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Abstract----Fault diagnosis of analog circuits is essential for 
analog and mixed-signal circuits testing and maintenance. In 
this paper, a new method for multiple fault diagnosis in linear 
analog circuits is proposed based on the large change sensitivity 
analysis and ambiguity group locating technique. Test equation 
establishes the relationship between the measured responses and 
deviations of faulty parameters. Multiple excitations and 
corresponding measurements are required for fault location. 
The parameter evaluation can provide the exact parameter 
solutions. The faulty parameter deviations can be between zero 
and infinity. The proposed method is extremely effective for the 
circuit with very limited accessible nodes and is also 
computationally efficient. 
 

I. INTRODUCTION 
 
There is an urgent need for efficient fault diagnosis tools to 
test analog and mixed-signal circuits, caused by a tremendous 
growth in design complexity and reduced access to analog 
parts. System-on-chip solutions favored in modern 
microelectronic industries compound analog testing problem. 
Assuming that the circuit topology and the nominal values of 
circuit parameters are known, fault diagnosis is to obtain the 
information about the faulty parameters inside the circuit 
based on the analysis of the limited response measurements. 
Fault detection, fault location and parameter evaluation are 
three dominant tasks of the fault diagnosis. Due to the 
inherited features of analog circuits such as nonlinearity, 
component tolerances and limited accessibility, the analog 
fault diagnosis techniques lag far behind their counterparts – 
the digital fault diagnosis techniques, in which the fault 
models are well established and the computer-aided diagnosis 
is extremely efficient. Since the 1970s, many methodologies 
and techniques for analog fault diagnosis have been proposed 
[1-2]. Today it is still one of the most challenging topics 
among testing engineers and academic researchers [3-10]. 
 
The multiple fault diagnosis techniques are less developed 
than the single fault diagnosis because it is more difficult to 
model and detect multiple faults, particularly in the presence 
of tolerance or measurement noise. In addition, in multiple 
fault situation one fault’s effect on the circuit could be 
masked by the effects of the other faults. So the efforts of 
exploring multiple fault diagnosis techniques are still in 
process [7-10]. For practical reasons, the number of 
measurements is usually less than the number of nodes or 
parameters, but it is assumed to be greater than the number of 
faulty parameters of the tested circuit. Facing up these 
practical problems, a new multiple fault diagnosis method is 

proposed in this paper. Test equation relates the measured 
responses of a faulty circuit with the faults inside the circuit 
by a constant coefficient matrix. Fault location is 
implemented by a recently developed approach: location of 
ambiguity groups with the test equation in its minimum form. 
The parameter evaluation is accomplished by analyzing the 
test equation. The proposed method generalizes the single 
fault diagnosis approach, which was recently reported in a 
journal paper [6]. 
 

II. TEST EQUATION 
 
Assume that the circuit under test (CUT) has n+1 nodes and 
p parameters. The modified nodal equations [11] for the 
faulty circuit and fault-free circuit under the same excitations 
are as follows: 
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where T0 and T are nxn coefficient matrices, X0 and X are nx1 
vectors of node voltage and/or parameter currents, W0 is a 
nx1 excitation vector, T∆  and X∆  are deviations of the 
coefficient matrix and the solution vector from their nominal 
values. 
 
Suppose that f of p parameters are faulty and changed from 
their nominal values 
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Here the superscript t represents the transpose of vector or 
matrix. The corresponding changes in the coefficient matrix 
are in the form t
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where νe  represents a nx1 vector of zeros except for the vth 

entry, which is equal to one. 
 
The admittance matrix for the faulty circuit now has the 
following form: 
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Here )(δdiag  is an fxf diagonal matrix and P and Q are nxf 

matrices which contain 0 and 1±  entries: 
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Define F as the faulty parameter set, and assume that the 
faulty parameter ),...,2,1( fvFv =  is located on 

intersection of rows vi  and vj  and columns vk  and vl  of 

coefficient matrix T, then matrix P and Q in (6) have the 
following forms considering (4): 
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Re-write the vector X0 in following form: 
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Thus the product of Q t and X0 can be written as 
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Applying the Woodbury formula [12] in matrix theory 
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to (5) with A=T0, )(1 δdiagS =− , P=P and tQV = , the 
inverse of coefficient matrix T thus has the following form: 
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Let us define 

,

]...[
1

0

1
021

PTQ

PT
t

t
n

−

−

=

==

γ

ββββ  

then (11a) has following form 

( ) 1
0

111
0

1 )( −−−−− +−= TQdiagTT tγδβ      (11b) 

Assume that coefficient matrices T0 and T are non-singular. 
The solution vector X is then solved using (2) and considering 
(1) and (11b): 
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Thus, the deviation vector X∆  can be obtained by (12) 
considering (9): 
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Suppose the ith node is accessible for measurement, then by 
(13): 
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Applying the same excitations to the CUT with different 
locations, we obtain 
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where M is the node set for excitations and m is the number 
of different excitations and measurements. Assume that 

f+1<m<p, then the coefficient matrix MF
bX  has more rows 

than columns. Note that the vector iα  is invariant with the 

same excitation sources although different locations 
according to its definition in (13). Equation (16) establishes 
the relationship between the measured responses of faulty 

circuit MF
bX  and the faulty parameter deviations δ , since 

according to (13) vector iα  is a linear function of δ . Then 

(16) is called test equation. 
 

III. FAULT DIAGNOSIS 
 
Fault detection is easily judged by the measurement vector 

M
iX∆ : if M

iX∆  is a zero vector, it is concluded that no 

faults are detected under the existing measurement vector; 
Otherwise, it is concluded that at least one faulty parameter is 
detected. 
 
Next we will locate the faulty elements, i.e., the exact 
position of ),...,2,1( fvFv =  among the p parameters of 

the faulty circuit. 

Let us define 
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to be the matrix including all of the nominal branch voltages 
and/or parameter currents of the fault-free circuit. The 



 

columns of matrix MP
bX correspond to the circuit parameters. 

Since measurement vector M
iX∆  and the nominal 

matrix MP
bX  are known, we construct a new matrix SB  by 

concatenating the vector M
iX∆  with matrix MP

bX : 

][ MP
b

M
iS XXB ∆=          (17) 

Now the location of faulty parameters will be transferred to a 
mathematical problem: to locate the minimum size ambiguity 
group in matrix SB  which satisfies (16) by checking the 

linear dependence relationship between M
iX∆  and the 

columns of MP
bX . One obvious way is to have a 

combinatorial search which requires the number of operations 
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 [2]. More efficient methods are expected to reduce 

the computation cost. A recent research result which requires 
the number of operation )( 3pO  can be utilized to implement 

such purpose [9-10]. Thus we can locate the faulty elements 

),...,2,1( fvFv = , i.e., the exact positions of row vi  and 

vj , columns vk  and vl  in the coefficient matrix. The 

proposed method for multiple fault diagnosis in [10] is based 
on the nodal analysis and the faulty current nodes are first 
located, and then the faulty parameters are located by using 
incident signal matrix. The method proposed in this paper is 
based on the large change sensitivity analysis, and the faulty 
parameters are located directly. Both proposed methods 
utilize the similar ambiguity groups locating technique with 
different test equations. 
 

The invariant vector iα  can be computed by solving (16): 
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Then, the deviation vector δ  can be exactly computed by 
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where rdivide is an element-by-element division performance 
of two vectors. 
 

IV. EXAMPLE CIRCUIT 
 
Le us apply the proposed method to an example circuit shown 
in Fig. 1 with 21 nodes and 39 resistors. Nominal values of 
circuit parameters are as follows (all resistors in Ω ):  
R1=2.125, R2=3.6, R3=4.7, R4=11.5, R5=12.6, R6=21.2, 
R7=3.7, R8=0.54, R9=3.54, R10=3.125, R11=6.6, R12=5.7, 
R13=19.5, R14=12.8, R15=12.2, R16=3.2, R17=1.54, 
R18=8.7, R19=2.27, R20=3.16, R21=41.7, R22=31.5, 
R23=22.6, R24=51.2, R25=13.7, R26=3.44, R27=13.4, 
R28=31.9, R29=16.1, R30=11.7, R31=11.5, R32=17.8, 
R33=22.2, R34=23.2, R35=11.4, R36=18.7, R37=3.12, 
R38=33.2, R39=8.67. The unique current source J is applied 

to nodes {0, 1} with unit amplitude, AJ 1=  as demonstrated 

in Fig. 1. 
 
Assume that there are two faulty parameters: R9 is changed 
from 3.54 Ω  to 7.9 Ω  and R37 is changed from 3.12 Ω  to 
2.8 Ω . The corresponding admittance deviations are 

Ω−=−=∆ /1559.054.3/19.7/19G  and 

Ω=−=∆ /03663.012.3/18.2/137G . The node {2} is selected 

as the only measurement node. The unit current source is 
applied to nodes {2, 4, 15, 16, 17} respectively and the 
corresponding nodal voltage at node {2} is measured. Thus 
n=20, p=39, f=2, m=5 and f+1<m<p. The measured changes 
of nodal voltage are: 
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which indicates the fault(s) detected in the CUT. 
 
Apply the ambiguity group locating technique in [10] to the 
test equation, a 4x35 matrix C is obtained after Gaussian 
elimination step and QR factorization step.  The column 
permutation is {39, 15, 2, 35, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
3, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 
32, 33, 34, 4, 36, 37, 38, 1}. Thus the basis is {39, 15, 2, 35} 
and co-basis is {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 3, 16, 17, 18, 
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 4, 
36, 37, 38, 1}. 
 
According to Lemma 2 in [10], only one suspicious faulty 
group F={39, 15, 35, 9} is qualified with parameter {9} from 
the co-basis and parameter {39, 15, 35} from the basis. The 
current minimum size of qualified F is 4. 
 
Parameter {9} from the co-basis is swapped with the 
parameter {39} from the basis according to the swapping 
procedures in [10]. A new matrix C results. Re-apply Lemma 
2 in [10] to the new matrix C, 5 qualified suspicious faulty 
groups are obtained: F={9, 2, 35, 5}, F={9, 15, 35, 39}, 
F={9, 15, 35, 36}, F={9, 15, 38} and F={9, 37}. Obviously, 
F={9, 37} is the unique solution with the minimum size equal 
to 2. Since no smaller size of faulty set F can be found by 
swapping, thus F={9, 37} is the only solution located by the 
procedures in section III of [10] which is the exact solution 
for the given CUT. 
 
Equation (16) thus has the following form: 
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Figure 1. Resistive network example 

and by (18), 
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Finally the corresponding parameter deviation values 
computed by (19) are 
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which are the exact deviation values of the faulty elements 
R9 and R37. 
 

V. CONCLUSIONS 
 
Fault diagnosis presented in this paper is to obtain the 
information about the faulty circuit based on the limited 
measured responses of the faulty circuit. The circuit topology 
and nominal values of circuit parameters are known , and the 
number of measurements is less than the number of nodes or 
parameters, but greater than the number of faulty parameters 
plus one. A new method proposed in this paper is used to 
detect, locate the multiple faults of the linear analog circuit, 
then to exactly evaluate the faulty parameter deviations. 
Applying the Woodbury formula in the matrix theory to the 
large change sensitivity approach, test equation is constructed 
to establish the relationship between the measured responses 
and the faulty parameter deviations. Fault location is 
implemented by a newly proposed approach: location of the 
minimum size ambiguity group in the test equation. 
Parameter evaluation is then performed from results of the 
test equation analysis. 
 
One measurement node is sufficient for the proposed method 
although distinct excitations and measurements of accessible 
node voltages for faulty circuit are required for fault location. 
The proposed method is extremely effective for large 
parameter deviations and a very limited number of accessible 
test nodes used for excitations and measurements. The 
computation cost for the fault location is in the number of 
operations )( 3pO . It is computationally efficient comparing 
with the combinatorial search traditionally used in fault 
verification methods which requires the number of operations 
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. A single fault diagnosis method recently reported 

in a journal paper [6] can be seen as a special case of the 
proposed method. Finally an example circuit is used to 
illustrate the proposed method. 
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