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Abstract 

The paper presents an algorithm for creating 3D scene representation to be used in a mobile robot. It uses data collected 

with an RGB-D camera. The RGB scene view is further processed with semantic segmentation algorithm based on con-

volutional neural networks to obtain binary masks of the recognized objects. The masks are matched to the depth view of 

the scene, which gives point clouds reflecting 3D shape of objects. Then the point clouds are averaged to reduce all objects 

into single points. In this way we obtain minimalistic representation of a scene, which is easy for storing and processing 

even in case of very large and complex scenes. This scene representation is aimed to support a mobile robot in recognizing 

scenes, and finding locations. The presented solution is able to efficiently deal with incompleteness of information coming 

from the real world. 

 

 

 

1 Introduction 

The problem of 3D scene mapping has been addressed by 

many researchers. This task is of particular importance for 

autonomous robots  that have to track in real-time their lo-

cation and create an internal representation of the scene, 

the task which is also known as simultaneous location and 

mapping (SLAM)[1]. To create 3D map of a scene, we 

need to combine the RGB image data, and the spatial data. 

SLAM task become much easier after the launch of cheap 

RGB-D cameras. The most notable device from this cate-

gory is Microsoft Kinect. When combined with the Ki-

nectFusion software package it allows to reconstruct sur-

face model of the scene even in real-time [2]. The device 

can also be mounted on a mobile robot to support the scene 

perception [3]. The robotic systems are also frequently 

equipped with laser scanners, known as LIDAR-s.  

There are two basic types of LIDAR: 2D and 3D. 2D de-

vices are relatively cheap, and allow for acquiring the data 

from 360o. Unfortunately, the acquisition of the scene data 

by such devices is from a single plane only. The 3D scan-

ners allow for acquiring the real 3D scene data, but they are 

much more expensive. In addition, most of the scanners 

currently available on the marked are based on a mechani-

cally rotated elements, which limits the speed of data ac-

quiring. This speed is much slower, than the speed offered 

by the RGB-D camera like Kinect.  

The Kinect is able to acquire the depth data from a few me-

ters, while the laser scanners register data from much larger 

distances like hundreds of meters. Laser scanners became 

more popular after introduction of cheap solid-state scan-

ners. A number of companies announces such products, but 

very few are yet available. An example is the Livox family 

sensors. The speed of data acquiring (when compared to 

depth cameras) is still a limitation of such devices. 

For autonomous robots, the geometrical reconstruction of 

the scene is usually not sufficient, because the robot needs 

deeper understanding of the scene, after semantic recogni-

tion of surrounding objects. In recent years we observed a 

significant progress in the field of computer vision thanks 

to the success of deep convolutional neural networks [4]. 

They allow to perform various tasks related to visual scene 

analysis. In order to recognize the semantic scene, in addi-

tion to recognizing the category of the object, the important 

task is to find the object location, which is implemented by 

identifying the rectangle surrounding the recognized object 

like in the Faster R-CNN [5]. Identifying the rectangle, 

however, is not always sufficient, because it does not re-

flect the shape of the objects. To obtain the precise infor-

mation about the shape, it is necessary to create the binary 

masks matching the pixels belonging to each object, which 

is possible using e.g. Mask R-CNN [6]. For real-time sys-

tems, besides precision of results, we also have to take into 

account the speed of the computations. Using GPU accel-

eration is currently a standard approach. This however, is 

still not always sufficiently fast. The mentioned Faster R-

CNN algorithm allows for processing about 7 frames per 

second (FPS) on a GPU. This is quite fast, but for real-time 

systems, larger frame rate is expected. The situation has 

been greatly improved by introduction of the fast algo-

rithms of object detection, like YOLO [7], which allow for 

processing at the speed rate exceeding 40 FPS. In addition, 

the pixel-level object masking speed has been significantly 

improved [8].   



The last thing that we have to discuss in effective robot 

navigation is the scene representation. There are two 

widely applied methods of 3D world representation: sur-

face models and voxel models. Both of them are applied in 

robotics [9][10] for building scene representation. Both 

kinds of scene representation have their advantages and 

disadvantages. The main disadvantage of both of them is 

that they collect massive amounts of data, which are hard 

to handle. If the memorized environment is large and con-

tains a rich variety of scenes, it is hard to recognize  the 

scene of interest, and locate the robot within the world, un-

less an external location system, like GPS, is available. The 

speed of memory processing is also critical, if the robot 

needs to compare the perceived scene with the memory 

during its normal operation, i.e. in real time. The scene rep-

resentation presented in this work is addressed to solve 

such problems. 

In our approach the scene complexity is reduced maximally 

by representing objects as points. This is quite simple, but 

allows for storing sufficient information about the scene. 

The other, less important details might be used only tem-

porarily when the robot perceives the scene, e.g. for colli-

sion avoidance, but they are not stored permanently in the 

memory. 

The paper is organized as follows. In Section 2 we describe 

building local scene representation. In particular, we de-

scribe the experimental setup and the method of matching 

visually recognized objects to the depth data, and identify-

ing point location of the objects in the local view of the 

robot. In Section 3 we describe the algorithm of transform-

ing the local coordinates of objects to the global scene 

model and present test results. Section 4 presents the con-

clusions. 

2 Building local scene representa-

tion 

In this section we analyze the mechanism of building inter-

nal scene representation by a mobile robot exploring a 3D 

scene. 

2.1 Previous work 

We already presented the basic mechanism for creating the 

discussed kind of scene representation, but that work was 

related to an agent exploring a virtual world created using a 

game engine [11]. This simplified the problem, because the 

mobile agent could use the data delivered by the game en-

gine used to create a digital world. When dealing with the 

real world data registered during mobile robot operation, 

such simplification is not possible, and we have to over-

come all the difficulties coming from imperfect object 

recognition, incompleteness of information, and different 

kinds of noises. We also developed a method for comparing 

scenes, which allows for deciding if the scene was already 

memorized by the robot, or not [11]. The method is based 

on the distance matrix created for the scene, which is then 

compared to the memorized scene, and gives the similarity 

factor between both the scenes. 

2.2 The experimental set 

The robot that we use in our experiments is the Parallax 

Arlo mobile platform, which allows for easy mounting of 

additional equipment (Figure 1). On the top of the platform 

we mounted the RGB-D camera, which in our case is the 

Microsoft Kinect v2. This is our only sensor delivering in-

formation about the scene. The depth camera registers the 

data from a limited distance, while the RGB camera is not 

limited by the distance. Single shot taken by the robot from 

a particular location gives only information about the posi-

tions of scene elements which are in the range of the depth 

camera measurements. In most of the devices available on 

the market, this range does not exceed several meters.  

 

Figure 1  The Arlo mobile robot platform with the Kinect 

sensor used in experiments  

 

To export the most computationally intensive parts of data 

processing, we extended our experimental set by a compu-

tational server equipped with GPU cards. Thus, the main 

robot data processing system is located on the server. A 

laptop placed on the platform receives the depth and RBG 

scene view from the sensor, and sends them to the server 

through local WiFi connection. After the data have been 

processed on the server and the robot steering system 

makes the decision about further robot operation, the ap-

propriate signals are sent back to the laptop. Then the lap-

top sends the commands to the robot microcontroller, 

which transforms them into rotation of the robot wheels. 

The speed of data transmission in contemporary computer 

networks is not a significant limitation, thus the robot can 

operate without notable delays. The experimental ad-

vantage of moving computations to the server, is that we 

can preview in real time the internal states of the robot dur-

ing its operation. 



2.3 Locating objects in 3D space 

On the server the RGB scene view undergoes processing 

using tools based on convolutional neural networks. This 

allows for recognition and location of a set of objects 

within the robot’s field of view (Figure 2). The recognition 

and location is, however, not sufficient, because our ap-

proach assumes, that the shape of the object must be iden-

tified so that it will be easier to manipulate. There is a num-

ber of tools that can be used for this purpose, and we ana-

lyzed the available choices. Our initial choice was to use 

the Mask R-CNN [6]. To train the model we created our 

own dataset representing the objects that can be found in-

side our university building, like different kinds of furni-

ture. 

 

Figure 2  The robot facing the scene  

 

The Mask R-CNN itself allows for processing speed of 

about 5 FPS. But we have to take into account, that image 

masking, although the most computationally intensive ele-

ment of the processing sequence, is not the only operation 

performed by the main robot steering system. Thus the real 

speed of the system operation was a bit lower - approxi-

mately 3 FPS.  

Assuming that the robot is not going to move very quickly, 

this speed of operation could be accepted. The experiments 

showed however, that the results generated by the Mask R-

CNN are not stable. The instability is revealed in the fact 

that in a sequence of images received from the robot, at 

least some objects are not always masked, despite that they 

are visible very well. For the robot perception, this means, 

that some objects appear and disappear. It is also possible, 

that the object changes its type between subsequent frames. 

This happens in case of some similarity of two categories. 

This kind of effects makes it quite hard to maintain a stable 

scene view. We were not able to eliminate this effect by 

longer training or delivering more training data. 

We analyzed also alternative tools, and all of them demon-

strated this kind of instability. The only solution to the 

problem, that we could find, was to cumulate the results 

from a sequence of images, which would make the scene 

perception more stable. Such cumulation will cause, how-

ever, further slowing down of the sensory data processing. 

The improvement could be brought by, a faster masking 

algorithm, which still maintains stability of results, and 

quality of masks at least comparable to Mask R-CNN. It is 

not an easy task, because most of the available algorithms 

operate with speed not larger than a few FPS.  

Our expectations were met by YOLACT [8]. The imple-

mentation of this algorithm allows for processing 30FPS 

with high quality of masks. In this way, we obtain the bi-

nary masks of the objects (Figure 3). Within the illustrated 

scene three objects were recognized: one orange chair and 

2 gray chair (indicated by the text inside the surrounding 

rectangles). The algorithm still demonstrates the kind of in-

stability that we discussed with Mask R-CNN. However, 

higher processing speed of YOLACT allowed for pro-

cessing more frames in real time. Thus we accumulate the 

results from several subsequent frames to characterize the 

scene. If in a given location, an object is identified in more 

than 50% of the frames, it is assumed, that the object is 

there. Cumulating the results from 3 subsequent frames 

significantly improves stability of the recognized objects, 

but we used 5 subsequent frames to further reduce any in-

stabilities. 

 

Figure 3  The binary masks of objects obtained from YO-

LACT 

 

Besides the contours of the recognized objects, we need to 

determine their location in 3D space using information 

from the depth Kinect camera. The raw depth view ob-

tained from Kinect is shown in Figure 4. Each pixel in the 

image represents the distance from the camera to respective 

element of the scene. Such a spatial data representation is 

not convenient for further computations. Thus we trans-

form the depth data into a point cloud. The point cloud is 

equivalent of the depth image, but it represents not the dis-

tance from the camera, but the points in 3D coordinates 

with the origin in the camera location. The code that we 

implemented to do that is written using CUDA to acceler-

ate the computation on a GPU. The point cloud obtained 

for the discussed scene view is presented in  Figure 5.  Fig-

ure 5 indicates also the point locations of particular ob-

jects. To get them we match the binary masks from Figure 

3 to the point cloud. In this way we obtain a filtered point 

cloud (Figure 6). Then we average all the filtered points to 

obtain single point locations of individual objects within 

the local camera coordinates.   



 

Figure 4  The depth view of the scene  

 

Figure 5  The frontal point cloud view  

 

Figure 6  The filtered frontal point cloud view 

 

We use the coordinate system typical for 3D graphics, 

where the z axis is pointing towards the scene, the y axis is 

pointing up, and the x axis is pointing to the right. The cam-

era location is (0, 0, 0). The locations of objects in the cam-

era coordinates are the basis for building the global scene 

memory. 

As one can see in Figure 3, the masks generated for the 

chairs do not cover their legs. This is not due to limited 

accuracy of the masking algorithm, but deliberate action. 

We prepared the training data for YOLACT in this way, to 

avoid including the chair legs. The reason for that is the 

depth data (Figure 5), where we can see that the legs of the 

chairs are mainly black. The black color means, that the 

location is undetermined, and in consequence, these ele-

ments are mostly invisible in the point cloud (Figure 5). 

Trying to include them would only increase fluctuations in 

the object locations. The reason is the metallic reflective 

material, which reveals the camera limitation. Also very 

thin elements are problematic because of the depth camera 

resolution. We believe, that the new Azure Kinect will im-

prove the situation due to higher depth resolution, and we 

are going to try it soon. 

The obvious limitation of determining point locations of 

objects in a scene is that we don’t know the whole shape of 

the object when we see it only from a single robot position. 

The position of the same object, can be different, when it 

is seen from another perspective. The robot while explor-

ing the scene registers new views all the time, and can dis-

cover new, previously invisible, parts of the already iden-

tified objects. Thus the position of the object is not some-

thing fixed, but it must be updated along with the scene 

exploration. This would lead to instability of the robot 

memory, which is undesirable. Thus we developed an effi-

cient way of stabilizing locations of objects in the memory, 

which is discussed in the next section. 

3 Global scene representation 

The scene view obtained from a single robot position is not 

suitable for memorizing the scene, because the robot 

changes its location all the time, and the scene representa-

tion should be independent of the temporary point of ob-

servation. Thus we have to transform the positions of the 

objects to some global space. 

3.1 Transforming local into global coordi-

nates 

In the real world there is no such thing, as global coordi-

nates. Everything that we see, is seen from relative first 

person perspective. But the memorized mental model of 

the world is a combination of numerous local scenes (epi-

sodes), which are combined into global memory, forming 

a hierarchical structure. The approach to structure the robot 

memory should be similar. In this paper we will focus on 

constructing global memory within a single scene, and this 

approach can be extended to more scenes and complex 

worlds later.  

If there are no global coordinates, that means, that the co-

ordinate system is arbitrary. The only requirement, is that 

it should be stable. But everything can move, so there are 

no fully reliable reference points. Our approach assumes, 

that every part of a scene can be a reference to the other 

parts of the same scene, or even other scenes. The location 

of an object within a scene can be determined, if the robot 

perceives other, previously located reference objects 

within the same scene. 



As demonstrated in Section 2, a single robot position al-

lows for recording local object coordinates. Now it is time, 

to make the coordinates independent of the temporary po-

sition of the robot. Let us assume, the scene looks like in 

Figure 7. The triangle shows the depth camera view and 

range (dashed line). The image is only schematic, because 

there is no precisely defined range of the depth camera, as 

it depends on the surfaces visible in the scene. Within the 

camera view we have three visible objects: O1, O2, and 

O3. Thus Figure 7 is the equivalent to the situation pre-

sented in Figure 3, where the robot can see three objects. 

 

Figure 7  The sample scene seen from Location 1 (top 

view) – the first step of scene memory building 

 

In the first step of its operation, the robot starts building its 

global scene memory, which is based on the global coordi-

nate system. The global scene coordinates have the same 

axes as local, but the difference is that they are associated 

to the scene in a permanent way. The origin of the global 

scene coordinates can be located in arbitrary point, like Ob-

ject 1 in Figure 7. The scene coordinate axes (xS,yS,zS) are 

parallel to the local camera view axes (xL,yL,zL). Computing 

the scene coordinates of all visible objects is straightfor-

ward, given their local coordinates. It is enough to subtract 

from the local coordinates of an object the local coordi-

nates of the origin of the global scene coordinates 

 [
𝑥
𝑦
𝑧
]

𝑂𝑆

= [
𝑥
𝑦
𝑧
]

𝑂𝐿1

− [
𝑥
𝑦
𝑧
]

(0,0,0)𝐿1

 

Also the camera location in scene coordinates can be easily 

found by putting: [
𝑥
𝑦
𝑧
]

𝑂𝐿1

= [
0
0
0
] 

To simplify further considerations, and easily explain the 

idea of memory building, we have to take into account the 

technical limitations of the experiment. The main assump-

tion is that the robot travels on a flat surface, and the camera 

is fixed to the robot, so the robot cannot change the angle of 

observation independently of its movement. This assump-

tion leads to the situation, where the point of observation 

moves only in 2 dimensions, although the world it sees is 

3D. We also assume that the y coordinate is constant, and 

movement of the robot can be expressed using only 2 carte-

sian coordinates (xS,zS).  

Let us now assume, that the robot moves from the original 

position L1 to a new location L2 (Figure 8). What has 

changed is that a new object appeared in robot’s field of vi-

sion (Object 4). We know its local position obtained directly 

from the camera measurement. However, we do not know, 

how to determine its position with respect to the scene co-

ordinates. Moreover, the scene origin in Figure 8 is no 

longer visible. But this is not a problem as long, as the robot 

sees at least 2 objects, with known scene positions. In our 

case these are Object 2 and Object 3. 

 

Figure 8  The view of the scene after robot moves to a new 

location 

 

To determine the scene coordinates of a new object, we 

have to know, how the position of the robot has changed. 

We find that information by determining the relative robot 

motion with respect to the scene objects. To do that, it is 

convenient to describe the motion using polar coordinates, 

by combining robot motion from rotation, and translation. 

The scene coordinates of a new object are calculated by 

transforming the Location 2 coordinates into scene coordi-

nates, as follows: 

 [
𝑥
𝑧
]
𝑆
= 𝑅 [

𝑥
𝑧
]
𝐿2
+ 𝑇 − [

𝑥
𝑧
]
(0,0)𝐿1

 

where 𝑅 , and 𝑇 are the rotation translation matrices of the 

robot moving between L1 and L2. Explicitly this can be 

written as: 

 [
𝑥
𝑧
]
𝑆
= [

𝑟11 𝑟12
𝑟21 𝑟22

] [
𝑥
𝑧
]
𝐿2
+ [
𝑡𝑥
𝑡𝑧
] − [

𝑥
𝑧
]
(0,0)𝐿1

 

What we have to find, is the rotation, and translation pa-

rameters. To solve the problem, we move to the homoge-

neous coordinates, which leads to a single transformation 

matrix: 

 [
𝑥
𝑧
1
]

𝑆

= 𝑇𝑅 [
𝑥
𝑧
1
]

𝐿2

 

or explicitly: 

 [
𝑥
𝑧
1
]

𝑆

= [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑡𝑥 − 𝑥(0,0)𝐿1
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑡𝑧 − 𝑧(0,0)𝐿1
0 0 1

] [
𝑥
𝑧
1
]

𝐿2

 

where 𝜃 is the rotation angle of the local robot coordinates 

with respect to the scene coordinates. This is a single 



matrix equation, with 4 parameters to be determined. 

A single data point is insuffictient to solve eq. (4), but 

when we combine equations for 2 points (objects O2 and 

O3 in Figure 8), the equation system becomes solvable: 



{
 
 

 
 [
𝑥
𝑧
1
]

𝑂2𝑆

= 𝑇𝑅 [
𝑥
𝑧
1
]

𝑂2𝐿2

[
𝑥
𝑧
1
]

𝑂3𝑆

= 𝑇𝑅 [
𝑥
𝑧
1
]

𝑂3𝐿2

 

To solve the system of equations let’s express them in the 

following form (4 equations with 4 unknowns): 

[

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

] =

[
 
 
 
 
𝑐𝑜𝑠𝜃𝑥𝑂2𝐿2 − 𝑠𝑖𝑛𝜃𝑧𝑂2𝐿2 + 𝑡𝑥 − 𝑥(0,0)𝐿1
𝑐𝑜𝑠𝜃𝑧𝑂2𝐿2 + 𝑠𝑖𝑛𝜃𝑥𝑂2𝐿2 + 𝑡𝑧 − 𝑧(0,0)𝐿1
𝑐𝑜𝑠𝜃𝑥𝑂3𝐿2 − 𝑠𝑖𝑛𝜃𝑧𝑂3𝐿2 + 𝑡𝑥 − 𝑥(0,0)𝐿1
𝑐𝑜𝑠𝜃𝑧𝑂3𝐿2 + 𝑠𝑖𝑛𝜃𝑥𝑂3𝐿2 + 𝑡𝑧 − 𝑧(0,0)𝐿1 ]

 
 
 
 



or as a product: 

[

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

] = [

𝑥𝑂2𝐿2 −𝑧𝑂2𝐿2
𝑧𝑂2𝐿2 𝑥𝑂2𝐿2

1 0
0 1

𝑥𝑂3𝐿2 −𝑧𝑂3𝐿2
𝑧𝑂3𝐿2 𝑥𝑂3𝐿2

1 0
0 1

] [

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑥 − 𝑥(0,0)𝐿1
𝑡𝑧 − 𝑧(0,0)𝐿1

]

where [

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

] are known coordinates, because we 

determined them in the previous iteration, and [

𝑥𝑂2𝐿2
𝑧𝑂2𝐿2
𝑥𝑂3𝐿2
𝑧𝑂3𝐿2

] are 

also known because they are determined locally. To get the 

desired parameters 

[
 
 
 

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑥−𝑥(0,0)𝐿1
𝑡𝑧 −𝑧(0,0)𝐿1 ]

 
 
 

, it is enough to find the 

inverse of the transformation matrix, and multiply it by the 

vector of known scene coordinates: 

[

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑥 − 𝑥(0,0)𝐿1
𝑡𝑧 − 𝑧(0,0)𝐿1

] = [

𝑥𝑂2𝐿2 −𝑧𝑂2𝐿2
𝑧𝑂2𝐿2 𝑥𝑂2𝐿2

1 0
0 1

𝑥𝑂3𝐿2 −𝑧𝑂3𝐿2
𝑧𝑂3𝐿2 𝑥𝑂3𝐿2

1 0
0 1

]

−1

[

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

]

The inverse of the transformation matrix can be found al-

gebraically or numerically. In our experiments we use the 

numerical solution. Given the transformation parameters, 

we can compute scene coordinates of all of the newly seen 

objects using eq. (5), which transforms the local coordi-

nates of objects to their scene coordinates.  

The two objects in the global coordinates are the minimal 

number of objects that must be used to determine the robot 

transformation parameters. In case of more objects, previ-

ously located in the scene coordinates and present in the 

field of view, all of them can be used to increase reliability 

of the computation and reduce the solution error that may 

result from imperfect measurements. We can take pairs of 

such objects, determine the transformation parameters 

from each of the pairs, and average the results or combine 

all previously located object coordinates to obtain one 

overdetermined system of equations. Solution of such sys-

tem yields the smallest least square error for given set of 

measurements. 

The limitation of the method, to some degree, is the re-

quirement, that the robot needs to have at least two objects 

within the field of view, to be able to determine its own 

transition within the scene, as well as locations of new ob-

jects. To satisfy this requirement, the masking algorithm 

should be trained to recognize as many object types as pos-

sible. But still there is a chance that the robot, can stand in 

front of a wall, and lose any recognizable objects from its 

view. In this situation, the robot should start exploring the 

scene in a random way, to find any recognizable object. 

Then there are two possible cases. The first one is that the 

scene the robot sees, is already memorized one. In this case 

the robot is able to recognize its location within the scene, 

and continue the exploration of the known environment. 

The other case is the situation, where the robot does not 

recognize the visible combination of objects. In this case, 

it should build the new scene memory. It is possible, that it 

will find the relation between the two scenes later. Similar 

situation is when the robot is switched off to break the ex-

periment, moved to some other location, and then switched 

on again to start the experiment. The robot’s memory is 

maintained, because it is kept on the server, and the robot 

only connects to the memory when it is running. In conse-

quence of such approach, the robot spatial memory consists 

of a number of smaller scenes. The relation between differ-

ent parts of memory can be found at later time, when the 

robot finds object combination on the boundary of two 

scenes. Actually, in such cases, the coordinates of objects 

in one scene could be recalculated to make all objects 

match the common coordinate system. This makes sense if 

there are many points shared between the scenes, like ob-

jects in the same room. In case of very few contact points 

(like in case of separate rooms), it is more convenient to 

leave both scenes separate and only memorize the relation-

ship between scenes. The detailed discussion of this issue 

goes beyond the scope of this article, and will be discussed 

separately.  

3.2 Experimental results 

Now we will illustrate the presented considerations with 

the results of an experiment. In Figure 3 we presented the 

initial scene view with masked objects. The respective top 

view of the point cloud, filtered using the masks, is pre-

sented in Figure 9. In this iteration the robot locates the 

scene coordinate origin in arbitrary object. In our case this 

is a gray chair visible to the right (O1). The axes of the 

scene coordinate system are parallel to the local camera co-

ordinates. 

The robot starts traveling across the scene. Its motion is a 

combination of rotation and translation. The next view that 

the robot registered is shown in Figure 10. What has 

changed within the scene view is that a new object was 

identified (orange pouf), and one of the previously seen 

gray chairs is no longer within the field of view. This kind 

of scene view change was illustrated in Figures 7 and 8. 



 

Figure 9  The top view of the point cloud – initial robot 

location  

 

Let us see the top view of the point cloud of the second 

view (Figure 11). The goal of the robot is to locate the or-

ange pouf within the scene coordinates. The scene coordi-

nate origin is no longer visible, but it is enough that the 

scene position of gray chair and orange chair are already 

known. 

 

Figure 10 The second scene view with masked objects 

 

Figure 11  The second scene top view with masked objects  

 

Let us have a closer look at the calculations performed dur-

ing the presented experiment. In Location 1 (Figure 7), the 

coordinates of objects of interest are the following: 𝑂1𝐿1 =
[0.84, −0.13, 2.96],  
𝑂2𝐿1 = [−0.23,−0.17, 3.21],  

𝑂3𝐿1  =  [−1.31,−0.17, 3.17].   

These are the local coordinates expressed in meters. Mak-

ing them global is easy, because it requires subtracting the 

coordinates of object that serves as the origin of the scene 

coordinates. In our case this is the 𝑂1 object. In this way 

we get scene coordinates of objects: 

𝑂1𝑆 = [0.0, 0.0, 0.0], 
𝑂2𝑆 = [−1.07,−0.04, 0.25], 

𝑂3𝑆  =  [−2.15,−0.04, 0.21]. 

Then the robot moves to Location  2, and our goal is to 

determine the scene coordinates of object 4. For this pour-

pose we need the local coordinates of objects 2 and 3 in L2: 

𝑂2𝐿1 = [1.48,−0.17, 2.42],  

𝑂3𝐿1  =  [0.47,−0.17, 2.80].   

Next we find the solution of Equation 9, which yields the 

vector specifying the transformation parameters: 

[

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
𝑡𝑥
𝑡𝑧

] = [

0.92
0.39
−0.66
0.40

]

From the above we can find the rotation angle of the robot 

between L1 and L2g, which is 23o. The local coordinates 

of Object 4 recorded in L2 are: 𝑂4𝐿2  =

 [−0.81,−0.47, 2.35].  After applying equation 5, with pa-

rameters 10, we get the following scene coordinates: 

𝑂4𝑆  =  [−3.16,−0.30,−0.70].   

3.3 The system efficiency 

The computer that runs all the processing of data delivered 

by the robot is equipped with two Intel Xeon CPU E5-

2697, which allow for running up to 72 processes simulta-

neously. It is also equipped with 3 GPU cards: NVIDIA 

RTX 2080ti, TITAN Xp, and TITAN X. The most im-

portant factor influencing the speed of processing is the 

possibility of accelerating the computational tasks on the 

GPU-s. The element that consumes most of the computa-

tional power is the YOLACT masking algorithm. The time 

of processing a single frame from the camera on the RTX 

device takes about 33ms. The other elements of the com-

putational chain were also implemented using CUDA to 

use the GPU acceleration. The most important tasks are: 

transforming depth data into point cloud, filtering the cloud 

with the masks, and computing the averages. Actually, we 

are using 2 GPU-s. While on one GPU the operations re-

lated to the point cloud processing are performed, the other 

GPU computes the masks for the next frame. Sequential 

processing of these two tasks on a single GPU would cause 

additional delay. The multiple CPU power is used only in 

a minor way. 

In consequence of the presented approach to computations, 

we are able to process each scene about 15 times per sec-

ond, which includes the masking, and the depth data pro-

cessing. For the purpose of the experiment, this is very fast. 

It should be remembered, however, that we took the ap-

proach of averaging the results of masking to increase the 

reliability of masks. Thus we process only one depth image 



per several RGB images. Assuming that we take 5 images 

to the average, the robot is able to process the scene infor-

mation about 5 times per second. 

4 Conclusions 

We demonstrated a method for building spatial scene 

memory. The advantage of this method is minimal require-

ment with respect to the storage, because the objects are 

represented as single points. This kind of representation al-

lows also for quick real time searching and comparison of 

different scenes, even if the scenes are large in terms of the 

number of objects. In this way, the robot is able to find the 

relation between what is sees, and what is registered within 

the scene memory. The whole robot memory is built as a 

collection of different scenes, which can be combined, 

when the robot finds relation between them. 

The presented solution was demonstrated for a limited case 

of a robot moving on a flat surface, which results in a con-

stant point of observation, and simplifies the computations. 

The solution however can be extended to arbitrary kind of 

motion in 3D. The only difference in case of a robot mov-

ing freely in 3D is that it has to follow at least 3 objects to 

be able to assess its own motion (our simplified 2D case 

requires only 2 objects). 

The hardware solution and the code that we developed, 

heavily relies on using GPU for acceleration. This allowed 

us to achieve high processing speed, which is sufficient for 

performing experiments with the current solution, further 

extending the functionalities of the robot. 

The method relies on an external tool, which is the masking 

algorithm. Despite huge progress in this field, such mask-

ing algorithms have their limitations, which were partially 

discussed in the paper. Considering the effort taken to im-

prove this kind of tools all around the world, the situation 

should improve in the future. 

There is a number of things that have to be done in the fu-

ture. We need to develop a path finding algorithm. After 

analyzing the known algorithms we are not satisfied with 

them because in our case the scene representation requires 

developing different methods for navigation. The other 

thing is the motion within the scene. The current solution 

assumes that everything is static, but in real scenes there 

are also moving elements. We also want to develop a com-

munication system with the robot using the speech channel. 

The weak part of the methodology, when we want to con-

sider the robot an autonomous learning system, is that the 

training data are prepared manually. Ultimately the robot 

should be able to distinguish the parts of the scene itself, 

and learn from the object’s manipulation. Moreover, we 

want to use the robot to perform a Motivated Learning sce-

nario, where the robot will be able to perform some actions, 

and find the best strategies to satisfy its needs [13]. This of 

course requires extending the robot with a manipulator. 
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