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Abstract: In this paper, we describe a new 
dynamically reconfigurable neuron hardware 
architecture based on modified Xilinx Picoblaze 
microcontroller and self-organizing learning array 
(SOLAR) algorithm reported earlier. This 
architecture is aiming at hundreds of traditional 
reconfigurable field programmable gate arrays 
(FPGAs) used to build SOLAR learning machine that 
has many advantages over traditional neural network 
hardware implementation. Neurons are optimized for 
area and speed, and the whole system is dynamically 
self-reconfigurable during the runtime. The system 
architecture is expandable to a large multiple-chip 
system.  
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1. Introduction 
 
The immense computing power of the brain is 
believed to be the result of the parallel and distributed 
computing performed by approximately 1011 neurons, 
each with an average of 103 – 104 connections. To 
prototype networks that mimic the biological neurons 
using hardware, currently we can benefit from the 
flexibility of FPGAs used as general-purpose 
processors. During the last decade, numbers of 
approaches have been attempted for the application 
of reconfigurable hardware to the neural networks 
[1,2]. However, these implementations are focused 
on interconnect weight dominated architectures 
which are not easily expandable to multiple FPGAs 
with identical cell architecture. Additionally, often 
their connections and functionalities are fixed and 
predefined by off-line simulation. One exception here 
are FPGA based arrays of identical cells to 
implement evolutionary computing and genetic 
algorithms [3,4,5]. Also, recently cellular neural 
networks used in image processing [6] and their 
hardware implementation have attracted a lot of 
attention.  
 

In this paper, we present a dynamically 
reconfigurable (i.e. during runtime), data-based and 
expandable neuron architecture to implement a self-
organizing learning array (SOLAR). The neuron’s 
functionality is represented in the form of flexible 
connections and organization of an array of evolvable 
signal processing blocks. Each neuron can implement 
various arithmetic and logic functions. The neurons 
can self-reconfigure and use local interconnect for 
maximum performance. 
 
The rest of the paper is organized as follows. Section 
2 talks about our pervious work on SOLAR. Section 
3 deals with the architecture of the dynamically 
reconfigurable neuron. Section 4 reports the 
simulation and experimental results. Finally, Section 
5 concludes this paper. 
 
2. Previous Work 
 
Self-organization is important in artificial neural 
networks (ANNs) and machine learning. Previously, 
a self-organizing learning algorithm that combines 
neural networks and information theory was 
presented in [7]. This entropy-based neural network 
learning algorithm was simulated on standard 
benchmarks and proved to be advantageous over 
many existing neural networks and machine learning 
algorithms in a wide range of technical applications, 
in particular, dealing with noisy or incomplete data. 
Based on this algorithm, we proposed SOLAR 
system which is different from classical ANNs in the 
way it is organized and how it learns. SOLAR self-
organizes its hardware resources to perform 
classification and recognition tasks.  Similar to the 
structure of cellular neural networks, SOLAR has a 
fixed array of elemental processing units acting as 
single neurons, and programmable interconnections 
between them.  Initially, SOLAR neurons are 
randomly connected to previously generated 
neurons.  They learn adaptively using both primary 
inputs and inputs from other neurons.  Controlled by 
signals from other neurons, they perform basic 
transformations of their input signals.  A neuron 



  

parameters and connections are re-configured as a 
result of training, and effectively, SOLAR’s structure 
self-organizes establishing its final wiring.  
 
Earlier work mainly focused on SOLAR algorithm 
simulation [7] and its hardware implementation was 
limited to a single FPGA chip with the cooperation 
from software [8]. This hardware implementation 
explored the adaptability of SOLAR to FPGA 
implementation, although the cellular neuron 
architecture was not fully explored since we utilized 
a shared block memory for all neurons. In SOLAR 
simulation, we adopt feed forward network structure 
for its stability and fast learning. SOLAR 
architecuture is divided into three main layers as 
shown in Fig. 1– input, processing and output layers. 
The interconnections are randomly initialized at the 
beginning of training. The basic building blocks of 
the architecture are the small neurons, trained using 
the entropy-based algorithm [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Neuron Architecture  
 
The hardware architecture presented in this paper is 
based on identical neuron modules. The constant 
Coded Programmable State Machine (KCPSM)[9], 
an 8-bit micro-controller developed by Xilinx Corp., 
has been modified and embedded into the neuron 
module. The module contains circuits to be 
reprogrammed dynamically and to execute new 
programs without affecting other neurons’ 
executions. A block level of a single neuron 
architecture is shown on Fig.2. 
 
The dynamical programming ability is implemented 
by a dual-port 256x16-bit memory. The KCPSM 
reads the current program on one port while the other 
port can be used to store the new program. The two 
ports of the dual-port RAM operate independently, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
and the operation is via shared programming bus 
among all neurons.  Therefore, the self-
reconfiguration process can be performed affecting 
only the current neuron. The rest of the neurons 
inside the chip work with no interruption. The 
configuration time and contents can be controlled by 
software outside the chip or configuration data that is 
located in distributed memory cells in the system. 
The neuron inputs are from either primary inputs or 
any other neurons via a 30 to 1 multiplexer. The 
selection signals are decided by the content of the 
programming dual-port memory via execution of the 
programming commands for the particular neuron. 
 
The single neuron architecture is expanded to 
multiple neurons in a single FPGA chip.  In this 
work, we use a Nallatech board with Xilinx Virtex 
XCV800 FPGA [10]. It can contain an array of up to 
28 neurons organized as shown in Fig.3 (The 480 
Virtex XCV1000 FPGAs we are using to build 3D 
learning machine can contain up to 32 neurons on 
each chip.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These neurons are fully connected via the connection 
bus. The neurons connections are decided by the 

 
Fig. 1 Basic SOLAR structure 
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Fig. 3 Array neurons’ organization 

 

Fig.2 Single neuron’s schematic 
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programming contents of each neuron. The 
programming contents can be dynamically updated 
via the configuration bus or set locally by a neuron. 
The configuration bus used to configure every single 
neuron is divided into 16-bit data, 8-bit address and 
5-bit neuron selection buses. To demonstrate the 
functionality of the 28 neurons, we integrate a PCI 
interface controllers to transfer the data/configuration 
via the PCI bus to neurons.  
 
4. Simulation and Results 
 
In this section, results from prototyping a simple 
SOLAR architecture onto a single VIRTEX FPGA 
chip are discussed.  The neurons self-organizing 
learning process can be configured during chip 
programming or dynamically updated while running. 
To demonstrate this process, a simple example is 
given to illustrate the implementation step of SOLAR 
algorithm. The implementation of the whole SOLAR 
array is organized in a similar way. In this simulation 
example, we have six out of twenty-eight neurons 
configured as shown in Fig.4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The initial connections are shown in solid lines. 
Every neuron simply adds two inputs together, for 
instance, neuron 1 adds input 1 and 2 to its content; 
neuron 3 adds input 2 and the output of neuron 1; 
neuron 5 adds the outputs of neuron 2 and 3, etc. 
Later, we dynamically reconfigure the connections of 
neuron 3 and neuron 5. So neuron 3 has inputs from 
the outputs of neuron 1 and 2, and neuron 5 has 
inputs from the outputs of neuron 3 and 4 shown by 
the dotted lines. The results read out from the chip 
via PCI bus are shown in the Matlab console. In the 
inserted Matlab command console in Fig.4, “initial” 
values show primary input values (6 and 2) and 
neuron outputs for two rows of neurons, while 
“updated” values show inputs and neuron outputs 
after dynamical reconfiguration step. We developed 

the Matlab DLLs to implement the I/O functions 
including read and write. We can see the results from 
the real experiment corresponding to VHDL 
simulation results as shown in Fig. 5. In this plot, 
“Enable_bus” representing the neuron selection 
signal, selects a particular neuron to be configured. 
Once the configuration process for all neurons is 
over, the outputs from neurons are stable and ready to 
be read out. This way we can update any neuron’s 
configuration information without affecting the other 
neurons. In this example, we only update neurons 3 
and 4 connections represented by “Enable_bus” 
content 4 and 5. The simulation results after updating 
correspond to the real experiments read back from 
hardware as the “updated” values in Fig.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The design has been described in VHDL and 
synthesized using the Xilinx XST and the Xilinx 
Alliance tools for place and route. The 
implementation results are summed up in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The implementation results show that this neural 
network architecture realizes a maximum parallel 
instruction throughput of 23.16x28 MIPs with 28 
fully connected neurons. The neuron number is 
limited to 28 since there are only 28 BRAM modules 

 
Fig. 6 Implementation report 

Fig. 5 VHDL simulation for partial configuration 
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on the chip although we still have some other 
resources unused. If we further lower the neuron’s 
program memory size, we can put more neurons on a 
single chip to overcome the BRAM bottleneck. 
 
The mapping result is shown in Fig. 7. We can see 
how the neurons are distributed inside the chip after 
the mapping process. Every single neuron occupies a 
compact and concentrated logic area. The 
compactness depends on the structure-oriented 
hardware design, for instance, we adopt LUTs and 
dedicated multiplexer module in addition to the 
optimized Picoblaze structure to build every single 
neuron.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5. Conclusions 
 
This paper has described the architecture and chip 
implementation of an array of neurons aimed at 
implementation of SOLAR. The self-organizing 
learning is based on a new machine-learning 
algorithm [7] that combines knowledge from neural 
networks (NN) and information theory. SOLAR 
represents a new idea in hardware design of neural 
networks. It is modular and expandable system. It 
also defines a new breed of dynamically 
reconfigurable architectures that can dynamically 
reconfigure themselves. This presented architecture is 
a novel dynamically reconfigurable (via dual-port 
memory) neural network implementation based on 
simple general-purpose processor (KCPSM) 
architecture. Firstly, it has a regular expandable 
parallel architecture. Therefore, its speed and 
learning abilities can be greatly improved comparing 
to software simulation. Secondly, it has data-driven 
self-organizing learning structure based on the 
proposed self-organizing learning algorithm. 
Furthermore, design flexibility is attained by 
exploiting the features of self-reconfigurable neuron 

units.  Finally, hardware reconfigurability is achieved 
in this self-organizing learning array by involving 
reconfigurable routing modules. According to the 
implementation results, this neuron architecture 
realizes a maximum parallel instruction throughput of 
23.16x28 MIPs with 28 fully connected neurons. 
Much higher performance can be achieved by 
connecting more neurons. Hence it can be of practical 
use for embedded hardware applications in signal 
processing, wireless communications, multimedia 
systems, data networks, and so forth. 
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Fig. 7 Mapping result 
 


