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Abstract—This paper presents a structural organization of 
declarative memories using a new model of spiking neurons.  Using 
this model we propose a self-organizing mechanism to build 
episodic and semantic memories on the cognitive level. Neurons in 
this approach represent symbolic concepts that are stored and 
associated with each other based on the observed events in the 
environment. We demonstrate that the associative neuron and 
their synaptic connections yield memories that are capable to 
recognize sequences of events and therefore can be a foundation 
for episodic memories. We also demonstrate that semantic 
memories build using these neuron models are capable to store the 
knowledge and respond in a novel, creative way to input stimuli. 
The paper presents the developed associative neuron model, 
neural network organization that results from input sequences, 
and simulation results. 

Keywords — associative neurons; declarative memory; episodic 
memory; semantic memory; emergent creativity. 

I. INTRODUCTION  
Declarative memories are used in cognitive systems to store 

past episodes, experiences and knowledge that can be 
cognitively explained [1]. They are an essential functional 
component of any cognitive system, supporting understanding, 
planning, anticipation, procedural learning, and cognitive 
support for desired actions. Declarative memories can be 
divided into episodic and semantic memories that complement 
each other in their operations and concept forming. Concept 
forming results from observations of activities in the external 
world, where sensory inputs activate lower levels of the sensory 
neurons hierarchy and objects are recognized and categorized 
using so called symbol grounding process [2]. Full treatment of 
building object representations and symbol grounding is beyond 
the scope of this paper, thus in further discussion we assume 
symbolic representations of the perceived objects, actions and 
goals. 

Semantic memory is a repository of knowledge in a 
cognitive system, and its structure gradually emerges from the 
learning process. Neurons in the semantic memory build 
synaptic connections between associated concepts representing 
their relationships between each other and relations to cognitive 
agent objectives [3]. Episodic memory uses the concepts stored 
in the semantic memory to register the personal history of events 
located in time and space [4]. Episodic memory supports 
learning in the semantic memory by providing a recollection of 
past events. In return, semantic memory provides a wider 
context and understanding of the observed scenes, and using 
associations to the observed events it may trigger associated 

events that could suggest alternative solutions to a problem, 
guiding a cognitive system to a successful completion of its 
goals. 

Semantic memory is critical for creative approach to 
problem solving. By focusing attention on a specific concept or 
idea, it may create new ideas and allow evaluation of thoughts 
related to an intrinsic goal of the cognitive system. Such an 
approach was suggested in the motivated learning cognitive 
architecture (MLECOG) [5] that used attention focus, attention 
switching, intrinsic motivation and goal creation to solve 
machine’s problems. Semantic and episodic memories are 
essential functional components of the MLECOG architecture.  
Their functionalities were described in [5] in relation to other 
functional blocks like sensory and motor processing, working 
memory, motivations and goal creation, and motor control, 
however there was no specific recommendation for how these 
memories should be organized. 

In this paper we provide a unifying approach to organization 
of episodic and semantic memory, based on a new model of 
associative neurons used in a self-organizing structure of these 
memories. An associative neuron model has been proposed in 
[6] and was used to obtain synaptic connections between 
concepts presented to the system in input sequences (e.g. 
sentences represented by sequences of words). A neural network 
that resulted from the process of associative neuron synaptic 
connection building demonstrated emergent creativity, and was 
able to classify, categorize and answer questions related to 
sequences used during a training process. This associative 
neuron model was modified in this work by changing neuron’s 
activation threshold to reflect frequency of its use, adopting 
neurons self-organization to requirements of episodic memory, 
considering influence of fanout on neuron activation, 
and introducing synaptic fatigue.  

We demonstrate how such a modified associative neuron can 
be used to build an integrated declarative memory and test its 
properties. Organization of semantic and episodic memories and 
their internal dynamics are different, however they share the 
same model of neurons and self-organizing principles. We 
demonstrate emerging creativity of the obtained memories and 
show how they cooperate.  

II. ASSOCIATIVE NEURON 

A. Associative Neuron 
Artificial neural networks (ANN) are usually treated as 

universal nonlinear approximation systems that implement 
projection 푦 = 푓(푥), where x is an input vector and f is a 



 

nonlinear function of many variables [7]. The function f 
computes an output on the basis of the weighted sum of inputs 
and can be used for classification, regression or prediction. 
Artificial neurons can be connected in various ways however 
the most popular is a multilayer structure. The biological nature 
of neurons is rarely used in computational intelligence. On the 
other hand, spiking neurons, that better model biological 
neurons, are seldom used in computational intelligence because 
of the difficulties to train them and model efficiently [8]. 

The fundamental question about modelling neurons is what 
impact a neuron should have on its surroundings defined by the 
connected elements and the other neurons that are close in 
space. There are no general rules in artificial neural networks 
that conditionally define plasticity of neurons, provide new 
neurons or new connections and change the structure or 
parameters of already created neurons and synapses. Most 
methods adjust a structure experimentally, adding new 
elements when the result of training are insufficient or 
removing them when a network overfits [7]. In this work, we 
use a biologically plausible mechanism which is defined by 
activations of neurons and time that elapses between these 
activations. The proposed associative model of neuron focuses 
on these properties of biological neurons that enable them to 
cooperate in representation of frequent combinations of input 
signals. Input signals can have an external sensor origin or be 
internally produced as a result of neural activations. The 
associative model also defines a role of a neuron in a neural 
network structure. In this model, each neuron represents these 
combinations of input signals which activate it. The 
combinations of input signals can be spread over time. It means 
that input signals are successively added over time. This is 
balanced by automatic recovery processes that relax or refract 
neurons over time. In this model the neuron’s activation 
threshold models sensitivity of a neuron to various 
combinations of input stimuli. The sensitivity of each neuron 
allows them to specialize and be not reactive to many 
combinations of input stimuli except those which the neurons 
represents and reacts to. Variable and conditionally updated 
thresholds representing sensitivity of neurons also allow for 
controlling the set of input combinations that are represented by 
neurons. Rising of this threshold enables to specialize a 
function that a neuron plays in its neural structure. Thus, the 
main idea of the associative model of neurons is to enable 
neurons to represent various input combinations, specialize 
neurons in their representation and connect neurons to 
emphasize their spatio-temporal associations. In this paper, new 
rules and equations for modelling plasticity of thresholds and 
changing the sensitivity of neurons are proposed and adapted. 

In the contemporary artificial models of neurons used for 
engineering computations, we used to sequentially process 
computations in the discrete steps during which weights are 
updated [7]. Biological neurons work and update their states 
concurrently and asynchronously in time [9, 10]. Moreover, 
many of internal neuron processes are temporal, which enables 
biological neurons to take into account a context of previous 

stimulations for associated in time events that should have an 
impact on parameters and plastic changes in neurons. Artificial 
neurons use various artificial rules to connect neurons or 
construct an artificial neural network structure. Biological 
neurons are plastic accordingly to their activities and their 
frequencies in time [9, 10]. Plasticity allows biological neural 
networks to automatically and conditionally update their 
structures and parameters towards representing processed data. 
Contemporary computational models of neurons usually sever 
this natural ability of biological neurons. In this work, we try to 
propose a new associative model of neurons that is 
conditionally plastic, works and updates its synaptic 
connections concurrently and in real time. In our model, each 
associative neuron is in one of six states (Fig. 1): resting, 
charging, relaxing, activation, absolute refracting, or relative 
refracting, which are decided by its internal excitation level and 
possible external stimulations.  

Fig. 1 States of the associative model of neurons. 

Equations (1), (2), and (3) evaluate an associative neuron 
excitation level respectively during charging, relaxing, and 
refraction periods. 

푋 ∆ = 푋 + ∑ 푋 ∙ 푤 ,→ ∙ 푠푖푛 ∙∆
∙∆

           (1) 

where t is the time when the presynaptic stimulation started to 
influence postsynaptic neuron Ni, t – is the interval  
started from time t when neuron Ni started its charging   
t < ∆푡 ≤ 푡 + ∆t , ∆t  is the period of time necessary to charge 
and activate postsynaptic neuron 푁  after stimulating synapse 
between 푁  and 푁  neurons (here ∆푡 = 20ms), 푤 ,  is the 
synaptic permeability  – a component of  the synaptic weight. 

푋 ∆ = 푋 ∙ ∙ 1 + 푐표푠 ∙∆
∙∆

                                       (2) 

where t < ∆푡 ≤ 푡 + ∆t , ∆t  is the maximum period of time 
during which postsynaptic neuron N  relaxes and returns to its 
resting state after its charging that was not strong enough to 
activate this neuron (here ∆t  = 300ms), 

푋 ∆ = 푋 ∙ ∙ 1 + 푐표푠 ∙∆

∙∆
                                     (3) 



 

where t < ∆푡 ≤ 푡 + ∆t , ∆t  is the maximum period of time 
during which neuron N  finishes its refraction after activation 
and returns to its resting state (here ∆t = 60ms).  

The synapse model introduced in this paper distinguishes 
presynaptic and postsynaptic neuron influences that determine a 
final synaptic weight: 

푤 = 푏 푐 푚                 (4) 

where  
푏     is the behavior factor that determines how the synapse 

influences the postsynaptic neuron ( 푏 = 1  when this 
influence is excitatory and 푏 = −1 when is inhibitory),  

푐     is the synaptic permeability that specifies how strongly 
the input stimulation influences the postsynaptic neuron 
considering elapsed time between activations of pre- 
and postsynaptic neurons, 

푚   is the multiplication factor that determines how strongly 
this stimulation should influence the postsynaptic 
activity due to the frequency and importance of the 
association defined by training sequences and their 
repetitions. 

The presynaptic influence is determined by the synaptic 
efficiency δ ,  of a synapse between neurons 푁 → 푁  
which is defined as:  

δ , = ∆ ∆ ,∆  
∆{( , )∈ ∈ 핊}

     (5) 

where  
∆푡  is the period of time that lapsed between stimulation of 

synapse between 푁  and 푁  neurons and activation of 
postsynaptic neuron 푁  during training, 

∆푡  is the period of time necessary to charge and activate 
postsynaptic neuron 푁  after stimulating synapse 
between 푁  and 푁  neurons (here ∆푡 = 20ms), 

∆푡  is the maximum period of time during which 
postsynaptic neuron 푁  relaxes and returns to its resting 
state (here ∆푡  = 300ms), 

훾     is a context influence factor changing the influence of 
the previously activated and connected neurons on the 
postsynaptic neuron 푁  (here equal to 4). 

S   is a training sequence during which activation of 
presynaptic neuron N  and postsynaptic neuron N  
were observed, 

 핊    is the set of all training sequences used for adaptation. 
Using (5) the synaptic permeabilities are computed for all 
outgoing synapses by one of the following methods: 

Linear permeability formula 
푐 =

 
                                (6) 

Square root permeability formula 
푐 =

 
                         (7) 

Quadratic permeability formula 
푐 =

 
                         (8) 

 

Proportional permeability formula 
푐 =                           (9) 

Power permeability formula 

  푐 =                          (10) 
where                        

휂  is a number of activations of a presynaptic neuron 푁  
during training, 훿 is a synaptic efficiency computed for this 
synapse (5), and k>1 is an integer.  

The multiplication factors are computed by postsynaptic 
neurons for all incoming synapses in cases when postsynaptic 
neuron thresholds are big and presynaptic activity of neurons 
conducted by single weights are not enough to achieve these 
thresholds due to the training sequences and order of elements 
represented by the following neurons that should be activated 
automatically. If the context of presynaptic activity of neurons 
is unique and represents a full subsequence of any training 
sequence (Fig. 5) it should be able to activate the neuron 
representing the next element in this sequence. If it does not it 
means that the existing connections are too weak and should be 
increased. Thus, synapses between neurons are multiplied and 
strengthen by the postsynaptic neurons that were supposed to be 
activated but were not. A simple rule is used: If the neuron is not 
activated by previously activated neurons that represent the first 
part of a sequence (푆 → ⋯ → 푆 ), then the synaptic weights 
between all activated presynaptic neurons 푁 , … , 푁  
(representing the context) and this neuron 푁  should be 
increased. In order to correctly compute necessary 
multiplication of synaptic connections between presynaptic 
neurons and the postsynaptic neuron we have to compute a 
postsynaptic neuron total excitation 푋 ⋯ . 

The multiplication factors are computed after the following 
formula: 

푚 = ⋯ −           (11) 

where 
휃  is the activation threshold of postsynaptic neuron 푁  

(here 휃  = 1), 
푥  is the last postsynaptic stimulation made by activated 

presynaptic neurons to the postsynaptic neurons, 

The only limitation for computing multiplication factor is 

푚 ≤ 휃                   (12) 

Hence, if any of the computed multiplication factors after (11) 
is bigger than the threshold of the postsynaptic neuron it is 
reduced to it appropriately (푚 = 휃 ). 

B. Threshold Increase 
The development, maturation, and growth of cerebral 

cortical interneurons were studied in [11]. The morphological 
study revealed that large interneurons had significantly more 
branching material in the postnatal brains than their prenatal 
neurons (Fig. 2). These increases of dendritic span and 
branching provide larger receptive areas which may improve the 



 

development of connections in functional intracortical columns.  
Increase in the neuron size and its dendritic span corresponds to 
a larger number of ions that must be delivered to a neuron to 
activate it. In addition, a neuron that is more frequently activated 
grows, while the one that is not activated shrinks reducing a 
minimum number of ions required for its activation. Thus, we 
can reasonably assume that the size of the soma can grow as 
more connections are made to a neuron. 

Thus we propose an associative neuron model which 
increases its activation threshold when the neuron is more 
frequently activated. This changes the sensitivity of neurons to 
input stimulations with larger charge needed to activate a neuron 
again. Subsequently, only combinations of stronger or more 
frequent stimuli will activate a neuron. This leads to 
specialization of such neurons and limits input combinations 
that can activate them. Such a process is not destructive because 
specialization of neurons enables them to be more specific, and 
react more adequately to a situation. Rejected frequent 
combinations by already specialized neurons are represented by 
smaller neurons and thus automatically an input data space is 
represented more precisely by a larger number of neurons. 

From neurobiology and neuroscience we know that neurons 
can have various sizes of soma and various numbers of dendrites 
and axonal terminals [9, 10]. Neuroscience does not 
satisfactorily explains the functional aspects of these 
differences, which include neurons sensitivity for various 
spatio-temporal combinations of input stimuli, ability to 
specialize neurons in reacting for groups of such combinations, 
creation of multiple connections between the same neurons to 
strengthen associations between represented classes by these 
neurons etc. [6, 12]. 

Fig. 2 When a neuron grows its soma gets larger and requires more charges to 
be activated. In associative neurons this translates to increase of the activation 
threshold. More frequently activated neurons have usually also more 
connections.   

In this paper we model some of these functional aspects of 
neurons and use them in machine learning algorithms to adapt 
active associative neural graphs. Biological neuron bodies have 
different shapes and sizes [10] so the bigger neuronal bodies 
need to be stronger or more frequently stimulated to achieve 
activation thresholds (Fig. 2). Moreover, bigger neuron bodies 
have larger surfaces that can have more built in ion channels 
which can accelerate ion flux processes. Thus bigger neurons 
charge, relax and refract usually faster than smaller ones [10, 
13].  

Neurons should be activated in a proper sequence to the 
activations of other neurons to represent the subsequent 
elements of the trained sequence. Thus only a full previously 
activated context for each element should activate the neuron 
representing this element. Hence, we need to adapt the neuron 
sensitivity to make its activation possible only when 

stimulations from all presynaptic neurons representing this 
context come. 

푋 ⋯ ≤ 휃 ≤ 푋 ⋯    (13) 

where 푋 ⋯  represents the excitation achieved for the total 
previous context represented by stimulations 푆 , … , 푆  coming 
from neurons 푁 , … , 푁 ; 푋 ⋯  represents the excitation 
achieved for the total previous context without the last element 
of sequence that should charge the neuron above its threshold 
휃 . Thus, when postsynaptic neuron 푁  representing the 
푆  sequence element is activated too early its threshold 
should be increased to exceed its current excitation level: 

휃 = 푋 ⋯ +  휀    (14) 

where 휀 is a small number, e.g. 휀 =  휃 퐾⁄  . 

C. Axon Growth 
As a growing neuron requires more charges to be activated, 

a growing axon also requires more charges to activate an 
increasing number of postsynaptic neurons. This can be 
compared to a fan-out issue in logic gates that determines load-
driving capabilities of a gate. The larger fan-out the longer it 
takes for a gate to charge its output.  

The simple way of introducing the fan-out effect is to 
normalize synaptic permeabilities in the described associative 
neuron model. However, this would increase the importance of 
weak synapses, which is not desirable. In order to avoid such 
increase, we scale the synaptic strength by the norm of all 
synaptic permeabilities of the presynaptic neuron. Thus, if the 
fan-out problem is considered, the associative neuron excitation 
level during charging is evaluated using activities of all 
presynaptic neurons as follows: 

푋 ∆ = 푋 + 

∑ 푋 ∙ ,
→ ∙ 푠푖푛 ∙∆

∙∆
  (15) 

Modification of the associative neuron excitation level to 
(15) is needed in episodic memory to distinguish sequences that 
begin with the same subsequence as discussed in section IV.  

D. Synaptic Fatigue 
Synaptic fatigue [11, 14] is a form of short changes in 

synaptic plasticity that lowers firing activities of a postsynaptic 
neuron. Frequent stimulation of the same sensory neurons 
results in habituation and lowers the neuron’s response. It acts 
as a form of negative feedback that physiologically controls 
neurons’ activity. Synaptic fatigue is caused by a temporary 
depletion of synaptic vesicles that store neurotransmitters 
released at the synapse as a result of repetitive neuronal 
stimulation. The neurotransmitters propagate the signal to the 
postsynaptic neuron. It takes between 1 and 40 seconds for 
neurotransmitter to be released into the synaptic cleft and return 
to presynaptic cell for reuse. If the presynaptic vesicles are 
released into the synaptic cleft faster than they are returned for 
reuse, synaptic fatigue starts to increase. Fig. 3 shows a typical 
central nervous system synapse. 



 

 
Fig. 3 Synaptic vesicles represented by small circles on the top and postsynaptic 
receptors shown in postsynaptic neuron at the bottom. Source 
https://en.wikipedia.org/wiki/Synaptic_fatigue 

Synaptic fatigue can affect synapses of many different types 
of neurons [15]. Although synaptic fatigue existence is widely 
accepted, the exact mechanisms underlying the phenomenon are 
not completely understood. By introducing a mechanism similar 
to synaptic fatigue in our spiking neuron model we obtain better 
tools to model a declarative memory operation.  Synaptic fatigue 
is simulated in our work by modifying resistance of associative 
neurons to activation during charging as follows: 

푋 ∆ = 푋 + 

∑ 푋 ∙ ,
→ ∙ 푆   

∆ ∙ 푠푖푛 ∙∆
∙∆

       (16) 

where the neuron sensitivity factor 푆   
∆  is updated as 

푆   
∆ = 1 − 1 − 푆   ∙ 푒

∆
∆      (17) 

and ∆푡  is the fatigue relaxing time constant during which 
postsynaptic neuron 푁  recovers from the fatigue and 
approaches its full sensitivity to stimuli (here ∆푡  = 20s). 
(16) describes an automatic process of gradual recovery from 
the fatigue, however each time a neuron is activated its 
activation sensitivity 푆   is lowered using 

푆   =
  

∆
   (18) 

where 푆   is neuron’s 푁   sensitivity before activation, 푆   is 
neuron’s 푁   sensitivity after firing, ∆퐹 is a fatigue factor (here 
we use ∆퐹 = 0.03). 

Fig. 4 shows changes in neuron sensitivity due to fatigue 
after it was frequently activated.  

 
Fig. 4 Changes in neuron sensitivity due to a fatigue factor. 

Neuron’s initial sensitivity was 0.9 and activation was in 
discrete time moments equal to [305, 450, 750, 900, 1200, 1530, 
1640, 1630, 3300, 5000, 5600, 12000, 15000, 20000] msec. The 
neuron was frequently activated during first 1630 msec, and 
during this period of time we see decreasing sensitivity, after 
which we see its gradual recovery. 

III. SEMANTIC MEMORY 
Object representation is obtained in the semantic memory 

(SM) through a process of symbol grounding [2], associating 
sensory data with action and reward obtained by the system in 
its interaction with the environment. The semantic memory 
investigated in this paper uses an active neuro-associative 
knowledge graph (ANAKG) – that can represent and associate 
training sequences of objects or classes of objects [6]. The 
memory binds objects that appeared in close proximity in the 
input sequences, providing time domain or spatial associations. 
The created synaptic connections are weighted, so each 
association has its own importance.  The SM gathers knowledge 
about the environment and can provide common sense solutions 
to new situations that were not experienced before, thus 
exhibiting emergent creativity property. The model 
demonstrates that memories can be changed if new data is 
processed or old data is repeated. 

A. Structural Organization of Semantic Memory 
Symbol grounding and learning of complex motor functions 

should be based on finding critical perceptual information about 
objects [16]. In a similar way, we try to improve predictive 
power of episodic memory by focusing on characteristic 
features of the observed episode to better predict the next 
episode. We can accomplish this by selecting most relevant 
input features with the best prediction accuracy. 

Semantic memory results from self-organization of an 
associative neural network that is a result of adding neurons and 
their connections described in equations (1)-(17). Fig. 5 
illustrates the memory structure that results from the presented 
training sequences. Nodes on Fig. 5 represent words (concepts) 
while edges represent spatio-temporal associations. 

 
Fig. 5 A sample neuronal structure formed during associative processes for 
training sequences: “I have a monkey. My monkey is very small. It is very lovely. 
It likes to sit on my head. It can jump very quickly. It is also very clever. It learns 
quickly. My monkey is lovely. My son has a small dog. His dog is white and 
sweet. My daughter has a black cat. Her cat is small and clever.” 

B. Testing Semantic Memory 
Semantic memories are responsible for linking together 
information about various dependencies of represented objects 
and actions performed on them forming knowledge about these 
objects. It should be possible to retrieve various information 
from semantic memory for given contexts as well as to 



 

generalize previously learned information or get some new 
creative responses. 

The proposed model of the semantic memories supplies us 
with all these capabilities. It can learn the most frequent training 
sequential patterns, recall generalized sequences as well as 
create new ones. For the sample data from Fig. 5 and initial 
contexts of stimulation the network we achieve answers shown 
in Table I. This semantic memory recalls back training 
sequences when the initial context is unique. In cases when the 
context is new or not unique we can achieve new or generalized 
answers. Repetition of not unique contexts enables to force this 
semantic memory with recalling the most frequent 
subsequences from the training data. 

Table I. Semantic memory answers to various initial contexts. 

Initial context / Question Network Answer 
I have (a unique context) I have a monkey 
Her (a unique context) Her cat is small and clever 
His (a unique context) His dog is white and sweet 
My (no unique context) My 
My monkey (repeated 5 times) My monkey is small very lovely  
Monkey is (repeated 3 times) Monkey is very small lovely 
Cat (repeated 5 times) Cat is small 
Dog (repeated 3 times) Dog is white 
It (repeated 6 times) It is very lovely 
My son and his dog My son has a small dog and his is white 

sweet dog 
Can I  Can I have a monkey  

IV. EPISODIC MEMORY 
Episodic memory registers time domain sequences of 

episodes, so it can be used for path finding, sequential 
associative learning (speech, motor control), and recollection of 
cognitively observed events. Significance of events has a strong 
influence over the strength and durability of episodic memory.  
More significant events are easier to recall and are remembered 
for a longer period of time. Episodic memory gives us time 
perspective and provides continuity in everyday activities. 
Episodic memory is believed to be stored in hippocampus [17], 
a major part of the brain that has structurally different 
organization of neurons than, responsible for semantic memory, 
cortex.  

A. Structural Organization of Episodic Memory 
Several structural models of episodic memory have been 

proposed [18-21] in the literature in recent years. They differ by 
the structural organization, storage and retrieval mechanism and 
properties such as novelty detection, forgetting, anticipation, 
chunking, etc. 

Our model Błąd! Nie można odnaleźć źródła odwołania. 
used a flexible matching mechanism that measures similarity 
between the learnt and tested sequences. It tolerated errors or 
presentation order, distortion of the observed scene, and varying 
time delay. In this work we adopted a simplified version of this 
memory organization using associative neurons described in 
Section II. We demonstrate that associative neurons and their 
semantic connections learning mechanism can be used to 
formulate episodic memories. 

Basic organization of episodic memory is a self-organizing 
structure of long term memory (LTM) cells shown on Fig. 6. 

During training, primary neurons 푃  that reside in the semantic 
memory are sequentially activated. A sequence of activations 
{푃 , 푃 , 푃 , … , 푃 , 푃 , }  stimulate corresponding secondary 
neurons {푆 , 푆 , 푆 , … , 푆 , 푆 , } in the episodic memory. 
Primary neurons represent concepts, so they role in the semantic 
memory is to represent objects, activities, motivations, or goals 
and to make associations between concepts. 

 
Fig. 6 A model of LTM cell based on associative neurons. 

They respond to external stimuli and implement symbol 
grounding [2], providing understanding of the observed scene. 
The structure and synaptic strength of all the links between LTM 
neurons are fixed, so no learning is necessary, and the only thing 
that differentiates various LTM cells and need to be learned are 
connections to primary neurons. Secondary neuron activation 
can be used to make predictions for the next primary neuron that 
will be activated by the input sequence. 

The primary neurons are linked to the corresponding 
secondary neurons with weights equal to u and the secondary 
neurons are connected to the primary neurons representing the 
next element of the sequence using prediction links with weights 
equal to 1. In addition the secondary neurons are also connected 
to all the subsequent elements of the episode sequence using 
weights obtained from any one of (6) - (10).  

In this work we have set the weights of links from primary 
to corresponding secondary neurons u to 1, but they could be 
normalized to limit the maximum activation to the secondary 
neurons. The activations of the secondary neurons are computed 
using (16) – (18).   

B. Algorithm for Episodic Memory Retrieval 
After the episodic memory was trained, it may be activated 

during a sequence recognition process. The memory retrieval 
involves three stages: event detection, episode recognition, and 
episode recall. Event detection is triggered by activation of 
primary neurons and neurons in the semantic memory activated 
by associations with activated primary neurons. Episode 
recognition is detected by activation of LTM cell neurons. If 
several LTM cells were activated, the cell that was activated first 
most likely represent the observed episode. Episode recall 
provides memory recollection of the rest of the observed 
episode. The episodic recall plays an important role in learning, 
by anticipating the expected events. If the anticipation was 
correct – no learning takes place.  

Memory retrieval algorithm is as follows: 
 Activate primary neurons 푃  and the corresponding 

secondary neurons 푆  in all LTM cells. 
 Compute an activation level of the secondary neurons 

푆  is computed using (16) - (18). 



 

 Use the secondary neuron 푆  with the strongest 
activation to find the winning LTM. 

 Secondary neuron 푆  of the winning LTM cell predicts 
the next episode.  

C. Testing Episodic Memory 
Ability to recall past events based on context is a very useful 

feature in memory. The semantic memory typically provides the 
context whereas the episodic memory helps in recalling 
previously encountered episodes. In this simulation, each LTM 
cell in the episodic memory represents an episode and the 
individual secondary neurons Sj, represent elements of that 
episode. Input from the environment triggers primary neurons Pj 
from the semantic memory, those in turn trigger the 
corresponding secondary neurons. The semantic and episodic 
memories were first created from training sequences using 
associative neurons described in Section II. Subsequently the 
ability of the episodic memory to recall the correct sequence and 
differentiate between similar sequences has been tested. 

Example 1 
The training input file contains the following sequences: 

1.  A B C D;    2.  A B C;    3.  B A C E;    4.  P Y E J. 
The semantic memory is created through consolidation of 

the training sequences. Each neuron in the semantic memory 
represents on element (in this case a letter of alphabet) of the 
training sequence. As the memory is context dependent each 
element of the sequence simulates its successors, i.e. 
subsequently learned elements of the memory, through links 
with weights that reflect their occurrence, frequency and 
distance (near or far), in the training sequences. The LTM cells 
in the episodic memory were similarly created, except that each 
LTM cell was created using only one sequence. Thus, in this 
example the episodic memory consisted of four LTM cells.  

After the memories were created, the sequence “A B C D” 
was provided as a test sequence using external stimulation to the 
semantic memory. This stimulation of the semantic memory 
resulted in activations of its neurons. Strength of activation of 
these neurons were treated as an output from the semantic 
memory and was provided as an input to the LTM cells in the 
episodic memory. That is, the primary neurons {A, B, C, D} in 
the semantic memory that were activated due to the test 
sequence activated their corresponding secondary neurons in the 
LTM cells.  

In this example the activation levels of the neurons in LTM 
cells representing training sequences “A B C D” and “A B C”, 
are of particular interest because they are highly similar to each 
other and one of them is the same as the testing sequence.  

 
Fig. 7 Activation levels of “winning neuron” in LTM cells 1 and 2. 

Fig. 7 shows a comparison of the activation levels of the 
“winning neuron” in these two LTM cells with symbol o 
marking LTM1 and * marking LTM2. 

When two LTM sequences that have the same initial 
elements are simulated we expect that the shorter LTM sequence 
will have higher activation initially, as expected from (15). This 
was observed in our simulation and clearly visible around 8000 
msec. Fig. 7 shows that at this point in time the activation levels 
of the winning neuron in LTM 2 is higher than the activation 
level of the winning neuron in LTM 1. Only towards the end, 
when neuron ‘D’ is activated the winning neuron in LTM 1 has 
higher activation than that from LTM 2.    

V. EMERGENT CREATIVITY OF DECLARATRIVE MEMORIES 
Declarative memories (which are obtained from integration 

of semantic and episodic memories) are essential functional 
component of the motivated learning cognitive architecture 
(MLECOG) [5]. In this section we illustrate how associative 
declarative memories create new categories, can generalize, 
and answer new questions.  

Table I demonstrates some answers collected with new initial 
contexts that were not used in training sequences. As a result 
we obtained answers that are different from the trained ones, 
yet reflecting the knowledge gained from the training sequences 
presented in Fig. 5. If there are many possible answers that 
could be derived from the training sequences the declarative 
memory chooses the most common answer if the initial context 
is repeated a few times. Repetition of difficult questions is 
normal for people who are searching for answers. This kind of 
memory behaves similarly.  

Changing context (Table I) may result in changing the 
answer based on the training set. This reflects generalization 
and creativity determined by dynamically modified knowledge 
gained during training that can be obtained within this kind of 
declarative memory (Table I). As network develops it changes 
the way it processes the input data, reflecting its stage of 
development and ability to generate context based answers.  

The declarative memory created and tested for this work had 
the semantic memory receiving the inputs and the output of the 
semantic memory was the input to the episodic memory. The 
semantic and episodic memories were trained with the sample 
data from Fig. 5 and Table II shows the answers provided by 
the declarative memory to the same initial context as in Table 
I. Note that as the individual neurons start their relaxing or 
refraction phase the winning LTM cells can change. In Table II 
only the first winning LTM cell is specified. The major 
advantage of the declarative memory is observed in the 
response to the last five initial context/questions shown in Table 
II. The declarative memory was able to generate meaningful 
responses without necessitating repetitions of inputs, this is 
because any activation in the semantic memory will stimulate 
the LTM cells of the episodic memory thus potentially enabling 
the declarative memory to generate a response.    
  



 

Table. II Declarative memory answers to various initial contexts. 

Initial context / Question Declarative Memory Answers 
I have I have a monkey 
Her Her cat is small and clever 
His His dog is white and sweet 
My My monkey is lovely. 
My monkey1 My monkey is lovely.  
Monkey is1 My monkey is lovely. 
Cat1 Her cat is small and clever. 
Dog1 His dog is white and sweet. 
It1 It learns quickly.  

1 Note, unlike in Table I, no repetitions are required or used here 

VI. CONCLUSIONS 
We developed and tested a structural organization of 

declarative memories using a new model of spiking neurons. 
Original associative neurons presented in [6] were modified to 
individually accommodate growth and sensitivity of neurons 
and their strength of connections that resulted in automatic 
threshold changes and specialization of neurons. In the 
presented model the same neurons can be activated by various 
combinations of input stimuli that represent various contexts of 
the elements of training sequences. In addition, we introduced 
neuron’s fatigue and showed its effect on declarative memory 
creativity observed during memory stimulation. We also 
investigated the effect of synaptic weight sensitivity on overall 
activity of neurons in the obtained memories. 

We tested sequence recognition and associative properties of 
the obtained self-organizing episodic and semantic memories.  
Memory organization and all associations were performed on 
the symbolic level where each neuron’s activation represents an 
object, an action or an idea. 

We demonstrated emergent creativity that can be observed in 
the developed memories. Tested memories were first organized 
based on a number of training sentences. Subsequently, a 
number of questions were submitted to the memory. Using 
knowledge stored in the memory, the memory responded in a 
novel way within associative context of the questions asked. 
Thanks to the strengthen associations between neurons, which 
reflect the frequency of training subsequences, we achieve the 
ability of the network to generalize. 

Future work includes further studies on neuron models 
developing their ability to adapt to training subsequences that 
include other sequences. Networks will be enriched with 
autonomous motivational signals and mechanisms of their 
automatic associations with symbols and actions represented in 
declarative memories. Declarative memory structure will be 
enhanced by feeding back the response of LTM cells to the 
semantic memory to generate new or generalized relationships. 
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