
Associative Data Model in Search for Nearest

Neighbors and Similar Patterns

Adrian Horzyk

AGH University of Science and Technology in Krakow

Depart. of Biocybernetics and Biomedical Engineering

30-059 Kraków, Poland

Email: horzyk@agh.edu.pl

Janusz A. Starzyk

University of Information Technology and Management

in Rzeszow, Department of Applied Information Systems

35-225 Rzeszów, Poland

Email: starzykj@gmail.com

Abstract—This paper introduces a biologically inspired

associative data model and structure for finding nearest neighbors
and similar patterns. The method can be used as an alternative to
the classical approaches to accelerate the search for such patterns
using various priorities for attributes according to the Sebestyen
measure. The presented structure, together with algorithms
developed in this paper can be useful in various computational
intelligence tasks like pattern matching, recognition, clustering,
classification, multi-criterion search etc. This approach is
particularly useful for the on-line operation of associative neural
network graphs. Graphs that dynamically develop their structure
during learning on training data. The results of experiments show
that the associative approach can substantially accelerate the
nearest neighbor search and that associative structures can also be
used as a model for KNN tasks. Finally, this paper presents how
the associative structures can be used to self-organize data and
represent knowledge about them in the associative way, which
yields new search approaches described in this paper.

Keywords—nearest neighbor search; similarity; classification;
associative data model; associative data structures.

I. INTRODUCTION

The most common way of storing data is the use of tables,
where various objects are represented by records of values of
various attributes. Such objects can be sorted by only one chosen
attribute. So when we need to find similar objects or determine
its nearest neighbors, the whole table must be searched, and the
distances to specific data must be computed and compared for
all objects. This approach is not efficient and is the bottleneck of
the k nearest neighbors (KNN) classifiers [1-3]. The
computational complexity of the search increases at least
linearly with the number of compared objects in the table storage.

Our brains also have the ability to find similar objects, but
they undoubtedly do not search through long lists of known
objects because our slowly working neurons (spiking maximally
hundred times per second [4] which is very slow in comparison
to CPU clocks of contemporary computers) will not be able to
find similar objects in an acceptable time. This suggests that
biological neural structures of our brains use a different
approach to finding similar objects. Taking into account the
slow spiking speed of biological neurons, the biological
neuronal structures must organize representation of similar
objects close to each other to be able to find them quickly.

The most important goal of this paper is to present the
associative model and structures for storing similar objects
(patterns) closely and making them quickly available. The
efficiency of this model is compared to the classic approaches
where tables are used [5]. We present three algorithms using
associative structures that search for similarities of objects and
nearest neighbors faster than the classic KNN algorithm. These
algorithms also improve the associative approach presented in
[6], where the first attribute was always used for the searches
considered in this paper. Moreover, we show how we can
change the results of such searches using various priorities for
attributes, and how this improves the classification results of k
nearest neighbor classifiers.

II. ASSOCIATIVE DATA MODEL AND STRUCTURES

The Associative Graph Data Structure (AGDS) was inspired
by the analysis of connections between real neurons and
developed by Horzyk [5], [7]. This graph structure consists of
vertices representing unique attribute values, objects defined by
these attribute values, connections that link the nearest values of
each attribute, and links that connect the object to attribute
values that define them. The values are represented by value
vertices, and objects are represented by object vertices.
Duplicates of identical values of each attribute are aggregated
and represented by the same value vertices. Identical objects that
appear in the input data are also represented by the same object
vertices (Fig. 1). Such aggregations of various duplicates reduce
the number of value vertices and object vertices appearing in
tables.

Thanks to the use of graph structure, instead of a tabular one,
all values of each attribute can be sorted simultaneously, which
accelerates various search operations processed on AGDS
structures. The sorting and aggregation of attribute values are
beneficial. For instance, it is possible to move fast between
objects defined by the same or close values.

For example, consider Associative Graph Data Structure
created on 30 samples from Fisher's Iris data set presented in Fig.
1. In this figure, objects O21 and O24 are connected to the same
attribute value 1.7 for the petal length and to close value vertices
5.1 and 5.4 for the sepal length or 0.2 and 0.5 for the petal width,
which reduces the graph paths between similar objects and
allows various search algorithms to find similar objects faster

2019 IEEE Symposium Series on Computational Intelligence (SSCI)
December 6-9 2019, Xiamen, China

978-1-7281-2484-1/19/$31.00 ©2019 IEEE 932

than using classic approaches. These properties of the proposed
approach will be used in the following subsections to define
faster associative algorithms for searching for k nearest
neighbors.

The AGDS structure is not only a different representation of
the dataset stored in the table, but this graph structure represents
much more useful relations between data than the tabular
structure. We can quickly move between similar attribute values
and find all objects defined by them as well as moving from one
object to another using various criteria. The AGDS structure
represents not only definitions of objects like tabular structures
do, but also various relations between these objects. Many
algorithms search through data tables, looping those tables many
times to find necessary relationships. When using associative
structures like AGDS, we do not need to loop because some
relations are immediately available through AGDS associations.
This paper uncovers only a small part of the abilities of these
graph structures, focusing on the efficient search algorithms for
similar (nearest neighbors) objects.

III. NEAREST NEIGHBORS SEARCH

The search of nearest neighbors is one of the approaches
used for object matching, recognition, clustering, or
classification because nearest neighbors, i.e. the most similar
objects in a given distance measure, intuitively suggest the
grouping and labeling conditions for the objects. This approach
is used in the different variations of the k nearest neighbors’
methods [2], [8-10], so they are used in this paper for testing and
comparisons of the introduced approach. The following
subsections will discuss and compare the classic approach based
on the tabular data representation to the proposed associative
approach using the AGDS structure.

The main idea of the associative approach is to limit the
number of objects (training samples) that must be selected to
compute distances to them in order to find k nearest neighbors.
It is possible thanks to the associative structure where similar
object vertices are connected through sorted and aggregated
value vertices. If fact, the search for k nearest neighbors
proceeds only in the closest surrounding of the classified sample
leaving out all distant objects.

A. Classic KNN Using a Data Table and Rank List of Objects
The classic KNN approaches [1-3], [8-9] use a data table

where all objects (training samples) are stored. For a given input
object, for which we would like to find k nearest neighbors (k
most similar objects), the algorithm loops through the whole
collection computing the chosen distance (e.g. Euclidean,
Manhattan, Minkowski, Sebestyen, or Mahalanobis distance)
between the input object and all objects stored in the table [11].
Next, it compares the computed distances with the distances of
the currently closest objects stored in the rank list and inserts
those which are closer than the most distant object in the rank
list. The k closest objects in the rank list are updated during the
loop over all objects. First, a new computed distance between
the input object and the next checked object in the tabular
collection is compared to the most distant object in the rank list.
When this distance is smaller than the one of the most distant
object, then the algorithm loops through the rank list from its
end to its beginning and finds the right place to put there this
closer object. It usually overfills the rank list (over k elements),
so the last, most distant object is removed from the rank list if
only it is more distant than the k-th element in the rank list. If it
is not, all objects with the same distance are stored in the
overlengthen rank list until the k-th element is smaller than the
last element in this list. When it finally happens, then all objects

Fig. 1 Associative Graph Data Structure created on sample data (30 selected Iris samples) with visible aggregations of representation of the same attribute

values and counted duplicates represented by value vertices. They are connected to their neighbors in the sorted order and used to define various objects
represented by the object vertices. This structure is used for searching for k nearest neighbors for the object O93 starting from the closest attribute values

[5.8, 2.7, 3.9, 1.2] that define this object and spreading out to other connected close values and to the objects (training samples) that constitute this structure.

933

with the same distance which overlengthen the list are removed
at the same time. The algorithm is running until all objects
(training samples) compute their distance and check them with
those in the rank list. The final rank list points out the k or
sometimes more (if there are a few objects with the same
distance at the end of the rank list, so we cannot neglect them)
closest objects (nearest neighbors) in the collection.

These objects are finally used to classify the input sample
based on the most frequent class represented by the object in the
rank list. If there are no winning class, or when the most frequent
class represented by the objects in the rank list is different from
the class defined for the input object, the classification is
incorrect.

Another classic approach to KNN classification requires to
compute distances of the input object to all training objects
(samples) in the collection, and then sort these distances in the
ascendant order, e.g. using quicksort. Next, the k-th or more (if
there are a few objects with the same distance at the end of the
rank list) closest objects are taken as the k nearest neighbors and
determine the final classification. This approach is slower than
the previously described one using rank list because it requires
to sort all objects, while we directly use only k-th closest ones.

The bottleneck of the classic approaches using a table for
storing training samples is that all samples must always be
looped, and to all of them, the distance must be computed,
compared, and sorted to find the k nearest neighbors. The
associative approach presented in the following subsections
shows how the training objects (samples) can be associatively
organized to avoid looping through all of them to find the k
nearest neighbors (the k most similar objects) in the training
dataset.

Algorithm 1:
FindKNN(k, dataRowNew) // find k nearest neighbors
oRank = new List<CDRow>() // Create rank list (Part1)
dMaxoRank = 0.0 // max distance in oRank
countoRank = 0 // count of the oRank elements
foreach (dataRow in dataTable) // loop over all rows
d = EuclideanNormDist(dataRow, dataRowNew) // Part2
if ((d <= dMaxoRank) || (countoRank < k)) // Part3
 i = countoRank-1
 if (i >= 0)
 do
 if (oRank[i].d > d) i--
 else break
 while (i >= 0)
 oRank.Insert(i+1, new CDRow(d, dataRow))
 countoRank++
 if (countoRank > k)
 if (oRank[k-1].d < oRank[k].d) // Part4
 oRank.RemoveRange(k, countoRank-k)
 countoRank = k
 dMaxoRank = oRank.Last().d
return GetWinningClass(oRank)

EuclideanNormDist(obj1, obj2)
dist = 0.0;
for (int i = 1; i < obj1.NoAttributes; i++)
 d += Pow(obj1[i] - obj2[i]) / attrRanges[i], 2);
return Sqrt(d);

where the function GetWinningClass points out the class that is
most frequently represented by the objects in the rank list oRank
or returns null if there is no winning class.

 In this algorithm, the rank list oRank is created (Part1) to
store the sorted list of k nearest objects accordingly to the

Euclidean normalized distance computed by the
EuclideanNormDist function (Part2), where the distances are
computed on the basis of the distances normalized by the ranges
of attributes. If the computed distance to the next object
(dataRowNew) is less than the most distant object in the rank
list oRank and the list already contains k elements (Part3), then
it is inserted in the right order into this list. Next, when the rank
list becomes longer than k and the k-th object has a different
distance than the last objects (Part4), the most distant objects are
removed from the rank list. Finally, after looking through all
objects, we get the final list of k nearest objects (neighbors) or
more if the k-th object in this list has the same distance to the
source object as the subsequent objects in this rank list.

B. Associative KNN based on the Most Variant Feature
The first associative approach (AKNN-1) uses only one of

the most variant attributes to search for k nearest neighbors. The
most variant attribute has the biggest number of unique values,
i.e. the least number of duplicates in the tabular collection (e.g.
both attributes petal length and petal width have 13 unique
values in Fig. 1, and that is more than the other attributes have).

We select one of the most variant attributes because their
value vertices are connected on average to the smaller number
of object vertices than the value vertices of the attributes with
less number of represented unique values in the vertices. Thanks
to it, we can substantially reduce the number of visited object
vertices for which the distances to the classified object (e.g.
object O93 in Fig. 1) are computed. The number of unique
values for each attribute is counted during the construction of
the AGDS structure for a given dataset, so we need only to find
the most numerous ones. This can be done in constant time to
start the search.

The associative search process starts from the value vertex
of the chosen most numerable attribute that defines the classified
object. In the sample of thirty Iris objects (Fig. 1), we can choose
petal length or petal width as this most numerable attribute.
According to which one will be chosen, the search process will
start from value vertex 4.0 for petal length or from value vertex
1.2 for petal width because these values are the closest to those
defining the classified object O93. Next, all connected object
vertices to the chosen nearest value vertex are visited, and their
distances to the classified object are computed. These distances
are compared to the most distant object in the rank list (if there
are any) and those which are closer than the most distant one (or
the rank list has no k objects yet) are put into the rank list in the
ascendant order, starting the search for this position from the end
of this rank list.

Next, the algorithm moves from the current value vertex to
the next smaller or greater value vertex that has not been visited
yet and represents the next closest value to the value of the
classified object (i.e. 4.1 for the petal length or 1.3 for the petal
width in Fig. 1). For this next value vertex, the whole process
(that computes distances of objects represented by the object
vertices connected to this value vertex and updating the rank list)
is repeated until the distance of the value represented by the next
value vertex to the value of the classified object is greater than
the distance of the most distant object in the rank list. This is the
stop condition of this algorithm because if this condition is true,
we can be sure that there cannot be another object that will be

934

closer to the classified one. When the stop condition is satisfied,
the rank list contains k nearest neighbors with their computed
distances, and they can be used to compute the final result of the
classification of the KNN algorithm, or these neighbors can be
used to other issues. Thus, the result of the associative search for
nearest neighbor is the same as for the classic KNN algorithm,
but the nearest neighbors are usually found much faster than
using the classical KNN approach and a table for storing objects
because we do not loop through all objects.

Algorithm 2:
FindAKNN(k, dataRowNew) // Associative KNN using one attr
range = attrRanges[noMNA] // most numerous attr range
closestVV = AVBT[noMNA].FindClosestVV(dataRowNew[noMNA])
rowVVVal = dataRowNew[noMNA]
if (closestVV.Val <= rowVVVal) // Part1
 smallerVV = closestVV
 dToSmallerVV = (rowVVVal - smallerVV.Val) / range
 greaterVV = smallerVV.Next
else
 smallerVV = null
 dToSmallerVV = Double.MaxVal
 greaterVV = closestVV
if (greaterVV != null)
 dToGreaterVV = (greaterVV.Val - rowVVVal) / range
else dToGreaterVV = Double.MaxVal
ovRank = new List< COVRankEl>() // Part2
ovRankCount = 0
maxovRank = 0.0
do
 foreach (ov in closestVV.OVs) // Part3
 d = EuclideanNormDist(ov, dataRowNew)
 if ((d <= maxovRank) || (ovRankCount < k))
 i = ovRankCount - 1
 FindovRankPos(d, i)
 ovRank.Insert(i+1, new COVRankEl(d, ov))
 ovRankCount++
 if (ovRankCount > k)
 if (ovRank[k-1].d < ovRank[k].d)
 ovRank.RemoveRange(k, ovRankCount - k)
 ovRankCount = k
 maxovRank = ovRank.Last().d
 if (smallerVV == closestVV) // Part4
 smallerVV = smallerVV.Previous
 if (smallerVV != null)
 dToSmallerVV = (rowVVVal - smallerVV.Val) / range
 else
 dToSmallerVV = Double.MaxVal
 if (greaterVV == null) break
 else
 greaterVV = greaterVV.Next
 if (greaterVV != null)
 dToGreaterVV = (greaterVV.Val - rowVVVal) / range
 else
 dToGreaterVV = Double.MaxVal
 if (smallerVV == null) break
 if (dToSmallerVV <= dToGreaterVV)
 closestVV = smallerVV
 else closestVV = greaterVV
while ((dToSmallerVV <= maxovRank ||
 dToGreaterVV <= maxovRank) || (ovRank.Count < k))
return GetWinningClass(ovRank)

FindovRankPos(d, i)
if (i >= 0)
 do
 if (ovRank[i].d > d) i--
 else break
 while (i >= 0)
return i

 In Algorithm 2, we start from the closest value vertices
(closestVV) to the source object represented in this associative
structure supported by AVB+trees (AVBT) [5] used to
efficiently store and search for value vertices (VV). Next, two
neighbors (a smaller or equal one (smallerVV) and a greater one
(greaterVV)) are established (Part1) together with the distances

(dToSmallerVV and dToGreaterVV) to these neighbors.
Afterward, the rank list ovRank is created (Part2) and is filled
with the nearest objects represented in the associative structure.

The nearest objects are established on the basis of checking only
the objects connected to the nearest values of the selected
attribute to the value of this attribute representing the source
object (dataRowNew). Thus, we check all objects connected to
the given nearest value of the selected attribute (Part3), and next
move to the next closest value (smaller or greater one) (Part 4),
and calculate Euclidean normalized distances
(EuclideanNormDist) to the source object (dataRowNew). We
continue this process until the next closest value is more distant
to the value of this attribute of the source object than the most
distant (k-th) object in the rank list because the further search
will not bring closer objects and do not change the rank list
anymore.

C. Associative KNN with a Rank List of Closest Features
The second associative approach (AKNN-L) uses the same

AGDS structure as before, but it uses several most numerous
attributes (e.g. these attributes which numbers of unique values
are greater than the average number of unique values for all
attributes). In this approach, we use another rank list of the
closest values of those most numerous attributes to the values of
the classified object.

During the main loop of this algorithm, the next closest value
vertex is chosen from this rank list until the same stop condition
as before is achieved, but the distances of the objects represented
by the visited object vertices to the classified object are
computed gradually, not at once. Namely, suppose that we have
J most numerous attributes. When the object vertex is visited for
the j time (where j < J) for the i-th attribute, its distance to the
classified object is only partially computed for the attribute
value that pointed this object vertex, e.g. (1) for Euclidean
distance, (2) for Euclidean distance, (3) for Minkowski distance,
and (4) Sebestyen distance:

� � ����

� � ����

� � ����

� � ����

where is a diagonal matrix of weights.

Hence, we do not lose time for computing the whole distance
for the visited object vertex because it might not be one of the
nearest neighbors. Only when the object vertex is visited the J
time for the i-th attribute, the distance is finally computed, e.g.
(5) for Euclidean distance, (6) for Euclidean distance, (7) for
Minkowski distance, and (8) Sebestyen distance

� � �	��

� � �
��

935

� � ����

� � ����

and we have compared with the distances in the rank list of
nearest neighbors if only the computed distance is smaller than
the distance to the most distant object in the rank list. If we
proceed with this algorithm always for the closest value vertex
for the selected most numerous attributes, the above-defined
stop condition is achieved faster because we move along a few
most numerous attributes, and the greatest distance in the rank
list decreases faster. We additionally save some computational
time for calculating only partial distances (1) – (4) of the objects
that have only some attribute values close to the classified
objects, but they are not the nearest neighbors because of the
other attribute values that are distant.

 On the other hand, we have to take into consideration the
extra computational cost for handling the rank list of the closest
values of the chosen subset of the most numerous attributes.
That is why the following algorithm (Algorithm 3) uses several
attributes defined by the most numerous number of unique
values instead of only one attribute of the most numerous
number of unique values used in Algorithm 2.

Algorithm 3:
FindAKNN-L(k, dataRowNew) // Assoc. KNN using several attr
ovRankCount = 0
vvRank = new List<VVRankEl>()
foreach (attrNum in descendantNoAttrValsList)
 noAttr = attrNum.noAttr
 closestVV = AVBT[noAttr].
 FindClosestVV(dataRowNew[noAttr])
 rowVVVal = dataRowNew[noAttr]
 if (closestVV.Val <= rowVVVal) // Part1
 smallerVV = closestVV
 d = (rowVVVal - smallerVV.Val) / attrRanges[noAttr]
 i = vvRank.Count - 1
 FindvvRankPos(d, i)
 vvRank.Insert(i+1, new VVRankEl(d, smallerVV))
 greaterVV = smallerVV.Next
 if (greaterVV != null)
 d = (greaterVV.Val - rowVVVal) / attrRanges[noAttr]
 i = vvRank.Count - 1
 FindvvRankPos(d, i)
 vvRank.Insert(i+1, new VVRankEl (d, greaterVV))
 else
 greaterVV = smallerVV.Next
 if (greaterVV != null)
 d = (greaterVV.Val - rowVVVal) / attrRanges[noAttr]
 i = vvRank.Count - 1
 FindvvRankPos(d, i)
 vvRank.Insert(i+1, new VVRankEl(d, greaterVV))
closestVV = vvRank.First().vv
noCloseAttr = closestVV.AttrNo
rowVVVal = dataRowNew[noCloseAttr]
ovRank = new List<OVRankEl>()
maxovRank = 0
do // Part2
 foreach (ov in closestVV.OVs)
 d = ov.AddDist((ov.VVList[noCloseAttr].Val - rowVVVal)
 / attrRanges[noCloseAttr], dataRowNew, attrRanges)
 if ((d >= 0)&& ((d <= maxovRank) || (ovRankCount < k)))
 i = ovRankCount - 1
 FindovRankPos(d, i)
 ovRank.Insert(i+1, new OVRankEl(d, ov))
 ovRankCount++
 if (ovRankCount > k)
 if (ovRank[k-1].d < ovRank[k].d)
 ovRank.RemoveRange(k, ovRankCount - k)
 ovRankCount = k

 maxovRank = ovRank.Last().d
 vvRank.RemoveAt(0)
 if (closestVV.Val <= rowVVVal)
 vv = closestVV.Previous
 if (vv != null)
 d = (rowVVVal - vv.Val) / attrRanges[noCloseAttr]
 else
 vv = closestVV.Next
 if (vv != null)
 d = (vv.Val - rowVVVal) / attrRanges[noCloseAttr]
 i = vvRank.Count - 1
 if (vv != null) //&& (d < maxovRank))
 FindvvRankPos(d)
 vvRank.Insert(i+1, new VVRankEl(d, vv))
 if (vvRank.Count == 0) break
 closestVV = vvRank.First().vv
 noCloseAttr = closestVV.AttrNo
 rowVVVal = dataRowNew[noCloseAttr]
while ((vvRank.First().d <=maxovRank) || (ovRank.Count <k))
return GetWinningClass(ovRank)

FindvvRankPos(d)
if (i >= 0)
 do
 if (vvRank[i].d > d) i--
 else break
 while (i >= 0)
return i

AddDist(distVV, newDataRow, attrRanges)
if (noOperation < noAGDSOperation) // Part3
 distOV = distVV * distVV
 cntrAdd = 1
 noOperation = noAGDSOperation
else // Part4
 distOV += distVV * distVV
 cntrAdd++
 if (cntrAdd == noNumerousAttributes)
 for (vNo = 1; vNo < vvList.Count; vNo++)
 if (notNumerousAttributes[vNo])
 dist = (vvList[vNo].Value - newDataRow[vNo]) /
 attrRanges[vNo]
 distOV += dist * dist
 return Math.Sqrt(distOV)
return -1

 Algorithm 3 works similarly to Algorithm 2, but we take into
account several most invariant (having the greatest number of
unique values) attributes. For such attributes, we search for the
smaller and greater closest values to the values defining the
source object (dataRowNew) (Part1), so the search is more
efficient, and the main loop (Part2) finishes after a smaller
number of steps than in Algorithm 2. However, there is an extra
cost of updating the rank list (vvRank) of the closest values for
the selected subset of the most invariant attributes. In this
algorithm, Euclidean normalized distances are computed
gradually (AddDist), adding the square of the distance for the
currently considered attribute into the sum of squares (distOV)
(Part3). This way we do not lose time for full computation of the
distances for objects defined by the values of attributes which
are distant from the values of the selected most invariant
attribute values of the source object. Only for those objects
which distances of their defining values of all selected most
invariant attributes are close enough (Part4), the Euclidean
normalized distances are finally computed, compared, and
inserted into the rank list of the k-th nearest objects (ovRank).
Thanks this mechanism of gradual computation of distances of
objects, the algorithm proceeds a less number of operations on
the rank list of objects (ovRank).

D. Associative KNN with a Rank Table of Closest Features
The third associative approach (AKNN-T) (Algorithm 4)

uses the same subset of the most numerous attributes as the

936

previous algorithm (Algorithm 3) and works in the same way,
but it uses a rank table instead of the rank list. The change is in
the efficiency of the way how the rank table works in
comparison to the rank list.

Both Rank List and Rank Table have their pros and cons and
dependently on the training dataset either one or the second
might be more efficient, however in the most cases (as will be
shown in this paper), the rank table is computationally more
efficient than the rank list.

Algorithm 4:
FindAKNN-T(k, dataRowNew) // Assoc. KNN using several attr
cntrAGDSOperation++
int ovRankCount = 0
vvSmallerDist = new double[noAttrs]
vvGreaterDist = new double[noAttrs]
for (i = 1; i < noAttrs; i++)
 rowVVVals[i] = dataRowNew[i]
 vvSmaller[i] = null
 vvSmallerDist[i] = 0
 vvGreater[i] = null
 vvGreaterDist[i] = 0
foreach (attrNum in NumerousAttrRank)
 noAttr = attrNum.noAttr
 closestVV = AVBT[noAttr].
 FindClosestVV(dataRowNew[noAttr])
 if (closestVV.Val <= rowVVVals[noAttr])
 vvSmaller[noAttr] = closestVV
 vvSmallerDist[noAttr] = (rowVVVals[noAttr]) /
 attrRanges[noAttr] - vvSmaller[noAttr].Val
 vvGreater[noAttr] = vvSmaller[noAttr].Next
 if (vvGreater[noAttr] != null)
 vvGreaterDist[noAttr] = (vvGreater[noAttr].Val -
 rowVVVals[noAttr]) / attrRanges[noAttr]
 else
 vvGreater[noAttr] = closestVV
 if (vvGreater[noAttr] != null)
 vvGreaterDist[noAttr] = (vvGreater[noAttr].Val -
 rowVVVals[noAttr]) / attrRanges[noAttr]
smallerChosen = true
noCloseAttr = descendantNoAttrValsList[0].noAttr
if (vvSmallerDist[noCloseAttr] <=
vvGreaterDist[noCloseAttr])
 closestVV = vvSmaller[noCloseAttr]
else
 closestVV = vvGreater[noCloseAttr]
rowVVVal = rowVVVals[noCloseAttr]
ovRank = new List<OVRankEl>()
maxovRank = 0
do
 foreach (ov in closestVV.OVs)
 d = ov.AddDist((ov.VVList[noCloseAttr].Val - rowVVVal)
 / attrRanges[noCloseAttr], dataRowNew, attrRanges)
 if ((d >= 0)&& ((d <= maxovRank) || (ovRankCount < k)))
 i = ovRankCount - 1
 FindovRankPos(d, i)
 ovRank.Insert(i+1, new OVRankEl(d, ov))
 ovRankCount++
 if (ovRankCount > k)
 if (ovRank[k-1].d < ovRank[k].d)
 ovRank.RemoveRange(k, ovRankCount - k)
 ovRankCount = k
 maxovRank = ovRank.Last().d
 if (smallerChosen)
 vv = closestVV.Previous
 if (vv != null)
 vvSmaller[noCloseAttr] = vv
 vvSmallerDist[noCloseAttr] = (rowVVVals[noCloseAttr]
 - vv.Val) / attrRanges[noCloseAttr]
 else
 vvSmaller[noCloseAttr] = null
 else
 vv = closestVV.Next
 if (vv != null)
 vvGreater[noCloseAttr] = vv
 vvGreaterDist[noCloseAttr] = (vv.Val -
 rowVVVals[noCloseAttr]) / attrRanges[noCloseAttr]
 else

 vvGreater[noCloseAttr] = null
 closestVVVal = Double.MaxVal
 for (i = 1; i < noAttrs; i++) // PartS
 {
 if (vvSmaller[i] != null)
 if (vvSmallerDist[i] < closestVVVal)
 closestVVVal = vvSmallerDist[i]
 smallerChosen = true
 noCloseAttr = i
 if (vvGreater[i] != null)
 if (vvGreaterDist[i] < closestVVVal)
 closestVVVal = vvGreaterDist[i]
 smallerChosen = false
 noCloseAttr = i
 if (closestVVVal == Double.MaxVal) break
 if (smallerChosen)
 closestVV = vvSmaller[noCloseAttr]
 else
 closestVV = vvGreater[noCloseAttr]
 rowVVVal = rowVVVals[noCloseAttr]
while ((closestVVVal <= maxovRank) || (ovRank.Count < k))
return GetWinningClass(ovRank)

 The last algorithm uses rank tables (vvSmallerDist,
vvGreaterDist) instead of rank list (vvRank) used in Algorithm
3 to move to the next smaller or greater closest value of the
selected subset of the most invariant attributes. This mechanism
allows to quickly update the pointers to the next smaller or next
greater value for a given attribute using indices and immediate
access to array elements instead of processing operations on the
list (vvRank) as in Algorithm 3. Nevertheless, the search for the
next closest value requires to loop through the values in these
rank tables (PartS), whereas the rank list used in Algorithm 3
supplied us with such a closest value immediately. Hence, both
approaches have their pros and cons, and only tests on datasets
can determine which approach is the most efficient.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

To prove that the associative search for k nearest neighbors
(the k most similar objects in the collection) using AGDS
structures is computationally more efficient, all four algorithms
were run several times on the same benchmark datasets of
different sizes and numbers of duplicates from ML Repository
[12], and the average times were measured.

Table I shows that almost always the AKNN-T algorithm
was the fastest, the second place was usually occupied by the
AKNN-L algorithm, the third one by the AKNN-1 algorithm.
Typically the slowest one was the classic KNN algorithm
working on a table data.

The biggest increase in speed was achieved for Skin Data
(Table 1) because these data contain many duplicated values for
each attribute and have 193624 duplicated objects. In this data
set, the aggregative properties of AGDS structures represent all
these duplicates by single value vertices that can be searched
through very fast. The other tested data also achieved the results
a few times fasters, which proves that the proposed associative
search approach to k nearest neighbors or similar objects search
problem works. However, the proposed approach requires a
little bit more programming effort than the classic approach
based on the tabular structure. The results also show that
independently on the number of attributes, the number of
samples and the number of duplicates and data distribution in
the dataspace always the AKNN-T algorithm (Algorithm 4) was
the best in most of the cases (evaluated training datasets).

937

Therefore, only the AKNN-T algorithm is used in the second
experiment to find priorities (weights of the Sebestyen distance)
for attributes of the datasets to achieve better classification
results than when using Euclidean distance.

V. PRIORITIZING OF THE ATTRIBUTES AS HYPERPARAMETERS

FOR OPTIMIZATION OF KNN PERFORMANCE

In the classic KNN approach, the input data space is used as it is
for each attribute, and the chosen distance measure is computed,
or all attribute values are normalized in order to avoid preference
of the attributes defined by values of smaller ranges. Without
normalization, the attributes in which values are defined in
greater ranges than other attributes are automatically treated as
less important during the search for k nearest neighbors because
the distances of attributes of smaller ranges will be found as
closer. To avoid this situation, all experiments made in this paper
were performed on normalized datasets, but the normalizations
were made on the fly during the runs of the algorithms. The use
of normalized and non-normalized attribute values shows that
the way how each attribute is treated during the computation of
k nearest neighbors has a great impact on the search and
classification results.

In the next experiments, we used prioritizing the attributes
(i.e. the Sebestyen measure) to gain extra benefits from treating

various attributes with different priorities. In this approach, each
normalizing factor (previously determined by the range of all
values of each attribute) was multiplied by the priority factor
(weights), and these factors are different for various attributes.
The priority factors (weights) were used as hyperparameters for
KNN classifiers. These hyperparameters can be determined by
various methods, e.g.: random search, mesh search, genetic
algorithms, or evolutionary approaches. In our experiments, we
used a random search because it was fast and sufficiently
efficient to find sets of priorities of attributes for various datasets
to improve classification results achieved by KNN classifiers.

Table II shows that the prioritizing (weighting) of attributes
substantially improved classification results for all datasets, and
it proves that attributes taken with various priorities have a
positive impact on the classification process made by the KNN
classifiers and methods searching for similar objects in the
collection. All experiments were run on benchmark datasets
where training data and testing data (dev data) were divided in
ratio 90% to 10% of the volume, where testing data were chosen
representatively due to the classes.

TABLE I. COMPARISONS OF KNN CLASSIFICATION EFFICIENCY OF THE CLASSIC AND ASSOCIATIVE APPROACHES USING AGDS STRUCTURE.

Datasets Create Time Efficiency of the Algorithms Speed comparisons

Name of dataset
Data Volume AGDS KNN AKNN-1 AKNN-L AKNN-T AKNN-1 AKNN-L AKNN-T

Samples Attributes k ms ticks ticks ticks ticks to KNN to KNN to KNN
Immunotherapy 90 7 2 1 146 145 113 68 1.01 1.29 2.15
Immunotherapy 90 7 3 1 164 153 127 72 1.07 1.29 2.28
Immunotherapy 90 7 5 1 171 161 133 84 1.06 1.29 2.04
Immunotherapy 90 7 10 1 199 166 173 93 1.20 1.15 2.14
Immunotherapy 90 7 20 1 211 177 167 105 1.19 1.26 2.01
Iris 150 4 2 1 154 48 29 19 3.21 5.31 8.11
Iris 150 4 3 1 175 52 32 23 3.37 5.47 7.61
Iris 150 4 5 1 194 66 44 27 2.94 4.41 7.19
Iris 150 4 10 1 220 83 57 45 2.65 3.86 4.89
Iris 150 4 20 1 238 97 84 61 2.45 2.83 3.90
Banknote 1372 4 2 46 1349 161 240 106 8.38 5.62 12.73
Banknote 1372 4 3 46 1434 201 264 156 7.13 5.43 9.19
Banknote 1372 4 5 46 1469 289 376 187 5.08 3.91 7.86
Banknote 1372 4 10 46 1526 368 498 260 4.15 3.06 5.87
Banknote 1372 4 20 46 1569 497 680 340 3.16 2.31 4.61
Wine Quality Red 1599 11 2 69 4073 2372 1063 730 1.72 3.83 5.58
Wine Quality Red 1599 11 3 69 4137 2724 1229 837 1.52 3.37 4.94
Wine Quality Red 1599 11 5 69 4219 3265 1377 903 1.29 3.06 4.67
Wine Quality Red 1599 11 10 69 4296 3275 1646 1058 1.31 2.61 4.06
Wine Quality Red 1599 11 20 69 4422 3564 1794 1172 1.24 2.46 3.77
Skin Data 245057 3 2 114198 42952 743 467 439 57.81 91.97 97.84
Skin Data 245057 3 3 114198 43076 825 527 510 52.21 81.74 84.46
Skin Data 245057 3 5 114198 43856 934 573 617 46.96 76.54 71.08
Skin Data 245057 3 10 114198 44401 1332 761 826 33.33 58.35 53.75
Skin Data 245057 3 20 114198 45477 1682 1001 1064 27.04 45.43 42.74
Eye 14980 14 2 3142 56531 61733 10293 8982 0.92 5.49 6.29
Eye 14980 14 3 3142 56599 61778 10312 9015 0.92 5.49 6.28
Eye 14980 14 5 3142 57372 62312 11407 9720 0.92 5.03 5.90
Eye 14980 14 10 3142 57898 64150 12376 10411 0.90 4.68 5.56
Eye 14980 14 20 3142 58280 65844 13422 11633 0.89 4.34 5.01

938

VI. CONCLUSION

In this paper, we proposed three new algorithms based on an
associative graph data structure that can accelerate the search of
the most similar objects or nearest neighbors in comparison to
the classic k nearest neighbors’ approaches that use tables. The
efficiency was achieved thanks to the associative data
organization in the associative graph structures, i.e. aggregation
or representation of duplicates and sorting all attribute values
simultaneously.

We found that the algorithm using a rank table (Algorithm 4)
and several most numerous number of unique values instead of
only one attribute of the most numerous number of unique
values had the best performance. We used the Sebestyen
measure to set different priorities to attributes and achieve better
performance than using Euclidean distance.

Finally, this paper presented that the use of associative data
organization can benefit in various data processing tasks as
demonstrated on classification or similar sample searches. The
reason is that this organization allows us to look only through
relevant objects (instead of all objects) to find answers to the
asked questions. Hence, the associative representation of the
relations between stored data can make the search routines more
efficient, especially when considering big data sources, where
looping through all objects is costly.

ACKNOWLEDGMENT

This work was supported by the grant from the National
Science Centre, Poland DEC-2016/21/B/ST7/02220 and AGH
16.16.120.773.

REFERENCES

[1] T. Abidin and W. Perrizo, “A Fast and Scalable Nearest Neighbor Based
Classifier for Data Mining,” IEEE Global Congress on Intelligent
Systems, pp. 536–540,2006.

[2] Jianping Gou, Lan Du, Yuhong Zhang and Taisong Xiong: “A New
Distance-weighted k-nearest Neighbor Classifier,” Journal of Information
and Computational Science, vol. 9, no. 6, pp. 1429–1436, 2012.

[3] D. P. Vivencio, E. R. Hruschka, M. C. Nicoletti and E. B. Santos,
“Feature-weighted k-Nearest Neighbor Classifier,” IEEE Symposium on
Foundations of Computational Intelligence, pp. 481–486,2007.

[4] J.W. Kalat, Biological grounds of psychology, Wadsworth Publishing,
2008.

[5] A. Horzyk, “Associative Graph Data Structures with an Efficient Access
via AVB+trees,” In 2018 11th International Conference on Human
System Interaction, IEEE ,2018, pp. 169 - 175.

[6] A. Horzyk and K. Gołdon, “Associative Graph Data Structures Used for
Acceleration of K Nearest Neighbor Classifiers,” In 2018 27th
International Conference on Artificial Neural Networks, 2018, pp. 648-
658.

[7] A. Horzyk, Artificial Associative Systems and Associative Artificial
Intelligence, EXIT, Warsaw, 2013.

[8] R. Agrawal, “Extensions of k-Nearest Neighbor Algorithm,” Research
Journal of Applied Sciences, Engineering and Technology, vol. 13, no. 1,
pp. 24–29,2016.

[9] S. A. Dudani, “The distance-weighted k-nearest neighbor rule,” IEEE
Transactions on System, Man, and Cybernetics, vol. 6, pp. 325-327,1976.

[10] R. Jensen and Ch. Cornelis, “A New Approach to Fuzzy-Rough Nearest
Neighbour Classification,” International conference on rough sets and
current trends in computing, 2008, pp. 310–319.

[11] I. H. Witten and E. Frank, Data mining: Practical machine learning tools
and techniques, Morgan Kaufmann Publishers, 2005.

[12] UCI ML Repository, https://archive.ics.uci.edu/ml/index.php, last
accessed 2019/07/25.

TABLE II. COMPARISONS OF KNN CLASSIFICATION RESULTS USING PRIORITIZING OF ATTRIBUTES TO THE CLASSIC APPROACH WITHOUT IT.

Datasets Comparison Distances of the Best Classifications of AKNN-T
Name of
dataset

Data Volume Euclidean Sebestyen Weights of the Attributes
Samples Attributes Correct k Correct k for Sebestyen Measure

Immunotherapy 90 7 77.78% 3 100,00% 3 [2.674, 1.256, 0.649, 3.776, 1.912, 2.806, 3.436]
Iris 150 4 93.33% 3 100,00% 3 [0.651, 0.2353, 3.113, 0.825]
Banknote 1372 4 100.00% 3 100,00% 3 weighting unnecessary (all weights equal to 1)
Wine Quality
Red 1599 11 58.75% 12 65.63% 28 [1.815, 2.451, 1.372, 0.817, 2.094, 2.810, 3.120, 2.820, 1.821, 0.871,

3.628]
Skin Data 245057 3 99.96% 3 99.96% 3 weighting unnecessary (all weights equal to 1)

Eye 14980 14 84.18% 3 85.85% 5 [1.172, 3.820, 2.254, 1.210, 2.885, 1.052, 0.878, 4.121, 2.581, 2.115,
2.528, 3.354, 0.206, 3.490]

939

