
Spatio-Temporal Sequence Learning of Visual Place Cells for
Robotic Navigation

Vu Anh Nguyen, Student Member, IEEE Janusz A. Starzyk, Senior Member, IEEE,
Alex Leng Phuan Tay, Member, IEEE and Wooi-Boon Goh, Member, IEEE

Abstract— In this paper, we present a novel biologically-
inspired spatio-temporal sequence learning architecture of
visual place cells to leverage autonomous navigation. The
construction of the place cells originates from the well-known
architecture of Hubel and Wiesel to develop simple to complex
features in ventral stream of the human brain. To characterize
the contribution of each feature towards scene localization, we
propose a novel significance analysis based on the activation
profiles of features throughout the spatio-temporal domain. The
K-iteration Fast Learning Neural Network (KFLANN) is then
used as a Short-Term Memory (STM) mechanism to construct
our sequence elements. Subsequently, each sequence is built
and stored as a Long-Term Memory (LTM) cell via a one-
shot learning mechanism. We also propose a novel algorithm
for sequence recognition based on the LTM organization. The
efficiency and efficacy of the architecture are evaluated with
the vision dataset from ImageCLEF 2010 Competition.

Index Terms— Hierarchical memory architecture, Hubel and
Wiesel’s model, KFLANN, Spatio-Temporal Sequence Learning

I. INTRODUCTION

Machine intelligence in autonomous navigation concerns
mainly two general questions: Localization (”Where am I?”)
and Mapping (”Where and how do other places relate to
me?”). Considering the exploratory task of a target environ-
ment, the first problem concentrates on recognizing locations
that identify the visited places, while the second problem
focuses on representing and self-organizing new locations in
memory to build a map of familiar places.

In this paper, we aim at investigating the efficiency and
efficacy of a hippocampal-inspired visual place cell model
and its spatio-temporal sequence learning to leverage au-
tonomous navigation. The visual place cells characterize the
configurations of local appearances across both spatial and
temporal domains. The representation of each cell consists
of a global or gist feature vector that encodes a visual scene
[1]. Each element in the vector corresponds to a local and
invariant feature within the visual field. Additionally, the
identity of each element is built directly from experiencing
the environment. The vocabulary of local elements is con-
structed based on the feedforward hierarchical architecture
of building features from simple to complex with increasing
spatial invariance proposed by Hubel and Wiesel [2] and
computational models by Fukushima [3] , Serre et al [4]. In
this work, we also introduce an efficient significance analysis
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scheme to characterize and identify the significant local
features which contribute mostly to the place identification
task. The estimation of feature significance originates from
the activation profile of a feature throughout its temporal
domain.

An ART-based learning architecture, KFLANN [5], was
employed to establish scene STM clusters by global gist
description which mimics the fast- learning behavior of scene
tokens. The reason for this clustering stage is to maintain a
significant tolerance that reflects variations in the explored
area. At the same time, it is impractical and not useful to
remember all locations within the environment because of
limitation of memory capacity and search time requirement.
The internal structure of KFLANN is driven by intrinsic
statistics based on the data stream. Additionally, the data
presentation sequence syndrome in which the clusters set
changes with different data ordering is alleviated by an
efficient reshuffling mechanism to preserve centroids stability
and consistency. These characteristics are critical to reliable
sequence identification against various perceptual fluctua-
tions.

Topological structure of the environment is constructed
by self-organizing and linking the proposed place cells
into temporally ordered sequences of events that compose
location-specific episodes. In this work, we propose a novel
biologically inspired sequence learning architecture to or-
ganize generic scene clusters generated by KFLANN into
stable spatio-temporal sequences. We extend the idea of
connectionist Long Term Memory (LTM) model in [6],
[7] to real-time analog inputs to facilitate navigation. For
localization, we will show that by exploiting the sequential
properties, the system is able to alleviate ambiguities and
enhance reliability in place recognition. This characteristic
is useful in recognizing confounding places in which scenes
in different places are partially similar. In our model, each
sequence of navigating scenes is stored in a LTM cell and is
learnt via one-shot mechanism initially. Our sequence recog-
nition algorithm can distinguish among different sequences,
as well as is resilient to deviations from ideal sequences.
During storage phase, the input sequences are stored in the
corresponding LTM cells. During testing phase, the LTM
cell will respond according to its degree of matching with
the input sequence. The final decision’s location is made by
the Winner-Take-All (WTA) rule over all LTM cells. Our
matching algorithm is also able to work with continuous
input sequences in which the beginning or ending point is
not specified.
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Fig. 1. System Architecture

This work serves as an initial investigation on developing
hierarchical episodic memory architecture by analyzing the
interplay between STM and LTM mechanisms driven by
experiences in embodied intelligence. The framework is
useful for leveraging navigation performance by exploiting
the reliability in sequence of perceptions. The whole system
architecture is depicted in Figure 1.

The structure of the paper is as follows: Section II gives the
related works to this model. Section III describes in detail the
architecture of the hierarchical feature extraction. Section IV
follows by introducing neural network for scene clustering
by KFLANN network and the proposed sequence learning
algorithm. Section V presents some experiment results and
analysis. Conclusions as well as future directions are given
in Section VI.

II. RELATED WORKS

One of the main advantages of bio-mimetic over
probabilistic-based navigational systems is the flexible rep-
resentation of the target environment. While probabilistic
models aim at constructing a high-precision metric map, bio-
logical systems evolve to adaptively interact with the environ-
ment. The mechanism is conducted via observation/feedback
cycle and self-organization into coarse environment-adapted
units called place cell [8]. The firing pattern of these cells
strongly correlates with particular locations within the en-
vironment. Extensive anatomical and psychophysical studies
confirm the existence of place cells in hippocampal systems
of the brain such as Dentate Gyrus, CA3 and CA1 (see [9]
for a comprehensive review). In this work, we model the
representation of visual place cells and its learning capability
towards scene understanding.

The representation of place cells in our model aims at
capturing the holistic structures of the environment [10]. The
prominent works typically consider the whole image as a
context frames [11] or divide the visual field into smaller
grids at fixed positions and sizes [10], [12]. Subsequently,
low-level local features, e.g. edges, corners, colors, intensity,

textons at some spatial scales in spatial domain or frequency
components in frequency domain are extracted and pooled
together to form the global feature vector. The number of
dimensions may be further reduced using standard techniques
such as Principle Component Analysis (PCA).

In our opinion, the spatial configuration of features is
not necessarily analyzed only as groups of features at fixed
positions of the visual field but more generally as com-
mon patterns of feature-activated locations with possibly
some degrees of positional tolerance. Secondly, the low-
level features should be considered at various degrees of
complexity. Ullman [13] studied a wide range of visual
features with different complexities and suggested that the
intermediately complex features contribute most significantly
to classification performance. Thirdly, their contents and
scales are not necessarily universal and should be learned
from experiences. This requires a systematic way to derive a
suitable collection of features that emerge from correlations
of visual stimulus.

The development of the proposed place cell model is
consistent with evidences from a number of context-sensitive
areas of the brain such as regions in Para-hippocampal
Cortex (PHC) called Para-hippocampal Place Areas (PPA)
and Retrospenial Cortex (RSC) [14]. The fMRI studies show
that these areas respond more strongly to pictures which
contain scenic structure than to objects alone. To our account,
this behavior is strongly related to the prominent properties
of place cells in hippocampal systems [9]. Bar [1] shows
that PHC and RSC may also associate with characteristics
of episodic memory as well as navigation in which cell
activations may provide a set of expectations that can guide
the perceptions/actions and may influence exploration.

The construction of place cell representation in our place
cell model follows the well-known feedforward hierarchical
architecture by Hubel and Wiesel [2]. Starting from the visual
stimulus at the input, the basic processing stream comprises
of consecutive connections of interleaving simple cell (S
layer) and complex cell (C layer) layers with increasing spa-



tial invariance in positions, scales, polarities and orientations
following the hierarchy. The hierarchical processing stream
involves various cortical regions from LGN, V1 to V2, V4
cortical areas and higher areas of IT cortex [15]. The spatial
relationship among complex cells in C layer is preserved at
intermediate layers [13]. This preservation is critical for the
analysis of scene configuration which comprises of distinct
local elements that have high spatial relationship. Thus, we
accumulate features at intermediate levels of the hierarchy
and use them for our scene analysis. This type of architecture
can be dated back to the Neo-cognitron model by Fukushima
[3], Convolutional Neural Network model by LeCun [16] and
recently HMAX model by Riesenhuber and Poggio [17].

In this paper, we address the important roles of hierar-
chical memory architecture that adapts and links the spatial
episodes of visual place cells into temporal sequences [18].
Functionally, the emerging place cells correspond to STM
cells and the spatio-temporal sequence learning of episodes
corresponds to activation of LTM cells. The initial experi-
ences are stored in the STM, and then gradually consolidated
and organized into LTM. The STM may operate at fast-
learning mode to attend to all informative input. However it
may suffer from decaying activation. A well-known class for
STM mechanism is the Adaptive Resonance Theory (ART)
[19] Network. The LTM may operate at slower rate with
stable and consistent sequences due to its large highly plastic
connection. The key properties of sequence learning models
of LTM cells were introduced in series of works by Wang et
al [20], [21], [22].

Our previous model in [7] characterized several prominent
characteristics of sequence learning such as hierarchical
organization, anticipation, and one-shot learning. Subsequent
extension in [6] improved the original model by introducing
the flexible matching mechanism that gives the real-value
degree of similarity between sequences of characters instead
of the precise match-nonmatch return. Therefore, it enhances
the error tolerance capabilities for distorted, delayed or
imperfect starting or ending of sequence. Although the
content of visual input used in our model provides rich
information and is important to human navigation, it also
possesses a large uncertainty due to variations of robot poses
and movements that make it difficult for one-shot scene
classification by individual data. Exploiting the stability in
sequences of observations is useful for tackling this issue.
Our model also accepts continuous input stream in order to
identify place in real-time manner, giving it the capability
to overcome the constraint of imprecise starting and ending
points of a given sequence.

III. FEATURE BULDING AND EXTRACTION

Feature analysis can be divided into two main stages:
feature vocabulary building and feature extraction. The first
stage is to construct a hierarchical architecture of interleaving
S layers and C layers while the second stage uses this
architecture to extract spatially invariant features and fetch
into the LTM sequence learning module.

A. Feature Vocabulary Building

For each input image, low-level features are extracted into
several feature maps at S1 layer, each of which results from
response of the 2D Gabor filter banks with nO orientations
and nS scales (nS is even), resulting in nO ∗ nO feature
maps at S1. Subsequently, all feature maps from layer S1
are pooled together to establish complex units at layer C1.
Each complex cell in layer C1 combines a local rectangular
group of simple cells with nGS different grid sizes within
each S1 feature map and over two S1 feature maps in con-
secutive scales at the same location. These combinations are
conducted separately with each orientation. The activation of
each complex cell in layer C1 is the maximum activation of
all the simple cells within its receptive field. A group of C1
feature maps which result from the sub-sampling by a same
grid size is termed a C1 band. Therefore, a total number
of nB (nB = nS/2) C1 bands are generated for each input
image (with nO orientations).

The construction of the next S2 layer is followed by
sampling a large number of rectangular groups of cells across
all C1 feature maps in random positions and sizes to develop
our S2 cells. For each input image, a number of nP patches
of different size NPi (i = 1 . . . nP) randomly extracted from
all C1 feature maps are used to construct S2 layer. Each C1
patch is also associated with the local region of interest EPi
of the size τ · NPi (τ = 1.5 in our experiments) centered at
its extracted location (xi, yi). For N images, a total number
of N · nP S2 feature patches are extracted after this stage.
Subsequencely, Nf S2 feature patches are randomly selected
from this large collection for the feature extraction stage.
After all S2 patches are collected, each of them is connected
to a single complex cell in the next layer C2. Therefore,
any new image can be represented by a vector of the Nf
C2 complex features. The detail of C2 cells’ activation
computation is described in the next section.

B. Feature Extraction

For an input image, S1 and C1 feature maps are generated
as in the previous phase. This operation results in nB bands
of C1 feature maps. Each C1 band of feature maps is then
convolved with to each of S2 patches with respected to their
originally extracted locations. The set of S2 feature maps
for an input image I (or S2I) shall be obtained as follows
(b = 1 . . . nB, i = 1 . . . Nf ):

S2I ≡ {(S2)bi = ηMEPi
[(C1)b] ∗ Pi} (1)

whereMA[B] is the masking operator of the feature map B
located at local region of interest A; η is the normalization
term to constrain the activation of the S2 map to [0, 1].

The final Nf -dimensional scale and position-invariant
feature vector output is computed by taking the maximum
operator across all bands and positions at C2 level. The C2
feature vector is used for scene analysis. The final C2 feature
vector for an image I (or C2I) shall be computed as follows
(i = 1 . . . Nf , b = 1 . . . nB):

C2I ≡ {(C2)i = H+
γ [max{(S2)bi ]} (2)



Where:
• max{A} is the maximum operator across all band b ∈
{1 . . . nB} and position (x, y) of the feature map A.

• H+
γ [x] = max{x−γ,0}

1−γ (γ ∈ [0, 1))

The list of parameters is given in the Appendix.

C. Feature Significance

It has been observed that the contribution of each feature
in the gist vector towards the identification of a scene is
different. Therefore, we propose a novel weighting scheme
that characterizes the significance of each local feature in
a gist vector towards final scene identification. Due to high
level of redundancy in initial vocabulary construction, there
might be a certain number of prototypes which is not
informative, i.e. either ubiquitous or rare appearance, but
could not be excluded initially due to no prior assumptions
of the target environment. The significance measurement
of each individual feature in our model is dependent on
this activation profile throughout its temporal domain. The
significance of uninformative features in the design should
be reflected by low scores and vice versa. Hence, its effect is
diminished for the final self-organization purpose. Based on
this, the learning system can emphasize more on the salient
group of features which mostly contributes to the scene
categorization and also attenuate the effect of noisy features.
The formulas for estimating significance of feature vector
and its normalization are given as below (i = 1 . . . Nf ):

Si = max
(

maxk∈{1...t}

(
ci(k)

)
∑t
k=1

(
ci(k)

) ,
1−mink∈{1...t}

(
ci(k)

)
∑t
k=1

(
1−ci(k)

) )
Ŝi =

Γθi (Si)∑Nf
k=1 Γθk (Sk)

(3)

where Γτ (x) =

{
x if x ≥ τ
0 otherwise is the C2 feature vector

from equation 3 at time step t. The equation 3 estimates
the feature significance incrementally to the current time.
It also introduces the competition between both the present
and complementary absence part of feature activation[19].
In practice, the feature significance can be discovered by-
supervised learning based on class labels as in [4]. How-
ever,unsupervised estimation based on feature correlations
is critical for real-time navigation given situation such that
supervision is not available or sometimes ambiguous in
dynamic environment such as indoor. The threshold {θi|i =
1 . . . Nf} is used to filter low significance level and boost
the contrast among features. In this model, all significance
thresholds are set to 1/Nf . Our mechanism suggests a
principled way to select important features based on their
temporal profile.

The concept of significance is not limited to only indi-
vidual features but also to group of features which coac-
tivate in spatial and temporal patterns. This is important
in developing complex self-organizing patterns of features
in cognitive neural network. The significance characterize
features which may be selectively attended in different con-
texts [24]. Pertaining to the hippocampal episodic memories,

the context-aware attention may be the triggered by the
competition among various LTM cells to support anticipation
and recognition of sequences.

IV. SPATIO-TEMPORAL SEQUENCE LEARNING

A. LTM Sequence Storage and Recognition

In this work, initial configurations of the target environ-
ment are clustered by the KFLANN (c.f. [5]). The KFLANN
is an ART-based unsupervised network which offers fast
learning of groups of scenes which have similar statistical
correlations. The KFLANN architecture comprises of 2 lay-
ers: Input and Output. The input layer (F1) contains the
input feature vector. The output layer (F2) contains output
neurons which can be dynamically extended to accommodate
new patterns. This fast learning is necessary for exploring
data with no prior knowledge about number of clusters
provided. The learning of the network is controlled by
two two parameters: Vigilance ρ and Feature Tolerance set
ρ= {ρi|i = 1 . . . D} where D is the dimension of input
vector. The Tolerance Set ρ is determined by the standard
deviation of the feature space as a means for controlling the
feature uncertainties. The Vigilance parameter (ρ ∈ (0, 1))
characterizes the preferred generalization of the network. The
activation function in vigilance testing of [5] is weighted by
normalized feature significance. The weighting significance
strategy ensures the clustering process attends to important
group of features and also prevents the creation of noisy
clusters.

The KFLANN in this case can be treated as vector quanti-
zation into visual tokens, which is similar to the concepts of
character in text processing or a vector of Fourier transforms
in speech recognition. The number of KFLANN iterations
to stabilize the centroids by reshuffling the data and is
empirically set to 5. Each visual token corresponds to a set
of locations which share similar C2 feature properties. When
a new input image arrives, its extracted C2 feature vector is
presented to the KFLANN network. If this feature vector
satisfies the vigilance testing in equation 4, the winning
neuron Cw in F2 fires with the strength FCw as in equation 6.
This firing will then update the state for the connected LTM
cells as shown in Figure 1. If the existing LTM cells fire
below the recognition threshold, a learning signal is triggered
and new output neuron is extended to accommodate this new
pattern sequence. The KFLANN algorithm is presented as in
Algorithm 1.

B. LTM Sequence Storage and Recognition

We adopt the same terminology as in [20], [21] in this
model. A temporal sequence S is defined as S : S1 − S2 −
. . . − SN where N and Si(i = 1 . . . N) is the length and a
component of the sequence respectively. Any Si, Si+1 . . . Sj
where 1 ≤ i ≤ j ≤ N is called a subsequence. If S contains
repetitions of the same subsequence, it’s called a complex
sequence, otherwise a simple sequence.

In our sequential memory model, each LTM cell is ded-
icated to a sequence. One representation of sequence by a



Algorithm 1 KFLANN Clustering
Notations:
• C2I : Input vector of D features C2I = {ci|i = 1 . . . Nf}.
• wji: Synaptic weight from input feature i to output node j.
• J : The current number of active (committed) output nodes.
• C: The temporary output candidate list of each input C2I .
• ρ: Vigilance parameter
• ρi(i = 1 . . . Nf ): Tolerance of input feature vector.

Begin Algorithm:
• C ← {∅}
• J ← 0
• δi ← StdDev(ci)

for each C2I at F1 do
for each j ∈ F2 do

Calculate the matching function:

Tj =

Nf∑
i=1

{
Ŝi · 1

{
δ2i − ||wji − ci||22

}}
(4)

where 1{a} =
{

1 if a > 0
0 otherwise

if {Tj ≥ ρ} then
C ← (C

⋃
j) {Vigilance Test succeeds}

end if
end for

end for
if C ≡ ∅ then

Create new (J + 1)th F2 node.
Direct mapping from C2I to the weight of the node (J+1)th.
J ← (J + 1)

else
for each j ∈ C do

Calculate the neural activation:

Fj = ||Wj − C2I ||22 (5)

where Wj = {wji|i = 1 . . . Nf}
end for
Determine the winner centroid by Winner-Take-All rule:

Cw = argminj∈C{Fj} (6)

Assign index of C2I to centroid Cw
end if
Recalculate centroid coordinates by mean of its members.
Reshuffle all centroid’s 1-nearest-neighbor to top of the data set
Reset output node F2 and weight vectors.

group of LTM cells is discussed in [7]. The output of each
LTM indicates the similarity between its stored sequence and
the input sequence. The structure of a LTM is shown in
Figure 2. It comprises of consecutive pairs of Primary neuron
(PN) and Dual Neuron (DN) [21]. Each PN neuron receives
the feedforward excitations from the STM output neurons.
The sequence length in each LTM cell is determined by the
number of PN/DN pairs. Each DN serves as internal STM
for each LTM cell to update the next element of the sequence
tracking. During storage phase, each sequence is stored in the
corresponding LTM cell via a one-shot learning mechanism.
Since the input sequence may be complex, there may be
multiple connections from each STM neuron to PNs. The
recognition algorithm in each LTM is given in Algorithm 2.

Fig. 2. A LTM Cell Structure

When a new image is presented at the input, all PN
neurons are updated concurrently (Equation 8) according to
the input vector. Subsequently, DNs are updated sequentially
(Equation 10) and the best similarity score is propagated
to the last DN of the LTM (Equation 11). The delay τ
controls the amount of tolerated latency in signal arrival. The
algorithm is designed such that the original learned sequence
will elicit highest response N , i.e. perfect match. Deviations
from the original sequence will lower the matching score
proportionally [6]. The complexity for PN/DN updating
operation in Algorithm 2 for each LTM cell is approximately
O(N) where N the length of the cell. During retrieval phase,
all LTM cells compete based on their similarity outputs
and the best matching cell is declared as the winner. The
recognition algorithm is able to play sequences continuously
without specifying starting and ending points.

V. EXPERIMENTS

In our experiments, we used the Robot Vision dataset
from the ImageCLEF Competition 2010 [25]. The images
were captured sequentially from a mobile robot which moved
around different locations in the same building. There are
9 different places within the same building. The locations
of place categories are: Corridor (C), Elevator (E), Kitchen
(K), Lab (L), Large Office 1 (LO1), Large Office 2 (LO2),
Printer Area (PA), Small Office (SmO) and Student Office
(StO). One category may contain several sequences since
each place may be visited multiple times. Additionally, each
position of capture contains images from both the left and
right camera mounted on top of a mobile robot. There is
only a small displacement between the viewpoints of the left
and right camera. We denote the set of images of the left
camera Set S and that of the right one Set R which contains
moderate pose difference from Set S. We used the image
sequences from Set S for sequences storage and both the Set
S and the Set R for sequence retrieval evaluation.

For feature building and extraction, we randomly extracted
10% of the images in each category of Set S to construct our
S2 prototypes. Subsequently, 2000 patches were randomly
selected for feature extraction. The feature significance is



Algorithm 2 LTM Sequence Recognition
Notations:
• Ii: Input of the PN i.
• PNi: Excitation value of the PN i.
• DNi: Excitation value τ of the DN i.
• τ : Delay factor.
• Deli: Delay counter of the DN i.
• O: Output activation
• N : The length of the sequence.
• W: The LTM weight matrix.

Begin Algorithm:
• DNi ← 0, i = 0 . . . N
• Deli ← τ, i = 1 . . . N

For each presented image, the C2 feature vector is extracted and
fetched into KFLANN network. The input excitations to LTM
cells are calculated as (i = 1 . . . N ):

Ii =

{
(1− Fi) if Ti ≥ ρ
0 otherwise (7)

where Fi follows Equation 7 if vigilance testing succeeds.
Update all PN neurons:

PN = W ∗ I+DN−1 (8)

where: PN = {PNi|i = 1 . . . N} , I = {Ii|i = 1 . . . N} and
DN−1 = {DNi−1|i = 1 . . . N}.
for i = 1 to N do

if {(Deli ≥ 0) ∧ (DNi ≥ max{DNi−1, PNi})} then

Deli ← Deli − 1 (9)

else {
Deli = τ
DNi = max{DNi−1, PNi} (10)

end if
end for
Update the output neuron activation:

O = DNN (11)

Fig. 3. Sample Images from the ImageCLEF2010 Dataset

then estimated based on the same set of images. We con-
structed our visual tokens by using the KFLANN clustering
for Set S with Vigilance ρ = 0.7. A total number of 81
clusters were collected with this vigilance. The clustering
stage to form STM clusters is not purposefully tailored for
any particular category. This is to leverage the roles of
sequential property in recognizing places. To establish each
sequence, each input image was mapped to winning STM
cell as in equation 6. A small number of images which did
not satisfy any vigilance testing was rejected and did not
participate in the sequence construction.

As previously mentioned, sequences are stored in LTM

cells via one-shot learning. For sequence retrieval, the exact
sequence as in the LTM cell will elicit highest response
which has the magnitude of the length of the cell. Therefore,
if each full sequence is stored in a single dedicated LTM cell,
its length directly biases the winner decision by the WTA
competition over all LTM cells. Thus, in our experiments, the
longer sequences are broken into consecutive LTM cells of
similar length NLTM = 100 Sequences which are of shorter
length than NLTM are concatenated with the end part of the
previous sequences so as to make the equal length. One of
the possible solutions to the length problem was discussed
in [21] where the sequences can be chunked and stored in
a hierarchical fashion. The number of stored LTM cells in
each category was listed in Table 1. The winning LTM is
decided by the most excited LTM cell, and the location is
determined by its corresponding location identifier.

During testing, we played the sequences continuously in
the order as in the last row of Table 1 according to the
original capturing trajectory (4040 images). However, any
arrangement of sequences is possible. The dynamics of all
the LTM cells during retrieval of original Set S are depicted
in Figure 4. While navigating, each LTM cell competes with
others and the excited LTM cells activation will gradually
increase to its highest possible potential and then decrease
when the robot moves in and out of its coverage. Smooth
transition among LTM cells may be obtained if certain
degree of overlapping in consecutive cells is imposed. The
design of temporal overlapping is not within the scope of
this paper but can be implemented as in [7]. At each time,
not only the information about the location can be obtained
from the winning cell, the level of confidence of being in
certain location can be derived from the strength of the
winner. By analyzing the dynamics in LTM cells activation
further anticipation can be made. At each location, we can
see there are clear separations of activations between its
LTM cells and other locations. Therefore, by exploiting the
sequential property the system can localize itself even though
the universal set of elements is shared among sequences. The
accuracy estimation of a category is defined by the number
of matches between the ground truth and the label of the
maximum response LTM. This estimation is also called one-
shot classification [12]. The accuracy of sequence retrieval
with Set S and Set R is shown in Table II.

The strength of the winning cells response at each time
is proportional to the predictions confidence of one single
data to be at a particular location based on its entirely
previous history. However, if its magnitude is low, location
prediction is unreliable despite being the winner. This can
be illustrated by when one moves from one location (e.g.
kitchen) to another location (e.g. corridor), the place between
the two locations should not be classified as solely one or
the others but the transition between two places (Figure 4
(Upper)). This property can be observed by the dynamics of
our sequence learning framework by considering the whole
episodes from one place to another place. Figure 4 (Lower)
illustrates the LTM activation profile when the robot moves



TABLE I
SEQUENCES PROPERTIES WITH DIFFERENT LOCATION CATEGORIES

Category C E K L LO1 LO2 PA SmO StO

Sequence Index C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 E1 E2 K1 L1 LO11 LO21 PA1 SmO StO1

Length 228 94 134 33 32 232 164 71 133 57 32 29 599 492 351 508 170 355 326

Number of LTMs 3 1 2 1 1 3 2 1 2 1 1 1 6 5 4 6 2 4 4

Playing Order C1 −K1 − C2 − C3 − C4 − LO11 − C5 − LO21 − C6 − SmO − C7− StO − C8 − L1 − C9 − PA1 − C10 − E11 − E12

TABLE II
ACCURARY (%) OF LOCATION RECOGNITION BASED ON INDIVIDUAL

IMAGE WITHOUT THRESHOLDNG

Category C E K L LO1 LO2 PA SmO StO

Set S 84.9 96.7 84.8 91.7 61.3 74.2 68.3 86.8 85.6

Set R 78.6 78.7 85.6 84.8 73.2 85.4 65.3 76.3 81.3

from the room Kitchen to the Corridor. The transition state
between two environments can be observed by the gradual
decrease in activation of the Kitchen LTM and the increase
in Corridor LTM. By this, the decision of place should be
made only when the activation of the LTM is sufficiently
large. It can be implemented by imposing a threshold θ for
decision making only when the winner activation exceeds θ.

Table III shows the result of the Location recognition by
the sequence retrieval with θ = 0.4. This sequence refused to
classify for approximately 10% of the images for Set S and
Set R. However, it significantly improves the accuracy when
decisions were made. The determination of the threshold θ
depends on the practical tolerance acceptance. For instance,
it can be estimated based on the average activation of the
LTM cell to random noises of the sequence. The automatic
estimation of this threshold will be subject of future work.

Fig. 4. Upper - Example of ambiguity of place. The left two images are
labeled Kitchen while the right two images are labeled Corridor from the
dataset. Lower - Activation of the last LTM of category K and the next LTM
of category C

To illustrate the robustness of the sequence retrieval
against the variations in the length of testing sequence.

TABLE III
ACCURARY (%) OF LOCATION RECOGNITION BASED ON INDIVIDUAL

IMAGE WITH THRESHOLDNG

Category C E K L LO1 LO2 PA SmO StO

Set S 96.4 97.0 93.6 99.7 90.3 93.7 99.0 94.2 99.6

Set R 80.3 72.3 88.3 98.0 87.4 100.0 88.8 87.5 94.6

TABLE IV
ACCURACY AND STANDARD DEVIATIONS OVER 10 TRIALS (%) FOR

MISSING ELEMENTS SEQUENCES

p(%) 100 90 80 70 60
Set S’s Accuracy 84.03 83.81 83.25 79.03 78.06
Set S’s Std Dev 0.0 0.6 0.4 0.5 0.5

Set R’s Accuracy 80.25 79.48 78.35.25 76.72 74.73
Set R’s Std Dev 0.0 0.5 0.4 0.3 0.4

We sampled randomly p(%) images of each sequence of
Set R. However, the internal temporal ordering in each
sequence was still preserved. The alteration degrades the
maximum possible matching score of shortened sequences
proportionally comparing to the full-length sequences. This
may be the case when certain data are missing under various
situations while capturing. We played them in the same
order as the last row in Table I. We conducted 10 trials for
each value of p without thresholding by θ for comparison.
The average accuray over all categories for the two sets is
reported in Table IV. The accuracy when p is 100% (full
length) is derived from the average of all categories reported
from Table II. We can see that the accuracy gradually drops
as the length of each sequence is reduced. However, the
standard deviations over 10 trials are small (≤ 1.0%). The
result justifies the stability of our sequence recognition under
length distortions by exploiting the sequential property.

VI. CONCLUSIONS

This paper presents a novel hierarchical architecture based
on the interaction between STM and LTM mechanisms
for spatio-temporal sequence learning. We explained the
generic feature building and extraction, STM and sequence
storage and recognition by the LTM organization. We also
analyzed the efficacy of the proposed framework in a visual
localization application. We showed that our system is able
to localize continuously based on competition of LTM cells.
In the experiments, we used the universal set of elements
to construct the sequence of many different locations to
substantiate the power of sequential property. Additionally,
the stability of our sequence learning architecture was also



Fig. 5. Different LTM activations of each category during recall rate using Set S. The playing order follows the last row of Table 1

demonstrated with certain distortions, i.e. length variations.
Further extensive evaluations on the capability of the systems
towards other robustnesss evaluation such as distortions of
the robots trajectory are not within the scope of this paper.

Our intention is to integrate this architecture to build
a hierarchical episodic memory model which characterizes
various interactions and self-organizations between STM and
LTM mechanisms. The architecture can be extended to fa-
cilitate many components of embodied intelligence including
sensory input processing, anticipation, motor control and goal
creation with robust tolerance[26].

APPENDIX

Label Layer Values
nS S1 16

nO S1, C1 4

NG
s S1 {(2n+ 1)|n = 3, . . . , 18}

NG
o S1 {0, π/4, π/2, 3π/4}

nB C1 8

nGS C1 8

NGSi∈{1,...,nGS} C1 {(2n)|n = 4, . . . , 11}
nP S2 4

NP
i∈{1,...,nP} S2 {10, 20, 30, 40}

γ C2 0.6
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