
1

Software Simulation of a Self-Organizing Learning Array System

Janusz Starzyk Zhen Zhu
School of Electrical Engineering and Computer Science

Ohio University
Athens, Ohio 45701, U. S. A.

(740) 593-1580

Abstract:

A neural network paradigm named Self-Organizing
Learning Array system has been simulated in software.
Hardware implementation limitations are considered in
this simulation. Simulation is performed based on a
benchmark classification problem, the Australian Credit
Card problem. The system behavior is observed and the
learning algorithm is examined. The correct classification
rate has been compared with some existing classification
methods. Although not particularly designed for solving
this type of classification problem, this system still shows
very good performance. The system will be implemented
in FPGA and SOC.

Keywords: Self-Organizing Learning Array, Software
Simulation, Self-Organizing Hardware/Fabric

1 Introduction

Complex electronic systems known as Artificial Neural
Networks (ANN) have been developed to solve
classification and recognition problems. ANN is an
interconnected assembly of processing elements
(neurons). The processing ability of the network is stored
in the inter-connection strengths and transfer functions,
obtained by a process of learning from a set of training
data. [1]

A neural network should be able to train and organize
itself to solve particular problems. Besides each single
neuron learning, the network structure also needs to be
constructed and updated in the training procedure, for
flexibility and generalization. Such a neural network is
known as self-organizing system.

Self-organizing system has been an attractive research
topic for years. It was mathematically defined in 1960s
[2], [3]. The concept of self-organizing has been applied
to neural networks. A well-known application is
Kohonen’s Self-Organizing Map (SOM) [4], which
exhibits the self-organizing formation of topographic
maps [5]. SOMs are always classified as unsupervised
ANN. Besides, other algorithms of Self-Organizing
Neural Networks can also be found [6].

A re-configurable neural network design Self Organizing
Learning Arrays (SOLAR) has been proposed recently
[7], [8]. The hardware structure of SOLAR is similar to

programmable arrays such as Field Programmable Gate
Arrays (FPGA). The basic frame of SOLAR is a fixed
lattice of elemental processing units acting as single
neurons, and programmable interconnections between
them.

SOLAR array neurons learn from outside inputs and
inputs from other neurons processing on the inputs to
form their outputs. In addition, neurons are controlled by
a threshold-controlled input (TCI), to decide whether they
participate in classification at given clock cycle. During
training, SOLAR’s structure organizes itself and each
neuron inside learns basic classification function.
Information from each neuron is collected to form the
final classification for tested data.

Although the SOLAR network will be mapped to
hardware devices to solve complicated real world
problems, the whole algorithm has been simulated in
software and tested on typical classification problems.
The simulation results are prosecuted and analyzed in this
paper.

Section 2 demonstrates the details of SOLAR simulation,
including neural operations, network structure and
classification. SOLAR’s performance has been compared
with several existing classification methods in Section 3.
Section 4 gives brief conclusion suggestions for future
work.

2 Simulation of SOLAR

Most of the existing system organizations of neural
networks can be defined as feed back (FB) and feed
forward (FF) structures. In the FB organization all
neurons are generated concurrently. Outputs of each
neuron can be connected to inputs of any neuron
(including itself). An FB organization may become
unstable in case a positive feedback causes the increase in
the input signal values. Therefore, a care must be taken to
limit a type of operations performed on the input data.
We must guarantee that the transformation obtained is
contractive, which means that the norm of the output of a
neuron must be less or equal to the average norm of all
the inputs.

The FF organization is constructed under the assumption
that all inputs of each new neuron are connected to the
existing neuron outputs or the primary inputs. The
neurons are either generated sequentially or in groups. As

2

new neurons are added, the number of existing neurons
increases and the increased number of outputs can be used
as inputs in subsequently generated new neurons. In this
organization neurons generated later in the process cannot
feed neurons generated earlier. An FF organization is
always stable.

This paper deals with FF organization of SOLAR system.
SOLAR has been simulated with MATLAB. The
simulation was carried out with self-organizing hardware
design considerations, for instance, hardware computation
realization and neural array construction. The simulation
was based on a test bench classification problem for
artificial systems, Australian Credit Card problem [10].
Simulation results are reported in section 3.

2.1 Neural Input Data
Each neuron in SOLAR system was designed with the
ability to perform several operations. One of these
operations will be chosen to act on the neuron’s inputs.
However, the operations need to be carefully defined and
handled. The data fed into these operations need to be pre
processed.

In general input data is presented to SOLAR with n input
features. These n features form the dimensions of the
input space. So jth individual input appears as an n-
dimension vector: Xj=[Xj

1, Xj
2 … Xj

n]T . Therefore the
whole input data set, which consists of s individuals,
could be organized in an input matrix,

















=…=
s
n

2
n

1
n

s
1

2
1

1
1

s1

X...X.X

....

X ...X X

}X ,{XX .

Generally, not all the features are continuous numerical
values. Some of them may be in form of discrete
symbolic values. If the neuron operations accept only
numerical inputs, the symbolic features need to be
transformed into real numbers. In practical problems
some features of the input data may be unavailable.
Default values for each feature needs to be calculated to
replace the missing features. This can be done using
average values for the missing features selecting values
for the missing features which minimize the Mahalanobis
distance to the cluster data from a given class, as
discussed in 2.1.1. Since all the features are obtained from
different measurements, therefore their scale vary greatly.
Obviously all the input features have to be rescaled to
equalize their significance.

As the result, the pre processing of SOLAR’s input matrix
will be carried out with 3 steps:
1. Make all the features numerical, set values for symbols
of the discrete feature.
2. Determine default values for each features, fill up all
the blank items.
3. Rescale all the features to a unified range.

2.1.1 Missing Data Problem
While the average values are easy to calculate, they do
not represent well the existing distribution of the training
data. This section explains how Mahalanobis distance is
used for missing data.

To define Mahalanobis distance we need to use mean
value vector for a given class mc as well as covariance
matrix for all training data from this class Cc. This can be
easily accomplished using MATLAB simulation. Then a
given training data X with missing coordinates can be
represented as X=[Xk, Xm] where Xk are known
coordinates and the missing values Xm are

}d)X
~

d(:X
~

{X minmmm == where

)m-X(C)m-(Xd(X) c
1

c
T

c
−=

Since d(X) is a quadratic form of the unknown values Xm
we can find its minimum by setting its derivative to zero

0
X

d(X)
mm X~X

m

=
∂

∂
=

Let us divide the inverse of covariance Cc according to
partition of X into known and missing values parts









==−

mmmk

kmkk
c

1
c D,D

D,D
DC

Since Cc is symmetrical km
T

mk DD = and

0)m
X
X

(
D,D
D,D

2
X
d

...
X
d

c
m

k

mmmk

kmkk
T

n1
=−
















=








∂
∂

∂
∂

As a result Xm can be obtained from

cmckkmkmm
-1

m m)m(XDDX +−−=
where mck represents the part in mc that corresponds to Xk
and mcm represents the part that corresponds to Xm.

2.1.2 Pre Processing by Each Neuron
After SOLAR’s input matrix has been properly
developed, the training data can be sent to the neurons.
All the neurons are designed to operate on the full range
of input features. Since SOLAR neurons perform local
learning, most likely they will inherit data from nearby
neighbors. The neurons in the last several layers work on
the data that has been processed by many other neurons.
In most cases they have their input range poorly
condensed. In hardware the shrinking of input range
indicates loss of processing precision. Each neuron
collects the scaling information during the training
procedure and applies it to testing data.

2.2 Simulation of Neural Behavior
SOLAR’s neural operations have been designed based on
simple elemental operations, for example, identical,
exponential or logarithm functions. Combination of the
elemental operations could generate complicated
expressions, which is expected to separate different
classes in the input space and automatically define desired
features. However all the operations implemented in

3

hardware are valid only within certain range of inputs.
Each neuron’s input has been pre processed, as described
in the previous section. This idea is particularly useful if
digital computation is used in SOLAR.

Each neuron has pre-defined set of operations which
include “unary kernels” like identity, logarithm and
exponential, and “binary kernels” like add and subtract
operations.

For example, an 8 bit signal has the range 0-255, so its
neural operations can be designed as:
 Identical function : Y=IDENT(x)= x ,

Half function: Y=HALF(x)=
2
x

,

Logarithm function (non-linear):
Y=NLOG2(x)= 5)))),1(max(log,1(max(log 222 +x , as shown in Fig. 1,

Exponential function (non-linear): Y=NEXP2(x)= 32/2 x ,
Addition function: Y=NADD(x1,x2)=)21(5.0 xx + ,
Subtraction function:
Y=NSUB(x1,x2)=)0,21max(xx − ,

Where all function outputs, except for the HALF function,
may vary from 0 to 255, just as the input range. Generally
the outputs cannot occupy the full range, however. Thus
they need to be rescaled. Although in this example digital
operations are assumed, they could also be implemented
in analog circuits. Based on this set of functions, more
complex derivative operations can be generated. A neuron
can use either a single unary kernel or two unary kernels
combined in a binary kernel.

A neuron may receive inputs directly from SOLAR’s
input matrix or from previous neurons’ output. As
indicated in section 1, a neuron is pre wired with
redundant data input and threshold control input TCI
connections. Using the entropy based metric, known as
information index [7], [8], one TCI and one or two input
connections are selected with a unary/binary kernel
operation for this neuron. A threshold of this operation
will be determined to maximize the metric.

Since each operation is a function of data input(s), thus
the input space will be separated into two subspaces by
using each neuron’s threshold value, and the subspace
statistical information will be used for final classification
decision.

The neuron’s input space is different from the SOLAR’s
original input space, as discussed in section 2.1. It is a
transformed part of the original input space. Each neuron
transforms the input space using its selected operation.
Since neurons in further layers accept the transformed
input space from previously generated neurons, their
operations on the original input space may become more
complicated. An example of subspace division in the
original input space is shown in Fig. 2, where SOLAR is

simulated based on a 2-D training input database with 5
classes. It can be found that the curve shown in Fig. 2
separates different classes efficiently, but obviously it is
not one of the base operations.

In order to find out the relationship between each
neuron’s input and the original input space, all the
neurons record their input connection sources after the
training procedure. Each neuron can trace back to find the
transformation from the input features to their inputs
resulting in an expression of input features Xj and
unary/binary kernels.

For instance, a neuron in the second layer operates on its
input data as:

))2(2),1((InputNEXPInputHALFNSUBOperation =
Input1 and Input2 are defined by neurons in the first layer
and substituting for Input1 and Input2 we
have:

))))(),(((2

)))),(2),(2((((

108

1114

XHALFXHALFNADDNEXP

XNLOGXNEXPNADDHALFNSUBOperation=

or:

))
2

)2/()2/(
(2

))(2)(2(
4
1,0max(

108

1114

XX
NEXP

XNLOGXNEXPOperation

+
−

+=

where
))(2),((1 1114 XNLOGXNEXPNADDInput = and

))(),((2 108 XHALFXHALFNADDInput = are
inherited from the input data connections. Therefore this
neuron’s local input space based on Input1 and Input2 is a
transformed input data space, which is a function of X8,
X10, X11, X14. It has been demonstrated in Fig. 3. This
neuron is cutting the local input space with the operation.
This space is based on a randomly selected set of testing
data. Scaling of testing data is based on the information
obtained in training. Therefore the data points from a
testing set that does not have enough samples may not
occupy the whole range of 0-255, as can be found in Fig.
3. Cutting of this input space is performed on a 4
dimensional subspace of the input data space and cannot
be demonstrated in a 2-D plot as in Fig. 2.

Fig. 1 NLOG2

4

2.3 SOLAR structure
Each neuron in the lattice is initially pseudo randomly
connected to previously generated neurons in the pre-
wiring stage. Training procedure will refine this structure.
In order to have neurons learn from other neurons’
subspaces, it is efficient to connect them with close
neighbors in training. Therefore the connection strategy is
to connect previously generated close neighbors of each
neuron with higher probability. The advantage of this
strategy in hardware is that close connections require less
wiring spaces and that local features are preserved.
Manhattan distance could be used as the metric of
neighborhood. In practice a whole layer of neurons in the
neuron lattice is generated and trained simultaneously.
They only accept data inputs and TCI of neurons from
previous layers. Naturally, the first layer neurons are all
directly connected to the input nodes.

Self-Organization of the SOLAR system will result in
selection of connections between neurons from the initial
pre-wired structure. Two or one data input and one TCI
connections are reserved for each neuron in the optimized
selection. After self-organizing some of the neurons may
even be left disconnected, because their input space has
little information and additional process cannot contribute
to classification any more. This neuron maybe used to
solve other classification problems if need. An example of
final organization of SOLAR evolved from the pre-wired
structure of Fig. 4 is shown on Fig. 5.

2.4 Classification on a Single SOLAR Network
All the neurons inside a SOLAR system work together to
classify each testing input in a voting mechanism. After

an individual testing data point has been passed through
SOLAR, some of the neurons that processed this point
will contribute its knowledge with probability based
confidence value. The final decision will be made with a
weighted voting.

Although a SOLAR classification precision is related to
the size of the SOLAR network, it has been found that
gradually more and more neurons will not be connected
since their information index is low. The size of SOLAR
will thus be automatically determined by the learning
process and is a function of the number of classes and
problem complexity. In hardware this will result in self-
determination of the whole network necessary to solve a
given problem.

For instance, in the credit card problem, one SOLAR
system with 224 neurons provides an averaged correct
classification probability of 81.74%. For each testing
group, a confusion matrix can [pij] be obtained:

















ccc2c1

1c1211

p...pp
...

p...p p

where c is the number of classes, pij in the confusion
matrix denotes the probability for SOLAR to recognize
data of class i as class j while pii shows SOLAR’s correct
classification probability for class i.

Although this credit card problem only has two classes to
recognize, real world problems can be more complicated.

Fig. 2 Neuron Cutting the Original Input Space

5

Fig. 3 Neuron Cutting the Local Input Space

Fig. 4 SOLAR Pre Wiring Fig. 5 SOLAR Trained (part and whole picture)

Confusion matrix is a useful measure in a problem with
more classes. Some of the classes dominate the training
data while other may just have a few training points.
Certain trade-offs can be made in SOLAR design. To
achieve a high overall correct classification probability,
the minor classes may be mostly misclassified as major
ones. To maximize the sum of correct classification
probabilities for all the classes, significance of training
data must be weighted by the inverse of class probability
in the training data multiplied by the number of classes.

2.5 SOLAR Ensemble
Compared with other neural network algorithms, SOLAR
is easy to construct in hardware and does not require
offline training. Classification performance of SOLAR
network can be improved in a similar way other NNs.

It has been proven that neural network ensembles are
successful in improving the generalization [9]. The
ensemble has been realized in a simple version in this
work. Several SOLAR networks are trained separately
with different parameters in generating lattice. In
hardware they will be implemented in parallel.

Since all SOLAR networks are independently pseudo
randomly pre wired, their structures are diverse. They
work on each testing data point simultaneously and vote
for the final classification result. In the straightforward
voting scheme, precision has been improved using multi
SOLAR ensemble compared with single SOLAR. An
example of this ensemble voting has been displayed in
Fig. 6.

Fig. 6 SOLAR Ensemble

3 Performance Comparison

TO illustrate accuracy of the learning process based on
SOLAR concept, a credit card application benchmark [10]
was used. This database is available from ftp at cs.uci.edu
(128.195.1.1) in directory/pub/machine-learning

S O L A R 1

S O L A R 2

S O L A R 2 5

v o t i n g
c l a s s i f i c a t i o n

6

databases. The data of 690 individuals were collected and
have been sorted into two classes. For performance
testing purpose, the whole data set is sub divided into 10
groups, each containing 69 individuals. Each time one
group is used to test SOLAR while the others act as
training data. The testing procedure has been repeated 10
times, on all the groups [9]. Average correct classification
probability signifies SOLAR’s precision.

Several traditional classification algorithms have been
tested on this benchmark [10], including learning
machines, neural networks and statistical methods. Their
miss classification rates were reported in the literature and
are listed in Table 1 together with results for SOLAR
networks.

SOLAR ensemble shows better classification rate than all
the listed methods except for CAL5. However, SOLAR
acts better than all the neural network methods listed in
this table. In addition, decision tree methods, such as
CAL5 and C4.5 are believed to have better performance
on credit card problems [10] while SOLAR was not
specifically design for this case. Other experiments have
shown that SOLAR works equally well for arbitrarily
assigned training and testing databases.

Method Miss
Detection
Probability

Method Miss
Detection
Probability

CAL5 0.131 Naivebay 0.151
DIPOL92 0.141 CASTLE 0.148
Logdisc 0.141 ALLOC80 0.201
SMART 0.158 CART 0.145

C4.5 0.155 NewID 0.181
IndCART 0.152 CN2 0.204

Bprop 0.154 LVQ 0.197
Discrim 0.141 Kohenen -

RBF 0.145 Quadisc 0.207
Baytree 0.171 Default 0.440
ITule 0.137
AC2 0.181 SOLAR

(single)
0.183

k-NN 0.181 SOLAR
(ensemble)

0.135

Table 1 Miss Rate for Algorithms

4 Conclusion

This computer simulation of SOLAR system tests the
algorithm developed to simulate self-organizing learning
hardware. SOLAR algorithm has been found to perform
well on various classification problems.

It is necessary to observe SOLAR’s behavior in
experiments before its specific hardware structures are

implemented. In this way the algorithm could be
examined in details and performance can be estimated.
The developed software discussed in this paper provides a
testing platform for neural network design. Because of the
flexibility of software programming, any types of
hardware devices could be simulated with proper models.
As the next stage of SOLAR design and simulation, every
details of SOLAR organization (for instance, probabilities
of neuron connections neuron functionality, signal
scaling, threshold control signal selection etc.) will be
simulated, and then SOLAR will be implemented initially
in Virtex FPGA and finally in a dedicated SOC.

Reference:
[1] Q. He, “Neural Network and Its Application in IR”,
UIUCLIS—1999/5+IRG, Spring, 1999

[2] Lendaris, G., "On the Definition of Self-Organizing
Systems," Proceedings of IEEE, v 52, March 1964

[3] Lendaris, G. and G.L. Stanley, “Self-Organization:
Meaning and Means” Information Systems Sciences;
Proceedings of the Second Congress, Baltimore: Spartan
Books, 1965

[4] Kohonen, T., “Self-Organizing Maps” Berlin:
Springer-Verlag, 1995

[5] Kohonen, T. “The ‘Neural’ Phonetic Typewriter”,
Computer Vol.21 No. 3, pp. 11-22, March 1988

[6] Mulier, F. and Cherkassky, V., “Self-Organization as
an iterative kernel smoothing process,” Neural
Computation, 7, 1165-1177, 1995

[7] J. A. Starzyk and Y. Guo, “Entropy-Based Self-
Organized ANN Design Using Virtex FPGA”, the
International Conference on Engineering of
Reconfigurable Systems and Algorithms, Las Vegas, NV,
June, 2001

[8] J. A. Starzyk and J. Pang, “Evolvable Binary Artificial
Neural Network for Data Classification”, the 2000
International Conference On Parallel and Distributed
Processing Techniques and Applications, Las Vegas, NV,
June 2000

[9] Y. Liu, X. Yao and T. Higuchi, “Evolutionary
Ensembles with Negative Correlation Learning”, IEEE
Trans. on Evolutionary Computation, Vol. 4, No. 4, Nov
2000.

[10] D. Michie, D. J. Spiegelhalter, and C. C. Taylor,
“Machine Learning, Neural and Statistical Classification”
London, U. K. Ellis Horwood Ltd. 1994

