
Design of a Self-Organizing Learning Array System

Janusz Starzyk Tsun-Ho Liu
School of Electrical Engineering and Computer Science

Ohio University
Athens, Ohio 45701, U. S. A

Abstract:

This paper discusses a concept of Self-Organizing Learning
Array developed for programmable hardware realization. This
system is designed for solving an unspecified machine-learning
problems such as classification and recognition. Basic design of
the array including neurons interconnections and organization is
described. Symbolic values assignment method and self-
organizing principle are also discussed in this paper.

1. Introduction

Evolvable Hardware is a promising approach toward autonomous
and on-line reconfigurable machines [1]. They use genetic
algorithms to automatically find the best hardware configuration.
An implementation of genetically based reconfigurable neural
network was presented in [2]. In data processing, Self-
Organizing maps based on Kohonen learning algorithm are used
for clustering of high-dimensional data [3]. This paper discusses
an alternative method for automatic online reconfigurable
machines with self-organizing principle.

Recently, a reconfigurable Self-Organizing Learning Array
named SOLAR was proposed [4]. SOLAR is composed of
locally pre-wired processing units called neurons. Each neuron
learns from outputs of other connected neurons or directly from
the external inputs.

During training, SOLAR organizes its structure according to the
input training data. Each neuron is controlled by a threshold-
control-input (TCI), which decides if this neuron participates in
learning for the incoming data at a given time. Neurons learn in
parallel by calculating and obtaining the optimum information
index. Information from each neuron, such as selected
connection and neuron’s function, is collected to form the final
structure to classify test data. Final voting is done by collecting
different probabilities of a particular test data belonging to
different classes and calculating the final result with a weight
function.

This paper is organized as follows: Section 2 describes the
structure of SOLAR network. Section 3 presents symbolic values
problem and its solution. This self-organization principle of
SOLAR is discussed in Section 4. A real world classification
example is presented in Section 5. Finally, a conclusion is given
in Section 6.

2. System Structure of SOLAR

SOLAR is an electronic system modeled on the biological brain
structure. The basic element of the SOLAR system is called
neuron, which is a small processing unit. This system has a feed

forward organization in which outputs of earlier generated
neurons feed the inputs of later generated ones. This avoids the
unexpected input signal increase, which may cause system
instability. The inputs of first generated neurons are connected to
the primary data inputs of the learning array. Also, since
biological neurons tend to interact with neighboring neurons [5],
all initial interconnections between neurons in SOLAR are
pseudo randomly pre-wired to near neurons with higher
probability based on the Mahalanobis distance.

There are two kinds of inputs for each neuron: threshold-control-
input (TCI) and data input. During training, each neuron has the
capability to select input data source from the initially wired
connections and perform different transformation functions (liner
and nonlinear) on selected input data, while TCI decides whether
the neuron should perform calculation on the incoming data or
ignore it. In this architecture, every neuron can learn
concurrently. Neurons select a transformation function that can
result in the maximum information index based on the entropy
calculation. They also select the threshold value for the output
signals. The output of one neuron becomes an input of other
connected neurons.

Once a neuron finished training, data selection, transformation
function and the threshold value for the output with the optimum
entropy value are memorized. For every training data, the same
learning steps are repeated. After the whole system finished
training, SOLAR sets its self-organized structure, and it is ready
for classification. Some of the neurons may be left disconnected
because their input space has too little information to learn from.
These neurons can be reused if needed.

3. Neurons’ Input Data

Input data is presented to SOLAR with n input features. Each
feature represents one dimension of the whole input space. At
each clock cycle, one set of n dimensional data is buffered to the
input layer. The jth input data with n features can be represented
by a vector: Xj=[xj

1, xj
2 … xj

n]. As a result, the whole set of input
data can be described by a matrix as follows.

=

Χ

Χ
=Χ

t
n

tt

n

t xxx

xxx

...
...
...

...

21

11
2

1
1

1

where t is the length of the whole input data set.

The problem of databases containing missing data and symbolic
values is very common. The incomplete data can cause problems
for neuron operations, and assigning arbitrary values to represent
symbols may hamper the classification effort. Therefore, blanks
and symbols must be replaced by meaningful numerical values

(3-1)

with some transformations. Missing data problem has been
addressed in [6], and the symbolic values assignment is discussed
next.

If the input matrix Χ contains symbolic (non-numerical) data,
this data can be assigned numerical values so that they are best
correlated to the existing data. This can be accomplished with
minimization of the determinant of the resulting covariance
matrix of Χ .

[]txnsr ΧΧ=Χ ~
where

sΧ~ is a sub-matrix with all symbolic values

rΧ is a sub-matrix with all numerical values
 t is the number of samples
 n is the number of features

To minimize ()[]ΧCovdet , the symbolic values, should be
assigned so that the numerical vector Xs is a linear combination
of vectors Xr.

Xs = Xr * α , Xs ∈

sΧ~

where α is a nonzero linear combination vector.

Since this problem may not have an exact solution, the norm of
the error vector E is minimized, where

E = Xs – Xr * α

Xs can be replaced by the product of a binary matrix A and a
vector of its symbols H.

Xs = AH

which gives the error vector

E = AH – Xr α

Since the objective is to minimize the error, values of H can be
obtained by applying pseudo-inverse of A.

H = pinv(A)Xrα

This is a desired solution with α=1 if Xr has only one single
column. If Xr has more than one column, H can be determined
by minimizing the norm of the error function, shown in equation
(3-8) and setting its derivatives to zero.

|E|2 = ET E ≥ 0

[] 0
2

=

−
Η

ΑΧΑ=
Η∂
Ε∂ Τ

αr

[] 0
2

=

−
Η

ΑΧΧ=
∂
Ε∂ Τ

αα r

Let us define matrix B as below and partition it into symbolic and
numerical parts Bs and Br.

[] []rs
rrr

r
rT

r

ΒΒ=

ΧΧΑΧ
ΧΑΑΑ

=ΑΧ

Χ
Α

=Β ΤΤ

ΤΤΤ

*

The minimum error norm is obtained by solving the following
equation.

[] 0=

−
Η

ΒΒ
αrs

Br can be factorized using QR factorization and its orthogonal
matrix Q will be divided according to the rank of its upper
triangular matrix R.

=

−
Η

Β
Β

Τ

Τ

0
0

00
21

2

1

α
RR

Q
Q

s

s

[]

=ΗΒ

=

+ΗΒ

Τ

Τ

0

0

2

2

1
211

s

s

Q

RRQ
α
α

Value of H can be solved by using equation (3-15) since it does
not depend on α. However, H is always zero if QT

2 Bs is a full
rank matrix. A single variable in H has to be set, such as H1=1.

() [] 0
~

1
~1

~

1
2 =

Η
Η

=

Η
Η

Β
s

s
s

s
T CCQ

where C1 is the first column of QT
2 Bs

Then,

s~Η can be obtained applying pseudo-inverse of
sC~ , and H

can be solved as follows.

()

()

−

−

=Η

1~

1~

1

1

CCpinv
norm

CCpinv

s

s

The following example illustrates the assignment of symbolic
values when the rank of numerical sub-matrix Xr is larger than
one. The input matrix is given as Χ .

Τ

−−

=Χ

1224240221

5.91097963535.1
10989843421

cccddbbaae

A binary matrix A which represents symbolic values and the sub-
matrix Xr which contains all numerical values are

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

(3-7)

(3-8)

(3-9)

(3-10)

(3-11)

(3-12)

(3-13)

(3-14)

(3-15)

(3-16)

(3-17)

(3-18)

Τ

=Α

0000000001
0001100000
1110000000
0000011000
0000000110

and

Τ

−−
=Χ

1224240221
5.91097963535.1

10989843421

r

Since Xr has more than one column, H can be determined by
minimizing the norm of the error function and setting its
derivatives to zero as shown in equation (3-8). To minimize the
error norm, the matrix B can be obtained as defined in (3-11).

−

−
=Β

54603312344
605.4825.4525.1165.2898
335.4524361172776
15.1110000
2161702000

35.282700300
49700020
48600002

Then, QT

2 is obtained using QR factorization of Br and QT
2 Bs is

equal to

=ΒΤ

0.06630.33300.05971.4576-0.6064
0.06380.59070.6420-0.13750.0460
0.02870.71591.1996-0.94040.3676
0.98230.02630.0785-0.1037-0.0669-
0.01711.13011.0347-0.08090.0461-
0.0822-0.0021-0.4622-0.2294-1.6097

2 sQ

H, the normalized vector of symbolic values, can now be
computed applying pseudo-inverse of

sC~ (3-17).

H = [0.2456 0.2824 0.6800 0.6246 0.0862]T

4. Self-Organization Principles

Once a network has been designed and its input data is prepared,
it is ready to be trained. Unlike neural networks which have well
defined organization of interconnection and neuron functions,
SOLAR evolves its connections, neuron control, function and
threshold during the learning phase. This is the reason the
network is named the self-organizing array.

During learning, neuron first counts the total amount of training
data nt. Similar to any sequential machines, each neuron

performs an operation on the selected inputs (or single input) at
the rising edge of the system clock. The result may become the
system output or an input of other neurons. If the TCI associated
with a particular input data is high, the result of the operation is
compared against a set threshold value. This means that this
input data is within the subspace where the current neuron is
learning. If TCI is zero, no comparison takes place since this
particular input data is outside the range of the subspace where
the neuron is learning. Counters in each neuron controlled by its
TCI count three sets of numbers:

1. Amount of data that satisfies the threshold value: ns
2. Amount of data belonging to a class that satisfies the

threshold value: nsc
3. Amount of data belonging to a class that does not

satisfy the threshold value: nsic

By doing so, threshold value divides the neuron’s input space into
two subspaces. The quality of learning of each neuron can be
calculated statically by computing the information index.

In order to calculate information index, finding the probabilities
of training data which falls into each subspace is required.

1. Probability of a class satisfying threshold:
t

sc
sc n

n
=Ρ

2. Probability of a class not satisfying threshold:

t

sic
sic n

n
=Ρ

3. Subspace probability (pass threshold):
t

s
s n

n
=Ρ

4. Complementary subspace probability (do not pass
threshold): ssi Ρ−=Ρ 1

5. Class probability:
t

c
c n

n
=Ρ

With these calculated probabilities, information index can be
obtained from equation (2-33):

I =

() () () ()

()c
c

c

sisi
sic

sicsicss
sc

scsc

ΡΡ

 ΡΡ−ΡΡ+

 ΡΡ−ΡΡ
−

∑
∑∑

log

loglogloglog
1

Different combination of inputs, transformation operations and
TCIs can result in different information index values. Neurons
perform information index calculation for different combinations,
and the maximized result is obtained in order to provide an
optimum separation of the input training data. When the index
value becomes “1”, it indicates that the neuron has solved its
problem completely although it does not mean any test data can
be classified correctly all the time.

Threshold value is also selected at where the maximum of
information index value is located. Transformation function
values are compared against threshold to separate the input space.

(3-19)

(3-20)

(3-21)

Bs Br

1C

(3-22)

sC ~

(3-23)

Figure 1 shows how the subtraction with a threshold set to -91
separates two classes.

 Figure 1. Input space Separation Using Subtraction Function

5. Real world classification

To illustrate the performance of SOLAR, a real world dataset,
which studies if an individual’s annual income exceeds $50,000,
was used. This dataset is available from University of California
at Irvine at “ftp://ftp.ics.uci.edu/pub/machine-learning-
databases/adult/”. Training data and testing data are given and
already separated from the whole dataset. There is a total 45,225
cases and they are divided into two classes. All missing data and
symbolic values in the dataset are recovered and replaced with
numerical values using methods that have been discussed before.
Since initial interconnections in SOLAR are pseudo randomly
generated based on Mahalanobis distance, repeating the training
and testing procedure 9 times and averaging the result gives a
better statistical representation of SOLAR performance. Figure 2
illustrates one of the self-organized SOLAR structures after
learning.

Figure 2. Self-Organized Network Structure for Adult Income

Problem

Several traditional classification algorithms have been analyzed
with this income dataset and their rates of miss classification
were reported in the literature and are listed in Table 1 together
with result for SOLAR. Although SOLAR does not have the best
performance, it performs relatively well for a network that was
not designed for any particular kind of classification problem.

Table 1. Miss Rate of Adult Income Classification
Algorithm Error Rate

FSS Naïve Bayes 0.1405
NBTree 0.1410

C4.5-auto 0.1446
IDTM (Decision table) 0.1446

HOODG / SOLAR 0.1482
C4.5 rules 0.1494

OC1 0.1504
C4.5 0.1554

Voted ID3 (0.6) 0.1564
CN2 0.1600

Naïve-Bayes 0.1612
Voted ID3 (0.8) 0.1647

T2 0.1687
1R 0.1954

Nearest-neighbor (3) 0.2035
Nearest-neighbor (1) 0.2142

Pebls Crashed

6. Conclusion

This paper discusses a concept of self-organized learning array
for programmable hardware realization. SOLAR demonstrates
several characteristics, which minimizes the numbers of
interconnections and optimizes its performance. Neurons are
locally connected which saves expensive space in VLSI design.
It is self-organized and supports online training, which eliminates
the tremendous off-line computation and its supportive software;
each neuron in the array learns from the data concurrently and
organizes its structure using information index. Testing results
show its capability to solve real life problem.

Reference:

[1] T.Higuchi, T. Niwa, T. Tanaka, H. Iba, H. Garis, and T.
Furuya, “Evolvable Hardware with Genetic Learning,” Proc.
Simulation of Adaptive Behavior, 1992.
[2] M. Murakawa, S. Yoshizawa, I. Kajitani, X. Yao, N.
Kajihara, M. Iwata, T. Higuchi, “The GRD Chip: Genetic
Reconfiguration of DSPs for Neural Network Processing,” IEEE
Trans. on Computers, vol. 48, no. 6, 1999.
[3] T. Kohonen, “The Self-Organizing Map,” Neurocomput., vol.
21, pp. 1-6, 1998.
[4] J. A. Starzyk and Y. Guo, “Entropy-Based Self-Organized
ANN Design Using Virtex FPGA,” The Int. Conf. on
Engineering of Reconfigurable Systems and Algorithms, Las
Vegas, NV, June, 2001
[5] J. E. Dowling, “Creating Mind: How the Brain Works,”
W.W.Norton & Company, Inc., New York, 1998.
[6] J. A. Starzyk and Z. Zhu, “Software Simulation of a Self-
Organizing Learning Array System,” Int. Conf. on Artificial
Intelligence and Soft Computing, July, 2002.

