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Abstract—This paper reports on the transition from a reactive 
motivated agent model to a cognitive agent model based on 
motivated learning and goal creation. The paper details the 
current state of our research on the cognitive agent and its 
implementation in a virtual world environment. In particular, we 
show the virtual simulation and the agent’s decision making 
process as it transitions from a parallel to a sequential 
implementation, as well as several of the reasons for doing so. In 
addition, results of testing both models on the same simulated 
environment are compared. The results show that the new model 
performs more efficiently than the old one. Furthermore, our 
planned future work on cognitive agent is presented. 

Keywords—motivated learning; cognitive intelligence; semantic 
memory; attention switching; sequential thought process 

I.  INTRODUCTION 

The creation of a viable cognitive architecture can be 
considered a holy grail for researchers involved in machine 
learning. To date, a number of architectures have been 
proposed and/or implemented with varying levels of success, 
benefits and detractions. Examples of some current, well 
known, cognitive architectures include SOAR [1], ACT-R [2], 
Icarus [3], LIDA [4], Polyscheme [5], and CLARION [6]. The 
biggest issue with many of these systems, and the one we are 
trying to avoid, is the reliance on pre-defined scripts, heuristic 
rules, and general lack of true autonomy. SOAR, for example, 
while a very versatile platform is purely symbolic. Although its 
capabilities have been enhanced with add-on modules, they 
have the appearance of a band-aid over the real problem, which 
is lack of grounding (i.e. intrinsic understanding of symbols). 
ACT-R is part of a family of architectures that have been used 
to model human cognitive processes. However, it is primarily a 
theoretical modeling platform designed to help researchers 
understand human intelligence; it is not a full platform that is 
designed with the goal of developing intelligence. The Icarus 
architecture focuses on perception and action over things like 
abstract problems solving. Simply put, Icarus lacks the 
architectural components that would allow abstract thinking. 
All these methods either have to rely on predefined goals or 
predefined rules. LIDA architecture emphasizes a “Global 
Workspace” as envisioned by Baar’s Global Workspace 
Theory (GWT). The LIDA model tries to model cognition in 
biological systems, from low-level perception and action to 
high-level reasoning, however, it relies on cognitive “atoms” 

and “attention codelets”, which are not well defined, since not 
much is known as to how they can be implemented. 
Polyscheme is an architecture designed to integrate multiple 
representations and inference schemes into a single system 
capable of thought. It combines several specialized modules, 
each designed with a specific role, with their own handcrafted 
data structures and algorithms. While the system is fairly 
flexible and the modules collectively choose their focus, they 
can be considered to be over-specialized. It is one thing to learn 
specialization over time; it is another to have it pre-
programmed by a designer. This can lead to artificially hobbled 
learning. Lastly, CLARION unlike other cognitive 
architectures, attempts to discover explicit rules via inductive 
analysis of what has been implicitly learned, which typically 
means extracting rules from an artificial neural network. 

While there are issues with all of these systems, this should 
not be taken to mean they are not useful, only that they are 
incomplete. We hope that the design and implementation of our 
own cognitive architecture fills some of these holes and allows 
our agent to operate in a more capable and truly autonomous 
manner.   

We began our research by looking at what drives 
intelligence. How does intelligence create its goals? How do its 
needs affect its learning processes? This led us in the direction 
of goal creation internal to the agent and Motivated Learning 
(ML). Motivated Learning is an approach toward the creation 
of intelligent agents where the internal motivations of an agent, 
created by either external reward or satisfying other 
motivations, may take precedence over externally set goals. 
This is in contrast to reinforcement learning (RL), which works 
by maximizing external reward by learning approximating 
value functions. While RL may deviate from its pursuit of 
value function maximization to occasionally perform random 
actions to assist its exploratory process, this behavior usually 
becomes less common as time progresses. Reinforcement 
learning is primarily reactive, and if we want to develop a 
human-like agent, we need to go beyond purely reactive 
cognition. And while ML is always controlled by its underlying 
motivations, the overall ML agent architecture is able to build 
on them and set its own objectives and motivations. By 
abandoning the search to maximize externally set objects the 
agent is able to learn new relationships, learn new motivations, 



and build a system of internal rewards that guide it in its 
interaction with the environment. 

In previous publications [7][8][9], we presented the idea of 
motivation being the underlying force behind a cognitive 
agent’s operation. Motivation itself is expressed through needs 
or drives present in the agent. An agent starts with one or more 
“primitive” needs, and as it learns to fulfill them, the agent 
creates many of its own abstract needs based on its 
accumulated knowledge and solutions to the more primitive 
needs. The need for money is an example of an abstract need in 
humans. Money by itself has no value and does not provide for 
basic human needs. Without the knowledge of money’s uses 
and its ability to buy the goods and services that support basic 
needs such as food and shelter, it would be little more than a 
bunch or paper or metal coins of no significance to us.  

In more recent work we have advanced our understanding 
of how motivation works in a complete cognitive model and 
have worked toward giving additional structure to our cognitive 
model [10][11][12] by adding components such as memory, 
planning, and attention switching. This model and the more 
simplified version that we are currently implementing are 
discussed in the next section. 

II. BACKGROUND 

Our work in cognitive models began with the investigation 
of memory and how goals were formed [9]Error! Reference 
source not found.. The initial work on goal creation was 
concerned with how a cognitive agent develops its own goals 
and motivations. From the creations of goals, we shifted focus 
to underlying motivations, hence, the focus on Motivated 
Learning. With the more general focus on motivated learning, 
other elements of the cognitive model became increasingly 
relevant and we started to try to develop a more complete 
picture of the cognitive model to which our end-goal agent 
would subscribe. The initial theoretical model is discussed in 
[9][10][14].  

A. Comprehensive Cognitive Model 

More recently, with our work on opportunistic motivated 
learning [8][15], we have made a few changes to further 
develop the cognitive model, with the current version shown 
below in Fig. 1.  

This updated cognitive model has more detail added in the 
form of additional functional components and links that 
represent information passed between them. Discussion of the 
details of the links in the full model is not attempted due to lack 
of space. However, details of the links for the reduced version 
are presented in Part B of this section and may be extrapolated 
to the “Full” model of Fig. 1. 

In this model we have divided the agent’s functions into 
several distinct blocks consisting of: working memory 
(essentially the central executive), semantic and episodic 
memory, motor control, motivation and goal creation, 
subconscious and WTA attention switching, and sensory/motor 
processing. Information processing and learning in Fig. 1 is 
organized from the bottom up, with the bottom functional 
components being in the subconscious realm and performing 

parallel operations on the input/output data. The components 
toward the top of the figure process conscious observations, 
memories, thoughts and plans and are characterized by 
sequential processing.  

In terms of the function of each block, the sensory motor 
area is where most of the initial low level processing occurs. In 
more advanced implementations this would be the location 
where raw sensory input is processed into useful information 
through feature extraction and object recognition, and fine 
motor control signals are generated for the agent’s actuators. 
Our current implementations are entirely virtual and the bulk of 
our focus is on the cognitive model, so our I/O is mostly 
symbolic and possesses no more than feature level resolution. 
Hence, there is little actual processing currently occurring in 
these modules.  

 
Figure 1.  “Full” cognitive model.  

Subconscious attention switching is a module that handles 
changes in the environment, new objects, unexpected events, or 
sudden changes in the agent’s motivation state, and brings them 
into the agent’s attention focus if needed (where the attention 
focus is the current object or concept selected for processing by 
the working memory.) It essentially controls what we may call 
“involuntary attention switching,” with little or no conscious 
control. There may be some conscious control implemented in 
the form of conscious thresholding of environmental signals, so 
that the agent is able to more adeptly filter out background 
noise, much as we might ignore something going on in the 
background to focus on an important task.  

The motivation and goal creation controls the agent’s 
motivation and behavior. It is involved with the maintenance of 
primitive needs and the creation of new abstract needs. This 
block receives input from sensory processing to evaluate pains 
and establish the level of motivations. It interacts with the 
attention focus to direct it to the needs and can interact with the 
planning block for action evaluation. It supports scene building 



by providing information about the significance of each scene 
element and collectively of the entire scene. In addition, 
subconscious pains can trigger reactive motor response to 
reduce the pain level. The agent’s motivations have already 
been discussed in great detail in our previous work, so 
discussion here is limited to how it interacts with other 
functional blocks. However, motivation remains an important 
part of the model. 

The semantic and episodic memory blocks consist of the 
two memories and attention focus / saccading components that 
direct the focus of the memory blocks in the direction needed 
by the agent. For the semantic memory this typically means 
saccading through semantic knowledge related to the current 
dominant motivation in the hope that it will be able to provide 
information to the working memory and allow it to put together 
a viable plan. Episodic memory, also directed by the attention 
focus will pull up salient episodes related to the current focus 
for the agent’s consideration and review. Attention focus 
selects a concept in focus for consideration by working 
memory. It is supported by the mental saccades mechanism 
[13]. By using attention focus, parallel processing of sensory 
information, internal need signals, and associations created in 
the semantic memory are changed to a sequential, cognitive 
processing.  

Semantic memory is essentially a database of interlinked 
and associated knowledge that the agent has accumulated 
through learning and can access if needed. Episodic memory, 
on the other hand, is a memory of the agent’s experiences. It 
provides context, spatial and temporal relations, as well as 
event significance and emotional attachment. Episodes are 
formed in the working memory, supported by scene building 
and scene significance mechanisms. 

WTA attention switching mediates the attention switching 
functionality between the subconscious attention switching 
(which takes priority), action monitoring (planning activities), 
and background thought processing (general thinking). Its 
function is to switch attention from the current attention focus 
to a new one, depending on environment conditions and 
internal processing of information. It responds to signals from 
subconscious attention switching, action monitoring and mental 
saccades. More information on our conceptualization of these 
memories can be found in [13],[16]. 

Working memory, or the central executive, is where most 
of conscious thought processing occurs. It is involved in 
putting together “plans” for resolving the agent’s needs, 
managing these plans, and handling the results. It also contains 
what we refer to as the scene building module, which manages 
the creation of scenes. Working memory restores the observed 
scene by cognitively recognizing the main objects, their 
location and relationships between them. It receives support 
from the motivations and goal creation block to establish scene 
significance and provides translation from pixel level visual 
input to cognitive representation. Scene building is important 
for constructing episodic memories, performing searches, 
spatial orientation, and map building.  

Working memory is also involved in action evaluation, 
planning and monitoring. First, a potential action is evaluated 
by recognizing what needs (if any) it can satisfy. Second, after 

analyzing several options, the best one is selected for potential 
realization. Third, in action planning, conditions necessary to 
complete the planned action are checked. Finally an action is 
initiated and its progress is monitored. The system must have 
the ability to return to an interrupted action if action evaluation 
determines that its completion is useful. 

Last, is the motor control area, which contains the 
procedural memory and visual saccade control. It handles, in 
conjunction with other components, the creation of procedures 
(which greatly simplify the execution of complex actions by 
reducing the amount of cognitive overhead needed) and the 
execution of the plans generated by action planning. 

Please note, that this is only a very brief summary of the 
complete model and is only given to provide some context for 
the reduced version of the model that is discussed next. For a 
more detailed overview of the model see [8] or[14]. 

B. Reduced Cognitive Model 

Fig. 2 shows the functional organization of the reduced 
cognitive model that is discussed in this paper. The reduced 
version of the cognitive model removes and simplifies several 
of the components from the complete version of the model in 
an effort to create a “stepping stone” toward a more complete 
and fully functional implementation.  

 
Figure 2.  Simplified cognitive model. 

First, notice that there is no cognitive motivation 
component in Fig. 2. This is because the higher level cognitive 
processing of our agent is not yet developed and it is necessary 
to use subconscious motivations (as determined by the pains 
and rewards block) working in the sequential model, along 
with the attention focus mechanism.  

Next, WTA attention switching has been folded into the 
Combined System Memory and episodic memory has been 
removed. Episodic memory was removed for now since it is 
desirable to get simplified versions of the most important 
structures operational before adding more complexity. The 



agent can still operate without episodic memory; it will simply 
be more limited in its reasoning capabilities, since it will lack 
much of a historical record of its activities and their 
significance. However, since the actual cognitive functionality 
is currently very limited, this is a moot point. Scene building 
has also been removed, since there is less need for it without a 
dedicated episodic memory. However, it is worth noting that 
the action planning component retains an internal 
representation of the environment which it maintains as it 
receives updates via memory saccades. 

Procedural memory, saccade handling, and attention 
switching (with the exception of the involuntary attention 
switching mechanism) are all folded into a simplified 
Combined System Memory structure. Once the initial structure 
has been implemented and tested, these components will be 
separated and their full functionality restored.  

In Fig. 2, we display several numbers associated with the 
links connecting the various modules. The lines represent 
information that is passed to/from the various major functional 
blocks, and help to provide understanding of the central role 
that the semantic memory plays in the system operation. Most 
of these signals will be used by the memory to trigger memory 
nodes, update node activation levels, perform saccades, or 
attention switching.  

Next, we will discuss the role individual links play in the 
simplified cognitive model. Please note, that this is only a brief 
overview of the links and is not intended to be an in depth 
discussion of the interconnectivity of these modules, but is 
presented to provide some insight into how the simplified 
model operates. Tracing these links we can better understand 
how central the combined system memory component is, and 
how complex the model remains despite the simplifications we 
made from the full model. 

Data sent between functional blocks in Fig. 2 are described 
according to line identification number as follows: 

1. Subconscious attention switch data – drives mental and 
visual saccades to switch agent’s attention due to a noticeable 
change in the environment or motivations. 

2. Processed environment data – provides needed 
information to the primitive pains and subconscious attention 
switching and activation signals to the semantic memory. 

3. “Next” signal from the planning block that tells the 
memory that it is ready for another saccade. 

4. Provides action status information regarding the 
progress on the current action, whether it is complete, and if it 
is ready to be evaluated. 

5. Request to estimate expected pain reduction by the 
evaluated action. 

6. Pain/Need change information; important when actions 
are being evaluated. 

7. Environment change information (used in calculating 
abstract needs and adjusting interconnection links weights in 
both the motivation and the memory blocks) 

8. Motivation levels; used as a priming mechanism for the 
memory. 

9. Ratio estimation for change in pain resulting in per unit 
resource use. 

10. Winning saccade data from memory and associated 
information. 

11. An involuntary reflex warning signal from the pain 
management to motor processing. 

12. Sensor signal that specifies the action/saccade target 
13. Motor command signal; a symbolic signal that typically 

represents a motor command or procedural sequence. 
  

 Most of the reductions/removals in this simplified model 
are done only because it is necessary to “work our way up”. By 
implementing the full model one step at a time we minimize 
the amount of work we have to redo as our models evolve. This 
allows the evolution of our models and theories to occur as we 
obtain results, better understand the limitations of the current 
model, and improve its functionality through testing various 
environment scenarios.  

As has already been implied, this reduced model lacks 
much of the higher level functionality present in the “Full” 
cognitive version. Obviously, when advancing the model, some 
components need to be implemented simultaneously. This is 
the case as we advance from the parallel Opportunistic 
Motivated Learning (OML) model, presented in[8],[15], to the 
sequential cognitive model presented here. For example, in 
order to add a semantic memory, we had to add attention 
switching, action monitoring, and a more advanced, distinct 
planning mechanism. 

III. IMPLEMENTATION 

Using the “Full” cognitive model discussed above in 
section II.A as a basis, we have implemented a reduced version 
of the model (as discussed in II.B) that lacks much of the 
complexity present in the “Full” model. For example, we do 
not have separate procedural or episodic memories. The lack of 
procedural memory is because we are designing our agent for a 
purely symbolic environment, significantly limiting its choices. 
This initial implementation is noticeably simplified, perhaps 
even more than Fig. 2 suggests. For example, actions remain in 
the form of sensor/motor pairs (target a sensor object and 
perform a motor action on it) and we have yet to implement 
multi-step sequences of actions. In fact, we have deliberately 
tailored this initial sequential implementation to match the 
capabilities of our parallel OML implementation [15] in order 
to compare them. The ability to compare two subsequent 
implementations is useful in this field of research where it can 
be difficult to effectively benchmark and/or compare the 
developed models. 

To elaborate, we have designed the sequential 
implementation with the same simple initial environment and 
the sensor/motor pair setup that our earlier implementations 
used. However, we have progressed toward increasing the 
system capabilities such as using additional features and more 
complex environments. To provide some context, let us briefly 
compare the earlier parallel OML implementation with the 
current sequential implementation. 



Table I summarizes the major differences between the two 
implementations of the motivated learning models. In Table I 
we note that in the sequential implementation the agent does 
not update abstract needs/motivations every cycle. This is 
because it only “updates” one resource at a time after attention 
was focused on this resource. On the other hand, primitive 
pains are updated every computational cycle since they are 
based on parallel and subconscious sensory inputs. 

Table I. Implementation Comparison 

Parallel OML implementation Sequential Implementation

The agent is simultaneously aware 
of everything.  

The agent is attention based, so it 
effectively “sees” only one object at 
a time.  

All pains and motivations are 
updated every cycle. 

Primitive pains are updated every 
cycle, but abstract needs are not. 

No specific monitoring or 
evaluation blocks. 

Has action monitoring and 
evaluation components. 

Action choice based only on the 
state of the environment and the 
agent. 

Associations and memories affect 
action choice in addition to the state 
of the environment and the agent. 

Only capable of forming direct 1-1 
associations. 

Has semantic memory capable of 
forming hierarchical associations.  

Abstract motivations/needs are updated only when the agent 
has had an attention switch to the associated resource or 
concept. This impacts nearly every facet of the agent’s 
operation. For example, the agent does not have a true “real-
time” mental representation of the environment, because its 
internal maps can only update a feature after it has been subject 
to a saccade. Nor can the agent evaluate its actions until it has 
had the chance to saccade to the objects that its action effects.  

This means that the agent has to assume that its 
environment does not change drastically in a short period of 
time (a significant change would trigger an attention switch and 
update the cognitive agent’s memory), and that evaluating the 
results of actions takes longer than in the parallel OML 
implementation.  

We also note that the sequential model has a more complex 
memory structure. The OML model implements a reactive 
agent, and while it is capable of learning new relationships, the 
relationships have to be direct (not conceptual, amorphous, or 
inferred). However, the sequential model uses a semantic 
memory capable of developing associations between related 
nodes and forming hierarchical relationships between concepts. 

Nevertheless, both agents currently use the same type of 
symbolic I/O. Hence, in order for the agent to function, 
information needs to be rendered into a symbolic and/or feature 
based format that the agent can understand. While we could 
design a system that processes raw visual input and learns to 
dynamically control its motor functions, which would be a 
major project by itself (and is an active research area for 
others). However, in our work we rely on symbolic I/O that is 
easily deliverable by video game virtual environments to 
simplify our task and accelerate progress in research on 
cognitive agents. 

In the OML model, we essentially executed everything in 
parallel, and then polled the environment. In the sequential 

implementation, we have a more complex data processing 
structure. We still have to execute each “block” in a sequence 
due to the nature of the programming environment; however, 
there are more blocks and more data flowing between them.  

The following list provides a simplified look at the 
execution of the main Iterative Loop of the program to give a 
rough idea of the data flow. (Note that not all of the data links 
are mentioned, just the main links associated with the primary 
functionality and data flow of the model.) The loop is either 
executed indefinitely, until the agent “dies”, or for some 
predetermined number of iterations (at which point the agent’s 
“memory” state can be stored for later resumption). 

Iterative Loop  
1. Update Primitive pain – updates primitive pains 

a. Receives pain information from the Environment 
(Sensory processing) 

b. Sends results to Motivations 
2. Update Motivations – passes primitives and updates 

motivation levels 
a. Receives data from Primitive Pains, Action 

evaluation, and Memory (no direct link to 
environment/sensory) 

b. Sends data to subconscious attention switching 
and the sensory area of semantic memory 

3. Update attention switch – updates subconscious attention 
switching to check for a visual or motivation interrupt  

a. Receives data from Sensory processing and 
Motivations 

b. Sends data to semantic memory 
4. Update memory – performs memory saccade 

a. Receives data from Environment (sensory 
processing), Motivations, Subconscious attention 
switching, and Action Evaluation 

b. Sends data to Planning and Motivations (used to 
pass data from visual saccades for motivation 
updates) 

5. Update planning – uses memory data to update plans 
a. Receives data from Semantic memory 
b. Sends data to Action evaluation 

6. Update actions – checks action status/monitor and tracks 
action evaluation 

a. Receives data from Planning 
b. Sends data to the Environment (through motor 

control) and Semantic Memory 
7. Perform the selected motor actions in the virtual 

environment – move the agent if needed, etc. 
8. Check the environment – update environment state based 

on the agent’s actions and the environment response. 
End Loop 
 

Note that the current implementation uses a pseudo-
semantic memory that only mimics functionality of semantic 
memory. It was created to act as a placeholder for the semantic 
memory while we develop the sequential implementation. It 
possesses basic attention switching and visual saccading, as 
well as the ability to form simple associations. However, it 
cannot form more complex hierarchical relationships and 



concepts as true semantic memory would. However, the fully 
functional semantic memory is not necessary at this time 
because of the simplicity of the current environmental scenario 
used to showcase the results. In the next section, we compare 
similar simulation runs for the previous OML implementation 
and our current sequential model.  

IV. RESULTS 

In this section we compare the results of a pair of 
simulation runs for both the parallel OML implementation and 
our sequential model to provide a baseline for future work. In 
the simulation setup, both models were given the same simple 
environmental scenario as shown in Table 2 where each row 
represents one of the possible “correct” actions like “eat food”. 
Each such “correct” motor action induces changes in the 
abstract pains. For instance, “eat food” reduces the hunger pain. 
Simultaneously, through the goal creation mechanism, a higher 
order need is established and an abstract pain related to the 
resource used to perform the desired action, increases. The 
agent must learn which action reduces what pain. In this 
scenario we have a single primitive pain, “Hunger,” and 4 
abstract needs. Additionally, there are 6 resources with which 
to interact and 6 possible motor actions. In summary, there are 
36 possible actions, of which only 5 will have any positive 
impact on the agent’s environment.  

Table 2. Functional sensory motor pairs and their effects. 

MOTOR 

FUNCTION 

SENSOR 

OBJECT 

REDUCES 

PAIN 

INCREASES 

PAIN 

Eat Food Hunger Lack of Food 
Buy  

Food at 
Grocery 

Store 
Lack of Food Lack of Money 

Withdraw 
from 

Bank 
Account 

Lack of Money Overdrawn 
Account 

Work 
in 

The 
office 

Overdrawn 
Account 

Lack of job 
opportunities 

Study 
at 

School Lack of job 
opportunities 

- 

Play 
with 

Toys - - 

 

Figs. 3 and 4, present the results from the OML simulation. 
The OML simulation performed 100,000 iterations in 168 
seconds and was sufficient for the agent to learn its skills.  

 
Figure 3.  OML simulation pain results. 

The figures only display the first 20,000 iterations to 
preserve the readability of the results, although, “Prim Hunger” 
has been hidden in Fig. 3. Its presence would interfere with 
visualization of the results, since it is a primitive pain and its 
change occurs much more frequently than the others. In Fig. 3, 
we see that the pains did not go much beyond the threshold of 
0.3 before they were reduced, which indicates that the agent 
learned how to manage its needs and lower internal pain 
signals.  

In Fig. 4, we can observe the impact of the pain/need 
responses on resource usage (with resource values normalized 
to 1.0). Notice that “Job Opportunities” did not fluctuate as 
much as most of the other resources because the agent did not 
need to restore its money supply frequently enough in the 
20,000 iterations for the resource to drop significantly. 
However, as expected, we can see that drops in “Job 
Opportunities” directly correlate to jumps in Money supply. 

 
Figure 4.  OML simulation resource results. 

Figs. 5 and 6 depict the corresponding pain/resource results 
for the sequential model simulation. Execution of this program 
took 322 seconds and also ran for 100,000 iterations (although, 
again, we only display the first 20,000 iterations.) The 
sequential simulation took roughly twice as long as the OML 
simulation. This additional time needed by the sequential 
algorithm to make decisions makes perfect sense considering 
the additional computational overhead brought on by the use of 
the sequential model. However, since the 322 seconds used by 
sequential algorithm represents total time needed to make 
100,000 decisions, it translates to 3.22 msec/decision, which is 
hardly a problem for real-time control of the robot in either the 
real or virtual world.  

Note that in Fig. 5 the Hunger pain has been hidden to 
allow the lower level pains to be visible. Most of the pains are 
resolved (reduced below threshold) shortly after they pass the 
threshold. Similar behavior was observed in Fig. 3. In fact, 
shortly after 10K iterations the sequential agent appears to no 
longer rely on pain as a trigger for its actions and instead relies 
on its internal saccade mechanisms to present useful actions to 
the planning mechanism. This is implied because after 15K 
iterations the pains do not appear to reach values of much more 
than 0.15, well below the threshold of 0.3. This behavior of the 
sequential model is promising as it results in better pain 
management than in the OML model.  



The amount of time needed to perform an action in the 
sequential model is greater due to its saccade to the selected 
solution, performance of the required actions, and then 
evaluation of the results, whereas in the OML implementation, 
evaluation and selection of the action happens within the 
execution cycles, which needs fewer processing steps.  

 

Figure 5.  Sequential model simulation pain results. 

 

Figure 6.  Sequential model simulation resource results. 

More specifically, the motor command for “eating” in both 
simulations requires 2 cycles. In the OML simulation the action 
is selected and started during the first cycle, and evaluated on 
the start of the third cycle (during which a new action starts). In 
the sequential simulation, the agent has to switch attention to 
the dominant motivation, and then one or more mental 
saccades within the memory to provide the correct solution to 
the planning block. Then two more cycles are required to 
actually perform the action. At least one additional cycle is 
needed to evaluate the action. Hence, the sequential model’s 
execution of the “Eat Food to reduce Hunger” action takes four 
cycles compared to the two cycles needed by the OML 
simulation. This 4 cycle count is a minimum for the sequential 
agent, since there could easily be other things happening in the 
environment or within the agent’s saccade mechanism that 
could extend the time needed to select and execute the 
appropriate action.  

This higher efficiency of OML model may be superfluous 
as it benefits from parallel vector processing. In a full cognitive 

system, where the parallel nature of sensory data will be 
significantly higher than in the simplified symbolic 
information, this advantage will disappear. In fact, we claim 
that the opposite may be true and that sequential systems will 
be able to process massive amounts of sensory data more 
efficiently, by focusing on changes in the observed scene and 
on those sensory inputs that it must cognitively recognize.  

Despite the longer time required by the sequential model 
from the time it initiates an action to the time it finishes 
evaluating it, the sequential model appears to be more efficient 
in its operation. Some of this can be because even when it is 
performing an action the agent is still saccading and evaluating 
other actions. However, this concurrent processing behavior 
cannot be responsible for keeping the pain values below 
threshold as occurs at about 14K iterations or for faster cycling 
between pains.  

The main reason for the sequential model’s improved 
performance is that it exhausted its curiosity about the 
environment sometime between 11-14K iterations. When there 
is no pain above threshold, the pseudo-memory saccades to the 
next best option, related to the highest current pain. Ultimately, 
this caused the behavior observed in Figs. 5 and 6 after 14K 
iterations with the agent making optimum use of its time. This 
has the desirable effect of keeping overall pain values much 
lower. In a more complex environment, we might see this kind 
of behavior if the agent had fully explored its immediate 
vicinity. At such a point it could choose between moving 
elsewhere, or working to resolve its needs within the known 
area. 

Disregarding the different rates of pain management in the 
two models we can see that their general behavior is similar 
and that they are both able to successfully handle their 
respective environments. Let us now analyze Figs. 4 and 6, 
which concern the resource levels in both simulations. There 
are two significant and noticeable differences between the two 
plots. The first one corresponds to the faster rate of pain 
handling in Fig. 5 in the sequential model with resources being 
restored at a greater frequency after reaching equilibrium at 
14K iterations. The other difference is in the curves’ variability 
character (for example the Money resource).  

In Fig. 4, Money, after being depleted, is slowly 
regenerated in a series of several small steps, while later on, 
around 9K iterations, it experiences a large jump. This jump 
can be attributed to the agent finally learning the value of 
money. This does not account for the earlier gradual increase in 
the money supply. This increase is due to the agent having 
learned to restore money, but not knowing its specific 
usefulness (i.e. it’s ability to bring grocery pain below 
threshold). In Fig. 6, we do not see much of this behavior at all. 
This is because the sequential model focuses its attention on the 
dominant motivation, and if curiosity doesn’t dominate long 
enough and a more pressing goal oriented need wins in the 
planning block, a curiosity based action will not be executed. 
This is not the case in the OML algorithm where actions tend to 
take slightly less time and the algorithm can simultaneously 
“see” all of the available options. 



V. ENVIRONMENT SIMULATION 

So far, we have focused primarily on the models and their 
functions. Yet, while we have been improving our models, we 
have also been improving our environmental simulations. If 
you compare the environment we presented in [8] or [15] to the 
one depicted in Fig. 7 several improvements are noticeable. In 
addition to the direct reporting of pains and resources to the 
screen, we have also begun incorporating animations into the 
agent’s action to better illustrate its interactions with the 
environment. Eventually, we hope to link animations together 
in sequences of motor control functions to effectively perform 
and display/represent more complex procedures. 

 

Figure 7.  Snapshot of simulation environment. 

In Fig. 7 there are three panes indicating the state of the 
environment and the agent. The left pane shows the state of 
the resources in the environment. The middle pane indicates 
the agent’s current action. And the right pane shows the 
agent’s pain levels. Red bars in the right pane indicate that a 
pain is above threshold. While this environment simulation is 
currently only capable of running the OML simulation, we 
will have it ready for the sequential model soon.  

Further improvements to the simulation will include using 
sequences of animations and more complex object 
representation. We plan to add more features to the objects. 
We also intend to add a focused view of the environment, 
since now the agent can “see” all of the objects around it at 
once. By reducing its field of view we will increase the 
element of exploration. This will likely be a priority once the 
agent becomes capable of more complex actions. We will also 
add elements of human-machine interaction, to allow the agent 
to learn and/or interact with human avatars. 

VI. CONCLUSION 

A viable cognitive architecture is needed in developmental 
robotics and mission critical autonomous robots capable of 
independent operation in dynamically changing complex 
environments. This paper presents the progress being made in 

this direction by chronicling the advancement of our motivated 
learning model and its implementation and providing a brief 
comparison of the results between the two most recent model 
implementations. Our motivated learning model has advanced 
significantly towards a fully cognitive model. We plan to 
further enhance its functionality and memory organization. 
The next step will be to implement the semantic memory, 
followed by the implementation of a basic procedural memory 
to perform complex action sequences. Subsequently, this will 
be followed by development of episodic memory and 
enhancement of action planning, evaluation and monitoring. 
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