
Simulation of a Motivated Learning Agent

Janusz A. Starzyk1, James Graham1, Leszek Puzio2

1Ohio University, Athens, OH 45701 USA
{starzykj, jg193404}@ohio.edu

2 WSIZ, Rzeszow, 35-225 Poland
puzio@wsiz.rzeszow.pl

Abstract. In this paper we present our work directed at building a simple mo-
tivated learning agent with symbolic I/O. To do this we created a simulation
environment within the NeoAxis game engine. The purpose of this work is to
explore autonomous development of motivations and memory in agents within
a simulated environment. The approach we took should speed up the develop-
ment process, bypassing the need to create a physical embodied agent as well as
reducing the learning effort. By rendering low-level motor actions such as
grasping or walking into symbolic commands we remove the need to learn ele-
mentary motions. Instead, we have several basic primitive motor procedures in
a procedural memory, which can form more complex procedures. Furthermore,
by simulating the agent’s environment, we both improve and simplify our con-
trol over the learning process. As a result, there are fewer adaptive learning var-
iables associated with both the agent and its environment, and learning takes
less time, than it would in a more complex real world environment.

Keywords: Motivated learning, cognitive architectures, simulation, embodied
intelligence

1 Introduction

A significant challenge in robotics is to develop autonomous systems that can reason
and perform missions in dynamic, uncertain, and uncontrolled environments [1].
Therefore, recent research efforts are directed towards developing autonomous cogni-
tive systems. Existing methods have made a significant progress in this direction
[2,3,4,5] and the topic is actively researched in laboratories around the world.

Current cognitive architectures, such as SOAR [6], ACT-R [7], Icarus [8], LIDA
[9], Polyscheme [10], and CLARION [11], either have to rely on predefined goals
(without self-motivated learning) or predefined rules (without autonomous reasoning).
Due to their reliance on predefined scripts and heuristic rules, current robotic systems
lack autonomy, self-adaptability, and reasoning capabilities either to accomplish
complex missions or to handle ever changing missions in uncontrolled environments.

Another important direction in studying development of cognitive systems and ro-
bots is based on the idea of embodied intelligence. The principles of designing robots
based on the embodied intelligence idea were first described by Brooks [12] and were

characterized through several assumptions that would facilitate development of em-
bodied agents.

Since our aim is to develop intelligent machines we introduce internal motivations,
creating abstract goals not previously known to the designer or the robot. Intelligent
systems will adapt to unpredictable and dynamic situations in the environment by
learning, which will give them a high degree of autonomy, making them a perfect
choice for robotics and virtual agents [13]. The recently developed mechanism of
motivated learning (ML) has such capacities [14].

With ML, robots can achieve various goals imposed by different challenge scenar-
ios autonomously. They develop higher level abstract goals and increase internal
complexity of representations and skills stored in their memory. Our aim in this work
is to develop simulation tools of virtual autonomous systems with ML mechanism.

Most current autonomous robot systems concentrate on the cognitive development
of individual robots [15,16,17]. They mainly focus on developing simple local behav-
ior control algorithms under heuristic rules, and then seek to emerge global behaviors.
Adding intrinsic motivations and advanced reasoning capabilities improve the robots’
individual capabilities. In addition, improving robots’ learning in complex dynamical-
ly changing environments is very important.

Therefore, we work to provide a systematic framework for developing cognitive
robots that can autonomously accomplish a wide variety of real-world complex mis-
sions in dynamic, uncertain environments. We have selected NeoAxis to build a vir-
tual 3D environment for embodied motivated agents. That environment is able to
simulate wide scope of robot types, ranging from wheeled robots, along with flying or
swimming robots, to humanoid robots. The second reason why we utilize NeoAxis is
that NeoAxis has good support for physics modeling. We can assign static and dy-
namic friction parameters, mass, bounciness, hardness, etc., to obtain real-world rep-
resentation of objects and different material types. Objects could be attached to one
another to create complex structures, like a car is composed of wheels, body, wind-
screen, and engine. It is also possible to create environment rules, i.e., a tree produces
apples in certain intervals or times.

The rest of this paper is organized as follows: In the section 2, we discuss the mo-
tivated learning agent and how it learns to interact with its environment. We discuss
how pains are generated and adjusted and how goals are selected. Following this in
section 3, we discuss the simulation of a virtual OML agent. Finally, in section 4, we
discuss how we integrated the agent into the NeoAxis environment. This includes our
current work, and our plans to further advance the simulation tool.

2 Motivated Learning Agent Memory Organization

The motivated learning (ML) agent interacts with the virtual environment changing it
by its actions and receiving rewards (external and internal) for its actions. In this im-
plementation of the motivated learning agent we assume that both sensory inputs and
motor outputs are symbolic, and they provide interface to the virtual environment.

ML uses a neural network where each sensory neuron represents an object and each
motor neuron represents an action.

The ML system’s neural network, in addition to sensory S and motor M neurons,
contains pain center neurons P that register the pain signals, and goal neurons G re-
sponsible for pain reduction. Selected pain center neurons are connected to the exter-
nal reward/punishment signals. In RL these neurons receive a reward or punishment
signal according to the training algorithm, and in ML they receive primitive pain sig-
nals that directly increase or decrease their activation level. In ML, abstract pain
centers are created through the goal creation mechanism [14,18] and are activated via
an interpretation of sensory inputs. A goal is an intended action that involves a senso-
ry-motor pair. To implement a goal the agent acts on the observed object. All pain
neurons are initially connected to goal neurons with random interconnection weights.
All goal neurons and pain neurons are subject to Winner-Take-All (WTA) competi-
tion between them. The number of goal neurons is equal to the number of sensory-
motor pairs. In the symbolic representation each neuron represents a single symbol,
pain, goal or action. Fig. 1 shows symbolically the interconnection structure, between
S, P, B, G and M neurons. In Fig. 1 an abstract pain center Pk connections to its sen-
sory, bias, goal and motor neurons are shown.

Fig. 1. Connections between sensory, motor, bias, pain and goal neurons.

2.1 Bias signals, weights, and associated pains

A bias signal triggers an abstract pain and is defined depending on the type of per-
ceived situation. If the autonomous agent needs to maintain a certain level of re-
sources, the bias reflects how difficult it is to obtain this resource or in a more general
case, how difficult it is to perform a desired action. Resources can be either desired if
their use can reduce the agent’s pain or undesired if they can increase the pain. Thus
the agent must first have an experience to determine if the resource is desired or unde-
sired to introduce a resource related bias signal.

The bias signal for desired or undesired resources is calculated from the resource
level of resource and its desired/undesired limits as follows:

! = ! ∗ !!!! !!
!!!! !!

!!
 (1)

where Rd is a desired resource value (observed at a sensory input si). ! is a small posi-
tive number to prevent numerical overflow, ! regulates how quickly pain increases,
! > 0 and !! =1 when the resource is desired, !! =-1 when it is not desired, and
!! = 0 otherwise (when the character of the resource is unknown).

Initially all B-Pk weights wbp are set to 0. Thus, the machine initially responds only
to the primitive pain signals P directly stimulated by the environment. Each time a
specific pain P is reduced the weight wbp of the B-Pk bias link increases. However, if
the goal activated by the pain center P was completed and did not result in reduction
of pain P, then the B-Pk weights wbp are reduced. Since the bias weight B-Pk indicates
how useful it is to have access to a desired S, a bias weight adjustment parameter Δb
must be properly selected to reflect the rate of stimuli applied to a higher order pain
center. This rate reflects how often a given abstract pain center Pk was used to reduce
the lower order pain signal P.

2.2 Changes of the goal related and curiosity weights

Initial weights between P-G neurons are randomly selected in the 0-αg interval (a
good setting will be between 0.49 and 0.51 of αg for faster learning). Assume that
the weights are adjusted upwards or downwards by a maximum amount µg. In order
to keep the interconnection weights within prespecified limits (0< wpg <αg), the value
of the actual weight adjustment applied can be less than µg and is computed as

Δa = µg min (| αg – wpg |, wpg) where αg ≤ 1 (2)
and

!! = !! 1 − !
!
atan 10 ∗ !!(!!)

!!(!!)

!!
 where !! = 0.3 (3)

Using (4) produces weights that slowly saturate towards 0 or αg. (For quick learn-
ing set (µg = αg / 2). No other weights from other pain centers to this specific goal are
changed, so the sum of weights incoming to the node G is not constant.

If, as a result of the action taken, the pain that triggered this action increased (as
determined by pain reduction parameter !!), then the wpg weight is decreased by Δa,
and if the pain decreased, then the wpg weight is increased by Δa

!!" = !!" + !! ∗ ∆!. (4)

2.3 Action value determination for OML agent:

In the opportunistic ML agent (OML) the “best action” is determined by the linear
heuristic OML model, using action “Value” Vi

!! =
!!! ∆!∗ !!"#!!!"#$

!!"#!!!"#$! (5)

where ∆! is the estimated change in pain over 1 cycle for the primitives. Pi is the
pain associated with the action under consideration, !!"# is the required motor time to
complete the action, and !!"#$ is the time required by the agent to travel to a distant
location to perform the action. We generally assume that pains won’t chance over the
course of the action. The action with the highest value of Vi is the one chosen by the
OML agent. The selection of actions evaluated in (5) depends on the number of pains
above threshold and whether or not they have been tried previously. For example, a
known “good” action will have precedence over one of unknown utility even if the
“unknown” action may be more advantageous in terms of distance to travel and po-
tential pain reduced, simply because it is an unknown quantity.

3 NeoAxis Implementation

A cognitive architecture organization based on the ML idea was introduced in [19].
Since this architecture uses an emergent systems approach, it is essential to have a
physical body and a physical environment. However, making a physical robot is ex-
pensive in terms of costs and design effort, so it is very helpful to use a computer
simulation that can imitate real-time physical conditions. Thus the effort was switched
from using a physical robot to making a simulated environment with a virtual robot.

We implemented the basic infrastructure of the ML agent in NeoAxis describing
the motivated agent functionality in C++ and in C#. The virtual environment for ML
agents built in NeoAxis is a 3D simulated world governed by realistic physics to pre-
sent the robots with a complex, challenging world. This simulation environment can
be separated into two major components. The first one is the animation controller that
handles display tasks and transitions the agent from one action to another. The second
component processes the agent’s behaviors and defines the potentially sophisticated
rules governing the virtual world in which the agent lives. The agent working in the
created environment discovers these rules and learns to use them to its advantage.

To test the ML agent’s learning process, we built a sample virtual environment. In
this environment, we created resources that the agent could use (presented in Table 1),
and we endowed the agent with the ability to act on the resources (listed in Table 1).
The agent's actions are driven by pains. Only two pains listed in Table 1 as primitive
pains are predefined. One is hunger which increases over time and the other is Curios-
ity. Curiosity pain makes the agent explore the environment when no other pain is
detected and until valid actions are learned. Other pains are learned by the agent using
the goal creation methodology. The agent observes which resources it needs and in-
troduces the need to have them. We also defined world rules, which describes which
agent actions make sense and what their results are. Those rules are listed in Table 1.
The agent’s actions result in various outcomes like increasing and decreasing resource
quantities, as well as in reducing some pains.

Table 1. List of valid Resource-Motor pairs and their outcome

3.1 Simulation Algorithm of OML Agent in NeoAxis

In order to properly test our agent we needed to embed it in an environment and pro-
vide it with a means to observe the environment and interact with it. To do this, we
expanded on our earlier testing methodologies and created the basis for a simple, but
effective test bed within the NeoAxis engine. The basic steps of OML agent simula-
tion in NeoAxis are as follows:

After initialization, the algorithm performs successive iterations. Each iteration
consists of the Agent Phase, where the agent observes the Environment, updates its
internal state, and generates motor outputs, and an Environment Phase where the en-
vironment performs the agent’s actions and updates itself accordingly.

Our simulation of the virtual environment in NeoAxis implements all the preceding
rules. To better visualize resources quantities, current task, pains levels and the agent's
memory, we added windows to the simulation, which display the current state of the
agent and the environment as shown in Fig. 2.

Fig. 2. Main simulation view with displayed simulation state in windows

Motor Resource
Outcome

Increase Decrease Pain reduce

Eat food from Bowl Food in Bowl Hunger

Take food from Bucket Food in Bowl Food in Bucket Lack of food in Bowl

Buy food with Money Food in Bucket Money Lack of food in Stock

Work for money with Hammer Money Hammer Lack of Money

Study for job with Book Hammer Book Lack of Job

Play for joy with Beach ball Book Beach ball Lack of School

When a pain level is above threshold it displays it in red. In this screenshot, the
agent action is driven by 'Lack of Money' pain. The agent tries to learn valid actions
and their outcomes. Sometime the agent takes a nonsense action like "Play for joy
with hammer" in the simulation. Nevertheless, even actions such as this are useful for
agent because by taking them, it learns that they are useless. The memory window,
presented in Fig. 2 on the left, displays the memory state. When the color is gray then
it means that the agent has not learned usefulness of this action yet. When the color is
white then this means that the action is valid, if the color is black than the action is
invalid. Each row in the “memory” corresponds to a driving pain, while each column
represents a possible action. Once the agent learns all valid actions and its pains are
under control, then the agent does the "Go rest on mattress" action. This motor action
is a desirable final state for the agent.

We have run multiple simulations where we modified resources quantities and mo-
tor action times. By using a human controlled character we tried to disturb the ML
agent via the by getting in its way or moving resources to different location. When
starting resources were sparse, the agent couldn't learn all valid actions because it ran
out of resources to test new actions. And sometimes when resources like food were
plentiful, the agent did not bother to learn anything new once the hunger pain was
under control. When action times were too long the agent couldn't satisfy all pains.
But when we select proper simulation parameters the ML agent proves to learn cor-
rectly even in a complex and changing environment.

4 Conclusions

In this paper, we have presented our motivated learning agent with a focus toward
simulating the agent within a graphical environment. We also included the discussion
of several new modifications to our algorithm, including new calculations for bias
signals and wpg weights. Additionally, we introduced greater complexity into the
environment by introducing undesirable resources. This includes changes in !!calcu-
lation and the calculation of desired resource levels. By adding these new features
we’ve improved the agent’s ability to handle its environment as well as our own abil-
ity to implement complex and interesting environments for our agents to interact with.

The simulation results of the ML agent in the virtual 3D environment for embodied
motivated agents in NeoAxis prove that our theoretical assumptions for motivated
learning agent memory organization, determination of bias signals, weights, goal
creation and selection, associated pain calculations, were valid. The OML agent was
able to learn all environment rules, and keep the agent's pains under control.

Our further research will focus on the extension of the simulation, specifically,
making a more complex environment and to introduce friendly and hostile characters.
It will be also worthwhile to test if multiple ML agents could cooperate to obtain
common goals.

References

1. Hirukawa, H., F. Kanehiro, K. Kaneko, S. Kajita, K. Fujiwara, Y. Kawai, F. Tomita, S.
Hirai, K. Tanie, T. Isozumi, K. Akachi, T. Kawasaki, S. Ota, K. Yokoyama, H. Handa, Y.
Fukase, J. Maeda, Y. Nakamura, S. Tachi and H. Inoue. Humanoid robotics platforms
developed in HRP. Robotics and Autonomous Systems 48:4, 165–175, 2004.

2. B. Bakker and J. Schmidhuber. Hierarchical Reinforcement Learning Based on Subgoal
Discovery and Subpolicy Specialization . In F. Groen, N. Amato, A. Bonarini, E. Yoshida,
and B. Kröse (Eds.), Proceedings of the 8-th Conference on Intelligent Autonomous
Systems, IAS-8, Amsterdam, The Netherlands, p. 438-445, 2004.

3. P-Y. Oudeyer et al. (2010). Intrinsically Motivated Exploration for Developmental and
Active Sensorimotor Learning, in Sigaud, O. and Peters, J. eds., From Motor Learning to
Interaction Learning in Robots, vol. 264/2010, Springer Berlin/Heidelberg, 107-146.

4. S. Ro et al. (2009). Curiosity-driven acquisition of sensorimotor concepts using memory-
based active learning, IEEE Intl. Conf. on Robotics and Biometrics, 665-670.

5. S. Singh, A.G. Barto, and N. Chentanez (2004). Intrinsically motivated learning of
hierarchical collections of skills, Proc. 3rd Int. Conf. Development Learn., San Diego, CA,
112–119.

6. J.E. Laird, “Extending the Soar cognitive architecture,” in Artificial General Intelligence
2008, Memphis, TN: IOS Press, 2008, pp. 224-235.

7. J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass, C. Lebiere, and Y. Qin, “An
integrated theory of the mind,” Psych. Review, vol. 111, no. 4, pp. 1036–1060, 2004.

8. P. Langley and D. Choi, “A unified cognitive architecture for physical robots,” 21st Nat.
Conf. Artificial Intelligence, Boston, MA: AAAI Press, 2006, pp. 1469-1474.

9. B.J. Baars and S. Franklin, “Consciousness is computational: the LIDA model of global
workspace theory,” Int. J. Machine Consciousness. vol. 1, no. 1, pp. 23-32, 2009.

10. N. Cassimatis and L. Nicholas, Polyscheme: A Cognitive Architecture for Integrating
Multiple Represetnation and Inference Schemes, MIT Ph.D. Diss., 2002.

11. R. Sun, “The importance of cognitive architectures: an analysis based on CLARION,” J.
Experimental and Theor. Artif. Intell., vol. 19, no. 2, pp. 159-193, 2007.

12. R.A. Brooks “Intelligence without reason”, Proc. 12th Int. Conf. on Artificial Intelligence,
pp. 569-595, Sydney, Australia, 1991.

13. R. Pfeifer, & J.C. Bongard. How the Body Shapes the Way We Think: A New View of
Intelligence, The MIT Press (Bradford Books), 2007.

14. J. A. Starzyk, "Motivation in Embodied Intelligence" in Frontiers in Robotics, Automation
and Control, I-Tech Education and Publishing, Austria, 2008, pp. 83-110.

15. A. Farinelli, L. Iocchi, and D. Nardi, “Multirobot systems: a classification focused on
coordination,” IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 34,
no. 5, pp. 2015-2028, 2004.

16. K. Lerman, C. Jones, A. Galstyan, and M.J. Mataric, “Analysis of dynamic task allocation
in multi-robot systems,” Int. J. Robotics Research, vol. 25, pp. 225-241, 2006.

17. J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman, M. Sur, and E. Thelen,
“Autonomous mental development by robots and animals,” Science, vol. 291, no. 5504,
pp. 599–600, Jan. 2001.

18. J. A. Starzyk, Motivated Learning for Computational Intelligence, in Computational
Modeling and Simulation of Intellect: Current State and Future Perspectives, edited by B.
Igelnik, IGI Publishing, ch.11, pp. 265-292, 2011.

19. J.A. Starzyk, “Mental Saccades in Control of Cognitive Process”, Int. Joint Conf. on
Neural Networks, San Jose, CA, July 31 - August 5, 2011.

