
A SELF-ORGANIZING LEARNING ARRAY AND
 ITS HARDWARE-SOFTWARE CO-SIMULATION

Janusz Starzyk* and Yongtao Guo*

Abstract −− In this paper, a self-organizing learning array
(SOLAR) and its hardware-software (HW/SW) co-simulation
are presented. In SOLAR, every neuron maximizes its
information index during feed forward self-organizing learning.
SOLAR was simulated on benchmark examples and showed
good ability to learn exceeding the performance of many
traditional classifier algorithms. A simple HW/SW co-simulation
method was adopted to avoid the use of two simulators and
complex inter-process communication. In this co-simulation
method, software is modelled using behavioral, and hardware
using structural hardware description language (VHDL) models.
Their interface is also modelled in VHDL.

1 INTRODUCTION

Artificial Neural Networks (ANNs), derived from the
field of neuroscience, display interesting features such
as parallelism, adaptation, and ability to learn.
Classifier design is an important application of ANNs
in such areas as metrology, microbiology, and radar
based target recognition. There are many methods to
implement classifier including learning machines [1],
neural networks [2] and statistical algorithms [3].
SOLAR is a parallel signal processing hardware with
relatively sparse interconnections between processing
components (neurons). It differs from classical ANNs
in the way it is organized and how it learns. Its most
important advantage over ANNs is that it scales well in
hardware. While classical ANNs are wire dominated
(wiring area grows as a cube of the number of
neurons), SOLAR’s interconnection area grows almost
linearly with the number of neurons. SOLAR classifier
performed well in comparison with many specialized
machine learning algorithms and outperformed all
ANNs [4]. Its idea is derived from both neural
networks and information theory. SOLAR hardware
organization was reported in our pervious work [5]. It
will be explored further in this paper.

 Considering SOLAR has complex self-organizing
architecture and performs very data-intensive
computing, we adopted hardware-software co-design
approach. In hardware-software co-design, simulation
is performed by combining a specific software code
(for instance, C++ program, assembly code, or
MATLAB routines) with structural hardware models.
A hardware description language (like VERILOG or
VHDL) is used for hardware modelling and
simulation, so typically, at the design of mixed-mode
systems (with hardware and software components), a
VHDL code is combined with other software for
system prototyping and debugging. This is often an

error-prone routine requiring filters to handle various
formats of data and processed signals. In implementing
SOLAR architectures, we developed a hardware-
software co-simulation approach to model hardware
and software in the same hardware description
language program. This approach is simpler than
Bassam’s co-simulation method [6] since we do not
need to consider the software synthesis using their
proposed S-graph-based synthesizer, where the
software part would be transferred to C language. We
focus on the system simulation to verify the critical
timing requirement and attain optimal hardware-
software participation. In this co-simulation, the
software part is implemented using behavioral VHDL
description. This part is not synthesizable in FPGA.
Structural VHDL is employed to implement neuron’s
training architecture and this part is synthesizable in
FPGA. This co-simulation method simplifies the
simulation environment and speeds up SOLAR
prototyping.

 The rest of this paper is organized as follows. In
Section 2, the self-organizing learning array
architecture is discussed. Section 3 deals with the fast
HW/SW co-simulation using behavioral and structural
VHDL description. A summary is given in Section 4.

2 SOLAR ARCHITECTURE

In SOLAR, we adopt feed forward network structure
for its stability and fast learning. SOLAR architecuture
is divided into three main layers as shown in Fig. 1–
input, processing and output layers. The
interconnections are randomly initialized at the
beginning of training. The basic building blocks of the
arcitecture are the small neurons, trained using the
entropy-based algorithm [4].

∗ School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 4570, U.S.A.
E-mail: [starzyk, gyt]@bobcat.ent.ohiou.edu, tel.: +001740 593 1580, fax: +001740 593 0007.

Figure1: Basic SOLAR structure

 There are two types of connections to every neuron.
The local connections are asscociated with higher
connection probabilities, and the remote connections
have smaller probilities. In the SOLAR architecture,
statistically determined Manhattan distance is used to
set the initial connections. In the feed forward
structure, the neuron located at a given row and
column should always be connected to the one at the
same row and previous column. The next nearest
neurons are those located at two neurons away from
the connecting neuron with certain probability and the
remote neurons are randomly selected from all the
previous layers including the primary inputs. This
interconnection approach applies to both the neuron’s
input signals as well as the neuron’s control signals
which define the learning subspace for each neuron.

3 SOLAR CO-SIMULATION USING VHDL

To cope with both the significant NRE cost of custom
hardware and the limited programmable hardware
resource of FPGAs, the SOLAR implementation is
based on tightly coupled conventional processor
(software) with configurable logic (hardware) on a
single PCI-based VIRTEX XCV800 FPGA card [7].
The software part runs on the host PC. The time
consuming part – neuron’s self-organizing learning
runs in the FPGA chip on the PCB board. The
interface between them is via PCI bus. To develop this
system, we need real-time test environment to co-
verify the HW/SW parts and their interface. This
method is time-consuming and it is hard to monitor the
interface signal timing.

 In this paper, we use the VHDL simulation to
explore feasibility of virtual HW/SW prototypes
including their interface and then map the resulting
SOLAR onto a mixed HW/SW architecture to model
the real-time system, and to obtain the operating
system characteristics. The existing co-simulation
methods contain at least two simulators for both
software and hardware respectively integrated through
comple x inter-process communication. Those methods
lack portability and change from simulator to simulator
depending on both the hardware and software
programming languages. To design SOLA R, we have
developed a fast co-simulation method to directly
simulate the whole HW/SW system. This method not
only facilitates interactive partitioning and complete
exploration of the whole system prior to its
implementation, but also avoids using two simu lators
and complex inter-process communication. In the co-
simulation environment, we model software using
behavioral VHDL description, hardware using
structural VHDL building blocks and HW/SW
interface using VHDL to describe a finite state
machine (FSM) plus input/output FIFOs at RTL level.
We can decompose SOLAR co-simulation system into
three parts as shown in Fig. 2:

q System architecture modelling . This is the

software part in the co-simulation using
behavioral VHDL description. All of the
functional behaviour of the system consisting of
many functions is organized in the hierarchical
packages as shown in Fig. 3. All functions and
signal variables in the packages are shared, and
program execution is functionally interleaved. The
lower level package is the description for system
input and output, initialization and update of the
memory element in the network. The initialization
is used to build up the 2D neural network mesh
architecture with randomly interconnected
neurons, set up the threshold update step, and
assign initial signal values for system simulation.
The higher level packages encapsulate new system
functions based on the functions described by the
lower level packages. The highest design level
function representing the software part in the
overall system implements the system
organization and management.

q A single neuron’s self-organizing learning

architecture modelling. This is the hardware part
in the co-simulation using synthesizable structural

Figure 3: Hierarchy architecture for software model

Figure 2: Co-simulation system decomposition

Interface
modelling

(RTL VHDL)
 Main

OP

Initialization

File I/O

SOLAR

Training

Over
No

Yes

System architecture modelling (Behavioral VHDL)

Input
FIFO

Output
FIFO

FS
M

FS

M

In
te

rf
ac

e

Control

OP

EBE REG FIFO

M
E

M

Self-organizing learning architecture (Structural VHDL)

VHDL description to model the self-organizing
learning process of a single neuron. The neuron’s
implementation architecture is shown in Fig. 4.
Data fed from the interface represents the single
neuron’s learning subspace. After input data is
read into the memory (M) via interface FIFO, the
main controller launches optimal threshold
searching collaborated by function producing
module (OP) and ALU. Finally, the optimal
threshold and corresponding information index is
stored in several registers (R). These optimal
parameters and learning-produced new subspace
are read back through rapid DMA transfer
requested by the system level functions (software)
for storage and further processing.

q Interface modelling. This is the HW/SW

interface part in the co-simulation implemented by
FSM and several input/output FIFOs as shown in
Fig. 5. This part bridges the gap between the
system architecture modelling (software) and the
single neuron’s self organizing learning
architecture (hardware). This part is implemented
by a six-state FSM and three FIFOs (six ports) for
training, class and other data transfer between
hardware and software parts. The FIFO status
signals and read/write signals are trigged either by
structural VHDL (hardware) or by behavioral
VHDL (software) description via FSM to
implement the HW/SW communication.

Co-Simulation Results

We used a single VHDL simulator to simulate SOLAR
using the described co-simulation model. As Fig. 6
shows, the HW/SW interface is implemented based on
three FIFOs -input, output and address strobe. The
communication between software and hardware is
controlled by a simple FSM – signal ‘SM_STATE’
plus those three FIFOs. Some FSM states read the data
from software part and send the formatted data to
hardware part via input FIFO. Conversely, the other
FSM sates read the output FIFO to receive the
processed data from the hardware part and send them
to software part. The address or data is decided by the
address strobe FIFO. This interface based on FSM and
FIFO only represents the simplified PCI LOGICORE
which is part of a separate firmware connecting PCI
bus to FPGA chip. Using co-simulation, we can model
functionality essential for system operation leaving out
unessential details of the interface protocol.

 The interface process continues until the training
process is over as shown in a snapshot simulation
waveform in Fig. 7. The training example uses 2
classes in 2-dimensional input space with 1818
training data. Different neurons have different learning
subspaces resulting from pseudorandom wiring. Each
neuron processes the training data subspace selecting
its inputs from the initial pseudorandom selection. It
optimises the information index in its learning
subspace, setting its threshold, and transformation
function. It calculates information deficiency and
defines its output subspace threshold clock. This clock
is used as an input clock of subsequent neuron, which
responds to data from the neuron output space. The
illustrated simulation waveform represents only one
particular neuron’s self organizing learning in a
particular learning subspace. The whole system
synchronization is controlled by the system modelling
part (software). Through the interface, software model
sends data to the input FIFOs. The input FIFOs status
signals trigger the hardware model to fetch the input

Figure 4: Single neuron’s learning

D

REG
CTRL

R

R

R

R
E

FIFO/DMA

MAIN
CONTROLLER

O
P

1024X32 FIFO

op

op

 IN
T

E
R

FA
C

E

M
A

L
U

M

cl

as
s

o
th

er

1

2

3

4

5

6

So
ft

w
ar

e
(b

eh
av

io
ra

l V
H

D
L

)

Interface

FIFOs

memory
module

C
on

tr
ol

Others

Figure 5: Interface modelling using FSM&FIFO

H
ar

d
w

ar
e

(s
tr

u
ct

u
ra

l V
H

D
L

)

tr
ai

ni
ng

Figure 6: HW/SW interface simulation

data. After receiving all the data, the hardware module
enters into the self-organizing learning stage. During
this stage, the hardware module still fetches the control
commands from the input FIFO to synchronize the
self-organizing learning with software module. Finally,
the optimal learned parameters and a new subspace are
achieved and the output FIFOs are used as buffers to
send the learned results out to software module. In this
simulation waveform, the signal “Opt_Threshold” and
“ID” represent the optimal threshold and the
corresponding information index for this particular
training neuron in its learning subspace.

 The hardware -software co-simulation results for
every neuron correspond to the MATLAB simulation
results as far as the final optimal learning parameters
except for the difference in data format. Using this co-
simulation method, we can promptly verify the
hardware-software partition, system functionality,
interface efficiency and etc., which saves us much real
prototyping time of the entire system.

4 SUMMARY

In contrast to more traditional neural network
classifiers or self-organization based on clustering
approaches, this paper discusses an information theory
based hardware self organization for machine learning.
Dynamically reconfigurable architectures [8] can be
quickly reconfigured by reading pre-stored
configuration bits from memory. SOLAR is similar to
these structures, except its reconfiguration is a result of
learning, rather than a result of pre-stored architecture.
This way it is a new class of learning machines and at
the same time a new type of reconfigurable hardware.
SOLAR simulation proved it to be advantageous over
many traditional learning machines, neural network
and statistical methods. Due to the computation-
intensive process and large storage requirements, we

adopted hardware-software co-design to prototype the
system on both microprocessor (software) and a single
XILINX VIRTEX XCV800 FPGA (hardware). We
present a mechanism for co-simulation of the
synthesized hardware and software using a single
VHDL simulator. This technique uses behavioral
VHDL description to simulate the self-organizing
system and to synchronize and control the
synthesizable learning neuron’s architecture using
structural VHDL description. This co-simulation
approach achieves fast simulation speed without
alternating between two (hardware and software)
simulation environments and simplifies hardware and
software partition process. Finally, it speeds up our
hardware-software co-design to prototype the SOLAR
architecture on FPGA.

 This design work is to prototype the simplified self-
organizing learning array on a single FPGA. Future
SOLAR architecture will be based on hundreds of
VIRTEX XCV 1000 FPGAs [9] and is currently under
design evaluation stage. The presented co-simulation
method will benefit the development of such a system.

Reference

[1] Dorigo, M., "Alecsys and the autonomouse:
learning to control a real robot by distributed classifier
systems ," Machine Learning, 19 (3), 209-240, 1995.
[2] R. Anand, G. Mehrotra, C.K. Mohan, and S.
Ranka, “Efficient classification for multiclass
problems using modular neural networks,” IEEE
Transactions on Neural Networks, 6:117–124, 1995.
[3] Miller, D., Rao, A., Rose, K., Gersho, A., “A
global optimization technique for statistical classifier
design,” IEEE Transactions on Signal Processing,
December 1996.
[4] J. A. Starzyk and Z. Zhu, “Software simulation of a
self-organizing learning array system,” the 6th
IASTED Int. Conf. Artificial Intelligence & Soft
Comp (ASC 2002), Canada.
[5] J. A. Starzyk and Y. Guo , “Reconfigurable self-
organized nn design using VIRTEX FPGA,” the Int.
Conf. on Engineering of Reconfigurable Systems and
Algorithms (ERSA 2001), Las Vegas, NV, USA.
[6] Bassam Tabbara, Enrica Filippi, Luciano Lavagno,
Marco Sgroi, Alberto Sangiovanni-Vincentelli, “
Fast hardware-software co-simulation using vhdl
models ,” Design Automation and Test in Europe
(DATE), March, 1999.
[7] Nallatech Ltd, “Ballynuey 2 VIRTEX PCI Card
Users Guide,” 1993-1999.
[8] J. Becker, A. Alsolaim, M. Glesner, and J. Starzyk,
“A parallel dynamically reconfigurable architecture for
flexible application-tailored hardware/software
systems in future mobile communication,” the Journal
of Super Computing, Erratum Vol. 23, 132, 2002.
[9] Xilinx,“Virtex 2.5V FPGA data sheet,” April, 2001.

Figure 7: Single neuron’s training co-simulation

