
Transitioning From Motivated to Cognitive Agent
Model

James Graham and Janusz A. Starzyk
Russ College of Engineering and Technology

School of Electrical Engineering and Computer Science
Ohio University, Athens, OH 45701 USA

{jg193404, starzykj}@ohio.edu

Abstract—This paper reports on the transition from a reactive
motivated agent model to a cognitive agent model based on
motivated learning and goal creation. The paper details the
current state of our research on the cognitive agent and its
implementation in a virtual world environment. In particular, we
show the virtual simulation and the agent’s decision making
process as it transitions from a parallel to a sequential
implementation, as well as several of the reasons for doing so. In
addition, results of testing both models on the same simulated
environment are compared. The results show that the new model
performs more efficiently than the old one. Furthermore, our
planned future work on cognitive agent is presented.

Keywords—motivated learning; cognitive intelligence; semantic
memory; attention switching; sequential thought process

I. INTRODUCTION

The creation of a viable cognitive architecture can be
considered a holy grail for researchers involved in machine
learning. To date, a number of architectures have been
proposed and/or implemented with varying levels of success,
benefits and detractions. Examples of some current, well
known, cognitive architectures include SOAR [1], ACT-R [2],
Icarus [3], LIDA [4], Polyscheme [5], and CLARION [6]. The
biggest issue with many of these systems, and the one we are
trying to avoid, is the reliance on pre-defined scripts, heuristic
rules, and general lack of true autonomy. SOAR, for example,
while a very versatile platform is purely symbolic. Although its
capabilities have been enhanced with add-on modules, they
have the appearance of a band-aid over the real problem, which
is lack of grounding (i.e. intrinsic understanding of symbols).
ACT-R is part of a family of architectures that have been used
to model human cognitive processes. However, it is primarily a
theoretical modeling platform designed to help researchers
understand human intelligence; it is not a full platform that is
designed with the goal of developing intelligence. The Icarus
architecture focuses on perception and action over things like
abstract problems solving. Simply put, Icarus lacks the
architectural components that would allow abstract thinking.
All these methods either have to rely on predefined goals or
predefined rules. LIDA architecture emphasizes a “Global
Workspace” as envisioned by Baar’s Global Workspace
Theory (GWT). The LIDA model tries to model cognition in
biological systems, from low-level perception and action to
high-level reasoning, however, it relies on cognitive “atoms”

and “attention codelets”, which are not well defined, since not
much is known as to how they can be implemented.
Polyscheme is an architecture designed to integrate multiple
representations and inference schemes into a single system
capable of thought. It combines several specialized modules,
each designed with a specific role, with their own handcrafted
data structures and algorithms. While the system is fairly
flexible and the modules collectively choose their focus, they
can be considered to be over-specialized. It is one thing to learn
specialization over time; it is another to have it pre-
programmed by a designer. This can lead to artificially hobbled
learning. Lastly, CLARION unlike other cognitive
architectures, attempts to discover explicit rules via inductive
analysis of what has been implicitly learned, which typically
means extracting rules from an artificial neural network.

While there are issues with all of these systems, this should
not be taken to mean they are not useful, only that they are
incomplete. We hope that the design and implementation of our
own cognitive architecture fills some of these holes and allows
our agent to operate in a more capable and truly autonomous
manner.

We began our research by looking at what drives
intelligence. How does intelligence create its goals? How do its
needs affect its learning processes? This led us in the direction
of goal creation internal to the agent and Motivated Learning
(ML). Motivated Learning is an approach toward the creation
of intelligent agents where the internal motivations of an agent,
created by either external reward or satisfying other
motivations, may take precedence over externally set goals.
This is in contrast to reinforcement learning (RL), which works
by maximizing external reward by learning approximating
value functions. While RL may deviate from its pursuit of
value function maximization to occasionally perform random
actions to assist its exploratory process, this behavior usually
becomes less common as time progresses. Reinforcement
learning is primarily reactive, and if we want to develop a
human-like agent, we need to go beyond purely reactive
cognition. And while ML is always controlled by its underlying
motivations, the overall ML agent architecture is able to build
on them and set its own objectives and motivations. By
abandoning the search to maximize externally set objects the
agent is able to learn new relationships, learn new motivations,

and build a system of internal rewards that guide it in its
interaction with the environment.

In previous publications [7][8][9], we presented the idea of
motivation being the underlying force behind a cognitive
agent’s operation. Motivation itself is expressed through needs
or drives present in the agent. An agent starts with one or more
“primitive” needs, and as it learns to fulfill them, the agent
creates many of its own abstract needs based on its
accumulated knowledge and solutions to the more primitive
needs. The need for money is an example of an abstract need in
humans. Money by itself has no value and does not provide for
basic human needs. Without the knowledge of money’s uses
and its ability to buy the goods and services that support basic
needs such as food and shelter, it would be little more than a
bunch or paper or metal coins of no significance to us.

In more recent work we have advanced our understanding
of how motivation works in a complete cognitive model and
have worked toward giving additional structure to our cognitive
model [10][11][12] by adding components such as memory,
planning, and attention switching. This model and the more
simplified version that we are currently implementing are
discussed in the next section.

II. BACKGROUND

Our work in cognitive models began with the investigation
of memory and how goals were formed [9]Error! Reference
source not found.. The initial work on goal creation was
concerned with how a cognitive agent develops its own goals
and motivations. From the creations of goals, we shifted focus
to underlying motivations, hence, the focus on Motivated
Learning. With the more general focus on motivated learning,
other elements of the cognitive model became increasingly
relevant and we started to try to develop a more complete
picture of the cognitive model to which our end-goal agent
would subscribe. The initial theoretical model is discussed in
[9][10][14].

A. Comprehensive Cognitive Model

More recently, with our work on opportunistic motivated
learning [8][15], we have made a few changes to further
develop the cognitive model, with the current version shown
below in Fig. 1.

This updated cognitive model has more detail added in the
form of additional functional components and links that
represent information passed between them. Discussion of the
details of the links in the full model is not attempted due to lack
of space. However, details of the links for the reduced version
are presented in Part B of this section and may be extrapolated
to the “Full” model of Fig. 1.

In this model we have divided the agent’s functions into
several distinct blocks consisting of: working memory
(essentially the central executive), semantic and episodic
memory, motor control, motivation and goal creation,
subconscious and WTA attention switching, and sensory/motor
processing. Information processing and learning in Fig. 1 is
organized from the bottom up, with the bottom functional
components being in the subconscious realm and performing

parallel operations on the input/output data. The components
toward the top of the figure process conscious observations,
memories, thoughts and plans and are characterized by
sequential processing.

In terms of the function of each block, the sensory motor
area is where most of the initial low level processing occurs. In
more advanced implementations this would be the location
where raw sensory input is processed into useful information
through feature extraction and object recognition, and fine
motor control signals are generated for the agent’s actuators.
Our current implementations are entirely virtual and the bulk of
our focus is on the cognitive model, so our I/O is mostly
symbolic and possesses no more than feature level resolution.
Hence, there is little actual processing currently occurring in
these modules.

Figure 1. “Full” cognitive model.

Subconscious attention switching is a module that handles
changes in the environment, new objects, unexpected events, or
sudden changes in the agent’s motivation state, and brings them
into the agent’s attention focus if needed (where the attention
focus is the current object or concept selected for processing by
the working memory.) It essentially controls what we may call
“involuntary attention switching,” with little or no conscious
control. There may be some conscious control implemented in
the form of conscious thresholding of environmental signals, so
that the agent is able to more adeptly filter out background
noise, much as we might ignore something going on in the
background to focus on an important task.

The motivation and goal creation controls the agent’s
motivation and behavior. It is involved with the maintenance of
primitive needs and the creation of new abstract needs. This
block receives input from sensory processing to evaluate pains
and establish the level of motivations. It interacts with the
attention focus to direct it to the needs and can interact with the
planning block for action evaluation. It supports scene building

by providing information about the significance of each scene
element and collectively of the entire scene. In addition,
subconscious pains can trigger reactive motor response to
reduce the pain level. The agent’s motivations have already
been discussed in great detail in our previous work, so
discussion here is limited to how it interacts with other
functional blocks. However, motivation remains an important
part of the model.

The semantic and episodic memory blocks consist of the
two memories and attention focus / saccading components that
direct the focus of the memory blocks in the direction needed
by the agent. For the semantic memory this typically means
saccading through semantic knowledge related to the current
dominant motivation in the hope that it will be able to provide
information to the working memory and allow it to put together
a viable plan. Episodic memory, also directed by the attention
focus will pull up salient episodes related to the current focus
for the agent’s consideration and review. Attention focus
selects a concept in focus for consideration by working
memory. It is supported by the mental saccades mechanism
[13]. By using attention focus, parallel processing of sensory
information, internal need signals, and associations created in
the semantic memory are changed to a sequential, cognitive
processing.

Semantic memory is essentially a database of interlinked
and associated knowledge that the agent has accumulated
through learning and can access if needed. Episodic memory,
on the other hand, is a memory of the agent’s experiences. It
provides context, spatial and temporal relations, as well as
event significance and emotional attachment. Episodes are
formed in the working memory, supported by scene building
and scene significance mechanisms.

WTA attention switching mediates the attention switching
functionality between the subconscious attention switching
(which takes priority), action monitoring (planning activities),
and background thought processing (general thinking). Its
function is to switch attention from the current attention focus
to a new one, depending on environment conditions and
internal processing of information. It responds to signals from
subconscious attention switching, action monitoring and mental
saccades. More information on our conceptualization of these
memories can be found in [13],[16].

Working memory, or the central executive, is where most
of conscious thought processing occurs. It is involved in
putting together “plans” for resolving the agent’s needs,
managing these plans, and handling the results. It also contains
what we refer to as the scene building module, which manages
the creation of scenes. Working memory restores the observed
scene by cognitively recognizing the main objects, their
location and relationships between them. It receives support
from the motivations and goal creation block to establish scene
significance and provides translation from pixel level visual
input to cognitive representation. Scene building is important
for constructing episodic memories, performing searches,
spatial orientation, and map building.

Working memory is also involved in action evaluation,
planning and monitoring. First, a potential action is evaluated
by recognizing what needs (if any) it can satisfy. Second, after

analyzing several options, the best one is selected for potential
realization. Third, in action planning, conditions necessary to
complete the planned action are checked. Finally an action is
initiated and its progress is monitored. The system must have
the ability to return to an interrupted action if action evaluation
determines that its completion is useful.

Last, is the motor control area, which contains the
procedural memory and visual saccade control. It handles, in
conjunction with other components, the creation of procedures
(which greatly simplify the execution of complex actions by
reducing the amount of cognitive overhead needed) and the
execution of the plans generated by action planning.

Please note, that this is only a very brief summary of the
complete model and is only given to provide some context for
the reduced version of the model that is discussed next. For a
more detailed overview of the model see [8] or[14].

B. Reduced Cognitive Model

Fig. 2 shows the functional organization of the reduced
cognitive model that is discussed in this paper. The reduced
version of the cognitive model removes and simplifies several
of the components from the complete version of the model in
an effort to create a “stepping stone” toward a more complete
and fully functional implementation.

Figure 2. Simplified cognitive model.

First, notice that there is no cognitive motivation
component in Fig. 2. This is because the higher level cognitive
processing of our agent is not yet developed and it is necessary
to use subconscious motivations (as determined by the pains
and rewards block) working in the sequential model, along
with the attention focus mechanism.

Next, WTA attention switching has been folded into the
Combined System Memory and episodic memory has been
removed. Episodic memory was removed for now since it is
desirable to get simplified versions of the most important
structures operational before adding more complexity. The

agent can still operate without episodic memory; it will simply
be more limited in its reasoning capabilities, since it will lack
much of a historical record of its activities and their
significance. However, since the actual cognitive functionality
is currently very limited, this is a moot point. Scene building
has also been removed, since there is less need for it without a
dedicated episodic memory. However, it is worth noting that
the action planning component retains an internal
representation of the environment which it maintains as it
receives updates via memory saccades.

Procedural memory, saccade handling, and attention
switching (with the exception of the involuntary attention
switching mechanism) are all folded into a simplified
Combined System Memory structure. Once the initial structure
has been implemented and tested, these components will be
separated and their full functionality restored.

In Fig. 2, we display several numbers associated with the
links connecting the various modules. The lines represent
information that is passed to/from the various major functional
blocks, and help to provide understanding of the central role
that the semantic memory plays in the system operation. Most
of these signals will be used by the memory to trigger memory
nodes, update node activation levels, perform saccades, or
attention switching.

Next, we will discuss the role individual links play in the
simplified cognitive model. Please note, that this is only a brief
overview of the links and is not intended to be an in depth
discussion of the interconnectivity of these modules, but is
presented to provide some insight into how the simplified
model operates. Tracing these links we can better understand
how central the combined system memory component is, and
how complex the model remains despite the simplifications we
made from the full model.

Data sent between functional blocks in Fig. 2 are described
according to line identification number as follows:

1. Subconscious attention switch data – drives mental and
visual saccades to switch agent’s attention due to a noticeable
change in the environment or motivations.

2. Processed environment data – provides needed
information to the primitive pains and subconscious attention
switching and activation signals to the semantic memory.

3. “Next” signal from the planning block that tells the
memory that it is ready for another saccade.

4. Provides action status information regarding the
progress on the current action, whether it is complete, and if it
is ready to be evaluated.

5. Request to estimate expected pain reduction by the
evaluated action.

6. Pain/Need change information; important when actions
are being evaluated.

7. Environment change information (used in calculating
abstract needs and adjusting interconnection links weights in
both the motivation and the memory blocks)

8. Motivation levels; used as a priming mechanism for the
memory.

9. Ratio estimation for change in pain resulting in per unit
resource use.

10. Winning saccade data from memory and associated
information.

11. An involuntary reflex warning signal from the pain
management to motor processing.

12. Sensor signal that specifies the action/saccade target
13. Motor command signal; a symbolic signal that typically

represents a motor command or procedural sequence.

 Most of the reductions/removals in this simplified model
are done only because it is necessary to “work our way up”. By
implementing the full model one step at a time we minimize
the amount of work we have to redo as our models evolve. This
allows the evolution of our models and theories to occur as we
obtain results, better understand the limitations of the current
model, and improve its functionality through testing various
environment scenarios.

As has already been implied, this reduced model lacks
much of the higher level functionality present in the “Full”
cognitive version. Obviously, when advancing the model, some
components need to be implemented simultaneously. This is
the case as we advance from the parallel Opportunistic
Motivated Learning (OML) model, presented in[8],[15], to the
sequential cognitive model presented here. For example, in
order to add a semantic memory, we had to add attention
switching, action monitoring, and a more advanced, distinct
planning mechanism.

III. IMPLEMENTATION

Using the “Full” cognitive model discussed above in
section II.A as a basis, we have implemented a reduced version
of the model (as discussed in II.B) that lacks much of the
complexity present in the “Full” model. For example, we do
not have separate procedural or episodic memories. The lack of
procedural memory is because we are designing our agent for a
purely symbolic environment, significantly limiting its choices.
This initial implementation is noticeably simplified, perhaps
even more than Fig. 2 suggests. For example, actions remain in
the form of sensor/motor pairs (target a sensor object and
perform a motor action on it) and we have yet to implement
multi-step sequences of actions. In fact, we have deliberately
tailored this initial sequential implementation to match the
capabilities of our parallel OML implementation [15] in order
to compare them. The ability to compare two subsequent
implementations is useful in this field of research where it can
be difficult to effectively benchmark and/or compare the
developed models.

To elaborate, we have designed the sequential
implementation with the same simple initial environment and
the sensor/motor pair setup that our earlier implementations
used. However, we have progressed toward increasing the
system capabilities such as using additional features and more
complex environments. To provide some context, let us briefly
compare the earlier parallel OML implementation with the
current sequential implementation.

Table I summarizes the major differences between the two
implementations of the motivated learning models. In Table I
we note that in the sequential implementation the agent does
not update abstract needs/motivations every cycle. This is
because it only “updates” one resource at a time after attention
was focused on this resource. On the other hand, primitive
pains are updated every computational cycle since they are
based on parallel and subconscious sensory inputs.

Table I. Implementation Comparison

Parallel OML implementation Sequential Implementation

The agent is simultaneously aware
of everything.

The agent is attention based, so it
effectively “sees” only one object at
a time.

All pains and motivations are
updated every cycle.

Primitive pains are updated every
cycle, but abstract needs are not.

No specific monitoring or
evaluation blocks.

Has action monitoring and
evaluation components.

Action choice based only on the
state of the environment and the
agent.

Associations and memories affect
action choice in addition to the state
of the environment and the agent.

Only capable of forming direct 1-1
associations.

Has semantic memory capable of
forming hierarchical associations.

Abstract motivations/needs are updated only when the agent
has had an attention switch to the associated resource or
concept. This impacts nearly every facet of the agent’s
operation. For example, the agent does not have a true “real-
time” mental representation of the environment, because its
internal maps can only update a feature after it has been subject
to a saccade. Nor can the agent evaluate its actions until it has
had the chance to saccade to the objects that its action effects.

This means that the agent has to assume that its
environment does not change drastically in a short period of
time (a significant change would trigger an attention switch and
update the cognitive agent’s memory), and that evaluating the
results of actions takes longer than in the parallel OML
implementation.

We also note that the sequential model has a more complex
memory structure. The OML model implements a reactive
agent, and while it is capable of learning new relationships, the
relationships have to be direct (not conceptual, amorphous, or
inferred). However, the sequential model uses a semantic
memory capable of developing associations between related
nodes and forming hierarchical relationships between concepts.

Nevertheless, both agents currently use the same type of
symbolic I/O. Hence, in order for the agent to function,
information needs to be rendered into a symbolic and/or feature
based format that the agent can understand. While we could
design a system that processes raw visual input and learns to
dynamically control its motor functions, which would be a
major project by itself (and is an active research area for
others). However, in our work we rely on symbolic I/O that is
easily deliverable by video game virtual environments to
simplify our task and accelerate progress in research on
cognitive agents.

In the OML model, we essentially executed everything in
parallel, and then polled the environment. In the sequential

implementation, we have a more complex data processing
structure. We still have to execute each “block” in a sequence
due to the nature of the programming environment; however,
there are more blocks and more data flowing between them.

The following list provides a simplified look at the
execution of the main Iterative Loop of the program to give a
rough idea of the data flow. (Note that not all of the data links
are mentioned, just the main links associated with the primary
functionality and data flow of the model.) The loop is either
executed indefinitely, until the agent “dies”, or for some
predetermined number of iterations (at which point the agent’s
“memory” state can be stored for later resumption).

Iterative Loop
1. Update Primitive pain – updates primitive pains

a. Receives pain information from the Environment
(Sensory processing)

b. Sends results to Motivations
2. Update Motivations – passes primitives and updates

motivation levels
a. Receives data from Primitive Pains, Action

evaluation, and Memory (no direct link to
environment/sensory)

b. Sends data to subconscious attention switching
and the sensory area of semantic memory

3. Update attention switch – updates subconscious attention
switching to check for a visual or motivation interrupt

a. Receives data from Sensory processing and
Motivations

b. Sends data to semantic memory
4. Update memory – performs memory saccade

a. Receives data from Environment (sensory
processing), Motivations, Subconscious attention
switching, and Action Evaluation

b. Sends data to Planning and Motivations (used to
pass data from visual saccades for motivation
updates)

5. Update planning – uses memory data to update plans
a. Receives data from Semantic memory
b. Sends data to Action evaluation

6. Update actions – checks action status/monitor and tracks
action evaluation

a. Receives data from Planning
b. Sends data to the Environment (through motor

control) and Semantic Memory
7. Perform the selected motor actions in the virtual

environment – move the agent if needed, etc.
8. Check the environment – update environment state based

on the agent’s actions and the environment response.
End Loop

Note that the current implementation uses a pseudo-
semantic memory that only mimics functionality of semantic
memory. It was created to act as a placeholder for the semantic
memory while we develop the sequential implementation. It
possesses basic attention switching and visual saccading, as
well as the ability to form simple associations. However, it
cannot form more complex hierarchical relationships and

concepts as true semantic memory would. However, the fully
functional semantic memory is not necessary at this time
because of the simplicity of the current environmental scenario
used to showcase the results. In the next section, we compare
similar simulation runs for the previous OML implementation
and our current sequential model.

IV. RESULTS

In this section we compare the results of a pair of
simulation runs for both the parallel OML implementation and
our sequential model to provide a baseline for future work. In
the simulation setup, both models were given the same simple
environmental scenario as shown in Table 2 where each row
represents one of the possible “correct” actions like “eat food”.
Each such “correct” motor action induces changes in the
abstract pains. For instance, “eat food” reduces the hunger pain.
Simultaneously, through the goal creation mechanism, a higher
order need is established and an abstract pain related to the
resource used to perform the desired action, increases. The
agent must learn which action reduces what pain. In this
scenario we have a single primitive pain, “Hunger,” and 4
abstract needs. Additionally, there are 6 resources with which
to interact and 6 possible motor actions. In summary, there are
36 possible actions, of which only 5 will have any positive
impact on the agent’s environment.

Table 2. Functional sensory motor pairs and their effects.

MOTOR

FUNCTION

SENSOR

OBJECT

REDUCES

PAIN

INCREASES

PAIN

Eat Food Hunger Lack of Food
Buy

Food at
Grocery

Store
Lack of Food Lack of Money

Withdraw
from

Bank
Account

Lack of Money Overdrawn
Account

Work
in

The
office

Overdrawn
Account

Lack of job
opportunities

Study
at

School Lack of job
opportunities

-

Play
with

Toys - -

Figs. 3 and 4, present the results from the OML simulation.
The OML simulation performed 100,000 iterations in 168
seconds and was sufficient for the agent to learn its skills.

Figure 3. OML simulation pain results.

The figures only display the first 20,000 iterations to
preserve the readability of the results, although, “Prim Hunger”
has been hidden in Fig. 3. Its presence would interfere with
visualization of the results, since it is a primitive pain and its
change occurs much more frequently than the others. In Fig. 3,
we see that the pains did not go much beyond the threshold of
0.3 before they were reduced, which indicates that the agent
learned how to manage its needs and lower internal pain
signals.

In Fig. 4, we can observe the impact of the pain/need
responses on resource usage (with resource values normalized
to 1.0). Notice that “Job Opportunities” did not fluctuate as
much as most of the other resources because the agent did not
need to restore its money supply frequently enough in the
20,000 iterations for the resource to drop significantly.
However, as expected, we can see that drops in “Job
Opportunities” directly correlate to jumps in Money supply.

Figure 4. OML simulation resource results.

Figs. 5 and 6 depict the corresponding pain/resource results
for the sequential model simulation. Execution of this program
took 322 seconds and also ran for 100,000 iterations (although,
again, we only display the first 20,000 iterations.) The
sequential simulation took roughly twice as long as the OML
simulation. This additional time needed by the sequential
algorithm to make decisions makes perfect sense considering
the additional computational overhead brought on by the use of
the sequential model. However, since the 322 seconds used by
sequential algorithm represents total time needed to make
100,000 decisions, it translates to 3.22 msec/decision, which is
hardly a problem for real-time control of the robot in either the
real or virtual world.

Note that in Fig. 5 the Hunger pain has been hidden to
allow the lower level pains to be visible. Most of the pains are
resolved (reduced below threshold) shortly after they pass the
threshold. Similar behavior was observed in Fig. 3. In fact,
shortly after 10K iterations the sequential agent appears to no
longer rely on pain as a trigger for its actions and instead relies
on its internal saccade mechanisms to present useful actions to
the planning mechanism. This is implied because after 15K
iterations the pains do not appear to reach values of much more
than 0.15, well below the threshold of 0.3. This behavior of the
sequential model is promising as it results in better pain
management than in the OML model.

The amount of time needed to perform an action in the
sequential model is greater due to its saccade to the selected
solution, performance of the required actions, and then
evaluation of the results, whereas in the OML implementation,
evaluation and selection of the action happens within the
execution cycles, which needs fewer processing steps.

Figure 5. Sequential model simulation pain results.

Figure 6. Sequential model simulation resource results.

More specifically, the motor command for “eating” in both
simulations requires 2 cycles. In the OML simulation the action
is selected and started during the first cycle, and evaluated on
the start of the third cycle (during which a new action starts). In
the sequential simulation, the agent has to switch attention to
the dominant motivation, and then one or more mental
saccades within the memory to provide the correct solution to
the planning block. Then two more cycles are required to
actually perform the action. At least one additional cycle is
needed to evaluate the action. Hence, the sequential model’s
execution of the “Eat Food to reduce Hunger” action takes four
cycles compared to the two cycles needed by the OML
simulation. This 4 cycle count is a minimum for the sequential
agent, since there could easily be other things happening in the
environment or within the agent’s saccade mechanism that
could extend the time needed to select and execute the
appropriate action.

This higher efficiency of OML model may be superfluous
as it benefits from parallel vector processing. In a full cognitive

system, where the parallel nature of sensory data will be
significantly higher than in the simplified symbolic
information, this advantage will disappear. In fact, we claim
that the opposite may be true and that sequential systems will
be able to process massive amounts of sensory data more
efficiently, by focusing on changes in the observed scene and
on those sensory inputs that it must cognitively recognize.

Despite the longer time required by the sequential model
from the time it initiates an action to the time it finishes
evaluating it, the sequential model appears to be more efficient
in its operation. Some of this can be because even when it is
performing an action the agent is still saccading and evaluating
other actions. However, this concurrent processing behavior
cannot be responsible for keeping the pain values below
threshold as occurs at about 14K iterations or for faster cycling
between pains.

The main reason for the sequential model’s improved
performance is that it exhausted its curiosity about the
environment sometime between 11-14K iterations. When there
is no pain above threshold, the pseudo-memory saccades to the
next best option, related to the highest current pain. Ultimately,
this caused the behavior observed in Figs. 5 and 6 after 14K
iterations with the agent making optimum use of its time. This
has the desirable effect of keeping overall pain values much
lower. In a more complex environment, we might see this kind
of behavior if the agent had fully explored its immediate
vicinity. At such a point it could choose between moving
elsewhere, or working to resolve its needs within the known
area.

Disregarding the different rates of pain management in the
two models we can see that their general behavior is similar
and that they are both able to successfully handle their
respective environments. Let us now analyze Figs. 4 and 6,
which concern the resource levels in both simulations. There
are two significant and noticeable differences between the two
plots. The first one corresponds to the faster rate of pain
handling in Fig. 5 in the sequential model with resources being
restored at a greater frequency after reaching equilibrium at
14K iterations. The other difference is in the curves’ variability
character (for example the Money resource).

In Fig. 4, Money, after being depleted, is slowly
regenerated in a series of several small steps, while later on,
around 9K iterations, it experiences a large jump. This jump
can be attributed to the agent finally learning the value of
money. This does not account for the earlier gradual increase in
the money supply. This increase is due to the agent having
learned to restore money, but not knowing its specific
usefulness (i.e. it’s ability to bring grocery pain below
threshold). In Fig. 6, we do not see much of this behavior at all.
This is because the sequential model focuses its attention on the
dominant motivation, and if curiosity doesn’t dominate long
enough and a more pressing goal oriented need wins in the
planning block, a curiosity based action will not be executed.
This is not the case in the OML algorithm where actions tend to
take slightly less time and the algorithm can simultaneously
“see” all of the available options.

V. ENVIRONMENT SIMULATION

So far, we have focused primarily on the models and their
functions. Yet, while we have been improving our models, we
have also been improving our environmental simulations. If
you compare the environment we presented in [8] or [15] to the
one depicted in Fig. 7 several improvements are noticeable. In
addition to the direct reporting of pains and resources to the
screen, we have also begun incorporating animations into the
agent’s action to better illustrate its interactions with the
environment. Eventually, we hope to link animations together
in sequences of motor control functions to effectively perform
and display/represent more complex procedures.

Figure 7. Snapshot of simulation environment.

In Fig. 7 there are three panes indicating the state of the
environment and the agent. The left pane shows the state of
the resources in the environment. The middle pane indicates
the agent’s current action. And the right pane shows the
agent’s pain levels. Red bars in the right pane indicate that a
pain is above threshold. While this environment simulation is
currently only capable of running the OML simulation, we
will have it ready for the sequential model soon.

Further improvements to the simulation will include using
sequences of animations and more complex object
representation. We plan to add more features to the objects.
We also intend to add a focused view of the environment,
since now the agent can “see” all of the objects around it at
once. By reducing its field of view we will increase the
element of exploration. This will likely be a priority once the
agent becomes capable of more complex actions. We will also
add elements of human-machine interaction, to allow the agent
to learn and/or interact with human avatars.

VI. CONCLUSION

A viable cognitive architecture is needed in developmental
robotics and mission critical autonomous robots capable of
independent operation in dynamically changing complex
environments. This paper presents the progress being made in

this direction by chronicling the advancement of our motivated
learning model and its implementation and providing a brief
comparison of the results between the two most recent model
implementations. Our motivated learning model has advanced
significantly towards a fully cognitive model. We plan to
further enhance its functionality and memory organization.
The next step will be to implement the semantic memory,
followed by the implementation of a basic procedural memory
to perform complex action sequences. Subsequently, this will
be followed by development of episodic memory and
enhancement of action planning, evaluation and monitoring.

REFERENCES
[1] J.E. Laird, “Extending the Soar cognitive architecture,” in Artificial

General Intelligence 2008, Memphis, TN: IOS Press, 2008, pp. 224-235.

[2] J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, and Y.
Qin, “An integrated theory of the mind,” Psychological Review, vol.
111, no. 4, pp. 1036–1060, 2004.

[3] P. Langley and D. Choi, “A unified cognitive architecture for physical
robots,” in Proc. 21st Nat. Conf. Artificial Intelligence, Boston, MA:
AAAI Press, 2006, pp. 1469-1474.

[4] B.J. Baars and S. Franklin, “Consciousness is computational: the LIDA
model of global workspace theory,” Int. J. Machine Consciousness. Vol.
1, No. 1, pp. 23-32, 2009.

[5] N. Cassimatis and L. Nicholas, Polyscheme: A Cognitive Architecture
for Integrating Multiple Representation and Inference Schemes, MIT
Ph.D. Dissertation, 2002.

[6] R. Sun, “The importance of cognitive architectures: an analysis based on
CLARION,” J. Experimental and Theoretical Artificial Intelligence, vol.
19, no. 2, pp. 159-193, 2007.

[7] J. A. Starzyk, J. T. Graham, P. Raif, and A-H.Tan, “Motivated Learning
for Autonomous Robots Development”, Cognitive Science Research,
v.14, no.1, 2012, p.10(16) pp. 10-25.

[8] J. Graham, J. A. Starzyk, D. Jachyra, “Opportunistic Motivated Learning
Agents”, 11th Int. Conf. on Artificial Intelligence and Soft Computing,
Zakopane, Poland, Apr 29, May 3, 2012.

[9] J. A. Starzyk, "Motivation in Embodied Intelligence," in Frontiers in
Robotics, Automation and Control, I-Tech Education and Publishing,
Oct. 2008, pp. 83-110.

[10] J. A. Starzyk and D. K. Prasad, “A Computational Model of Machine
Consciousness,” International Journal of Machine Consciousness, vol. 3,
No. 2, (2011) pp. 255-281.

[11] D. K. Prasad and J. A. Starzyk, “A Perspective on Machine
Consciousness”, Second Int. Conf. on Advanced Cognitive Technologies
and Applications, Lisbon, Portugal, Nov. 21-26, 2011.

[12] J. A. Starzyk, Motivated Learning for Computational Intelligence, in
Computational Modeling and Simulation of Intellect: Current State and
Future Perspectives, IGI Publishing, ch.11, pp. 265-292, 2011.

[13] J. A. Starzyk and J. Graham “A Goal Creation System With Curiosity”
13th Int. Conf. on Cognitive and Neural Systems (ICCNS), Boston
University, May 27-30, 2009.

[14] J.A. Starzyk, “Mental Saccades in Control of Cognitive Process”,
IJCNN, San Jose, CA, July 31 - August 5, 2011.

[15] J. Graham, J. A. Starzyk, and D. Jachyra, “Opportunistic Behavior in
Motivated Learning Agents”, submitted to IEEE Trans on Neural
networks and Learning Systems, 2012.

[16] W. Wang, B. Subagdja, A.-H. Tan, and J. A. Starzyk, “Neural Modeling
of Episodic Memory: Encoding, Retrieval, and Forgetting” IEEE Trans.
on Neural Networks, vol. 23, no. 10, Oct. 2012, pp. 1574 – 1586.

