
Feature Significance in Wide Neural Networks

Janusz A. Starzyk, Rafał Niemiec
University of Information Technology and Management

in Rzeszow, Department of Applied Information Systems,
35-225 Rzeszow, Poland

Adrian Horzyk
AGH University of Science and Technology in Krakow,

Department of Biocybernetics and Biomedical
Engineering, 30-059 Krakow, Poland

Abstract—Wide neural networks were recently proposed as a less
costly alternative to deep neural networks. In this paper, we analyze
the properties of wide neural networks regarding feature selection
and their significance. We compared the random selection of weights
in the hidden layer to the selection based on radial basis functions.
Wide neural networks were also compared with fully connected
cascade networks. Feature significance was introduced as a measure
to compare various feature selection techniques. Another
performance measure introduced in this paper – incremental feature
significance - determines the level of improvement that results from
selecting only some features, which were added to the existing
features, rather than replacing one set of features with another. In
both cases, we can also estimate the number of features saved by
replacing the original features with the selected ones for which
recognition levels improve. This approach can be applied to wide
networks that use different feature selection methods than those that
are analyzed in this paper; like a k-nearest neighbor, an autoencoder
etc.

Keywords—Broad neural networks; feature significance;
incremental feature significance.

I. INTRODUCTION
In 2018, Chen and Liu [1] presented wide neural networks

(also known as broad neural networks) as an alternative to deep
neural networks (DNN) that can be easier and faster trained.
These networks had a structure of a single layer feedforward
neural network with a large number of neurons in the hidden
layer. They were characterized with good performance and
much higher speed of training than deep neural networks. Wide
neural networks are flat, so there is no problem with exploding
or vanishing gradient descent (an advantage in comparison to
DNN).

Moreover, in flat neural networks, real features can be
created as a group of combined weights and neurons influencing
the results in the output layer. The question we try to answer in
this paper is about the quality of features represented in wide
neural networks. Can we say that one set of features is better
than another one, and how to measure the feature quality?

Properties of a single-layer feedforward neural network
(nonlinear perceptron) as a general function approximator were
investigated since 1980ies [2], [3]. A nonlinear perceptron uses
a single hidden layer with a nonlinear transformation of the
combination of the input signals in each hidden neuron to
approximate an unknown function f(x). Each output of
nonlinear perceptron combines outputs from the hidden layer
neurons to produce an approximation function

 f(𝑥) = ∑ 𝑎 ∙ 𝑔(𝑤 𝑥 + 𝑏) (1)

where n is the number of hidden neurons, 𝑤 𝑥 is the inner
product of a weight vector 𝑤 ∈ R , and the input signal vector 𝑥 ∈ R , and 𝑎 , 𝑏 are scalars that can be obtained during the
network training. Nonlinear transformation function 𝑔(.) is a
prespecified logistic function (e.g. sigmoidal or radial).

Barron [4] has proved that the approximation error (a
distance between a function to be approximated and the best
approximation in a given class of approximating functions) for
the nonlinear perceptron tends to zero with the integrated
squared error rate of the order O(1/n) where n is the number of
neurons in the hidden layer. Leshno et al. [5] generalized this
result proving that a nonlinear perceptron and other similar
structures can approximate any continuous function to any
degree of accuracy if and only if the network's activation
function is not a polynomial.

Practical results were developed by Igelnik and Pao [6] who
introduced a Random Vector Functional Link Neural Network
(RVFLNN) that was shown to be a universal approximator for
continuous functions with the approximation error converging
to zero at the rate of O(1/√n). RVFLNN used the neural
network with one hidden layer that implemented the
approximating function f (x). Like in the earlier works, this
function was shown to approximate any function f ∈ C I
which is continuous on the standard hypercube I = [0; 1] ⊂R . From a practical point of view, it is important that the
weights w and coefficients b were randomly selected from a
given distribution and parameters a were learned using simple
quadratic optimization.

Recently Chen and Liu introduced broad learning systems
(BLS) as an alternative structure to deep neural networks [1].
The BLS was based on the idea of RVFLNN presented by
Igelnik and Pao in [6]. Chen and Liu pointed out that deep neural
networks require a very time-consuming training process due to
a large number of weights in filters, layers, and gradient-based
weight adjustment with many training epochs. The BLS is a flat
network in which the input signals are amended by
“enhancement nodes” to obtain a wide neural network structure.
The incremental learning was used to add feature nodes as well
as enhancement nodes. Incremental learning uses pseudoinverse
and allows for incremental increases of neurons as well as
training data without a need to repeat training for all data. They
verified their approach on Modified National Institute of
Standards and Technology data (MNIST) for classification of
handwritten characters and NYU object recognition data

2019 IEEE Symposium Series on Computational Intelligence (SSCI)
December 6-9 2019, Xiamen, China

978-1-7281-2484-1/19/$31.00 ©2019 IEEE 908

(NORB) for 3D object recognition. Weights of the enhancement
nodes can either be randomly selected or trained. Chen and Liu
used a sparse autoencoder approach to fine-tune initially random
weights in order to obtain better features. They compared their
test results with these of many classification methods including
autoencoders [7],[8],[9], multilayer perceptrons [10],[11],
extreme learning machines [12],[13], fuzzy restricted
Boltzmann machines [14], and deep neural networks [15][16].
The BLS network obtained the accuracy of the results
comparable to these reference methods but had the training time
for the MNIST database from 3.6 to 7.3 times shorter than in
extreme learning and fuzzy restricted Boltzmann machines and
from 276 to 1543 times shorter than for autoencoders, multilayer
perceptrons, and deep neural networks. Similar results were
obtained for the NORB data, indicating that the method is much
faster than the reference while maintaining their accuracy of
classification.

The importance of studying wide neural networks was
recently emphasized in [17], where authors pointed out the need
for a comprehensive understanding of the tradeoff between
depth and width in neural networks. They provided a proof that
a deep fully-connected ReLU NN with the width less or equal to
(n+4) can approximate any Lebesgue integrable function in n-
dimensional R space with arbitrary precision. They pointed out
the importance of proving lower and upper bounds to understand
the tradeoff between width and depth of neural networks. Earlier
works [18], [19] pointed out the existence of deep convolutional
networks that cannot be realized by a wide shallow network if
its width is less than the exponential bound of the depth of the
convolutional network. No such equivalent result was
established for wide networks.

There are also other concepts of neural network structures
(e.g. Fully Connected Cascade Networks (FCCN) or Cascade
Correlation [20], [21]) that are neither wide nor deep. These
networks freeze the already learned network structure before
adding a new neuron that is connected not only to all inputs but
also to all neurons of all previous layers. In this concept, each
hidden layer consists of only a single neuron, so it is similar to
the concept of BLS. We refer to such networks comparing their
performance to the performance of wide networks.

In this work, we examine in detail the convergence of
RVFLNN approximation on the MNIST database [22]. In
particular, we show that the convergence is slower than the
claimed rate of 𝑂(1/√𝑛). It is essential to know this
convergence rate since we can introduce and test different than
random features for the better network organization and
performance. On this ground, we introduced and tested the
concept of feature significance. The introduced feature
significance can be a tool that guides the development of wide
neural networks. It is also possible that this kind of estimate of
the future quality can help in designing better neural networks
in general (including deep neural networks).

II. WIDE NEURAL NETWORK ORGANIZATION
The simplest form of the wide network organization based

on a single layer feedforward neural network is shown in Fig. 1.
In this figure, 𝑍 is a 𝑘 × 𝑚 matrix of the input signals 𝑊 and 𝑊 that are weight matrices, 𝑌 = 𝑍 ∗ 𝑊 is an input matrix to

the hidden layer, 𝑍 is determined through the sigmoidal
transformation function of neurons in the hidden layer, so e.g. 𝑍 = 𝑡𝑎𝑛ℎ(𝑌) or using another logistic function 𝑍 = 𝜓(𝑌),
and the neural network output is 𝑌 = 𝑍 ∗𝑊 .

Fig. 1 Single layer feedforward neural network

In RVFLNN networks, 𝑊 is randomly generated, and 𝑊 is
learned by using pseudoinverse 𝑊 = 𝑝𝑖𝑛𝑣(𝑍) ∙ 𝑌 (2)

where Y is a desired value of the output signal Y , so Y
obtained from the output of the neural network is a k × o matrix.
If the hidden layer has n neurons then W is an m × n matrix,
and W is an n × o matrix. Thus, according to the theory of
RVFLNN networks, any continuous output function (desired
values) can be approximated, and the approximation error is
converging to zero at the rate of O(1/√n). If using these
networks for classification problems, the desired output is a class
indicator, and if each output neuron represents a single class, we
can code this fact by assigning the value 1 if the input sample is
from a given class and 0 otherwise. In such a case, the output is
not a continuous function, and we would like to test what is the
convergence rate in this case.

Consider four matrices 𝑍 × , 𝑊 × , 𝑊 × , and 𝑌 ×
representing signals and weights from Fig. 1. We say that the
input matrix 𝑍 consists of k examples of m input features each.
Thus, the network has m input features, n neural features and o
output features. Our study is devoted to neural features. Thus,
when we use the term “feature” we mean a neural feature.

A. Test of the Wide Neural Network with Random Weights
In order to determine the error convergence rate, we tested

many RVFLNN neural networks on the MNIST data [22]
varying the number of neurons in the hidden layer. The MNIST
dataset consists of a number of handwritten digits collected from
Census Bureau employees and 500 high-school students. Every
digit is stored as a gray-scaled image with the size of 28×28
pixels. The digits have been normalized and centered in the
image plane. The whole data set was divided into a training set
containing 60 000 images and a test set of 10 000 images.

In our test, each input image was transformed into a vector
of 784 pixel values scaled from -1 to 1, and desired outputs were

909

written as 10 element vectors representing digits from 0 to 9.
The k-th element of the output vector had value 1 if the training
data represented digit k-1 and was -1 otherwise. Thus the input 𝑍 was a 60000 × 784 training matrix, and the desired output 𝑌 was a 60000 × 10 matrix with elements equal to 1 and -1.
The 784 × 𝑛 weight matrix 𝑊 had randomly generated weights
of uniform distribution from -1 to 1. 𝑌 = 𝑍 ∙ 𝑊 was computed
from the input data as a 60000 × 𝑛 matrix. The logistic function
used was 𝜓(𝑌) = 𝑡𝑎𝑛ℎ(𝑌), therefore 𝑍 = tanh (𝑌). Also,
the 𝑛 × 10 weight matrix 𝑊 was calculated from 𝑊 =𝑝𝑖𝑛𝑣(𝑍) ∙ 𝑌 .

Table I shows the mean values of the testing error rates and
their standard deviations for the neural network sizes changing
from 2 to 6000 neurons in the hidden layer. The results were
obtained by averaging 20 runs with randomly generated weight
matrices 𝑊 .

TABLE I. TESTING ERROR OF WIDE NEURAL NETWORKS AS A FUNCTION
OF THE NUMBER OF FEATURES (HIDDEN NODES).

When the random weights were generated in the range -0.1
to 0.1, the results of testing with random weights were better.
These results show that weight normalization is important for
better performance.

TABLE II. TESTING ERROR AS A FUNCTION OF THE NUMBER OF
FEATURES FOR RANDOM WEIGHTS FROM -0.1 TO 0.1 INTERVAL.

Number
of

features 𝑛

4 8 16 32 64 128 256

Testing
error rate

in %

72.23 61.87 48.38 35.09 23.73 16.59 11.95

Standard
deviation

2.31 2.75 1.74 1.69 0.56 0.40 0.36

Number
of

features 𝑛

500 1000 2000 3000 4000 5000 6000

Testing
error rate

in %

8.53 5.69 3.66 2.70 2.14 1.74 1.38

Standard
deviation

0.20 0.07 0.05 0.04 0.04 0.03 0.02

Results were only slightly different when the random
weights were generated in the interval from -0.01 to 0.01.

What is unexpected in these results is that even a single layer
of the feedforward neural network with only two hidden nodes
gives better than chance recognition (90% error). It contains

only 20 trained weights. In addition, a linear perceptron with all
the weights trained by pseudoinverse gives 14.22% error, so the
network with 250 hidden neurons which gives better accuracy
(error 12.1%) is easier to train since it computes pseudoinverse
of the 60000 × 250 matrix rather than the 60000 × 784 matrix
required for the linear perceptron.

All the tests were performed on a personal computer Intel-
i5-7400, 3.0 GHz CPU, with 8 GB memory using MATLAB.

We can approximate the classification error obtained in
Table II by the following function: 𝑓(𝑛) = .√ (3)

The constants 2.46 and 7 were obtained experimentally to
match the error level for 2 hidden nodes and get a good fit to
results obtained in the wide neural networks with the increasing
number of hidden nodes in all random features experiments.
This function is compared to the results obtained in the
experiments with the random selection of weights, as shown in
Fig. 2.

Fig. 2 Testing error as a function of the number of hidden nodes with

randomly selected weights.

B. Test of the Wide Neural Network with Radial Basis
Functions

Next, we tested MNIST data recognition using a new set of
features based on radial basis functions (RBF) to determine the
interconnection weights from the input data to hidden neurons.
To obtain RBF for individual hidden neurons, we first generated
their input weights as equal to the coordinates of the randomly
selected training data. Each hidden neuron had a logistic
function described by: 𝑓(𝑥) = 𝑒 (,)∙ (4)

where x is the input data vector, w is the vector of weights of the
hidden neuron, d(x, w) is the distance between the input data
and a hidden neuron, where weights are obtained from 𝑑(𝑥,𝑤) = 𝑚𝑎𝑥┬ (‖𝑥 − 𝑤‖ − �̅� + 2 ∙ 𝜎 , 0) (5)

and d is the mean value of norms of differences between weights
of hidden neurons (or coordinates of selected training data
vectors) for all pairs of hidden neurons

0 100 200 300 400 500

10

20

30

40

50

60

70

80

Error as a funtion of the size of hidden layer

Number of neurons

Er
ro

r i
n

%

Number of
features 𝑛 4 8 16 32 64 128 256

Testing
error rate

in %
78.02 69.90 59.26 49.93 36.86 23.67 16.19

Standard
deviation 3.44 3.28 3.85 2.73 2.02 0.87 0.44

Number of
features 𝑛 500 1000 2000 3000 4000 5000 6000

Testing
error rate

in %
12.54 8.55 5.71 4.35 3.47 2.88 2.54

Standard
deviation 0.23 0.15 0.14 0.11 0.09 0.08 0.05

910

�̅� = ∑ ‖ ‖∙(), , (6)
and 𝜎 is the standard deviation of such norms.

Notice that the values d and σ are calculated only once after
the random selection of training data points. During testing, each
hidden neuron calculates its own logistic function value based
on the distance of the input data x to its weights vector w.

To obtain statistics needed for the RBF function, we
calculated the mean of norms of the differences between weights
and their standard deviations for a various number of hidden
neurons. The results were surprisingly stable across these
numbers, as we can see in Table III.

TABLE III. DIFFERENCE BETWEEN WEIGHTS OF HIDDEN NEURONS USED
IN THE SELECTION OF FEATURES BASED ON THE RADIAL BASIS FUNCTION.

Number
of features 𝑛

4 8 16 32 64 128 256 512 1024

Mean
norm of

difference

20 19.3 20.3 20.8 20.5 20.4 20.1 20.3 20.2

We used the average mean for all dimensions equal to d =20.2 and the standard deviation σ = 3.74 to design radial basis
functions for hidden neurons (equations (4) and (5)). When the
radial basis functions were used in structuring wide neural
networks, the performance increased (classification errors were
reduced), as shown in Table IV.

TABLE IV. CLASSIFICATION ERRORS FOR WIDE NETWORKS WITH RADIAL
BASIS FUNCTIONS.

Number of
features 𝑛

4 8 16 32 64 128 256

Testing
error rate in

%

70.03 54.43 41.52 26.39 17.62

11.98

7.52

Standard
deviation

3.82

2.72 2.69

1.53 0.61

0.40 0.20

Number of
features 𝑛

500 1000 2000 3000 4000 5000 6000

Testing
error rate in

%

5.44 3.85 2.64 2.03 1.69 1.36 1.15

Standard
deviation

0.10 0.05 0.04 0.04 0.03 0.02 0.02

These results are partially illustrated in Fig. 3 by green *
points. As we can see, results are more accurate than the results
for a random selection of features. Thus, this is a better selection
of features for wide neural networks.

B. Test of the FCC Deep Neural Network with Random
Weights

Wide neural networks are characterized by fast learning and
an easy to design architecture. Another approach which
promised similar advantages is a fully connected cascade. We
conducted a speed-accuracy test on a Fully Connected Cascade
(FCC) to discover if the computation time investment into more
layers pays off. We did not expect an overall accuracy increase
of the models, compared to the wide networks, due to the
Universal Approximation Theorem [3].

Fig. 3 Comparison of error functions for the random and RBF selections

We checked how the test accuracy converges with the increase
in the number of FCC layers. We used an FCC network structure
shown in Fig. 4.

 Fig. 4. FCC trained on MNIST

In Fig. 4, each hidden neuron is connected to all input nodes,
all hidden neurons of the higher number, and all outputs. The
number of hidden neurons is gradually increasing, effectively
changing the number of layers (network size) and network
complexity.

The networks of various sizes were trained with the
Levenberg-Marquardt (LM) nonlinear optimizer, aimed to
minimize the mean squared output error (MSE). In order to
make the test results of FCC network in agreement with the MSE
error, we scaled the output vector 10 times. This improved the
recognition stability of the test results, and classification results
are shown in Table V.

0 100 200 300 400 500

10

20

30

40

50

60

70

80

Error as a funtion of the size of hidden layer

Number of neurons

E
rro

r i
n

%

n
:

10
784

911

TABLE V. CLASSIFICATION ERRORS AND TRAINING TIMES OF THE FCC
NETWORK

Number of layers 1 2 3 4 5 6 7 8 9 10

Number of weights
in thousands

7.9 8.6 9.4 10.1 10.8 11.6 12.3 13.0 13.8 14.5

Test error rate in % 8.0 8.5 8.6 8.4 8.2 7.9 8.0 16.9 8.9 17.8

MSE in % 23 23 23 23 23 23 23 24 23 24

Training time [h] 28 28 30 24 28 59 50 51 72 92

Epochs 18 28 30 24 28 27 19 23 21 33

LM is the second-order training method. In practice, the second-
order derivatives matrix inversion should be computed every
time the weight will change. As we can see, the training of this
network is very slow. The fastest training time was 24h. Thus,
we conclude that the LM method is not suitable for practical
problems of this size. Moreover, the FCC was not designed to
be deep in the sense of today standards.

A Modified Cascade (MC) network (without connections
marked by the dotted line in Fig. 4) is notably more compact,
thus faster. Table VI presents the results of this modification. An
error converges to ~ 9% in deeper networks with a standard
deviation of 1%. Comparing to results presented in Table V,
training time (here in minutes) is significantly smaller.

TABLE VI. CLASSIFICATION ERRORS AND TRAINING TIMES OF THE MC
NETWORK

Number of layers 3 4 5 6 7 8 9 10 11 12

Number of weights in
thousands

2.2 2.9 3.7 4.4 5.1 5.9 6.6 7.7 8.1 8.8

Error rate in % 37 21 16 12 12 10 9 11 11 8

MSE in % 23 23 23 23 23 23 23 24 23 24

Training time [min] 3 5 14 28 36 45 57 65 93 96

Overall, we did not find the FCC network to be competitive
with wide networks of a similar level of complexity.

First, FCC network has a delay proportional to the number
of cascaded nodes. Second, the number of weights used is much
larger to reach the same test accuracy, which increases the
training time.

III. FEATURE SIGNIFICANCE
As we could observe using RBF features, the recognition

error was systematically lower than in the case when hidden
neurons had assigned random weights. The question is, how
significant is this improvement?

To be able to answer this question in quantitative terms, we
introduce here a feature significance measure. The random
selection of weights is used as a reference. Any feature selection
method that gives better results than the random selection in
lowering the recognition error should have the significance
higher than 0, and those that give worse result should have the
significance lower than 0. One way of measuring the feature
significance will be to use the ratio of errors for the two methods
compared (for a specific number of the hidden nodes).

Let us define the feature significance using 𝑆 = − 1 (7)

where e is the classification error level obtained by the reference
network, e is the error level obtained by the second method
with the same number of hidden neurons.

For instance, the significance of the random weights
selection vs. theoretical limit √ [6] is shown in Fig. 5. As we
can see, the significance increases for larger networks, which
tells us that the classification error with a random selection of
weights in the hidden layer decreases faster than √ .

Fig. 5 Significance of randomly selected weights vs. theoretically established

limits of error convergence.

Using significance, we can also compare one method to
another. For instance, if e represents the errors obtained in the
random selection of weights in the hidden layer and e weights
of neurons in the RBF approach, then the significance plot is as
illustrated in Fig. 6.

Fig. 6 Significance of RBF functions vs. randomly selected weights.

The result confirms that all network sizes using the RBF are
better than the networks that use randomly selected weights.

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Significance of the random weights vs 1/sqrt(n)

Number of neurons

S
ig

ni
fic

an
ce

 v
al

ue

0 1000 2000 3000 4000 5000 6000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Significance of RBF vs random weights selection

Number of neurons

S
ig

ni
fic

an
ce

 v
al

ue

912

This happens despite the error reduction is defined as a function
of the number of features in both these methods.

Defining the significance of feature selection in a wide
neural network using (7) is a quick and easy check if one method
is better than another. The better method will have a
systematically positive value of the significance measure and the
bigger the significance measure, the better is the feature
selection method.

Another approach to defining the feature selection
significance is to relate it to the number of nodes in the hidden
layer of the worse method needed to obtain a similar accuracy
of classification results as obtained by the better method. We can
do it using theoretical limits of the approximation error as a
function of the number of hidden nodes expressed as O(1/√n).
Since e ~ O(1/√n), we can relate the number of nodes to the
observed error level as n ~ O(1 e⁄) and define the feature
selection significance as 𝑆 = − 1 ~ − 1 (8)

With this definition, at a larger number of hidden neurons in
wide neural networks, the lesser method should increase the
number of neurons in the hidden layer = (S) times to
match the better method.

Using this definition of feature significance, comparing the
errors in the randomly generated weights of hidden neurons to
those generated by RBF hidden neurons, we obtain the results
shown in Table VII.

TABLE VII. % INCREASE IN THE NUMBER OF HIDDEN NEURONS IN
RANDOM SELECTION IN COMPARISON TO THE RBF SELECTION.

Number of
features n

4 8 16 32 64 128 256

Required increase
in

6.4 29.2 35.8 76.8 81.4 91.8 153

Number of
features n

500 1000 2000 3000 4000 5000 6000

Required increase
in

146 118 92.2 76.9 60.3 63.7 44.0

We can see that in the random selection of weights, the
number of neurons needed to obtain an error that matches the
one of RBF should be increased between 6-150%, which
indicates large savings in the neural hardware and simulation
time if RBF features are used to build wide neural networks.

IV. INCREMENTAL FEATURE SELECTION SIGNIFICANCE
The question we asked next is this. Suppose that we already

have a number of features n in a wide network and would like
to add a specific number n of new features that we believe are
good features for a given problem. Thus, we wish to have an
incremental significance measure that evaluates how many
randomly generated features can be saved if the new features are
used. The measure should tell us how much better is to use these
new features than those randomly generated. The savings are
specifically addressed to a subset of all features instead of
replacing all features as we had in the previous case.

We can extend the definition of feature significance (8) to
include the incremental increase in the number of features used
in wide neural networks as follows

S = (9)

This definition is based on the rate of the change of errors if
we use a selected group of new features instead of the same
number of original features. In (9), e is the error level produced
by the network using only the original set of n features, e is the
error level produced by the network in which n features were
replaced by the new set of features, and e is the level of
estimated error for the original features with n features
removed. For simplicity of discussion, let us assume that the
original features were randomly generated and the error level
can be estimated from e = O √ (10)

We can estimate the number of original (random) features
needed to get the testing error e from e = O √ (11)

and error e can be estimated from e = O (12)

Using these estimates, we can compute incremental feature
significance S using

S = = = ()() =
 − 1 − 1 (13)

A. Example
Let us illustrate the incremental feature selection

significance with a simple example shown in Fig. 5. Let us
assume that the error rate was e = 0.26 for n=15 and when two
random features were replaced by selected features (i.e. n = 2)
we got the error rate e = 0.16. Using (3), we can calculate the
incremental significance of these features as 𝑆 = − 1 − 1 = 2.01 (14)

In Fig. 7, the continuous line represents the theoretical error
level estimated by 𝑂(1/√𝑛), on the vertical line, we have errors e and e , the top horizontal line intersects the curve O 1 √n⁄
yielding the estimated error e , and the bottom horizontal line
intersects O 1 √n⁄ giving an estimate of the number of random
features n that would yield the same level of the error level e .

913

Fig. 7 Theoretical example to illustrate the effect of incremental addition of

selected features over the set of random features.

Using (10) and (11), we can estimate this number as n = ∙ n = 39.61 (15)
Thus, it would take more than twice the current number of

random features (around 15) to reach the same error level
(around 0.16). This theoretical result can be confirmed by
inspecting Fig. 7.

B. Incremental Significance of Selected Features
To further explore the effect of incremental addition of

features different than the existing ones, we designed a set of
selected features (which we believed will be useful for
handwritten digit recognition) by observing that in the
handwritten digits, important information is included in the
endpoints of each digit. Both the number of endpoints and their
location are important.

We designed a simple procedure that uses skeletonization to
find the location of the endpoints in all data images. An example
is shown in Fig. 8 for the handwritten digit 3. The location of the
endpoints and their number is recorded and used as selected
features.

Fig. 8. Original digit image, its skeleton, and the location of its endpoints

All endpoints are represented by their x and y coordinates on
the scale from -1 to 1. This location information corresponds to
the activation level of a hidden neuron (one hidden neuron per x
or y coordinate of the endpoint). We limited the number of
endpoints for each digit to be at most 5. Some digits had no
endpoints at all, but some extra endpoints were created due to
sloppy writing or as a result of the skeletonization algorithm, as
illustrated in Fig. 9, where digit 6, that typically has one
endpoint, here, had two of them.

Fig. 9 Spurious endpoint in digit 6.

The problem with the representation of the endpoints
through their coordinates is that when the endpoint is near the
center of the image then the value of its (x, y) coordinates is
close to (0, 0), and effectively such endpoints do not influence
the neural network response (since the corresponding hidden
neurons are not activated). A better approach is to have each
location counts. We can accomplish this by assigning two real
values to x and y using the nonlinear transformation of each x
and y coordinates. First, we normalize x and y within the [0 1]
interval and then calculate a vector function

 𝑓(𝑥) = 𝑐𝑜𝑠 (𝑥 ∙ 𝜋)𝑠𝑖𝑛(𝑥 ∙ 𝜋) ∙ 2− 1

Using this transformation, each coordinate value from [0, 1]
interval will be transformed into a pair of values between -1 and
1. This transformation will activate at least one of the hidden
neurons describing where the end-points are. With this improved
representation, each endpoint requires 4 hidden neurons. Thus
for 5 endpoints, we add 20 hidden neurons.

The question is how significant are these extra features
represented by the coordinates of the endpoints. To answer such
a question, we tested wide neural networks with various
numbers of hidden neurons. This resulted in two types of errors,
error e which was obtained when all features of the hidden
neurons were randomly generated, and error e obtained in the
networks in which 20 random features were replaced by 20
features representing the endpoints. Next, we calculated the
incremental significance measure S using (13) and the number
of saved neurons in the hidden layer if all features are based on
the random selection from ∆𝑛 = ∙ 𝑛 − 𝑛 (17)

The results are shown in Table VIII.
TABLE VIII. THE INCREMENTAL SIGNIFICANCE OF THE ENDPOINT

FEATURES AND THE NUMBER OF SAVED FEATURES COMPARED TO RANDOM
FEATURE SELECTION.

As we can see, both the significance of the selected endpoint
features as well as the number of random features needed to
compensate for the lack of these features are increasing with the
network size.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5
Classification error rate

number of features

th
e

er
ro

r r
at

e

Number of
features

32 64 125 250 500 1000 2000 3000

incremental
significance 𝑆

0.8 1.7 2.9 3.97 5.2 7.2 8.7 10.9

number of
futures saved

39 82 202 342 568 1058 1543 2374

914

V. CONCLUSION
This paper discussed the significance of the feature selection

for wide neural networks. Obtained experimentally, the testing
accuracy confirmed claims that the testing error decreases with
the increasing number of hidden neurons, although there are
significant differences in the performance of different feature
selection methods for the same number of hidden neurons. We
compared recognition accuracy on the MNIST database using
two approaches: 1) randomly selected weights from the input
layer to hidden neurons, and 2) weights based on radial basis
functions. Both methods gave wide neural network structures
without expensive iterative learning that characterize deep
neural networks. It requires only a pseudoinverse to train the
output layer that classifies the input data. However, the selection
of weights using radial basis functions required a smaller
number of hidden neurons to obtain a similar level of
recognition accuracy. We also compared wide networks to
connected cascades and demonstrated that these techniques,
although their simplicity in construction, are not competitive
with wide networks.

To measure the quality of the applied feature selection
method, we introduced two significance measures. The first
measure compared two methods of feature selection applied to
all hidden neurons. The second method allowed for incremental
testing of selected features while leaving the remaining features
without change. This second approach is particularly useful to
test a smaller number of specifically selected features that may
require special preprocessing of data to establish the features.
In addition, we can translate the feature significance into the
number of random features that would have to be added to the
wide network in order to obtain a similar performance as the
network with added (possible more elaborate) features.

In future work, we want to explore tradeoffs between the
number of hidden neurons in wide neural networks vs. width
and depth of deep neural networks to better understand
tradeoffs between the two parameters of modern neural network
structures.

ACKNOWLEDGMENT
This work was supported by the grant from the National

Science Centre, Poland DEC-2016/21/B/ST7/02220 and AGH
16.16.120.773.

REFERENCES
[1] C.L.P. Chen, and Z. Liu, “Broad Learning System: An Effective and

Efficient Incremental Learning System Without the Need for Deep
Architecture”, IEEE Transactions on Neural Networks and Learning
Systems, vol. 29 , Issue: 1 , Jan. 2018, pp. 10-24.

[2] K-I Funahashi, “On the approximate realization of continuous mappings
by neural networks”, Neural networks, vol. 2, pp.183-192, 1989.

[3] K. Hornik, M. Stichcombe, H. White, “Multilayer Feedforward
Newtworks are Universal Approximators”, Neural networks, vol. 2, pp.
359-366, 1989.

[4] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Trans. Inform. Theory, vol. 39, pp. 930-945,
1993.

[5] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, “Multilayer
feedforward networks with a nonpolynomial activation function can
approximate any function,” Neural Networks, vol. 6, no. 6, pp. 861–867,
1993.

[6] B. Igelnik and Y-H. Pao, Stochastic Choice of Basis Functions in
Adaptive Function Approximation and the Functional-Link Net”, IEEE
Trans. on Neural Networks, vol. 6 , Issue: 6 , Nov. 1995, pp. 1320-1329.

[7] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comput., vol. 18, pp. 0899–7667, May 2006.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[9] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th Int. Conf. Machine Learning (ICML), New York, NY, USA, 2008,
pp. 1096–1103.

[10] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag, 2006.

[11] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in Proc.
Int. Conf. on Artificial Intelligence and Statistics (AISTATS), vol. 1.
2009, p.3.

[12] E. Cambria et al., “Extreme learning machines [trends controversies],”
IEEE Intelligent Syst., vol. 28, no. 6, pp. 30–59, Nov. 2013.

[13] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Trans. Neural Networks Learn. Syst., vol.
27, no. 4, pp. 809–821, Apr. 2016.

[14] S. Feng and C. L. P. Chen, “A fuzzy restricted Boltzmann machine: Novel
learning algorithms based on crisp possibilistic mean value of fuzzy
numbers,” IEEE Trans. Fuzzy Systems, vol. 26, issue 1, Feb. 2018, pp.
117-130.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25 (NIPS 2012), F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, Eds. New York, NY, USA,
2012, pp. 1097–1105.

[16] J. Chen, K. Li, K. Bilal, X. Zhou, K. Li, P.S. Yu, “A Bi-layered Parallel
Training Architecture for Large-Scale Convolutional Neural Networks,
IEEE Trans. on Parallel and Distributed Systems, vol. 30, issue 5, May
2019, pp 965-976.

[17] Z. Lu, et. all. “The Expressive Power of Neural Networks: A View from
the Width”, 31st Conf. on Neural Information Processing Systems (NIPS
2017), Long Beach, CA, USA, arXiv:1709.02540.

[18] N. Cohen, O. Sharir, and A. Shashua. “On the expressive power of deep
learning: A tensor analysis”, Conf. on Learning Theory, pp. 698–728,
2016.

[19] R. Eldan and O. Shamir, “The power of depth for feedforward neural
networks”, Conf. on Learning Theory, pp. 907–940, 2016.

[20] I.V. Tetko, A.E.P. Villa ,“An Enhancement of Generalization Ability in
Cascade Correlation Algorithm by Avoidance of Overfitting Overtraining
Problem”, Neural Processing Letters August 1997, vol. 6, Issue 1–2, pp
43–50.

[21] C.L. Giles et all., “Constructive learning of recurrent neural networks:
limitations of recurrent cascade correlation and a simple solution”, IEEE
Trans. on Neural Networks, vol.6 , Issue: 4 , Jul 1995.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

915

