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Abstract: 
 
This paper discusses a concept of Self-Organizing Learning 
Array developed for programmable hardware realization.  This 
system is designed for solving an unspecified machine-learning 
problems such as classification and recognition.  Basic design of 
the array including neurons interconnections and organization is 
described.  Symbolic values assignment method and self-
organizing principle are also discussed in this paper. 
 
1. Introduction 
 
Evolvable Hardware is a promising approach toward autonomous 
and on-line reconfigurable machines [1].  They use genetic 
algorithms to automatically find the best hardware configuration.  
An implementation of genetically based reconfigurable neural 
network was presented in [2].  In data processing, Self-
Organizing maps based on Kohonen learning algorithm are used 
for clustering of high-dimensional data [3].  This paper discusses 
an alternative method for automatic online reconfigurable 
machines with self-organizing principle. 
 
Recently, a reconfigurable Self-Organizing Learning Array 
named SOLAR was proposed [4].  SOLAR is composed of 
locally pre-wired processing units called neurons.  Each neuron 
learns from outputs of other connected neurons or directly from 
the external inputs. 
 
During training, SOLAR organizes its structure according to the 
input training data.  Each neuron is controlled by a threshold-
control-input (TCI), which decides if this neuron participates in 
learning for the incoming data at a given time.  Neurons learn in 
parallel by calculating and obtaining the optimum information 
index.  Information from each neuron, such as selected 
connection and neuron’s function, is collected to form the final 
structure to classify test data.  Final voting is done by collecting 
different probabilities of a particular test data belonging to 
different classes and calculating the final result with a weight 
function. 
 
This paper is organized as follows:  Section 2 describes the 
structure of SOLAR network.  Section 3 presents symbolic values 
problem and its solution.  This self-organization principle of 
SOLAR is discussed in Section 4.  A real world classification 
example is presented in Section 5.  Finally, a conclusion is given 
in Section 6. 
 
2. System Structure of SOLAR 
 
SOLAR is an electronic system modeled on the biological brain 
structure.  The basic element of the SOLAR system is called 
neuron, which is a small processing unit.  This system has a feed 

forward organization in which outputs of earlier generated 
neurons feed the inputs of later generated ones.  This avoids the 
unexpected input signal increase, which may cause system 
instability.  The inputs of first generated neurons are connected to 
the primary data inputs of the learning array.  Also, since 
biological neurons tend to interact with neighboring neurons [5], 
all initial interconnections between neurons in SOLAR are 
pseudo randomly pre-wired to near neurons with higher 
probability based on the Mahalanobis distance. 
 
There are two kinds of inputs for each neuron: threshold-control-
input (TCI) and data input.  During training, each neuron has the 
capability to select input data source from the initially wired 
connections and perform different transformation functions (liner 
and nonlinear) on selected input data, while TCI decides whether 
the neuron should perform calculation on the incoming data or 
ignore it.  In this architecture, every neuron can learn 
concurrently.  Neurons select a transformation function that can 
result in the maximum information index based on the entropy 
calculation.  They also select the threshold value for the output 
signals.  The output of one neuron becomes an input of other 
connected neurons. 
 
Once a neuron finished training, data selection, transformation 
function and the threshold value for the output with the optimum 
entropy value are memorized.  For every training data, the same 
learning steps are repeated.  After the whole system finished 
training, SOLAR sets its self-organized structure, and it is ready 
for classification.  Some of the neurons may be left disconnected 
because their input space has too little information to learn from.  
These neurons can be reused if needed. 
 
3. Neurons’ Input Data 
 
Input data is presented to SOLAR with n input features.  Each 
feature represents one dimension of the whole input space.  At 
each clock cycle, one set of n dimensional data is buffered to the 
input layer.  The jth input data with n features can be represented 
by a vector: Xj=[xj

1, xj
2 … xj

n].  As a result, the whole set of input 
data can be described by a matrix as follows. 
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where t is the length of the whole input data set. 
 
The problem of databases containing missing data and symbolic 
values is very common.  The incomplete data can cause problems 
for neuron operations, and assigning arbitrary values to represent 
symbols may hamper the classification effort.  Therefore, blanks 
and symbols must be replaced by meaningful numerical values 

(3-1) 



with some transformations.  Missing data problem has been 
addressed in [6], and the symbolic values assignment is discussed 
next. 
 
If the input matrix Χ  contains symbolic (non-numerical) data, 
this data can be assigned numerical values so that they are best 
correlated to the existing data.  This can be accomplished with 
minimization of the determinant of the resulting covariance 
matrix of Χ . 
 

[ ]txnsr ΧΧ=Χ ~  
where 

sΧ~ is a sub-matrix with all symbolic values 

rΧ is a sub-matrix with all numerical values 
                 t is the number of samples 
                 n is the number of features 
 
To minimize ( )[ ]ΧCovdet , the symbolic values, should be 
assigned so that the numerical vector Xs is a linear combination 
of vectors Xr. 
 
Xs = Xr * α     ,     Xs ∈ 

sΧ~  

where α is a nonzero linear combination vector. 
 
Since this problem may not have an exact solution, the norm of 
the error vector E is minimized, where 
 
E = Xs – Xr * α 
 
Xs can be replaced by the product of a binary matrix A and a 
vector of its symbols H. 
 
Xs = AH 
 
which gives the error vector 
 
E = AH – Xr α 
 
Since the objective is to minimize the error, values of H can be 
obtained by applying pseudo-inverse of A. 
 
H = pinv(A)Xrα 
 
This is a desired solution with α=1 if Xr has only one single 
column.  If Xr has more than one column, H can be determined 
by minimizing the norm of the error function, shown in equation 
(3-8) and setting its derivatives to zero. 
 
|E|2 = ET E ≥ 0 
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Let us define matrix B as below and partition it into symbolic and 
numerical parts Bs and Br. 
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The minimum error norm is obtained by solving the following 
equation. 
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Br can be factorized using QR factorization and its orthogonal 
matrix Q will be divided according to the rank of its upper 
triangular matrix R. 
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Value of H can be solved by using equation (3-15) since it does 
not depend on α.  However, H is always zero if QT

2 Bs is a full 
rank matrix.  A single variable in H has to be set, such as H1=1. 
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where C1 is the first column of QT
2 Bs 

 
Then, 

s~Η  can be obtained applying pseudo-inverse of 
sC~ , and H 

can be solved as follows. 
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The following example illustrates the assignment of symbolic 
values when the rank of numerical sub-matrix Xr is larger than 
one.  The input matrix is given as Χ . 
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A binary matrix A which represents symbolic values and the sub-
matrix Xr which contains all numerical values are  
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Since Xr has more than one column, H can be determined by 
minimizing the norm of the error function and setting its 
derivatives to zero as shown in equation (3-8).  To minimize the 
error norm, the matrix B can be obtained as defined in (3-11). 
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Then, QT

2 is obtained using QR factorization of Br and QT
2 Bs is 

equal to  
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H, the normalized vector of symbolic values, can now be 
computed applying pseudo-inverse of 

sC~  (3-17). 
 
H = [0.2456   0.2824   0.6800   0.6246   0.0862]T 

 
4. Self-Organization Principles 
 
Once a network has been designed and its input data is prepared, 
it is ready to be trained.  Unlike neural networks which have well 
defined organization of interconnection and neuron functions, 
SOLAR evolves its connections, neuron control, function and 
threshold during the learning phase.  This is the reason the 
network is named the self-organizing array. 
 
During learning, neuron first counts the total amount of training 
data nt.  Similar to any sequential machines, each neuron 

performs an operation on the selected inputs (or single input) at 
the rising edge of the system clock.  The result may become the 
system output or an input of other neurons.  If the TCI associated 
with a particular input data is high, the result of the operation is 
compared against a set threshold value.  This means that this 
input data is within the subspace where the current neuron is 
learning.  If TCI is zero, no comparison takes place since this 
particular input data is outside the range of the subspace where 
the neuron is learning.  Counters in each neuron controlled by its 
TCI count three sets of numbers: 
 

1. Amount of data that satisfies the threshold value: ns 
2. Amount of data belonging to a class that satisfies the 

threshold value: nsc 
3. Amount of data belonging to a class that does not 

satisfy the threshold value: nsic 
 
By doing so, threshold value divides the neuron’s input space into 
two subspaces.  The quality of learning of each neuron can be 
calculated statically by computing the information index. 
 
In order to calculate information index, finding the probabilities 
of training data which falls into each subspace is required. 
 

1. Probability of a class satisfying threshold: 
t

sc
sc n

n
=Ρ  

2. Probability of a class not satisfying threshold: 

t

sic
sic n

n
=Ρ  

3. Subspace probability (pass threshold): 
t

s
s n

n
=Ρ  

4. Complementary subspace probability (do not pass 
threshold): ssi Ρ−=Ρ 1  

5. Class probability: 
t

c
c n

n
=Ρ  

With these calculated probabilities, information index can be 
obtained from equation (2-33): 
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Different combination of inputs, transformation operations and 
TCIs can result in different information index values.  Neurons 
perform information index calculation for different combinations, 
and the maximized result is obtained in order to provide an 
optimum separation of the input training data.  When the index 
value becomes “1”, it indicates that the neuron has solved its 
problem completely although it does not mean any test data can 
be classified correctly all the time. 
 
Threshold value is also selected at where the maximum of 
information index value is located.  Transformation function 
values are compared against threshold to separate the input space.  
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Figure 1 shows how the subtraction with a threshold set to -91 
separates two classes. 
 

 
 Figure 1. Input space Separation Using Subtraction Function 

 
5. Real world classification 
 
To illustrate the performance of SOLAR, a real world dataset, 
which studies if an individual’s annual income exceeds $50,000, 
was used.  This dataset is available from University of California 
at Irvine at “ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/adult/”.  Training data and testing data are given and 
already separated from the whole dataset.  There is a total 45,225 
cases and they are divided into two classes.  All missing data and 
symbolic values in the dataset are recovered and replaced with 
numerical values using methods that have been discussed before.   
Since initial interconnections in SOLAR are pseudo randomly 
generated based on Mahalanobis distance, repeating the training 
and testing procedure 9 times and averaging the result gives a 
better statistical representation of SOLAR performance.  Figure 2 
illustrates one of the self-organized SOLAR structures after 
learning. 
 

 
Figure 2. Self-Organized Network Structure for Adult Income 

Problem 
 

Several traditional classification algorithms have been analyzed 
with this income dataset and their rates of miss classification 
were reported in the literature and are listed in Table 1 together 
with result for SOLAR.  Although SOLAR does not have the best 
performance, it performs relatively well for a network that was 
not designed for any particular kind of classification problem. 
 

Table 1. Miss Rate of Adult Income Classification 
Algorithm Error Rate 

FSS Naïve Bayes 0.1405 
NBTree 0.1410 

C4.5-auto 0.1446 
IDTM (Decision table) 0.1446 

HOODG / SOLAR 0.1482 
C4.5 rules 0.1494 

OC1 0.1504 
C4.5 0.1554 

Voted ID3 (0.6) 0.1564 
CN2 0.1600 

Naïve-Bayes 0.1612 
Voted ID3 (0.8) 0.1647 

T2 0.1687 
1R 0.1954 

Nearest-neighbor (3) 0.2035 
Nearest-neighbor (1) 0.2142 

Pebls Crashed 
 
6. Conclusion 
 
This paper discusses a concept of self-organized learning array 
for programmable hardware realization.  SOLAR demonstrates 
several characteristics, which minimizes the numbers of 
interconnections and optimizes its performance.  Neurons are 
locally connected which saves expensive space in VLSI design.  
It is self-organized and supports online training, which eliminates 
the tremendous off-line computation and its supportive software; 
each neuron in the array learns from the data concurrently and 
organizes its structure using information index.  Testing results 
show its capability to solve real life problem.   
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