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Abstract—This paper introduces a biologically inspired 

associative data model and structure for finding nearest neighbors 
and similar patterns. The method can be used as an alternative to 
the classical approaches to accelerate the search for such patterns 
using various priorities for attributes according to the Sebestyen 
measure. The presented structure, together with algorithms 
developed in this paper can be useful in various computational 
intelligence tasks like pattern matching, recognition, clustering, 
classification, multi-criterion search etc. This approach is 
particularly useful for the on-line operation of associative neural 
network graphs. Graphs that dynamically develop their structure 
during learning on training data. The results of experiments show 
that the associative approach can substantially accelerate the 
nearest neighbor search and that associative structures can also be 
used as a model for KNN tasks. Finally, this paper presents how 
the associative structures can be used to self-organize data and 
represent knowledge about them in the associative way, which 
yields new search approaches described in this paper. 

Keywords—nearest neighbor search; similarity; classification; 
associative data model; associative data structures. 

I. INTRODUCTION 

The most common way of storing data is the use of tables, 
where various objects are represented by records of values of 
various attributes. Such objects can be sorted by only one chosen 
attribute. So when we need to find similar objects or determine 
its nearest neighbors, the whole table must be searched, and the 
distances to specific data must be computed and compared for 
all objects. This approach is not efficient and is the bottleneck of 
the k nearest neighbors (KNN) classifiers [1-3]. The 
computational complexity of the search increases at least 
linearly with the number of compared objects in the table storage. 

Our brains also have the ability to find similar objects, but 
they undoubtedly do not search through long lists of known 
objects because our slowly working neurons (spiking maximally 
hundred times per second [4] which is very slow in comparison 
to CPU clocks of contemporary computers) will not be able to 
find similar objects in an acceptable time. This suggests that 
biological neural structures of our brains use a different 
approach to finding similar objects. Taking into account the 
slow spiking speed of biological neurons, the biological 
neuronal structures must organize representation of similar 
objects close to each other to be able to find them quickly.  

The most important goal of this paper is to present the 
associative model and structures for storing similar objects 
(patterns) closely and making them quickly available. The 
efficiency of this model is compared to the classic approaches 
where tables are used [5]. We present three algorithms using 
associative structures that search for similarities of objects and 
nearest neighbors faster than the classic KNN algorithm. These 
algorithms also improve the associative approach presented in 
[6], where the first attribute was always used for the searches 
considered in this paper. Moreover, we show how we can 
change the results of such searches using various priorities for 
attributes, and how this improves the classification results of k 
nearest neighbor classifiers. 

II. ASSOCIATIVE DATA MODEL AND STRUCTURES  

The Associative Graph Data Structure (AGDS) was inspired 
by the analysis of connections between real neurons and 
developed by Horzyk [5], [7]. This graph structure consists of 
vertices representing unique attribute values, objects defined by 
these attribute values, connections that link the nearest values of 
each attribute, and links that connect the object to attribute 
values that define them. The values are represented by value 
vertices, and objects are represented by object vertices. 
Duplicates of identical values of each attribute are aggregated 
and represented by the same value vertices. Identical objects that 
appear in the input data are also represented by the same object 
vertices (Fig. 1). Such aggregations of various duplicates reduce 
the number of value vertices and object vertices appearing in 
tables.  

Thanks to the use of graph structure, instead of a tabular one, 
all values of each attribute can be sorted simultaneously, which 
accelerates various search operations processed on AGDS 
structures. The sorting and aggregation of attribute values are 
beneficial. For instance, it is possible to move fast between 
objects defined by the same or close values.  

For example, consider Associative Graph Data Structure 
created on 30 samples from Fisher's Iris data set presented in Fig. 
1. In this figure, objects O21 and O24 are connected to the same 
attribute value 1.7 for the petal length and to close value vertices 
5.1 and 5.4 for the sepal length or 0.2 and 0.5 for the petal width, 
which reduces the graph paths between similar objects and 
allows various search algorithms to find similar objects faster 
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than using classic approaches. These properties of the proposed 
approach will be used in the following subsections to define 
faster associative algorithms for searching for k nearest 
neighbors. 

The AGDS structure is not only a different representation of 
the dataset stored in the table, but this graph structure represents 
much more useful relations between data than the tabular 
structure. We can quickly move between similar attribute values 
and find all objects defined by them as well as moving from one 
object to another using various criteria. The AGDS structure 
represents not only definitions of objects like tabular structures 
do, but also various relations between these objects. Many 
algorithms search through data tables, looping those tables many 
times to find necessary relationships. When using associative 
structures like AGDS, we do not need to loop because some 
relations are immediately available through AGDS associations. 
This paper uncovers only a small part of the abilities of these 
graph structures, focusing on the efficient search algorithms for 
similar (nearest neighbors) objects. 

III. NEAREST NEIGHBORS SEARCH 

The search of nearest neighbors is one of the approaches 
used for object matching, recognition, clustering, or 
classification because nearest neighbors, i.e. the most similar 
objects in a given distance measure, intuitively suggest the 
grouping and labeling conditions for the objects. This approach 
is used in the different variations of the k nearest neighbors’ 
methods [2], [8-10], so they are used in this paper for testing and 
comparisons of the introduced approach. The following 
subsections will discuss and compare the classic approach based 
on the tabular data representation to the proposed associative 
approach using the AGDS structure. 

The main idea of the associative approach is to limit the 
number of objects (training samples) that must be selected to 
compute distances to them in order to find k nearest neighbors. 
It is possible thanks to the associative structure where similar 
object vertices are connected through sorted and aggregated 
value vertices. If fact, the search for k nearest neighbors 
proceeds only in the closest surrounding of the classified sample 
leaving out all distant objects. 

A. Classic KNN Using a Data Table and Rank List of Objects 
The classic KNN approaches [1-3], [8-9] use a data table 

where all objects (training samples) are stored. For a given input 
object, for which we would like to find k nearest neighbors (k 
most similar objects), the algorithm loops through the whole 
collection computing the chosen distance (e.g. Euclidean, 
Manhattan, Minkowski, Sebestyen, or Mahalanobis distance) 
between the input object and all objects stored in the table [11]. 
Next, it compares the computed distances with the distances of 
the currently closest objects stored in the rank list and inserts 
those which are closer than the most distant object in the rank 
list. The k closest objects in the rank list are updated during the 
loop over all objects. First, a new computed distance between 
the input object and the next checked object in the tabular 
collection is compared to the most distant object in the rank list. 
When this distance is smaller than the one of the most distant 
object, then the algorithm loops through the rank list from its 
end to its beginning and finds the right place to put there this 
closer object. It usually overfills the rank list (over k elements), 
so the last, most distant object is removed from the rank list if 
only it is more distant than the k-th element in the rank list. If it 
is not, all objects with the same distance are stored in the 
overlengthen rank list until the k-th element is smaller than the 
last element in this list. When it finally happens, then all objects 

 

Fig. 1 Associative Graph Data Structure created on sample data (30 selected Iris samples) with visible aggregations of representation of the same attribute 

values and counted duplicates represented by value vertices. They are connected to their neighbors in the sorted order and used to define various objects 
represented by the object vertices. This structure is used for searching for k nearest neighbors for the object O93 starting from the closest attribute values  

[5.8, 2.7, 3.9, 1.2] that define this object and spreading out to other connected close values and to the objects (training samples) that constitute this structure. 
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with the same distance which overlengthen the list are removed 
at the same time. The algorithm is running until all objects 
(training samples) compute their distance and check them with 
those in the rank list. The final rank list points out the k or 
sometimes more (if there are a few objects with the same 
distance at the end of the rank list, so we cannot neglect them) 
closest objects (nearest neighbors) in the collection.  

These objects are finally used to classify the input sample 
based on the most frequent class represented by the object in the 
rank list. If there are no winning class, or when the most frequent 
class represented by the objects in the rank list is different from 
the class defined for the input object, the classification is 
incorrect. 

Another classic approach to KNN classification requires to 
compute distances of the input object to all training objects 
(samples) in the collection, and then sort these distances in the 
ascendant order, e.g. using quicksort. Next, the k-th or more (if 
there are a few objects with the same distance at the end of the 
rank list) closest objects are taken as the k nearest neighbors and 
determine the final classification. This approach is slower than 
the previously described one using rank list because it requires 
to sort all objects, while we directly use only k-th closest ones. 

The bottleneck of the classic approaches using a table for 
storing training samples is that all samples must always be 
looped, and to all of them, the distance must be computed, 
compared, and sorted to find the k nearest neighbors. The 
associative approach presented in the following subsections 
shows how the training objects (samples) can be associatively 
organized to avoid looping through all of them to find the k 
nearest neighbors (the k most similar objects) in the training 
dataset. 

Algorithm 1: 
FindKNN(k, dataRowNew) // find k nearest neighbors 
oRank = new List<CDRow>() // Create rank list (Part1)   
dMaxoRank = 0.0 // max distance in oRank 
countoRank = 0 // count of the oRank elements 
foreach (dataRow in dataTable) // loop over all rows 
d = EuclideanNormDist(dataRow, dataRowNew) // Part2 
if ((d <= dMaxoRank) || (countoRank < k)) // Part3   
  i = countoRank-1 
  if (i >= 0) 
  do 
    if (oRank[i].d > d) i-- 
    else break 
  while (i >= 0) 
  oRank.Insert(i+1, new CDRow(d, dataRow)) 
  countoRank++ 
  if (countoRank > k) 
  if (oRank[k-1].d < oRank[k].d) // Part4 
    oRank.RemoveRange(k, countoRank-k) 
    countoRank = k 
  dMaxoRank = oRank.Last().d 
return GetWinningClass(oRank) 
 
EuclideanNormDist(obj1, obj2) 
dist = 0.0; 
for (int i = 1; i < obj1.NoAttributes; i++) 
  d += Pow(obj1[i] - obj2[i]) / attrRanges[i], 2); 
return Sqrt(d); 
 

where the function GetWinningClass points out the class that is 
most frequently represented by the objects in the rank list oRank 
or returns null if there is no winning class. 

 In this algorithm, the rank list oRank is created (Part1) to 
store the sorted list of k nearest objects accordingly to the 

Euclidean normalized distance computed by the 
EuclideanNormDist function (Part2), where the distances are 
computed on the basis of the distances normalized by the ranges 
of attributes. If the computed distance to the next object 
(dataRowNew) is less than the most distant object in the rank 
list oRank and the list already contains k elements (Part3), then 
it is inserted in the right order into this list. Next, when the rank 
list becomes longer than k and the k-th object has a different 
distance than the last objects (Part4), the most distant objects are 
removed from the rank list. Finally, after looking through all 
objects, we get the final list of k nearest objects (neighbors) or 
more if the k-th object in this list has the same distance to the 
source object as the subsequent objects in this rank list. 

B. Associative KNN based on the Most Variant Feature  
The first associative approach (AKNN-1) uses only one of 

the most variant attributes to search for k nearest neighbors. The 
most variant attribute has the biggest number of unique values, 
i.e. the least number of duplicates in the tabular collection (e.g. 
both attributes petal length and petal width have 13 unique 
values in Fig. 1, and that is more than the other attributes have).  

We select one of the most variant attributes because their 
value vertices are connected on average to the smaller number 
of object vertices than the value vertices of the attributes with 
less number of represented unique values in the vertices. Thanks 
to it, we can substantially reduce the number of visited object 
vertices for which the distances to the classified object (e.g. 
object O93 in Fig. 1) are computed. The number of unique 
values for each attribute is counted during the construction of 
the AGDS structure for a given dataset, so we need only to find 
the most numerous ones. This can be done in constant time to 
start the search. 

The associative search process starts from the value vertex 
of the chosen most numerable attribute that defines the classified 
object. In the sample of thirty Iris objects (Fig. 1), we can choose 
petal length or petal width as this most numerable attribute. 
According to which one will be chosen, the search process will 
start from value vertex 4.0 for petal length or from value vertex 
1.2 for petal width because these values are the closest to those 
defining the classified object O93. Next, all connected object 
vertices to the chosen nearest value vertex are visited, and their 
distances to the classified object are computed. These distances 
are compared to the most distant object in the rank list (if there 
are any) and those which are closer than the most distant one (or 
the rank list has no k objects yet) are put into the rank list in the 
ascendant order, starting the search for this position from the end 
of this rank list. 

Next, the algorithm moves from the current value vertex to 
the next smaller or greater value vertex that has not been visited 
yet and represents the next closest value to the value of the 
classified object (i.e. 4.1 for the petal length or 1.3 for the petal 
width in Fig. 1). For this next value vertex, the whole process 
(that computes distances of objects represented by the object 
vertices connected to this value vertex and updating the rank list) 
is repeated until the distance of the value represented by the next 
value vertex to the value of the classified object is greater than 
the distance of the most distant object in the rank list. This is the 
stop condition of this algorithm because if this condition is true, 
we can be sure that there cannot be another object that will be 
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closer to the classified one. When the stop condition is satisfied, 
the rank list contains k nearest neighbors with their computed 
distances, and they can be used to compute the final result of the 
classification of the KNN algorithm, or these neighbors can be 
used to other issues. Thus, the result of the associative search for 
nearest neighbor is the same as for the classic KNN algorithm, 
but the nearest neighbors are usually found much faster than 
using the classical KNN approach and a table for storing objects 
because we do not loop through all objects. 

Algorithm 2: 
FindAKNN(k, dataRowNew) // Associative KNN using one attr 
range = attrRanges[noMNA] // most numerous attr range 
closestVV = AVBT[noMNA].FindClosestVV(dataRowNew[noMNA]) 
rowVVVal = dataRowNew[noMNA] 
if (closestVV.Val <= rowVVVal) // Part1 
  smallerVV = closestVV 
  dToSmallerVV = (rowVVVal - smallerVV.Val) / range 
  greaterVV = smallerVV.Next 
else 
  smallerVV = null 
  dToSmallerVV = Double.MaxVal 
  greaterVV = closestVV 
if (greaterVV != null) 
  dToGreaterVV = (greaterVV.Val - rowVVVal) / range 
else dToGreaterVV = Double.MaxVal 
ovRank = new List< COVRankEl>() // Part2 
ovRankCount = 0 
maxovRank = 0.0 
do 
  foreach (ov in closestVV.OVs) // Part3 
    d = EuclideanNormDist(ov, dataRowNew) 
    if ((d <= maxovRank) || (ovRankCount < k)) 
      i = ovRankCount - 1 
      FindovRankPos(d, i) 
      ovRank.Insert(i+1, new COVRankEl(d, ov)) 
      ovRankCount++ 
      if (ovRankCount > k) 
        if (ovRank[k-1].d < ovRank[k].d) 
        ovRank.RemoveRange(k, ovRankCount - k) 
        ovRankCount = k 
      maxovRank = ovRank.Last().d 
  if (smallerVV == closestVV) // Part4 
    smallerVV = smallerVV.Previous 
    if (smallerVV != null) 
      dToSmallerVV = (rowVVVal - smallerVV.Val) / range 
    else 
      dToSmallerVV = Double.MaxVal 
      if (greaterVV == null) break 
  else 
    greaterVV = greaterVV.Next 
    if (greaterVV != null) 
      dToGreaterVV = (greaterVV.Val - rowVVVal) / range 
    else 
      dToGreaterVV = Double.MaxVal 
      if (smallerVV == null) break       
  if (dToSmallerVV <= dToGreaterVV) 
    closestVV = smallerVV 
  else closestVV = greaterVV 
while ((dToSmallerVV <= maxovRank ||  
       dToGreaterVV <= maxovRank) || (ovRank.Count < k)) 
return GetWinningClass(ovRank) 
 
FindovRankPos(d, i) 
if (i >= 0) 
  do 
    if (ovRank[i].d > d) i-- 
    else break 
  while (i >= 0) 
return i 
 
 In Algorithm 2, we start from the closest value vertices 
(closestVV) to the source object represented in this associative 
structure supported by AVB+trees (AVBT) [5] used to 
efficiently store and search for value vertices (VV). Next, two 
neighbors (a smaller or equal one (smallerVV) and a greater one 
(greaterVV)) are established (Part1) together with the distances 

(dToSmallerVV and dToGreaterVV) to these neighbors. 
Afterward, the rank list ovRank is created (Part2) and is filled 
with the nearest objects represented in the associative structure.  

The nearest objects are established on the basis of checking only 
the objects connected to the nearest values of the selected 
attribute to the value of this attribute representing the source 
object (dataRowNew). Thus, we check all objects connected to 
the given nearest value of the selected attribute (Part3), and next 
move to the next closest value (smaller or greater one) (Part 4), 
and calculate Euclidean normalized distances 
(EuclideanNormDist) to the source object (dataRowNew). We 
continue this process until the next closest value is more distant 
to the value of this attribute of the source object than the most 
distant (k-th) object in the rank list because the further search 
will not bring closer objects and do not change the rank list 
anymore. 

C. Associative KNN with a Rank List of Closest Features 
The second associative approach (AKNN-L) uses the same 

AGDS structure as before, but it uses several most numerous 
attributes (e.g. these attributes which numbers of unique values 
are greater than the average number of unique values for all 
attributes). In this approach, we use another rank list of the 
closest values of those most numerous attributes to the values of 
the classified object.  

During the main loop of this algorithm, the next closest value 
vertex is chosen from this rank list until the same stop condition 
as before is achieved, but the distances of the objects represented 
by the visited object vertices to the classified object are 
computed gradually, not at once. Namely, suppose that we have 
J most numerous attributes. When the object vertex is visited for 
the j time (where j < J) for the i-th attribute, its distance to the 
classified object is only partially computed for the attribute 
value that pointed this object vertex, e.g. (1) for Euclidean 
distance, (2) for Euclidean distance, (3) for Minkowski distance, 
and (4) Sebestyen distance:  

� � ����

� � ����

� � ����

� � ����

where  is a diagonal matrix of weights. 

Hence, we do not lose time for computing the whole distance 
for the visited object vertex because it might not be one of the 
nearest neighbors. Only when the object vertex is visited the J 
time for the i-th attribute, the distance is finally computed, e.g. 
(5) for Euclidean distance, (6) for Euclidean distance, (7) for 
Minkowski distance, and (8) Sebestyen distance  

� � �	��

� � �
��
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and we have compared with the distances in the rank list of 
nearest neighbors if only the computed distance is smaller than 
the distance to the most distant object in the rank list. If we 
proceed with this algorithm always for the closest value vertex 
for the selected most numerous attributes, the above-defined 
stop condition is achieved faster because we move along a few 
most numerous attributes, and the greatest distance in the rank 
list decreases faster. We additionally save some computational 
time for calculating only partial distances (1) – (4) of the objects 
that have only some attribute values close to the classified 
objects, but they are not the nearest neighbors because of the 
other attribute values that are distant.  

 On the other hand, we have to take into consideration the 
extra computational cost for handling the rank list of the closest 
values of the chosen subset of the most numerous attributes. 
That is why the following algorithm (Algorithm 3) uses several 
attributes defined by the most numerous number of unique 
values instead of only one attribute of the most numerous 
number of unique values used in Algorithm 2.   

Algorithm 3: 
FindAKNN-L(k, dataRowNew) // Assoc. KNN using several attr 
ovRankCount = 0 
vvRank = new List<VVRankEl>() 
foreach (attrNum in descendantNoAttrValsList) 
  noAttr = attrNum.noAttr 
  closestVV = AVBT[noAttr].  
              FindClosestVV(dataRowNew[noAttr]) 
  rowVVVal = dataRowNew[noAttr] 
  if (closestVV.Val <= rowVVVal) // Part1 
    smallerVV = closestVV 
    d = (rowVVVal - smallerVV.Val) / attrRanges[noAttr] 
    i = vvRank.Count - 1 
    FindvvRankPos(d, i) 
    vvRank.Insert(i+1, new VVRankEl(d, smallerVV)) 
    greaterVV = smallerVV.Next 
    if (greaterVV != null) 
      d = (greaterVV.Val - rowVVVal) / attrRanges[noAttr] 
      i = vvRank.Count - 1 
      FindvvRankPos(d, i) 
      vvRank.Insert(i+1, new VVRankEl (d, greaterVV)) 
  else 
    greaterVV = smallerVV.Next 
    if (greaterVV != null) 
      d = (greaterVV.Val - rowVVVal) / attrRanges[noAttr] 
      i = vvRank.Count - 1 
      FindvvRankPos(d, i) 
      vvRank.Insert(i+1, new VVRankEl(d, greaterVV)) 
closestVV = vvRank.First().vv 
noCloseAttr = closestVV.AttrNo 
rowVVVal = dataRowNew[noCloseAttr] 
ovRank = new List<OVRankEl>() 
maxovRank = 0 
do // Part2 
  foreach (ov in closestVV.OVs) 
    d = ov.AddDist((ov.VVList[noCloseAttr].Val - rowVVVal)  
        / attrRanges[noCloseAttr], dataRowNew, attrRanges) 
    if ((d >= 0)&& ((d <= maxovRank) || (ovRankCount < k))) 
      i = ovRankCount - 1 
      FindovRankPos(d, i) 
      ovRank.Insert(i+1, new OVRankEl(d, ov)) 
      ovRankCount++ 
      if (ovRankCount > k) 
        if (ovRank[k-1].d < ovRank[k].d) 
          ovRank.RemoveRange(k, ovRankCount - k) 
          ovRankCount = k 

      maxovRank = ovRank.Last().d 
  vvRank.RemoveAt(0) 
  if (closestVV.Val <= rowVVVal) 
    vv = closestVV.Previous 
    if (vv != null) 
      d = (rowVVVal - vv.Val) / attrRanges[noCloseAttr] 
  else 
    vv = closestVV.Next 
    if (vv != null) 
      d = (vv.Val - rowVVVal) / attrRanges[noCloseAttr] 
  i = vvRank.Count - 1 
  if (vv != null) //&& (d < maxovRank)) 
    FindvvRankPos(d) 
    vvRank.Insert(i+1, new VVRankEl(d, vv)) 
  if (vvRank.Count == 0) break 
  closestVV = vvRank.First().vv 
  noCloseAttr = closestVV.AttrNo 
  rowVVVal = dataRowNew[noCloseAttr] 
while ((vvRank.First().d <=maxovRank) || (ovRank.Count <k)) 
return GetWinningClass(ovRank) 
 
FindvvRankPos(d) 
if (i >= 0) 
  do 
    if (vvRank[i].d > d) i-- 
    else break 
  while (i >= 0) 
return i 
 
AddDist(distVV, newDataRow, attrRanges) 
if (noOperation < noAGDSOperation) // Part3 
  distOV = distVV * distVV 
  cntrAdd = 1 
  noOperation = noAGDSOperation 
else // Part4 
  distOV += distVV * distVV 
  cntrAdd++ 
  if (cntrAdd == noNumerousAttributes) 
    for (vNo = 1; vNo < vvList.Count; vNo++) 
      if (notNumerousAttributes[vNo]) 
        dist = (vvList[vNo].Value - newDataRow[vNo]) /  
               attrRanges[vNo] 
        distOV += dist * dist 
    return Math.Sqrt(distOV) 
return -1 
 

 Algorithm 3 works similarly to Algorithm 2, but we take into 
account several most invariant (having the greatest number of 
unique values) attributes. For such attributes, we search for the 
smaller and greater closest values to the values defining the 
source object (dataRowNew) (Part1), so the search is more 
efficient, and the main loop (Part2) finishes after a smaller 
number of steps than in Algorithm 2. However, there is an extra 
cost of updating the rank list (vvRank) of the closest values for 
the selected subset of the most invariant attributes. In this 
algorithm, Euclidean normalized distances are computed 
gradually (AddDist), adding the square of the distance for the 
currently considered attribute into the sum of squares (distOV) 
(Part3). This way we do not lose time for full computation of the 
distances for objects defined by the values of attributes which 
are distant from the values of the selected most invariant 
attribute values of the source object. Only for those objects 
which distances of their defining values of all selected most 
invariant attributes are close enough (Part4), the Euclidean 
normalized distances are finally computed, compared, and 
inserted into the rank list of the k-th nearest objects (ovRank). 
Thanks this mechanism of gradual computation of distances of 
objects, the algorithm proceeds a less number of operations on 
the rank list of objects (ovRank). 

D. Associative KNN with a Rank Table of Closest Features 
The third associative approach (AKNN-T) (Algorithm 4) 

uses the same subset of the most numerous attributes as the 
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previous algorithm (Algorithm 3) and works in the same way, 
but it uses a rank table instead of the rank list. The change is in 
the efficiency of the way how the rank table works in 
comparison to the rank list.  

Both Rank List and Rank Table have their pros and cons and 
dependently on the training dataset either one or the second 
might be more efficient, however in the most cases (as will be 
shown in this paper), the rank table is computationally more 
efficient than the rank list. 

Algorithm 4: 
FindAKNN-T(k, dataRowNew) // Assoc. KNN using several attr 
cntrAGDSOperation++ 
int ovRankCount = 0 
vvSmallerDist = new double[noAttrs] 
vvGreaterDist = new double[noAttrs] 
for (i = 1; i < noAttrs; i++) 
  rowVVVals[i] = dataRowNew[i] 
  vvSmaller[i] = null 
  vvSmallerDist[i] = 0 
  vvGreater[i] = null 
  vvGreaterDist[i] = 0 
foreach (attrNum in NumerousAttrRank) 
  noAttr = attrNum.noAttr 
  closestVV = AVBT[noAttr].  
              FindClosestVV(dataRowNew[noAttr]) 
  if (closestVV.Val <= rowVVVals[noAttr]) 
    vvSmaller[noAttr] = closestVV 
    vvSmallerDist[noAttr] = (rowVVVals[noAttr]) /  
            attrRanges[noAttr] - vvSmaller[noAttr].Val  
    vvGreater[noAttr] = vvSmaller[noAttr].Next 
    if (vvGreater[noAttr] != null) 
      vvGreaterDist[noAttr] = (vvGreater[noAttr].Val -  
               rowVVVals[noAttr]) / attrRanges[noAttr] 
  else 
    vvGreater[noAttr] = closestVV 
    if (vvGreater[noAttr] != null) 
      vvGreaterDist[noAttr] = (vvGreater[noAttr].Val -  
               rowVVVals[noAttr]) / attrRanges[noAttr] 
smallerChosen = true 
noCloseAttr = descendantNoAttrValsList[0].noAttr 
if (vvSmallerDist[noCloseAttr] <= 
vvGreaterDist[noCloseAttr]) 
  closestVV = vvSmaller[noCloseAttr] 
else 
  closestVV = vvGreater[noCloseAttr] 
rowVVVal = rowVVVals[noCloseAttr] 
ovRank = new List<OVRankEl>() 
maxovRank = 0 
do 
  foreach (ov in closestVV.OVs) 
    d = ov.AddDist((ov.VVList[noCloseAttr].Val - rowVVVal)  
        / attrRanges[noCloseAttr], dataRowNew, attrRanges) 
    if ((d >= 0)&& ((d <= maxovRank) || (ovRankCount < k))) 
      i = ovRankCount - 1 
      FindovRankPos(d, i) 
      ovRank.Insert(i+1, new OVRankEl(d, ov)) 
      ovRankCount++ 
      if (ovRankCount > k) 
        if (ovRank[k-1].d < ovRank[k].d) 
          ovRank.RemoveRange(k, ovRankCount - k) 
          ovRankCount = k 
      maxovRank = ovRank.Last().d 
  if (smallerChosen) 
    vv = closestVV.Previous 
    if (vv != null) 
      vvSmaller[noCloseAttr] = vv 
      vvSmallerDist[noCloseAttr] = (rowVVVals[noCloseAttr]  
                       - vv.Val) / attrRanges[noCloseAttr] 
    else 
      vvSmaller[noCloseAttr] = null 
  else 
    vv = closestVV.Next 
    if (vv != null) 
      vvGreater[noCloseAttr] = vv 
      vvGreaterDist[noCloseAttr] = (vv.Val -  
         rowVVVals[noCloseAttr]) / attrRanges[noCloseAttr] 
    else 

      vvGreater[noCloseAttr] = null 
  closestVVVal = Double.MaxVal 
  for (i = 1; i < noAttrs; i++) // PartS 
  { 
    if (vvSmaller[i] != null) 
      if (vvSmallerDist[i] < closestVVVal) 
        closestVVVal = vvSmallerDist[i] 
        smallerChosen = true 
        noCloseAttr = i 
    if (vvGreater[i] != null) 
      if (vvGreaterDist[i] < closestVVVal) 
        closestVVVal = vvGreaterDist[i] 
        smallerChosen = false 
        noCloseAttr = i 
  if (closestVVVal == Double.MaxVal) break 
  if (smallerChosen) 
    closestVV = vvSmaller[noCloseAttr] 
  else 
    closestVV = vvGreater[noCloseAttr] 
  rowVVVal = rowVVVals[noCloseAttr] 
while ((closestVVVal <= maxovRank) || (ovRank.Count < k)) 
return GetWinningClass(ovRank) 
 

 The last algorithm uses rank tables (vvSmallerDist, 
vvGreaterDist) instead of rank list (vvRank) used in Algorithm 
3 to move to the next smaller or greater closest value of the 
selected subset of the most invariant attributes. This mechanism 
allows to quickly update the pointers to the next smaller or next 
greater value for a given attribute using indices and immediate 
access to array elements instead of processing operations on the 
list (vvRank) as in Algorithm 3. Nevertheless, the search for the 
next closest value requires to loop through the values in these 
rank tables (PartS), whereas the rank list used in Algorithm 3 
supplied us with such a closest value immediately. Hence, both 
approaches have their pros and cons, and only tests on datasets 
can determine which approach is the most efficient. 

IV. EXPERIMENTAL RESULTS AND COMPARISONS 

To prove that the associative search for k nearest neighbors 
(the k most similar objects in the collection) using AGDS 
structures is computationally more efficient, all four algorithms 
were run several times on the same benchmark datasets of 
different sizes and numbers of duplicates from ML Repository 
[12], and the average times were measured. 

Table I shows that almost always the AKNN-T algorithm 
was the fastest, the second place was usually occupied by the 
AKNN-L algorithm, the third one by the AKNN-1 algorithm. 
Typically the slowest one was the classic KNN algorithm 
working on a table data.  

The biggest increase in speed was achieved for Skin Data 
(Table 1) because these data contain many duplicated values for 
each attribute and have 193624 duplicated objects. In this data 
set, the aggregative properties of AGDS structures represent all 
these duplicates by single value vertices that can be searched 
through very fast. The other tested data also achieved the results 
a few times fasters, which proves that the proposed associative 
search approach to k nearest neighbors or similar objects search 
problem works. However, the proposed approach requires a 
little bit more programming effort than the classic approach 
based on the tabular structure. The results also show that 
independently on the number of attributes, the number of 
samples and the number of duplicates and data distribution in 
the dataspace always the AKNN-T algorithm (Algorithm 4) was 
the best in most of the cases (evaluated training datasets). 
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Therefore, only the AKNN-T algorithm is used in the second 
experiment to find priorities (weights of the Sebestyen distance) 
for attributes of the datasets to achieve better classification 
results than when using Euclidean distance. 

V. PRIORITIZING OF THE ATTRIBUTES AS HYPERPARAMETERS 

FOR OPTIMIZATION OF KNN PERFORMANCE 

In the classic KNN approach, the input data space is used as it is 
for each attribute, and the chosen distance measure is computed, 
or all attribute values are normalized in order to avoid preference 
of the attributes defined by values of smaller ranges. Without 
normalization, the attributes in which values are defined in 
greater ranges than other attributes are automatically treated as 
less important during the search for k nearest neighbors because 
the distances of attributes of smaller ranges will be found as 
closer. To avoid this situation, all experiments made in this paper 
were performed on normalized datasets, but the normalizations 
were made on the fly during the runs of the algorithms. The use 
of normalized and non-normalized attribute values shows that 
the way how each attribute is treated during the computation of 
k nearest neighbors has a great impact on the search and 
classification results.  

In the next experiments, we used prioritizing the attributes 
(i.e. the Sebestyen measure) to gain extra benefits from treating 

various attributes with different priorities. In this approach, each 
normalizing factor (previously determined by the range of all 
values of each attribute) was multiplied by the priority factor 
(weights), and these factors are different for various attributes. 
The priority factors (weights) were used as hyperparameters for 
KNN classifiers. These hyperparameters can be determined by 
various methods, e.g.: random search, mesh search, genetic 
algorithms, or evolutionary approaches. In our experiments, we 
used a random search because it was fast and sufficiently 
efficient to find sets of priorities of attributes for various datasets 
to improve classification results achieved by KNN classifiers.  

Table II shows that the prioritizing (weighting) of attributes 
substantially improved classification results for all datasets, and 
it proves that attributes taken with various priorities have a 
positive impact on the classification process made by the KNN 
classifiers and methods searching for similar objects in the 
collection. All experiments were run on benchmark datasets 
where training data and testing data (dev data) were divided in 
ratio 90% to 10% of the volume, where testing data were chosen 
representatively due to the classes. 

 

 

TABLE I.  COMPARISONS OF KNN CLASSIFICATION EFFICIENCY OF THE CLASSIC AND ASSOCIATIVE APPROACHES USING AGDS STRUCTURE. 

Datasets Create Time Efficiency of the Algorithms Speed comparisons 

Name of dataset 
Data Volume AGDS KNN AKNN-1 AKNN-L AKNN-T AKNN-1 AKNN-L AKNN-T 

Samples Attributes k ms ticks ticks ticks ticks to KNN to KNN to KNN 
Immunotherapy 90 7 2 1 146 145 113 68 1.01 1.29 2.15 
Immunotherapy 90 7 3 1 164 153 127 72 1.07 1.29 2.28 
Immunotherapy 90 7 5 1 171 161 133 84 1.06 1.29 2.04 
Immunotherapy 90 7 10 1 199 166 173 93 1.20 1.15 2.14 
Immunotherapy 90 7 20 1 211 177 167 105 1.19 1.26 2.01 
Iris 150 4 2 1 154 48 29 19 3.21 5.31 8.11 
Iris 150 4 3 1 175 52 32 23 3.37 5.47 7.61 
Iris 150 4 5 1 194 66 44 27 2.94 4.41 7.19 
Iris 150 4 10 1 220 83 57 45 2.65 3.86 4.89 
Iris 150 4 20 1 238 97 84 61 2.45 2.83 3.90 
Banknote 1372 4 2 46 1349 161 240 106 8.38 5.62 12.73 
Banknote 1372 4 3 46 1434 201 264 156 7.13 5.43 9.19 
Banknote 1372 4 5 46 1469 289 376 187 5.08 3.91 7.86 
Banknote 1372 4 10 46 1526 368 498 260 4.15 3.06 5.87 
Banknote 1372 4 20 46 1569 497 680 340 3.16 2.31 4.61 
Wine Quality Red 1599 11 2 69 4073 2372 1063 730 1.72 3.83 5.58 
Wine Quality Red 1599 11 3 69 4137 2724 1229 837 1.52 3.37 4.94 
Wine Quality Red 1599 11 5 69 4219 3265 1377 903 1.29 3.06 4.67 
Wine Quality Red 1599 11 10 69 4296 3275 1646 1058 1.31 2.61 4.06 
Wine Quality Red 1599 11 20 69 4422 3564 1794 1172 1.24 2.46 3.77 
Skin Data 245057 3 2 114198 42952 743 467 439 57.81 91.97 97.84 
Skin Data 245057 3 3 114198 43076 825 527 510 52.21 81.74 84.46 
Skin Data 245057 3 5 114198 43856 934 573 617 46.96 76.54 71.08 
Skin Data 245057 3 10 114198 44401 1332 761 826 33.33 58.35 53.75 
Skin Data 245057 3 20 114198 45477 1682 1001 1064 27.04 45.43 42.74 
Eye 14980 14 2 3142 56531 61733 10293 8982 0.92 5.49 6.29 
Eye 14980 14 3 3142 56599 61778 10312 9015 0.92 5.49 6.28 
Eye 14980 14 5 3142 57372 62312 11407 9720 0.92 5.03 5.90 
Eye 14980 14 10 3142 57898 64150 12376 10411 0.90 4.68 5.56 
Eye 14980 14 20 3142 58280 65844 13422 11633 0.89 4.34 5.01 
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VI. CONCLUSION 

In this paper, we proposed three new algorithms based on an 
associative graph data structure that can accelerate the search of 
the most similar objects or nearest neighbors in comparison to 
the classic k nearest neighbors’ approaches that use tables. The 
efficiency was achieved thanks to the associative data 
organization in the associative graph structures, i.e. aggregation 
or representation of duplicates and sorting all attribute values 
simultaneously.  

We found that the algorithm using a rank table (Algorithm 4) 
and several most numerous number of unique values instead of 
only one attribute of the most numerous number of unique 
values had the best performance. We used the Sebestyen 
measure to set different priorities to attributes and achieve better 
performance than using Euclidean distance.  

Finally, this paper presented that the use of associative data 
organization can benefit in various data processing tasks as 
demonstrated on classification or similar sample searches. The 
reason is that this organization allows us to look only through 
relevant objects (instead of all objects) to find answers to the 
asked questions. Hence, the associative representation of the 
relations between stored data can make the search routines more 
efficient, especially when considering big data sources, where 
looping through all objects is costly. 
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TABLE II.  COMPARISONS OF KNN CLASSIFICATION RESULTS USING PRIORITIZING OF ATTRIBUTES TO THE CLASSIC APPROACH WITHOUT IT. 

Datasets Comparison Distances of the Best Classifications of AKNN-T 
Name of 
dataset 

Data Volume Euclidean Sebestyen Weights of  the Attributes 
Samples Attributes Correct k Correct k  for Sebestyen Measure 

Immunotherapy 90 7 77.78% 3 100,00% 3 [2.674, 1.256, 0.649, 3.776, 1.912, 2.806, 3.436] 
Iris 150 4 93.33% 3 100,00% 3 [0.651, 0.2353, 3.113, 0.825] 
Banknote 1372 4 100.00% 3 100,00% 3 weighting unnecessary (all weights equal to 1) 
Wine Quality 
Red 1599 11 58.75% 12 65.63% 28 [1.815, 2.451, 1.372, 0.817, 2.094, 2.810, 3.120, 2.820, 1.821, 0.871, 

3.628] 
Skin Data 245057 3 99.96% 3 99.96% 3 weighting unnecessary (all weights equal to 1) 

Eye 14980 14 84.18% 3 85.85% 5 [1.172, 3.820, 2.254, 1.210, 2.885, 1.052, 0.878, 4.121, 2.581, 2.115, 
2.528, 3.354, 0.206, 3.490] 
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