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Abstract 
Turbo codes enable high quality communication links by 
offering exceptional error correction capabilities. Turbo 
coding is proposed in the coming Universal Mobile 
Telecommunication Systems (UMTS) standard by the 
3GPP for high data rates channels. Direct realization of 
the Turbo decoder algorithm in hardware encounters 
many challenges, such as algorithm complexity, large 
silicon area, high power consumption and low 
throughput. Reconfigurable computing is emerging as a 
favorable solution that provides flexibility and power 
savings without noticeable sacrifice in performance. As a 
possible application, a Turbo decoder compatible with 
3GPP standard is designed and mapped onto new 
dynamically reconfigurable architecture that is 
specifically designed for the 3rd generation and future 
wireless mobile terminals. The implementation exploits 
the parallelism in the Turbo decoder algorithm and 
shows the possibilities of the architecture to be 
dynamically reconfigured in time and space. Simulation 
results are given. 

Key Words: Turbo decoding, UMTS, Reconfigurable 
computing, Dynamic reconfiguration. 

1. Introduction 
Since its introduction in 1993 by Berrou et al. 

[1], Turbo code has generated a significant interest 
in research and industry for its outstanding error 
correction capability that is close to the Shannon 
limit. Turbo codes are currently being proposed in 
many application standards, including the UMTS 
standard for third generation wireless mobile 
system developed by 3GPP [2][3]. The standard 
calls for a flexible implementation of a Turbo 
coder/decoder with the number of bits/frame 
varying from 40 to 5114.  Turbo codes proposed in 
the 3GPP UMTS standard are Parallel 

Concatenated Convolutional Codes (PCCC). In the 
literature there are many implementation attempts 
[4][5][6][7]aiming to address both power and 
adaptability of Turbo decoder.  

Dynamically Reconfigurable Computing 
(DRC) offers a suitable implementation platform 
for the mobile wireless terminal in general and for 
Turbo decoder in particular. By dynamically 
swapping different blocks of a Turbo decoder in 
time, smaller area and significant power saving can 
be gained. This is an alternative to power saving 
techniques where unused parts of a system are 
powered down. Those powered down subsystems 
still occupy a valuable area which in DRC 
architecture can be reused to run other applications. 
We have developed a new Dynamically 
Reconfigurable Architecture for wireless 
communication called DRAW. The DRAW 
architecture is derived from our prior work on a 
similar DRC architecture called DReAM [8][9]. 

This paper is organized as follows.  In section 
2, it outlines a general description of the Turbo 
codes specified in the UMTS standards. Section 3 
briefly describes our DRAW architecture including 
its distinctive features which makes it a suitable 
implementation platform for the targeted 
application. In addition a general description of the 
advantages of DRC platforms in the mobile 
wireless terminals is given. A detailed description 
of the implementation issues and challenges is 
given in section 4. The last section explains our 
implementation methods in DRAW and the 
possible processing rate achievable using DRAW. 
Then a conclusion section is given to summarize 
our findings. 

 



2. Dynamically Reconfigurable 
Architecture for Wireless 
Applications (DRAW) 
In the area of system design, there is a growing 

gap between what is available in terms of silicon 
processing power and the design productivity. To 
address this problem, a new processing model must 
be used to increase the design productivity. 3G 
wireless mobile applications require a flexible 
implementation solution, small area, low power 
consumption and low cost. Design and hardware 
reuse must be exploited to speed up the design 
process and to reduce the area requirements, which 
will reduce the coast of the solution. Flexibility is a 
major requirement for any proposed solution to 
survive the fast changing standards, and the 
introduction of many new services.  
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Figure 1: A block diagram of the DRPU. 
 
Based on our previous work on dynamically 

reconfigurable architecture called DReAM [8][9], 
we designed a new optimized version called 
DRAW. This architecture is specially designed for 
future wireless mobile terminal. The DRAW 
architecture is optimized in many aspects. The 
most noticeable (and directly related to this work) 
is that the Dynamically Reconfigurable Processing 

Unit (DRPU) is smaller yet more powerful than its 
predecessor.  As a result more DRPU units can be 
built in the SOC architecture, which in turn 
provides more powerful and flexible processing 
resources. DRAW also supports IP-based mapping 
by providing a regular hardware architecture, and 
fast (in nano seconds) dynamic reconfiguration.   

Figure 1 shows the block diagram of the 
DRPU. The input interface handles selection and 
routing of the incoming data to the inside of the 
DRPU. The output interface provides a routing of 
the processed data and their normalization. 
Normalization by power of two and modular 
normalization are both supported. The 
Configurable Spreading Data Path (CSDP) and the 
Configurable Liner Feedback Shift Register 
(CLFR) are designed to handle the 
spreading/dispreading and generation of codes. The 
reason to have a special unit for these two 
important tasks is that they are one bit processing 
type operations, and it would be a waste of 
resources to handle them with the 16-bit-based 
Dynamically Reconfigurable Arithmetic 
Processing (DRAP) unit. A special storage unit is 
also available in the DRPU that can be configured 
into FIFO or RAM functionality. In addition, an 
interface module is shown in Figure 1 for the 
DRAP and the RAM/FIFO units. The DRAP 
interface provides a routing selections and 
shifting/rotating operation. The RAM/FIFO 
interface provides the addressing mechanism for 
the RAM/FIFO unit. The DRAP implements all the 
arithmetic and bitwise operations shown in Table 1. 
As can be seen from this table, the DRAP can 
directly implement many vital functions for base 
band processing of the 3G and future wireless 
mobile terminals. In Turbo decoder, a chosen 
example application for DRAW, the addition and 
the MAX operations are the major functions used. 
Other functions are useful in many other 
applications like Rake receiver and spreading units. 
Table 1: A list of operations supported by the DRAP 
unit. 

# Operation Description 

1 MUL 2’s complement Multiplication 

2 ADD 2’s complement addition 

3 SUB 2’s complement subtraction 

4 SHIFT Logic & Arithmetic shift 



5 ROTATE Rotate  

6 AND Bit-wise and  

7 NAND Bit-wise nand 

8 OR Bit-wise or 

9 NOR Bit-wise nor 

10 XOR Bit-wise xor 

11 XNOR Bit-wise xnor 

12 NOT Bit-wise not 

13 MIN and 
MAX Minimum, Maximum 

 

3. Turbo Decoding Algorithm  
There are two types of procedures to generate a 

concatenated Convolutional coding. The two types 
are the Serial Concatenated Convolutional Coding 
(SCCC) and the Parallel Convolutional Coding 
(PCCC). The PCCC scheme is the one proposed in 
the 3GPP standard [2]. This type of Turbo codes 
can be decoded in an iterative manner [10][11]. 
The encoding of the data bits is performed by using 
two Recursive Systematic Coders (RSC) 
concatenated in a parallel, as shown in Figure 2. 
This encoder is rate 1/3 encoder, which means that 
for every input bit, three output bits are generated.  

The three output signals generated by the 
encoder are called, systematic (original signal), and 
redundant signals (Parity bits P1, and P2). The input 
to the second RSC2 is first interleaved using a 
random-like interleaving process. The encoder 
operates on a block of bits, which is between 40 to 
5114 bits 1  long [2][3]. Note that puncturing is 
omitted in this paper for the sake of simplicity.  

General Turbo decoder structure is shown in 
Figure 3. The Turbo decoder consists of two Soft-
Input Soft-Output (SISO) decoders. An SISO 
decoder is capable of computing the a posteriori 
likelihood of the constituent codes. The original 
Maximum a posteriori (MAP) algorithm is very 
expensive to implement, due to the required 

multiplication and exponential operations [12][13].  
Therefore, we choose Max-Log-MAP algorithm 
[10] as the algorithm of implementation, and we use 
sliding window technique to reduce the storage 
requirements.  

                                                 
1 The Turbo encoder operates on bits, while the decoder 
operates on symbols. We use the term “bit” at the 
decoder to correspond to the output bit after completing 
all iterations, while the internal processing is performed 
on 8-bits quantized symbols.  

 

Data In
(bits)

RSC1

RSC2Interleave

Data out. Rate is 3x
input data rate.

S

P2

P1

Figure 2: PCCC encoder proposed by 3GPP 
 

SISO
Decoder 1 interleaver

SISO
Decoder 2 De-interleaver

interleaver

uk

P1i’

P2i’

Si’

Figure 3: Turbo Decoder structure 
 

According to BCJR algorithm [1], the 
calculation of a- posterior probability p  can be 
decomposed to calculation of α , β and γ  
parameters, as follows: 

)(),()(),,( ,,
1

, ssssyssp kkk βγα −= .  

Where s and s’ are the encoder states at time k , k-1, 

respectively, and  

∑ −= ),()()( ,,
1 ssss kkk γαα                                 (1) 
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In Max-Log-MAP algorithm, calculation of α , 
β and γ is simplified to performing a sequence of 
addition, subtraction and maximum operations.  
Figure 4 shows the datapath for the calculation of 



α  parameter for state m at time k. β  has the same 
datapath as α .  

+ /

1
1−kS

-

γ

Ma

1,i
kα i

kα α

3,1 i
k

s1

1
Max

S
LLR kβ

) +
0

Max
S

+/-

-

+ /-

M ax

1−Λ k
0

1−Λ k

2
1−kS

+/- + /

M ax
m
kα

i
k 1−α j

k 1−α
j

k

+ /-

+ /-

1
1−kS 2'

1−kS

i
kγ

Figure 4: Datapath for α  calculation.  
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Similarly, the Log-Likelihood Ratio (LLR) can be 
calculated as 

)]()',()([ 1 ssss kkk +++= γα  

            )](',()([ 1 ssss kkk ++− βγα  

where S1 stands for all the states related to 
information bit 1, while S0 stands for all the states 
related to information bit 0.  For simplicity, Figure 5 
shows the datapath for LLR for only 4 states. 

Figure 6 shows the sliding window technique, 
in which whole frame is divided into several sliding 
windows accompanied with training window, α is 
computed in forward recursion as usual, while β  is 
computed from end of each training window instead 

of from end of frame backward to the head of each 
sliding window. In this way, the calculation of LLR 
can be performed as soon as β  backward recursion 
is finished. Then move to the next sliding window 
performing the same operation. Thus output delay 
can be reduced to proportional to the size of sliding 
window Ns instead of frame length L. 
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Considering decoding delay for SISO module, 

there will be a slight difference between first 
iteration and sub-sequent iterations. For the first 
iteration, it will take about k(2Ns+2Nt) cycles to get 
the first block of output, where k is the number of 
clock cycles needed to process every information 
bit, Ns is the sliding window size, and Nt is the 
training window size. In the subsequent iterations 
decoding delay can be reduced to k(Ns+Nt) cycles, 
since data is already stored and ready.  
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As illustrated in  Figure 7, decoding delay per 
iteration(in clock cycles) is 





>++⋅
=++⋅

=
1d)NN(
1d)2N(2N

Delay
intlvrts

intlvrts

nk
nk

    (3) 

where n is the iteration number for whole decoder, 
dintlvr is the processing delay for interleaver (de-
interleaver) and is affected by the size of frame 
length L as shown in  Figure 7. According to 3GPP 



standard, the size of permutation matrix is decided 
by L[2]. Assuming the matrix has R rows and C 
columns, dintlvr can be expressed as C(R-1)+1 cycles.  

The implementation of the Turbo decoder 
needs to be flexible, small in area, and low in 
power consumption. Adaptability is highly desired 
since in a typical baseband processing, Turbo 
coding is not always required. According to the 
3GPP standards, Turbo coding is only used for 
high quality data links. This means that 
implementing the decoder in ASIC is a waste of 
area and power whenever the high quality link is 
not established. In addition at the time of the design 
of a Turbo decoder, a tradeoff between the number 
of iterations (processing efficiency) and the 
memory requirement (power and area) needs to be 
dealt with. This will lead to situations when the 
quality of the communication link changes, and a 
different design of the decoder would result in 
either less area or better throughput or both. In 
DRC we can design different decoders with 
different tradeoffs in mind, and as the condition of 
the communication links change, an upper layer in 
a wireless terminal would select the appropriate 
decoder in a way that balances these two 
implementation aspects. 

4. Implementation Issues 
The cost of implementing the above designed 

decoder into DRAW is as follows.  

1 Memory requirement for one MAP 
The storage for α  is bytes where S  is 

the number of encoder states, which according to 
[2], will be 8. The storage for data is 3L bytes, 
where L is the frame length. In our design, one 
DRPU has 16 byte memory, so it takes 
(8Ns+3L)/16 DRPUs. Storage for interleaver can be 
estimated as L bytes.  

sNS ⋅

2 Arithmetic requirement for one MAP 
Area for α ( β ) computing is (6+3) S×  =72 

DRPUs and for LLR it is 2 =47 DRPUs, 
so total area for one MAP module is 119 DRPUs. 
Consequently, the mapping of SISO module to our 
architecture will take an 8 ×  15 array of DRPUs. 
From Figure 3, we can see, one input of the MAP 
module is the output of (de)interleaver, thus total 
required DRPUs for a Turbo decoder would not 

incur extra storage cost for (de)interleaver and it 
will be 2Max[(8Ns +3L)/16, 119].  

1)13( +−S

3 Timing requirement for one MAP 
Figure 4 shows that the calculation of 

α or β costs 5 clock cycles, and from Figure 5 we 
can figure out that the calculation of LLR for 8 
states, wheneverα , β , γ  are ready, takes 6 clock 
cycles. So the computation cost for LLR is 16 
cycles/iteration/bit. (Computing α , β in parallel 
can achieve faster speed at the cost of extra area, 
which is a possible option) Based on our analysis, 
the processing delay δ for decoder is 

]1)1([2)22(16 +−++= RCNN tsδ  

       ]}1)1([)(16){1( +−++−+ RCNNn ts   

    ]1)1()(16)[1( +−+++= RCNNn ts (cycles) (4)   
Note that C(R-1)+1 is usually close or comparable 
to L. We have  

])(16)[1( LNNn ts +++=δ                               (5) 
This gives a good estimate of δ , and can be 

useful to guide for Ns, and Nt choice with respect to 
L.  From the above discussion, we note the choice 
of n, Ns and Nt should consider all these three 
factors balancing the area and speed constraint. And 
we also can see that the throughput bottleneck will 
shift to (de)interleaver as L increases, and data 
storage will have more effect on the processing 
delay. 

Our simulation shows the following results: 
Max-Log-MAP, r=1/3, S=8 states, frame length 
L=512, sliding window Ns=88, Nt =12, after n=3 
iterations, bit error rate reaches a level of 10-5.  

Using design parameters mentioned above, total 
number of DRPUs required for Turbo decoder 
application is 2Max[[(8Ns +3L)/16, 119]=280. A 
15× 19 array of DRPUs including other auxiliary 
units (like configuration unit, switch box, etc.) can 
be fabricated on a single chip.  

From (5), we can find that for frame length of 
512 bits, the required clock rate is about 2.5MHz for 
10 iterations. According to 3GPP standard, 
maximum frame length is 5114 bits, we can 
estimate the required clock rate will be 7.4MHz for 
10 iterations, which is well within DRAW’s 
capability. 

The Data Flow Graph (DFG) of the Turbo 
decoder (for one iteration) can be seen in Figure 8. 
The diagram shows the way the DRAW architecture 
is configured to process different processing steps 



of the Turbo decoder assuming a fixed number of 
iterations. The DRAW architecture provides three 
levels of configuration context. The configuration 
contexts are stored in close vicinity to the DRPU. A 
new configuration can be loaded into the DRPU in 
three clock cycles. That is approximately 20 ns 
using a clock rate of 150 MHz. 
 

5. Conclusion 
Turbo decoder performance is very essential to 

the full implementation of 3G and future generation 
wireless mobile systems. A flexible and efficient 
implementation of the Turbo decoder that is 
compatible with 3GPP standard has been designed 
and implemented as an example application on a 
DRAW architecture. The proposed architecture is 
simulated using VHDL to verify the performance 
and functionality. A saving in area without 
degradation in performance is accomplished. 
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