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Abstract----A new approach to multiple fault diagnosis in linear 
analog circuits is proposed in this paper combining the modified 
nodal analysis with the QR factorization technique. Fault 
diagnosis equation establishes the relationship between the 
measured responses and faulty parameter deviations. Multiple 
excitations are required for fault location and the number of 
excitations is no less than the number of faults, but less than the 
number of measurements. Exact circuit parameter values can be 
obtained in the parameter evaluation stage. An example circuit 
is provided finally. 
 

I. INTRODUCTION 
 
With the rapid development of analog VLSI chips and mixed-
signal systems, the cost for testing and maintenance of such 
circuits is ever increasing part of the product cost and 
operation cost.  Cost effective approach for testing and 
diagnosis of analog and mixed-signal circuits must be 
automated. Comparing with the highly automated electronic 
design methods which are popular in today’s industry, the 
automated level for analog and mixed-signal circuit testing 
and diagnosis lags behind. The reason lies in the inherent 
features of analog circuits such as nonlinearity, parameter 
tolerances, and limited accessibility. Thus far, many efforts 
from industry engineers and academic researchers are 
devoted to this area. Several good reviews appeared in 1979 
[1], 1985 [2] and 1991 [3]. Examples of research efforts after 
1991 can be found in [4-6]. 
 
Among analog fault diagnosis approaches, multiple fault 
diagnosis techniques are less developed than the single fault 
diagnosis. Due to lack of efficient model and fault masking, 
multiple fault diagnosis in analog circuits is still a 
challenging topic today [7-9]. In this paper, a new approach 
to multiple fault diagnosis in linear analog circuits is 
proposed which combines the modified nodal analysis with 
the QR factorization. The circuit topology and the nominal 
values of circuit parameters are assumed known. Multiple 
excitations are required for the fault location and the number 
of excitations are required to be no less that the number of 
faulty parameters. The number of measurements on nodal 
voltages must be greater than the number of excitations. Fault 
diagnosis equation is established in Section II based on the 
modified nodal analysis. The coefficient matrix which is 
derived from the nominal values of circuit parameters relates 
the measured circuit responses to the faulty parameters. In 
Section III, a recently developed approach [10-11] is applied 
to locate the faulty parameters by applying the QR 

factorization technique to the fault diagnosis equation. Fault 
parameter deviations are exactly obtained by analyzing the 
fault diagnosis equation. The proposed approach is applied to 
an example circuit in Section IV and conclusions are drawn 
in Section V. 
 

II. FAULT DIAGNOSIS EQUATION 
 
We only consider the linear analog circuits in this paper. 
Assume that the circuit under test has n+1 nodes and p 
parameters in the form of impedance ),...,2,1( pvZ v = . 

Suppose the circuit parameter Zv is described by two-port  

like model: its controlled port is located between nodes vi  

and vj  while its controlling port is located between nodes 

vk  and vl . Thus, the circuit topology can be described by 

two nxp matrices P and Q which is defined as follows [12]: 
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where νe  represents a nx1 vector of zeros except for the vth 

entry, which is equal to one. 
 
Suppose that there are e different excitations to the fault-free 
and faulty circuits, apply Kirchhoff current law to the fault-
free circuit: 

,0 JPI b =             (2) 

where Ib0 is a pxe matrix of branch currents and J  is a nxe 
matrix of excitations,  
 
Apply Kirchhoff voltage law to the fault-free circuit: 

,000 =− bn
T ZIVQ             (3) 

where superscript T denotes transpose of matrix, Vn0 is a nxe 
matrix of nodal voltages, Z is a pxp diagonal matrix of 
impedances: 

Z=diag(Zv)            (4) 
Combining (2) and (3), we have 

,
0

0

0

0









=

















−

J

I

V

ZQ

P

b

n

T

           (5) 

Assume that there are f of p faulty parameters in the faulty 
circuit with ef ≤ . Correspondingly, the equation for the 
faulty circuit is as follows: 
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where Z∆  is a pxp diagonal matrix of parameter deviations, 

nV∆  is a nxe matrix of nodal voltage deviations, and 
bI∆  is a 

pxe matrix of branch current deviations. 
 
Denote  
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Equation (6) can be simplified after considering (5): 
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Suppose that m nodal voltages are measured with e<m, then 
(8) can be decomposed as follows: 
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where M denotes the set of measured nodes and N denotes the 
set of all nodes, Q1 is a nxm matrix and Q2 is a nx(p-m) 
matrix. 
 
Move the measured part to the right of (9) to obtain the 
following form: 
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Equation (10) which is called fault diagnosis equation 

relates the measured responses deviations M
nV∆  with the 

faulty parameter deviations Z∆ . The left-hand side 
(n+p)x(n+p-m) coefficient matrix of (10) can be constructed 
from the circuit topology and nominal values of circuit 
parameters. The solution matrix of (10) has a size of (n+p-
m)xe. The right side of (10) is a (n+p)xe matrix with fxe 
unknow entries due to faulty parameters. Thus, (n+p-f)xe 
linear equations with (n+p-m)xe variables can be obtained 
from (10). Since m>f, solution to (10) can be uniquely 
determined. 
 

III. FAULT DIAGNOSIS PROCESS 
 

If M
nV∆  is not a zero matrix, it is concluded that at least one 

faulty parameter is detected by the measurement matrix 
M

nV∆ . Then we will locate the position of faulty parameters 

in the faulty circuit by checking the dependency relationship 
between the rows of the coefficient matrix of (10) and the 
rows of the right side of (10). 
 
Construct a (n+p+e-m)x(n+p) new matrix by appending the 
coefficient matrix of (10) to the second item of the right side 
of (10): 
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The columns of matrix B correspond to the circuit nodes and 
parameters. Therefore, locating the faulty parameters in 

matrix B is equivalent to identifying the independent columns 
in matrix B. One apparent approach is a comprehensive 
search which requires the number of operations 
















 +
f

pn
O

. More computationally efficient approaches are 

expected to reduce cost. A recently developed technique can 
be utilized here which requires the number of operation 

)( 3pO  [10-11]: 

 
The rank of matrix B determines the maximum number of 
faulty parameters that can be uniquely identified by solving 
(10). Because matrix B has more columns than rows, B can 
be written as 

[ ]CIBB 1=           (12) 

where (n+p+e-m)xr matrix B1 has the full column rank equal 
to the rank r of the matrix B, and (n+p+e-m)x(n+p-r) matrix 
C expands the dependent columns of B into a set of the basis 
columns B1. Thus, pnrmepn +<≤−++ . 

 
As a result of the QR factorization of matrix B, we can 
formulate the following equation: 

RQBE ˆ=           (13) 

Where E is (n+p)x(n+p) permutation matrix with only a 
single nonzero element equal to one in each column, Q̂  is 

(n+p+e-m)x(n+p+e-m) orthogonal matrix, and R is (n+p+e-
m)x(n+p) upper triangular matrix. Since R is an upper 
triangular matrix with more columns that rows, R can be 
written as 
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Where R1 is rxr upper triangular matrix and R2 is rx(n+p-r) 
matrix. 
 
Theorem [11]: 
A linear combination matrix C can be numerically obtained 
from the QR factorization of the matrix B using 
 

2
1

1 RRC −=           (15) 
Thus C is rx(n+p-r) matrix. Since the number of 
measurements m is larger, but not by far than the number of 
excitations, matrix C has a very limited number of columns 
due to emrpn −≤−+<0 . The number of rows of matrix C 

is relatively large comparing with its column numbers due to 
mepnr −++≥ . 

 
Fault diagnosis equation (10) is a very unusual equation. It 
contains unknown matrix of voltage and current deviations on 
the left-hand side and partly unknown right-hand side. The 
test matrix B has the rank equal to n+p+e-m (where ef ≤ ), 

however, the rank of 
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is equal to n+p-m. So, the increase in the rank of matrix B 
over the rank of matrix S is due to the presence of faulty 



 

parameters which make part of the right-hand side of (10) 
independent on rows of matrix S. Therefore, all columns of 
matrix B which correspond to faulty parameters will be 
selected to the basis and (very important!) rows of matrix S 
which are not in the basis will be independent from these 
columns. This independence results in the following Lemma: 
Lemma: 
If all of the faulty parameters are included in the basis, then 
the circuit parameters corresponding to zero rows in the 
matrix C are faulty. 
 
Since ef ≤  and the faulty parameters are independent from 

each other, all of the faulty parameters are guaranteed to be 
included in the basis. Therefore by applying Lemma to the 
obtained matrix C, we can identify the faulty elements 
directly (No search required at all!). 
 
After the location of faulty parameters, (10) can be 
decomposed according to positions of faulty parameters: 

,

0

0

00

12

11

22

21

















∆−

∆−+
















∆−
=









∆
∆



















−

−
−

M
n

T

M
n

T

bf
b

MN
n

f
T

ff
T

VQ

VQ

IZ
I

V

ZQ

ZQ

P
  (16) 

or ,
00

1121









∆−
=









∆
∆









−

−

M
n

T
b

MN
n

ff
T VQI

V

ZQ

P
       (17) 

[ ] [ ] [ ],1222
M

n
T

bf

b

MN
n

f
T VQIZ

I

V
ZQ ∆−+∆−=









∆
∆

−
−

   (18) 

Here the matrices Q1, Q2, Z, and Z∆  are decomposed into two 
parts: one part corresponds to faulty parameters, while 
another corresponds to fault-free parameters. 
 
The solution to (17) can be uniquely determined by 
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Then, the values of branch currents in faulty circuit Ib can be 
obtained by (7). Re-arranging (18), we have  
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To reduce the computational efforts, select only one column 
Ib1 from matrix Ib and only one column S21 from matrix S2. 
The faulty parameter deviations can be exactly computed by 
solving (20): 

,121 bf IrdivideSZ =∆         (21) 

where rdivide is an element-by-element division performance 
of two vectors. As an alternative, and to reduce effects of 
round-off errors, we could solve (20) by dividing S2 by Ib 
element by element and taking row average to obtain 

fZ∆ . 

The proposed approach for multiple fault diagnosis described 
in [11] is based on the modified nodal analysis and the faulty 
current nodes are first located. Then the faulty parameters are 
located by using incident signal matrix. The Gaussian 
elimination step and swapping step are introduced in the 
ambiguity group locating process. The approach proposed in 
this paper locates the faulty parameters directly without the 
Gaussian elimination step and without swapping, thus 
reducing the computation cost. Both proposed approaches 
utilize the QR factorization technique with different fault 
diagnosis equations. 
 

IV. AN EXAMPLE CIRCUIT 
 
An example circuit shown in Fig. 1 with 8 nodes and 21 
parameters is used to demonstrate the proposed approach. 
The nominal values of the cascaded FET amplifier and 
simplified model of FET are indicated in Fig.1. Nomiaml 
values of FET parameters are as follows: 

mhog m
3105 −×= , mhog D

510= , pFC GS 2= , 

pFC GD 2= , and CDS is neglected. The current source 

AtJ )102sin(1.0 5×= π  is applied to nodes {0, 1}, {0, 4} 

respectively. Note that current source is only applied to nodes 
{0, 1} in Fig. 1. 
 
Assume that there are two faulty parameters: R1 is changed 
from 50 Ω  to 500 Ω  and C15 is changed from 1 Fµ  to 5 Fµ . 

The corresponding impedance deviations are Ω=∆ 4501Z  

and Ω=∆ jsC 51.2 . The nodal voltages at nodes {1, 4, 6, 

8} are measured. Thus n=8, p=21, e=2, f=2, m=4 and 
mef <≤ . The measured changes of nodal voltage under 

two distinct excitations are: 
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14i-1.18e+ 12-6.38e    9i-3.00e+  5-1.80e  

9i-4.54e+  5-1.57e    2i-6.19e-  1+4.50e  

9i-4.48e+  5-1.57e    2i-6.20e-  1+4.50e  

M
nV  

which indicates the fault(s) detected inside of the circuit. 
 
Apply the QR factorization to the fault diagnosis equation. A 
27x2 matrix C is obtained with rank of r=2. By analyzing 
permutation matrix E, co-basis includes only two circuit 
nodes {4, 8} and the remaining 6 nodes and 21 parameters 
are included in the basis. 
 
Analyzing 27x2 matrix C, only zero rows are found which 
corresponding to parameters {R1, C15}. According to 
Lemma in Section III, since all the circuit parameters are 
included in the basis, parameters {R1, C15} are concluded as 
faulty parameters which are the exact solution for the given 
circuit. 



 

          
Figure 1. Amplifier example 

 
The deviations of nodal voltages and branch currents can be 
obtained by (19). The branch currents and the nodal voltages 
in the faulty circuit can be obtained by (7). Finally, the 
deviations of faulty parameters are exactly evaluated using 
(21): 








 +
=








∆
∆

000j-2.5133e                               

0014j-8.7393e 002+4.5000e

15

1

sC

Z  

which are the exact deviation values of the faulty elements 
R1 and C15. 
 

V. CONCLUSIONS 
 
Multiple fault diagnosis in analog circuit is a challenging 
topic for testing engineers and academic researchers. In this 
paper, a new multiple fault diagnosis approach for linear 
analog circuits is proposed to detect, locate the faults and 
evaluate the faulty parameters. Measured deviations of the 
selected nodal voltages for the fault-free and faulty circuit 
indicate that at least one fault was detected under the given 
measurement conditions. By analyzing the circuit topology 
and utilizing the Kirchhoff current/voltage law, fault 
diagnosis equation is established to relate the measured 
response deviations to the faulty parameter deviations. 
Coefficient matrix is only related to the circuit topology and 
nominal values of circuit parameters in the impedance form. 
Multiple excitations are required for the location of faulty 
parameters and the number of excitations should be no less 
than the number of faults, but less than the number of 
selected measurement nodes. A newly developed technique 
based on the QR factorization is applied in this paper to 
locate the faulty parameters in the fault diagnosis equation. 
Faulty parameter deviations can be exactly evaluated by 
analyzing the fault diagnosis equation after locating the faulty 
parameters. 
 
The proposed approach is extremely effective for large 
parameter deviations and limited number of accessible test 
nodes used for excitations and measurements. The 
computation cost for the fault location is reduced comparing 
with the comprehensive search. Finally an example circuit is 
used to demonstrate the proposed approach. 
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