
Spatial scene representation and navigation in a mobile robot using

RGB-D camera

Marek Jaszuk, University of Information Technology and Management, Rzeszów, Poland

Wojciech Pałka, Academic High School, Rzeszów, Poland

Michał Furgał, University of Information Technology and Management, Rzeszów, Poland

Dawid Darłak, Academic High School, Rzeszów, Poland

Janusz A. Starzyk, School of Electrical Engineering and Computer Science Ohio University, Athens, USA, and University

of Information Technology and Management, Rzeszów, Poland

Abstract

The paper presents an algorithm for creating 3D scene representation to be used in a mobile robot. It uses data collected

with an RGB-D camera. The RGB scene view is further processed with semantic segmentation algorithm based on con-

volutional neural networks to obtain binary masks of the recognized objects. The masks are matched to the depth view of

the scene, which gives point clouds reflecting 3D shape of objects. Then the point clouds are averaged to reduce all objects

into single points. In this way we obtain minimalistic representation of a scene, which is easy for storing and processing

even in case of very large and complex scenes. This scene representation is aimed to support a mobile robot in recognizing

scenes, and finding locations. The presented solution is able to efficiently deal with incompleteness of information coming

from the real world.

1 Introduction

The problem of 3D scene mapping has been addressed by

many researchers. This task is of particular importance for

autonomous robots that have to track in real-time their lo-

cation and create an internal representation of the scene,

the task which is also known as simultaneous location and

mapping (SLAM)[1]. To create 3D map of a scene, we

need to combine the RGB image data, and the spatial data.

SLAM task become much easier after the launch of cheap

RGB-D cameras. The most notable device from this cate-

gory is Microsoft Kinect. When combined with the Ki-

nectFusion software package it allows to reconstruct sur-

face model of the scene even in real-time [2]. The device

can also be mounted on a mobile robot to support the scene

perception [3]. The robotic systems are also frequently

equipped with laser scanners, known as LIDAR-s.

There are two basic types of LIDAR: 2D and 3D. 2D de-

vices are relatively cheap, and allow for acquiring the data

from 360o. Unfortunately, the acquisition of the scene data

by such devices is from a single plane only. The 3D scan-

ners allow for acquiring the real 3D scene data, but they are

much more expensive. In addition, most of the scanners

currently available on the marked are based on a mechani-

cally rotated elements, which limits the speed of data ac-

quiring. This speed is much slower, than the speed offered

by the RGB-D camera like Kinect.

The Kinect is able to acquire the depth data from a few me-

ters, while the laser scanners register data from much larger

distances like hundreds of meters. Laser scanners became

more popular after introduction of cheap solid-state scan-

ners. A number of companies announces such products, but

very few are yet available. An example is the Livox family

sensors. The speed of data acquiring (when compared to

depth cameras) is still a limitation of such devices.

For autonomous robots, the geometrical reconstruction of

the scene is usually not sufficient, because the robot needs

deeper understanding of the scene, after semantic recogni-

tion of surrounding objects. In recent years we observed a

significant progress in the field of computer vision thanks

to the success of deep convolutional neural networks [4].

They allow to perform various tasks related to visual scene

analysis. In order to recognize the semantic scene, in addi-

tion to recognizing the category of the object, the important

task is to find the object location, which is implemented by

identifying the rectangle surrounding the recognized object

like in the Faster R-CNN [5]. Identifying the rectangle,

however, is not always sufficient, because it does not re-

flect the shape of the objects. To obtain the precise infor-

mation about the shape, it is necessary to create the binary

masks matching the pixels belonging to each object, which

is possible using e.g. Mask R-CNN [6]. For real-time sys-

tems, besides precision of results, we also have to take into

account the speed of the computations. Using GPU accel-

eration is currently a standard approach. This however, is

still not always sufficiently fast. The mentioned Faster R-

CNN algorithm allows for processing about 7 frames per

second (FPS) on a GPU. This is quite fast, but for real-time

systems, larger frame rate is expected. The situation has

been greatly improved by introduction of the fast algo-

rithms of object detection, like YOLO [7], which allow for

processing at the speed rate exceeding 40 FPS. In addition,

the pixel-level object masking speed has been significantly

improved [8].

The last thing that we have to discuss in effective robot

navigation is the scene representation. There are two

widely applied methods of 3D world representation: sur-

face models and voxel models. Both of them are applied in

robotics [9][10] for building scene representation. Both

kinds of scene representation have their advantages and

disadvantages. The main disadvantage of both of them is

that they collect massive amounts of data, which are hard

to handle. If the memorized environment is large and con-

tains a rich variety of scenes, it is hard to recognize the

scene of interest, and locate the robot within the world, un-

less an external location system, like GPS, is available. The

speed of memory processing is also critical, if the robot

needs to compare the perceived scene with the memory

during its normal operation, i.e. in real time. The scene rep-

resentation presented in this work is addressed to solve

such problems.

In our approach the scene complexity is reduced maximally

by representing objects as points. This is quite simple, but

allows for storing sufficient information about the scene.

The other, less important details might be used only tem-

porarily when the robot perceives the scene, e.g. for colli-

sion avoidance, but they are not stored permanently in the

memory.

The paper is organized as follows. In Section 2 we describe

building local scene representation. In particular, we de-

scribe the experimental setup and the method of matching

visually recognized objects to the depth data, and identify-

ing point location of the objects in the local view of the

robot. In Section 3 we describe the algorithm of transform-

ing the local coordinates of objects to the global scene

model and present test results. Section 4 presents the con-

clusions.

2 Building local scene representa-

tion

In this section we analyze the mechanism of building inter-

nal scene representation by a mobile robot exploring a 3D

scene.

2.1 Previous work

We already presented the basic mechanism for creating the

discussed kind of scene representation, but that work was

related to an agent exploring a virtual world created using a

game engine [11]. This simplified the problem, because the

mobile agent could use the data delivered by the game en-

gine used to create a digital world. When dealing with the

real world data registered during mobile robot operation,

such simplification is not possible, and we have to over-

come all the difficulties coming from imperfect object

recognition, incompleteness of information, and different

kinds of noises. We also developed a method for comparing

scenes, which allows for deciding if the scene was already

memorized by the robot, or not [11]. The method is based

on the distance matrix created for the scene, which is then

compared to the memorized scene, and gives the similarity

factor between both the scenes.

2.2 The experimental set

The robot that we use in our experiments is the Parallax

Arlo mobile platform, which allows for easy mounting of

additional equipment (Figure 1). On the top of the platform

we mounted the RGB-D camera, which in our case is the

Microsoft Kinect v2. This is our only sensor delivering in-

formation about the scene. The depth camera registers the

data from a limited distance, while the RGB camera is not

limited by the distance. Single shot taken by the robot from

a particular location gives only information about the posi-

tions of scene elements which are in the range of the depth

camera measurements. In most of the devices available on

the market, this range does not exceed several meters.

Figure 1 The Arlo mobile robot platform with the Kinect

sensor used in experiments

To export the most computationally intensive parts of data

processing, we extended our experimental set by a compu-

tational server equipped with GPU cards. Thus, the main

robot data processing system is located on the server. A

laptop placed on the platform receives the depth and RBG

scene view from the sensor, and sends them to the server

through local WiFi connection. After the data have been

processed on the server and the robot steering system

makes the decision about further robot operation, the ap-

propriate signals are sent back to the laptop. Then the lap-

top sends the commands to the robot microcontroller,

which transforms them into rotation of the robot wheels.

The speed of data transmission in contemporary computer

networks is not a significant limitation, thus the robot can

operate without notable delays. The experimental ad-

vantage of moving computations to the server, is that we

can preview in real time the internal states of the robot dur-

ing its operation.

2.3 Locating objects in 3D space

On the server the RGB scene view undergoes processing

using tools based on convolutional neural networks. This

allows for recognition and location of a set of objects

within the robot’s field of view (Figure 2). The recognition

and location is, however, not sufficient, because our ap-

proach assumes, that the shape of the object must be iden-

tified so that it will be easier to manipulate. There is a num-

ber of tools that can be used for this purpose, and we ana-

lyzed the available choices. Our initial choice was to use

the Mask R-CNN [6]. To train the model we created our

own dataset representing the objects that can be found in-

side our university building, like different kinds of furni-

ture.

Figure 2 The robot facing the scene

The Mask R-CNN itself allows for processing speed of

about 5 FPS. But we have to take into account, that image

masking, although the most computationally intensive ele-

ment of the processing sequence, is not the only operation

performed by the main robot steering system. Thus the real

speed of the system operation was a bit lower - approxi-

mately 3 FPS.

Assuming that the robot is not going to move very quickly,

this speed of operation could be accepted. The experiments

showed however, that the results generated by the Mask R-

CNN are not stable. The instability is revealed in the fact

that in a sequence of images received from the robot, at

least some objects are not always masked, despite that they

are visible very well. For the robot perception, this means,

that some objects appear and disappear. It is also possible,

that the object changes its type between subsequent frames.

This happens in case of some similarity of two categories.

This kind of effects makes it quite hard to maintain a stable

scene view. We were not able to eliminate this effect by

longer training or delivering more training data.

We analyzed also alternative tools, and all of them demon-

strated this kind of instability. The only solution to the

problem, that we could find, was to cumulate the results

from a sequence of images, which would make the scene

perception more stable. Such cumulation will cause, how-

ever, further slowing down of the sensory data processing.

The improvement could be brought by, a faster masking

algorithm, which still maintains stability of results, and

quality of masks at least comparable to Mask R-CNN. It is

not an easy task, because most of the available algorithms

operate with speed not larger than a few FPS.

Our expectations were met by YOLACT [8]. The imple-

mentation of this algorithm allows for processing 30FPS

with high quality of masks. In this way, we obtain the bi-

nary masks of the objects (Figure 3). Within the illustrated

scene three objects were recognized: one orange chair and

2 gray chair (indicated by the text inside the surrounding

rectangles). The algorithm still demonstrates the kind of in-

stability that we discussed with Mask R-CNN. However,

higher processing speed of YOLACT allowed for pro-

cessing more frames in real time. Thus we accumulate the

results from several subsequent frames to characterize the

scene. If in a given location, an object is identified in more

than 50% of the frames, it is assumed, that the object is

there. Cumulating the results from 3 subsequent frames

significantly improves stability of the recognized objects,

but we used 5 subsequent frames to further reduce any in-

stabilities.

Figure 3 The binary masks of objects obtained from YO-

LACT

Besides the contours of the recognized objects, we need to

determine their location in 3D space using information

from the depth Kinect camera. The raw depth view ob-

tained from Kinect is shown in Figure 4. Each pixel in the

image represents the distance from the camera to respective

element of the scene. Such a spatial data representation is

not convenient for further computations. Thus we trans-

form the depth data into a point cloud. The point cloud is

equivalent of the depth image, but it represents not the dis-

tance from the camera, but the points in 3D coordinates

with the origin in the camera location. The code that we

implemented to do that is written using CUDA to acceler-

ate the computation on a GPU. The point cloud obtained

for the discussed scene view is presented in Figure 5. Fig-

ure 5 indicates also the point locations of particular ob-

jects. To get them we match the binary masks from Figure

3 to the point cloud. In this way we obtain a filtered point

cloud (Figure 6). Then we average all the filtered points to

obtain single point locations of individual objects within

the local camera coordinates.

Figure 4 The depth view of the scene

Figure 5 The frontal point cloud view

Figure 6 The filtered frontal point cloud view

We use the coordinate system typical for 3D graphics,

where the z axis is pointing towards the scene, the y axis is

pointing up, and the x axis is pointing to the right. The cam-

era location is (0, 0, 0). The locations of objects in the cam-

era coordinates are the basis for building the global scene

memory.

As one can see in Figure 3, the masks generated for the

chairs do not cover their legs. This is not due to limited

accuracy of the masking algorithm, but deliberate action.

We prepared the training data for YOLACT in this way, to

avoid including the chair legs. The reason for that is the

depth data (Figure 5), where we can see that the legs of the

chairs are mainly black. The black color means, that the

location is undetermined, and in consequence, these ele-

ments are mostly invisible in the point cloud (Figure 5).

Trying to include them would only increase fluctuations in

the object locations. The reason is the metallic reflective

material, which reveals the camera limitation. Also very

thin elements are problematic because of the depth camera

resolution. We believe, that the new Azure Kinect will im-

prove the situation due to higher depth resolution, and we

are going to try it soon.

The obvious limitation of determining point locations of

objects in a scene is that we don’t know the whole shape of

the object when we see it only from a single robot position.

The position of the same object, can be different, when it

is seen from another perspective. The robot while explor-

ing the scene registers new views all the time, and can dis-

cover new, previously invisible, parts of the already iden-

tified objects. Thus the position of the object is not some-

thing fixed, but it must be updated along with the scene

exploration. This would lead to instability of the robot

memory, which is undesirable. Thus we developed an effi-

cient way of stabilizing locations of objects in the memory,

which is discussed in the next section.

3 Global scene representation

The scene view obtained from a single robot position is not

suitable for memorizing the scene, because the robot

changes its location all the time, and the scene representa-

tion should be independent of the temporary point of ob-

servation. Thus we have to transform the positions of the

objects to some global space.

3.1 Transforming local into global coordi-

nates

In the real world there is no such thing, as global coordi-

nates. Everything that we see, is seen from relative first

person perspective. But the memorized mental model of

the world is a combination of numerous local scenes (epi-

sodes), which are combined into global memory, forming

a hierarchical structure. The approach to structure the robot

memory should be similar. In this paper we will focus on

constructing global memory within a single scene, and this

approach can be extended to more scenes and complex

worlds later.

If there are no global coordinates, that means, that the co-

ordinate system is arbitrary. The only requirement, is that

it should be stable. But everything can move, so there are

no fully reliable reference points. Our approach assumes,

that every part of a scene can be a reference to the other

parts of the same scene, or even other scenes. The location

of an object within a scene can be determined, if the robot

perceives other, previously located reference objects

within the same scene.

As demonstrated in Section 2, a single robot position al-

lows for recording local object coordinates. Now it is time,

to make the coordinates independent of the temporary po-

sition of the robot. Let us assume, the scene looks like in

Figure 7. The triangle shows the depth camera view and

range (dashed line). The image is only schematic, because

there is no precisely defined range of the depth camera, as

it depends on the surfaces visible in the scene. Within the

camera view we have three visible objects: O1, O2, and

O3. Thus Figure 7 is the equivalent to the situation pre-

sented in Figure 3, where the robot can see three objects.

Figure 7 The sample scene seen from Location 1 (top

view) – the first step of scene memory building

In the first step of its operation, the robot starts building its

global scene memory, which is based on the global coordi-

nate system. The global scene coordinates have the same

axes as local, but the difference is that they are associated

to the scene in a permanent way. The origin of the global

scene coordinates can be located in arbitrary point, like Ob-

ject 1 in Figure 7. The scene coordinate axes (xS,yS,zS) are

parallel to the local camera view axes (xL,yL,zL). Computing

the scene coordinates of all visible objects is straightfor-

ward, given their local coordinates. It is enough to subtract

from the local coordinates of an object the local coordi-

nates of the origin of the global scene coordinates

 [
𝑥
𝑦
𝑧
]

𝑂𝑆

= [
𝑥
𝑦
𝑧
]

𝑂𝐿1

− [
𝑥
𝑦
𝑧
]

(0,0,0)𝐿1

Also the camera location in scene coordinates can be easily

found by putting: [
𝑥
𝑦
𝑧
]

𝑂𝐿1

= [
0
0
0
]

To simplify further considerations, and easily explain the

idea of memory building, we have to take into account the

technical limitations of the experiment. The main assump-

tion is that the robot travels on a flat surface, and the camera

is fixed to the robot, so the robot cannot change the angle of

observation independently of its movement. This assump-

tion leads to the situation, where the point of observation

moves only in 2 dimensions, although the world it sees is

3D. We also assume that the y coordinate is constant, and

movement of the robot can be expressed using only 2 carte-

sian coordinates (xS,zS).

Let us now assume, that the robot moves from the original

position L1 to a new location L2 (Figure 8). What has

changed is that a new object appeared in robot’s field of vi-

sion (Object 4). We know its local position obtained directly

from the camera measurement. However, we do not know,

how to determine its position with respect to the scene co-

ordinates. Moreover, the scene origin in Figure 8 is no

longer visible. But this is not a problem as long, as the robot

sees at least 2 objects, with known scene positions. In our

case these are Object 2 and Object 3.

Figure 8 The view of the scene after robot moves to a new

location

To determine the scene coordinates of a new object, we

have to know, how the position of the robot has changed.

We find that information by determining the relative robot

motion with respect to the scene objects. To do that, it is

convenient to describe the motion using polar coordinates,

by combining robot motion from rotation, and translation.

The scene coordinates of a new object are calculated by

transforming the Location 2 coordinates into scene coordi-

nates, as follows:

 [
𝑥
𝑧
]
𝑆
= 𝑅 [

𝑥
𝑧
]
𝐿2
+ 𝑇 − [

𝑥
𝑧
]
(0,0)𝐿1

where 𝑅 , and 𝑇 are the rotation translation matrices of the

robot moving between L1 and L2. Explicitly this can be

written as:

 [
𝑥
𝑧
]
𝑆
= [

𝑟11 𝑟12
𝑟21 𝑟22

] [
𝑥
𝑧
]
𝐿2
+ [
𝑡𝑥
𝑡𝑧
] − [

𝑥
𝑧
]
(0,0)𝐿1

What we have to find, is the rotation, and translation pa-

rameters. To solve the problem, we move to the homoge-

neous coordinates, which leads to a single transformation

matrix:

 [
𝑥
𝑧
1
]

𝑆

= 𝑇𝑅 [
𝑥
𝑧
1
]

𝐿2

or explicitly:

 [
𝑥
𝑧
1
]

𝑆

= [

𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 𝑡𝑥 − 𝑥(0,0)𝐿1
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 𝑡𝑧 − 𝑧(0,0)𝐿1
0 0 1

] [
𝑥
𝑧
1
]

𝐿2

where 𝜃 is the rotation angle of the local robot coordinates

with respect to the scene coordinates. This is a single

matrix equation, with 4 parameters to be determined.

A single data point is insuffictient to solve eq. (4), but

when we combine equations for 2 points (objects O2 and

O3 in Figure 8), the equation system becomes solvable:

{

 [
𝑥
𝑧
1
]

𝑂2𝑆

= 𝑇𝑅 [
𝑥
𝑧
1
]

𝑂2𝐿2

[
𝑥
𝑧
1
]

𝑂3𝑆

= 𝑇𝑅 [
𝑥
𝑧
1
]

𝑂3𝐿2

To solve the system of equations let’s express them in the

following form (4 equations with 4 unknowns):

[

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

] =

[

𝑐𝑜𝑠𝜃𝑥𝑂2𝐿2 − 𝑠𝑖𝑛𝜃𝑧𝑂2𝐿2 + 𝑡𝑥 − 𝑥(0,0)𝐿1
𝑐𝑜𝑠𝜃𝑧𝑂2𝐿2 + 𝑠𝑖𝑛𝜃𝑥𝑂2𝐿2 + 𝑡𝑧 − 𝑧(0,0)𝐿1
𝑐𝑜𝑠𝜃𝑥𝑂3𝐿2 − 𝑠𝑖𝑛𝜃𝑧𝑂3𝐿2 + 𝑡𝑥 − 𝑥(0,0)𝐿1
𝑐𝑜𝑠𝜃𝑧𝑂3𝐿2 + 𝑠𝑖𝑛𝜃𝑥𝑂3𝐿2 + 𝑡𝑧 − 𝑧(0,0)𝐿1]

or as a product:

[

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

] = [

𝑥𝑂2𝐿2 −𝑧𝑂2𝐿2
𝑧𝑂2𝐿2 𝑥𝑂2𝐿2

1 0
0 1

𝑥𝑂3𝐿2 −𝑧𝑂3𝐿2
𝑧𝑂3𝐿2 𝑥𝑂3𝐿2

1 0
0 1

] [

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑥 − 𝑥(0,0)𝐿1
𝑡𝑧 − 𝑧(0,0)𝐿1

]

where [

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

] are known coordinates, because we

determined them in the previous iteration, and [

𝑥𝑂2𝐿2
𝑧𝑂2𝐿2
𝑥𝑂3𝐿2
𝑧𝑂3𝐿2

] are

also known because they are determined locally. To get the

desired parameters

[

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑥−𝑥(0,0)𝐿1
𝑡𝑧 −𝑧(0,0)𝐿1]

, it is enough to find the

inverse of the transformation matrix, and multiply it by the

vector of known scene coordinates:

[

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑥 − 𝑥(0,0)𝐿1
𝑡𝑧 − 𝑧(0,0)𝐿1

] = [

𝑥𝑂2𝐿2 −𝑧𝑂2𝐿2
𝑧𝑂2𝐿2 𝑥𝑂2𝐿2

1 0
0 1

𝑥𝑂3𝐿2 −𝑧𝑂3𝐿2
𝑧𝑂3𝐿2 𝑥𝑂3𝐿2

1 0
0 1

]

−1

[

𝑥𝑂2𝑆
𝑧𝑂2𝑆
𝑥𝑂3𝑆
𝑧𝑂3𝑆

]

The inverse of the transformation matrix can be found al-

gebraically or numerically. In our experiments we use the

numerical solution. Given the transformation parameters,

we can compute scene coordinates of all of the newly seen

objects using eq. (5), which transforms the local coordi-

nates of objects to their scene coordinates.

The two objects in the global coordinates are the minimal

number of objects that must be used to determine the robot

transformation parameters. In case of more objects, previ-

ously located in the scene coordinates and present in the

field of view, all of them can be used to increase reliability

of the computation and reduce the solution error that may

result from imperfect measurements. We can take pairs of

such objects, determine the transformation parameters

from each of the pairs, and average the results or combine

all previously located object coordinates to obtain one

overdetermined system of equations. Solution of such sys-

tem yields the smallest least square error for given set of

measurements.

The limitation of the method, to some degree, is the re-

quirement, that the robot needs to have at least two objects

within the field of view, to be able to determine its own

transition within the scene, as well as locations of new ob-

jects. To satisfy this requirement, the masking algorithm

should be trained to recognize as many object types as pos-

sible. But still there is a chance that the robot, can stand in

front of a wall, and lose any recognizable objects from its

view. In this situation, the robot should start exploring the

scene in a random way, to find any recognizable object.

Then there are two possible cases. The first one is that the

scene the robot sees, is already memorized one. In this case

the robot is able to recognize its location within the scene,

and continue the exploration of the known environment.

The other case is the situation, where the robot does not

recognize the visible combination of objects. In this case,

it should build the new scene memory. It is possible, that it

will find the relation between the two scenes later. Similar

situation is when the robot is switched off to break the ex-

periment, moved to some other location, and then switched

on again to start the experiment. The robot’s memory is

maintained, because it is kept on the server, and the robot

only connects to the memory when it is running. In conse-

quence of such approach, the robot spatial memory consists

of a number of smaller scenes. The relation between differ-

ent parts of memory can be found at later time, when the

robot finds object combination on the boundary of two

scenes. Actually, in such cases, the coordinates of objects

in one scene could be recalculated to make all objects

match the common coordinate system. This makes sense if

there are many points shared between the scenes, like ob-

jects in the same room. In case of very few contact points

(like in case of separate rooms), it is more convenient to

leave both scenes separate and only memorize the relation-

ship between scenes. The detailed discussion of this issue

goes beyond the scope of this article, and will be discussed

separately.

3.2 Experimental results

Now we will illustrate the presented considerations with

the results of an experiment. In Figure 3 we presented the

initial scene view with masked objects. The respective top

view of the point cloud, filtered using the masks, is pre-

sented in Figure 9. In this iteration the robot locates the

scene coordinate origin in arbitrary object. In our case this

is a gray chair visible to the right (O1). The axes of the

scene coordinate system are parallel to the local camera co-

ordinates.

The robot starts traveling across the scene. Its motion is a

combination of rotation and translation. The next view that

the robot registered is shown in Figure 10. What has

changed within the scene view is that a new object was

identified (orange pouf), and one of the previously seen

gray chairs is no longer within the field of view. This kind

of scene view change was illustrated in Figures 7 and 8.

Figure 9 The top view of the point cloud – initial robot

location

Let us see the top view of the point cloud of the second

view (Figure 11). The goal of the robot is to locate the or-

ange pouf within the scene coordinates. The scene coordi-

nate origin is no longer visible, but it is enough that the

scene position of gray chair and orange chair are already

known.

Figure 10 The second scene view with masked objects

Figure 11 The second scene top view with masked objects

Let us have a closer look at the calculations performed dur-

ing the presented experiment. In Location 1 (Figure 7), the

coordinates of objects of interest are the following: 𝑂1𝐿1 =
[0.84, −0.13, 2.96],
𝑂2𝐿1 = [−0.23,−0.17, 3.21],

𝑂3𝐿1 = [−1.31,−0.17, 3.17].

These are the local coordinates expressed in meters. Mak-

ing them global is easy, because it requires subtracting the

coordinates of object that serves as the origin of the scene

coordinates. In our case this is the 𝑂1 object. In this way

we get scene coordinates of objects:

𝑂1𝑆 = [0.0, 0.0, 0.0],
𝑂2𝑆 = [−1.07,−0.04, 0.25],

𝑂3𝑆 = [−2.15,−0.04, 0.21].

Then the robot moves to Location 2, and our goal is to

determine the scene coordinates of object 4. For this pour-

pose we need the local coordinates of objects 2 and 3 in L2:

𝑂2𝐿1 = [1.48,−0.17, 2.42],

𝑂3𝐿1 = [0.47,−0.17, 2.80].

Next we find the solution of Equation 9, which yields the

vector specifying the transformation parameters:

[

𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃
𝑡𝑥
𝑡𝑧

] = [

0.92
0.39
−0.66
0.40

]

From the above we can find the rotation angle of the robot

between L1 and L2g, which is 23o. The local coordinates

of Object 4 recorded in L2 are: 𝑂4𝐿2 =

 [−0.81,−0.47, 2.35]. After applying equation 5, with pa-

rameters 10, we get the following scene coordinates:

𝑂4𝑆 = [−3.16,−0.30,−0.70].

3.3 The system efficiency

The computer that runs all the processing of data delivered

by the robot is equipped with two Intel Xeon CPU E5-

2697, which allow for running up to 72 processes simulta-

neously. It is also equipped with 3 GPU cards: NVIDIA

RTX 2080ti, TITAN Xp, and TITAN X. The most im-

portant factor influencing the speed of processing is the

possibility of accelerating the computational tasks on the

GPU-s. The element that consumes most of the computa-

tional power is the YOLACT masking algorithm. The time

of processing a single frame from the camera on the RTX

device takes about 33ms. The other elements of the com-

putational chain were also implemented using CUDA to

use the GPU acceleration. The most important tasks are:

transforming depth data into point cloud, filtering the cloud

with the masks, and computing the averages. Actually, we

are using 2 GPU-s. While on one GPU the operations re-

lated to the point cloud processing are performed, the other

GPU computes the masks for the next frame. Sequential

processing of these two tasks on a single GPU would cause

additional delay. The multiple CPU power is used only in

a minor way.

In consequence of the presented approach to computations,

we are able to process each scene about 15 times per sec-

ond, which includes the masking, and the depth data pro-

cessing. For the purpose of the experiment, this is very fast.

It should be remembered, however, that we took the ap-

proach of averaging the results of masking to increase the

reliability of masks. Thus we process only one depth image

per several RGB images. Assuming that we take 5 images

to the average, the robot is able to process the scene infor-

mation about 5 times per second.

4 Conclusions

We demonstrated a method for building spatial scene

memory. The advantage of this method is minimal require-

ment with respect to the storage, because the objects are

represented as single points. This kind of representation al-

lows also for quick real time searching and comparison of

different scenes, even if the scenes are large in terms of the

number of objects. In this way, the robot is able to find the

relation between what is sees, and what is registered within

the scene memory. The whole robot memory is built as a

collection of different scenes, which can be combined,

when the robot finds relation between them.

The presented solution was demonstrated for a limited case

of a robot moving on a flat surface, which results in a con-

stant point of observation, and simplifies the computations.

The solution however can be extended to arbitrary kind of

motion in 3D. The only difference in case of a robot mov-

ing freely in 3D is that it has to follow at least 3 objects to

be able to assess its own motion (our simplified 2D case

requires only 2 objects).

The hardware solution and the code that we developed,

heavily relies on using GPU for acceleration. This allowed

us to achieve high processing speed, which is sufficient for

performing experiments with the current solution, further

extending the functionalities of the robot.

The method relies on an external tool, which is the masking

algorithm. Despite huge progress in this field, such mask-

ing algorithms have their limitations, which were partially

discussed in the paper. Considering the effort taken to im-

prove this kind of tools all around the world, the situation

should improve in the future.

There is a number of things that have to be done in the fu-

ture. We need to develop a path finding algorithm. After

analyzing the known algorithms we are not satisfied with

them because in our case the scene representation requires

developing different methods for navigation. The other

thing is the motion within the scene. The current solution

assumes that everything is static, but in real scenes there

are also moving elements. We also want to develop a com-

munication system with the robot using the speech channel.

The weak part of the methodology, when we want to con-

sider the robot an autonomous learning system, is that the

training data are prepared manually. Ultimately the robot

should be able to distinguish the parts of the scene itself,

and learn from the object’s manipulation. Moreover, we

want to use the robot to perform a Motivated Learning sce-

nario, where the robot will be able to perform some actions,

and find the best strategies to satisfy its needs [13]. This of

course requires extending the robot with a manipulator.

Acknowledgement

This work was supported by the grant from the National

Science Centre DEC-2016/21/B/ST7/02220.

5 Literature

[1] Cadena, C.: Carlone, L.: Carrillo, H: Latif, Y.:

Scaramuzza, D.: Neira, J.: Reid, I.: Leonard, J.J.: Past,

Present, and Future of Simultaneous Localization and

Mapping: Toward the Robust-Perception Age. IEEE

Transactions on Robotics. 32 (6): 2016, pp. 1309–

1332

[2] Newcombe, R.A.: Izadi, S.: Hilliges, O.: Molyneaux,

D.: Kim, D.: Davison, A.J.: Kohi, P.: Shotton, J.: Ho-

dges, S.: Fitzgibbon, A.: KinectFusion: Real-time

dense surface mapping and tracking. In Proceedings

of the 2011 10th IEEE International Symposium on

Mixed and Augmented Reality, Basel, Switzerland,

26–29 October 2011, pp. 127–136

 [3] Endres, F.: Hess, J.: Sturm, J.: Cremers, D.: Burgard,

W.: 3-D mapping with an RGB-D camera. Transac-

tions on Robotics 30, 2014, pp. 177–187.

[4] Goodfellow, I.: Bengio Y.: Courville A.: Deep Lear-

ning, MIT Press, 2016 http://www.deeplearning-

book.org

[5] Ren, S.: He, K.: Girshick, R.: Sun, J.: Faster R-CNN:

Towards Real-Time Object Detection with Region

Proposal Networks, 2016 https://ar-

xiv.org/abs/1506.01497

[6] He, K.: Gkioxari, G.: Dollár, P.: Girshick, R.: Mask

R-CNN, 2017 https://arxiv.org/abs/1703.06870

[7] Redmon, J., Divvala, S.: Girshick, R. Farhadi, A.:

You Only Look Once: Unified, Real-Time Object De-

tection, 2015 https://arxiv.org/abs/1506.02640

[8] Bolya, D.: Zhou, C.: Xiao, F.: Lee, Y.J.: YOLACT:

Real-time Instance Segmentation, ICCV, 2019

[9] Trevor, A.J.B.: Rogers, J.G.: Christensen, H. I. Planar

Surface SLAM with 3D and 2D Sensors. In IEEE In-

ternational Conference On Robotics and Automation,

St. Paul, MN, 2012

[10] Kim, B.: Kohli, P.: Savarese, S.: 3D Scene Under-

standing by Voxel-CRF, The IEEE International Con-

ference on Computer Vision (ICCV), 2013, pp. 1425-

1432

[11] Jaszuk, M.: Starzyk, J.A.: Building Internal Scene Re-

presentation in Cognitive Agents, Knowledge, Infor-

mation and Creativity Support Systems: Recent

Trends, Advances and Solutions, Andrzej M.J. Skuli-

mowski, Janusz Kacprzyk eds, in series: Advances in

Intelligent Systems and Computing, 364, Springer,

2016, pp. 479-491

[12] Schwarz, M.: Behnke, S.: Semantic RGB-D Percep-

tion for Cognitive Service Robots, In: RGB-D Image

Analysis and Processing, Springer, 2019, pp. 285-308

[13] Starzyk, J.A.: Graham. J.: MLECOG - Motivated

Learning Embodied Cognitive Architecture, IEEE

Systems Journal, vol. 11, no. 3, 2017, pp. 1272-1283

