
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Lumped Mini-Column
Associative Knowledge Graphs

Basawaraj1, Janusz A. Starzyk1,2
1 School of EECS, Ohio University, Athens, OH 45701, USA

2 University of Information Technology and Management in Rzeszow
Rzeszow, Poland

{starzykj,basawaraj.basawaraj.1}@ohio.edu

Adrian Horzyk
Dept. Automatics and Biomedical Engineering

AGH University of Science and Technology in Krakow
Mickiewicza Av. 30, 30-059 Krakow, Poland

horzyk@agh.edu.pl

Abstract — This paper presents an extension of active neural
associative knowledge graphs (ANAKG) to their mini-column
form where each symbol is represented several times. We
demonstrate that this new associative memory organization
preserves all properties of ANAKG memories like storage of
knowledge based on spatio-temporal input sequences, while
increasing recall quality, memory capacity, and its resolution for
short-term memory recall. The implemented model combines
ANAKG associative neuron idea with the idea of a hierarchical
temporal memory that uses a mini-column form of symbol
representation. Performed tests confirm our claims of higher
resolution and higher memory capacity of the new associative
knowledge graph.

Keywords — associative semantic memory, associative neurons,
associative connections, mini-column structure, knowledge
representation.

I. INTRODUCTION
Semantic memory (SM) is a repository of knowledge in a

cognitive system, and its structure gradually emerges from the
learning process [1]. Neurons in the semantic memory build
synaptic connections between associated concepts representing
their relationships between each other and cognitive agent
objectives [2].

Classical neural network memory models such as associative
memory networks [3] aim to provide content-addressable
memory, capable of retrieving stored data from only a small
input sample. Other solutions to retrieving the memory
information include gradient based recurrent neural networks
(RNN) [4]. These models are trained to predict the next input
word after reading the first few words. In [5] authors proposed
an unsupervised algorithm that learns fixed-length feature
representations from variable-length pieces of texts. Similar to
RNNs this algorithm is trained to predict words in a document
given an input context. In [6] authors describe a new class of
learning models called memory networks. Memory networks
combine input content with dynamic knowledge base stored in
long-term memory to predict the output. Memory networks
represent the input information in the form of features and are
capable of generalization to produce desired response.

Recently researchers have focused on contextual question
answering (QA) to satisfy popular demand on services based on
voice recognition and large knowledge bases like Wikipedia.
Direct approaches to QA like string matching are very
ineffective, and solutions that include recursive neural
networks like QANTA [7] are becoming popular. Neural
Turing machines (NTM) combine the concept of neural
network learning and classical Turing machines to retrieve
context based input information [8]. NTMs can learn simple
algorithms from training data and generalize them to non-
training data. Comparing to RNN long short-term memory [4]
NTMs show better accuracy over longer sequences in recall and
copy tasks.

Semantic memory aggregates representation of the training
data and forms a context searchable knowledge base. It is
obtained by binding the semantic contexts for all trained objects
and linking their neuronal representations together. The SM can
be built using active neural associative knowledge graph
(ANAKG) based on associative neuron models presented in [9].
The knowledge graphs are obtained dynamically by adding
associative neurons and changing their synaptic connections
based on the input sequences and activation levels of
presynaptic and postsynaptic neurons. If the updated synaptic
weights provide incorrect activations of postsynaptic neurons,
then previously activated neurons create inhibitive connections
to the incorrectly activated neurons. The gradual time-spread
relaxation of ANAKG neurons enables them to represent
sequences of objects in their previous contexts.

An ANAKG based SM can associate distant time events in
order to put them in a wider context. Moreover, the SM can
trigger recalling processes automatically, taking into account the
given context and semantic relations between objects
represented in the neuronal graph structure. Semantic relations
are automatically created on the basis of real relationships
between objects presented to this memory in the form of
sequential patterns. They are weighted according to the strength
or the frequency of represented relations in their wider context
comprising previous events. Such a strategy makes it possible to
represent various concepts from different points of view and in
different contexts, forming knowledge about them. Finally, the

SM can generalize knowledge gained during the adaptation
process based on presented training data. The ANAKG based
SM can generate new responses according to the new contexts
of recollection that were not previously taught [10]. The
generalization is possible thanks to the association and
aggregations of data, symbols, features, objects, and
subsequences which typically occur in training data.

In this paper, we present a generalization of ANAKGs to
their mini-column form known as a lumped mini-column
associated knowledge graph (LUMAKG). In LUMAKG, each
symbol is represented several times following the idea of a mini-
column organization presented in [11]. LUMAKG uses the same
pulsing neuron model as ANAKG and similar self-organization
principles. The major difference is in its columnar organization
and selection of synaptic connections between neurons.

II. LUMAKG ORGANIZATION AND PRINCIPLES
The columnar organization of associative memory was first

proposed by J. Hawkins et al. [11] where they introduced
cortical learning algorithms in which mini-columns were used
to store sequential information in hierarchical temporal memory
(HTM). Since then HTMs were further developed, and their
properties were analyzed and tested. In [12] using mini-column
model, the authors show that it is able to continuously learn a
large number of temporal sequences using an unsupervised
learning neural network model. HTM was shown to have similar
accuracy as another state of the art sequence learning algorithms
like echo state networks [13] or long short term memory [14],
however, they also show some drawbacks like larger sensitivity
to temporal noise than the long short term memory [12].
ANAKG memories do not have this drawback of HTM
networks as they can tolerate temporal noise. Thus improving
ANAKG by introducing a mini-column structure to its
architecture provides a better associative memory capable of
storing spatio-temporal relations between data.

 ANAKG uses a pulsing neuron model that uses spatio-
temporal relationship between data, similar to the popular
spiking neuron models [15]. Spiking neurons are biologically
motivated and produce patterns similar to biological neurons.
Several computationally efficient models of spiking neurons
have been developed [16]. Networks of spiking neurons
spontaneously self-organize into groups and generate patterns of
polychronous activity, and this property is believed to be
necessary for cognitive neural computations, symbol grounding,
attention, and consciousness [17]. ANAKG achieves similar
properties to spiking neurons by using a much simpler neuron
model and self-organization principles [18]. LUMAKG
maintains these properties of ANAKG while increasing its recall
quality, memory capacity, and resolution.

Following HTM organization, we replace each neuron in the
ANAKG with a small mini-column. Each mini-column has five
neurons, and all mini-column neurons represent one unique
symbol (e.g. a single word). While the neurons in a mini-column
all represent the same symbol, the inputs, outputs, and their
synaptic connections (weights) are different for each neuron.
Using the principles from HTM [11], the inputs and outputs are
distributed across the neurons in the mini-column so that
multiple sequences can be represented using the same set of
mini-columns. Individual neurons in each mini-column use the

ANAKG algorithm to obtain associative connections and their
weights.

Like in HTM, LUMAKG mini-columns have three output
states, active from feed-forward input (can be input from the
sensor), active from lateral input (representing a prediction), and
inactive. Thus, LUMAKG cells/neurons can fire even without
sensory input stimulation. In the predictive mode, neuron’s
activation from the lateral input is used to complete the
sequence. During learning of new sequences, prediction and
input activation should match for learning (changing synaptic
weights) to take place.

The LUMAKG network structure is obtained dynamically.
New mini-columns and synaptic connections are added each
time a new input sequence is provided to the network.
Specifically, if a new symbol is observed, a new mini-column is
added, and at least one of its neurons is linked to another mini-
column. Organizing principles of LUMAKG are as follows:

A. Duplicate each symbol five times to form individual
symbol mini-columns.

B. If a node in a mini-column is activated above the
threshold from associative connections, it is called to
be in a predictive mode.

C. An input activates either all nodes in a given mini-
column that are in the predictive mode or the whole
mini-column if no node is in a predictive mode.

D. Activated nodes that were in a predictive mode are in
predicted activation (PA).

E. An activated mini-column without any node in a
predictive mode has all nodes in unpredicted
activation (UA).

F. Synaptic connections weights are changed between
activated nodes in predecessor and successor mini-
columns.

III. LUMAKG ALGORITHM AND ITS ILLUSTRATION
The LUMAKG algorithm was defined on the basis of the

general organizing principles described in the previous section:

I. Read the consecutive elements of the input sequence to
activate corresponding mini-columns:

1. Check if the symbol from the input sequence is represented
by a mini-column.

2. If not add a new mini-column; all nodes of this new mini-
column are in unpredicted activation.

II. Establish predecessor-successor nodes in all activated
mini-columns in the input sequence:

3. For each consecutive activated mini-column, activate
nodes in the mini-column that corresponds to the input
symbol, according to point C of the organizing principles.
Typically, the first activated mini-column has no PA
nodes, unless it is considered in a broader context of
associative learning. Thus typically, all nodes in the first
activated mini-column are in unpredicted activation.

4. Find the first mini-column with a PA node. If no such
column exists choose a node in the last mini-column with

a minimum number of outgoing connections and treat it as
a PA node. Name this first mini-column with PA node FPA
(first predicted activation) mini-column.

5. Starting from the predecessor mini-column to FPA:
a. Choose a node in this mini-column that has a link to the

PA node in FPA and treat it as a PA node.
b. If no such node exists, choose a node in the predecessor

mini-column with the minimum number of outgoing
connections and treat it as a PA node. This establishes a
link between the two PA nodes.

Repeat this step for the new PA node, selecting a node in
its predecessor mini-column with the minimum number of
outgoing connections and treating it as a PA node, until no
predecessor mini-column is found.

6. Starting from the successor mini-column to FPA repeat
until no more successor mini-column is found:
a. If the successor mini-column has a PA node, link the

two PA nodes and move to the successor mini-column.
b. If the successor is a UA mini-column, choose a node in

this mini-column with the minimum number of
outgoing connections and treat it as a PA node. Link the
two PA nodes and move to the successor mini-column.

III. Update synaptic weights in the synaptic connections
between all predecessor successor nodes:

7. The algorithm updates all the synaptic weights between all
PA nodes in predecessor and successor mini-columns
according to rules developed for ANAKG [9].

Since the LUMAKG algorithm has a convoluted process of
modifications of synaptic connections, we use an example to
illustrate this algorithm. For simplicity, we assume that a PA
node makes a single prediction and that at most a single PA node
is activated in any mini-column. While the algorithm is not
limited to such cases, these assumptions will simplify an
example illustration of how the LUMAKG algorithm works. For
simplicity of graphical illustration, a mini-column is represented
by a single node with double lines as shown in Fig. 1.

Fig. 1. A mini-column and its simplified symbol

The corresponding synaptic connections start at various
nodes in the mini-column as we can observe in Fig. 1. In
particular, the predecessor nodes are hidden in the simplified
symbol, so we cannot see which of the mini-column neurons is
the predecessor node. This can be observed only in the full view
of the resulting structure as shown in Fig. 7.

Let us assume that the sequence A, B, C, D, E was inputted
to the LUMAKG memory and activated the corresponding mini-
columns as shown in Fig. 2.

Fig. 2. Activated mini-columns.

Out of these activated mini-columns, only mini-column D
had a PA node. According to step 5 of the LUMAKG algorithm,
we name D the FPA mini-column and move to step 6. In the
predecessor mini-column C, we choose the node that linked to
the PA node in D and name it as a new PA node. Next, we move
to the predecessor mini-column C and according to step 6.b.
choose a node in mini-column B with a minimum number of
outgoing connections and treat it as a PA node.

This establishes a new link between B and C as shown by a
dashed line in Fig. 3.

Fig. 3. A new connection between UA mini-column B and a PA node in mini-
column C.

The selected node in B with the minimum number of
outgoing connections is treated as a new PA node, and the
algorithm moves back to mini-column A. Applying step 6.b.
again we choose a node in A with the minimum number of
outgoing connections and link it to the PA node in B as shown
in Fig. 4.

Fig. 4. A new connection between UA mini-column A and a PA node in mini-
column B.

Since there is no predecessor to A, we move back to mini-
column D. Since there is no PA node in mini-column E, then
according to 7.b. we choose the node in mini-column E with the
minimum number of outgoing connections and treat it as a PA
node. This establishes the link between the two PA nodes in
mini-columns D and E as illustrated in Fig. 5 and we move to
mini-column E.

Fig. 5. A new connection between PA node in UA mini-column D and a
selected node with the minimum number of outgoing connections in mini-
column E.

Since there is no successor mini-column to E, the LUMAKG
algorithm moves to 8 and modifies the synaptic weights between

all PA nodes in established predecessor and successor mini-
columns according to the ANAKG algorithm [9].

Fig. 6.a. Activated mini-columns.

Fig. 6 shows an example view of the mini-column structure
that corresponds to the processed input sequence at the
beginning (Fig. 6.a.) and at the end (Fig. 6.b.) of step II of
LUMAKG algorithm. In each mini-column, gray color is used
to represent PA neurons that will have their synaptic connection
weights changed according to [9].

Fig. 6.b. Activated mini-columns with added links.

After application of the ANAKG algorithm to modify
weights between the selected PA nodes, we will get all the
updated links as shown in Fig. 7.

Fig. 7. Modified synaptic connections for the input sequence.

IV. COMPARATIVE TESTS OF LUMAKG
Tests were performed to observe the efficiency of learning,

memory capacity, and learning resolution for LUMAKG
sequential memory in comparison with ANAKG memory. Tests
of both methods were performed on the same equipment and
using the same software environment. In fact, LUMAKG was
based on a modified ANAKG tool.

A. Resolution of Recalled Sentences
The first test is used to compare the resolution of recalled

sentences using ANAKG and LUMAKG. To test the recall
resolution, the memories ANAKG and LUMAKG, were self-
organized on an input file containing the following sentences
from The Golden Bird tale from Grimm’s Fairy Tales [19]:

1. The king had a beautiful garden, and in the garden
stood a tree.

2. The tree bore golden apples, apples that were always
counted.

3. About the time when the apples grew ripe, it was
found that every night one apple was gone.

4. The king was angry at an apple going missing every
night.

5. The king ordered his gardener to keep watch all night
under the tree.

6. The first day the gardener asked his eldest son to
keep watch.

7. About midnight he fell asleep, and in the morning
another of the apples was missing.

8. The second day the gardener asked his second son to
keep watch.

9. At midnight he too fell asleep, and in the morning
another of the apples was missing.

Note that special characters, e.g. commas, periods, etc., were
discarded and not used in training the memories. After the
memories had been created, their associative properties and
recall resolution were tested and compared with results obtained
from ANAKG. Several sequences related to nine training
sequences were used as inputs to both memories, and their
recalls were observed. The results are shown in Table 1.

TABLE 1. INPUT AND OUTPUT SEQUENCES GENERATED BY ANAKG AND
LUMAKG.

Input sequence ANAKG
memory
output

LUMAKG
memory output

Desired output

What did the
king had?

The king had a
beautiful
garden

The king had
a beautiful
garden

The king had a
beautiful
garden

What stood in
the garden?

Stood a in the
tree the
garden

Stood in the
garden stood a
tree

In the garden
stood a tree

Why was the
king angry?

Was the king
angry at an
apple missing

Was the king
was
angry at an
apple missing

The king was
angry at an
apple going
missing

What were
always
counted?

Were always
counted

Were always
counted

Apple that
were
always
counted

What did the
king order his
gardener?

the king his
gardener

The king was
his gardener to
keep watch

The king
ordered his
gardener to
keep watch

What was
missing in the
morning?

Was missing in
the morning
another of the
apple was

Was missing in
the morning
another of the
apple was
missing

In the morning
another of the
apple was
missing

The results show that LUMAKG provides more meaningful

answers than ANAKG (boldface rows in Table 1) considering
what was stored in the network as a result of the training
sequence. The inputs sentences used in this test were not
specifically tailored to benefit one method over another. As we

can see, in no case ANAKG provided answers more meaningful
than LUMAKG.

B. Testing a Large Data Set

The next test involved comparing the performance of
LUMAKG and ANAKG memories when the number of
sentences in the training set is increased. The two memories
were trained with the complete story (The Golden Bird) that had
over 2500 words, with over 500 unique words in 78 training
sentences. The same input sequences were then applied to both
networks. The results are shown in Table 2.

The results show, similar to Test 1, that the answers provided
by LUMAKG are more meaningful than those provided by
ANAKG. Note that while there is some decrease in quality of
LUMAKG answers the decrease is more profound in the case of
ANAKG memory. This shows the robustness of LUMAKG
memory that is a result of the applied mini-column structure and
related associative learning.

TABLE 2. INPUT AND OUTPUT SEQUENCES FOR LARGER NUMBER OF TRAINING
INPUT SEQUENCES.

Input
sequence

ANAKG
memory
output

LUMAKG
memory output

Desired output

What did the
king had?

What did the
king had

What did the
king had a
beautiful
garden

The king had a
beautiful
garden

What stood in
the garden?

What stood in
the garden

What stood in
the garden

stood a tree

In the garden
stood a tree

Why was the
king angry?

Why should
was the king

angry at

Why should
was the king
angry at an

apple

The king was
angry at an
apple going

missing
What were

always
counted?

What were
always counted

What were
always counted

Apple that were
always counted

What did the
king order his

gardener?

What did the
king his

gardener

What did the
king his

gardener to
keep watch

The king
ordered his
gardener to
keep watch

What was
missing in the

morning?

What was
missing in the

morning

What was
missing in the

morning
another of the

apple

In the morning
another of the

apple was
missing

C. Network Response Quality Measures

A variety of heuristics and evaluation measures for various
information retrieval and related tasks have been proposed and
studied, e.g. answer scoring and/or ranking [20], passage
retrieval algorithms [21], and evaluating search engines [22].
These evaluation measures require the use of tools such as
parsers, and consequently are not well suited for evaluation of
the responses generated by the ANAKG and LUMAKG
memories. Consequently, here we make use of Levenshtein
distance [23], and a new distance measure called reciprocal
word position based on the evaluation metrics from [24].

Levenshtein Distance Quality Measure

The quality of results obtained from ANAKG and
LUMAKG memories were first measured by comparing them to
desired output using Levenshtein distance [23]. Since we are
interested in sequences of words rather than individual
characters, the Levenshtein distance measured the number of
words that must be deleted, inserted, or substituted in order to
transform the source sentence to a target sentence. Each word
had a unique symbol in the associative memories and sequences
of such symbols represented the output from each memory.

The Levenshtein distance between two strings a and b (of
lengths u and v respectively) is given by (1):

 𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖, 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧
𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖, 𝑗𝑗) 𝑖𝑖𝑖𝑖 𝑚𝑚𝑖𝑖𝑚𝑚(𝑖𝑖, 𝑗𝑗) = 0

𝑚𝑚𝑖𝑖𝑚𝑚

⎩
⎪
⎨

⎪
⎧𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖 − 1, 𝑗𝑗) + 1
𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖, 𝑗𝑗 − 1) + 1
𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖 − 1, 𝑗𝑗 − 1)
𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖 − 1, 𝑗𝑗 − 1) + 1�𝑎𝑎𝑖𝑖≠𝑏𝑏𝑗𝑗�

𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 (1)

where 𝑑𝑑𝑎𝑎,𝑏𝑏(𝑖𝑖, 𝑗𝑗) is the distance between the first i and j elements
of a and b respectively. Here we represent each word in a
sentence as a symbol and in computing the Levenshtein distance
measure and comparing two sentences, we compare two stings
of symbols. The Levenshtein distance was applied to the results
of Test I that used only 9 training sentences and Test II that used
78 training sentences. In both cases we tested the networks
responses to the same set of inputs and network output
sequences were compared with the desired responses. The
results are shown in Table 3.

TABLE 3. LEVENSHTEIN DISTANCE TO THE DESIRED OUTPUT IN BOTH TYPES OF
MEMORIES.

As we can see, all the results obtained from LUMAKG were

either better or the same as those obtained from ANAKG. Both
types of associative memories showed that they could provide a
reasonable output given a limited training data set. However,
LUMAKG has a promise to significantly increase both the
resolution and storage capacity of the associative knowledge
graphs and become a foundation for the semantic memory
capable of remembering episodes, making associations and
accumulating of knowledge. Both memories require only a
single presentation of the input data to learn.

Input sequence
ANAKG LUMAKG

Test
I

Test
II

Test
I

Test
II

What did the king had? 0 5 0 2
What stood in the garden? 6 5 1 2
Why was the king angry? 3 8 2 6

What were always counted? 2 2 2 2
What did the king order his

gardener?
4 6 1 3

What was missing in the
morning?

3 8 2 5

The desired outputs in the above test share some
words/symbols with the input sequence. This is a consequence
of forming grammatically valid sentences or sequence of words.
However, multiple grammatically valid sentences that represent
the same answer can possibly be generated, thus potentially
limiting the usefulness of the Levenshtein distances measured
above. The above distance measures can be improved by
disregarding the words/symbols from the input sequence that are
present in the desired output and the outputs from the ANAKG
and LUMAKG memories. The main reason for such omission is
that neurons associated with these words are directly activated
by the input sequence, so their removal simplifies assessment of
the network generated response. The resulting outputs are shown
in Tables 4 and 5. The results of applying the Levenshtein
distance measure to the resulting output sequences so obtained
are shown in Table 6 and show that performance of LUMAKG
was the same or better than that of ANAKG. These results also
show that while both ANAKG and LUMAKG can provide
reasonable responses when trained with a small dataset the
performance of LUMAKG is considerably better when there are
a large number of sequences in the training set.

Reciprocal Word Position

A difficulty in evaluating responses or answers of semantic
memories, like those based on ANAKG and LUMAKG, is the
difficulty in determining what is the correct response from
associative spatio-temporal memory? Thus, Levenshtein
distance while a good measure of text similarity is, in this case,
limited. Hence, we designed a new quality measure called
reciprocal word position (RWP).

RWP measures user’s effort in extracting the desired
response from the output generated by the semantic memory.
RWP is calculated as follows:

Compare the positions of all the words in the desired output to
those in the actual memory output,

a) if the positions are the same the word gets a weight of 1;
b) if the positions are different by ‘n’ words the word gets a
weight of 1/(n+1);
c) if a word does not exist it gets a weight of 0;
d) RWP equals to the sum of the weights of all the words in
the desired sequence divided by the maximum of the number
of words in the desired and actual outputs.

The measure is normalized since the lowest value is 0 and
the highest is 1 and a higer value of RWP indicate better match
between the sequences. For example, assume the desired output
is “likes cold water” and the generated answer is “cold water
likes”. Then the second and third words from the desired output
are shifted by one position, whereas the first word is shifted by
two positions in the generated output, and the resulting RWP is
(1/2+1/2+1/3)/3 = 4/9.

TABLE 4. INPUT SEQUENCES AND OUTPUT SEQUENCES, DISREGARDING INPUT
SYMBOLS, GENERATED BY ANAKG AND LUMAKG.

Input sequence ANAKG
memory
output

LUMAKG
memory output

Desired output

What did the
king had?

a beautiful
garden

a beautiful
garden

a beautiful
garden

What stood in
the garden?

a tree a tree a tree

Why was the
king angry?

at an apple
missing

at an apple
missing

at an apple
going missing

What were
always
counted?

 Apple that

What did the
king order his
gardener?

 was to keep
watch

to keep watch

What was
missing in the
morning?

another of
apple

another of
apple

another of
apple

TABLE 5. INPUT SEQUENCES AND OUTPUT SEQUENCES, DISREGARDING INPUT
SYMBOLS, FOR LARGER NUMBER OF TRAINING INPUT SEQUENCES.

Input
sequence

ANAKG
memory
output

LUMAKG
memory output

Desired output

What did the
king had?

 a beautiful
garden

a beautiful
garden

What stood in
the garden?

 stood a tree a tree

Why was the
king angry?

should at should at an
apple

at an apple
going missing

What were
always

counted?

 Apple that

What did the
king order his

gardener?

 to keep watch to keep watch

What was
missing in the

morning?

 another of apple another of
apple

TABLE 6. LEVENSHTEIN DISTANCE TO THE DESIRED OUTPUT, DISREGARDING
INPUT SYMBOLS, IN BOTH TYPES OF MEMORIES.

Input sequence
ANAKG LUMAKG

Test
I

Test
II

Test
I

Test
II

What did the king had? 0 3 0 0
What stood in the garden? 0 2 0 1
Why was the king angry? 1 5 1 3

What were always counted? 2 2 2 2
What did the king order his

gardener?
3 3 1 0

What was missing in the
morning?

0 3 0 0

TABLE 7. RWP TO THE DESIRED OUTPUT, DISREGARDING INPUT SYMBOLS, IN
BOTH TYPES OF MEMORIES.

The results applying RWP measure to the ANAKG and
LUMAKG memory outputs from Tables 4 and 5 are shown in
Table 7. These results also show that the performance of
LUMAKG based semantic memory is equal to or better in all
cases than ANAKG based semantic memory and its relative
recall quality over ANAKG increases as the memory size
increases.

D. Computational Complexity
The third type of tests was performed to determine

computational complexity of LUMAKG memory in comparison
to ANAKG memory. We tested the time needed to create the
associative memory as a function of the number of objects. The
results for a data set of all stories in Grimm’s Fairy Tales are
shown in Fig. 8-9. Fig. 8 shows the change in the number of
unique objects (unique words) as the number of all objects (all
words in all sentences) in the dataset increases. Neurons
represent unique words in the neural knowledge graphs. As
more input sequences are entered into the system, more mini-
columns were previously introduced, and the rate of increase of
unique objects slows down. Fig. 9 shows the learning time for
both ANAKG and LUMAKG as a function of all objects in the
data set. We see that computational cost for LUMAKG is
between 30-40% higher than for ANAKG. Tests were
performed on a general purpose laptop (i5-4300M CPU, 2.6
GHz, 8GB RAM).

Fig. 8. Results for a large data set: number of neurons in ANAKG and mini-
columns in LUMAKG as a function of the number of learned objects.

The number of neurons in LUMAKG memory is k times
larger than in ANAKG memory, where k is the number of
neurons in each mini-column (in our tests k=5). However, the
number of synapses does not grow as fast since the number of
associative links between all neurons corresponds to the number
of transitions between various words. They are just spread over
the larger number of neurons. Although the training time is
greater for LUMAKG than for ANAKG due to the need of
finding predecessor and successor for each element of the
training sequence, the quality of results points to better
properties of LUMAKG graphs, which make them more suitable
to develop short term associative memories.

Fig. 9. Results for a large data set: learning times in ANAKG (lower curve) and
LUMAKG (upper curve) as a function of the number of learned objects.

V. CONCLUSIONS
Presented in this paper LUMAKG memory supports

continuous on-line learning, self-organization without
supervised learning, context based predictions, and is capable of
recognizing time-domain sequences correctly. LUMAKG
shows better ability to recall sequences stored in the memories
than ANAKG to which it was compared. Using Levenshtein
distance and another quality measure, we also show that
LUMAKG memory has higher capacity and better resolution for
short term memory recall. Future work is to extend LUMAKG
to a distributed representation of all symbols stored in the
memory which will significantly increase its storage capacity.
Further studies will also be performed on a larger training data
sets and a larger number of the test sequences to obtain a
statistically sound assessment of the network properties. The
effect of varying the number of neurons in minicolumns on
performance will also be studied. ANAKG memories and its
derivatives are new types of memories that are under intensive
investigation. Their properties are explored with a final goal to
use them as basic models for self-organization of the semantic
memories.

ACKNOWLEDGMENT
This work was supported by a grant from the National

Science Centre of Poland DEC2016/21/B/ST7/02220 and by
AGH 11.11.120.612.

Input sequence
ANAKG LUMAKG

Test
I

Test
II

Test
I

Test
II

What did the king had? 1 0 1 1
What stood in the garden? 1 0 1 1/3
Why was the king angry? 7/10 1/10 7/10 3/10

What were always counted? 0 0 0 0
What did the king order his

gardener?
0 0 3/8 1

What was missing in the
morning?

1 0 1 1

REFERENCES
[1] J.R. Bider, R.H. Desa, The neurobiology of semantic memory, Trends in

Cognitive Sciences, vol. 15, issue 11, 2011, pp. 527-536.
[2] W. Kintsch, The role of knowledge in discourse comprehension. A

construction-integration model. Psychological Review, vol. 95, 1988, pp.
163–182.

[3] S. Haykin, Neural networks. A comprehensive foundation, 1994.
[4] S. Hochreiter, J. Schmidhuber, Long short-term memory. Neural

computation, vol. 9, issue 8, no. 15, 1997, pp. 1735–1780.
[5] T. Mikolov, et al., Extensions of recurrent neural network language

model. IEEE Int. Conf. on Acoustics, Speech and Signal Processing
(ICASSP), Prague, pp. 5528-5531, 2011.

[6] J. Weston, S. Chopra, A. Bordes, Memory networks. 3rd Int. Conf. on
Learning Representations (ICLR 2015), eprint arXiv.1410.3916v11
[cs.AI], 2015.

[7] M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and D. Hal III, A
neural network for factoid question answering over paragraphs. Conf. on
Empirical Methods in Natural Language Processing (EMNLP) , 2014, pp.
633–644.

[8] A. Graves, G. Wayne, and I. Danihelka, Neural Turing Machines. arXiv
preprint arXiv.1410.5401, 2014.

[9] A. Horzyk, How Does Generalization and Creativity Come into Being in
Neural Associative Systems and How Does It Form Human-Like
Knowledge? DOI. 10.1016/j.neucom.2014.04.046, Neurocomputing, vol.
144, 2014, pp. 238-257.

[10] A. Horzyk, J.A. Starzyk, and Basawaraj. Emergent creativity in
declarative memories. 2016 IEEE Symposium Series on Computational
Intelligence, DOI. 10.1109/SSCI.2016.7850029, Athens, Greece, 2016.

[11] J. Hawkins, S. Ahmad, and D. Dubinsky, Cortical learning algorithm
and hierarchical temporal memory.
http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf,
2011.

[12] Y. Cui, C. Surpur, S. Ahmad, and J. Hawkins, Continuous online
sequence learning with an unsupervised neural network model.
arXiv.1512.05463 [cs.NE], 2015.

[13] H. Jaeger, Adaptive nonlinear system identification with echo state
networks. In Advances in Neural Information Processing Systems 15
(NIPS 2002), pages 593–600. MIT Press, Cambridge, MA, 2003.

[14] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural
Computation 1997, vol. 9, issue 8, 1997, pp. 1735-1780.

[15] W. Maass, Networks of spiking neurons: The third generation of neural
network models, Neural Networks, Vol. 10, Issue 9, Elsevier, 1997, pp.
1659–1671.

[16] Izhikevich E.M. (2003) Simple Model of Spiking Neurons IEEE
Transactions on Neural Networks, 14:1569- 1572.

[17] E.M. Izhikevich (2006), Polychronization: computation with spikes.
Neural Computation vol. 18, no2, pp. 245–282.

[18] A. Horzyk, J.A. Starzyk, J. Graham, Integration of Semantic and Episodic
Memories, IEEE Trans. on Neural Networks and Learning Systems, 2017,
DOI: 10.1109/TNNLS.2017.2728203 (in press).

[19] https.//www.cs.cmu.edu/~spok/grimmtmp/, last accessed 2017/08/07.
[20] S. K. Ray, S. Singh, and B. P. Joshi (2010), A semantic approach for

question classification using WordNet and Wikipedia. Pattern
Recognition Letters, 31(13), pp.1935-1943.

[21] S. Tellex, B. Katz, J. Lin, A. Fernandes, and G. Marton, 2003, July.
Quantitative evaluation of passage retrieval algorithms for question
answering. In Proc. of the 26th Annual Int. ACM SIGIR Conf. on
Research and Development in Informaion Retrieval (pp. 41-47).

[22] S. Büttcher, C.L. Clarke, and G.V. Cormack, 2016. Information retrieval:
Implementing and evaluating search engines. Mit Press.

[23] V.I. Levenshtein, Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics - Doklady, vol. 10, no.8, 1966, pp. 707-710.

[24] D. Radev, H. Qi, H. Wu and W. Fan, Evaluating web-based question
answering systems, Proceedings of the 3rd Int. Conf. on Language
Resources and Evaluation (2002).

http://numenta.org/resources/HTM_CorticalLearningAlgorithms.pdf
https://www.cs.cmu.edu/%7Espok/grimmtmp/

	I. Introduction
	II. LUMAKG Organization and Principles
	III. LUMAKG Algorithm and its Illustration
	IV. Comparative Tests of LUMAKG
	A. Resolution of Recalled Sentences
	B. Testing a Large Data Set
	C. Network Response Quality Measures
	D. Computational Complexity

	V. Conclusions
	Acknowledgment

