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ABSTRACT 
 
A new approach is proposed in this paper to detect the stuck 
faults in linear analog circuits. Ideal switches are inserted to 
indicate stuck-at, bridging and stuck-open locations. Then the 
resulting circuit is analyzed and stuck faults are directly 
identified. A recently developed method for multiple analog 
fault diagnosis is used eliminating a need for fault dictionary 
approach. The effect of locating stuck-at, bridging and stuck-
open faults is modeled with full precision of resulting test 
conditions. An analog IC - µA741 is given as an example.  
 

1. INTRODUCTION 
 
Analog and mixed signal test and fault diagnosis have been 
among the most challenging topics in academic research and 
industrial exploration since the 1970s. Today, with the rapid 
development of applications using mixed signal products, this 
topic receives particular attentions from academia, design tool 
developers, ATE suppliers, designers and test engineers. This is 
demonstrated by a steady growth in the number of conference 
and journal papers, professional workshops and special journal 
issues related to this topic. Several periodical reviews for 
analog testing appeared in 1985 [1], 1991 [2] and 1998 [3]. 
    Unlike its counterpart - digital test with efficient fault models 
and test methodologies - analog and mixed signal test and fault 
diagnosis is less advanced. This is mostly due to the inherited 
features such as parameter tolerances, poor controllability and 
limited accessible nodes. There is no widely accepted paradigm 
for analog and mixed signal test and fault diagnosis even with 
the introduction of IEEE 1149.4 Mixed-Signal Test Bus 
Standard. As expected, the research in analog and mixed signal 
test and fault diagnosis is strongly influenced by the advances 
in digital test. Design-for-Testability and Built-in-Self-Test in 
analog and mixed signal systems are two obvious examples that 
utilize the working paradigms of digital test. Another widely 
used paradigm of digital test is the stuck-at model combined 
with output logic level monitoring. In this model, it is assumed 
that all failure mechanisms manifest themselves as a single 
node stuck at logic 0 or 1. Based on this model, many digital 
test algorithms and techniques were developed [4]. 
    Stuck-at, bridging, and stuck-open faults also happen in the 
analog designs, especially with today’s increased complexity 
and increased die size of analog chips originated from different 
short, bridging or open failure mechanisms. The models of 
stuck-at, bridging and stuck-open faults have been reported in 
[3, 5] and their application in analog fault simulation, fault 
detection, and test generation can be found in [3, 6-7]. To test 
and diagnose these faults, the primary tactics of these fault-
based approaches are to utilize dictionary approach through 
comprehensive simulation on the circuit with inserted fault 

model before test. Fault detection and location is determined by 
the comparison between measured signature and signature 
precompiled in the dictionary. Hence it requires many 
simulations and extensive fault dictionary.  In this paper, a new 
method is proposed to locate the multiple stuck-at, bridging and 
stuck-open faults by verification approach without repetitive 
simulation needed for fault dictionary. An ideal open switch is 
inserted between the interested circuit nodes (bridging fault), or 
between the interested circuit node and the potential fault 
source – voltage source or ground. To model a stuck-open 
fault, a shorted switch is inserted in series with a line or a 
component. Simultaneously, such a serial switch together with 
an unknown-value admittance component can model the 
parametric faults. The constitutive equations of ideal switches 
derived from the KCL are combined with the other constitutive 
equations of the circuit parameters to construct the modified 
nodal equations for the newly resulting circuit. Note that the 
ideal switches do not exist physically in the circuits. A recently 
developed method for the multiple analog fault diagnosis is 
utilized to detect and locate all these faults exactly based on 
limited measurements of circuit responses [8-10]. 
 

2. APPLICATION OF STUCK-AT, BRIDGING AND 
STUCK-OPEN MODEL 

 
Usually the topology of circuit under test (CUT) and its 
parameters’ nominal values are known. Suppose that the CUT 
has n+1 nodes. Applying the KCL to each node of the CUT 
and all circuit parameters that do not have an admittance 
description such as inductors, current-controlled sources and 
operational amplifiers, we can obtain the modified nodal 
equation as follows [11]: 

lll WXT =                    (1) 
where Tl is a lxl coefficient matrix, Xl is a lx1 vector of node 
voltage and parameter currents, and Wl is a lx1 excitation 
vector. Note that l=n for normal nodal analysis of a circuit in 
which all parameters have admittance description, and l>n for 
modified nodal analysis of a circuit in which some parameters 
have non-admittance description. 
    Assume that we are only interested in s potentially stuck-at 
faults in the CUT: ss of s are stuck-at and bridging faults and so 
of s are stuck-open faults(s=ss+so). The ideal open switch 

vSW (v=1, 2, … ss) is inserted between each pair of nodes 
vi  

and 
vj  which has a potential for a bridging fault. Node 

vi  or 

vj  is connected to voltage source for stuck-at-1 fault, or 

ground for stuck-at-0 fault. Current 
vI  flows from node 

vi  to 

node 
vj  [Fig. 1.a]. For stuck-open fault, a shorted switch SWv 

(v=1, 2, …, so) is between iv and a newly created node jv. 



  

 
Figure 1.a model of ideal open switch 
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Figure 1.b Modified coefficient matrix with an ideal switch 
 
    According to KCL, the constitutive equation to describe the 
ideal switch 

vSW  is as follows: 

0)1()( =−+− vji IFVVF
vv

   (2) 

where variable F is 0 for the open switch and 1 for the closed 
switch [11]. Totally, s such equations are obtained. 
    Simultaneously, current 

vI  is added to KCL equation at 

node 
vi  while 

vI  is subtracted from KCL equation at the node 

vj . Therefore, the coefficient matrix of modified nodal 

equations is augmented by one ideal switch 
vSW  [Fig. 1.b]. 

The resulted modified nodal equation with all s switches is as 
follows: 
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 (3) 

where superscript T represents the transpose of matrix or 
vector, Isxs is a sxs unit matrix, 0sx1 is a sx1 zero vector and ie  
represents an lx1 vector of zeros except for the ith entry, which 
is equal to one. 
    Let us define an lxs matrix A which is to describe the 
locations of ideal switches in the circuit: 

[ ]
ss jijiji eeeeeeA −−−= K

2211
   (4) 

Hence, the coefficient matrix in (3) has the following form 
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For the fault-free circuit, all switches in the stuck-at and 
bridging models are open, i.e., F=0. For the faulty circuit, only 
switches corresponding to stuck-at and bridging faults are 
closed, i.e., F=1, while the rest are still open. This observation 
is reversed for the stuck-open models. 
    For simplicity, all switches in stuck-at and bridging models 
are separated with all switches in stuck-open models in the 
modified nodal equation (3), which can be implemented by 
matrix permutation. Hence, the matrix A is separated as 

[ ]soss AAA =                  (4.a) 
    Applying (3) to fault-free circuit to obtain 

000 WXT =      (6) 
where X0 is an (l+s)x1 solution vector, W0 is an (l+s)x1  
excitation vector, and (l+s)x(l+s) coefficient matrix 
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    Suppose that only f of s stuck faults really occurred in the 
faulty circuit. Among f faults, there are fs of ss stuck-at and 
bridging faults and fo of so stuck-open faults (f=fs+fo). 
Therefore, only fs of ss switches in stuck-at and bridging 
models are closed while the remaining ss-fs switches are still 
open. Similarly, fo of so switches in stuck-open models are 
open while the remaining so-fo switches are closed. Assume 
that excitations for the faulty circuit are the same as those of 
fault-free circuit, and all f switches are permuted for simplicity 
such that all fs and fo switches are ordered first among ss and 
so switches, respectively. The modified nodal equation for 
faulty circuit is: 

000 )()( WXXTTTX =∆+∆+=    (7) 

TTT ∆+= 0
     (8) 

XXX ∆+= 0
     (9) 

where 





























−

−=

−

−

−−−−−

xsfoso
T

foso

fosofoxfoxfofoxssfoxl

xsofsssfsssxfsssxfsfsssxlfsss

fsxs
T
fs

l

AA

I

I

A

AT

T

)(

)(

)()()()()(

0

0][

000

000

0 (10) 

[ ]
]...,,...,,,[

112211 fffsfsfsfs jijijijiji

fofsf

eeeeeeeeee

AAA

−−−−−=

=

++

(11) 





























−−

=∆

−−

−

−−

−

xsfosoxlfoso

fosofoxfoxfofoxss
T
fo

xsfsssxlfsss

fsxsofsssfsxfsxfs
T
fs

lxslxl

IA

IA

T

)()(

)(

)()(

)(

00

00

00

00

00

(12) 

In (10), [Aso | Afo] denotes removing sub-matrix A fo from the 
matrix Aso. Define two (l+s)xf matrices Pf and Qf as follows: 
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then T∆  is the matrix product of Pf and Qf
T: 

T
ff QPT =∆                   (15) 

and (7) can be re-written as 

000 )()( WXXQPT T
ff =∆++                 (16) 

After substituting (6) into (16), X∆  can be solved by 
XQPTX T

ff
1

0
−−=∆                 (17) 



  

Denote an ( l+s)x(l+s) matrix S0 as follows 
1
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                (18) 

and rewrite vector X in scalar form: 
T

sl IIIxxxX ]......[ 2121=                (19) 

where ),...,2,1( slvs v +=  is an (l+s)x1  vector while 

),...,2,1( lvx v =  and ),...,2,1( svI v =  are numbers. 
    Denote the matrix product of S0 and P f as SF , and product 
of Qf

T and X as Fλ : 
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where the faulty set F represents the set of all the stuck faults 
and SF is an (l+s)xf matrix while Fλ  is an fx1 vector. 
    Now (17) can be re-written as 

FFSX λ=∆                  (21) 
The remaining work is to analyze this equation by limited 
measurements of circuit responses. Assume that the first m 
elements of X∆  can be measured and smf <<+ 1 , we 
obtain 
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where M represents the set of measurements. Thus, the 
following test equation is obtained by only considering the 
first part of the above equation: 

M
FMF XS ∆=λ                  (23) 

Here 
MFS  is an mxf matrix whose columns correspond to the 

stuck faults in the CUT. Similarly 
MSS  is an mxs  matrix 

whose columns correspond to all of the potential stuck faults 
in the CUT, where S  indicates the set of all potential faults, 
i.e., all ideal switches. The test equation (23) plays an 
important role in relating the limited circuit output 
measurements with the stuck faults in a linear way. 
 

3. STUCK FAULT LOCATION 
 
Fault diagnosis involves three stages: fault detection, fault 
location and parameters verification. Fault detection is 
accomplished by measuring circuit responses. If the 
measurements deviation vector MX∆  is zero, the CUT is 
judged fault-free for the given measurement set. Otherwise, at 
least one fault is detected. 
    To locate the stuck faults in the CUT, let us analyze the test 
equation. The right-hand side of (23) is a known vector and the 
left-hand side is the product of an unknown coefficient matrix 

MFS  and an unknown solution vector Fλ . Note that matrix 

MFS  is the set of selected columns of the known matrix 
MSS . 

The columns of 
MFS  correspond to the locations of switches, 

i.e., the stuck faults while the columns of 
MSS  correspond to 

the locations of all inserted switches. And matrix 
MSS  has 

more columns than rows since m<s by restriction in Section 2. 

Our idea to identify the faults is to identify the minimum size 
ambiguity group in the test equation by finding the minimum 
number of independent columns in matrix 

MSS  that satisfy the 

test equation. A recently developed numerically efficient 
approach [8-10] to multiple analog fault diagnosis is utilized 
here to identify the stuck faults. 
    An important observation is that the process derived in part 2 
only considers the stuck-at, bridging and stuck-open faults 
ignoring circuit parametric deviations for simplicity. Hence, 
parameter verification is omitted and only fault detection and 
location are discussed here.  However, the proposed approach 
can be applied to the mixed fault condition – multiple stuck-at, 
bridging, stuck-open faults and multiple parametric faults. Test 
equation (23) still holds while only the structural matrices A,  Af 
must be expanded to include the parametric faults. 
Consequently, the parameter verification is required after the 
fault location. Future work on this method will include these 
parametric faults. 
 

4. EXAMPLE CIRCUIT 
 
The classical Fairchild µA741 operational amplifier is selected 
to demonstrate the proposed method. A simplified schematic of 
µA741 is shown in Fig. 2.a [11]. The negative feedback 
configuration is the circuit under test [Fig. 2.b] with a small 
signal voltage input ttV in π120sin01.0)( = . The small 
signal model of bipolar junction transistors (BJT) in Fig. 2.c is 
applied to all 18 BJTs for simplicity. There are 21 nodes, 48 
resistors, and 18 voltage-controlled-current sources in the CUT. 
The nominal values of circuit parameters are indicated in 
figures. Note that the external potentiometer REXT in Fig. 2.a is 
equally divided into two resistors with a value of 5kΩ. 
    For simplicity, we only consider 5 suspicious stuck-at-0 
faults that are located between node pairs {9, 0}, {12, 0}, {13, 
0}, {15, 0}, {17, 0}. Thus 5 open ideal switches are inserted 
between these nodes pairs. The first two ideal switches are 
supposed to be closed in the faulty circuit. Nodal voltages are 
measured at nodes {3, 6, 14, 16}. Hence, n=20, f=2, s=5, m=4 
and f+1<m<s. The measured nodal voltage deviations are 
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002-e4.3321-

003-e7.8085-

003-e2.8747-  
004 -e 4.4781-  

MX
 

which obviously is not a zero vector indicating faults detected. 
    Applying the ambiguity group locating technique to the test 
equation, a 3x2 matrix C  is obtained after Gaussian elimination 
and QR factorization with column permutation {3, 2, 4, 1, 5}: 
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002-e5.1821-013-e6813.1
002-e1.1034003-e4.3052  

004-e5.1167015 -e 1.6679  

C
 

Thus the basis of ambiguity group is {3, 2, 4} which 
correspond to the 3rd, 2nd, and 4th switches respectively. The co-
basis is {1, 5} corresponding to the 1st and 5th switches. 
    By analyzing matrix C, there is only one suspicious 
ambiguity group {1, 2}. According to the procedure in Section 
4 in [10], this is the minimum size ambiguity group. We 
conclude that switches {1, 2} are closed, i.e., there are two 
stuck-at-0 faults on nodes pairs {9, 0} and {12, 0}, which are 
the exact solutions for this CUT. 



  

 
Figure 2.a overall schematic of the Fairchild µA741 operational amplifier. 

 

 
Figure 2.b Negative feedback configuration of µA741. 

 

 
Figure 2.c The small signal model of BJT. 

 
5. CONCLUSIONS  

 
Although analog and mixed signal test and fault diagnosis are less 
advanced than digital test, digital test techniques greatly influence 
the analog test. As a widely used paradigm in digital test, stuck-at 
model together with the output monitoring has been applied to 
analog area to model the open or short failure mechanisms. These 
fault models are increasingly important for today’s systems-on-chip 
solutions with increased complexity and increased die size of 
analog and mixed signal designs. In this paper, such models are 
utilized to locate faults by verification approach rather than by 
dictionary approach typically used in such case. With the known 
circuit topology, the ideal switches are inserted to connect the 
suspicious circuit nodes. Under normal conditions, all ideal 
switches are open (closed) while some of them are closed (open) 
under faulty conditions. The circuit topology is modified by the 
inserted switches and new modified nodal equation is established 
based on KCL equations. Test equation relates the limited 
measured circuit responses with the faults in a linear way. A 
recently developed numerically efficient approach to multiple fault 
diagnosis is applied to identify the faults. Ambiguity group locating 
technique based on the QR factorization is utilized to identify the 
minimum number of faults satisfying the test equation. The number 
of measurements is less than the number of inserted ideal switches, 
but it is greater than the number of faults plus one. Avoiding the 

combinatorial search of suspicious stuck-at and stuck-open faults 
reduces computation cost of multiple fault location. The proposed 
method can also be applied to the mixed faults condition – multiple 
stuck-at, bridging and stuck-open faults together with the multiple 
parametric faults. Finally, a commercial analog IC is provided as an 
example to demonstrate the proposed method. 
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