

Designing and Mapping of a Turbo Decoder for 3G Mobile
Systems Using Dynamically Reconfigurable Architecture

Mingwei Ding, Ahmad Alsolaim, and Janusz Starzyk

Electrical Engineering and Computer Science
 Ohio University, USA

{imding|alsolaim|starzyk}@bobcat.ent.ohiou.edu

Abstract
Turbo codes enable high quality communication links by
offering exceptional error correction capabilities. Turbo
coding is proposed in the coming Universal Mobile
Telecommunication Systems (UMTS) standard by the
3GPP for high data rates channels. Direct realization of
the Turbo decoder algorithm in hardware encounters
many challenges, such as algorithm complexity, large
silicon area, high power consumption and low
throughput. Reconfigurable computing is emerging as a
favorable solution that provides flexibility and power
savings without noticeable sacrifice in performance. As a
possible application, a Turbo decoder compatible with
3GPP standard is designed and mapped onto new
dynamically reconfigurable architecture that is
specifically designed for the 3rd generation and future
wireless mobile terminals. The implementation exploits
the parallelism in the Turbo decoder algorithm and
shows the possibilities of the architecture to be
dynamically reconfigured in time and space. Simulation
results are given.

Key Words: Turbo decoding, UMTS, Reconfigurable
computing, Dynamic reconfiguration.

1. Introduction
Since its introduction in 1993 by Berrou et al.

[1], Turbo code has generated a significant interest
in research and industry for its outstanding error
correction capability that is close to the Shannon
limit. Turbo codes are currently being proposed in
many application standards, including the UMTS
standard for third generation wireless mobile
system developed by 3GPP [2][3]. The standard
calls for a flexible implementation of a Turbo
coder/decoder with the number of bits/frame
varying from 40 to 5114. Turbo codes proposed in
the 3GPP UMTS standard are Parallel

Concatenated Convolutional Codes (PCCC). In the
literature there are many implementation attempts
[4][5][6][7]aiming to address both power and
adaptability of Turbo decoder.

Dynamically Reconfigurable Computing
(DRC) offers a suitable implementation platform
for the mobile wireless terminal in general and for
Turbo decoder in particular. By dynamically
swapping different blocks of a Turbo decoder in
time, smaller area and significant power saving can
be gained. This is an alternative to power saving
techniques where unused parts of a system are
powered down. Those powered down subsystems
still occupy a valuable area which in DRC
architecture can be reused to run other applications.
We have developed a new Dynamically
Reconfigurable Architecture for wireless
communication called DRAW. The DRAW
architecture is derived from our prior work on a
similar DRC architecture called DReAM [8][9].

This paper is organized as follows. In section
2, it outlines a general description of the Turbo
codes specified in the UMTS standards. Section 3
briefly describes our DRAW architecture including
its distinctive features which makes it a suitable
implementation platform for the targeted
application. In addition a general description of the
advantages of DRC platforms in the mobile
wireless terminals is given. A detailed description
of the implementation issues and challenges is
given in section 4. The last section explains our
implementation methods in DRAW and the
possible processing rate achievable using DRAW.
Then a conclusion section is given to summarize
our findings.

2. Dynamically Reconfigurable
Architecture for Wireless
Applications (DRAW)
In the area of system design, there is a growing

gap between what is available in terms of silicon
processing power and the design productivity. To
address this problem, a new processing model must
be used to increase the design productivity. 3G
wireless mobile applications require a flexible
implementation solution, small area, low power
consumption and low cost. Design and hardware
reuse must be exploited to speed up the design
process and to reduce the area requirements, which
will reduce the coast of the solution. Flexibility is a
major requirement for any proposed solution to
survive the fast changing standards, and the
introduction of many new services.

DRAP

Output Interface and Configurable Scaling.

Input Interface

Shift, Rotate, and Mux
Unit (SRMU)

RAM/FIFO

RAM/FIFO
Interface

Configurable
Linear

Feedback
Shift Register

(CLFR)

Configurable
Spreading Data
Path (CSDP)

Figure 1: A block diagram of the DRPU.

Based on our previous work on dynamically

reconfigurable architecture called DReAM [8][9],
we designed a new optimized version called
DRAW. This architecture is specially designed for
future wireless mobile terminal. The DRAW
architecture is optimized in many aspects. The
most noticeable (and directly related to this work)
is that the Dynamically Reconfigurable Processing

Unit (DRPU) is smaller yet more powerful than its
predecessor. As a result more DRPU units can be
built in the SOC architecture, which in turn
provides more powerful and flexible processing
resources. DRAW also supports IP-based mapping
by providing a regular hardware architecture, and
fast (in nano seconds) dynamic reconfiguration.

Figure 1 shows the block diagram of the
DRPU. The input interface handles selection and
routing of the incoming data to the inside of the
DRPU. The output interface provides a routing of
the processed data and their normalization.
Normalization by power of two and modular
normalization are both supported. The
Configurable Spreading Data Path (CSDP) and the
Configurable Liner Feedback Shift Register
(CLFR) are designed to handle the
spreading/dispreading and generation of codes. The
reason to have a special unit for these two
important tasks is that they are one bit processing
type operations, and it would be a waste of
resources to handle them with the 16-bit-based
Dynamically Reconfigurable Arithmetic
Processing (DRAP) unit. A special storage unit is
also available in the DRPU that can be configured
into FIFO or RAM functionality. In addition, an
interface module is shown in Figure 1 for the
DRAP and the RAM/FIFO units. The DRAP
interface provides a routing selections and
shifting/rotating operation. The RAM/FIFO
interface provides the addressing mechanism for
the RAM/FIFO unit. The DRAP implements all the
arithmetic and bitwise operations shown in Table 1.
As can be seen from this table, the DRAP can
directly implement many vital functions for base
band processing of the 3G and future wireless
mobile terminals. In Turbo decoder, a chosen
example application for DRAW, the addition and
the MAX operations are the major functions used.
Other functions are useful in many other
applications like Rake receiver and spreading units.
Table 1: A list of operations supported by the DRAP
unit.

Operation Description

1 MUL 2’s complement Multiplication

2 ADD 2’s complement addition

3 SUB 2’s complement subtraction

4 SHIFT Logic & Arithmetic shift

5 ROTATE Rotate

6 AND Bit-wise and

7 NAND Bit-wise nand

8 OR Bit-wise or

9 NOR Bit-wise nor

10 XOR Bit-wise xor

11 XNOR Bit-wise xnor

12 NOT Bit-wise not

13 MIN and
MAX Minimum, Maximum

3. Turbo Decoding Algorithm
There are two types of procedures to generate a

concatenated Convolutional coding. The two types
are the Serial Concatenated Convolutional Coding
(SCCC) and the Parallel Convolutional Coding
(PCCC). The PCCC scheme is the one proposed in
the 3GPP standard [2]. This type of Turbo codes
can be decoded in an iterative manner [10][11].
The encoding of the data bits is performed by using
two Recursive Systematic Coders (RSC)
concatenated in a parallel, as shown in Figure 2.
This encoder is rate 1/3 encoder, which means that
for every input bit, three output bits are generated.

The three output signals generated by the
encoder are called, systematic (original signal), and
redundant signals (Parity bits P1, and P2). The input
to the second RSC2 is first interleaved using a
random-like interleaving process. The encoder
operates on a block of bits, which is between 40 to
5114 bits 1 long [2][3]. Note that puncturing is
omitted in this paper for the sake of simplicity.

General Turbo decoder structure is shown in
Figure 3. The Turbo decoder consists of two Soft-
Input Soft-Output (SISO) decoders. An SISO
decoder is capable of computing the a posteriori
likelihood of the constituent codes. The original
Maximum a posteriori (MAP) algorithm is very
expensive to implement, due to the required

multiplication and exponential operations [12][13].
Therefore, we choose Max-Log-MAP algorithm
[10] as the algorithm of implementation, and we use
sliding window technique to reduce the storage
requirements.

1 The Turbo encoder operates on bits, while the decoder
operates on symbols. We use the term “bit” at the
decoder to correspond to the output bit after completing
all iterations, while the internal processing is performed
on 8-bits quantized symbols.

Data In
(bits)

RSC1

RSC2Interleave

Data out. Rate is 3x
input data rate.

S

P2

P1

Figure 2: PCCC encoder proposed by 3GPP

SISO
Decoder 1 interleaver

SISO
Decoder 2 De-interleaver

interleaver

uk

P1i’

P2i’

Si’

Figure 3: Turbo Decoder structure

According to BCJR algorithm [1], the
calculation of a- posterior probability p can be
decomposed to calculation of α , β and γ
parameters, as follows:

)(),()(),,(,,
1

, ssssyssp kkk βγα −= .

Where s and s’ are the encoder states at time k , k-1,

respectively, and

∑ −=),()()(,,
1 ssss kkk γαα (1)

∑=−),()()(,,
1 ssss kkk γββ (2)

In Max-Log-MAP algorithm, calculation of α ,
β and γ is simplified to performing a sequence of
addition, subtraction and maximum operations.
Figure 4 shows the datapath for the calculation of

α parameter for state m at time k. β has the same
datapath as α .

+ /

1
1−kS

-

γ

Ma

1,i
kα i

kα α

3,1 i
k

s1

1
Max

S
LLR kβ

) +
0

Max
S

+/-

-

+ /-

M ax

1−Λ k
0

1−Λ k

2
1−kS

+/- + /

M ax
m
kα

i
k 1−α j

k 1−α
j

k

+ /-

+ /-

1
1−kS 2'

1−kS

i
kγ

Figure 4: Datapath for α calculation.

+/- +/- +/- +/-

x Max

Max

2, 3,i
kα 4,i

k

1,1 i
kγ 2,1 i

kγ γ 4,1 i
kγ

+/- +/- +/- +/-

1,
1

i
k+β 2,

1
i
k+β 3,

1
i
k+β 4,

1
i
k+β

+/-
LLRs0

LLR

LLRk

Figure 5: Datapath for LLR (4 states)

Similarly, the Log-Likelihood Ratio (LLR) can be
calculated as

)]()',()([1 ssss kkk +++= γα

)](',()([1 ssss kkk ++− βγα

where S1 stands for all the states related to
information bit 1, while S0 stands for all the states
related to information bit 0. For simplicity, Figure 5
shows the datapath for LLR for only 4 states.

Figure 6 shows the sliding window technique,
in which whole frame is divided into several sliding
windows accompanied with training window, α is
computed in forward recursion as usual, while β is
computed from end of each training window instead

of from end of frame backward to the head of each
sliding window. In this way, the calculation of LLR
can be performed as soon as β backward recursion
is finished. Then move to the next sliding window
performing the same operation. Thus output delay
can be reduced to proportional to the size of sliding
window Ns instead of frame length L.

2T+t … ...0 T T+t 2T

β

α
β

α
Figure 6: Sliding window scheme

Considering decoding delay for SISO module,

there will be a slight difference between first
iteration and sub-sequent iterations. For the first
iteration, it will take about k(2Ns+2Nt) cycles to get
the first block of output, where k is the number of
clock cycles needed to process every information
bit, Ns is the sliding window size, and Nt is the
training window size. In the subsequent iterations
decoding delay can be reduced to k(Ns+Nt) cycles,
since data is already stored and ready.

Data1

SISO

Data2

Data3

Interleaver
K(Ns+Nt)/
2k(Ns+Nt)

dintlvr

L

 Figure 7: SISO decoding delay

As illustrated in Figure 7, decoding delay per
iteration(in clock cycles) is





>++⋅
=++⋅

=
1d)NN(
1d)2N(2N

Delay
intlvrts

intlvrts

nk
nk

 (3)

where n is the iteration number for whole decoder,
dintlvr is the processing delay for interleaver (de-
interleaver) and is affected by the size of frame
length L as shown in Figure 7. According to 3GPP

standard, the size of permutation matrix is decided
by L[2]. Assuming the matrix has R rows and C
columns, dintlvr can be expressed as C(R-1)+1 cycles.

The implementation of the Turbo decoder
needs to be flexible, small in area, and low in
power consumption. Adaptability is highly desired
since in a typical baseband processing, Turbo
coding is not always required. According to the
3GPP standards, Turbo coding is only used for
high quality data links. This means that
implementing the decoder in ASIC is a waste of
area and power whenever the high quality link is
not established. In addition at the time of the design
of a Turbo decoder, a tradeoff between the number
of iterations (processing efficiency) and the
memory requirement (power and area) needs to be
dealt with. This will lead to situations when the
quality of the communication link changes, and a
different design of the decoder would result in
either less area or better throughput or both. In
DRC we can design different decoders with
different tradeoffs in mind, and as the condition of
the communication links change, an upper layer in
a wireless terminal would select the appropriate
decoder in a way that balances these two
implementation aspects.

4. Implementation Issues
The cost of implementing the above designed

decoder into DRAW is as follows.

1 Memory requirement for one MAP
The storage for α is bytes where S is

the number of encoder states, which according to
[2], will be 8. The storage for data is 3L bytes,
where L is the frame length. In our design, one
DRPU has 16 byte memory, so it takes
(8Ns+3L)/16 DRPUs. Storage for interleaver can be
estimated as L bytes.

sNS ⋅

2 Arithmetic requirement for one MAP
Area for α (β) computing is (6+3) S× =72

DRPUs and for LLR it is 2 =47 DRPUs,
so total area for one MAP module is 119 DRPUs.
Consequently, the mapping of SISO module to our
architecture will take an 8 × 15 array of DRPUs.
From Figure 3, we can see, one input of the MAP
module is the output of (de)interleaver, thus total
required DRPUs for a Turbo decoder would not

incur extra storage cost for (de)interleaver and it
will be 2Max[(8Ns +3L)/16, 119].

1)13(+−S

3 Timing requirement for one MAP
Figure 4 shows that the calculation of

α or β costs 5 clock cycles, and from Figure 5 we
can figure out that the calculation of LLR for 8
states, wheneverα , β , γ are ready, takes 6 clock
cycles. So the computation cost for LLR is 16
cycles/iteration/bit. (Computing α , β in parallel
can achieve faster speed at the cost of extra area,
which is a possible option) Based on our analysis,
the processing delay δ for decoder is

]1)1([2)22(16 +−++= RCNN tsδ

]}1)1([)(16){1(+−++−+ RCNNn ts

]1)1()(16)[1(+−+++= RCNNn ts (cycles) (4)
Note that C(R-1)+1 is usually close or comparable
to L. We have

])(16)[1(LNNn ts +++=δ (5)
This gives a good estimate of δ , and can be

useful to guide for Ns, and Nt choice with respect to
L. From the above discussion, we note the choice
of n, Ns and Nt should consider all these three
factors balancing the area and speed constraint. And
we also can see that the throughput bottleneck will
shift to (de)interleaver as L increases, and data
storage will have more effect on the processing
delay.

Our simulation shows the following results:
Max-Log-MAP, r=1/3, S=8 states, frame length
L=512, sliding window Ns=88, Nt =12, after n=3
iterations, bit error rate reaches a level of 10-5.

Using design parameters mentioned above, total
number of DRPUs required for Turbo decoder
application is 2Max[[(8Ns +3L)/16, 119]=280. A
15× 19 array of DRPUs including other auxiliary
units (like configuration unit, switch box, etc.) can
be fabricated on a single chip.

From (5), we can find that for frame length of
512 bits, the required clock rate is about 2.5MHz for
10 iterations. According to 3GPP standard,
maximum frame length is 5114 bits, we can
estimate the required clock rate will be 7.4MHz for
10 iterations, which is well within DRAW’s
capability.

The Data Flow Graph (DFG) of the Turbo
decoder (for one iteration) can be seen in Figure 8.
The diagram shows the way the DRAW architecture
is configured to process different processing steps

of the Turbo decoder assuming a fixed number of
iterations. The DRAW architecture provides three
levels of configuration context. The configuration
contexts are stored in close vicinity to the DRPU. A
new configuration can be loaded into the DRPU in
three clock cycles. That is approximately 20 ns
using a clock rate of 150 MHz.

5. Conclusion
Turbo decoder performance is very essential to

the full implementation of 3G and future generation
wireless mobile systems. A flexible and efficient
implementation of the Turbo decoder that is
compatible with 3GPP standard has been designed
and implemented as an example application on a
DRAW architecture. The proposed architecture is
simulated using VHDL to verify the performance
and functionality. A saving in area without
degradation in performance is accomplished.

Int.

SISOSISO

Int.De-Int.

T0

T1

T2

yx
y1

Hard Desision

Figure 8: DFG of the Turbo decoder.

6. References
[1] C. Berrou, A. Glavieux, P. Thitimajshima, “Near

Shannon limit error correcting coding and decoding:
Turbo codes”, Proc. 1993 Inter. Conf.
Communication, pp. 1064-1070, May 1993.

[2] 3GPP TG 25.212 http://www.3gpp.org/.

[3] H. Michel, N. When, “Turbo-Decoder Quantization
for UMTS,” IEEE Communications Letters, Feb.,
2001, Vol. 5, No. 2.

[4] W. Gross, P. Gulak, “Simplified MAP Algorithm
Suitable for Implementation of Turbo Decoders”,
Electronics Letters, Vol. 34. No. 16. Aug. 1998. pp.
1577-1578

[5] T. Ngo, I. Verbauwhede "Fixed Point implement-
tation for Turbo codes," IEEE Micro 98-168 project
report. Feb. 2000.

[6] F. Viglione, G. Masera, G. Piccinini, M. Ruo Roch,
M. Zamboni, “A 50 Mbit/s Iterative Turbo-
Decoder”, Proc. DATE2000 Conf., Paris, Mar. 2000,
pp. 176-180.

[7] G. Masera, G. Piccinini, M. Roch, M. Zamboni,
”VLSI Architecture for Turbo Codes”, IEEE Trans.
On VLSI systems, Vol. 7, No. 3, Sep. 1999.

[8] A. Alsolaim, J. Becker, M. Glesner, J. Starzyk, “A
Dynamically Reconfigurable System-on-Chip
Architecture for Future Mobile Digital Signal
Processing,” Proc. European Signal Processing Conf.
(EUSIPCO 2000), Tampere, Finland, Sep.4-8, 2000.

[9] A. Alsolaim, J. Becker, M. Glesner, J. Starzyk,
“Architecture and Application of a Dynamically
Reconfigurable Hardware Array for Future Mobile
Communication Systems”, Proc. IEEE Symp. Field-
Programmable Custom Computing Machines
(FCCM´00), Napa, USA, Apr. 17-19, 2000”.

[10] A. Chass and A. Gubeskys, ”Efficient Software
Implementation of Max-Log-MAP Turbo Decoding
Algorithm on StarCore SC140 DSP”, Motorola
Semiconductor Israel, Ltd., ICSPAT 2000 Israel.

[11] G. Masera, M. Mazza, G. Piccinini, F. Viglione, M.
Zamboni, “Low-Cost IP-blocks for UMTS Turbo
decoders”, Proc. ESSCIRC 2001, Villach, Austria,
Sep. 2001.

[12] A. Worm, H. Lamm and N. When, ”Design of
Low-Power High-Speed Maximum a Posteriori
Architectures” Proc. Design, Automation and Test in
Europe (DATE) Conf. 2001, pp. 258-265, Munich,
Germany, Mar. 2001.

[13] P. Robertson, P. Hoeher, E. Villeburn, “Optimal
and suboptimal maximum a posterior algorithm
suitable for Turbo decoding”, European Trans. On
Telecommunication, vol. 8, 1997. pp. 119-125.

http://www.3gpp.org/

	Paper ID# 1433ER
	Tel 1 740 593 4553
	Abstract
	Introduction
	Dynamically Reconfigurable Architecture for Wireless Applications (DRAW)
	Turbo Decoding Algorithm
	Implementation Issues
	
	1 Memory requirement for one MAP

	2 Arithmetic requirement for one MAP
	3 Timing requirement for one MAP
	
	Conclusion
	References

