

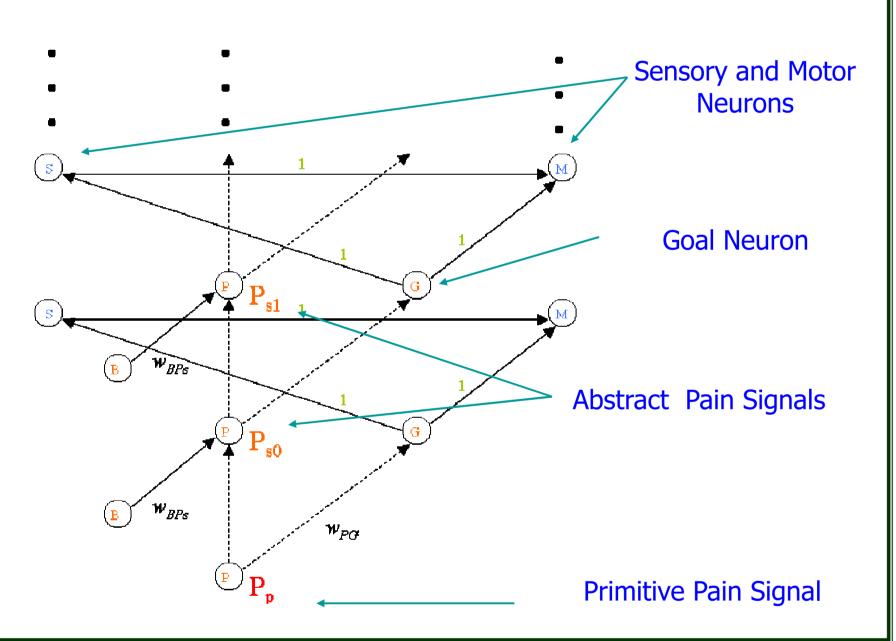
Motivated Learning as an Extension of Reinforcement Learning Janusz A. Starzyk, Paweł Raif, Ah-Hwee Tan

Silesian University of Technology, Gliwice, POLAND Nanyang Technological University, SINGAPORE Ohio University, Athens, OH, USA

Motivated Learning

Motivated Learning (ML)

- ◆ML paradigm uses neural structures that selforganize and form 'pain centers' which correspond to internal motivations.
- ◆A ML system uses artificial curiosity to explore, and creation of abstract motivations to learn efficiently and purposefully. It increases the internal complexity of representations and skills.
- ◆At every step, the agent finds an action (actions) that satisfies its abstract pains and this may result in new motivations. Gradually, the agent learns values of various states and actions for various motivations.
- effectively implements and manages a hierarchy of goals without explicit reward for different stages of hierarchy.
- ◆Any form of reinforcement learning (e.g. hierarchical reinforcement learning with subgoal discovery) can be used to resolve abstract pains.
- ML enables active learning through interaction with the environment.



RL vs ML

Reinforcement	Motivated				
Learning	Learning				
Single value function	Multiple value functions				
The same for all goals	One for each goal				
Measurable rewards	Internal rewards				
Can be optimized	Cannot be optimized				
Predictable	Unpredictable				
Objectives set by designer	Sets its own objectives				
Maximizes the reward	Solves minimax problem				
Potentialy unstable	Always stable				
Learning effort increases with	Learns better in complex				
complexity	environment				
Always active	Acts when needed				
http://derekallard.com/img/post_resource s/draft_robot_revision_3.jpg					

Computational Model and Simulation

Motivated Learning or Reinforcement Learning

♦Simulation Framework

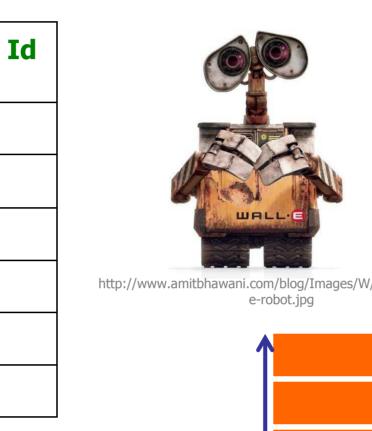
We have developed a unified framework to conduct computational experiments with both learning systems:

- Motivated learning based on Goal Creation System, and
- •Reinforcement learning using RL Q-Learning Algorithm.

Our goal was to compare their performance in terms of learning speed and task completion ability.

Meaningful sensory-motor pairs and their effect on the environment.

Id	SENSORY	MOTOR	INCREASES	DECREASES	PAIR Id
0	Food	Eat	Sugar level	Food supplies	0
1	Grocery	Buy	Food supplies	Money at hand	7
2	Bank	Withdraw	Money at hand	Spending limits	14
3	Office	Work	Spending limits	Job opportunities	21
4	School	Study	Job opportunities	Social contacts	28
5	Feast	Play	Social contacts	-	36

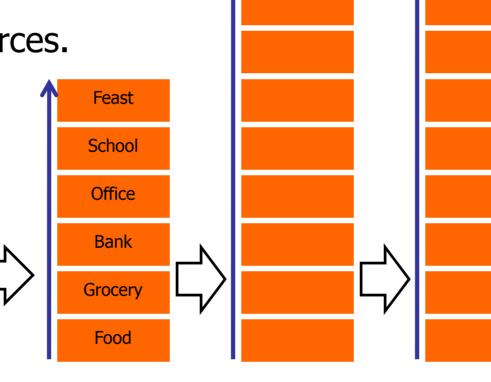


◆Task Specification

Complex, dynamically changing environment

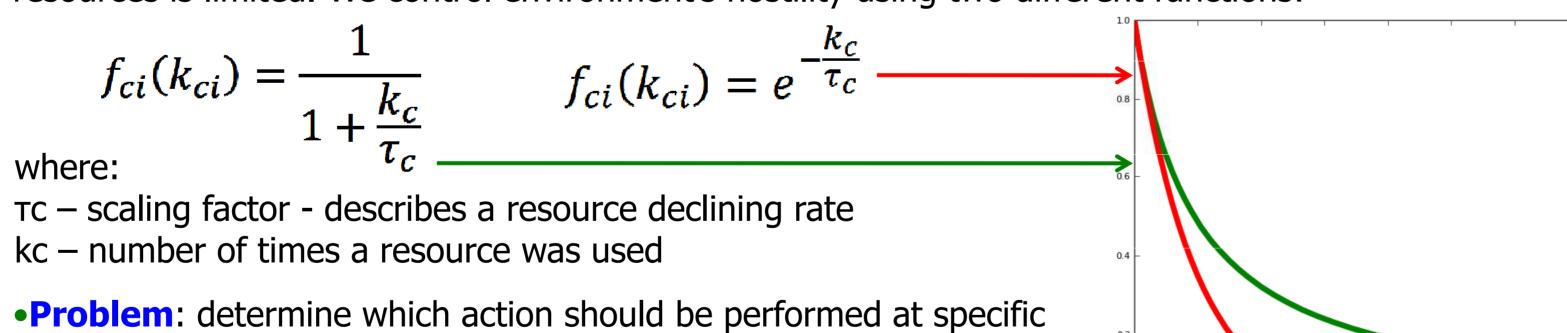
In base experiment environment consist of six different categories of resources. Five of them have limited availability. One, the most abstract resource is inexhaustible.

The most In further experiments there are more kinds of available resources.



Hostility of environment

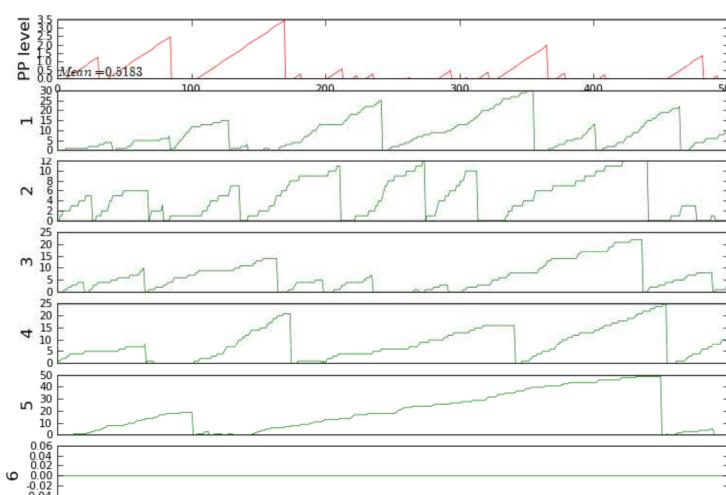
Environment is not only complex and dynamic. It is also hostile. It means that amount of available resources is limited. We control environment's hostility using two different functions:



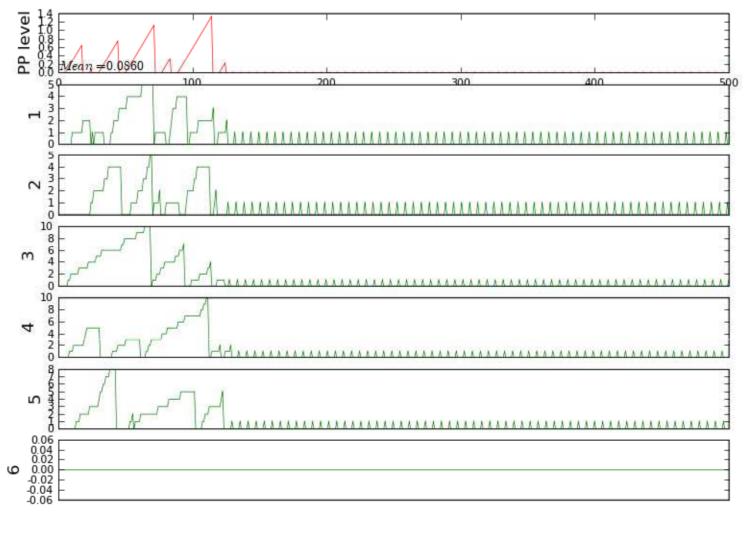
situation and renew this resource which is most needed at this very moment by performing selected action.

Find mappings from sensory inputs to motor output.

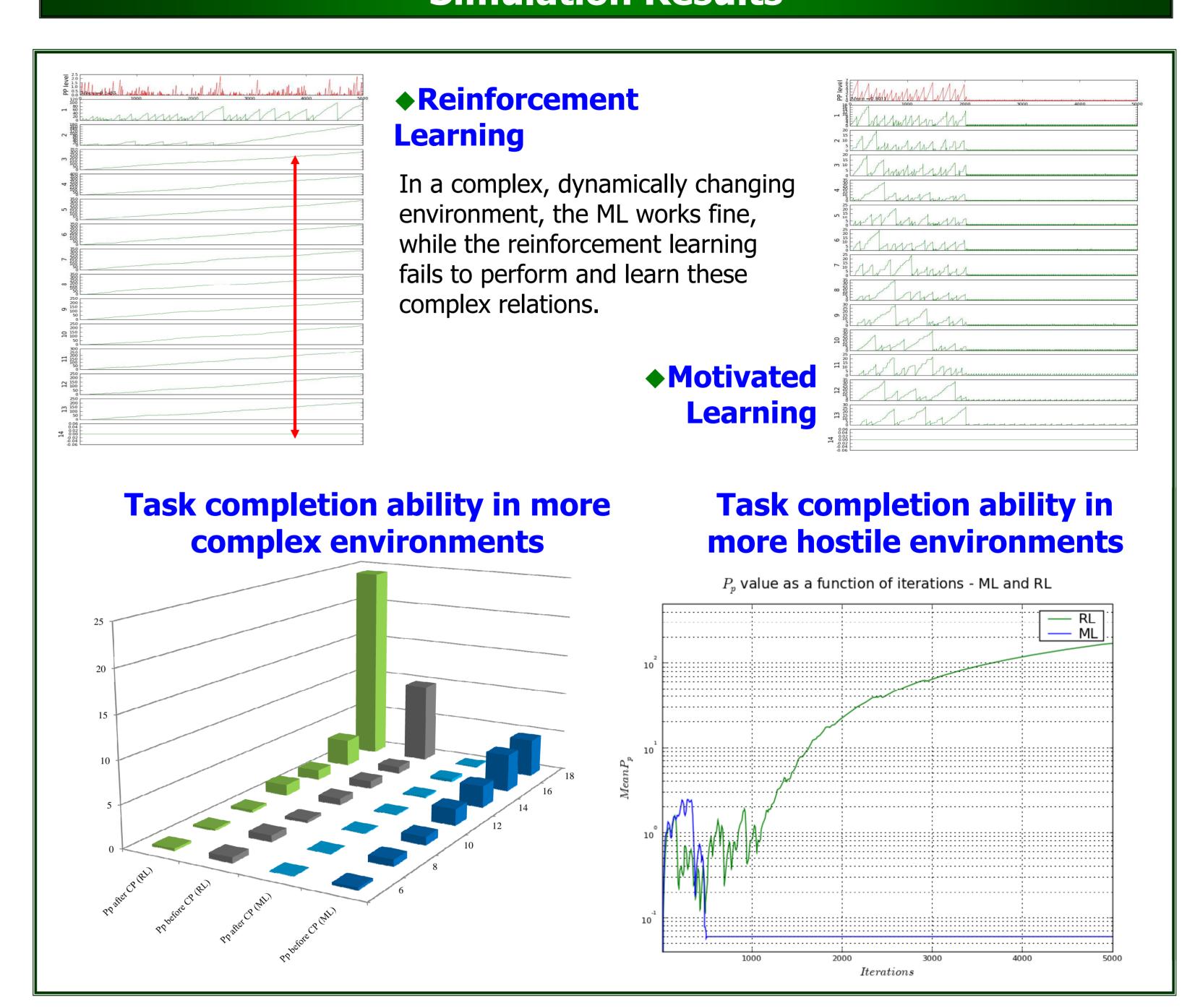
♦Reinforcement Learning



◆Motivated Learning

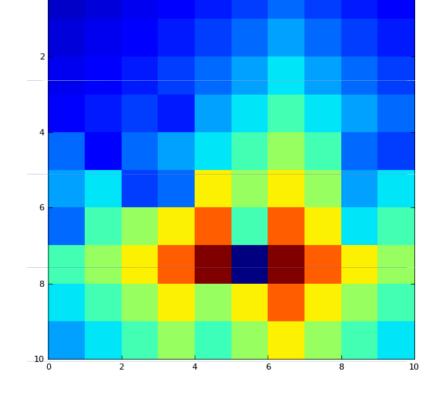


Simulation Results



Conclusions and future work

- •Future work includes combining motivated learning to set abstract motivations and manage goals with reinforcement learning to learn proper actions.
- Motivated learning will provide a self-organizing system of internal motivations and goal selection.
- •Reinforcement learning will be used to train machine in solving specific goals and subgoals.
- •This will allow to test motivated learning on typical reinforcement learning benchmarks with large dimensionality of the state/action
- Any form of reinforcement learning e.g. hierarchical reinforcement learning with subgoal discovery can be used.
- Other forms of learning can be used instead of RL, for instance Pavlovian learning proposed by O'Reilly [3].
- The proposed approach enriches machine learning by providing natural goal oriented motivation, that may lead to increase machine intelligence



This work was supported in part by the Singapore National Research Foundation Interactive Digital Media R&D Program, under research Grant NRF2008IDM-IDM004-037

References

- [1] J. A. Starzyk, "Motivation in Embodied Intelligence" in Frontiers in Robotics, Automation and Control, I-Tech Education and Publishing, Oct. 2008, pp. 83-110.
- [2] A-H. Tan, N. Lu and D. Xiao. Integrating Temporal Difference Methods and Self-Organizing Neural Networks for Reinforcement Learning with Delayed Evaluative Feedback. IEEE Transactions on Neural Networks, Vol. 9, No. 2 (February 2008), pp. 230-244.
- [3] R. C. O'Reilly, M. J. Frank, T. E. Hazy, B. Watz, PVLV: The Primary Value and Learned Value Pavlovian Learning Algorithm, Behavioral Neuroscience. vol 121(1), Feb 2007, pp. 31-49.