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Neural Network Structure for Spatio-Temporal
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Abstract— This paper proposes a neural network structure for
spatio-temporal learning and recognition inspired by the long-
term memory (LTM) model of the human cortex. Our structure
is able to process real-valued and multidimensional sequences.
This capability is attained by addressing three critical problems
in sequential learning, namely the error tolerance, the significance
of sequence elements and memory forgetting. We demonstrate the
potential of the framework with a series of synthetic simulations
and the Australian sign language (ASL) dataset. Results show
that our LTM model is robust to different types of distortions.
Second, our LTM model outperforms other sequential processing
models in a classification task for the ASL dataset.

Index Terms— Hand-sign language interpretation, long-term
memory architecture, spatio-temporal neural networks.

I. INTRODUCTION

THIS paper proposes a novel spatio-temporal long-term
memory (LTM) architecture that is motivated by many

neuro-biological evidences, such as hierarchical organization,
fast learning, sparse connectivity, and error-tolerant
retrieval [1]. We demonstrate that the proposed architecture
significantly improves the original models in [2] and [3] in
ways that make it more robust to process multidimensional
and real-valued data. It is believed that the modeling of
such memory is vital for the development of sensory-based
representation and motor control of embodied intelligent
systems.

Design of a sequential memory structure [4]–[7] has been
known to mainly involve short-term memory (STM) and LTM.
STM is used as a temporary storage of recent inputs for rapid
processing and has a limited capacity [8]. Moreover, STM is
able to store the order of the input events [9]. On the other
hand, LTM is constructed using the synaptic modifications
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based on the consistent neural activities of STM [10] or
the high synaptic plasticity in case of the episodic memory
(EM) [11]. Our design of spatio-temporal memory architecture
is based on the interplay between the two memory types.

Research on spatio-temporal neural networks dates back
to the out-star avalanche model [12] and its variants [13].
The basic network consists of two layers, and has two key
properties: temporal order invariance and normalization of
activity. Time delay neural network [14] is a popular model
that stores a sequence as a static multilayer feedforward
network. Recurrent neural network (RNN) [15], [16] is
another powerful family of sequential processing models.
RNN introduces internal feedback links and a temporary
buffer of recent states. The training of a typical spatio-
temporal neural network is based on the back-propagation
through time (BPTT) method [17]. However, the main
problem with the BPTT method is that the gradient-based
error signals may vanish or explode over a long lagging
time [18], [19]. As a result, the training may fail to converge
in practical time for problems with long-time dependencies.
However, significant attempts [18], [20] were proposed to
alleviate the difficulty of RNN’s training.

Wang and Arbib [9] introduced several key issues related
to complex sequence analysis, which include the temporal
chunking, storage, retrieval, hierarchical organization, antic-
ipation, and incremental learning. In [21], the same authors
presented a model of sequence recognition by training the
weight connections between STM and a sequence detector
via a normalized Hebbian rule. More specifically, STM was
modeled as an array of cells, each of which corresponds
to an element of the input training sequence with decaying
behavior. In the same paper, they also discussed distributed
representation for complex sequence processing. In [22], the
previous model was improved by adopting an online learning
mechanism with anticipation.

Wang [23], [24] developed a general framework for
complex sequence learning, storage, and retrieval applied to
any hetero-associative/auto-associative neural network [23]
or any multiassociative neural network [24]. His network’s
structure consists of three components: a voting network, an
array of associative neural networks, and delayed feedback
lines. Experiments with noisy alphabetical patterns showed
that the framework is able to robustly learn and retrieve a
large number of non-orthogonal patterns with good accuracy.

In our previous model [2], a spatio-temporal learning
architecture that addresses several critical issues related
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to LTM-based sequential memory structures, such as the
hierarchical, sparsely connected organization, competition,
anticipation, and one-shot learning was developed. In this
context, an LTM cell provides a persistent storage of a
sequence. At an architectural level, LTM [25] contains a
number of identical processing units organized in hierarchical
layers. The architecture of LTM resembles the organization of
the cortical mini-columns of a human brain [1]. Hierarchical
representation provides a natural way to tackle complex prob-
lems in which the higher layers exploit the lower layers to
learn a large number of different patterns [26].

Similar to [22], the network proposed in [2] actively
anticipates the next element with feedback connections. The
learning of the input sequence is activated only when the
anticipation of next elements is incorrect. However, the main
difference to [22] is that the chunking of input sequences
is done automatically, once the learning signal is triggered.
The second advantage is the requirement of only a single
presentation of a training sequence as opposed to [22], which
requires multiple sweeps of the sequence. The model was
able to learn any complex sequence as long as the number
of distinct subsequences is smaller than the memory capacity
provided by the neurons across the hierarchy.

Our model in [3] improved the work in [2] by introducing a
flexible matching mechanism that gives a real-valued measure
of similarity between the learnt and testing sequence instead
of a discrete match-nonmatch score. It addresses the error
tolerance problem of the neural network to a few types
of uncertainties in a test sequence, including order distor-
tion, time delay, and imperfect start–end segmentation of
a sequence. This significantly improves the learning effi-
ciency compared to the learning mechanism in [22], which
triggers the one-shot learning whenever the test sequence
does not exactly match the stored sequence. Comparison
evaluation with existing methods, including hidden Markov
model (HMM) and Levenberg–Marquardt algorithm on a task
related to storage and prediction of words demonstrates its
effectiveness in recognition accuracy.

This paper preserves the characteristics of the LTM models
in [2] and [3], but extends their ability to perform robust
recognition of real-valued and multidimensional sequences.
Three main contributions are proposed: 1) the introduction of
error tolerance within an LTM cell; 2) the incorporation of
significance of elements in the LTM cell; and 3) the augmen-
tation of the LTM framework with a novel activation decay
mechanism. These contributions are briefly characterized
next.

Error tolerance in sequential learning can be analyzed at
inter-element and intra-element level. The inter-element type
of error includes various distortions of temporal relationship
among consecutive elements of the input. On the other hand,
the intra-element error refers to various distortions in the
content of the input. These two problems were not adequately
addressed in [3] since the model assumed that each element
of the sequence should be recognized perfectly, which means
that it is either present or not. However, the problem is more
complicated when sequences are continuously varying and
multidimensional. In this paper, we introduce mechanisms to

address these two error types, and they lead to substantial
improvements in the recognition performance.

For intra-element error, we characterize the error tolerance
of the content of each element by learning the statistical spatio-
temporal variations. We show that the tolerance estimation
of variation from only a single training sequence can be
used to robustly recognize testing sequences. It is arguable
that the tolerance of a sequence should be approximated
from statistics of multiple samples of the target sequence in
a probabilistic setting. However, in many situations, many
training instances are not available and the system is expected
to operate after a single observation. For example, a robot is
required to learn a topological path after a single run through
an environment [27]. Another example is a speech recognizer
that learns a single presentation of a word spoken by a person,
and is expected to remain partially tolerant to others speaking
the same word. EM organization [11] that requires an agent to
learn a sequence of events after a single observation can also
benefit from our approach.

We address the inter-element error by a robust sequence
recognition, which tolerates inter-element variability. When
a testing sequence is presented, LTM cells incrementally
accumulate evidences from the testing sequence and compete
to be the winner. Theoretical analysis shows that only the
stored sequence in the LTM cell elicits maximum activation
and any deviation from the ideal sequence results in a graceful
degradation of activation. The maximum activation of an
LTM cell is analytically derived and used to normalize the
activation. Thus, matching of the stored sequence with a test
sequence of a different length is allowed.

Our second contribution deals with the significance of
elements stored in each LTM cell. Due to the limited compu-
tational resource, an agent may choose to put more emphasis
on identifying and processing only an important subset of
elements. This complements a typical learning that assigns an
unit significance to all the elements. The novelty of our model
is the explicit modulation of the LTM activation by estimated
elements’ significance. We propose a specific significance
analysis that is suitable for the chosen application based on the
statistical variation of the sequence elements. We demonstrate
that the incorporation of significance improves the recognition
performance level.

It is well understood that the definitions and identification
techniques of significant elements vary depending on spe-
cific applications. Three examples are motifs in DNA, RNA,
and proteins sequences in bioinformatics [28], salient spatio-
temporal events in dynamic scene understanding based on
center–surround interactions [29] or statistical differences from
subjective expectations [30], and sequences of events that are
associated with predefined goals in robotic navigation [31].
In this paper, the significance of elements is integrated as a
modulatory factor for any estimation method.

The last contribution of our network structure is the intro-
duction of memory activation decay. The reasons for the
activation decay are two-fold: 1) to maintain the strength of
an LTM cell for a sufficient duration to perform learning,
construct associations, and predict next events and 2) when
the current sequence of events increasingly deviates from the
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(a)

(b)

Fig. 1. (a) Block diagram and (b) detailed structure of an LTM cell.

LTM cell, the output strength needs to decay rapidly to avoid
ambiguities in decision making. It will be empirically shown
that by using memory activation decay, the separation of acti-
vations between a matched LTM cell and non-matched LTM
cell given a test sequence increases, leading to an improvement
of recognition performance. The issue of memory activation
decay for sequential neural networks was discussed in several
previous works [3], [11], [13], [21].

The structure of this paper is as follows. Section II presents
the theoretical aspects of an LTM cell’s structure and a
novel recognition algorithm for real-valued multidimensional
sequences. Section III discusses various properties of an LTM
cells with synthesized sequences. Section IV presents the
empirical results and comparisons of the LTM model with
the Australian sign language (ASL) dataset [32]. Finally,
Section V concludes this paper and discusses several future
extensions to the framework.

II. LTM CELL ORGANIZATION, LEARNING,
AND RECOGNITION

Using notations similar to [2] and [21] a spatio-temporal
sequence S is represented as S1− S2−· · ·− SL , where Si (i =
1, . . . , L) is a component of the Sequence, and L is the length
of the sequence. Each of the component Si is represented by
a vector of features, i.e., Si ∈ R

F where F is the dimension
of the vector. In a matrix form, we have

S ≡ {si j |i = 1, . . . , F, j = 1, . . . , L}. (1)

A subsequence of S is any Sm − Sm+1 · · · − Sn , where 1 ≤
m ≤ n ≤ L. In addition, we denote the tolerance � ∈ R

F×L

in a matrix form and the significance � ∈ R
L in a vector form

of the elements of the sequence as follows:

� ≡ {δi j ∈ R
+|i = 1, . . . , F, j = 1, . . . , L} (2)

� ≡ {φ j ∈ (0, 1]| j = 1, . . . , L}. (3)

(a) (b) (c)

Fig. 2. Neuronal update process at the mth triple of an LTM at the time
step t . See text for details. (a) PN’s update. (b) IN’s update. (c) SN’s update.

The tolerance and significance of a sequence specify the
statistical variation and the importance of the elements in the
sequence, respectively. The previous works in [2] and [3] only
dealt with a special case when δi j ≈ 0,∀i, j (i.e., either match
or nonmatch) and φ j = 1,∀ j (i.e., equal significance).

A. LTM Cell Structure

An LTM cell is designed as a building block to store an
input sequence S ∈ R

F×L [see Fig. 1(a)], and subsequently
determine if a given testing sequence is matched to the
stored sequence by a graded signal. This paper proposes a
sparsely connected LTM structure [see Fig. 1(b)] that is used
as an efficient and robust basic component for a hierarchical
sequential neural network. The network topology in Fig. 1(b)
comprised of four layers. They are the input layer, the pri-
mary layer, the intermediate layer, and the secondary layer.
The details of the network layers are described as follows.

1) Input Layer: The input layer consists of F input neurons.
It provides the LTM cell with information obtained
either from the sensory system that is connected to
environment or the outputs from LTM cells at lower
levels in a hierarchical organization. At a time step t ,
an input vector I(t) ≡ {Ii (t)|i = 1, . . . , F} of a testing
sequence is presented to the network.

2) Primary Layer: The primary layer consists of L pri-
mary neurons (PNs) depicted as the “R” neurons in
Fig. 1(b). The content of a training sequence is stored
as the synaptic weights W ≡ {wi j |i = 1, . . . , F, j =
1, . . . , L} embedded within the full connections between
the input layer and the primary layer. Each PN also has
an inhibitory control signal from a sequence counter P,
which is used for the learning of W. The role of the
primary layer is to compute the degree of similarity
between an input vector and components of the stored
sequence. The similarity can be computed by a pattern
recognizer, such as a multilayer perceptron. In this paper,
the radial basis function is employed as the similarity
metric. Fig. 2(a) shows how the output (or primary
excitation) of the mth PN (m = 1, . . . , L) at the time
step t (denoted as y P N

m ∈ [0, 1]) is computed as

y P N
m (t) = exp

[
− 1

F

F∑
i=1

(
wim − Ii (t)

δim

)2
]

(4)
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where δim is the tolerance of the i th feature of the mth
component defined in (2). The update for all the PNs is
performed concurrently.

3) Intermediate Layer: The intermediate layer consists of L
intermediate neurons (INs) depicted as the “�” neurons
in Fig. 1(b). At the time step t , the mth neuron of this
layer sums the outputs from the mth PN computed by
(4) at the current time step, and the (m−1)th secondary
neuron (SN) (described later) computed at the previous
time step [denoted as yS N

m−1(t − 1)]. The one-to-one
connection between the mth PN and the mth IN is
weighted by the significance degree of the component,
i.e., φm . Fig. 2(b) shows how the output of the j th IN
at the time step t (denoted as y H

m (t)) is computed as

y H
m (t) = [

φm y P N
m (t)+ ŷ S N

m−1(t)
]+ (5)

where ŷ S N
m is the activation of the mth SN after being

decayed and [x]+ = x if x ≥ 0 and 0 otherwise. The
neuronal decaying behavior of the SNs is described by
the functions f j (.)( j = 1, . . . , L) as depicted by the
self feedback loop in the Fig. 1(a) and is given by

ŷ S N
j (t) = f j

(
yS N

j (t − 1)
) ∀ j. (6)

The basic requirement of the decaying function is

f j (x) ≤ x ∀ j ∈ [1, . . . , L]. (7)

The update for all the INs is performed concurrently.
4) Secondary Layer: The secondary layer consists of L

SNs depicted as the “M” neurons in Fig. 1(b). Fig. 2(c)
shows the output (or secondary excitation) of the SNs
at the time step t (denoted as yS N

m (t)) being updated
incrementally by

yS N
m (t) = max{ŷ S N

m (t), y H
m (t), yS N

m−1(t)} (8)

where max{.} is the point-wise maximum function and
yS N

0 (t) = 0 by convention. The updated activation of
the mth SN provides a matching degree between the
test sequence and the subsequence S1 − S2 − · · · Sm

of the stored sequence. The activation of the mth SN
is updated based on the maximum function of three
different signals [in the order of the max function in (8)].
They are its decayed activation from the previous step,
the newly updated mth IN after receiving the signal from
the mth PN (which indicates the arrival of the mth com-
ponent of the stored sequence), and the matching degree
between the presented sequence and the subsequence
S1 − · · · − Sm−1 of the stored sequence.

In this paper, we use the following linear functions for
modeling the decaying behavior:

f j (x) = x − γφ j+1 (γ ∈ (0, 1]). (9)

Nonlinear decay for sequence recognition has been previously
used in [13] to explain several psychological phenomena, such
as recency (the elements near the end of the sequence are
harder to forget than those at the beginning of the sequence)
and primacy (the elements near the start of the sequence are
harder to forget than those at the end of the sequence). Such
phenomena require specialized knowledge of the remembered
sequence that is not assumed here.

B. Model Dynamics

The output of the LTM cell at the time step t is given
by the secondary excitation of the last SN, i.e., yS N

L (t).
This activation provides a matching score between the input
sequence presented until the current time step and the stored
sequence in the LTM cell. This section provides proofs that
the maximum activation of an LTM cell can only be attained
by the stored sequence. This maximum activation can be
derived analytically and be used for the LTM activation’s
normalization.

First, the following prepositions summarize the computation
of the SNs.

Preposition 1: After each update, the activations of the SNs
from 1 to L are monotonically increasing

0 ≤ yS N
1 (t) ≤ yS N

2 (t) ≤ · · · ≤ yS N
L (t). (10)

Proof: This preposition is a direct result from the update
rule (8).

Preposition 1 implies that after each update, the Lth SN
always contains the maximum activation of all the SNs.

Preposition 2: At any time step t , the following property
holds for any m ∈ [1, L]:

yS N
m (t) = max{ŷ S N

m (t), max
k∈[1,m][ŷ

S N
k−1(t)+ φk y P N

k (t)]+}. (11)

Proof: The following proof is applied at any time step t .
Therefore, the time index is left out for compactness

yS N
m

(8)= max{ŷ S N
m , y H

m , yS N
m−1}

(5)= max{ŷ S N
m , [ŷ S N

m−1 + φm y P N
m ]+, yS N

m−1}.
Likewise

yS N
m−1 = max{ŷ S N

m−1, [ŷ S N
m−2 + φm−1 y P N

m−1]+, yS N
m−2}

· · ·
yS N

1 = max{ŷ S N
0 , [ŷ S N

0 + φ1y P N
1 ]+, yS N

0 }
where yS N

0 = 0 by convention. By combining these equations,
we have (11) for any m ∈ [1, L].

Prepositions 1 and 2 are used to prove Lemma 1, which
give the upper bound of activations of the SNs.

Lemma 1: Let βm = (1 − γ )
∑m

j=1 φ j and given that the
initial activations of the DNs satisfy the following conditions
yS N

m (0) ≤ βm ,∀m ∈ [1, L], the activation of SN in subsequent
steps satisfies the following inequality:

yS N
m (t) ≤ βm ∀m ∈ [1, L]. (12)

Proof: We prove this lemma by induction.

1) m = 1: We have

yS N
1 (t)

(11)= max{ŷ S N
1 (t), [ŷ S N

1 (t)+ φ1 y P N
1 (t)]+}

(9)= max{ŷ S N
1 (t), [φ1 y P N

1 (t)− γφ1]+}
(4)≤ max{ŷ S N

1 (t), (1− γ )φ1}
= max{ŷ S N

1 (t), β1}.
From the condition of the initial value, we have

ŷ S N
1 (t)

(9)= f1(yS N
1 (t − 1))

(7)≤ yS N
1 (t − 1) ≤ β1.
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Therefore, (12) holds for m = 1. The equality
happens when the first element of the LTM sequence
is presented.

2) Assume (12) holds for all the SNs from index 1 to
m − 1 at a time step t

yS N
k (t) ≤ βk ∀k ∈ [1, m − 1]. (13)

The equality occurs when the first k elements of the
stored sequence are presented in correct order. We
need to prove that (12) also holds for the mth SN at
the time step (t + 1)

yS N
m (t + 1) ≤ βm . (14)

From the condition of the initial value, we have
yS N

m (t) ≤ βm . Due to the decaying function, we
have at the time step (t + 1)

ŷ S N
m (t + 1)

(9)= fm(yS N
m (t))

(7)≤ yS N
m (t) ≤ βm . (15)

The second component of the outer-max function
in (11) takes into account the primary excitations
produced by an input vector. Let

A(t) = max
k∈[1,m][ŷ

S N
k−1(t)+ φk y P N

k (t)]+

we have

A(t + 1)
(4)≤ max

k∈[1,m][ŷ
S N
k−1(t + 1)+ φk]+

(9)= max
k∈[1,m][y

S N
k−1(t)+ (1− γ )φk]+ (16)

(13)≤ max
k∈[1,m]{βk−1 + (1− γ )φk}

= max
k∈[1,m]{βk} = (1− γ )

m∑
j=1

φ j = βm .

(17)

From (11), (15), and (17) we have (14), which
proves Lemma 1. The equality occurs when the first
(m − 1) elements [by (17)] and the mth element [by
(16)] of the stored sequence are presented in correct
order.

From Lemma 1 and Preposition 1, we can derive the
maximum activation of an LTM cell, Omax, as follows:

Omax = max{yS N
L (t)} = (1− γ )

L∑
j=1

φ j . (18)

The maximum activation can be attained only by the stored
sequence. This value is used to normalize the strength of the
LTM cell’s output during testing.

C. LTM Storage Mechanism

This section presents the storage mechanism of LTM cells.
For a given training sequence S, existing LTM cells compete
for the best match to determine the winning sequence by a
winner-take-all (WTA) network. If the match is sufficient, i.e.,
the matching signal is smaller than a predefined threshold θ ,

Algorithm 1 LTM Sequence Recognition (LTMSR)
Require: W,�,�, Omax, γ
Ensure O
Initialize:

1) yS N
m (0)← 0 ∀m ∈ [1, L].

2) cm ← τ ∀m ∈ [1, L].
3) t ← 1.

Begin Algorithm:
for each input vector I(t) of the test sequence do

Compute {y P N
m (t), ŷ S N

m (t), y H
m (t)},∀m by (4)–(6).

for m = 1 to L do
if (ŷ S N

m (t) ≥ max{y H
m (t), yS N

m−1(t)}) ∧ (cm > 0) then
yS N

m (t)← ŷ S N
m (t).

cm ← cm − 1.
else

yS N
m (t)← max{y H

m (t), yS N
m−1(t)}.

cm ← τ .
end if

end for
t ← t + 1.

end for
return O = ySN

L (t)
Omax

.
End Algorithm

the corresponding winning LTM cell plays its sequence and
no learning occurs. However, if the match is not sufficient, a
learning signal is triggered and a new LTM cell is employed
to learn the input sequence as corresponding synaptic weight
W using one-shot learning.

In an intelligent system, the threshold θ of an LTM cell
is determined via its interaction with the environment and is
task-dependent. In this paper, we set the learning threshold
theta to zero (in the training phase). Therefore, an LTM cell is
dedicated separately to each input sequence. One-shot learning
is used in many neural systems [21], [33], [34] to improve the
training efficiency of the learning system. The key idea is to
set the learning rate to be very high to imprint the sequence
to an LTM cell by a single observation of the sequence.
The learning of a pattern proceeds in a sequential fashion
with a sequence counter P [3]. At each activation of the j th
sequence counter, the j th element of the sequence is mapped
to the connection between the input layer and the j th PN.
Distributed representation of LTM cells can be incorporated
to improve the storage capacity. But in this paper, for reasons
of simplicity, we only considered a localist representation of
sequences.

D. Sequence Recognition Algorithm

This section develops a sequence recognition algorithm
called LTMSR (Algorithm 1) based on the architecture shown
in the Fig. 1. Each input vector of a test sequence is incre-
mentally presented to an LTM cell. Once the matching output
is returned, a winning LTM sequence can be determined by
a WTA network of the existing LTM cells. The LTMSR
introduces the delay factor τ and corresponding counters
C ≡ {c j | j = 1, . . . , L}, which retain the SNs’ activations
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TABLE I

OUTPUT OF THE LTM CELL WITH VARIOUS INPUTS. T: PERTURBATION

TYPE, NO: NORMALIZED OUTPUT, UO: UNNORMALIZED OUTPUT

Input T NO UO Input T NO UO

ABCD 0 1.00 3.20 BCD 3 0.75 2.40

ABDC 1 0.75 2.40 BC 3 0.50 1.60

ACBD 1 0.69 2.20 AB 3 0.50 1.60

CBAD 1 0.50 1.60 A 3 0.25 0.80

ADCB 1 0.38 1.20 B 3 0.25 0.80

DCBA 1 0.25 0.80 WN 1 4 0.99 (±0.00) 3.18

ABBCD 2 0.94 3.00 WN 2 4 0.86 (±0.06) 2.74

ABCCD 2 0.94 3.00 WN 3 4 0.57 (±0.15) 1.83

ABBBCD 2 0.88 2.80 WN 4 4 0.39 (±0.17) 1.24

ABCCCD 2 0.88 2.80 WN 5 4 0.29 (±0.16) 0.93

ACD 3 0.75 2.40 WN 6 4 0.13 (±0.12) 0.42

for a number of steps before being reset. The purpose of the
delay factor is to compensate for minor delay or perturbation
of input I. The computational complexity of the algorithm is
in the order of O(L), where L is the length of the LTM cell
for each input vector. An example of the network operation
given a sequence is described next.

Example 1: We consider the 2-D sequence S ≡ ABC D with
the length of 4. Each element of the sequence is specified
as follows: A = (0.2, 0.8), B = (0.4, 0.6), C = (0.6, 0.4),
and D = (0.8, 0.2). The sequence S is stored as an LTM
cell by one-shot learning. Therefore, there are two neurons
in the input layer and four neurons in each of the primary,
intermediate, and secondary layers. The specifications of the
LTM cell are set as follows: δi j = 0.1,∀i ∈ [1, 2], j ∈
[1, 4], φ j = 1.0,∀ j ∈ [1, 4], and τ = 1.

A number of test sequences are synthesized based on
the stored sequence to evaluate the robustness of the LTM
cell’s activation. The result is shown in Table I. The orig-
inal sequence (Type 0) and four types of sequential distor-
tions, including order distortion (Type 1), replicated elements
(Type 2), missing elements (Type 3), and noisy elements
(Type 4) are introduced. The noisy test sequences are gen-
erated by adding white noise (with zero mean and standard
deviation σ ) to the original sequence. The values of σ are
0.01, 0.05, 0.1, 0.15, 0.2, and 0.3, which correspond to the test
sequences WN 1–WN 6 in Table I. The simulations with noisy
sequences were conducted with 1000 random trials for each σ .
The average outputs with unnormalized (absolute) activations
and normalized (absolute values divided by Omax) activations
are reported. The decay parameter γ is set to 0.2.

The first observation is that the original sequence elicits the
maximum activation (Omax = 3.2) among all the cases. This
verifies the correctness of the Lemma 1. Second, for each type
of distortion, the output of the LTM cell reflects an increase
of the distortion level by graceful degradation of activation.

E. Error-Tolerance

This section proposes an adaptive characterization of
uncertainties based on the local variation of features.

The estimated uncertainty is used as the tolerance � in (2)
to normalize the matching between LTM elements and an
input vector. The proposed mechanism is appropriate for
spatio-temporal patterns where local variations in time provide
useful information for uncertainty analysis.

Given a synaptic connection W of an LTM cell, the task
of uncertainty estimation is to characterize the local standard
deviation (LSD) of elements with respect to the temporal axis.
The LSD is estimated over a local window �m(m ∈ [1, L])
of size 2τ� + 1 (τ� is an integer) centered at the mth
element of the sequence. The two boundaries of the sequence
are mirror-extended by τ� components to allow a full-sized
envelope when m ∈ [1, τ� ] or [L − τ�, L]. If we denote
B = (2τ� + 1)−1, then the LSD of the i th feature of the mth
element is given by

δim =
√

B
∑
j∈�m

(wi j − μim)2 (19)

where μim is the mean of the i th feature with respect to the
local window

μim = B
∑
j∈�m

wi j . (20)

The estimation of D can be performed by a sliding window
over the temporal axis. Therefore, a moving-window approach
to LSD estimation can be applied.

Corollary 1: The incremental update of the LSD for a
sequence S is

μim =
{

B
∑

j∈�1
wi j , if m = 1

μim−1 + B(xr − xl), otherwise
(21)

δim =
⎧⎨
⎩

√
B

∑
j∈� j

(wi j − μim )2, if m = 1√
δ2

im−1+B(x2
r −x2

l )− (μ2
im−μ2

im−1), otherwise

(22)

where xl = wim−τ�−1 and xr = wim+τ� .
Proof:

1) m = 1: Equations (21) and (22) simply follow the
original formulae (19) and (20), respectively.

2) m > 1: From (20), we have

μim = B

( ∑
j∈�m−1

wi j + xr − xl

)

= μim−1 + B(xr − xl). (23)

Thus follows (21). From (19), for all m we have

δ2
im = B

∑
j∈�m

(wi j − μim )2

= B
∑
j∈�m

w2
i j − 2Bμim

∑
j∈�m

wi j + μ2
im

= B
∑
j∈�m

w2
i j − 2μ2

im + μ2
im

= B
∑
j∈�m

w2
i j − μ2

im . (24)



NGUYEN et al.: NEURAL NETWORK STRUCTURE FOR SPATIO-TEMPORAL LTM 977

Similarly, we have

δ2
im−1 = B

∑
j∈�m−1

w2
i j − μ2

im−1. (25)

Subtract (25) from (24) and note that
∑

j∈�m
w2

i j −∑
j∈�m−1

w2
i j = x2

r − x2
l we have

δ2
im = δ2

im−1 + B(x2
r − x2

l )− (μ2
im − μ2

im−1).

After taking the square roots of both sides, we
have (22).

Corollary 1 suggests that when m > 1, the LSD of the mth
element can be updated from that of the (m − 1)th element
based on the right-most and left-most element of the moving
window. Thus, it is more computationally efficient than the
direct estimation method in (19) that involves all the elements
of the window at each time. In this paper, the tolerance estima-
tion is performed with each feature individually. The influence
of covariance of features toward tolerance estimation is under
investigation. In the following experiments, τ� is set to five
unless otherwise stated.

F. Significance

Significance analysis provides an evaluation of the impor-
tance of each element within an LTM cell, which helps
the LTM cell to focus on identifying highly distinguishing
elements in a sequence. In this paper, the significance of
elements � in the sequence is integrated to modulate the
activation of an LTM cell. Previous works in [3] and [21]
give equal emphasis to all the elements within the sequence.
An important objective of this paper is to leverage the role
of significance, and to verify its impact on improving the
recognition performance of a sequence recognizer.

The significance estimation of elements proceeds from the
feature level to the element level. The significance estimation
is based on statistical characteristics of the features’ values
throughout the temporal domain. Given an LTM cell, we
denote the mean and standard deviation of the i th feature
(i = 1, . . . , F) as μi and σi , respectively. They are empirically
computed as follows:

μi = 1

L

L∑
j=1

wi j (26)

σi =
√√√√ 1

L − 1

L∑
j=1

(wi j − μi )
2. (27)

The significance estimation of an LTM cell at the feature level
is denoted as R ≡ {ri j |i = 1, . . . , F, j = 1, . . . , L} and is
computed as

rim = 1− exp
{
− (wim − μi )

2

ησ 2
i

}
, m = 1, . . . , L (28)

where η is a tuning parameter. Subsequently, the significance
estimation of the LTM cell at the element level, i.e., �, is
computed as

φm =
√∑F

k=1 r2
km

F
, m = 1, . . . , L . (29)

From (28), we have ri j ∈ [0, 1],∀i, j , therefore, φ j ∈
[0, 1],∀ j .

Intuitively, the significance estimation based on (29) gives
high significance values to the elements in which the feature
values are statistically different from the mean values, and
low significance to the elements in which the feature values
are close to the mean values. It must be highlighted that the
proposed significance estimation method was found suitable
for our chosen applications but may need to be re-formulated
for other domains with different data characteristics.

III. STATISTICAL ANALYSIS OF LTM CELL PROPERTIES

In this section, various properties of an LTM cell are
evaluated with a series of synthetic simulations. Random
multidimensional sequences were generated and learnt as
LTM cells. Statistical characteristics of the proposed LTM
model were empirically investigated with synthesized test
sequences, which contain various types and magnitudes of
sequential distortions from the original sequences. The evalua-
tion methodology is based on three criteria. The first criterion
is the prediction accuracy (PA) that is defined by the number of
correct predictions of test sequences (indicated by the strongest
response from the LTM cells) divided by the total number
of test sequences. The second criterion is the strength of the
normalized activation (NA) provided by the winning LTM cell.
The third criterion is the separation ratio (SR) that is defined
by the ratio between the best and the second-best LTM output
when a correct prediction is obtained. The motivation of SR
estimation is to quantify the strength of the decision made by
the winning LTM.

We first evaluate the error tolerance of the LTM model with
four different types of error as in Example 1. Subsequently,
the influence of significance of sequence elements was
investigated. For each type of experiments, ten different
simulations were conducted and the average results were
reported. In each simulation, four 10-D sequences, denoted
as Pi , (i = 1, . . . , 4), with the length of 100 were generated
from uniform distribution in [0, 1]. Each Pi was then stored
as a separate LTM cell and various test sequences were
synthesized from Pi to evaluate the performance.

A. Tolerance With Error Type 1 - Local Order Perturbation

In order to evaluate the impact of local order perturbation,
the test sequences were produced as follows. For each Pi ,
a local window that occupies w(%)(0 ≤ w ≤ 100) of Pi was
randomly extracted, permuted, and then placed back to Pi to
construct a test sequence. For each selected w and Pi , 1000
test sequences were generated. During testing, a test sequence
was classified as Pi if the corresponding LTM cell elicits the
maximum NA among all LTM cells. The influence of the decay
rate was also taken into account as different values of γ =
0.0, 0.1, 0.3, . . . , 0.9, were considered. Other LTM parameters
were set to τ = 0 and η = 0. The setting of η effectively
makes φm = 1,∀m in this experiment.

Results in Table II show that the LTM model maintains
a consistent 100% recognition accuracy for all chosen γ s.
Fig. 3(a) shows that the NA of the LTM cells decreases



978 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 23, NO. 6, JUNE 2012

(b)(a)

Fig. 3. (a) NA and (b) log10(SR) of LTM activations with different amount of local order perturbations in the case of error type 1.

TABLE II

MEAN AND STANDARD DEVIATION OF PA IN THE CASE OF ERROR

TYPE 1. NOTE THAT w = 0 WHEN THERE WAS NO DISTORTION

w 0 10 30 50 70 90

PA
1.0 1.0 1.0 1.0 1.0 1.0

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.0)

TABLE III

MEAN AND STANDARD DEVIATIONS PA OF THE LTM CELLS WITH

DIFFERENT DELAY FACTORS IN THE CASE OF ERROR TYPE 2

q τ = 0 τ = 5 τ = 10 τ = 15 τ = 20 τ = 25

5
0.70 1.00 1.00 1.00 1.00 1.00

(±0.06) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)

10
0.71 1.00 1.00 1.00 1.00 1.00

(±0.10) (±0.05) (±0.00) (±0.00) (±0.00) (±0.00)

15
0.75 0.75 1.00 1.00 1.00 1.00

(±0.08) (±0.04) (±0.00) (±0.00) (±0.00) (±0.00)

20
0.63 0.75 1.00 1.00 1.00 1.00

(±0.14) (±0.04) (±0.00) (±0.00) (±0.00) (±0.00)

25
0.62 0.80 0.88 1.00 1.00 1.00

(±0.19) (±0.04) (±0.10) (±0.00) (±0.00) (±0.00)

gradually as the amount of perturbation increases. Second, the
activation of the LTM cell with a similar amount of perturba-
tion decreases as γ increases. By increasing the decay rate, we
also obtained a better separation margin as in Fig. 3(b) without
recognition performance degradation. In real applications, the
value of γ should be optimized for desirable performance by
a cross validation technique for example.

B. Tolerance With Error Type 2 - Replicated Elements

In order to examine the performance of the LTM model
when part of a learnt sequence is replicated, the test sequences
were generated as follows. For each Pi , 50 elements at
random locations were selected. At each location, the
respective element was replicated q times to form a test
sequence with length longer than the original training
sequence. Hundred test sequences were constructed for each
Pi and selected q with different replicated locations. The value

of q was varied from 5 to 20 with an increasing step of 5.
Other LTM parameters were set to γ = 0 and η = 0.

Table III shows the average PA with ten different runs of
simulations. In this case, the delay factor τ was varied from
0 to 25 with an increasing step of 5. By increasing the delay
factor τ , the PA was improved and 100% PA was achieved
as soon as τ reached q . Fig. 4(a) and (b) shows the NA
and SR values with different amount of delay distortions. By
increasing τ , both NA and SR were enhanced. Additionally,
the activation of LTM attained its maximum level, i.e., 1.0,
when the delay factor coincided with the number of replicated
elements. Similarly, the SR achieved its maximum value when
τ is equal to q .

C. Tolerance With Error Type 3 - Missing Elements

In order to examine the performance of the LTM model
when part of a learnt sequence is missing, the test sequences
were generated as follows. For each Pi , p(%) (0 ≤ p ≤ 100)
of the elements at different locations were removed to form a
test sequence. Five different values of p = 20, 40, 60, 80, 90,
were selected and 1000 test sequences were generated for each
p and Pi . Various LTM parameters were set to γ = 0, τ = 0,
and η = 0.

Table IV shows the average PA with ten different sim-
ulations. We achieved a perfect recognition rate for every
selected p. Fig. 5 shows that by increasing p, both NA and
SR were reduced. Due to the linear decay function and equal
significance among elements, a similar number of missing
elements at arbitrary locations result in a similar reduction of
LTM activation. Therefore, a linear reduction curve of LTM
activation was obtained with a zero standard deviation.

D. Tolerance With Error Type 4 - Noisy Elements

This section examines the performance of the LTM model
when the elements of the sequence were noisy. During train-
ing, each sequence Pi was added with WGN with standard
deviation of 0.1 and then learnt by an LTM cell. The test
sequences were generated by adding WGN with variable
standard deviations κ to the training sequences. Six different
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(a) (b)

Fig. 4. (a) NA and (b) SR of LTM activations with different number of replicated elements in the case of error type 2.

TABLE IV

PA OF THE LTM CELLS WITH DIFFERENT AMOUNTS OF MISSING

ELEMENTS IN THE CASE OF ERROR TYPE 3

p 20 40 60 80 90

PA
1.00 1.00 1.00 1.00 1.00

(±0.00) (±0.00) (±0.00) (±0.00) (±0.00)

Fig. 5. NA and SR of LTM activations with different numbers of missing
elements in the case of error type 3.

values of κ = 0.1, 0.2, 0.4, . . . , 1.0 were selected and 1000
test sequences were generated for each κ and Pi . Various
LTM parameters were set to γ = 0, τ = 0, and η = 0.

Table V shows the PA of ten different runs of simulations.
Three different window sizes (2, 5 and 100) of the procedure
described in Section II.E were selected. We achieved perfect
recognition rates for all selected window sizes until κ is 0.6
which is 6 times the noise in the LTM cells. Second, by having
τ� = 5, the performance was improved compared to a small
window size τ� = 2 and not significantly different from the
largest possible window size τ� = 100, which is the length of
the training sequence. Fig. 6(a) and (b) shows that both NA
and SR reduced gracefully with increasing κ .

TABLE V

PA OF THE LTM CELLS WITH DIFFERENT STANDARD DEVIATIONS OF

WGN IN THE CASE OF ERROR TYPE 4 (γ = 0)

τ� κ = 0.1 κ = 0.2 κ = 0.4 κ = 0.6 κ = 0.8 κ = 1.0

2
1.000 1.000 1.000 0.980 0.525 0.310

(±0.00) (±0.00) (±0.00) (±0.01) (±0.02) (±0.01)

5
1.000 1.000 1.000 1.000 0.768 0.395

(±0.00) (±0.00) (±0.00) (±0.00) (±0.01) (±0.00)

100
1.000 1.000 1.000 1.000 0.783 0.402

(±0.00) (±0.00) (±0.00) (±0.00) (±0.02) (±0.01)

E. Influence of Significance of Elements

In order to exploit the role of significance of elements, the
following 2-D sequential pattern, denoted as Q = {qi j |i =
1, 2; j = 1, . . . , 100}, was considered:

Q : q1 j =
{

( j−40)
20 , if 41 ≤ j ≤ 60

0, otherwise
(30)

q2 j =
{

1, if 41 ≤ j ≤ 60
0, otherwise.

(31)

The pattern Q is assumed to contain 80% insignificant
feature (zero values) and 20% significant feature (nonzero
values) in each of the dimension. The significance estimation
described in Section II.F gives high values to the salient
elements and low values to the non-salient elements. It is
expected that by incorporating the significance of elements, the
LTM activation shows a clear separation between the pattern
Q and a pattern that contains purely insignificant features.

Fig. 7 illustrates a case when Q was stored as an LTM
cell and the two test sequences were Q itself, and a sequence
Q′ of a similar length that contains only zero-value features.
By the end of the test sequences, a successful recognition of
Q was evident due to the stronger response of the sequence
Q compared to Q′. More importantly, the separation margin
between the two test sequences was clearly improved when the
significance of sequence elements is incorporated [Fig. 7(b)].
This is in contrast to the case when every element of the LTM
cell is allocated a similar significance value [Fig. 7(a)].
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(a) (b)

Fig. 6. (a) NA and (b) SR of LTM activations with different standard deviations of WGN in the case of error type 4.

(a) (b)

Fig. 7. NA of an LTM cell that stores the sequence Q with two test signals
Q and Q′ (a) without and (b) with the influence of significance (η = 4.0) of
elements.

Fig. 8. Influence of the significance of elements to the SR of T1 and T2
with different noise levels.

To verify the hypothesis, the simulation was designed as
follows. First, the sequence Q corrupted with additive WGN
of the standard deviation 0.1 was stored as an LTM sequence.
Various parameters of the LTM cell were set to γ = 0 and
τ = 0. Two types of test sequences were generated. The
first type (T1) was constructed by adding WGN of variable
standard deviation κ to the sequence Q. The values of κ
were similar to those used in the Section II.D. The second
type (T2) was a sequence that is of the same length as Q

but contains only WGN with variable standard deviation κ .
For each chosen κ , 1000 runs were conducted. In each run, a
sequence of type T1 and T2 was generated and their respective
SRs between the LTM activations were computed. Fig. 8
shows the average SR of the 1000 runs for each chosen κ . The
results show that by incorporating the significance of elements
into the modulation of LTM activation (i.e., η > 0), the SR
was consistently improved from the other case (i.e., η = 0).
This observation confirms the advantage of incorporating
significance of elements in discriminating sequential patterns
provided an estimation of �.

IV. EXPERIMENTS WITH ASL DATASET

The ASL dataset [32] contains samples recorded by a high-
quality hand position tracker from a native signer expressing
various Auslan signs. The total number of signs are 95, each
of which was recorded 27 times, organized in nine different
sessions. Each sample contains a 27-D temporal pattern of
average length 57. In this paper, we investigate the capability
of the proposed LTM model in classifying trajectory given
a hand sign sample. We use the first-order derivatives of
the x and y coordinates of both hands (four dimensions) as
the feature set. Additionally, each dimension of the extracted
trajectories is low-pass filtered by a moving average window
of size three.

A. Experimental Design and Analysis

For the purpose of proper comparison, similar experimental
setup as in [35] was used. We used half of the trajectories (i.e.,
13 samples per sign) as the training set, and all the available
trajectories as the testing set (i.e., 27 samples per sign). During
training, each of the samples of the training set was stored as
a separate LTM cell with the label of the corresponding hand
sign. To achieve a desirable performance, three parameters
needed to be optimized, namely the decay rate γ , significance
factor η, and the delay factor τ . The window size τ� for LSD
estimation was set to ten. Empirical studies suggest that a
bigger window did not produce significantly different results.
For decision making, a test sample was assigned to the sign
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TABLE VI

VALIDATION RESULTS (PA, NA, AND SR) OF THE LTM MODEL DURING

THE TRAINING STAGE FOR THE ASL DATASET

No. of classes
(no. of runs/no. of
training instances)

PA NA SR

8 (50/104)
0.8772 0.5462 1.4153

(± 0.0492) (± 0.1334) (± 0.4211)

16 (30/208)
0.8268 0.5828 1.4601

(± 0.0332) (± 0.1073) (± 0.4036)

29 (10/377)
0.7942 0.5819 1.4180

(± 0.0316) (± 0.1054) (± 0.3721)

38 (10/494)
0.7799 0.5554 1.3878

(± 0.0171) (± 0.1335) (± 0.3486)

of the maximum activated LTM cells, and a correct prediction
was counted if the assigned label coincides with the true label
of the sample.

The parameters were optimized by a standard three-fold
cross validation on the training set in the grid specified
by γ ∈ [0.0, 0.1, . . . , 1.0], η ∈ [0, 1, 2, . . . , 16] and τ ∈
[0, 1, 2, . . . , 20]. We performed experiments with four differ-
ent number of selected classes i.e., 8, 16, 29, and 38. For a
number of classes C , we repeatedly collected samples from C
random signs of the total 95 signs for multiple runs.

To quantify the results, we used three criteria as in
Section III: PA of classification, NA of the winning LTM
cells, and SR. Given a correct classification of a sample,
the SR in this case was computed slightly differently as the
ratio between the activation of the winning LTM cell and the
highest activated LTM cell that belongs to a different class.
Table VI shows the result during the validation stage. It can
be seen that the accuracy gradually reduces as the number of
classes increases. Second, the NA and SR of the winning LTM
cells are relatively stable across multiple runs and numbers of
classes.

To elucidate the sensitivity of the proposed LTM model to
the different parameters, for a selected number of classes C ,
we first obtained the optimal parameters (γ ∗, η∗, τ ∗) by cross
validation. Subsequently, two of the optimal parameters were
fixed while the third one was varied. The average results for
C = 16 in 30 different runs were plotted in Fig. 9.

The first observation is that the performance in terms of
PA was consistently improved when each of the parameters
was incorporated (by setting each parameter to be positive).
The improvement of PA with the modulation of significance
(i.e., η > 0) reveals that the proposed significance estimation is
appropriate in assisting sign language’s interpretation. The sec-
ond observation is that an improvement of PA was obtained
when SR was improved. The only exception is when the decay
rate γ is very high (≈1.0). In this case, a perfect recognition
of an element of the sequence typically leads to only a little
gain of activation. This results in a weak LTM activation that
translates into high decision making ambiguity. We also found
empirically that the performance of the model saturated in
terms of PA when τ ≥ 6 or η ≥ 4. Similar observations were
obtained for different numbers of selected classes.

(a) (b) (c)

Fig. 9. Sensitivity of the LTM cells to the varying parameters in a
16-class problem. Sensitivity of PA, NA, and SR (from top to bottom) to
the varying (a) γ , (b) η, and (c) τ . Note that the horizontal axes are plotted
in log-scale.

TABLE VII

PA OF THE LTM MODEL AND COMPARISON WITH OTHER LEARNING

MODELS FOR THE ASL DATASET

Model
No. of classes

(no. of runs/no. of test instances)

8
(50/216)

16
(30/432)

29
(10/738)

38
(10/1026)

(γ = 0, η∗, τ∗) 0.9257 0.8948 0.8506 0.8305

(± 0.0368) (± 0.0324) (± 0.0305) (± 0.0225)

(γ ∗, η = 0, τ∗) 0.7960 0.7480 0.7056 0.6899

Proposed
LTM
model

(± 0.0434) (± 0.0346) (± 0.0232) (± 0.0124)

(γ ∗, η∗, τ = 0)
0.8719 0.8354 0.7874 0.7704

(± 0.0360 (± 0.0236) (± 0.0203) (± 0.0186)

(γ ∗, η∗, τ∗) 0.9412 0.9009 0.8884 0.8671

(± 0.0244) (± 0.0296) (± 0.0189) (± 0.0147)

Original LTM 0.8102 0.7676 0.7372 0.7263

model [3] (± 0.0409) (± 0.0200) (± 0.0135) (± 0.0346)

HMM [35] 0.86 0.78 0.69 0.66

GMM [35] 0.85 0.74 0.67 0.64

SOM [36] 0.82 0.76 NA NA

B. Results and Comparisons With Other Models

In this section, we benchmark the performance of the LTM
model with other published works. Classification accuracy is
reported following the protocol in [35]. The performance of
the LTM model was compared with the original LTM model
[3], HMM [35], Gaussian mixtures model (GMM) [35], and
self-organizing map (SOM) [36] for a similar task. The model
in [3] that was developed for character sequence processing
can be obtained from the model in this paper by “turning off”
the influence of delay factor and significance of elements, i.e.,
setting η and τ to 0. The decay rate γ for the model was
optimized by cross validation as described in Section IV.B.
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TABLE VIII

PA OF THE LTM MODEL WITH VARIABLE SIZE OF TRAINING SET

Number Percentage of the original training set (%)
of

classes 20 40 60 80 100

8
0.6708 0.8106 0.8528 0.9269 0.9412

(± 0.0668) (± 0.0595) (± 0.1085) (± 0.0587) (± 0.0244)

16
0.5255 0.7150 0.8310 0.8981 0.9009

(± 0.0619) (± 0.0829) (± 0.0305) (± 0.0307) (± 0.0296)

29
0.4918 0.6653 0.8059 0.8163 0.8884

(± 0.0506) (± 0.0467) (± 0.0279) (± 0.0180) (± 0.0189)

38
0.4284 0.6239 0.7585 0.7928 0.8671

(± 0.0530) (± 0.0484) (± 0.0198) (± 0.0196) (± 0.0147)

The result is tabulated in Table VII. The effect of parameters
of the proposed LTM model was experimented by setting one
parameter to 0 individually while fixing the other two at their
optimal values. It can be observed that the proposed LTM
model significantly outperformed other learning models in all
selected number of classes. Second, the roles of the introduced
parameters were clearly substantiated by an improvement of
PA when each of them was employed.

Another interesting investigation is to determine the sensi-
tivity of the LTM model to the number of training instances.
In this experiment, the fraction of the original training set used
to construct LTM cells was varied. The result on a similar
testing set is reported in Table VIII. We report two important
observations: 1) the performance was improved when the
number of training instances increased and 2) the LTM model
surpassed the performance of [35] with fewer number of
training examples for all selected classes. For instance, the
performance with 38 classes in [35] can be obtained with only
60% of the training set with the proposed LTM model. These
observations highlight the advantage of robust and reliable
storage properties of the proposed LTM structure.

V. CONCLUSION

In this paper, we described a neural network approach
to temporal sequence learning, memory organization, and
recognition. The main characteristics of the model include the
LTM organization of multidimensional real-valued sequence,
the robust matching algorithm with error tolerance, the sig-
nificance of sequence elements, and the memory forgetting
mechanism. Our analytical approach to the LTM activation’s
normalization allows the comparison of sequences of dif-
ferent lengths. The merits of the proposed framework were
demonstrated using a series of synthetic simulations and the
ASL dataset. It was believed that the proposed architecture is
general enough to support different types of applications that
require complex sequential processing in perception, predic-
tion, and motor control. Additional applications in cognitive
activities and speech recognition are currently being explored.

A vital future of the proposed LTM model is an efficient
sequence alignment scheme for combining multiple sequences
of a similar content. This characteristic can provide a compact
representation when a large number of training sequences are
present. It is also useful to learn spatio-temporal structures
from many sequences to enhance the error-tolerance capability.

One of the main uses of the proposed LTM model is
to construct a stable and reliable self-organizing structure
of EM [11]. EM allows an embodied intelligent agent to
remember and re-experience previously acquired sequences
of events, i.e., episodes. Therefore, this paper has presented
an essential building block in the development of cognitive
machines [37], [38].
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