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ABSTRACT 
 

Automatic Target Recognition (ATR) of moving targets has recently received increased interest . High Range Resolution 
(HRR) radar mode provides a promising approach which relies on processing high-resolution 'range profiles' over multiple 
look angles. To achieve a robust, reliable 1and cost effective approach for HRR-ATR, a model-based approach is investigated 
in this paper. A subset of the Moving and Stationary Target Acquisition and Recognition (MSTAR) data set was used to 
study robustness and sensitivity issues related to 1D model-based ATR development and performance. The model is built 
based on the statistic analysis of the training data and the dependence of the HRR signature on the azimuth is considered. The 
dependence is approximated by a linear regression algorithm to construct the templates of targets, which gives this approach 
the name of piecewise linear approach (PWL). Compared with the 1D model-based ATR approach developed by the Wright 
Laboratory, results are presented demonstrating an increase of about 10% in the correct identification probability of known 
targets when declaration probability Pdec is above 85% while maintaining a low time-cost.   
Keyword:  ATR, HRR, PWL, piecewise linear 
 

1. BACKGROUD 
 

The SHARP objective is to design, evaluate, test, and demonstrate air-to-ground ATR on the Air Force reconnaissance 
and surveillance platforms.  Target classification is one of the important tasks in target tracking, detection, and recognition 
within a battlefield scenario.  SAR images of moving targets are based on the Doppler effect and quite often are not as clear 
as the images of stationary targets.   Variable terrain and variances of the observed objects make this task more difficult.  The 
problem becomes more challenging for the HRR signatures used in our program, based on following facts:  
• a lack of training data 
• an inherent variability of data signals due to the nature of radar return signals 
 

SAR and HRR images are collected by reconnaissance and surveillance platforms (like Global Hawk).  GMTI (ground 
moving target indicator) system scans a selected strip of the ground and collects SAR images of the moving targets.   In HRR 
mode SAR waveforms are processed to obtain high range resolution target signatures.  Target chips that result from 
processing Doppler effect are collected for various observation angles.   Alternatively a synthetic, model-based images can be 
used to describe the targets.    

 
A detailed overview of moving target data collection and target modeling issues are presented in 7.   In this research the 

Moving Target Acquisition and Recognition (MSTAR) program data collections 1 & 2, scene 1 were used.  These data were 
produced using X-band 1x1 foot resolution SAR images recorded at 15o and 17o  depression angles with 360o coverage in 
aspect angle.  Each 17o data consists of approximately 250 SAR chips per target and 15o data of approximately 195 SAR 
chips per target.  Data collected at 15o were used for testing and 17o for training.  10 target classes were considered with two 
target classes (BMP2 and T72) having several variants.    

 
SAR chips are organized, in the data collection, by target depression and azimuth angles.  The HRR profiles are obtained 

by using image segmentation from clutter to fit a target area.  The mask applied to the original image is rotated to the target 
orientation and zero padded to the chip dimension.   The cross-range inverse FFT is applied to obtain range versus angle 
information.  The resulting data are dewhitened in cross-range using an inverse Taylor window over the valid data.  After 
taking the magnitude of the result data each range bin is normalized by mean power in the signature to remove the gain 
control and range effects.  A power transform is used to each range bin to transfer data distribution close to Gaussian.  Finally 
the pixels are averaged in azimuth to form HRR profile.   
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The resulting range profiles are collected in chips that span over 3.5o in azimuth angle.  FIGURE 1 shows an example of 
one-chip profiles. 

Subsequently, center 8 profiles are extracted from each chip and power transform is used.  Templates are then formed 
from the average of these 8 profiles.  FIGURE 2 shows the averaged profile of the same target at the same azimuth angle. 

 
 
 
 
 
 
 

 

 

FIGURE 1   CHIP DATA FOR BTR60 AT AZIMUTH 
301.0068 DEGREES 

 
 
 
 
 
 
 
 
 
 

FIGURE 2     AVERAGE PROFILE FOR BTR60  
AT AZIMUTH 301.0068 DEGREES. 

 
2. SUMMARY OF THE PRIOR RESEARCH 

 
ATR systems for target recognition based on SAR images were in development for several years.  Irving demonstrated 

that multiresolution processing could be used to discriminate the radar signatures from clutter 2.  An approach to produce the 
moving target images from X-band 1x1 foot data was described in 1.  These images were used to produce data for the 
MSTAR program.   

Obtained HRR signatures were used in the baseline algorithm to formulate templates and to perform signal classification.  
The baseline approach is a robust model-based automatic target recognition approach. It uses profiles of training data to 
construct one-dimension template for each degree per target. After using fist aligning and normalizing the templates and 
observations, this approach uses a mean-square statistic to find out the preliminary target classification. Upper bounds on the 
preliminary target classification mean-square error are used to reject unknown targets, which are targets not in the training 
set. 

Since our aim was to develop methods that improve the technology, which is currently applied to target recognition, we 
referred in our work to the baseline approach which proved to be a very robust and successful method for moving target ATR 
as reported in 5.  Details of the baseline approach were presented in 8 and in internal document ‘A Framework for 1D HRR 
ATR Evaluation’.  This document specified basic definitions for MSTAR program, metrics of performance, decision 
thresholds, leave-one out method used for the unknown target problem, and basic receiver operating conditions (ROC) 
curves.  Although another technique (StaF classifier) presented in 5 reported a significant improvement over the baseline, it 
used test data information to set up the classification thresholds and therefore it couldn’t be considered as a reference for our 
work. 

 
3. PWL APPROACH 

3.1 The Basic Idea 
The baseline classification makes use of the mean value of a chip signatures as the template for a specified azimuth and 

target class.  Let us represent the training data in a chip under consideration by X∈Rm•n, where m is the number of signatures 
in this chip and n is the dimensionality of each signature.  In addition, let us assume that an example chip data for a selected 
range value is distributed as shown in FIGURE 3.   

The template method uses a constant value based on the mean of the chip data at a specified azimuth window 
)()( Xmeanazimuthf =  .               (1) 

As a result, for each range value, a horizontal line effectively estimates all signatures X in this chip.  Even though, data 
distribution varies with respect to the azimuth, the estimate used in the template approach does not make an explicit use of 
this variation.  If the relationship between the distribution of the training samples and the azimuth value can be estimated and 
used to construct the training model, the classifier performance would be improved.  Suppose that a training data X varies as 
a function of azimuth as follows: 
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)(),()( XcazimuthXgazimuthf +=′                             (2) 
where c(X) is the constant related only to the training signature X, and g(X,azimuth) is a complicated function and it is 
expensive and difficult to get its exact estimation.  

 
 
 
 
 
 
 
 
 
 
 

FIGURE 3   AVERAGE OF PROFILE FEATURES W.R.T. AZIMUTH  FOR 2S1-B01  

 
Within a specified range of the azimuth angles, this function can be approximated by a known functional.  The simplest 

form of this functional is the linear function, that is 

XofondistributithebydeterminedconstantaisXwhere
azimuthXazimuthXg

)(
)(),('

α
α •=                              (3) 

Substituting (3) into (2), we get 
)()()( XcazimuthXazimuthf +•=′ α                                                  (4) 

So, instead of constants, we use linear functions to express the distribution of training signatures at specified azimuth 
angles, as shown by the dashed line in FIGURE 4.  Furthermore, the new template model of one target is represented by a 
group of lines instead of a group of constant values used in the template approach.  We call it a piecewise-linear (PWL) 
template representation.  

The main principle behind the piecewise linear template approximation is to make an explicit use of the training data 
variation with the azimuth angle by using localized linear regression fits.  The corresponding algorithm is described next as 
the PWL algorithm. 

 
 
 
 
 
 
 
 
 
 

FIGURE 4   TWO TEMPLATE REPRESENTATIONS USING THE TRAINING DATA 

3.2 The PWL algorithm 
3.2.1 Linear regression  fit  to training data 

Suppose that all the signatures are partitioned into several intervals according to their azimuth angle.  In each range bin 
of each interval, we have a group of scalars related to the azimuth angle.  Let iX

r
denotes the vector of i-th range bin values 

for various azimuth angles, and xij be j-th component of the vector 
iX

r .  The corresponding azimuth vector is represented by 
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The expected multidimensional line projected onto this range bin dimension minimizes the following equation: 
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−*                         (5) 

where [ ] mRI = 1,,1L
r

 
The solution of this minimization problem yields 2×2 linear equation that provides two linear regression fit coefficients 

ki and bi for each range bin value:  
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FIGURE 5 gives an example of linear regression fit to the real HRR data of target 2s1b01. 
Repeating this calculation for various range bins, we can get two vectors, K

r
 and B

r
, which describe the 

multidimensional linear regression fit to the training data.  These vectors are respectively,  
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As a result, training data is described by two constant vectors K
r

and B
r

rather than a single one used in the template 
approach. 

 
 
 
 
 
 

 
 
 
 
 

 
FIGURE 5    TWO TEMPLATE REPRESENTATIONS FOR AN EXAMPLE HRR DATA 

(TARGET 2S1_B01, FEATURE 58 WITH AZIMUTH =2.2248) 

3.2.2 Interval selection for the  linear regression fit 
Based on the process described in the prior section, we can see that the selection of the azimuth interval is critical to the 

accuracy and efficiency of the estimate.  If the selected interval is too large, it will result in a large estimation error that can 
ruin the classification performance.  On the other hand, too small intervals result in a large number of PWL lines, which 
increases the computation cost of the algorithm.  Moreover, the statistical estimate in a small interval is very sensitive to the 
local noise in the original signatures, so too small intervals may increase computational cost without increasing the 
classification performance. 

The best choice is to use an adaptive linear regression approach. That is, the intervals are assigned based on the 
distribution of all the signatures.  The area where the signatures have large variance is partitioned into smaller intervals to 
maintain high accuracy of the estimate; in the low variance area, a large interval is taken to reduce the computation cost of 
the classification algorithm which uses this piecewise linear template model.  The adaptive partition of intervals is controlled 
by the mean squared error of the estimate.  When the obtained estimate has a mean squared error smaller than the accepted 
error threshold, the partitioning process is stopped.  A recursive algorithm that subdivides successive intervals hierarchically 
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realizes this process.  FIGURE 6 shows the result of adaptive linear regression algorithm on the HRR data with two different 
error thresholds. 

 
 
 
 

a) 

b) 
FIGURE 6      ADAPTIVE LINEAR REGRESSION FIT RESULTS FOR HRR DATA 

(TARGET 2S1_B01, THE 35TH RANGE BIN)  
A) ERROR THRESHOLD = 0.01;  B) ERROR THRESHOLD = 0.005 

3.2.3 Profile and template line alignment 
In the baseline method, each template is just a single vector. The alignment algorithm employs L2 minimum-norm 

discriminant function to match the template and the observation vectors, which may be posed as the following problem: 
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The PWL method uses a line equation as a template, which can be expressed by the vectors BK
rr

,  on both sides of this 
line segment as 

mBKT ααααα ≤≤+•= 1for)(
rrr

                                                           (8) 
Therefore, the alignment problem is to find the point from this line and the corresponding alignment parameters, 1λ and 

2λ , such that the discriminant function (an error function) of the aligned template and the profile has a minimum norm.  For 
the convenience of calculation, the three alignment parameters are combined and the norm of the error function can be 
calculated as: 
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To satisfy these equations we must solve the following: 
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Equation (10) is used to determine 1β , 2β and 3β , and subsequently 1λ , 2λ  and α values. This calculation is repeated 
for each shift of the profile vector, and the minimum distance determined for each one, using distance from a profile vector to 
the multidimensional line segment.  

3.2.4 Observation group alignment 
In the previous section, we discussed the alignment between the observation profile and the template line.  In that 

approach, information about the signature's azimuth is used in the estimate of template construction, but it is still ignored in 
matching the observation to the template.  To improve our approach, a group of observation signatures is used to find the best 
matching segment of the PWL template line.  So the alignment will be performed between two groups of signatures. 

As we know, the estimate of signal distribution by a known function, such as the linear function, introduces the 
estimation noise.  To improve the recognition accuracy, the individual observation signatures vs. azimuth are not estimated.  
Instead, we group all the observation signatures in a large vector, by attaching them one by one: 
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For convenience, we set 01 =ω .  Correspondingly, the match point in the template line is represented as: 
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The solution of this optimization problem is obtained by solving the following equation with respect to 1γ , 2γ and 3γ  
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Once the optimized parameters 1γ , 2γ and 3γ  are found the minimum alignment error is determined by (12) and 
classification decision is based on the class of PWL template with the smallest minimum alignment error. 

3.3  Application Results 
In the application of PWL approach, there are several parameters whose values are crucial to the classification 

performance. One is the interval size of linear regression fit, as mentioned in 3.2.2.  All the parameters are dependent on the 
data source to classify.  Therefore, we determine that empirically 6. 

The performance results of the PWL classifier is described by the confusion matrix and receiver operating conditions 
(ROC) curves.  The ROC curves show the tradeoff between the probability of false alarm Pfa, probability of declaration Pdec, 
and the probability of correct identification Pcc comprehensively, while the confusion matrix summarizes the performance 
estimates at a single operating point.  We break the three parameters in ROC curves into three sets, represented by three two-
dimensional ROC curves.  The first ROC curve relates conditional Pcc given Pdec as a function of Pdec and will be refereed to as 
ROC1.  The second ROC curve, referred to as ROC2, relates Pfa as a function of Pdec.  The last ROC curve, referred to as 
ROC3, shows Pdec vs. Pfa.   

FIGURE7 -9 summarize the performance of PWL classifier for the 10 target classes, compared to Baseline approach.   In 
both methods a single-look was used for MSTAR public targets from collections 1 & 2, scene 1.  The overall average results 
obtained for the Baseline approach can be summarized by Pid=78.7 %, Pdec=97.2 %, Pfa=66 %, while for the PWL method the 
corresponding results were Pid=85.7% (increase by 7%), Pdec=96.8% (decrease by 0.4%), Pfa=58% (decrease by 8%), as 
shown in FIGURE 9.  PWL method used 10 degrees PWL templates with observations extracted from 5-point averaged chip 
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data.  And the ROC curves in FIGURE7 and FIGURE8 show that the PWL classifier outperforms the Baseline in most 
operating points. 

The PWL classifier with this configuration has a similar computation cost with the Baseline approach but a better 
performance.  The process for 5 targets takes both classifiers about 100 minutes in PC (233MHz).  Moreover, we can get a 
faster algorithm with losing a little performance by adjusting the parameters inside the program, such as the number of 
observation data.  This scalability of PWL is helpful for the future research and improvement of the developed approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 7     ROC CURVES 1 AND 2 OF PWL APPROACH FOR 10 TARGETS 

 
FIGURE 8     ROC 3 OF PWL APPROACH FOR 10 TARGETS 

 
4. CONCLUSION 

 
This paper describes a study of practical methods developed to improve classification performance of HRR based 

target recognition for air-to-ground images of moving targets.  The piecewise linear method uses a localized linear-regression 
fit to the training data.  It uses signal alignment and normalization which minimize least square error between the observation 
signals and PWL templates.  PWL intervals can be selected automatically to minimize the linear regression fit error to the 
training data.  The size of PWL intervals was optimized for classification performance.  The method shows a noticeable 
improvement over the Baseline algorithm on the test data.   
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