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Self-Organizing Learning Array

Janusz A. Starzyk, Senior Member, IEEE, Zhen Zhu, and Tsun-Ho Liu

Abstract—A new machine learning concept—self-organizing
learning array (SOLAR)—is presented. It is a sparsely connected,
information theory-based learning machine, with a multilayer
structure. It has reconfigurable processing units (neurons) and
an evolvable system structure, which makes it an adaptive clas-
sification system for a variety of machine learning problems. Its
multilayer structure can handle complex problems. Based on
the entropy estimation, information theory-based learning is per-
formed locally at each neuron. Neural parameters and connections
that correspond to minimum entropy are adaptively set for each
neuron. By choosing connections for each neuron, the system sets
up its wiring and completes its self-organization. SOLAR classifies
input data based on the weighted statistical information from all
the neurons. The system classification ability has been simulated
and experiments were conducted using test-bench data. Results
show a very good performance compared to other classification
methods. An important advantage of this structure is its scalability
to a large system and ease of hardware implementation on regular
arrays of cells.

Index Terms—Information theory-based machine learning,
multilayer learning array, self-organizing neurons.

1. INTRODUCTION

RTIFICIAL neural networks (ANNs) were introduced
with the hope to model functions and performance of the
human brain. However, a very little progress was made toward
implementation of structures and distributed learning algo-
rithms that would yield essential features of neural processing
easily observable in a living brain. We need to close the gap
between what is understood from experimental neuroscience
and what can be done in engineered networks of artificial neu-
rons. Most of the algorithms developed in the field of artificial
intelligence do not translate well into concurrent structures.
They require either global evaluation criteria (like a measure
of fitness function in a support vector machine [1]) or global
representation of the machine state (like in defining Markov de-
cision process for reinforcement learning [2]) or both. None of
these can be implemented in distributed structures of neurons.
Following the current path of developing machine learning
methods for the von Neuman type of machine prevents us from
gaining insight into how the brain may work and organize it-
self. Instead of following this path, we shall focus on organiza-
tion of networks of neurons and neural interaction, rather than
algorithmic (software driven) solutions to machine learning, be-
cause processing signals in a network of neurons increases com-
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putational speed, improves fault tolerance, constraints us to use
distributed solutions, because the brain does it this way.

This requires development of general-purpose learning net-
works that learn without an algorithm, run without software and
are data driven. Such networks shall self-organize, learn through
associations, and act with self-awareness. Such networks must
scale to very large systems, and be fault tolerant and modular for
easy implementation in existing technologies: either dedicated
very large scale integrated (VLSI) chips or field programmable
gate array (FPGA) structures. Finally, such networks shall learn
by interaction with environment, be able to analyze results of
their actions, classify these results according to a trained prin-
ciple and modify their behavior to improve the outcome of their
actions. In other words, the machine must be organized to do
good, and while learning what is good, drive itself to accomplish
the good results. While we are far away from realizing these ob-
jectives, this work is aimed to implement some of them.

Several types of machine learning systems have been intro-
duced, including ANNS, cellular neural networks (CNNs), de-
cision trees, genetic algorithms, reinforcement learning, compu-
tational learning theory, etc. [3]. Since the approach presented
in this paper is most related to ANNs and CNNS, a direct com-
parison with these networks is provided. In addition, due to
the information-based training, self-organizing learning array
(SOLAR) is compared to probabilistic neural networks [4].

A neural network learns by adjusting the interconnection
strengths and transfer functions, using information contained
in the training data. Generally, there are two types of learning
algorithms for ANNSs: supervised and unsupervised [5]. Su-
pervised neural networks are provided with desired outputs
in training, while unsupervised are not. Neural network or-
ganizations can be classified into three categories according
to different structures, CNNs, feedforward neural networks
(FFNN5s) and feedback neural networks (FBNN) [6].

The diversity of target problems solved by neural networks
requires adaptability and flexibility of their organization.
Self-organizing ANNs have been used to satisfy this re-
quirement. These systems are able to construct and update
themselves throughout training. The self-organizing system
was mathematically defined in the 1960s [7]. The concept
of self-organization has been applied to Kohonen’s self-or-
ganizing map (SOM) [8] classified as unsupervised ANN.
Adaptive self-organizing network based on the cerebellar
model articulation controller (CMAC) has been used in control
applications and other neural network problem domains [9],
[10]. For instance, a CMAC network based self-organizing
classifier design has recently been reported in [11]. Yet another
example of the self-organizing learning networks—self-orga-
nizing controller (SOC), introduced by Procyk and Mamdani
[12] was used in applications of self-organizing fuzzy control.
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In this paper, a new, supervised SOLAR is proposed. While
SOMs self-organize the training data to obtain clusters of self-
similar inputs, SOLAR self-organizes its hardware resources
(interconnect structure and neural function) to perform classi-
fication and recognition tasks. While SOMs use global infor-
mation (data are organized in the whole input space), SOLAR
performs local operations on the transformed subspaces of the
input space. Similar to the structure of CNNs, SOLAR has a
fixed array of elemental processing units acting as single neu-
rons, and programmable interconnections between them. Ini-
tially, SOLAR neurons are randomly connected to other neu-
rons. Controlled by signals from other neurons, they perform
basic transformations of their input signals. A neuron’s param-
eters and connections are reconfigured as a result of training,
and effectively, SOLARs structure self-organizes establishing
its final wiring. The SOLAR structure is aimed at hardware im-
plementation in FPGAs. In this paper, a feedforward version of
SOLAR with static neurons is presented with its software sim-
ulation. It will be demonstrated that SOLAR yields an efficient
hardware realization as well as precise classification.

In what follows, Section II presents SOLAR organization. Be-
havior of a single neuron is introduced in Section III. Section IV
describes neuron self-organization. Output classification voting
is discussed in Section V. Section VI shows classification results
using several popular test benches and compares SOLAR with
other algorithms. Section VIl s a brief conclusion.

II. SOLAR ORGANIZATION

SOLAR is a hardware-oriented, local learning method where
neurons learn in parallel to separate data in their individual
output spaces using mutual-information objective function
based on subspace entropy. This is similar to traditional neural
networks, but in contrast to global learning methods like support
vector machines [1], clustering [13], or SOMs. Statistical re-
sults of multiple neuron learning are pulled together in the final
voting using estimated class probabilities. Unlike many popular
learning machines, including back propagation ANNs [14],
adaptive resonance theory [5], learning vector quantization [5],
Kohonen’s SOM, or various decision trees [15], SOLAR has
a deep multilayer structure, where information about training
data is distributed. This structure is more hardware efficient
for learning complex relationships between features extracted
from training data, than a structure with two or three layers.

Existing hardware implementations of learning machine sys-
tems are mostly based on FPGAs [16], [17] and analog VLSI de-
signs [18], [19]. SOLAR can be implemented in both platforms.
It should be noted that SOLAR neurons are sparsely connected,
which is different from classical ANN models but similar to the
sparsely connected Hebbian networks proposed in [20]. In clas-
sical ANN models few layers are used, and each processing unit
at each layer is either interconnected to all other units in the net-
work or all units at the adjacent layers. Such wiring approach
causes the area consumed by interconnections to be far greater
than that of the processing units [21]. The regular lattice struc-
ture and sparse wiring strategy of SOLAR saves a remarkable
amount of wiring area on silicon compared with classical de-
signs without reduction in performance quality.
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Fig. 1. Basic SOLAR structure.

Since SOLAR bears resemblance to CNNs, let us define it in
relation to CNNs, pointing similarities and differences between
the two structures.

Definition: SOLAR is a regular, two or three-dimensional
(2-D or 3-D) array of identical processing cells, connected
to programmable routing channels. Each cell in the array has
ability to self-organize by adapting its functionality in response
to information contained in its input signals. Cells choose their
input signals from the adjacent routing channels and send their
output signals to the routing channels.

A SOLAR structure in many ways resembles the organization
of a CNN. Like in a CNN, its architecture is defined by an array
of identical cells, which adapt their behavior to the input data.
Its neurons are cellular automata, which can be programmed to
perform different computational tasks based on data received
from its neighbors. Neurons can be either static or dynamic, as
defined in [22], depending on the type of equation solved. How-
ever, unlike in a CNN, its connectivity structure is not fixed.
In a CNN, the interconnect structure is defined by templates
which limits its learning ability, while in a SOLAR the intercon-
nect structure is an element of learning and can by dynamically
changed even during the network’s operation. Thus, a CNN can
be considered as a special case of SOLAR structure.

The SOLAR implementation presented in this paper employs
a feedforward (FF) structure with all neurons arranged in mul-
tiple layers. Using the routing channels, neurons are connected
to the original inputs or the outputs of neurons from previous
layers. The neurons are trained in parallel using their input sig-
nals, and send their output signals to other neurons. Feedback
SOLAR structures and the structures with dynamic neurons are
currently under study.

Based on the dimensionality and complexity of input data,
a variable number of layers and neurons are used. This is au-
tomatically decided by the learning algorithm. For simplicity
of hardware implementation, it is assumed that a fixed number
of neurons are added per each layer, thus, an array of neurons
is formed. Typically, the number of neurons per each layer is
set equal to or greater than input data dimensionality, and the
number of layers is automatically determined by the training
algorithm. Each neuron is identified by its row and column lo-
cation, as shown in Fig. 1 and NNy ; refers to the neuron in the
kth row and Ith column (or layer). The regular organization
better utilizes available silicon area. All the neurons inside the
array are prewired with redundant data and control connections.
Training procedure refines the connections and establishes the
final SOLAR wiring structure. This organization is well suited
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Fig. 2. Neuron input and output signals.

for implementation in FPGA [23] due to its regular cell array
structure and local, sparse interconnect.

It is believed that biological neurons tend to have local con-
nections [24]. Therefore, in SOLAR, there is a higher proba-
bility that a neuron connects to close neighboring neurons. In the
feedforward structure, new neurons are connected only to the
previously generated ones. Although local connections are pre-
ferred, some more distant connections are randomly used in the
prewiring stage with smaller probability. This pseudorandom
wiring applies to both the neuron’s data inputs as well as the
neuron’s control inputs, which come from the control outputs
of other neurons. In SOLAR, each neuron has limited number
of interconnections independent of the network size.

Hardware self-organization is a result of each neuron se-
lecting its inputs and modifying its transformation function, to
find out statistically the most efficient way of differentiating
inputs from various classes. Information index is calculated
based on statistics and neuron’s organization is recorded as the
training result.

When the system is under test, a selected control signal de-
cides whether or not to activate a neuron to vote on an indi-
vidual test vector. Statistically weighted votes of many neurons
are combined to determine the final identification.

III. SINGLE NEURON BEHAVIOR

SOLAR neurons are event-driven processors responding to
their selected data and control inputs. Each neuron N receives
an input vector x; from its routing channel and transforms it to
a scalar output x,. In addition, each neuron has a binary control
input 7; and two control outputs 7, and 7,, as illustrated in Fig. 2.

A logic high signal in the control input activates this neuron.
Control outputs are generated and statistical information is ob-
tained when the neuron is activated. With control input high, this
neuron only reacts to data from a selected part of the whole input
space, which forms a local input space of this neuron. Thus, a
control input plays the role of inhibitory connection in biolog-
ical neurons, preventing a controlled neuron from firing. First
column neurons have their control inputs set to 1, so they are
always activated. Each neuron performs a simple operation like
adding, subtracting and shifting, or a simple approximation of
the logarithm and exponent functions. Thus, a neuron NNy, ; per-
forms transformation from n-dimensional input space Sy ; to
one dimensional (1-D) output space S,. Input space Sj,; is a
subspace of neuron’s routing channel space

D Sk — So. (D
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Concatenation of different basic operations, which results
from signal processing by several neurons, yields more com-
plicated expressions

So =Pr1(Sk,1) = Pri 0 Pri—1(Sk,1—1)
=0 0P 1... P 1(Sk1) = Vi i(Sk,1). Q)

A neuron generates partition of its input space by comparing
its output against a set threshold ¢. The separation boundaries
are defined by

U i(Sk1) =t 3)

which generates complex n — 1-dimensional manifolds used to
separate different classes in n-dimensional input feature space.
Complexity of the resulting separation boundaries grows along
with the increasing number of neuron’s layers.

As aresult of threshold induced separation, the neuron’s input
space is divided into two subspaces

Sot = {ZE € Sk,[ : @k,l(x) > t}
and
Soti = {:E € Sk,l : (I)kJ(LE) < t} . 4)

These subspaces correspond to two subspaces of the signal in-
puts space T3 and T}; such that

Sot = Vi i(Tk) and  Sopi = Vi (Thi)- (5)
Each neuron is activated only when its control input is high. A
neuron computes its control outputs as

To=TiANTp, and T, =T; ATp. (6)

where 7,, is a neuron’s threshold function value
Tn = ((I)kl(JT) > t) (7)

and 7 is either 7, or 7, of the control feeding neuron. A control
feeding neuron is the one whose control output (7, or 7,) is
used as a control input to a given neuron. So, a control input
is obtained by a product of neuron’s threshold function values
along the chain of control feeding neurons (feeding chain)

m

i = I 7% (3)

k=1
where m is a number of control feeding neurons and 7y, is either
Tn, O T, depending on which control output was used in each
feeding neuron.

According to (6) and (8), if a neuron’s control output is high,
all the corresponding threshold function values in the feeding
chain are high. The resulting subspace of the input space is an
intersection of subspaces T}, or T},; for all neurons in the feeding
chain.

Thus, when a neuron is activated we obtain two threshold
defined subspaces

S:<ﬁ] Tk>ﬂTkandSZ:<1rﬂ1 Tk)ﬂTkZ ©)]
k=1 k=1
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where
- T, ifm=rm
T, =14 F Tk =Ta (10)
Tyi if T ="Ta

Classification performed by each neuron is based on esti-
mated class probabilities in subspaces S and S; as defined in
Section IV. Neuron’s transformation functions and thresholds
are optimized by contributing neurons to perform better divi-
sion of classes using training data.

Example: Fig. 3 serves as an illustration for this process. It
contains synthetically generated data from five classes. The fol-
lowing equation obtained by a second column neuron illustrates
a learned combination of simple functions that results in a more
complex function and provides data separation as illustrated by
the separating line on Fig. 3:

Y {log(X) - X (11

Upr1=— — 5

} = 29.3575
2

where X and Y are two features from the original input space,
and 29.3575 is the equivalent threshold value in the input space.
It has to be noted that the “log” function used in (11) is a rescaled
base-2 logarithm, which has the same input and output range. It
has been defined in this way for convenience of hardware imple-
mentation. The obtained partition is optimized to separate five
classes into two subspaces, and the transformation is generated
by a neuron close to the original data input.

A clear cut with a proper threshold provides a strong sup-
port for final classification. Since each neuron separates its input
data into two subspaces, the quality of this separation is evalu-
ated based on statistical measures as discussed in Section IV.
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Searching for the optimum threshold, as well as selecting a
neuron’s operation, is a training task.

IV. NEURON SELF-ORGANIZING

Self-organization of each neuron is a result of learning based
on the system entropy. In training, each neuron randomly selects
a number of inputs (or a single input) from the routing channel,
and computes its output by performing a transformation of its
inputs. The output data is then compared to predefined threshold
values and the input sample is assigned to one of the threshold
defined subspaces, S or S; (9).

Using the probabilities of training data from different classes
that fall into each subspace defines the information index ob-
tained from (12) shown at the bottom of the page, where Ps.
is probability of a class c¢ satisfying threshold, Ps;. is proba-
bility of a class ¢ not satisfying threshold, P; is subspace prob-
ability (percentage of input data that passes threshold), Ps; is
complementary subspace probability (data that does not pass
threshold), and P, is class probability.

Different combinations of data inputs, transformation op-
erations and control inputs result in different information
index values. Neuron calculates information index for different
inputs and the optimized information index is stored together
with neuron’s configuration data, class probabilities, threshold
values, etc. The information index defined by (12) is normalized
to (0,1) interval. When I = 0, there was no reduction in data
entropy, while I = 1 indicates that data entropy in neurons’
input space was reduced to 0. The value of I measures the
quality of this neuron’s subspace separation. It is related to the
definition of information deficiency introduced in (13), which
quantifies the amount of information left in the subspaces.

The neuron’s parameters, threshold and connectivity are a re-
sult of local optimization performed on the information index.
This process is explained in the following on the example of
threshold selection.

Iterative Threshold Selection: Finding the optimal threshold
that yields the largest information index from (12) requires
estimation of probability density functions of all classes in all
subspaces, which may be a very time-consuming process. To
simplify threshold evaluation, we use an iterative search by a
process similar to binary search algorithm. As mentioned, a
threshold separates the input space into two subspaces. The
number of data points within a threshold divided subspace
provides the estimated subspace probability P. It is convenient
to find a threshold ¢ that satisfies P, = 0.5. This threshold ¢»
divides the input data into two groups with equal number of data

I=1-

max

> Pselog(Pse) — Ps log(PS)} + {Z Ps;clog(Psic) — Ps; log(Ps;)

sic (12)

; P.log(P.)
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points. Likewise, threshold #; and ¢35 can be found from each
of these two groups, respectively, which cut the two subspaces
into half again. As a result, ¢1, t2, and t3 are corresponding
to subspace probability Pg = {0.25,0.5,0.75}, respectively.
Iteratively, threshold values corresponding to dichotomizing P
values can all be determined. Based on the computed informa-
tion indexes at dichotomizing threshold values, the optimum
threshold searching algorithm can be organized as follows.

1) Compute threshold values {t¢1,t2,t3} at subspace prob-
abilities equal to Py = {0.25,0.5,0.75} and the cor-
responding information index values {Iy,I»,I3}. Find
Imaxo = max{I, I, I3}, and choose P; and ¢ that corre-
sponds to the maximum index value.

2)  Set probability step AP, = 0.125 to obtain the next level
of dichotomizing Ps values Py = {Ps — AP,, Ps, Ps +
AP;}. Set small information increment & and i = 0.

3) Compute {I;, 15,13} at subspace probabilities Ps = {Ps —
AP,, P, P, + AP,}, and seti =i + 1.

4) Find Tphax; = max{Iy,I5, I3} and record the corre-
sponding P, and the threshold value. Set AP, = AP, /2,
and compute Al = T4 —

5) If Al > e, go to 3 else stop.

This algorithm results in a fast convergence to the maximum
of the information index, and is resistant to local maxima. The
results of this algorithm obtained in a six class problem with
10000 samples are illustrated on Fig. 4. In this figure, square in-
dicates the final information at the selected threshold, while star
indicates the threshold value of the maximum information. For
reference, Fig. 4 shows the exact values of information index
(dashed line) and its discrete values computed in the search al-
gorithm. In this case, nine evaluations were necessary to reach
for the maximum with € = 0.02.

Each neuron actively searches its interconnections and adopts
its threshold and transformation function to attain the maximum
information index.

Imax(i—l)
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Information Deficiency: Related to information index is in-
formation deficiency. Information deficiency is simply a nor-
malized relative entropy value in a local subspace and is defined
as follows:

ZPSC log(Psc) - PS log(PS)

= AN -

AE;

s =
E max

)

Information deficiency helps to self-organize the learning
process. A subspace with zero information deficiency does not
require any learning—data is well classified in the subspace.
An important role of information deficiency is that it can be
used as a measure of learning by a group of neurons that work
on the same input data.

At the first layer of neurons, it is assumed that the input infor-
mation deficiency is one. Information index is complimentary to
the summation of all the subspace information deficiencies

1—1:}2@.

The information deficiencies for output subspaces dog are
defined as the product of local subspace information deficien-
cies and input information deficiencies

(14)

bos = 0;0s 15)
where 0; is the input information deficiency. They become input
information deficiencies ¢; of the connecting neurons.

6; allows a neuron to know if its input subspace has been suf-
ficiently learned. If §; is less than or equal to the chosen informa-
tion deficiency threshold, it indicates that not much information
can be gained by further learning.

As subsequent neurons extract information from the input
data, there is less and less independent information left in the
data. The learning array grows by adding more neurons until
the information deficiency in the subsequent neurons fall below
a set threshold value.

V. CLASSIFICATION

Data to be classified is sent to the SOLAR network, and the
network performs classification based on its training results. As
a result of training, neurons internally save the correct recogni-
tion probabilities of all the classes for both of the output spaces
as two probability vectors [Ps.] and [Pks;.], where ¢ stands for
different classes. If an input data point falls in a voting neuron’s
input subspace, it is going to vote for this data using its estimated
probabilities Ps. or Ps;. as probabilities of correct classification
P, for that class. The voting mechanism gathers all the infor-
mation and classifies the input signal using a weight function
designed after maximum ratio combination (MRC) technique
used in mobile communication [25]

1

- 1

B.=1- (16)
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TABLE 1
CLASS PROBABILITIES IN NEURONS’ OUTPUT SPACES
Voting Neuron Number
1 2 3 4 5 Winner-
takes-all
Class 1 0 0293 | 0.079 | 0.671 0.305 0.671
Class 2 0.753 | 0.632 | 0.125 | 0.329 | 0.695 0.753
Class 3 0.247 | 0.075 | 0.796 0 0 0.796
TABLE 1I
VOTING WEIGHT B¢ FOR DIFFERENT CLASSES
Class 1 Class 2 Class 3
0.6800 0.8075 0.7960

where P.., = P, of each “vote” for class c

n number of voting neurons

€ small number preventing division by zero

This weight function provides a statistically robust fusion of
individual neurons vote. The classifier chooses a class ¢ with
the maximum weight B.. The Appendix justifies the weight for-
mula used in (16) based on the MRC principle.

Example: Assume that there are five neurons in a classifica-
tion problem with three classes, and that the class probabilities
estimated by each neuron at the learning stage are as shown in
Table I (the sum of probabilities in each column is equal to 1).
The largest probability value for each class is also listed, as-
suming winner-take-all voting scheme is used.

Using ¢ = 0.001, the weights of different classes for this
particular input data are calculated and are shown in Table II.

Based on this result, SOLAR will classify this input as a
sample from class 2. Notice that if the winner-takes-all approach
was used, as shown in Table I, voting neuron no. 3 should make
adecision and this particular input would be classified as class 3.

VI. SIMULATION RESULTS

Although the objective of this work is to develop parallel
hardware organization for machine learning, SOLAR organ-
ization was first implemented and tested through software
simulation. Two examples are used to illustrate the SOLAR
performance. Both of them were selected from the University
of California at Irvine database at ftp://ftp.ics.uci.edu/pub/ma-
chine-learning-databases/. Some of the data are missing or
represented with symbols, which is inconvenient for numerical
computation. In our previous work [26], we described how to
transfer these data into numerical values based on training data
set statistics.

In addition, since SOLAR is a self-organizing network,
each network with different randomized prewiring can result
in a different performance. In order to estimate the average
performance of SOLAR, nine identical networks with different
prewiring were generated. These nine networks were simulated
in parallel, and a final majority voting was performed.

The first example is a credit card approval problem in Aus-
tralia. The increasing number of credit card applications makes
their manual handling very costly. Machine learning methods
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TABLE III
COMPARISON RESULT FOR CREDIT CARD APPROVAL DATASET
Algorithm Error Rate Algorithm Error Rate
Cal5 0.131 Backprop 0.154
SOLAR 0.133 C4.5 0.155
Itrule 0.137 SMART 0.158
svmhieht 0.138 Baytree 0.171
BSVM 0.138 k-NN 0.181
Discrim 0.141 NewID 0.181
Logdisc 0.141 AC? 0.181
DIPOL92 0.141 LVQ 0.197
CART 0.145 ALLOCS80 0.201
RBF 0.145 CN2 0.204
CASTLE 0.148 Quadisc 0.207
NaiveBay 0.151 Default 0.440
IndCART 0.152 Kohonen Failed

including ANNSs [27], [28] and SOLAR can be used to facil-
itate this task. The data set of this example consists of 690 in-
stances with 16 features, including class attribute, and is divided
into two classes. Since the credit card data set did not separate
testing data from training data, the same experimental setup as
used in experiments reported in literature [15] was used, in order
to compare the results. This setup used cross validation tech-
nique [15], [26] to divide the dataset randomly into n mutually
exclusive data groups with equal size. During each training and
testing process, one group was selected to be a testing group,
while the remaining (n — 1) groups were used as training data.
The whole procedure was repeated n times and each group was
tested only once. The error rate is the average error rate of n
groups. This approach eliminates statistical biases, and the error
rate can be estimated efficiently. Similar to the other experi-
ments, n was set to 10 in this simulation.

SOLARSs results are compared with results from other al-
gorithms [15], [29] as shown in Table III. In this problem,
SOLAR performed fairly well among all the algorithms. Al-
though it loses to the decision tree algorithm CALS, it has
the best performance among all artificial neuronal networks,
which are highlighted in Table III. Especially, two realizations
of the support vector machine (SVM) algorithm, named as
SVM'8"* and BSVM, have also been applied to this dataset
[29]. Single neuron’s operation of SOLAR is believed to have
certain similarity to the behavior of SVM since the input data
space is divided using threshold cutting in both methods. On
this data set, SOLAR provides slightly better performance than
these two SVMs.

Fig. 5 shows a randomly prewired seven-layer SOLAR
network used for this data set, and Fig. 6 is the network after
learning.

The second example is an adult income-based loan decision
problem. There are two sets of data, a training set, which has
32561 instances and a testing set, which has 16281 instances.
Both have 15 features including class attribute, and they are also
divided into two classes. This data set also contains both sym-
bolic values and missing data. Classification results of SOLAR
and other methods are compared in Table I'V.

Although SOLAR does not perform as well as the best
algorithms for the adult income problem, it is the only learning
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Fig. 6. Learned network of SOLAR.

neural network on the list. It should be noted that SOLAR
was not designed for any specific classification or recognition
tasks while decision trees tend to perform better in this type of
problem [15].

VII. CONCLUSION AND FUTURE WORK

SOLAR is a new hardware oriented machine-learning con-
cept aimed at large sparsely connected structure for brain like
computing applications. It has new biologically inspired net-
work organization based on a fixed lattice of distributed, par-
allel processing units (neurons), which is easily expandable to a
large system. It organizes itself into a multilayer structure, and
its size is automatically self-adjusting to the complexity of the
target problems. The evolution of its structures is data driven. It
evolves its structures and makes recognition decisions based on
statistical learning and minimum local subspace entropies. Not
only this is faster than back propagation NN in training, it is
much easier to implement in hardware for online learning and
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TABLE 1V
COMPARISON RESULT FOR ADULT INCOME DATASET
Algorithm Error Rate
FSS Naive Bayes 0.1405
NBTree 0.1410
C4.5-auto 0.1446
IDTM (Decision table) 0.1446
HOODG / SOLAR 0.1482
C4.5 rules 0.1494
0Cl 0.1504
C4.5 0.1554
Voted ID3 (0.6) 0.1564
CN2 0.1600
Naive-Bayes 0.1612
Voted ID3 (0.8) 0.1647
T2 0.1687
IR 0.1954
Nearest-neighbor (3) 0.2035
Nearest-neighbor (1) 0.2142
Pebls Crashed

adaptation. The reconfigurable processing units and self-orga-
nizing structure make SOLAR adaptive to diverse recognition
tasks. Interconnections among neurons are dynamically refined
and grow linearly with the number of neurons. The system is
easily scalable, and its hardware cost grows proportionally to
the number of neurons.

This paper discusses the statistical learning algorithm of a
feedforward static SOLAR and demonstrates its pattern recog-
nition performance through software simulation. Tested with
two common benchmark problems, SOLAR proved to be a re-
liable solution for the machine learning.

Dynamic feedback SOLAR structures with programmable
communication channels are fit to implement large associative
memories based on sparsely connected Hebbian networks
analyzed in [20]. However, detailed discussion of the hardware
implementation of dynamic SOLAR architectures is beyond
the scope of this paper.

Obviously, SOLAR did not address many critical aspects of
self-organizing machines which are needed for them to exhibit
intelligent behavior. Many such issues were pointed out in [30]
and [31] and have to be considered for brain-type signal pro-
cessing. One of the critical issues is reinforcement driven self-
organization of the control structures, which will govern the
embedded self-evaluation and build the value system for the
machine. The other issue is distributed memory and association
of temporal events taking place in the machine. These issues are
currently under investigation.

More information on SOLAR project can be found at:
http:// www.ent.ohiou.edu/ ~webcad / Current_Projects / solar /
index.html

APPENDIX
DERIVATION OF THE WEIGHTING FORMULA

Weighting formula (16) determines a relative strength of be-
lief that combines the classification evidence from independent
sources of information. Formula (16) is derived using analogy
to the MRC of signals from various communication channels
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in wireless communication. Assume that sy, ..., s; represent
signals received from k channels all with the same noise level
ni, = 1,4 = 1,...,k. The weighted signal power is s> =
| Zle w;s;|? and the combined noise power represented by its
variance is

k k k
var(ng) = Z var(n;) = var(n;,) Z w? withz w; = 1.
i=1 i=1 i=1

The optimum way of weighting signals received through var-
ious channels is to weight them proportionally to the signal
strength. So, w; = |si|/z7ﬁl=1 |sm| and the signal-to-noise
ratio can be obtained from

2
k 2
.Z kISzI
i=1 E ‘Sm‘ k

82

S_
= =

var(ng) |s: |2
k

ZSm

m=1

var(nio) X Yy,

1
k
=1

a7)
So, in the optimally weighted signal, the signal to noise ratio
increases as a square root of sum of squares of individual signal
to noise ratios.

We use a similar approach to fuse classification results from
independent classifiers. Suppose that each of & classifiers has
its own probability of correct classification equal to P..;. When
P,.; = 1 there is no ambiguity and a classification decision is
certain. By analogy to signal quality we would assign the cor-
responding signal to noise ratio equal to infinity. Thus, we pro-
pose first to change probability measure P..; to a new variable
ﬁi = P..i/1 — P..; that would map P.,.; to such defined signal
to noise ratio P2 = s2/var(n;). Using the optimum weighting
of signals with different strength based on (17) we can deter-
mine the resulting variable P as

(18)

or equally

19)

and replacing P,. by B, as well as adding small ¢ for numerical
stability, we obtain the probability related belief expressed by
(16) that the resulting classification based on fused classifier’s
decision is correct. Notice that this belief is always stronger than
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the most reliable classifier’s probability of correct classification

PCC max-
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