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Abstract. Navigating in realistic environments requires continuous ob-
servation of a robots surroundings, and creating an internal represen-
tation of the perceived scene. This incorporates a sequence of cognitive
processes, including attention focus, recognition of objects, and building
internal scene representation. Various parts of a cognitive system are in-
volved in creating the scene representation, which include subconscious
attention switching, visual saccades, semantic and episodic memory, as
well as parts of the working memory responsible for episodic management
and scene building. The paper describes mechanisms of scene observa-
tion based on visual saccades, which is followed by creating the scene
representation based on a distance matrix. Such internal representation
is a foundation for scene comparison, necessary for recognizing known
places, or changes in the environment. For this purpose we propose a
fast distance based algorithm for scene comparison.
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1 Introduction

Humans are capable of intelligently acting in complex environments. For in-
stance, we can find our destination in a city, interact with other people to ex-
change information or arrange objects in a room in a suitable way. In these tasks,
we outperform current men built systems such as autonomous robots. Thus it is
highly desirable to develop artificial agents, which will be able to support us in
performing a rich variety of tasks, both in our daily environment, as well as in
dangerous and inaccessible places.

For this purpose we devise computer models of intelligent information pro-
cessing called cognitive systems [1]. Such systems should be able to collect and
process a stream of sensory data to create internal representation of the environ-
ment, and undertake the proper actions. The original foundations for cognitive
systems come from psychological theories and are also a part of artificial intelli-
gence research.

A cognitive system is composed of various components that mimic differ-
ent mental functions. Among the most important elements of such systems are:
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sensory and motor functions, as well as different kinds of memory, including
semantic, episodic, procedural, and working memory. Sensory area is responsi-
ble for acquiring data from the sensors, and performing their initial processing.
Semantic memory is responsible for recognizing observed objects. To make this
possible, the semantic memory undergoes the process of continuous learning and
cumulates general knowledge about the world. Episodic memory registers partic-
ular situations (episodes) encountered in the environment. The working memory
is responsible for multiple tasks, such as memory formation, or action evalua-
tion and planning. The main purpose of procedural memory is registering the
sequences of actions, which the actuators (motors) need to perform to complete
the planned tasks.

It is known that to carry out a successful navigation in complex environ-
ments, mobile robots must acquire and maintain internal representation of the
environment. This is not a trivial task and many factors affect the reliability
of such models. In the presented paper we try to solve this problem, by intro-
ducing a saccade based algorithm of building a distance based scene model. We
also introduce a scene comparison method, based on comparing the distance
matrices.

The paper is organized as follows: Sec. 2 discusses visual saccades and the
discussed cognitive system architecture; In Sec. 3 we discuss building the scene
model from the data delivered by a sequence of visual saccades; Sec. 4 presents
a method designed for comparing scenes represented in the form of distance
matrices; In Sec. 5 we present the VEEMA simulation, where the experiments
are carried out; In Sec. 6 we present sample experimental results demonstrating
the performance of the scene comparison method.

2 The Fundamentals

2.1 Visual Saccades

Visual saccade is a fast movement of an eye, from one focus point to another
[2]. Saccadic movement is observed also in other senses, e.g. as a fast shift in
frequency of received signal or other quick change in perception. The main pur-
pose of saccadic movements is to identify objects with high saliency, which are
potentially important for the observer. The visual signal from the environment
is initially filtered in order to identify regions with outstanding visual features.
Next, attention is switched rapidly between such regions in a sequence of sac-
cadic movements. After focusing attention on a given region, the observer is able
to acquire more precise visual data needed to recognize the object. Additionally,
the observer should be able to assess the distance between particular points on
which the attention is focused. Humans realize this task through stereovision. In
robots, it can be realized much easier and more precisely than in humans, using
several techniques, depending on the robots construction.

In robotic systems there are two possible ways of implementing visual sac-
cades. The first of them relies on the camera movements, which resembles the
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biological reality [3, 4]. The main difficulty of this approach is that it requires a
special camera steering system, which will be able to scan the environment with
sufficient speed and accuracy. This kind of fast motion is necessary to identify
enough details of the environment, to allow the robot to respond to changing
conditions in real time. The other realization of visual saccades is implemented
by software analysis of images from static camera mounted on a robot. This
approach is much simpler to implement, because it does not require any special
hardware, it yields high speed saccades and can be used practically on all mobile
robots equipped with a camera. Robot can still move its camera to follow changes
in the environment, but this motion may be better controlled and proceed at a
lower speed than one required for visual saccades.

2.2 The Cognitive System

The presented work focuses on selected parts of a cognitive system based on
motivated learning [5]. The system is based on the idea of embodied intelligence,
where whole learning comes from interaction with the environment instead of
scripted algorithms designed by engineers [6]. The embodied agent interacts with
the environment through a set of sensors and actuators, and the reaction of the
environment to the undertaken actions is the source of information necessary for
learning skills, that the agent needs to survive. The structure of the discussed
cognitive system represented on a very general level is shown in Fig. 1. Its central
part contains emergent motivations, and the goal creation system, which are
responsible for stimulating the agent to act and learn new skills. The set of
sensors acquires the raw stream of data from the environment. Subconscious
attention switching responds to salient features of the sensory data in order to
focus the agents attention on selected objects. Semantic and episodic memory
are both long term memories. Semantic memory stores general facts about the
world, learned from repeating experiences, while episodic memory is responsible
for storing the experiences and situations that the agent cognitively perceived.
The working memory is responsible for processing the filtered and semantically
recognized data, building the internal representation of experiences, and storing
them in the form of episodes.

Fig. 2 presents in more detail elements of the cognitive system model, respon-
sible for building the environment representation, and storing it in the form of
sequences of episodes in the episodic memory. The focus of our interest is visual
data, so the role of sensors is played by cameras. The video stream registered
by a camera contains huge amount of data, with various level of significance. To
save the system against the flood of unimportant details, the stream needs to
be filtered in order to find the elements, which are worth the agents attention.
Thus the video data need to be initially processed in order to identify regions
with high visual saliency. Such regions are more attractive to the agent, because
they are more likely to contain information important for the agent. The agent
then follows the visually salient elements of the video data in a sequence of sac-
cadic movements. After focusing attention on a given region, the content of this
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Fig. 1. The general structure of the considered cognitive system

region is analysed and recognized cognitively by the semantic memory. The se-
quence of recognized objects is delivered together with geometrical location data
to the scene building module, where spatial model of the scene is created. The
scene representation is the key element for the episodic management module,
which identifies changes within the scenes, and decides about saving valuable
experiences in the episodic memory.

3 Building internal scene representation from a sequence

of saccades

Building the scene representation requires identifying objects within the envi-
ronment, and finding their spatial relations (location map). We have to note,
that the scene is always perceived from the observers perspective, so the coordi-
nates of objects are registered in the egocentric coordinate system of the agent.
The problem is, however, that the origin of the system moves according to the
moves of the agent, while the environment representation has to be independent
of the temporary agent location, i.e. represented in the allocentric coordinates.
Thus our method assumes that every scene is represented within its local coordi-
nates. Actually, the internal scene representation will be based on the matrix of
distances between objects. However, to compute the matrix it is necessary first
to express the locations of objects within some coordinate system. The actual
choice of this system is not that important because the resulting distance matrix
is always the same. It is enough if the system is fixed in relation to the scene.

To illustrate the mechanism of creating the internal scene representation we
will analyse a sample sequence of saccadic movements. For simplification we
initially limit the considerations to a 2D environment map. This analysis can
later be extended to a 3D case. When an agent enters a new scene, it starts from
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Fig. 2. The structure of the cognitive system elements, responsible for building the
internal scene representation

focusing attention on the object, which is the most visually salient (the precise
description of analysing the visual saliency is not the subject of this paper and
will be described separately). For practical reasons location of the first object
perceived in the scene is the most convenient choice for the origin of the scene
coordinates Fig. 3(a). The agent can assess the distance a1 to the object, but it
is currently of not much use, because the object is located in coordinates, which
are irrespective of the agent location. Technically the assessment of the distance
can be realized by using stereovision, range laser or other sensors, depending on
the robots construction.

The next step is focusing attention on the second object in the scene, which is
done again on the basis of visual saliency. The transition between the first and the
second object is the first saccade made by the agent while observing the scene.
After focusing attention on the second object, and recognizing it cognitively, the
agent has to locate it within his own scene representation. This can be done
if it is possible to determine the location of the second object with respect to
the previous one. It is not possible to measure the distance directly, but it can
be computed given that the agent can measure the distance from his location
to both the objects (a1 and a2), and the angle α1 between both the directions
(Fig. 3(b)).

The distance between O1 and O2, which is the length of saccade S12 can be
obtained from the law of cosines applied to the triangle with vertices in O1, O2,
and the agent location:

s212 = a21 + a22 − 2a1a2 cosα1. (1)

To locate the second object in the internal scene representation, the direction of
the axes of local scene coordinates is needed. We can choose the direction of the
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Fig. 3. The first stage of building the scene map: (a) perception of the first object -
origin of the local coordinate system, (b) first saccade and location of the second object

y axis as an extension of the line between the agent and O1 (Fig. 3(b)). This
defines the direction of the x axis as perpendicular to y. Given the axes we can
compute the location of the second object within the local coordinates:

xO2 = s12cos
(

β1 −
π

2

)

, (2a)

yO2 = s12cos (π − β1) , (2b)

We have to remember, that the agent can move while observing the scene.
This results in different position, between observing object 1 and object 2. As
a result Eqs. 1 and 2 would not be precise, because we would have to take into
account the change of agents position between saccades. In realistic conditions,
however, the transition of a robot in the environment is relatively slow, com-
pared to the speed of saccadic scene observation. As a result the effect of agents
transitions in the environment can be neglected without large negative effect on
the precision of the internal scene model.

To make the description of the scene building mechanism complete, we have
to demonstrate adding the third object to the scene. Locating the new object
in the local coordinates is based on knowing positions of the two previously
memorized objects. The agent, as in previous cases, locates a visually salient
object and focuses attention on this object. It can also measure the distance to
this object, and the angle α2 between the directions of observation of object 2
and object 3 from the agents position (Fig. 4). Given the data, the length of
saccade s23 can be computed analogously as in the first saccade (Fig. 4).

To position object 3 in the local coordinates we need to know the angle
γ1+γ2. This will allow for computing the projections of s23 on the x and y axes.
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Fig. 4. Adding the third object to the scene map

To find this angle we start from using the law of cosines to compute β2 and
β2 + γ1 directly, which after subtracting gives γ1. We already know coordinates
of object 2 so the γ2 angle can also be computed from one of trigonometric
functions. In this way we obtained γ1 + γ2. Now the coordinates of object 3 can
be computed as follows:

xO3 = xO2 − s23cos
(

γ1 + γ2 −
π

2

)

, (3a)

yO3 = yO3 + s23sin
(

γ1 + γ2 −
π

2

)

, (3b)

The procedure described for object 3 is repeated for every new saccade. To
locate the new object within the local scene coordinates only the most recent
saccade is needed. Although some imprecisions are possible during measuring
distances between objects within the scene, the described procedure allows to
avoid cumulating errors in the scene representation building. Moreover, the scene
model can be modified and corrected, when the agent moves within the environ-
ment, and observes the same objects from different positions.

In steering robots within realistic environments we are obviously interested
in building 3D representation of the scene. This can be done by extending the
described methodology to the 3D coordinates. The general procedure is in the 3D
case very similar to the 2D case. In every step of the scene observation, the agent
focuses attention on an object with high visual saliency, and measures distances
to the perceived objects, together with angles between directions of observation
of particular objects. The first observed object becomes the origin of the scene,
and the subsequent objects are added in relation to the most recently added ones.
The difference is the additional dimension, which has to be taken into account
when calculating positions of new objects. This results in necessity of using data
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from three most recent saccades, while adding new object to the scene, instead
of just two as it was in the 2D case. Detailed discussion of the 3D saccades, does
not bring much to understanding of discussed mechanism, and thus is omitted.

4 Distance Based Scene Comparison

Let us assume that D1 and D2 are the matrices of distances between objects
in scenes SC1 and SC2 respectively, and that the order of rows and columns
correspond to equivalent symbols in both scenes. In case a symbol is unique to
a scene, we add a new row and column in both matrices. If one of the compared
scenes has no such object, its distance matrix will have the distance to this object
set to some large value like 2x the size of the scene diagonal. In this way both
matrices always have the same size. Notice that D1 and D2 are symmetrical
matrices with zeros on diagonal (an object has 0 distance to itself). In addition
to the distance matrices we assign some significance to the scene objects. The
significance results from the agents internal needs, and motivations, and allows
for steering the agents attention not only by external objective factors, but also
by internal perception of object significance. Every object in the scene has some
significance and its significance may be different in different scenes in which it
appears. For the purpose of scene comparison we define a mutual significance
matrix as follows:

SM = [sij ]m×m
,where sij =

∏

k=1,2

skiskj (4)

and ski is i-th object significance in k-th scene. To normalize the distance simi-
larity measure we calculate a distance difference matrix ∆D:

∆D = [δij ]m×m
=

{

‖d1,ij−d2,ij‖
ddiag

, if d1,ij ≤ ddiag ∧ d2,ij ≤ ddiag

1, if d1,ij > ddiag ∨ d2,ij > ddiag
(5)

where ddiag = max (ddiag1, ddiag2) is the maximum (diagonal) distance in both
scenes. This guarantees that 0 < δij < 1 for all i, j. If at least one of the two
elements for which the distance difference is computed, does not exist in one of
the scenes, such distance difference takes the maximal value 1. Then we calculate
the normalized scene similarity as

SSC =

∑m

i=1

∑m

j=i+1
(1− dij)

p
sij

∑m

i=1

∑m

j=i+1
sij

. (6)

This scene similarity has values between 0 (dissimilar) and 1 (identical). The p

factor is an empirical constant, which is adjusted to control the sensitivity of the
similarity measure - the larger p, the more sensitive is the measure to differences
in the compared scenes.

When the objects are not unique, which means that a scene may have a num-
ber of objects with the same symbol (i.e. they are indistinguishable), a similar
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approach can be applied. However, since in this case there is no unique ordering
of the symbols due to repetitions, we must either examine all combinations of
ordering of the repeated symbols that is NP hard, or use a heuristics, where we
assign symbol pairs based on similarities of their corresponding distance vectors
d1,ij and d2,ij within uniquely defined scene elements.

5 The VEEMA Simulation Environment

Our current implementation of the cognitive agent is designed to cooperate with
a virtual environment called VEEMA (Virtual Environment with Embodied Mo-
tivated Agent). This environment is based on the NeoAxis 3D Game Engine [7].
The agent is able to explore the virtual world similarly as a robot could do it
in the real world. The advantage of using the virtual environment is full control
over the environment, which is impossible in the real world conditions. In this
way we do not need to care about lighting conditions, or other technical details.
Such a solution allows to concentrate on selected parts of the cognitive agent
development problem to be solved. This approach is also cost effective, because
it does not require buying a physical robot.

A screenshot of the VEEMA environment is shown in Fig. 5. The figure
in the middle is the motivated agent exploring its environment. In the current
implementation the agent is able to see only selected objects. The complete
analysis of the video stream will be implemented in the future version of the
agent.

Fig. 5. A third person camera view on the VEEMA environment. The white circle
indicates the agent

In the current version, the environment explored by the agent is relatively
simple, and far from complexity of real world environments. It was adapted
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to a motivated learning scenario [5], in which the agent is searching among a
collection of resources, and learning some skills to survive in the environment.
The agent can focus attention on objects placed in environment, and build the
internal scene representation. The layout of objects seen by the agent is shown
in Fig. 6(a). Some objects are located within the buildings in the scene Fig. 6(b),
but the buildings in the current implementation play only illustrative role, and
are not recognized cognitively by the agent.

a) b)

Fig. 6. The layout of objects in the considered learning scenario: (a) projection on the
x-y plane, (b) view from the top camera with indicated locations of objects

6 Experimental Results

To test performance of the scene comparison algorithm described in Sec. 4 we
constructed a number of experiments, in which two scenes with different locations
and types of objects are compared.

Here we present one of the experiments, which shows how the similarity value
changes, when the first scene consists of a fixed set of objects (6 unique objects),
and the second scene consists initially of 2 objects, and then subsequent objects
are added to the scene at the same positions as in the first scene (Fig. 7(a)). The
numbers in the figure indicate type of objects. When the number of objects in
the second scene reached the number of objects in the first scene (identical scenes
≡ similarity measure=1), a sequence of new objects (not present in scene 1) was
added until their number reached 11. The positions of newly added objects were
chosen randomly. The final configuration of both scenes is shown in Fig. 7(b).
Objects from the first scene are indicated by crosses, while objects from the
second scene are indicated by circles.

The set of similarity values obtained in the experiment is shown in Fig. 8.
As one can see, initially similarity increases monotonically with the increasing
number of objects, and after reaching maximum (=1) decreases with the number
of newly added objects to the second scene. This is what we expected from the
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a) b)

Fig. 7. The layout of objects in the experiment: (a) the first stage of experiment, (b)
the final stage of experiment

similarity measure. The presented results are obtained for p = 10 in Eq. 6. This
value seems quite accurate, because it allows for sharp distinctions between the
scenes. However, it is possible that for more complicated scenes, slightly different
values can be applied.

Fig. 8. Similarity for each step of the experiment

7 Conclusions

The presented paper discusses the problem of building internal environment
representation within a cognitive system steering a mobile robot. A methodology
was presented, which starts from saccadic scene observation. The data from a
sequence of saccades are transformed into an internal scene model, which after
memorizing in the episodic memory, can be further used for recognizing known
places or complex objects. The internal scene representation is based on the
matrix of distances between objects. Such representation allows for fast scene
comparison, which can be used for comparing the currently observed scene with
the contents of the episodic memory.
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Sample experiments based on a virtual 3D environment were performed, in
which the performance of the proposed similarity measure was demonstrated.
The results show, that the proposed methodology gives satisfying results. It
should be remembered, however, that the scene created in the virtual environ-
ment is simplified, and of much smaller complexity, than real world scenes. Thus
the aim of future work will be extending the system to be able to process all
the data delivered by a video stream, either registered in the virtual simulation
or in real environment. The other research direction is developing a method for
objects representation. In the current version of our system the objects have no
internal structure.

Acknowledgement

The research is supported by The National Science Centre,
grant No. 2011/03/B/ST7/02518.

References

1. Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and
challenges. Cogn. Syst. Res. 10, 141-160 (2009)

2. Yarbus, A.: Movements of the eyes, Plenum Press, New York (1967)
3. Frintrop, S., Rome, E., Christensen H.I.: Computational Visual Attention Systems

and their Cognitive Foundation: A Survey, ACM T. Appl. Percept. 7(1) (2010)
4. Begum, M., Karray, F.: Visual Attention for Robotic Cognition: A Survey. IEEE

Trans. Auton Ment. Devel. 3(1), 92-105 (2011)
5. Starzyk, J.A., Graham, J.T., Raif, P., Tan, A-H.: Motivated Learning for the De-

velopment of Autonomous Systems, Cogn. Syst. Res. 14, 10-25 (2012)
6. Brooks, R.: Intelligence without representation, Artif. Int. 47, 139159 (1991)
7. The NeoAxis Game Engine, http://www.neoaxis.com/


