
 

Abstract—In this work, we propose a connectionist memory 

structure for spatio-temporal sequence learning and 

recognition inspired by the Long-Term Memory structure of 

human cortex. Besides symbolic data, our framework is able to 

continuously process real-valued multi-dimensional data 

stream. This capability is made possible by addressing three 

critical problems in spatio-temporal learning, namely error 

tolerance, significance of sequence’s elements and memory 

forgetting mechanism. We demonstrate the potential of the 

framework with a synthetic example and a real world example, 

namely the task of hand-sign language interpretation with the 

Australian Sign Language dataset.  

Keywords—Hierarchical memory architecture, spatio-

temporal neural networks, hand-sign language interpretation.  

I. INTRODUCTION 

odeling of sequential memory is vital for developing 

many aspects of embodied intelligent system [1]. In 

this work, we introduce a spatio-temporal memory 

architecture which has an efficient storage mechanism and is 

able to learn sequential data in a flexible manner. We 

propose a novel recognition algorithm that can robustly 

recognize test sequences with various degrees of distortions. 

Our architecture is also capable of working with continuous 

multi-dimensional data stream instead of just symbolic type 

of data as in [2, 3]. The capability and performance of the 

framework for sequence recognition are demonstrated with a 

synthetic working example and the Australian Sign 

Language (ASL) dataset [4].  
The general concepts in sequence learning including 

prediction, recognition and decision making were reviewed 

by Sun and Giles in [5]. From a connectionist perspective, 

Kremer [6] presented a comprehensive classification of 

neural network approaches in learning spatio-temporal 

patterns. The models of spatio-temporal neural architecture 

mainly involve two types of memories, namely Short-Term 

Memory (STM) and Long-Term Memory (LTM). STM is 

used as a temporal storage of input data for rapid processing 

and has a limited capacity [7]. Additionally, STM stores the 

order of input elements and is subjected to interference and 

decay over time. On the other hand, LTM is built based on  

synaptic modifications of neural activities of STM [8]. The 

content and temporal order of a sequence in an LTM 

structure are stored explicitly as synaptic weights [9]. In this 
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work, we follow a similar design principle which is based on 

interaction of the two types of memories. 

Research on spatio-temporal neural network dates back to 

the out-star avalanche model and STORE model [10]. Lang 

and Hinton [11] introduced the time delay neural network 

(TDNN). TDNN learns a sequence as a static feed-forward 

network using the back-propagation through time (BPTT) 

algorithm as the training method and replicated neurons as 

time delays. Later, recurrent neural networks (RNNs) were 

proposed to address the drawback of the explicit time 

representation by TDNN. RNNs employ internal feedback 

links and a temporary buffer of recent states. Two popular 

RNN models are [5] and [6]. Subsequent improvement were 

presented in [12] with Long-Short Term Memory (LSTM). 

For static neural network architectures, Wang et al [2, 13, 

14] introduced several key properties of complex sequence 

analysis including temporal chunking, storage, recognition, 

hierarchical organization and incremental learning. Our 

previous model [15] developed a sequence learning model 

which concentrates on several critical properties of LTM 

such as competition, hierarchical organization, anticipation 

and one-shot learning. Similarly to [14], for incremental 

learning, the network actively predicts next element. 

Learning of a new sequence occurs when there is a sufficient 

mismatch with the stored sequence. However, the main 

difference is that the sequence chunking process is done 

automatically. In addition, the training stage requires only a 

single pass of training sequence because of the adoption of a 

one-shot learning strategy. Evaluation with storage and 

generation/prediction of text paragraphs demonstrate the 

effectiveness of the proposed system.  

In this work, we extend our previous work in [3, 15] and 

focus on a number of crucial aspects that must be addressed 

to achieve robust sequence recognition for processing real-

valued and multidimensional sequences. The first factor is 

the error tolerance within spatio-temporal patterns. The 

second factor is the incorporation of significance of elements 

in the LTM cell. The third is the augmentation of the 

framework with a novel activation decay mechanism.  

Errors in sequence analysis can be broadly categorized 

into two types: Inter-element and intra-element. The former 

includes various distortions of temporal relationship among 

consecutive elements. The latter refers to various distortions 

in the content of the input. For intra-element error, we 

characterize the error tolerance of each element by 

estimating the statistical spatio-temporal variation. For inter-

element error, the error tolerance of consecutive elements is 

characterized by a sequence matching algorithm which is 

capable of handling inter-element variability. When a test 
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sequence is presented, LTM cells incrementally accumulate 

evidences from the testing sequence and compete to be the 

winner. Only the stored sequence in an   LTM cell elicits a 

maximum activation. Putting it differently, any deviation 

from the ideal sequence results in a corresponding 

degradation in activation. 

The significance of elements stored in each LTM cell is 

an important issue in spatio-temporal learning. Due to the 

limited computational resource, an agent may choose to put 

more emphasis on identifying and processing only an 

important subset of sequence elements. This complements 

the one-shot learning that assigns unit significance to all the 

elements. The novelty of our model is the explicit 

modulation of the LTM activation by the estimated 

elements’ significance. We propose a specific significance 

analysis that is suitable for the chosen applications based on 

the statistical variation of the elements. It is well understood 

that the definitions and identification techniques of 

significant elements vary depending on specific applications. 

In this work, the significance to the LTM activation is 

integrated as a modulatory factor for any chosen 

significance’s estimations method. 

The last contribution of our network structure is the 

introduction of memory activation decay. The reasons for 

the activation decay are two-fold. The first is to maintain the 

strength of an LTM cell for a sufficient duration to perform 

learning, construct associations and predict subsequent 

events. The second is that when the current sequence of 

events increasingly deviates from the LTM cell, the LTM 

cell’s output strength needs to decay rapidly to avoid 

ambiguities in decision making. The memory  forgetting 

problem has been discussed previously in neuro-

psychological, neuro-physiological [16] and their 

computational aspects [3, 13].  

The structure of the paper is as follows. Section II 

summarizes the main characteristic of the hierarchical Long-

Term Memory architecture and presents the neural 

architecture and recognition algorithm of the proposed LTM 

cell structure. Section III presents empirical studies using the 

synthetic data and the ASL dataset. In the case of ASL 

dataset, we present a series of classification experiments 

based on a nearest-neighbor classifier and a study on 

sequences alignment and combination using the proposed 

LTM model. Finally, section IV concludes the paper.  

II. LONG-TERM MEMORY ORGANIZATION 

A. Overview of hierarchical LTM architecture 

The hierarchical LTM memory architecture follows a 

number of critical properties of human cortex’s structure 

including hierarchical, uniform, sparse and redundant 

representation [17]. Hierarchical representation provides a 

flexible way to tackle large and complex problems in which 

the high-level layers exploit the low-level ones to learn a 

large number of different patterns [18].  

The hierarchy contains multiple layers of LTM cells. The 

first layer, STM, serves as a temporary buffer between an 

input vector and the first LTM layer. The input to the 

network is represented as a multi-dimensional feature vector 

extracted from the environment via multi-modal sensory 

systems. Each LTM layer contains a number of identical 

complex cells, i.e. LTM cells, with possibly overlapping 

output regions. In each output region, multiple winners are 

selected through competition and mutual inhibition by k-

WTA rule. This yields a sparse representation at each level 

of hierarchy. In each LTM cell, the content of STM updates 

the activation of the LTM cell accordingly. Each LTM layer 

also contains several feedback links from higher layers for 

deployment of anticipation, pattern completion and 

attention. The outputs of LTM cells at each layer are fetched 

to the next higher layer for more complex processing. This 

process results in chunking of a long sequence into short 

segments activated on a lower level. LTM activations from 

multiple cells can also be combined for ensemble decision 

making strategies at each layer. 

 

Figure 1: LTM Structure 

B. Mathematical Notations 

In this paper, a spatio-temporal sequence   is represented 

as           , where    is an element of the sequence 

and   is the length of the sequence. Each element of the 

sequence   is represented by a multi-dimensional vector, i.e. 

    
  where   is the dimension. In a matrix form, the 

sequence   can be represented as 

  {                }            (1) 

A subsequence of   is any             , where 

       . We denote the tolerance        in a 

matrix form and the significance      in a vector form of 

the elements of a sequence   as follows: 

  {     
              }         (2) 

  {    (   ]       }            (3) 

The tolerance and significance of a sequence describe the 

statistical variation and the importance of the elements in a 

sequence respectively.  The previous work in [3] only dealt 

with the case when            (i.e. either match or non-



match) and         where   is a constant (i.e. uniform 

significance). 

C. LTM Structural Organization 

In this section, we describe the structural organization of 

an LTM cell and its storage and recognition mechanisms of 

spatio-temporal sequences. The block diagram of an LTM 

cell is depicted in Fig. 1a. Each LTM cell stores a sequence 

       as synaptic weight       . The network 

structure comprises of 4 layers:  

 Input Layer: The input layer consists of   input neurons 

which correspond to an  -dimensional input vector at a 

time step  : 

 ( )  {  ( )      }           (4) 

The input vector can either come from sensory systems 

connected to the environment, outputs of lower LTM 

layers or feedbacks from higher LTM layers. 

 Primary Layer: The primary layer consists of   primary 

neurons (PNs) (“R” neurons in the Fig. 1b). In this 

structure, the content of a sequence is stored as the 

synaptic weight matrix   connecting the input layer and 

the primary layer: 

  {               }         (5) 

The primary layer computes the similarity between an 

input vector  ( ) and each element of the sequence. In 

this work, the radial basis function is employed as the 

similarity metric as follows: 

  
  ( )     { 

 

 
∑

(      ( ))
 

   
 

 
   }       (6) 

where   
  ( ) is the output (or primary excitation) of the 

    PN neuron at time   induced by the input  ( ) and 

    is the tolerance of the     feature of the     element. 

 Intermediate Layer: The intermediate layer consists of   

intermediate neuron (INs) (“∑” neuron in the Fig. 1b). 

At a time step  , the activation of     IN, denoted as 

  
 ( ), combines the outputs of the     PN and the 

(   )   SN (described later) computed at the previous 

step (denoted by     
  (   )). The connection between 

each PN and IN is weighted by the significance of the 

corresponding element: 

  
 ( )  [    

  ( )   ̂   
  ( )]

 
        (7) 

where  ̂ 
  ( ) is the activation of the     SN after being 

decayed and [ ]    if     and   otherwise. The 

neuronal decaying behavior of the SNs is modeled by 

the function   ( )(     ), depicted as the self-

feedback loop in the Fig. 1b: 

 ̂ 
  ( )    (  

  (   ))           (8) 

The decaying function satisfies the condition:   ( )  

        . 

 Secondary Layer: The secondary layer  consists of   

secondary neurons (SNs) (“M” neurons in the Fig. 1b). 

The activation of SNs is updated incrementally as 

follows: 

  
  ( )     { ̂ 

  ( )   
 ( )     

  ( )}     (9) 

where   
  ( ) is the activation of of the     SN at the 

time step   (or secondary excitation) and    { } is the 

point-wise maximum. The updated activation of the     

SN provides a matching degree between a test sequence 

and the subsequence            of the stored 

sequence. The activation of the     SN is computed 

based on the maximum contribution from three different 

signals: decayed activation from the     from the 

previous step  ̂ 
  ( ), newly updated     IN  

 ( ) and 

the current matching degree between the presented 

sequence and the subsequence              of 

the stored sequence. 

 In this work, we use a linear decaying function for 

modeling the decaying behavior, which is given by: 

  ( )                       (10) 

where   is the decaying rate (  [   ]). Non-linear decay 

typically requires specialized knowledge of the learning 

sequence which is not assumed in this paper. 

 The output of an LTM cell at a time step   is given by the 

secondary excitation of the last SN, i.e.   
  ( ). This 

activation provides a matching degree between an input 

sequence presented until the time step   and the sequence 

stored in the LTM cell. The maximum activation of an LTM 

cell is attained by presenting the LTM cell with the stored 

sequence. The analytical expression for the maximum 

activation of an LTM cell is given by: 

        {  
  ( )}  (   )∑   

 
          (11) 

This maximum activation is used to normalize the LTM 

activation between 0 and 1. Therefore, it allows the 

comparison of a test sequence that is of a different length to 

the stored sequence. 

D. LTM Storage and Learning  

Using one-shot learning, an LTM cell learns a sequence 

       as synaptic connection weight       . The 

learning of a new sequence occurs only when no LTM cell 

elicits a sufficient matching degree to the test sequence, i.e. 

the maximum LTM activation is below a threshold  . In an 

intelligent system, the threshold   of an LTM cell is 

determined via interaction with the environment. In this 

paper, we set the threshold to   unless otherwise stated. 

One shot learning has been shown to improve training 

efficiency since it requires only a single presentation of a 

target sequence. It is also critical for some important 

applications of LTM cells, for instance the organization of 

episodic memory [19]. The gradual Hebbian-like synaptic 

modification instead of the one-shot storage was discussed 

in [13]. Hierarchical and distributed representation with 

chunking can be incorporated to improve the storage 



capacity. However, in the following only a single layer of 

LTM is considered for simplicity. 

E. LTM Recognition  

This section develops a sequence recognition algorithm 

called LTM Sequence Recognition (LTMSR) (Algorithm 1, 

Fig. 2) based on the architecture. Each input vector of a test 

sequence is incrementally presented to an LTM cell. Once 

the matching output is returned, a winning LTM sequence 

can be determined by a WTA network of the existing LTM 

cells.  

The LTMSR introduces the delay factor   and 

corresponding counters,   {         }, which retain 

the SNs’ activations for a number of steps before being reset.  

In this work, the maximum delay   is set to 1 for all 

experiments. The purpose of the delay factor is to 

compensate for minor delay or perturbation of input  ( ). 
The computational complexity of the algorithm is in the 

order of  ( ) where   is the length of the LTM cell. 
 

[Algorithm 1: LTM Sequence Recognition] 

Require:              
Ensure:   
Initialize: 

   
  ( )          

             

     
Start Algorithm: 

 For each input vector  ( ) of a test sequence do: 

Compute   
  ( )  ̂ 

  ( ) and   
 ( )       . 

For m = 1 to   do 

 If( ̂ 
  ( )     {  

 ( )     
  ( )} and      then 

    
  ( )   ̂ ( ) 

             

 Else 

    
  ( )     {  

 ( )     
  ( )} 

         

 End If  

End For  

       

End For 

 Return   
  
  ( )

    
 

[End Algorithm] 

Figure 2: LTMSR Algorithm 

F. Intra-element tolerance characterization 

In this section, we propose an adaptive characterization of 

spatial uncertainties based on the local variations of features. 

The estimated uncertainty is used to normalize the matching 

between each LTM element and an input vector as in (6). 

Given the synaptic connection   of an LTM cell, the local 

standard deviation (LSD) of elements with respect to the 

time dimension is employed to estimate  . The LSD is 

estimated over a local window    (     ) of size 

(    ) where   is an integer. 

    √
 

    
∑ (       )

 
    

          (12) 

where     is the mean of the     feature with respect to the 

local window   . 

    
 

    
∑        

               (13) 

 In this case we assume that the features are independent. 

The influence of covariance of features towards robust 

tolerance estimation is currently under investigation. In the 

following, the window parameter   is set to 5 unless 

otherwise stated. 

G. Significance of sequence’s elements 

Significance estimation provides  an evaluation of the 

importance of each element within an LTM cell, which helps 

the LTM cell to focus on identifying highly distinguishing 

elements of a sequence. The significance of elements   is 

integrated to modulate the activation of an LTM cell. 

The proposed significance estimation in this work 

proceeds from the feature level to the element level. Given 

an LTM cell, we denote the mean and standard deviation of 

the     (     ) feature as    and    respectively. 

   
 

 
∑    
 
                     (14) 

   √
 

   
∑ (      )

  
               (15) 

 The significance estimation of an LTM cell at the feature 

level is denoted as: 

  {               }           (16) 

and is computed as: 

         { 
(      )

 

   
 }            (17) 

where   is a tuning parameter. Finally, the significance of 

the LTM cell at the element level ( ) is computed as: 

   √
∑    

  
   

 
                 (18) 

From (18), we have     [   ]    , therefore    [   ]  . 

 Intuitively, the significance as in (18) gives high values to 

the elements which have the feature values statistically 

different from the mean values and vice versa. As mentioned 

earlier, the proposed significance estimation is suitable for 

our chosen application but may need to be re-formulated for 

other domains with different data characteristics. 

III. EXPERIMENTS 

A. Experiment 1: A synthetic example 

We consider the 2D sequence         with the length 

of 4. Each element of the sequence is specified as follows: 

    (         ),     (         ),     (         ), 
    (         ). The sequence   is stored as an LTM cell 

by one-shot learning. Therefore, there are 2 neurons in the 

Input layer and 4 neurons in each of the Primary, 

Intermediate and Secondary layer. The specifications of the 

LTM cell are set as follows:             [   ],    

[   ],           [   ]. 



A number of test sequences are synthesized based on the 

stored sequence to evaluate the robustness of the LTM cell’s 

activation. The result is shown in Table 1. The original 

sequence (Type 0) and four types of sequential distortions 

including order distortion (Type 1), replicated elements 

(Type 2), missing elements (Type 3) and noisy elements 

(Type 4) are introduced. The noisy test sequences are 

generated by adding white noise (with zero mean and 

standard deviation  ) and uniform noise (in the range of 
[    ]) to the original sequence.. The values of   are 0.01, 

0.05, 0.1, 0.15, 0.2 and 0.3 which correspond to the test 

sequences WN 1 to WN 6 in Table 1. The values of   are 

0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 which correspond to the test 

sequences UN1 to UN6. The simulations with noisy 

sequences were conducted with 1000 random trials for each 

  or  . The average outputs with unnormalized (absolute) 

activations and normalized (absolute values divided 

by     ) activations are reported. The decay parameter   is 

set to    .  

The first observation is that the original sequence elicits 

the maximum activation (        ) among all the cases. 

Secondly, for each type of distortion, the output of the LTM 

cell reflects an increase of the distortion level by graceful 

degradation of activation. 

 

Input T NO UO Input T NO UO 

ABCD 0 1.000 3.200 A 3 0.250 0.800 

ABDC 1 0.750 2.400 B 3 0.250 0.800 

ACBD 1 0.688 2.200 WN 1 4 0.994 3.182 

ADBC 1 0.375 1.201 WN 2 4 0.855 2.735 

CBAD 1 0.500 1.600 WN 3 4 0.572 1.830 

DCBA 1 0.250 0.800 WN 4 4 0.387 1.237 

ABBCD 2 0.938 3.000 WN 5 4 0.290 0.929 

ABCCD 2 0.938 3.000 WN 6 4 0.132 0.421 

ABBBCD 2 0.875 2.800 UN 1 4 0.951 3.042 

ABCCCD 2 0.875 2.800 UN 2 4 0.808 2.584 

ACD 3 0.750 2.400 UN 3 4 0.632 2.021 

BCD 3 0.750 2.400 UN 4 4 0.471 1.506 

AB 3 0.500 1.600 UN 5 4 0.364 1.166 

BC 3 0.500 1.600 UN 6 4 0.280 0.895 

Table 1: Output of the LTM cell with various distortion of an input 

sequence (Notations: T: perturbation type, NO: normalized output, 

UO: unnormalized output) 

B. Experiment 2: Classification of hand sign language 

with ASL dataset. 

The ASL dataset contains samples recorded by a high-

quality hand position tracker from a native signer expressing 

various Auslan signs. The total number of signs is 95 words 

with 3 samples per word per session spanning the period of 9 

different sessions. Each sample contains a multi-variate 

temporal pattern of average length of 57. Each sample 

contains 22 analog features. The dataset encapsulates many 

spatio-temporal variations from sources such as sensory 

noises, manipulation speeds of expression and fatigue of the 

signer. The task for using this dataset in our experiment is to 

perform sign classification given a test sample using the 

proposed LTM model.  

In this work, we use the 1
st
 derivatives of the     

coordinates of both hands (4-dimensions) as the feature set. 

Additionally, each dimension of the extracted trajectories is 

pre-processed by a moving average window of size 3. In this 

work, a similar experimental setup as in [20] was used. We 

used half of the trajectories (i.e. 13 samples per sign) as the 

training set and all the available trajectories as the testing set 

(i.e. 27 samples per sign). To achieve a desirable 

performance, two parameters needed to be determined, 

namely the decay rate   and the significance factor  . For 

decision making, a test sample was assigned to the sign of 

the maximum activated LTM cells and a correct prediction 

was counted if the assigned label is similar to the true label. 

We organized two different experiments with the ASL 

dataset. In this first, we learn each sample of the training set 

with a separate LTM cells and evaluates the performance 

with nearest-neighbor (NN) classifier. In the second, we 

examine a sequence alignment procedure based on the LTM 

activations’ profile of sequences belonging to a similar class.  

1) Classification with nearest-neighbor 

In this experiment, each of the samples of the training set 

was stored as a separate LTM cell with the label of the 

corresponding hand sign. The parameters were optimized by 

a 3-fold cross validation on the training set in the grid  

  [   ] (with the grid step of 0.1) and   [          ]. 
We performed experiments with 4 different numbers of 

selected classes, namely 8, 16, 29 and 38. For a number of 

classes C, we repeatedly collected samples from C random 

signs of the total 95 signs for multiple runs. 

To quantify the results, we used 3 criteria: Prediction 

accuracy (PA) of classification, normalized activation (NA) 

of the winning LTM cells and separation ratio (SR). The 

criterion PA is defined as the fraction of correct predictions 

of test sequences (indicated by the strongest responses from 

LTM cells). The SR is computed as the ratio between the 

activation of the winning LTM cell to that of the highest 

activated LTM cell that belongs to a different class. The SR 

is computed only for a correct classification of a sample. 

To elucidate the sensitivity of the proposed LTM model to 

the different parameters, for a selected number of classes  , 

we first obtained the optimal parameters (     ) by cross 

validation. Subsequently, one of the optimal parameters was 

fixed while the other was varied. The average results for 

       in 30 different runs were plotted in Fig. 3. 

The first observation is that the performance in terms of 

PA was consistently improved when each of the parameter 

was incorporated (by setting the parameter to be positive). 

The improvement of PA with the modulation of significance 

(i.e.   ) demonstrates that the proposed significance 

estimation is appropriate in assisting sign language’s 

interpretation. The second observation is that an 

improvement of PA was obtained when SR was improved 

except when the decay rate is high (near 1). In this case, a 

perfect recognition of an element of the sequence results in 

only a small increase of activation. This results in a weak 

LTM activation that translates into high classification 

ambiguity. Empirically the performance of the model 

saturated in terms of PA when    . Similar observations



 

Figure 3: Sensitivity of the LTM cells to the varying parameters for a 16-class classification problem. Top row: PA, NA and SR (from left 

to right) with varying  . Lower row: PA, NA and SR with varying  . In each row, the other parameter is kept at its optimally found value.

were obtained for different numbers of selected classes. 

We benchmark the performance of the LTM model with 

other published works. Classification accuracy is reported 

following the protocol in [20]. The performance of the LTM 

model was compared with the Hidden Markov Model 

(HMM) and Gaussian Mixtures Model (GMM) for a similar 

task. The result is tabulated in Table 2. It can be observed 

that the proposed LTM model significantly outperforms the 

other learning models in all selected number of classes with 

a confidence margin. The results for HMM and GMM were 

taken from [20]. 

Model Number of classes 

8 16 29 38 

Proposed LTM Model  Mean  87.10 82.90 81.10 78.90 

StdDev 0.04 0.03 0.02 0.04 

HMM [20] 86.00 78.00 69.00 66.00 

GMM [20] 85.00 74.00 67.00 64.00 

Table 2: Prediction accuracy (%) of the proposed LTM model and 

comparisons with other models for the same task 

2) Classification with aligned sequences 

In this experiment, we aim to develop a sequence 

alignment scheme for combining multiple sequences of 

similar contents. By combining several examples of aligned 

sequences that represent a similar class of inputs, we can 

characterize better intra-element tolerance as in (13). This 

characteristic is useful to reduce the storage burden of one-

shot learning when a large number of training sequences are 

available. Secondly, it is also useful to learn spatio-temporal 

structures or grammatical rules from multiple sequences. 

Finally, sequence alignment is a good foundation to 

automatic chunking, where structure of words and sentences 

are obtained without prior supervised partition of the input. 

To combine two sequences    and   , a fundamental task 

is to find the matching elements between the two sequences. 

The sequence alignment procedure based on LTM activation 

is summarized as follows. Firstly, a sequence    is learnt 

and stored in an LTM cell. Secondly, the matching elements 

of the second sequence    can be identified by back-tracking 

the secondary activation’s profile induced by the LTM cell 

after a sweep of the second sequence. The back-tracking 

procedure is tabulated in Fig. 4.  

 

[Algorithm 2: LTM Sequence Alignment] 

Require:     
Ensure:   

Initialize: 

     
      
     

Start Algorithm: 

 While (   ) and (   ) do 

While (   ) and (|           |     ) do 

      

End While 

While (   ) and (|           |     ) do 

      

End While 

      {(   )} 

      

      

End While  

 Return   

[End Algorithm] 

Figure 4: LTM Sequence Alignment algorithm 

We define the output matrix        as the sequence of 

secondary activation   
  ( ) (           ) 

estimated as in (9). The alignment procedure makes use of 

the elements’ significance to trace the marked change of the 

secondary neurons’ activation during the sweep of the 

sequence   .  It is noted that an activation change of a 

secondary neuron corresponds to the detection of a 

respective element of the LTM cell in the input sequence. 

The following algorithm produces the alignment   
{(     )               }. Each tuple in   describes 

a matching pair between the (  )
   element of the LTM 

sequence and the (  )
   element of the input sequence.  



From Algorithm 2 shown in Fig. 4, there are cases when 

an element of    does not have a matched element in    or 

vice versa. For notational convenience, we denote the 

corresponding tuple in   as (     ) where       denotes 

a non-aligned element of   . Finally, the tuples in   are 

increasingly sorted according to   .  
Once the alignment   is determined, a new sequence   

can be constructed as in Algorithm 3 (Fig. 5). When a match 

is specified in  , a new element is spawned and learnt by 

combining the two elements from    and    as in (19). On 

the other hand, when a match is not specified, the element of 

   is added to the new sequence as in (20). The combination 

of the two elements is controlled by the learning rate 

   [   ]. In the following, the parameter    is set to 0.5. 

 

[Algorithm 3: LTM Sequence Combination] 

Require:  ,   ,   ,    

Ensure:   
Initialize: 

     

Start Algorithm: 

 For each tuple (   ) of   

  Create a new element  . 
If (     )    

             
  (    )  

          (19) 
  Else 

          
                (20) 

   End If   

Add the element   to  : 
      

End For 

Return   
[End Algorithm] 

Figure 5: LTM Sequence Combination algorithm 

We learnt a few sequences for each class by combining 

the sequences from the training set of each class. The 

combined sequences were used to predict the class of a new 

test sequence. For a fair comparison, a similar class selection 

and corresponding training/testing set to the NN 

classification in section III.B.1 were used. In this 

preliminary analysis, we did not perform any additional 

cross-validation to optimize the parameters for the combined 

sequence and used the parameters (     ) obtained from the 

section III.B.1 for each class.  

We combined the sequences for each class in a sequential 

manner. Firstly, a random sequence is selected as a seeding 

sequence. Subsequently, the seeding sequence was 

combined with a new sample when the matching degree 

between the two exceeds a combination threshold  . 

Otherwise, the new sample is selected as a new seeding 

sequence. This process continues for the rest of the training 

samples of the class. In this way, a different number of 

combined sequences are generated for each class.  The order 

of combination of a training set was perturbed multiple times 

and the average accuracy and standard deviation is reported. 

Fig. 6 shows the classification accuracy when the 

combined sequences are used with variable  . It can be seen 

that the accuracy produced by the combined sequences when 

      can be maintained or slightly better than the cases 

when all the sequences are used (   ).  

Fig. 7 shows the normalized number of combined LTM 

cells after the combination process. The normalized number 

is calculated as the number of combined LTM cells divided 

by the total number of training samples. It can be seen that 

the normalized number of LTM cells reduce gradually when 

  is reduced. It is noted that when   is equal or below    , 

all the training samples are combined, thus leaving only a 

single sequence for representation of each class.  

Given that we did not perform any optimization on the 

learning rate and LTM parameters, the presented results are 

encouraging and can be further improved in future. A few 

examples of combined sequences are shown in Fig. 8.  

 

Figure 6: Classification accuracy with variable combination 

thresholds 

 

Figure 7: The normalized number of LTM cells with variable 

combination thresholds 



 
Figure 8: Example of several combined sequences from two arbitrary samples of an ASL word. Only the derivative trajectories of the y-

coordinates of the right hand are shown. The words from the top to the bottom row are “science”, “research”, “alive” and “cost”.

IV. CONCLUSION 

In this work, we described a connectionist approach to 

temporal sequence learning, organization and recognition. 

The main characteristics of the model include the memory 

organization of multi-dimensional real-valued sequences, 

robust matching with error tolerance, significance evaluation 

of sequence elements and memory forgetting. The merits of 

the proposed framework were demonstrated by a synthetic 

example and the ASL dataset. We believe the proposed 

model is general and can be used with different types of 

applications that require complex temporal sequence 

analysis such as speech recognition, robotic navigation, 

human action recognition and others. Such applications will 

be explored in future. Several applications of LTM model 

for text processing and robotic navigation were 

demonstrated in [3, 21].  

The LTM model presented in this paper serves as an 

essential and constructive element towards the development 

of machine intelligence. The LTM model aims to construct 

resilient and stable representation of episodic memory (EM) 

which is a type of memory that allows one to remember and 

re-experience previously acquired events and episodes [22]. 

EM is used for associative memory between sensory inputs 

and motor actions that are related to machine’s goals and 

goal creation mechanism [1] in autonomous systems. In 

addition, the LTM cell can also be useful in organizing 

procedural memory where sequences of motor steps are 

stored and activated to perform complex actions. 
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