.

[73] N. H. E. Weste and K. Eshraghian, Principle of CMOS VLSI: A Systems
Perspective, 2nd Ed., Addison Wesley, 1992.

[74] M. S. Ghausi, Electronic Devices and Circuits, Discrete and Integrated, Van
Nostrand Reinhold, New York, 1985.

201

APPENDIX I

SUPPORTED DEVICES IN SAMOC

The device input format supported by SAMOC is very similar to the SPICE

format. The supported devices of SAMOC, are categorized and listed at the Tables I.i and

I.ii.

I.1 Device Input format

Voltage Sources

There are three types of voltage sources:

1. Independent voltage source :

V_name j j’ voltage_value

202

2. Voltage controlled voltage source

E_name k k’ j j’ voltage_gain

3. Current controlled voltage source

H_name k k’ j j’ transimpedance

For independent voltage sources, SAMOC supports time varying input method

modeling which inside PWL (piecewise linear), PULSE (period pulse) and SIN

(sinusoid). They have the same format as in the PSPICE input.

Current Source

There are three types of current sources:

1. Independent current source :

I_name j j’ current_value

2. Voltage controlled current source

G_name k k’ j j’ transconductance_value

3. Current controlled current source

F_name k k’ j j’ current_gain

Voltage Controlled Ideal Switches

S_name k k’ j j’

MOS Transistors

M_name d g s b model_name5 [l=1u]6 [w=1u]7

203

5 currently the supported model is PWL and use pmos and nmos to distinguish the type.

Ideal Diode

D_name j j’ turnedon_voltage[volt] breakdown_voltage [volt]

Capacitor

C_name j j’ capacitance[pico (10-12) Farad]

Resistor

R_name j j’ resistance[ohm]

I.2 Device Symbols and Stamps

The presented device stamps are used only when all terminals of a device are

partitioned into the same block. The device stamp of a device whose terminals are in

different blocks is presented in Chapter 6. The data presented in Tables I.i and I.ii are the

same as which presented in [58].

204

7 the default value is 1 µ m

6 the default value is 1 µ m

Table I.i The 2-terminal circuit devices supported in SAMOC.

CDiode
Vj < Vj’ F=0
Vj > Vj’ F=1

PWL approach

V V I
j

j'

m 1

1

1

F F F 1

j j' D

+
−

− −

L

N
MMM

O

Q
PPP

j

j'

VD
ideal
diode
(D, d)

C2TermC(Vj -Vj’) = Qj

C(Vj’ -Vj) = Qj’

V V
j

j'

C C

C C

excitation vector
Q

Q

j j'

j

j'

−
−
L
NM

O
QP

L
NM

O
QP

j

j'

VCcapacitor
(C, c)

C2VTermVj - Vj’ - R I =0
Ij - Ij’ I

V V I
j

j'

m+1

1

1

1 1 R

j j'

−
− −

L

N

MMMM

O

Q

PPPP

j

j'

V

I

R
resistor
(R, r)

C2TermIj = J
Ij’ = -J

j

j'

-J

J
 excitaiton vector

L
NM

O
QP

j

j'

J
current
source

(I ,i)

C2VTerm
Vj - Vj’ = E

Ij = I
Ij’ = -I

V V I
j

j'

m+1

1

1

1 1

excitation vector

E

j j'

−
−

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

j

j'

+
- E

I
voltage
source
(V, v)

SAMOC
class

equationsmatrixcircuit symbolelement

205

Table I.ii The multi-terminal circuit devices supported in SAMOC.

COpampVj = Vj’

j j k m
j

j

k

m

' '

'

'

1

1 1−

L

N

MMMM

O

Q

PPPP

+

-
k

j

j'

Ideal
OPAMP
(O, o)

CMosdiscussed in Chapter 2

d

b

s

g
MOS

transistor
(M, m)

C4Term

open circuit
F=0

short circuit
F=1

V V I
k

k'

m 1

1

1

F F F 1

k k' s

+
−

− −

L

N
MMM

O

Q
PPP

j

j'

k

k'

I
voltage

controlled
ideal switch

(S, s)

C4Term
Vj - Vj’ = 0
Ij = -Ij’ =I

Ik = -Ik’ = α I

V V V V I
j

j'

k

k'

m 1

1

1

j j' k k'

+

−

−
−

L

N

MMMMMM

O

Q

PPPPPP

α
α

1 1

j

j'

k

k'

I1 I2

I1α

current
controlled

current
source
(F, f)

C4HTerm

Vj - Vj’ = 0
Vk - Vk’ - r I1 =

0
Ij = - Ij’ = I1
Ik = -Ik’ = I2

V V V V I I
j

j'

k

k'

m 1

m 2

1

1

1

1

1 1

1 1 r

j j' k k' 1 2

+
+

−

−
−

−

L

N

MMMMMMM

O

Q

PPPPPPP

j

j'

k

k'

I +
- rI

current
controlled
voltage
source
(H, h)

C4Term

-µ Vj + µ Vj’ +
Vk - Vk’ = 0

Ik = I
Ik’ = -I

V V V V I
j

j'

k

k'

m 1

1

1

1 1

j j' k k'

+
−

− −

L

N

MMMMMM

O

Q

PPPPPPµ µ

j

j'

k

k'

I

+
- Vµ

voltage
controlled
voltage
source
(E, e)

C4Term

Ij = 0
Ij’ = 0

Ik = g (Vj - Vj’)
Ik’ = - g (Vj Vj’)

V V
k

k

g g

g g

j j'

'

−
−
L
NM

O
QP

j

j'

k

k'

I

gV

voltage
controlled

current
source
(G, g)

SAMOC classequationsmatrixcircuit symbolelement

206

APPENDIX II

BENCHMARK CIRCUIT SIMULATION AND

COMPARISON

The presented benchmark circuit simulation was perform on an IBM PC

compatible computer with a Cyrix® 6x86MX PR200 CPU running at 166 MHz (66 x

2.5), and a Number Nine® Imagine 128-II PCI graphic card with 4 MB of video RAM.

The computer was equipped with 512 MB of EDO (extended data out) DRAM. Two

operating systems, MS® Windows NT 4.0 with service pack 4 and Redhat® Linux 5.2

with kernel 2.0.34, were installed in the used computer. The SPICE simulation was

performed in Linux by using Berkeley SPICE3f5 which can be found in the Internet8.

SAMOC simulation of the same set of benchmark circuits was performed in the same

207

8 One place to download SPICE3f5 from is http://uiarchive.cso.uiuc.edu

computer with the same configuration as for the SPICE simulation while the operating

system was switched from Linux to MS Windows NT.

Table II.1 shows the SPICE simulation results. Each simulation is time domain

transient analysis. SPICE3f5 did not finished the simulation of benchmark circuits “sqrt”

and “ram2k”. The simulation processes ended because of not enough system memory.

Table II.i SPICE simulation results of benchmark circuits.

23269.1126001.0E-096.0E-07015613880ram2k

25314.3119001.0E-099.0E-07010221118sqrt

4580101001.0E-081.0E-060074voter25

failed920006.0E-101.2E-0600330b330

28.432005.0E-101.0E-0700220counter

4.722001.0E-082.0E-0603358toronto

226.193001.0E-073.0E-0502964mux8

15.368001.0E-098.0E-0704260cram

1.6920001.0E-072.0E-0442431ab_opamp

1.3840001.0E-044.0E-0132231ab_integ

CPU time
(sec)

simulation
instances

Time
step
(sec)

Time
span
(sec)

ResistorsCapacitorsMOSFETsCircuit

SAMOC simulation of the same set of benchmark circuits is presented in Table

II.2. Table II.2 also shows the partitioning information and topological depth. The

required CPU time information is not the as same as which in Chapter 8. It is because the

change of computer hardware configuration and SAMOC version. System memory was

208

12out of memory fail.

11out of memory fail.

10 finished but required 350 MB of system memory.

9 time step too small fail.

switched from 64MB SDRAM in Chapter 8 to 512MB EDO RAM. SAMOC version

used for benchmark analysis was switched from debug mode in Chapter 8 to released

mode.

Table II.ii SAMOC simulation results of benchmark circuits13.

1,86933384,87314,095ram2k

1,11643285252,219sqrt

12125282voter25

96190179363b330

613097223counter

513637102toronto

7361543105mux8

911845114cram

105103662ab_opamp

35103662ab_integ

CPU time
(sec)

TP14blocksnodeselementsCircuit

209

14 TP = topological depth

13 The simulation results shown in this table are different from the results in Chapter 8.
The difference is caused by different configuration of compiler option and computer
hardware.

Jan, Ying-Wei, Ph.D. March, 1999
Electrical Engineering

A Switched-Capacitor Analysis Metal-Oxide-Silicon Circuit Simulator (209 pp.)

Director of Dissertation: Janusz A. Starzyk, Ph.D.

This research presents such new circuit simulation strategies and techniques as

piecewise device modeling, circuit partitioning and event-driven analysis for fast

simulation of analog MOS-based VLSI circuits. An automatic circuit formulation

algorithm: based on the modified nodal analysis, and numerical analysis techniques such as

Katzenelson algorithm and Gaussian elimination were combined with the proposed

methods to form a complete solution for fast analog VLSI time domain simulation.

In order to verify and evaluate the proposed circuit simulation techniques and its

partition strategies, a new circuit simulator, SAMOC, was built in the form of a digital

computer program. This work presents details of building this circuit simulator with its

data structure for circuit representation, and circuit block analysis scheduling for

event-driven simulation. Both are specially designed for analyzing large scale MOS

circuits on resource limited computer systems.

Simulations of several well-known small analog and digital circuits were presented

for functional verification of SAMOC. A set of benchmark circuits which contain large

amount of MOS transistors were used to evaluate the simulation efficiency improvement

of the proposed methods comparing with standard industrial SPICE simulation. The

simulation results indicate that SAMOC can exploit the latency of circuits, speed up the

circuit simulation, and analyze such large circuits, which SPICE3f5 failed to do.

Approved: __

