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Abstract

A new self-organizing learning array (SOLAR) system has been implemented in software. It is an information theory
based learning machine capable of handling a wide variety of classification problems. It has self-reconfigurable processing
cells (neurons) and an evolvable system structure. Entropy based learning is performed locally at each neuron, where neu-
ral functions and connections that correspond to the minimum entropy are adaptively learned. By choosing connections
for each neuron, the system sets up the wiring and completes its self-organization. SOLAR classifies input data based on
weighted statistical information from all neurons. Unlike artificial neural networks, its multi-layer structure scales well to
large systems capable of solving complex pattern recognition and classification tasks. This paper shows its application in
economic and financial fields. A reference to influence diagrams is also discussed. Several prediction and classification cases
are studied. The results have been compared with the existing methods.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Information systems are used in data mining and intelligent decision support to automatically represent the
knowledge that can be extracted from databases [15]. Data mining applications have used inductive learning
[18] algorithms to extract the rules and futures inferred from data, which include decision trees [17], logic pro-
gramming [13], and ensemble learning. Inductive learning is deterministic and supervised. It generalizes hidden
rules or recovers unknown functions from observation of examples. A decision tree is a simple but effective
form of inductive learning. It makes decisions from a set of discrete or continuous attributes. Inductive logic
programming performs knowledge-based inductive learning expressed in first-order logic. It can learn the
rational knowledge that the attribute-based systems have difficulty obtaining. Ensemble learning selects a
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collection of single classifiers and combines their decisions. One of the best-known ensemble algorithms is
boosting [12], which is designed to boost the accuracy of individual learning algorithms. In many approaches,
artificial neural networks (ANNs) were used for data mining and knowledge extraction in large data sets. An
ANN processes information by simulating biological neural systems and has been one of the most popular
statistical learning methods. It forms complex nonlinear functions with many parameters, which can be
learned via training [18]. Recently, kernel-based learning machines have been proposed, of which the support
vector machine (SVM) [4] is considered the most popular technique. An SVM provides optimal separation in
the kernel function-induced feature space. It has also been widely used as a powerful tool for classification and
regression. These various forms of computational intelligence were used in many specialized fields.

Over the last decade, computational intelligence has been increasingly used to solve difficult economic and
financial problems, including modeling, prediction, recognition, and analysis. Financial datasets are usually
small-sized with high dimensionality, and contain both quantitative and qualitative attributes. The attributes
are often highly correlated and interactive [5]. A lot of effort has been spent to form a bridge between the com-
putational finance and machine learning tools developed by engineers and scientists. McNelis [11] discussed
the application of ANNs coupled with evolutionary computation in financial and economic prediction prob-
lems. Especially, he demonstrated examples of quantitative forecasting. Although the use of ANNs for deci-
sion making can achieve a high predictive accuracy rate, it lacks explanation capability and the reasoning
behind how decisions are reached. Baesens [2] presented the results from analysis of real-life credit-risk data
sets using neural network rule extraction techniques. Clarifying the ANN’s decisions by explanatory rules
based on learned knowledge can help credit-risk managers explain why a particular applicant is classified
as good or bad. He applied ANN rule extraction and decision tables based on the PROLOGA software to
advanced decision-support systems for credit-risk evaluation. Tsitsiklis and Van Roy [24] introduced and ana-
lyzed a simulation-based approximate dynamic programming method for pricing complex American-style
options, with a possibly high-dimensional underlying state space. This research involves the evaluation of
value functions at a finite set, consisting of ‘‘representative’’ elements of the state space. Magdon-Ismail
[10] gave a self-contained introduction to the risk neutral or martingale approach to the pricing of financial
derivatives. This approach provides a rich source of problems ideally suited to the application of Monte Carlo
methods. Finally, Atiya [1] conducted an extensive study and gave a survey of bankruptcy prediction methods.
He introduced financial ratio and equity-based indicators for neural network based bankruptcy prediction
with improved performance. His work demonstrated that neural networks could deliver a superior perfor-
mance over other techniques in bankruptcy prediction.

An automatic re-configurable learning machine self-organizing learning array (SOLAR) has been proposed
recently [20]. It proved to be a useful classification and prediction tool applicable to different real world prob-
lems. SOLAR is a regular, two or three-dimensional array of identical processing cells (neurons), with dynam-
ically re-configurable connections. In our previous work, SOLAR was simulated on standard benchmarks and
proved to be advantageous [21] over many existing neural networks and machine learning algorithms. SOLAR
can be realized on both software and hardware platforms [22]. In this paper, SOLAR is simulated in software
and applied to solve economic and financial problems. Due to its resemblance to the ANNs and SVM, we pay
particular attention to their performance compared with SOLAR. This paper is organized as follows. Section
2 briefly describes the SOLAR architecture and single neuron functionality. Section 3 discusses the approach
of SOLAR data processing and classification. In Section 4, SOLAR is applied to two stock investment deci-
sion support problems, a bankruptcy prediction and two financial status recognition problems. SOLAR’s per-
formance is compared with the existing methods. Finally, a summary is given in Section 5.

2. SOLAR architecture and single neuron functionality

A SOLAR architecture is defined by an array of identical cells. Each cell in the array has ability to self-
organize by adapting its functionality in response to information contained in its input signals. Cells choose
their inputs from neighboring cells and send outputs to other cells. This may result in a multi-level hierarchical
system capable of statistical learning, associative memories and reinforcement based self-organization. The
SOLAR implementation presented in this paper employs a 2-dimensional feed forward (FF) structure with
all neurons arranged in multiple layers. Neurons are connected to the original inputs or the outputs of neurons
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from previous layers. Based on the dimensionality and complexity of input data, a variable number of layers
and neurons are used, which is automatically decided by the learning algorithm. Typically, the number of neu-
rons per each layer is set equal to or greater than input data dimensionality. For simplicity of implementation,
a fixed number of neurons are added per each layer and trained in parallel. All neurons inside the array are
pre-wired with the same number of redundant data and control connections, which are pseudo randomly gen-
erated. The training procedure refines the connections and establishes the final SOLAR wiring structure. Each
neuron in the array has the ability to self-organize by adapting its functionality in response to information
contained in its input signals. Similar to the behaviour of SVM, a SOLAR neuron generates a hyper-plane
in the input space and separates it into subspaces. But unlike an SVM, hyper-planes are generated concur-
rently in each neuron’s input space. Information from all neurons is merged to form the final decision, which
is found analogous to the maximum ratio combination or the boosting algorithm.

It is believed that biological neurons tend to have local connections [6]. Therefore, in SOLAR there is a
higher probability that a neuron connects to close neighboring neurons. Some more distant connections are
randomly used in the pre-wiring stage with smaller probability. An example structure of a 4-layer SOLAR
is shown in Fig. 1, where the circles represent neurons and the triangles are outside inputs. Solid lines stand
for data connections and the dashed lines are for control connections.

SOLAR neurons are event-driven processors responding to their selected data and control inputs. Each
neuron N receives an input vector xi and transforms it to a scalar output xo. In addition, each neuron has
a binary control input si and two control outputs so and so, as illustrated in Fig. 2.

A logic high signal in the control input activates this neuron. Control outputs are generated and statistical
information is obtained when the neuron is activated. With control input high, this neuron only reacts to data
from a selected part of the whole input space, which forms a local input space of this neuron. Thus a control
input plays the role of inhibitory connections in biological neurons, preventing a controlled neuron from fir-
ing. The first column neurons have their control inputs set to 1, so they are always activated. Each neuron
Fig. 1. Pre-wired neuron structure.

Fig. 2. Neuron input and output signals.
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performs a simple operation like adding, subtracting and shifting, or a simple approximation of the logarithm
and exponential functions. Concatenation of these different basic operations, which results from signal pro-
cessing by several neurons, yields more complicated transformation of the input space. A neuron generates
partition of its input space by comparing its output So against a set threshold t, which generates a complex
n � 1 dimensional manifold to separate an n-dimensional input feature space into two subspaces S and Si.
Complexity of the resulting separation boundary grows along with the increasing number of neuron layers.

Classification performed by each neuron is based on estimated class probabilities in each of the neuron’s
subspaces. A neuron’s transformation functions and thresholds are optimized by contributing neurons to per-
form a better division of classes using training data. A clear division with a proper threshold provides a strong
support for final classification. The succeeding neurons that process the data in one of the subspaces can deal
with fewer classes and simpler distribution. The quality of this separation is evaluated based on statistical mea-
sures. Searching for the optimum threshold, as well as selecting a neuron’s operation, is a training task.

Using the probabilities of training data from different classes that fall into each subspace, information index
I can be obtained from
I ¼ 1� DEs

Emax

¼ 1� ½
P

scP sc logðP scÞ � P s logðP sÞ� þ ½
P

sicP sic logðP sicÞ � P si logðP siÞ�P
cP c logðP cÞ

; ð1Þ
where Psc is the probability of a class c satisfying threshold, Psic is the probability of a class c not satisfying
threshold, Ps is the subspace probability (percentage of input data that passes threshold), Psi is the comple-
mentary subspace probability (data that does not pass threshold), and Pc is the class probability.

Since neurons are pre-wired with redundant inputs, different combinations of data inputs, transformation
operations, and control inputs result in different information index values. Selection of these parameters is a
result of local optimization performed by searching for the maximum information index. Instead of using a
time consuming search through all the combinations, an efficient binary search algorithm has been designed
[22]. In the current implementation, a neuron selects two data inputs out of three pre-wired connections and
one control input out of two connections. Thus each neuron has six different input combinations to consider.
The neuron also has 32 transfer functions to choose from, each of which is analyzed with an 8-step threshold
search. Therefore, (1) is to be computed 6 · 32 · 8 = 1536 times for each neuron, which is an easy job for mod-
ern computation hardware. Typically there can be about 30 layers for a complicated classification task with 60
attributes. It costs 60 · 30 · 1536 = 2,764,800 calculations of (1) to train a whole SOLAR network. Since neu-
rons in the same layer can be trained concurrently in parallel computation, the actual time consumed for train-
ing is dramatically reduced to the level of 30 · 1536 = 46,080 calculations of (1).

Information-based learning enables the SOLAR neurons to perform optimal separation even with high
uncertainty in the input space, which is especially desired for financial datasets. The optimized information
index is stored together with neuron’s configuration data, class probabilities, threshold values, etc. The infor-
mation index defined by (1) is normalized to [0, 1] interval. When I = 0, there was no reduction in data
entropy, while I = 1 indicates that data entropy in a neuron’s input space was reduced to 0. The value of I

measures the quality of this neuron’s subspace separation. It is related to the definition of information defi-
ciency introduced in (2), which quantifies the amount of information left in the subspaces. Information defi-
ciency is simply a normalized relative entropy value in a local subspace and is defined as follows:
ds ¼
DEs

Emax

¼
P

scP sc logðP scÞ � P s logðP sÞP
cP c logðP cÞ

: ð2Þ
Information deficiency helps to self-organize the learning process. A subspace with zero information defi-
ciency does not require any learning—data is well classified in the subspace. An important role of information
deficiency is that it can be used as a measure of learning by a group of neurons that work on the same input
data.

At the first layer of neurons, it is assumed that the input information deficiency is one. The information
index is complimentary to the summation of all the subspace information deficiencies
1� I ¼
X

s

ds: ð3Þ
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The information deficiencies for output subspaces are defined as the product of local subspace information
deficiencies and input information deficiencies.
dos ¼ dids; ð4Þ

where di is the input information deficiency. They become input information deficiencies di of the connecting
neurons.

di allows a neuron to know if its input subspace has been sufficiently learned. If di is less than or equal to the
chosen information deficiency threshold, it indicates that not much information can be gained by further
learning.

As subsequent neurons extract information from the input data, there is increasingly less independent infor-
mation left in the data. The learning array grows by adding more neurons until the information deficiency in
the subsequent neurons fall below a set threshold value.

3. SOLAR data processing and classification

3.1. SOLAR data processing

An application input data was presented to SOLAR with n input features or attributes. These n features
form the dimensions of the input space. So the jth individual input appears as an n-dimensional vector:
X j ¼ ½X j

1 X j
2 . . . X j

n �
T. Therefore the whole input data set, which consists of s individuals, could be orga-

nized in an input matrix
X ¼ fX 1; . . . ;X sg ¼
X 1

1 X 2
1 . . . X s

1

. . .

X 1
n X 2

n . . . X s
n

2
64

3
75: ð5Þ
As often happens in financial datasets, not all the features are continuous numerical values. Some of them
may be in the form of discrete symbolic values. Since SOLAR operations accept only numerical inputs, the
symbolic features need to be transformed into real numbers [9]. In practical data there may be a few undeter-
mined elements in the input space. A default value needs to be assigned for each of these missing elements to
make the input space complete. The desired default values minimize the Mahalanobis distances to the cluster
data from the same class as the sample with missing value, as discussed in detail in [21]. Since all the features
X1–Xn are obtained from possibly different measurements, their scale may vary greatly. To equalize their sig-
nificance, all the input features have to be rescaled.

As the result, the pre-processing of SOLAR’s input matrix is carried out in three steps:

1. Make all the features numerical, and set values for symbols of the discrete features.
2. Determine the default values for each feature, and use them in place of the missing features.
3. Rescale all the features to a unified range.

Although the processing speed of SOLAR can benefit from smaller dimensionality of the input data, it is
not necessary to manually select the important attributes from the dataset based on expert knowledge.
SOLAR is able to find correlation between features and make classification decision using all the relevant ones
automatically, based on the information contained in the input space. Automatic feature selection techniques
are also developed to further improve the efficiency of learning. Similar training performed on large dimen-
sionality data sets could be very expensive for ANN processing, both in computing time and hardware imple-
mentation cost.

3.2. SOLAR classification

Data to be classified is sent to the SOLAR network, and the network performs classification based on its
training results. As a result of training, neurons internally save the correct recognition probabilities of all the
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classes for both of the output spaces as two probability vectors [Psc] and [Psic], where c stands for different
classes. If an input data point falls in a voting neuron’s input subspace, the neuron is going to vote for this
data using its estimated probabilities Psc or Psic as probabilities of correct classification Pcc for that class. Each
individual neuron’s confidence in its classification is only Pcc, which can be considered as ‘‘weak learning’’.
The voting mechanism gathers all the information and classifies the input signal using a weight function
designed after maximum ratio combination (MRC) technique used in mobile communication [16].
Table
Class p

Class 1
Class 2
Class 3

Table
Voting

Class 1

0.6800
Bc ¼ 1� 1

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

1

1=P cci � 1þ e

� �2
s ; ð6Þ
where P cci ¼ P cc of each ‘‘vote’’ for class c; n = number of voting neurons; e = a small number preventing divi-
sion by zero.

This weight function provides a statistically robust fusion of individual neuron’s votes. It is in fact an
ensemble learning algorithm that improves the accuracy of weak learning. The classifier chooses a class c with
the maximum weight Bc.

3.2.1. Example

Assume that there are five neurons in a classification problem with three classes, and that the class prob-
abilities estimated by each neuron at the learning stage are as shown in Table 1 (the sum of probabilities in
each column is equal to 1). The largest probability value for each class is also listed, assuming that a win-
ner-takes-all voting scheme is used.

Using e = 0.001 in (6), the weights of different classes for this particular input dataset are calculated and
shown in Table 2.

Based on this result, SOLAR will classify this input as a sample from class 2. Notice that if the ‘‘winner
takes all’’ approach was used, as shown in Table 1, voting neuron No. 3 should make a decision and this par-
ticular input would be classified as class 3.
1
robabilities in neurons’ output spaces

Voting neuron number

1 2 3 4 5 Winner-takes-all

0 0.293 0.079 0.671 0.305 0.671
0.753 0.632 0.125 0.329 0.695 0.753
0.247 0.075 0.796 0 0 0.796

2
weight Bc for different classes

Class 2 Class 3

0.8075 0.7960

Fig. 3. SOLAR ensemble.
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As mentioned above, the initial structure of SOLAR is randomly generated. The diversity of individual sys-
tems may result in different classification results on the same testing set. Although classification performance
of a SOLAR network can be assured using (6), an ensemble of multiple SOLAR networks can be used to
obtain stable, statistically robust output. Several SOLAR systems with random differences in their initial
structures are generated in parallel. They are trained separately and vote together on the same testing set.
It is, in fact, a simple version of ensemble learning, where a single SOLAR implements ‘‘weak learning’’.
An example of a SOLAR ensemble is shown in Fig. 3, where n individual SOLARs are combined to perform
classification.

4. SOLAR application to economic and financial problems

In this work SOLAR software has been applied to economic and financial problems and compared to spe-
cialized financial analysis learning methods, which use expert knowledge and are optimized for particular
problems. The selected reference approaches are using influence diagrams, ANNs, SVMs, decision trees
and other methods.

4.1. Influence diagram

Before applying the SOLAR concept to market investment decision support, the influence diagram
approach was first used [23] for reference. We discuss this approach in some detail to point out the differences
in the procedural approach to the problem formulation and its solution. Most noticeably, expert knowledge is
required to define the initial structural organization of the diagram that can be refined using a machine learn-
ing technique.

An influence diagram is a special type of Bayesian network (Fig. 4), one that contains the decision node and
the utility node to provide a decision recommendation from the model. Influence diagrams are directed acyclic
graphs with three types of nodes: chance nodes, decision nodes, and utility nodes. Chance nodes, shown as
ovals, represent random variables in the environment. Decision nodes, shown as squares, represent the choices
available to the decision-maker. Utility nodes, either of diamond or flattened hexagon shape, represent the
usefulness of the consequences of the decisions measured on a numerical utility scale. The arcs in the graph
have different meanings depending on their destinations. Dependency arcs are the arcs that point to the utility
or chance nodes representing probability or functional dependence. Informational arcs are the arcs that point
Fig. 4. A simple influence diagram.
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to the decision nodes implying that the pointing nodes will be known to the decision-maker before the decision
is made.

There are some fundamental characteristics of the influence diagram that one must take into consideration
when using one for decision support problems. These characteristics influence the data requirements and
choice of the appropriate influence method. The first characteristic is the granularity of the values for each
node. This characteristic affects the memory requirement for storing the probabilities and the computational
time required for updating the probabilities. The more values within each node, the larger the memory
required and the longer it will take to propagate the probability update.

The second characteristic is the integration of the user’s preference into the utility node. This characteristic
will affect the decision outcome of the model. Given different preferences among users, the model might return
a different decision recommendation. Another issue of this characteristic is how to model the user’s preference
into a set of values for the utility node. Different fields of research have suggested different approaches to this
problem. Some suggest learning from the user’s behavior, while some suggest obtaining data from a user sur-
vey and some simply query the expert and assign subjective values. The third characteristic to consider is the
availability of knowledge about the structure, probabilistic knowledge for prior and conditional probabilities.
There are many variables in a specific problem domain and there might exist several concepts in the problem
domain that are observationally equivalent, which means they are not distinguishable even with infinite data.
Finding out which of those are relevant to the problem and their casual relationships present a challenge to the
knowledge engineer. A significant amount of research and many software tools were devoted to learning of the
model structure from data [7]. There are two methods to obtain the probability distribution for a node. First,
the probability distributions can be based on frequency of occurrence by obtaining the data from gathered
statistics. The second method is to obtain the probability distributions through knowledge acquisition sessions
from the domain experts, who convey their subjective beliefs. In both cases, the probabilities can be refined
through a feedback mechanism. Finally, the size, topology and connectivity of the model should also be con-
sidered. Applying good knowledge engineering techniques [8] throughout the construction of the model will
help keep the network manageable.

4.2. Case studies

Several application examples were selected for testing and comparative study. Cases 1 and 2 are the cases of
decision support for stock market investment. SOLAR is used to choose profitable companies. In case 1, the
learning results of SOLAR are compared with the outcome of a special type of Bayesian network, the influ-
ence diagram designed for stock investment decision support, and the SVM algorithm. It is also compared
with the SVM in case 2. Case 3 is the bankruptcy prediction problem, where SOLAR is used to predict com-
panies that will file for Chapter 11 within 3 years. Results obtained in this case are compared with those
obtained with Atiya’s method [1]. Case 4 is the credit card approval decision. SOLAR made decisions on
whether or not to approve a credit card based on personal information. Case 5 is the adult income classifica-
tion problem. Using these classification results, banks are able to make loan decisions. In both cases 3 and 4,
SOLAR is compared to the benchmark approaches reported in literature.

Case 1: S&P 500 Stock investment decision support

The first case study is based on S&P 500 index companies from 1993 to 2003. The problem is to classify
these companies into two portfolios and select the one expected to be more profitable. Both networks, SOLAR
and the influence diagram were trained on the 1993–2002 data obtained from the CompuStat and tested on the
2003 data. This data contained the company’s 1 year return and other financial information, including mar-
ket/book value, ROE, earning before tax and interest, pretax profit margin, total asset turnover, DOE, finan-
cial leverage index and Beta. The performance metric is the average annual return rate from the selected
portfolio in the year of 2003, by percentage.

The initial structure of the influence diagram was constructed by consulting with the domain expert. Any
such model is inevitably a simplification of what the expert knows, which itself is a simplification of the real-
world problem. The essential issue is to decide which variables and relationships are important, and which are
redundant and can be omitted. After several interviews with the domain expert, we came up with the portfolio
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selection model shown in Fig. 5. We then applied our heuristic guided refinement algorithm [23] to the influ-
ence diagram. The algorithm uses mutual information as a guide to refine the model in order to increase the
model’s performance.

Once the initial diagram was constructed, the next step was to define the number of values for each variable.
Most of the variables are continuous, but all were modeled as discrete. For the first prototype, we modeled the
diagram as simply as possible, and each value of each variable was carefully set. For example, originally there
were two values in the Beta node, which were increased into a range of values after refinement. Such explicit
setting of variables is necessary to avoid ambiguity when assessing conditional probabilities. We applied the
refinement algorithm to only the financial factor change nodes (Beta, ROE, etc.), and the risk tolerance
remains unchanged for this experiment.

On the 2003 test data, the influence diagram portfolio obtains its maximum average annual return perfor-
mance when the portfolio contains 134 companies out of the 500. The 134 companies produced an average
1-year total return of �10.2%, while the average return of all 500 companies was �17.8%.

Next, SOLAR was used to analyze the same data. The training data was divided into two classes, with their
annual return below or above average respectively. SOLAR was constructed without expertise in this field and
has not been refined for this specific problem. However, the self-organizing structure helps the system to auto-
matically extract the useful information. As afore stated, single networks of SOLAR may provide various
results and the ensemble of multiple networks improves its stability. Nine individual SOLAR networks were
used in this case, each of which yielded �9.2% to �10.5% independently. The whole system chose 329 com-
panies and the average return was �9.9%. Since SVM is usually considered as the optimal classifier, it com-
pared with the performance of SOLAR. A library of SVM can be found in [3]. We used the generic C-SVM
with linear, polynomial and RBF kernels, of which a fifth degree polynomial gave the best performance at
�10.05%. It is recognized that an optimal selection of SVM type, kernel function and parameter setting
may bring better results.

Case 2: Research insight stock investment decision support

We expect SOLAR to be used as a strategic decision support system in a lot of applications besides clas-
sification. Therefore, we also applied SOLAR to a stock price prediction problem and compared the results to
the optimal classifier SVM. We used Research Insight [19] a financial database derived from over 10,000 pub-
licly traded US companies and closed-end funds trading on the NYSE, AMEX, NASDAQ, OTC and Cana-
dian stock exchanges. Sixty-four financial data indicators were reported by these companies over the most
recent 20 years including income, balance sheet, and cash flow statements. The training and testing datasets
were constructed based on the 192 features extracted from the database over a 3-year period. Similarly to
the annual return classification, two classes were defined for this problem based on financial performance,
measured as 1-year stock price change right after the 3-year period. Companies whose stock price increase
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was less than the median value of the whole set were classified as class 1 and those above the median were class
2. By using this classification scheme (based on the price increase) we effectively predict future financial per-
formance without explicit reference to time prediction used in the time series approach. The 3-year period of
each training dataset was used to develop a classifier based on this time frame.

First we separated the companies that have missing features from the complete ones. Due to the high
dimensionality of the dataset and correlation between features, QR decomposition was used to reduce redun-
dancy. After that, missing data were recovered from the complete and independent features. Fig. 6 shows the
block diagram of the whole process.

Using the processing shown in Fig. 6, we obtained the cross-validation of the classifiers performance on
various datasets. Table 3 shows the analysis results using SOLAR and SVM based on the companies with
complete data in both training and testing sets. Each row represents a classifier trained with data from differ-
ent years and is named as C2000, C2001, C2003. Each column shows the correct classification rate tested on
the data from different years. For instance, classifier C2000 was developed based on data slice from 1998 to
2000 and used the stock price change reported in 2001 for classification. It was applied to predict the perfor-
mance in 2001–2003. Classification results above 50% indicate that we can obtain a better than average per-
formance. The average prediction rate and its standard deviation for each classifier are calculated. As we can
see from Table 3, both SVM and SOLAR can reach above 50% performance. SOLAR showed the ability to
generalize the hidden rule of forecasting profitable companies from financial information.
Research Insight
database

Training and testing
data retrieval

Separate the complete (no
missing features values) and

incomplete (with missing
feature values) companies

Check dependency based on
the complete companies data

(QR analysis)

Remove dependency for all
the training and testing

companies

Missing data
recovery

SOLAR or SVM
analysis and report

Fig. 6. Research insight data analysis procedure.

Table 3
SOLAR analysis results for research insight data set

Classifier Testing year

2000 2001 2002 2003 Average Std.

SOLAR C2000 – 0.62017 0.60718 0.5396 0.5890 0.0433
C2001 0.54673 – 0.54454 0.51568 0.5357 0.0173
C2002 0.5673 0.58083 – 0.50928 0.5525 0.0380
C2003 0.52755 0.49051 0.49908 – 0.5057 0.0194

SVM C2000 – 0.58405 0.56625 0.57305 0.5745 0.0090
C2001 0.56197 – 0.60875 0.46193 0.5442 0.0750
C2002 0.54915 0.57265 – 0.4784 0.5334 0.0491
C2003 0.60684 0.5584 0.62 – 0.5951 0.0324
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Case 3: Bankruptcy prediction

Bankruptcy prediction has been a very important topic in the past decades attracting a lot of attention and
research effort. Atiya gave a comprehensive review of existing bankruptcy prediction methods and provided
results of his study using traditional neural networks [1]. He collected data for 716 solvent US corporations
and 195 defaulted (defaulted within 1–36 months). Taking different instances of a company financial status
before the default, he expanded the data set to 1160 input points. These points are grouped as an in-sample
set and an out-sample set, used for training and testing respectively. There are two systems of indicators dis-
cussed in that paper. One is based on financial ratios alone (called the financial ratio system), containing book
value/total assets BV/TA, cash flow/total assets CF/TA, rate of change of cash flow per share, ROC(CF),
gross operating income/total assets GOI/TA, and return on assets ROA. The other is based on financial ratios
and price-based indicators (equity-based system), with book value/total assets BV/TA, cash flow/total assets
CF/TA, price/cash flow ratio P/CF, rate of change of stock price ROC(P), rate of change of cashflow per
share ROC(CF) and stock price volatility VOL. Using both of these systems of indicators he obtained a sig-
nificant improvement in the bankruptcy prediction compared with traditional bankruptcy prediction tech-
niques. His success was mostly based on a proper (expert) choice of indicators.

We used SOLAR to perform bankruptcy prediction based on the input space data of the financial ratio and
equity-based system. The correct rates are compared with the results from [1] on the out-of-sample set in Table
4, shown as the results of selected indicators. In this case SOLAR gives comparable results to the method pre-
sented in [1], comparing the second and third columns in Table 4.

Since SOLAR is able to handle complicated problems, we also carried out this prediction with all available
indicators (63 in our database) instead of using the selected indicators system introduced in [1]. A single
SOLAR network can provide significant improvement in correct prediction rate (90.04% vs. 85.5%), as shown
in the fourth column of Table 4. SOLAR is a general-purpose identifier and predictor. It was never designed
nor optimized for any particular type of problem. However, this experiment shows that SOLAR is good at
prediction problems based on large size databases, since it is able to use all the information contained in every
indicator and the most correlated indicators automatically contribute the most in classification.

Case 4: Australian credit card approval problem
Credit card approval is a common problem that most machine learning algorithms can be applied to. To

compare SOLAR with other existing methods, a credit card database [14] was used as a benchmark. This data-
base is available from University of California at Irvine—ftp at cs.uci.edu (128.195.1.1) in directory/pub/
machine-learning databases. It has 690 instances in two classes and 14 attributes, 6 quantitative and 8 qual-
itative. Thirty seven instances have one or more features unavailable. Pre-processing [21,9] has been applied to
convert the qualitative attributes into numerical ones and to assign default values for the missing parts.

Several traditional classification algorithms have been tested on this benchmark [14] including learning
machines, neural networks and statistical methods. Their misclassification rates were reported in the literature
and are listed in Table 5 together with results from SOLAR networks. As can be seen from Table 5, SOLAR
shows a better classification rate than all the listed methods except for CAL5. Notice, however, that SOLAR
Table 4
Correct prediction rate of bankruptcy

Time to default Correct prediction rate in %

Using [1] Using SOLAR

Selected indicators Selected indicators All indicators

6 month or less 86.15 85.11 87.23
6–12 months 81.48 84.09 86.36
12–18 months 74.60 76.19 90.24
18–24 months 78.13 55.17 72.24
More than 24 months 66.67 64.29 75.00
Total defaulted 78.13 75.13 83.96
Solvent 90.07 92.74 93.42
Total 85.50 85.80 90.04



Table 5
Misclassification rate comparison on credit card approval

Algorithm Misclassification rate Algorithm Misclassification rate

CAL5 0.131 C4.5 0.155
SOLAR 0.135 SMART 0.158
Itrule 0.137 Baytree 0.171
DIPOL92 0.141 AC2 0.181
Logdisc 0.141 k-NN 0.181
Discrim 0.141 NewID 0.181
CART 0.145 LVQ 0.197
RBF 0.145 ALLOC80 0.201
CASTLE 0.148 CN2 0.204
Naivebay 0.151 Quadisc 0.207
IndCART 0.152 Default 0.440
Bprop 0.154 Kohenen –

Table 6
Misclassification rate comparison adult income classification

Algorithm Misclassification rate Algorithm Misclassification rate

FSS Naı̈ve Bayers 0.1405 CN2 0.1600
NBTrees 0.1410 Naı̈ve Bayers 0.1612
C4.5-auto 0.1446 Voted ID3 (0.8) 0.1647
IDTM (decision table) 0.1446 T2 0.1687
HOODG/SOLAR 0.1482 1R 0.1954
C4.5 rules 0.1494 Nearest-neighbor (3) 0.2035
OC1 0.1504 Nearest-neighbor (1) 0.2142
C4.5 0.1554 Pebls Crashed
Voted ID3 (0.6) 0.1564
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performs better than all the neural network methods listed in this table. In addition, decision tree methods,
such as CAL5 and C4.5 are believed to have better performance on credit card problems [14], while SOLAR
was not specifically optimized for this type of problem (Table 6).

Case 5: Loan decision—adult income classification [9,14]

Potential customer analysis is an example of another real world application where banks or financial com-
panies can use the computational intelligence approach for decision-support. The database, which was also
obtained from the University of California at Irvine, consists of two sets of data. One set contains the training
data and has 32,561 instances of applications, while another one was used as testing data and has 16,281
instances. The dataset contains age, work-class, final weight, education, education-num, marital-status, occu-
pation relationship, race, sex, capital-gain, capital-loss, hours-per-week, and native country, eight of which are
symbolic values. Fourteen percentage of the instances have missing data. There are also two classes, class 1—
23.93% people with earnings greater than or equal to 50,000$/year and class 2—76.07% people with earnings
below 50,000$/year. The data set consists of a number of instances of each class. This is a problem with com-
plex relationships between the selected features.

Again, performance of SOLAR was compared with the existing methods. Although SOLAR did not per-
form as well as the best algorithms, it is the only artificial neural network on the list.

5. Summary

A new computational intelligence algorithm—the self-organizing learning array (SOLAR) was described
and applied to a number of specialized economic and financial cases. Although such datasets are usually
small-sized with high dimensionality, and contain both quantitative and qualitative attributes, the information
based learning of SOLAR successfully demonstrated the capability of handling prediction, classification and
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recognition in this field. Since SOLAR performs its pattern recognition tasks on subsets of its neurons, it
evolves its structural organization representing information included in these subsets according to the locally
controlled learning objectives. It can be efficiently implemented in parallel computation and in real time hard-
ware structures. Associative and reinforcement learning are some of its potential features. This is a topic for
further study.
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