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Spatio–Temporal Memories for Machine Learning:
A Long-Term Memory Organization

Janusz A. Starzyk, Senior Member, IEEE, and Haibo He, Member, IEEE

Abstract—Design of artificial neural structures capable of
reliable and flexible long-term spatio–temporal memory is of
paramount importance in machine intelligence. To this end,
we propose a novel, biologically inspired, long-term memory
(LTM) architecture. We intend to use it as a building block of
a neuron-level architecture that is able to mimic natural intelli-
gence through learning, anticipation, and goal-driven behavior. A
mutual input enhancement and blocking structure is proposed,
and its operation is discussed in detail. The paper focuses on
a hierarchical memory organization, storage, recognition, and
recall mechanisms. Simulation results of the proposed memory
show its effectiveness, adaptability, and robustness. Accuracy of
the proposed method is compared to other methods including
Levenshtein distance method and a Markov chain.

Index Terms—Embodied intelligence, hierarchical structure,
long-term memory (LTM), memory robustness, spatio–temporal
memory.

I. INTRODUCTION

S PATIO–TEMPORAL memory is needed for processing
sensory inputs, anticipation, learning, motor control, and

goal formation. Therefore, developing models and architec-
tures of spatio–temporal memory is essential for building
embodied intelligent systems. Although different models and
architectures were proposed in the literature, there is still no
clear picture what neural network structures should be used
for the spatio–temporal memory. This paper aims to study
spatio–temporal memories for machine learning and proposes
a novel architecture aimed at robust, tolerant, and flexible
temporal sequence learning and recognition. It also presents a
detailed analysis of such structures.

Typically, two types of memory dominate in neurobiological
research of human brain—the short-term memory (STM) and
the long-term memory (LTM). It is believed that they have
different structural organizations and occupy different regions
of the human brain [1]–[4]. The study of memory has a long
history, and can be traced back to the famous “persevera-
tion–consolidation hypothesis” of Muller and Pilzecker [5],
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[6]. Since then, one of the pioneering works that influence
research on memory structures is the “dual-trace theory”
proposed by Hebb and Gerard in [7] and [8]. Basically, this
theory suggested that the continuing neural activities of STM
can lead to LTM. That is to say, the experiences are initially
stored in STM, and through continuous neural consolidation,
LTM can be created. Recently, many authors have revisited
such theories, and have investigated the various aspects of
the relationship between STM and LTM [9]–[13]. For in-
stance, McGaugh presents a review of research into memory
consolidation over the century since the original persevera-
tion–consolidation proposal in [10]. Recent observations of
neuronal activities in the basolateral amygdala (BLA) of cats
through multiple microelectrode arrays provide compelling ev-
idence in support of this hypothesis [11], [12]. Computational
models of working memory were investigated in [13] in which,
rather than separating the STM and the LTM for analysis, a
common framework capable of modeling both STM and LTM
and highlighting their interactions was proposed. The authors
argued that by using a common framework, hierarchical usages
of context signals may potentially enable modeling of STM
and LTM at different levels, such as syllables, items, or chunks
[13].

In this work, our focus is on the LTM cells structure and
operation and their interactions with the STM. We aim to de-
velop a biologically inspired model that has a number of prop-
erties useful in self-organizing, hierarchical memory. The LTM
memory cells should be selective enough to distinguish different
sequences, yet tolerate small distortions of the sequence order
and composition.

Since most of human perceptions and mental processes (for
example, natural language processing, planning, and decision
making) are sequential, we build our understanding of the
memory organization based on spatio–temporal sequence
learning, anticipation, and prediction. A general review of the
sequence learning for machine intelligence, such as inference,
planning, reasoning, natural language processing, and others
can be found in [14]. As far as the connectionist networks
for the learning mechanisms of spatio–temporal sequence is
concerned, Kremer provided a comprehensive review of the
research development in this subject in [15].

Recurrent neural networks (RNNs) are among the most
powerful and successful methods for developing sequential
memory [16], [17]. Characterized by recurrent connections,
RNNs are able to learn, retrieve, and predict sequential infor-
mation based on past experience. There are some successful
examples of RNNs used for sequence learning, including the
sequential behavior learning of arm robots and robotic naviga-
tion systems [18], [19]. However, the traditional RNN network
using backpropagation through time (BPTT) is unable to learn

1045-9227/$25.00 © 2009 IEEE

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 22, 2009 at 16:26 from IEEE Xplore.  Restrictions apply.



STARZYK AND HE: SPATIO–TEMPORAL MEMORIES FOR MACHINE LEARNING: A LONG-TERM MEMORY ORGANIZATION 769

sequences with a long time lag [20]. This is because the back-
propagation error signals vanish in the BPTT mechanism. To
overcome this limitation, Hochreiter proposed a long short-term
memory (LSTM) in [20]. The idea is to introduce a memory
cell (constant error carousel) in an RNN to be able to sustain
its activation for a long period of time. Recently, Jacobsson
presented a nice review of the rule extraction for RNN related
to finite state machines (FSMs) in [21], in which the author
also discussed some important open research questions on this
subject.

Associative memory (AM) methods have also shown some
success for sequence learning and prediction. For instance, in
[22] and [23], Wang investigated the usage of associative neural
networks with delayed feedback connections for sequence
learning and retrieval. These models use either heteroassocia-
tive memory networks (HANNs) [22] or multiassociative neural
networks (MANNs) [23] to learn relationships between the pri-
mary input sequence with its pairing sequence simultaneously.
Recent developments using AM for sequential memory include
the dynamic heteroassociative memory [24], a combined model
based on context layer and shift-register models [25], etc.

Wang et al. introduced several important concepts in
sequence learning and prediction in their series of papers
[26]–[29]: timing and chunking, anticipation, incremental
learning, and hierarchical organization. For instance, in [26], a
dual-neuron and a sequence-detecting neuron were introduced
to make the system able to recall sequences with some common
patterns. In [27], a hierarchical organization based on the
chunking mechanism was proposed to improve the memory
capacity. In [28], an anticipation mechanism was introduced
for the system to match the current input with the predicted in-
formation, enabling one-shot learning in this model. In [29], the
authors showed that the anticipation mechanism is also capable
of incremental learning. With this series of models, Wang et
al. showed that sequences can be effectively learned, retrieved,
and predicted in a hierarchical organization. The study of a
self-organizing neural network model operated in an anticipa-
tive fashion was developed in [30]. By using a time-delayed
Hebbian learning mechanism, this model can learn and recall
complex temporal sequence and was successfully applied to
robot trajectory planning applications. This model also has nice
robustness characteristic by using redundancy in the sequence
representation.

Recent development in this area suggested that a hierarchical
organization is critical for building spatio–temporal memory for
learning, predicting, and adjusting motor actions. For instance,
Hawkins, in [31]–[33], develops a “memory-prediction” theory
based on his interpretation of the neocortex. This memory is
called a “hierarchical temporal memory” (HTM) and the au-
thors present four reasons to make the hierarchy a critical el-
ement of the model [31]: generalization and storage efficiency
(shared representations), consistency with the spatial and tem-
poral hierarchy of the real world, quick response, and covert
attention. In [34], a hierarchical self-organizing map model for
sequence learning was developed. This model includes two in-
terconnected self-organizing maps with one on top of the other.
By effective using of the context information, this model is able
to classify and discriminate sequences efficiently with the pres-
ence of noise information.

Previously, we developed an anticipation-based temporal
sequence learning model with hierarchical structure [35]. Our
model is characterized by three important features: hierarchical
organization, anticipation, and one-shot learning. In our model,
a modified Hebbian learning mechanism is used to recognize
sensory input sequences (for instance, of letters or numbers).
In this hierarchical organization, winners-take-all (WTA) was
used to select active neurons in lower hierarchical levels to
provide the input to higher hierarchical levels. Anticipation is
a key element for our model since it enables highly efficient
one-shot learning. Interested readers can find a more detailed
description of this memory model in [35].

Theoretical analysis and simulation results of our previous
model [35] showed that this model can successfully learn and
predict sequence information. However, there still exist some
issues that need to be resolved for it to be useful in hierarchical
temporal memory. The first issue is the exact-match problem. In
the model of [35], for an output neuron to be the winner in the
competition stage, all the input elements within a sequence must
exactly match the stored sequence represented by that neuron.
This is a strong condition and makes this memory ineffective
when the input sequence is distorted, delayed, or not completely
defined. For instance, if we have already learned the word “Mis-
sissippi” and we have the input sequence “Missisisppi,” our
model will consider this a new sequence (a new word) since it
does not match exactly the learned sequence. As a consequence,
one-shot learning will be executed to learn such new sequence.
However, the human brain can easily identify that this word is
very similar to the stored information “Mississippi,” and most
likely we will consider this as a “known sequence” that does not
require learning.

A similar problem is the partial sequence issue. For instance,
the model in [35] requires the sequence to start at the begin-
ning to exactly match the stored information. If a sequence is
started from the middle of a word, for instance, “ssissippi,” it
will be stored as a new sequence, rather than being recognized as
a characteristic part of the stored sequence “Mississippi.” In this
paper, we aim to solve this issue and provide a biologically in-
spired, robust, and adaptive memory architecture. Another form
of error tolerance is related to the typoglycemia phenomena in
recognition of text messages [36] where a specialized error tol-
erance is required. We need to make memory structures capable
of such tolerances.

Human memory is robust to environmental changes, and has
error tolerance capabilities useful for efficient resource utiliza-
tion. The key to successful recall is familiarity with the sequence
and its fit to the context in which the sequence is considered. In
this paper, we try to integrate this capability into our proposed
memory model. We expect that this kind of tolerance in sequen-
tial memory is also useful for building invariant representations
of the perceived environment in embodied intelligence.

The final issue addressed in this work is memory activation
decay. In the LTM model in [35], the output neuron strength
is maintained at the same level throughout the entire learning
and predicting procedure. On one side, this characteristic is de-
sired in biological, intelligent systems to keep the strength of
useful information in building associations, and guiding the ac-
tion planning to achieve goals. On the other hand, it is also
useful for stored information to decay as new knowledge be-
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comes available. In this paper, we introduce a memory activa-
tion decay mechanism to integrate these two characteristics.

Thus, our effort in this paper is to further extend our previous
model [35] to make it more functional, robust, and efficient by
addressing the above issues. The rest of this paper is organized
as follows. In Section II, we discuss a system level organiza-
tion of the LTM with distributed spatio–temporal memory cells
within sparse hierarchical structures and its overall architecture.
This architecture is analyzed in detail in Section III, including its
storage, recognition, recall mechanisms, and model dynamics
analysis. In Section IV, we present detailed simulations and sta-
tistical analysis of the proposed model. In Section V, we dis-
cuss the error tolerance of the proposed model, and compare
the recognition performance of the proposed model with those
of the hidden Markov models (HMMs) and the Levenshtein dis-
tance method. Finally, a conclusion and brief discussion is given
in Section VI.

II. SPATIO–TEMPORAL MEMORIES IN SPARSE

HIERARCHICAL STRUCTURES

Spatio–temporal memories could be organized in a hierar-
chical sparsely connected structure of identical processing units
that govern data-flow in sensory and motor pathways that im-
plement embodied intelligence in robots or other devices. These
identical processing units play a role of minicolumns observed
in a human cortex [37].

Representation building and learning to act in accordance
with a machine’s own objectives is accomplished on each level
of appropriate hierarchical spatio–temporal memories. These
memories associate events and patterns that are observed by the
machine through its sensors and build links to motor pathways
responsible for control of machine’s actions. Thus, the associa-
tions that a machine makes relate features observed simultane-
ously or in a short time window, to events that took place over
long time periods and in different spatial locations. Associations
involving a short time window are typical of image processing,
pattern recognition, and classification, which for many years
dominated the applications of artificial neural networks. How-
ever, once the observations to be associated are spread over a
wide range of time windows, the problems of coding, sparse rep-
resentation building, input recognition, and recall become much
more difficult.

The range of problems to be solved in the memory structures
include temporal sequence learning, STM and LTM, binding
problems, sparse coding, stability control, attention control, sen-
sory-motor coordination, goal creation, and evaluation of ma-
chine’s actions, etc. We try to address some of these problems
in this paper.

A. Overall LTM Architecture

Fig. 1 shows the organization scheme of the LTM. This organ-
ization includes two major parts. First, an early pattern matching
is presented in the lower part of Fig. 1 (level 0). Such prepro-
cessing may be responsible for feature selection and early rep-
resentation building. The evidence of such preprocessing exists
in V1, V2, and V4 layers of human visual cortex [38]–[40]. In
neural network structures, preprocessing and pattern recogni-
tion can be accomplished by means of the modified Hebbian

learning described in [35]. Second major part of this memory or-
ganization is a hierarchically organized array of LTM cells (level
1 to level n). It contains a number of identical LTM cells orga-
nized in several levels of the memory hierarchy. The output of
one hierarchical level becomes an input to the next level. Alter-
natively, the inputs to LTM cells can be obtained from the STM.
Such inputs will be used to train and to activate LTM cells on a
higher level. Thus, inputs to each level of the LTM may be ob-
tained through either lower level processing or recalled from the
STM. In addition, feedback links from a higher level to a lower
level LTM are used to provide a mechanism for anticipation,
attention, prediction, and motor control. We have included sev-
eral feedback links in Fig. 1 and highlighted the winning neuron
of each hierarchical level in Fig. 1. Event driven pointer signals
are used to control recall of a sequence stored in a selected LTM
cell.

Each level LTM cells are controlled by the end of sequence
signal appropriate for this level of hierarchy. For instance, if
level 1 LTMs store sequences of letters, space can be selected
as the end of a sequence symbol, and if level 2 LTMs store se-
quences of words, period may be selected as the end of a se-
quence symbol. Detailed discussion of the neural network struc-
ture to generate the pointer signal, to predict elements of the
input sequence, and to activate the sequence learning mecha-
nism was given in [35]. Identical mechanisms can be used with
this new proposed LTM cells.

The major focus of this research is the organization of com-
plex sequence storage, learning, and retrieval in LTM cells. We
start with a brief discussion of the pattern matching and repre-
sentation building stage (level 0) with three hierarchical layers
[35]. The neurons in the second layer are sparsely connected, at
random, to a subset of neurons in the first layer. There is some
overlap of the subsets of neurons in the first layer to which the
groups of the second layer neurons project.

Local WTA mechanisms are used in the level 0 to obtain dis-
tributed representations of the sensory inputs. In a local WTA, a
winning neuron from a specific neighborhood is selected. Thus,
a distributed representation is obtained through activation of
several local winners. Initially, all the weights are randomly
set to positive and negative values with their sum equal to 0.
After a local winner is selected through competition at one hi-
erarchical level, the weights of the winner ( , where the sub-
script denotes a winner and is an input neuron that projects
to the winner) are adjusted as follows. For the connections with
the input neuron active

(1)

For the connections with the input neuron not active

(2)

where is a small adjustment, and and are the
number of 1s and 0s the winner neuron received. In our cur-
rent simulation, we set equal to 0.05. As sensory information
becomes available, dynamically, each output neuron updates its
activity, which enables an unsupervised learning.

This update of sensory information is handled in the event-
driven mode. A new input event activates the pointer neuron to
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Fig. 1. Overall LTM architecture.

advance LTM cell processing. The sequence is ended with a spe-
cial end of sequence signal different for different levels of dis-
tributed memory hierarchy. In a recall mode, the pointer neuron
is activated by completion of the previous output control re-
ceived from motor neurons. Chunks of lower level sequences
(sentences or words) can be combined as sequences on a higher
level and processed hierarchically as discussed in [35]. In a hier-
archy of LTM cells, higher level sequences are processed based
on completion signals from the lower levels. Thus, end of se-
quence signal on the lower level becomes an event that advances
the pointer on the higher level.

In Fig. 1, the output of level 0 provides a symbolic repre-
sentation for input sequences processed by level 1 LTM cells.
Since artificial neural networks for sensory input representation
building or recognition are well studied in many research pa-
pers, here we focus on organization and signal processing in
LTM part of Fig. 1.

Hierarchy of sequences that are learned and processed by dis-
tributed memories composed of LTM cells in Fig. 1 is useful
for machine learning. For instance, one can consider the input
at level 1 to the LTM box as representing individual letters.
These letters can either be recognized by the modified Hebbian
learning structure in level 0 in Fig. 1 based on presented sensory
input, or recalled from the STM on level 1. Subsequently, indi-
vidual words can be learned as sequences of letters by means of
the LTM cells and a WTA mechanism on level 1. At this par-

ticular hierarchical level, these words become LTM outputs that
can be stored in STM on level 2. On a higher hierarchical level of
the LTM memory (level 2), individual words become inputs to
sentences learned through sequential combination. The process
is repeated when one combines sentences into paragraphs. We
will present the detailed LTM architecture, storage mechanism,
recognition mechanism, and simulation analysis in Section IV.

Such distributed memories composed of cells that are capable
to learn and recognize sequences are an important element of
self-organizing systems that implement embodied intelligence.
An example of such self-organizing system is presented in [41]
where decision whether to learn a specific input representation
is controlled by dynamically evolving goal creation system that
governs machine development. Importance to develop contex-
tual representation and sequence learning for developing lan-
guage skills, comprehension, planning, complex motor control,
temporally delayed reinforcement learning, and classical condi-
tioning is broadly discussed in [42].

III. LTM ORGANIZATION

Described in this section, LTM cells are designed to store
spatio–temporal sequences. We will describe the storage oper-
ation, input recognition, and recall functions of LTM cells. The
memory was developed with several objectives to make it a reli-
able element of a self-organizing hierarchy of neurons employed
in machine learning. We wanted to design LTM cells that can
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Fig. 2. (a) Details of LTM organization. (b) LTM cell symbol.

tolerate deviations from an ideal stored sequence and provide
degree of the input sequence similarity to the stored sequence.
We wanted the LTM cell to be able to respond to a matching se-
quence, even if the sequence is played from its middle terms, or
is embedded in a sequence of different length than the stored se-
quence. This is particularly useful in sequence recognition task
in such applications as continuous speech recognition when the
sequence length varies with pronunciations. Finally, we wanted
an LTM that performs its functions in parallel with other LTM
cells using a sparsely connected structure that links the symbols
it organizes in sequence.

In this section, we first describe the structural organization
and the storage mechanism implemented by the LTM cells.
This is followed by the description of recognition and recall
mechanisms of such cells. Section III-A presents simulation
results that test performance of the LTM cells. Statistical tests
are performed to show the robustness of the proposed LTM
mechanism. In the LTM discussed in this paper, we adopt the
terminology introduced by Wang and Arbib in [26] and [27]. A
temporal sequence is defined as

(3)

where , , is a component of the sequence and
is the length of .

A. Storage Mechanism in LTM

Since typically an LTM will use an STM to provide it with
data, we will describe, first, a mechanism for storing informa-
tion in an LTM. To obtain learning data, either the existing LTM
is searched for the relevant information and the search results are
temporarily stored in the STM, or recent observations that are
currently available in the STM or presented to the sensory input
are used directly. The first option is used in learning sequences
of events observed in the past, possibly at separate instants and
on various time scales, while the second is used to learn most re-
cent events that are represented in the STM or directly observed.

LTM cells compete for the best match during both storage
and recall cycles. During storage, the input sequence is played
exciting various LTM cells. The best match between the input
sequence and the sequence stored in the LTM is determined

through competition and the winning LTM cell plays its se-
quence. If the match is judged not sufficiently accurate (below
a specified threshold), a learning signal is generated for a new
LTM storage. In embodied intelligence, this threshold will be
learned through interaction with the environment and may be
different in different areas of distributed memory, depending
on the experience. Storage is performed through a competitive
process. The winning cell adjusts its weights, storing the input
sequence. All memory cells that were previously trained are ex-
cluded from the competition. This can be accomplished simply
by using inhibitory links to the previously trained cells. The neu-
ronal structures that implemented such selective allocation of
memory cells in distributed self-organizing memories were dis-
cussed in [35]. Each LTM cell has the feedback structure shown
in Fig. 2.

In this structure, a number of primary neurons (PNs) are
linked to the outputs of STM or lower level LTM cells through
bidirectional links A. PNs are also linked to inhibitory control
signals from the sequence counter (pointer P). In untrained
LTM, all links A are randomly set to small values. To store a
new sequence, all untrained LTM cells compete and the best
matching cell is declared a winner. Once an LTM cell is de-
clared a winner in a learning competition, the links A between
STM and PN as well as feedback links D are trained using
one-shot learning. This learning takes place in a sequential
fashion with the LTM neuron active during the learning cycle
and only a single PN and a single-input neuron is active at any
activation of the sequence pointer. Thus, for each subsequent
element of the stored sequence, only a single feedforward
link between one input and one PN is set to 1 and all other
links to this PN are removed (weights are set to 0), and the
corresponding feedback link D is set to 1.

All untrained feedback links D are inhibitory. All feedfor-
ward links B are fixed and set to 1. Untrained feedforward links
C between dual neuron (DN) and the LTM neuron are mildly ex-
citatory. Once the LTM neuron is activated during the learning
cycle, all the links C between activated DN and LTM neurons
are set to 1 and all other C links become inhibitory. Thus, if the
input sequence is longer than the one stored in this LTM cell,
inhibitory signals from untrained DN will lower the activation
level of the LTM neuron, lowering its chance to win the compe-
tition for the best match.
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The maximum sequence size that an LTM cell can store is de-
termined by the number of PN and DN neurons it has. However,
by chunking and using higher level hierarchies, arbitrary length
memories can be obtained. Besides the A, B, C, and D links,
each LTM cell has feedback links between consecutive elements
of its sequence that are important for a successful recognition
of the stored sequence (described next). Each new sequence
stored in the LTM memory requires a dedicated LTM cell. Ca-
pacity of the LTM memory can increase if distributed repre-
sentations are used. Such distributed representations for dis-
tributed spatio–temporal memory structures are currently under
investigation.

B. Recognition Mechanism in LTM

An input sequence can be recognized by an LTM cell through
activation of its PNs in the correct order. It is desired that a cell
that stores a sequence identical to the one presented to the LTM
will respond with the largest activation of its output neuron. A
WTA mechanism is used to find the LTM cell with the best
match.

A pseudocode of the recognition algorithm implemented by
each LTM cell is presented next. In this algorithm, the following
notation is used: is the input vector excitation at time ,
is the set of activated PNs, is DNs decay rate, DN are the
dual-neuron activation values, PN are the primary-neuron ac-
tivation values, are the input weights, are the feedback
weights from dual to PNs, is the output activation, and
is the scaled output.

[Algorithm 1]: The LTM recognition algorithm

(1) Set DN , .

While not the end of the sequence do:

(2) Set PN , and change the input vector value .

(3) Find the set of activated PNs .

(4) Partially discharge secondary neurons using a decay
rate

DN
DN

(4)

(5) Update the activated PNs

PN DN (5)

where are columns of that correspond to
activated PNs.

(6) Update the secondary neurons

DN PN (6)

(7) Update the output neuron activation

DN (7)

(8) Increment by 1.

End loop

(9) Scale the output of the LTM cell as follows:

(8)

where and are the lengths of the input sequence and the
stored sequence, respectively.

In this algorithm, the properties of LTM change with the value
of . When is very large, the LTM changes to a set memory
in which order of presentation is not critical, and lower values
of indicate strong sequential property of the LTM cell. In
the LTM cell, a mechanism of mutual input enhancement and
blocking (MIEB) is used to determine the input sequence order,
and to allow discontinuous or out of order excitation. As we can
see from Fig. 2, DNs are used to store the excitation level and
to enhance or deplete excitation of other elements of the tem-
poral sequence. The following examples illustrate the recogni-
tion mechanism in the LTM cell.

Example 1: Consider the LTM cell shown in Fig. 2 that stored
the sequence “ABBA” and observe how this sequence can be
recognized. As a result of learning, each PN is linked to a single-
input neuron with the link weight set to 1. The weight of each
link from a PN to its DN is 1. The excitation and inhibition feed-
back weights from the DN to the PN are 1 and 0.5, respectively.
Thus, the weight matrix used in the algorithm presented in Al-
gorithm 1 equals to

(9)

By changing , various types of LTM cells are obtained
with distinct tolerance to error. Such various types can be
set by a designer, developed by using a genetic algorithm, or
evolved through interaction with environment in self-organizing
systems. At each iteration, the output neuron accumulates exci-
tation from the activated DNs. The DN decay rate is . At
each iteration, the output neuron’s excitation is decremented
by 1 to offset subsequent inputs.

Table I shows the DN excitation level at each iteration step.
At the final step (after the second A is presented), the output ex-
citation level is normalized by the length of the sequence (four,
in this case). In this way, the final output signal value is 1.3711.

It is useful to estimate the accumulated signal strength on the
output of each LTM cell and use it as a normalization factor. The
following theoretical analysis estimates the maximum signal
strength in the proposed structures.

C. Model Dynamics Analysis

Assume that the excitatory feedback weights are equal to
, where is the distance from a DN to its connected PN.
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TABLE I
DUAL-NEURON EXCITATION LEVELS FOR THE CASE OF STORED SEQUENCE: ABBA AND INPUT SEQUENCE: ABBA

Preposition 1: The maximum output signal value in the LTM
cell with DN decay rate is determined by

(10)

Proof: If there is no signal decay, then the maximum signal
strength received at a DN location is equal to

(11)
where . So the maximum output signal value is deter-
mined by the series

(12)

We can evaluate this series explicitly by expanding the geomet-
rical series

(13)

and, in general

giving the maximum output signal strength as stated in Prepo-
sition 1.

Using a similar approach, the following preposition is true.
Preposition 2: When the signal at each dual node decays with

the decay rate , then the maximum output signal value is de-
termined by the series

(14)

where , and the final result is

(15)

Therefore, (15) provides the estimated signal value, and one
can normalize the output sum according to this expected cumu-
lative strength.

D. Recall Mechanism in LTM

Recall of the stored sequence from LTM is relatively easy. It
can be initialized either through a bottom-up recognition of the
sequence of representations at the lower level and a matching
mechanism as discussed in the storage mechanism in LTM, or
through a top-down link activating the LTM cell from a higher
level representation (typically to perform a desired sequence of
operations). In either case, a selected LTM memory neuron is
activated. Subsequent elements of the stored sequence will be
activated by the sequence pointer removing inhibition to a suc-
cessive PN in the LTM cell and by a feedback signal from the
LTM neuron to the PN through a trained link D (see Fig. 2). No-
tice that no activation of a PN will take place beyond the length
of the stored sequence.

This top-down activation implements system anticipation if
the LTM cell responds to signals in the sensory pathway or im-
plements top-down control signal for the motor pathway [41].
The idea that brain is always matching expected results with the
observed ones was discussed in [43]. It was also used in [42] as
a foundation for the error driven learning in hierarchical struc-
tures of neurons simulating cortical columns. Spatial attention
and anticipation was used there to solve the binding problem in
object recognition when system perceives multiple objects.

IV. ANALYSIS OF LTM CELL PROPERTIES

A. Basic Mutual Input Enhancement and Blocking Simulation

The LTM cell architecture was developed to recognize a
stored sequence even if the sequence was distorted or presented
out of order. For instance, the LTM cell from Fig. 3 that stores
sequence “ABBA” can recognize other sequences of these
four letters; however, the recognition strength will be lower as
indicated in Table II for different input sequences. When the
presented input sequence is the same as the stored sequence,
the output neuron will provide the highest activation signal.
Otherwise, it will output a weaker activation signal.

Thus, the output activation signal normalized to the stored
sequence activation level can be used as a similarity measure
between two sequences. Similar sequences have the normalized
excitation level close to 1, while dissimilar sequences similarity
measure will be close to zero.

An extension of MIEB is mutual multiple input enhancement
and blocking (MMIEB), where feedback links (excitatory or in-
hibitory) have diminishing strength for distant neurons. MMIEB
with -feedback links use weights of , where is the
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Fig. 3. Mutual input enhancement and blocking architecture.

TABLE II
NEURON EXCITATION LEVEL FOR DIFFERENT INPUT SEQUENCES

(ASSUME THAT THE STORED SEQUENCE IS “ABBA”)

Fig. 4. Example of 3-MMIEB structure.

distance from the DN to its connected PN. The feedback struc-
ture in MMIEB cells is similar to the one used in higher order
Markov chains [44], [45] with the exception that the connection
weights are fixed and given. Fig. 4 shows the structure of the
3-MMIEB storing the sequence TATARATA.

Example 2: We simulated the MMIEB model as in Fig. 4
with three feedback links. The weights are 1, 0.5, and 0.25 for
the nearest neighbor, next, and further away, respectively. We
set the output decay rate to 2. In this simulation, we assume
that the stored sequence is “perforation.” The results were stored
according to the normalized output signal strength in Table III.
Here we divide the output strength by the value of the output
for the stored sequence to obtain the normalized output strength
column.

TABLE III
RESULTS FOR THE SAVED TEXT “PERFORATION”

WITH DECAY RATE EQUAL TO 2

Fig. 5. Testing of the 3-MMIEB structure for the entire alphabet sequence.

Longer stored test sequences produce better, more robust sep-
aration between the output scores of the stored and permuted se-
quences. Similar to our analysis in Example 2, we use the stored
alphabet from “a” to “z” (length 26) to test the performance of
the MMIEB model. Here, we compose a sequence of the en-
tire alphabet from “a” to “z” (length 26), and test the excitation
level of the output neuron when different orders of this sequence
are presented using the MMIEB model in Fig. 4 (DN decay rate
equal to 2). To do so, we loaded the input sequence, and ran-
domly permuted its order, and then calculated the output neuron
excitation level according to Algorithm 1. All the neuron excita-
tion levels were normalized to the original sequence activation
level, plotted at location 1 in Fig. 5. Fig. 5 shows the simulation
results for 100 random trials. As we can see, the stored input
sequence is clearly separated from the distorted sequences.

Example 3: In this example, we simulate the general MMIEB
model with -feedback links use weights of ( is the
distance from the DN to its connected PN) as presented in
Fig. 4 for learning and recognition of regular English text. To
do this, we use the original correct spelling of the typoglycemia
test bench [36] as mentioned in Section I. In this test bench,
the longest word is 13 letters. Therefore, we randomly flip ,

, letters and test the recognition results. To show
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Fig. 6. Recognition of �-MMIEB model for the English text versus different
number of flipped letters.

Fig. 7. Comparison of normalized output value for different decay rates.

the statistical performance, we conduct 100 random runs and
Fig. 6 shows the average recognition rate versus the length of
the flipped letters . This result clearly indicates that the recog-
nition rate of the MMIEB model decreases with the increase of
the randomly flipped letters in the words.

B. Influence of Different Secondary Neuron Decay Rate

In order to test the influence of the secondary neurons’ decay
rate , we repeated the simulation of Table III with different
decay rates. Fig. 7 displays the results. In this figure, we show
the normalized signal strength for different decay rates of sec-
ondary neurons. We can see that small secondary neuron decay
rates seem to produce better separations. This can be charac-
terized by estimated means and standard deviations of the per-
muted sequence matching value in comparison to the output
value of the original sequence (normalized to 1). To obtain such

TABLE IV
MEAN AND STANDARD DEVIATION OF NORMALIZED OUTPUT VALUES

OF RANDOM SEQUENCES OF DIFFERENT LENGTH

characterization, we statistically tested the LTM cell’s perfor-
mance for different decay rates. In this analysis, we use the
general -MMIEB model with -feedback links and weights of

, where is the distance from the DN to its connected
PN (see Fig. 4 for an example of 3-MMIEB model). Rather than
the sequence permutation analyzed in Fig. 5, here we generate
random sequences of different lengths.

Example 4: We run 200 tests, and in each test we generate
100 random sequences for each selected length. The sequence
recognition error probability is calculated from 20 000 random
sequences of a given length. Table IV shows statistical results
for various decay factors. As we can see from Table IV, we
achieved a 100% correct recognition rate. Meanwhile, when the
decay rate is reduced from 2 to 1, this method provides a much
better separation margin.

As can be inferred from Preposition 2, the LTM cell signal
strength increases rapidly with the length of the stored se-
quence. When it is desired to accumulate evidence of sequence
matching, excessive signal strength may be a problem in hard-
ware implementation of such memories. For this reason, LTM
cells with a decay rate larger than 1 are useful, as the total
signal strength in such cells is lower than when there is no
decay (decay rate ).

V. TOLERANCE TO ERROR IN SEQUENTIAL MEMORIES

A. Need for Error Tolerance

Human sequential memories are error tolerant, as is apparent
from the typoglycemia example in the introduction. Human
memory recognizes familiar words by loosely matching their
content (letters) guided by especially important clues such as
the beginning and the end of a sequence [36], [51]. In this
way, clues and vague recollections may activate past sequential
memories, even if some parts of the sequence are missing or
distorted.

A scheme that puts more emphasis on the first and the last
element of the sequence can be coded using the MMIEB. We
compare two implementations: one without special considera-
tion for the beginning and the end of sequence and another one
focusing on the first and the last element of a sequence, where
these two elements are responsible for most of the feedback.
Any element observed earlier than the correct beginning or later
than the last element will introduce inhibition, lowering the total
signal strength. In a similar way, we may stress the importance
of the last element of a sequence by accumulating all the positive
feedback received from other elements of the stored sequence.
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Fig. 8. Modified model with feedback focused on the first and the last element
of the sequence.

Fig. 8 illustrates this architecture that stresses the importance of
the first and the last element.

One should note that the structure in Fig. 8 can be consid-
ered as a special case of the general -MMIEB model discussed
in Section IV-A (Fig. 4). These structures differ in their feed-
back matrix from DNs to PNs (that can be learned if such
training is provided).

Example 5: To verify the robustness and error tolerance of the
modified model in Fig. 8, we test the model performance for the
typoglycemia phenomena based on the following benchmark
presented in [36].

“I cdn’uolt blveiee taht I cluod aulaclty uesdnatnrd waht
I was rdanieg: the phaonmneal pweor of the hmuan mnid.
Aoccdrnig to a rseearch taem at Cmabrigde Uinervtisy,
it deosn’t mttaer in waht oredr the ltteers in a wrod are,
the olny iprmoatnt tihng is taht the frist and lsat ltteer be
in the rghit pclae. The rset can be a taotl mses and you
can sitll raed it wouthit a porbelm. Tihs is bcuseae the
huamn mnid deos not raed ervey lteter by istlef, but the
wrod as a wlohe. Such a cdonition is arppoiatprely cllaed
Typoglycemia. Amzanig huh? Yaeh and you awlyas thguoht
slpeling was ipmorantt.”

We trained 73 LTM cells, each one for a unique word. Then,
we loaded the misspelled words from the typoglycemia test
bench, calculated the output value for each LTM cell, and deter-
mined the predicted word as the one with the strongest output
value. Fig. 9 illustrates the simulation results. Stars represent the
output signal strength when the structure of Fig. 8 is used, and
circles represent the simulation results when a regular MMIEB
structure as in Fig. 4 is used. From Fig. 9, we can clearly see
that the modified structure (Fig. 8) can provide large output
signal strength and better recognition in this situation, therefore
it can provide better error tolerance. For the modified model, all
these 107 words are correctly recognized, while for the regular
MMIEB model, only 101 out of these 107 words are correctly
recognized yielding the recognition rate of 94.39%. Table V
shows the six words that cannot be recognized.

The proposed MMIEB model of LTM is flexible enough to
accommodate various practical aspects of sequential memory
such as those discussed in relation to various levels of tolerance.
Optimization needed to obtain a desired level of performance

Fig. 9. Simulation of the typoglycemia phenomena.

TABLE V
UNRECOGNIZED WORDS BY THE REGULAR MMIEB MODEL

(TOTAL OF SIX WORDS)

may result from interaction with the environment and various
weighting schemes (passed genetically) can be adapted to var-
ious sensory inputs and learning mechanisms.

In a similar way, but to a lower degree, we may exhibit tol-
erance to the order of elements in playing back (recalling) the
sequences from the memory. They are played back as original
stored sequences as we write one letter at a time. Thus, even
though, we may perceive a written word differently and with
larger tolerance to error, we try to write it correctly, as each letter
is written separately one by one. This is not to say that people
perform this process without errors. But then they simply could
be orthographic errors resulting from poor memory or dyslexic
irregularities influenced by a learning disorder. This disparity
between passive activity such as recognition of a sequence and
its active equivalent (playing back the sequence) is easily ac-
complished in the proposed MIEB model.

B. Comparison of LTM Model With Other Methods

In this simulation, we test the recognition rates of the pro-
posed LTM memory models with other methods including the
HMM and Levenshtein distance method for the typoglycemia
test bench from Section I. In this test bench, there are 107
words, among which we have 73 unique words. Therefore, for
the HMM models, we train 73 HMMs, each for a unique word.
Since each word has at most 26 distinct symbols (letters), we
set the number of observation symbols to 26 in our simulation.
The other parameters are set according to the suggestions in
[46] for word recognition applications. That is to say, we set
the number of states equal to 6, and the minimum discrete
density value to . The entire simulation is implemented
in the Matlab environment with the toolbox of [47]. We train
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Fig. 10. Performance comparisons for sequence recognition.

the 73 HMM models with the corresponding correct words in
the typoglycemia test bench, then we load the misspelled text
as in typoglycemia to evaluate the log-likelihood of a trained
model for each given test data, and predict the most likely
word. The final recognition rate is calculated based on the ratio
of correctly recognized words to the number of total words.
For the Levenshtein distance method, we calculate the distance
between each misspelled text as in typoglycemia with those of
the correct words, and then predict the word as the one with the
minimal Levenshtein distance. If a particular misspelled text
under consideration has multiple potential correct words with
the same minimal distances, we randomly select one of those
words as the predicted sequence.

We run 100 random trials for all the methods. For the HMM
model, we randomly set the initial condition for each run, and
the average recognition rate is 94.67% with standard deviation
of 0.0309. For Levenshtein distance method, the average recog-
nition rate is 89.36%. As reported in Example 5, for the modi-
fied LTM model shown in Fig. 8, the recognition rate was 100%,
while general MMIEB model had recognition rate of 94.39%.
These results are illustrated in Fig. 10.

From these results, it seems that a regular MMIEB model can
provide better recognition results compared to the Levenshtein
distance method. However, the average performance of HMM is
on a similar level. There are two observations that we can make.
First, a regular MMIEB model performs equally well as HMM,
but it does not require an extensive statistical training (needed to
define an HMM model), since a one-shot learning step is used
to store the input matrix . Second, by training the feedback
matrix , error tolerance to specific type of errors can be
significantly improved over HMM model.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we presented our research on spatio–temporal
memory for machine learning with a focus on flexible, robust,
and tolerant LTM organization. The key idea of this work
is expressed through the LTM architecture and its memory
cells based on mutual input enhancement and blocking. This

memory structure may serve as a basic building block in ma-
chine learning. We presented the detailed storage, recognition,
and recall mechanisms of the LTM. Detailed simulation ex-
periments and statistical analysis illustrate that the proposed
memory organization is effective, robust, and fault tolerant.
Finally, we compared the recognition rate of the proposed
model with other models, and simulation results show the
effectiveness of the proposed LTM model.

We demonstrated the application of this model to the text
recognition application in this work. Specifically, we have
tested its performance on the recognition of the typoglycemia
benchmark and compared it to the HMM model. As a general
spatio–temporal sequential memory organization, we believe
that this model can also be generalized to many real-world
applications that require complex sequence learning or sequen-
tial behaviors, such as speech recognition, natural language
processing, video tracking, and others. The detailed application
studies in such domains are out of the scope of this work, and
will be reported in future research.

In the proposed model, a sequence (even if poorly presented
and out of order) may be recognized correctly as long as it has
enough characteristic features that distinguish it from other se-
quences. However, it will be played back without errors as a
unique sequence exactly as it was stored, subject only to deteri-
oration of memory or errors in the output translation. The output
translation errors are related to errors in the mechanism that ac-
tivates motor functions used to present this sequence. For in-
stance, output translation takes place when we write a word on a
piece of paper, when we pronounce the word by speaking, when
we spell it out, or when we describe its meaning by drawing.
Each of these output translations may introduce various types
of errors related both to the way our memory stores and plays
back sequences of motor neuron activation.

It is our intention to merge such LTM cells with STMs to ob-
tain a learning memory that will build long-term representations
only for these sensory inputs and associated motor activities that
are relevant to a machine’s goals. Learning signals, triggered by
the reward or punishment inputs, will activate recall of the re-
cent sensory and associated motor sequences. These sequences
will then be stored in the LTM using mechanisms described in
this work. A general goal-creation-based self-organization that
can benefit from this kind of memories was presented in [41].

A major premise of such systems is that goal creation must
result from machine’s interaction with its environment. There-
fore, an intelligent machine must have a built-in goal creation
system (GCS) to create goals for its behavior. The main role
of GCS is to develop sensory-motor coordination, goal-oriented
learning of perceptions and actions, and to stimulate its interac-
tion with the environment. The machine’s memory is based on
a distributed, hierarchical, self-organizing structure. The struc-
ture grows in complexity as goal hierarchy evolves. Meanwhile,
the goal creation stimulates the growth of the heterohierarchy
representing sensory inputs and a similar heterohierarchy rep-
resenting actions and skills. The need for such systems is well
expressed in [48].

The LTM model presented in this work is a simplification of
a biologically feasible temporal memory process implemented
by groups of neurons organized in minicolumns as suggested
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in [49]. Using different computing resources, it will be possible
to implement the proposed model in large associative networks
that use sparsely coded representations. For instance, R-nets
presented in [50] permit such associative recall of sparsely
coded representations. In such a case, repetition of training cy-
cles will yield a natural learning of sequences without the need
of external control signals. Vogel [50] describes a simple AM
mechanism for serial learning based on this principle. These
kinds of memory models are needed if one aims at developing
cognitive approach to design intelligent machines.

REFERENCES

[1] B. Rypma, V. Prabhakaran, J. Desmond, G. H. Glover, and J. D.
Gabrieli, “Load-dependent roles of frontal brain regions in the main-
tenance of working memory,” Neuroimage, vol. 9, pp. 216–226, 1999.

[2] J. J. Todd and R. Marois, “Capacity limit of visual short-term memory
in human posterior parietal cortex,” Nature, vol. 428, pp. 751–754,
2004.

[3] D. Talmi, C. L. Grady, Y. Goshen-Gottstein, and M. Moscovitch, “Neu-
roimaging the serial position curve—A test of single-store versus dual-
store models,” Psychol. Sci., vol. 16, no. 9, pp. 716–723, 2005.

[4] L. G. Ungerleider, S. M. Courtney, and J. V. Haxby, “A neural system
for human visual working memory,” Proc. Nat. Acad. Sci., vol. 95, pp.
883–890, 1998.

[5] G. E. Muller and A. Pilzecker, “A. Experimentelle Beitrage zur Lehre
vom Gedächtniss,” Z Psychol., vol. 1, pp. 1–288, 1900.

[6] H. A. Lechner, L. R. Squire, and J. H. Byrne, “100 years of consolida-
tion—remembering Müller and Pilzecker,” Learn. Memory, vol. 6, no.
2, pp. 77–87, 1999.

[7] R. W. Gerard, “Physiology and psychiatry,” Amer. J. Psychiatry, vol.
106, pp. 161–173, 1949.

[8] D. O. Hebb, The Organization of Behavior. New York: Wiley, 1949.
[9] K. Touzani, S. V. Puthanveettil, and E. R. Kandel, “Consolidation of

learning strategies during spatial working memory task requires protein
synthesis in the prefrontal cortex,” Proc. Nat. Acad. Sci., vol. 104, no.
13, pp. 5632–5637, 2007.

[10] J. L. McGaugh, “Memory—A century of consolidation,” Science, vol.
287, pp. 248–251, 2000.

[11] J. L. McGaugh, “Emotional arousal and enhanced amygdale activity:
New evidence for the old perseveration-consolidation hypothesis,”
Learn. Memory, vol. 12, pp. 77–79, 2005.

[12] J. G. Pelletier, E. Likhtik, M. Filali, and D. Pare, “Lasting increases in
basolateral amygdala activity after emotional arousal: Implications for
facilitated consolidation of emotional memories,” Learn. Memory, vol.
12, pp. 96–102, 2005.

[13] N. Burgess and G. Hitch, “Computational models of working memory:
putting long-term memory into context,” Trends Cogn. Sciences., vol.
9, no. 11, pp. 535–541, 2005.

[14] R. Sun and C. L. Giles, “Sequence learning: from recognition and pre-
diction to sequential decision making,” IEEE Intell. Syst., vol. 16, no.
4, pp. 67–70, Jul.-Aug. 2001.

[15] S. C. Kremer, “Spatiotemporal connectionist networks: A taxonomy
and review,” Neural Comput., vol. 13, no. 2, pp. 249–306, 2001.

[16] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” in Proc. Conf. Cogn. Sci. Soc., 1986, pp. 531–546.

[17] J. B. Pollack, “The induction of dynamical recognizers,” Mach. Learn.,
vol. 7, pp. 227–252, 1991.

[18] J. Tani, “Learning to generate articulated behavior through the
bottom-up and the top-down interaction process,” Neural Netw., vol.
16, pp. 11–23, 2003.

[19] J. Tani and S. Nolfi, “Learning to perceive the world as articulated: an
approach for hierarchical learning in sensory-motor systems,” Neural
Netw., vol. 12, pp. 1131–1141, 1999.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, 1997.

[21] H. Jacobsson, “Rule extraction from recurrent neural networks: A tax-
onomy and review,” Neural Comput., vol. 17, no. 6, pp. 1223–1263,
2005.

[22] L. Wang, “Learning and retrieving spatio-temporal sequences with any
static associative neural network,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal process., vol. 45, no. 6, pp. 729–739, Jun. 1998.

[23] L. Wang, “Multi-associative neural networks and their applications
to learning and retrieving complex spatio-temporal sequences,” IEEE
Trans. Syst. Man Cybern. B, Cybern., vol. 29, no. 1, pp. 73–82, Feb.
1999.

[24] S. Chartier and M. Boukadoum, “A sequential dynamic heteroassocia-
tive memory for multistep pattern recognition and one-to-many associ-
ation,” IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 59–68, Jan. 2006.

[25] J. Bose, S. B. Furber, and J. L. Shapiro, “An associative memory
for the on-line recognition and prediction of temporal sequences,” in
Proc. Int. Joint Conf. Neural Netw., Montreal, QC, Canada, 2005, pp.
1223–1228.

[26] D. Wang and M. A. Arbib, “Complex temporal sequence learning based
on short-term memory,” Proc. IEEE, vol. 78, no. 9, pp. 1536–1543, Sep.
1990.

[27] D. Wang and M. A. Arbib, “Timing and chunking in processing
temporal order,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 4, pp.
993–1009, Jul./Aug. 1993.

[28] D. Wang and B. Yuwono, “Anticipation-based temporal pattern gen-
eration,” IEEE Trans. Syst. Man Cybern., vol. 25, no. 4, pp. 615–628,
Apr. 1995.

[29] D. Wang and B. Yuwono, “Incremental learning of complex temporal
patterns,” IEEE Trans. Neural Netw., vol. 7, no. 6, pp. 1465–1481, Nov.
1996.

[30] A. F. R. Araujo and G. A. Barreto, “Context in temporal sequence pro-
cessing: A self-organizing approach and its application to robotics,”
IEEE Trans. Neural Netw., vol. 13, no. 1, pp. 45–57, Jan. 2002.

[31] J. Hawkins and D. George, “Hierarchical temporal memory-concepts,
theory, and terminology,” Numenta, Inc., Menlo Park, CA [Online].
Available: http://www.numenta.com/

[32] J. Hawkins and S. Blakeslee, On Intelligence. New York: Times
Books, 2004.

[33] J. Hawkins and S. Blakeslee, “Why can’t a computer be more like a
brain,” IEEE Spectrum, vol. 44, no. 4, pp. 20–26, Apr. 2007.

[34] O. A. S. Carpinteiro, “A hierarchical self-organizing map model for
sequence recognition,” Pattern Anal. Appl., vol. 3, no. 3, pp. 279–287,
2000.

[35] J. A. Starzyk and H. He, “Anticipation-Based temporal sequences
learning in hierarchical structure,” IEEE Trans. Neural Netw., vol. 18,
no. 2, pp. 344–358, Mar. 2007.

[36] G. E. Rawlinson, “The significance of letter position in word recog-
nition,” Ph.D. dissertation, Psychology Dept., Univ. Nottingham, Not-
tingham, U.K., 1976.

[37] V. B. Mountcastle, Perceptual Neuroscience: The Cerebral Cortex.
Cambridge, MA: Harvard Univ. Press, 1998.

[38] Y. Cao and S. Grossberg, “A laminar cortical model of stereopsis and
3D surface perception: Closure and da Vinci stereopsis,” Spatial Vis.,
vol. 18, pp. 515–578, 2005.

[39] S. Grossberg, “How does the cerebral cortex work? Learning, attention
and grouping by the laminar circuits of visual cortex,” Spatial Vis., vol.
12, pp. 163–185, 1999.

[40] S. Grossberg and P. D. Howe, “A laminar cortical model of stereopsis
and three-dimensional surface perception,” Vis. Res., vol. 43, no. 7, pp.
801–29, 2003.

[41] J. A. Starzyk, “Motivation in embodied intelligence,” in Robotics, Au-
tomation and Control. Vienna, Austria: I-Tech Education and Pub-
lishing, 2008.

[42] R. C. O’Reilly and Y. Munakata, Computational Explorations in
Cognitive Neuroscience Understanding the Mind by Simulating the
Brain. Cambridge, MA: MIT Press, 2000.

[43] J. L. McClelland, “The interaction of nature and nurture in develop-
ment: A parallel distributed processing perspective,” in Current Ad-
vances in Psychological Science: Ongoing Research, P. Bertelson, P.
Eelen, and G. D’Ydewalle, Eds. Hillsdale, NJ: Erlbaum, 1994, pp.
57–88.

[44] W. K. Ching, E. S. Fung, and M. K. Ng, “Higher-order Markov chain
models for categorical data sequences,” Naval Res. Logistics, vol. 51,
no. 4, pp. 557–574, 2004.

[45] S. Derrode, C. Carincotte, and S. Bourennane, “Unsupervised image
segmentation based on high-order hidden Markov chains,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process., 2004, vol. 5, pp.
V-769–V-772.

[46] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[47] Hidden Markov Model (HMM) Toolbox for Matlab [Online]. Avail-
able: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 22, 2009 at 16:26 from IEEE Xplore.  Restrictions apply.



780 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 20, NO. 5, MAY 2009

[48] R. Tadeusiewicz and M. R. Ogiela, “Why automatic understanding?,”
in Adaptive and Natural Computing Algorithms, Lecture Notes on
Computer Science, B. Beliczynski, A. Dzielinski, M. Iwanowski, and
B. Riberiro, Eds. New York: Springer-Verlag, 2007, vol. 4432, pt.
II, pp. 477–491.

[49] J. Lücke and C. v. d. Malsburg, “Rapid processing and unsupervised
learning in a model of the cortical macrocolumn,” Neural Comput., vol.
16, pp. 501–33, 2004.

[50] D. Vogel, “A neural network model of memory and higher cognitive
functions,” Int. J. Psychophysiol., vol. 55, pp. 3–21, 2005.

[51] R. N. A. Henson, “Short-Term memory for serial order: The start-end
model,” Cogn. Psychol., vol. 36, pp. 73–137, 1998.

Janusz A. Starzyk (SM’83) received the M.S.
degree in applied mathematics and the Ph.D. degree
in electrical engineering from Warsaw University
of Technology, Warsaw, Poland, in 1971 and 1976,
respectively, and the habilitation degree in electrical
engineering form The Silesian University of Tech-
nology, Gliwice, Poland, in 2008.

From 1977 to 1981, he was an Assistant Professor
at the Institute of Electronics Fundamentals, Warsaw
University of Technology, Warsaw, Poland. From
1981 to 1983, he was a Post-Doctorate Fellow and

Research Engineer at McMaster University, Hamilton, ON, Canada. In 1983,
he joined the Department of Electrical and Computer Engineering, Ohio
University, Athens, where he is currently a Professor of Electrical Engineering
and Computer Science. He is an author or a coauthor of over 170 refereed
journal and conference papers. His current research is in the areas of motivated
embodied intelligence, goal creation in intelligent systems, sparse hierarchi-
cally organized spatio–temporal memories, self-organizing learning machines,
and neural networks. He has cooperated with the National Institute of Standards
and Technology. He has been a consultant to ATT Bell Laboratories, Sarnoff
Research, Sverdrup Technology, Magnolia Broadband, and Magnetek Corpo-
ration. He was a Visiting Professor at University of Florence, Italy. He was a
Visiting Researcher at Redstone Arsenal—U.S. Army Test, Measurement, and
Diagnostic Activity and at Wright Labs—Advanced Systems Research and
ATR Technology Development.

Haibo He (M’06) received the B.S. and M.S. degrees
in electrical engineering from Huazhong University
of Science and Technology (HUST), Wuhan, China,
in 1999 and 2002, respectively, and the Ph.D. degree
in electrical engineering from Ohio University,
Athens, in 2006.

Currently, he is an Assistant Professor at the De-
partment of Electrical and Computer Engineering,
Stevens Institute of Technology, Hoboken, NJ. His
research interests include machine intelligence,
self-adaptive systems, machine learning and data

mining, computational intelligence and applications, very large scale integra-
tion (VLSI) and field-programmable gate array (FPGA) design, and embedded
intelligent systems design.

Dr. He has served as a Program Committee member for several pre-
mium international conferences. He has also been a reviewer for the
leading academic journals in his fields, including the IEEE TRANSACTIONS

ON NEURAL NETWORKS, the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, the IEEE TRANSACTIONS ON SYSTEMS, MAN AND

CYBERNETICS—PART A: SYSTEMS AND HUMANS, and the IEEE TRANSACTIONS

ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, among others.
He has delivered several invited talks including the IEEE North Jersey Section
Systems, Man and Cybernetics invited talk on “Self-Adaptive Learning for
Machine Intelligence.” He was the recipient of the Outstanding Master Thesis
Award of Hubei Province, China, in 2002. Currently, he is a committee
member of the IEEE Systems, Man and Cybernetic Technical Committee on
Computational Intelligence, and also an active member of the Association for
Computing Machinery (ACM) and the Association for the Advancement of
Artificial Intelligence (AAAI).

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on June 22, 2009 at 16:26 from IEEE Xplore.  Restrictions apply.


