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Upward Topological Analysis of Large Circuits Using 
Directed Graph Representation 

J.A.STARZYK AND E. SLIWA 

Absrruct-This paper presents the method of topological analysis of 
large LLS networks with the use of hierarchical decomposition of the 
network graph. It is assumed that the network is represented by a directed 
wvh. 

An algorithm of upward hierarchical analysis of a partitioned graph is (a) (b) 
presented. The algorithm allows symbolic analysis of large networks with Fig. 1. Graph G and its trisection (a) and substitute graph of decomposition 
the number of elements kept as symbols practically unlimited. The compu- G” (b). 
tational time linearly depends on the network size. A computer program 
using techniques described is also presented. 

I. INTRODUCTION 

The major disadvantage of topological methods of symbolic 
analysis lies in the rapid increase of the number of terms in 
topological formulas (approximately exponential w.r.t. number of 
network nodes) [l]. This has practically limited their application 
to symbolic hand analysis of very small circuits. Computer pro- 
grams based on direct topological analysis can handle in practice 
networks having up to lo-15 nodes only. 

To overcome computational difficulties a direct decomposition 
Fig. 2. Example of the tree of decomposition 

method (Chen [2] for n-vertex bisection, and Konczykowska and 
Starzyk [3] for the general case) was developed. This method component. By a weight ItI of u k tree t we mean 
enables us to analyze networks having up to 30 nodes (program 
ADEN [4] written for nullator-norator representation). The time 
of analysis for this method increases exponentially with the 
square root of the number of network nodes. 

where y, is the weight of edge e of the k tree t. For a k tree 

A significant improvement was achieved when the method of 
consisting of isolated vertices only we assume ] tl = 1. 

analysis by hierarchical decomposition [5] was introduced. Pro- 
A weight function IT] of a set of k trees T is defined as 

gram HADEN [6] based on so-called downward hierarchical ITI = c PI. 
analysis, makes analysis of networks having more than 100 nodes IET 

feasible, and the algorithm used is polynomially bounded. 
In this paper an upward hierarchical analysis method is pre- 

Let graph G( X, E) be a directed graph which represents a 

sented. The method allows practically all symbolic analysis of 
lumped, linear stationary (LLS) circuit. Let us define the set B of 

quite large networks with computational time linearly dependent 
block vertices of G as a set of terminal vertices (for a two-port 

on the network size. 
network there are four such vertices). Let us suppose that G has 
been partitioned onto I subgraphs Gj( Xj, E,), E,nE, = 0 for i # 

II. TOPOLOGICALREPRESENTATION j, u I=i E, = E (only vertex decomposition is considered in this 

Here we briefly recall some basic notions which will be subse- 
paper; generalization for edge and mixed decomposition follows 

quently used in the paper (see also, for example [5]). We shall 
immediately). Let S = { Gi, . . . , G, }. By block vertices B, of G, we 

concentrate on topological methods which use a weighted, di- 
mean the vertices of B -and cut vertices, which belong to Xi. For 

rected graph as a network. model, i.e., Mason unistor graph and 
every graph G, we define the substitute graph Gf( Bi, E,!) as the 

Chen digraph [l]. Because the later representation can be ob- 
complete graph spanned over block vertices Bi. Union of all the 

tained simply by changing directions of the edges of the first one, 
substitute graphs Gf forms the substitute graph of decomposition 

we are concerned with the unistor graphs only. Symbolic network 
G” (we assume that G” has the same set of block vertices as G). 

functions are obtained by enumeration of multitrees of various 
An example of decomposition and its substitute graph is shown 

types of the network graph [l]. 
in Fig. 1. 

Definition: A directed k tree t, is simply a k tree of graph G 
For substitute graphs we can introduce another useful notion. 

with set of components V given by 
Definition: A k tree t, of a substitute graph G” is called a 

proper k tree if there is no directed path of the length greater than 

V= {(rI,U:,...,u~l),...r(r~,U:,...,u~;l)} (1) one in any subgraph t,nE,S. 
For example, in Fig. 1 the tree t; = { b4, ci, cq } is a proper tree, 

and the i th component of this k tree, i = 1,. . . , k, contains while the tree t;’ = { b4, b,, cq } is not because t;‘nEs = { b4, b, } 
vertices r,, vi,;. ., vh, where r, is the reference vertex of the which is a directed path of length 2. 

Any graph G, which is too large to be analyzed directly may be 
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TABLE I 
UNISTOR MODELS OF NETWORK ELEMENTS 

Element Autonomic FUM Nono~~~mi’ 

vvr 

Fig. 3. Transformation of edges outgoing from nullator (a), and incoming lo 
norator (b). 

tion. Vertices of this tree are assigned to graphs (both graphs 
which were partitioned and proper blocks-i.e., unpartitioned 
parts of network graph). Fig. 2 shows an example of such a tree. 
Graph G was partitioned first onto G,, G,, and G,; G, and G3 
were further partitioned: G3 onto G3,1, G3.a, G,., , and G, onto 
G,,, and Cl,?. G,.2was finally partitioned onto G,,,,, and G,,,.,. 

i) From the indefinite admittance matrix (IAM) A, = [a,] 
by representing every nondiagonal and nonzero element 

u,, by an unistor directed from vertex j to vertex i with 
weight - aij, 

ii) by replacing all elements by their unistor models. 

The unistor models of an element can be obtained directly 
from IAM of the element. If an element has no admittance 
description, the so-called formal unistor model (FUM) can be 
introduced. Table I shows examples of some autonomic and 
nonautonomic FUM’s. These models were obtained on the basis 
of modified nodal equations of elements. 

Autonomic FUM’s do not change the structure of a graph 
incident with them, while nonautonomic ones have fewer edges 
and vertices. The graph which contains nonautonomic FUM’s 
has to be transformed in the following way: 

9 any edge outgoing from a vertex of the nullator is re- 
placed by two edges as in the Fig. 3(a), 

ii) any edge incoming to a vertex of norator is replaced by 
two edges as in the Fig. 3(b), 

iii) vertices of zero incoming degree are identified with corre- 
sponding vertices of zero outgoing degree and all self 
loops are removed. 

Having the unistor graph of a given network, topological 
analysis of it can be performed. Formulas for basic network 
functions of a two-port network can be found, for example, in [l]. 

III. GRAPH DECOMPOSITION 

The unistor graph of an electronic network should be hierarchi- 
cally decomposed before running the analysis procedure. The 
decomposition of the network graph should satisfy the following 
conditions: 

9 Successive partitions should introduce as few new block 
vertices as possible (because the number of block vertices 
strongly influences time of computation and computer 
storage used), 

ii) proper blocks should be of the size near optimum (a 
graph should be partitioned only if it is worthwhile to do 
so). 

The decomposition can be made manually or automatically. A 
heuristic algorithm satisfying these conditions was proposed in [7] 
and implemented in a computer program is described in Section 
VI. The time of partition linearly depends on the number of 
graph nodes. 

IV. ANALYSIS OF DECOMPOSED GRAPH 

In this section we will present the method and the algorithm 
for analysis of decomposed graph and its subgraphs. 

Theorem 1 
The set T, of all multitrees t, of a decomposed graph is given 

by / 
(4) 

where Qv is the set of all proper k trees of the substitute graph 
of decomposition G”. T;, is the set of all ki trees of graph Gi 
having set of components V,. V, is determined as follows. Let 
Gf 4 GI( B,, Efnt), and let k, be the number of components of 
Gf, where each of these components is of the form of an incon&g 
star, following the definition of a proper ki tree. The jth compo- 
nent of G,’ determines a component of V, of the form 
(r,, vi,. . ., v,:), where 5 is the reference node of that component, 
and V/,1=1;.., m are remaining vertices of that component. 



This theorem shows how the set T, of all multitrees t,, of G 
can be obtained on the basis of the sets of multitrees of the 
subgraphs Gi and the structure of interconnections of these 
subgraph, i.e., on the substitute graph of decomposition G”. 

Remark 

Equation (4) can be used recursively in the case any of graphs 
Gi E S was further partitioned. Direct application of Theorem 1 
and Remark for hierarchi+.ly partitioned graphs leads to the 
algorithm of downward hierarchical analysis described in [5]. 
Better results can be obtained by means of upward analysis. This 
is described in what follows. 

(4 (b) 
Fig. 4. Active one-port (a), and its unistor graph (b) 

TABLE II 

Definition: By the set Ps of multitrees of a graph G spanned over 
the set B of block vertices we mean union 

P,‘uT, 
V 

where TV is the set of all k trees t, of G satisfying the condition 

B= {r~,v~;~~,v~,;~~,r~,v~;~~,v~,~} (5) 

and summation is ‘taken over all possible V satisfying (5). 
The following corollary follows immediately from Theorem 1 

(cf. [81X 
Corollary 

f’s = c n T;, (6) 

TYPO Function 
-- 

T(3) Y,, Y2 (Y,j + Yg) + Y(j Y2 Ye 

Tm) Yq Y7 Y, + Y,5 (Y3 + Y+ Y, 

T(3),(8) Yq Y2 l Y,, Y7 + Y,5 Y2 + Yfj (Y3 + Y+ 

V. ENUMERATION OF MULTITREES 

where R, is the set of proper multitrees of graph G” spanned 
over B. T;, is as described in Theorem 1. 

Note that T,$, is a subset of PA, where PA is the set of all 
multitrees of G, spanned over B,. In con&usion, (6) allows us to 
determine the set Ps of graph G on the basis of the sets PA of 
graphs G’ E S and on the structure of their interconnections GS. 
Ps contains all information about the graph considered as a 
n-pole network, where n = B, and will be called a description of 
G. T, for a given V satisfying (5) will be balled a record of Ps. 
The Remark can be applied to (6). Note that descriptions of 
subgraphs of G have to be known before the description of G 
can be determined. 

There are many efficient multitrees enumerating algorithms 
elaborated for the purpose of direct topological analysis (cf. [9] 
and its references). In the upward analysis of decomposed graph 
we have to enumerate the sets of all multitrees spanned over 
block vertices for all proper blocks and the sets of all proper 
multitrees spanned over block vertices for substitute graphs. In 
this section, we propose an efficient algorithm, based on a 
well-known remark that the set of directed trees containing edge 
e of a graph G can be obtained by enumeration of all directed 
trees of G1, where G, is obtained from G by short-circuiting e. 
Similarly, the set of trees of G not containing e is the same as the 
set of trees of Gz, obtained from G by removing e. 

Let us consider graph G( V, E) having n vertices. Let B be the 
set of block vertices of G and B = ng. Vertices of G can be 
ordered as follows: 

Network functions can be easily obtained and expressed as 
quotients of appropriate subsets of Ps. For example, for unistor 
graph of two-port network the voltage transmittance is given by 
(-we PI) 

hl,h~,...,h,,vl,v~,...~,,~ (8) 

whereh,EV-B,i=l;..,r,v,EB,i=l;..,n,. 
Definition: The structural matrix M(l)= [m,,] of G is n X n 

matrix, where m,, is the set of edges outgoing from vertex i and 
incoming to j; m,i p [O]. Rows and columns of MC” are enu- 
merated according to (8). 

Theorem 2 

The set of $1 multitrees of G spanned over B can be obtained 

T T (v).(sP) (r).(.sPq)’ T (vq).(s) are records of Ps. Similar formulas 
without duplications by iterative expansion of function T( MC”), 
where 

for other network functions can be easily derived. 
Suppose, that decomposition has resulted in b proper blocks 

and assume for simplicity the case of hierarchical bisection. The 
T( MC’)) = U mij X T( i$‘+‘)) : 

.i E -4 

number of substitute graph;‘will be then b -1, and the time of 
analysis 7 can be estimated as 

T=by,,+(b-l).T,=b(q+q) (7) where [0] denotes the unit element and 0 zero element of Wang 

where TV and TV are average values of time needed for enumera- 
[lo] algebra, respectively, m,, E MC’), i = 1,. . . , n and 

tion of multitrees of proper block and substitute graph, respec- for i < e 
tively. Provided that the graph has been partitioned onto blocks 

J= {i+l;..,n}, 
{n-n,+l;..,n}, for i > c 

of similar size, (7) shows linear dependence on network size. Of 
’ 1 

course it depends on the size of the proper blocks &d/or M!‘+” is a matrix obtained from MC’) after adding the i th 
substitute graphs, since both TV and T, are exponential functions column of MC” to the jth column, and setting the ith column to 
of their nodes. Similar dependence for downward analysis was zero (for i # j; for i =j, M, (‘+l)= MC”). While adding we as- 
proportional to np, where n is number of network nodes and 
(Y = 2 - 3 icf. [5]). 

sume that -rn,, +[O] = [O]. Extracting m,i denotes, that new com- 
ponent with reference node i appeared. The reader should notice 
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(START) _ 

succl (i 1 := k+l 
succr( i):= k+2 

. prec(k+ll:= i 
: Ibrec(k+2):=i 

I 
k:= k+2 I 

DECOMPOSITION c- ----------------- ,’ 

Fig. 5. Flowchart of HADEN2. 

r-l 
k:=, 
levl:=l 

I 
I 
I 

flag (IevIl:= 0 
levl:=levl*l 

I k:=sucCr(k) 
I 
I levl : = IWI +1 
I k:=succl(i) 

Algorithm from formula I6 I 

ye’ HIERARCHICAL ANALYSIS I ---- -_--_---- -- 

that direct application of the Wang algebra to enumeration of 
multitrees is not efficient because of duplications, as discussed in 
[2]. To illustrate enumeration of multitrees with the help of the 
discussed method let us consider the example of active one-port. 

Example I 
Unistor graph G of the linear network of Fig. 4(a) is shown in 

Fig.4(b)wherey,=y,=sC1,y3=-y,=g,ys=-g+SCs,y,= 
g + sCs, y, = - g + sCz, y, = g + SC,. The structural matrix is as 
follows: 

To obtain all multitrees of G spanned over B we use iterative 
formula from Theorem 2 

+[‘]xT([ I%i’ ;:I ‘;1’] 

For the sake of simpler notation we will remove T ( ) and x, 

T( M”‘) = [4] [2] 
[:I] + f41 [71[ [if 

t-161 [2l[ ;;; i;l]+bl [1Jl[ ‘;I ;A;] 

= [41 PI PI [5,81+ [41 PI PI PI 
+ I41 I71 PI [01+ [41 [71 PI LOI 
+ [61 P1 101 [81-t 161 [21 PI [Ol 
+[61 13971 PI [‘I+[61 [3,71 PI [Ol. 

On the basis of obtained multitrees we can write weight functions 
completely describing given one-port (see Table II). It can be 
now easily analyzed as a part of bigger network, using upward 
hierarchical analysis. 

VI. COMPUTER PROGRAM 

In this section we give some remarks on the computer imple- 
mentation of the upward analysis algorithm. The essential prob- 
lem lies in data structures because of the necessity of storing all 
sets of multitrees in the computer memory. Any multitree weight 
It] can be written as 

Itl=C.s”. fiyp (9) 
i=l 

where C is product of all nonsymbolic edge admittances of the 
multitree t, y, are symbols, p, are exponents of symbols (we allow 
identifying some network elements), and N is number of sym- 
bols. s is complex frequency, M is the sum of powers of s of all 
edge admittances of t. Because M and pi are small integers, they 
may be stored in a single computer word in packed form. In 
addition, this word can be used as a key to sort multitrees in 
order convenient for further processing. 

The set Ps of multitrees spanned over B is the set of sets T,. 
For example, a graph with three block vertices: B = {a, b, c} has 
description Pe consisting of ten records 

b.(c) 3 T(b).(w) 7 T(ba).(c) 9 %,(b).(c). 

This remark remains true for the set R, of proper multitrees of 
G” spanned over B. The proper multitree of G” may be consid- 
ered as I-tuple of symbolic addresses pointing to appropriate 
records of descriptions Pi of subgraphs Gi, i = 1,. . . , I, of graph 
G. These addresses can be evaluated during analysis of G” and 
stored in the place of proper k tree edges. 

Final symbolic formula can be interpreted as a sum of prod- 
ucts with hierarchical parenthesis 
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(b) 

CP fim5 f41 

Fig. 6. (a) Dependency of time of analysis w.r.t. the number of network 
nodes. (b) Proper blocks of ladder decomposition. (c) Dependency of time of 
analysis w.r.t. the size of proper blocks. 

Computing numerical values from (10) can be done without 
expanding the formula, because intermediate results are stored, 
thus saving computer time. The form (10) is also convenient for 
sensitivity analysis because parameters can be easily isolated 
(since any one of them appears in one proper block only). 

A computer program I-LADEN2 has been written on the basis 
of the presented algorithms. The program assumes the hierarchi- 
cal bisection case only. This does not cause loss of generality 
because any hierarchical decomposition can be presented as 
hierarchical bisection with the same proper blocks. The flowchart 
of the program is shown in Fig. 5. 

The program was tested for networks having up to 200 nodes. 
Fig. 6(a) shows the dependence of the time of analysis w.r.t the 
number of network nodes on the computer CDC-CYBER73. It 
confirms the predicted linear relationship. 

The RC ladder was chosen as test network due to its regular 
structure. Half of the elements were kept in symbolic form. Tests 
were performed for partitions resulting in proper blocks as shown 
in Fig. 6(b). Fig. 6(c) shows how the time of analysis depends on 
the size of proper blocks of the network. For large proper blocks, 
the time of their analysis dominates over the time of analysis of 
interconnections. If proper blocks are too small, the time of 
analysis of their interconnections increases. 

The time of a single graph bisection depends linearly on the 
graph size. Thus the time of hierarchical bisection is proportional 
to n log, n, when n is the number of network nodes. The time of 
decomposition for networks having up to 200 nodes is much 
smaller than the time of hierarchical analysis. 

VII. CONCLUSIONS 

This paper presents a method for topological analysis of large 
linear networks which are represented by unistor graphs. The 
all-symbolic analysis of large networks is efficiently realized by 
this method. The analysis time and memory requirements linearly 
increase with the network size. The method was programmed and 
computational results are in complete agreement with the theory. 
Using this method topological analysis can be applied to a 
various circuit design problems where it was previously impossi- 
ble. 
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