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ABSTRACT 
In this paper, a novel and effective criterion based on the 
estimation of the signal-to-noise-ratio figure (SNRF) is 
proposed to optimize the number of hidden neurons in 
neural networks to avoid overfitting in the function 
approximation. SNRF can quantitatively measure the 
useful information left unlearned so that overfitting can be 
automatically detected from the training error only 
without use of a separate validation set. It is illustrated by 
optimizing the number of hidden neurons in a multi-layer 
perceptron (MLP) using benchmark datasets. The 
criterion can be further utilized in the optimization of 
other parameters of neural networks when overfitting 
needs to be considered. 
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1.  Introduction 
 
Neural networks (NN) have been shown to be universal 
approximators [1] [2] [3] and are widely used in function 
approximation. Optimizing the number of hidden neurons 
to use without a pre-set target for accuracy is one of the 
major challenges for neural networks, usually referred to 
as the bias/variance dilemma [4]. Using excessive hidden 
neurons will cause overfitting, which means that the 
neural networks over-estimate the complexity of the 
target problem. It greatly degrades generalization 
capability, which leads to significant deviation in 
predictions. In this sense, determining the proper number 
of hidden neurons to prevent overfitting is critical in 
function approximation using NN. There are various 
approaches to build the network in a constructive or 
destructive way, but the common methods to determine 
whether a certain number of hidden neurons is optimal are 
cross-validation and early-stopping [5][6]. In these 
methods, the available data are divided into two 
independent sets: a training set and a validation or testing 
set. Only the training set participates in the neural 
network learning, and the testing set is used to compute 
testing error, which approximates the generalization error. 
The performance of a function approximation during 
training and testing is measured respectively by training 
error trainε  and testing error testε . Once the testing 

performance stops improving as the number of hidden 
neurons continues to increase, it is possible that the 
training has begun to fit the noise in the training data, and 
overfitting occurs. Therefore, during this process, the 
stopping criterion is set so that, when the testing set 
error testε starts to increase, or equivalently when training 
error trainε and testing error testε start to diverge, optimal 
value of the number of hidden neurons is assumed to have 
been reached. 
However, in cross-validation and early stopping, the use 
of the stopping criterion based on testε is not 
straightforward and requires definite answers to several 
questions. For example, how does one determine the size 
of the training and testing sets in predicting generalization 
error using testε [7]? Although testε provides an estimate of 
generalization error, is it necessary that the generalization 
error increases as soon as testε begins to increase? 
As testε varies with the number of basis functions, and it 
has many local minima, which of these local minima 
indicates the occurrence of overfitting? [5][8] Both 
methods require omission of the testing set in the training 
stage, which is a significant waste of the precious 
available data. It is desired to have the ability to examine 
the training error without using a testing set and 
automatically recognize the occurrence of overfitting.  In 
this paper, a signal-to-noise ratio figure (SNRF) is defined 
to measure the goodness of fit using trainε  and to develop 
a novel stopping criterion in constructively building NN. 
The organization of this paper is as follows. In Section 2, 
the definition and estimation method of SNRF is 
presented and the SNRF-based criterion is developed.  
This criterion is validated using simulation on real 
benchmark datasets and compared with cross-validation 
results in Section 3. Finally, features of the proposed 
stopping criterion are discussed in Section 4.  
 
 
2. Estimation of signal-to-noise ratio figure 
 
Without a priori knowledge of the noise characteristics of 
the training data, it is assumed that the training data may 
come with White Gaussian Noise (WGN) at an unknown 
level. In order to have a clear indication of overfitting, we 
need to examine the difference between the approximated 
function and the training data. This difference, which is 



 

 

defined as the error signal, comes from two possible 
sources: the approximation error due to the limited 
learning ability or inaccuracy in approximation using the 
given number of hidden neurons in the network, and the 
WGN in the training data. A critical question is whether 
there is still useful signal information left to be learned in 
the error signal that produces the approximation error. If 
there is, based on the assumption that the function we try 
to approximate is continuous and that the noise is WGN, 
we can estimate the level of signal and noise in the error 
signal. The ratio of the signal energy level over the noise 
energy level is defined as SNRF. The SNRF can be pre-
calculated for the WGN. The comparison of SNRF of the 
error signal with that of WGN determines whether WGN 
dominates in the error signal. If it does, there is little 
useful information left in the error signal, and the 
approximation error cannot be reduced anymore.  
Therefore, in the process of optimizing number of hidden 
neurons of NN, one may start with a network with a small 
number of hidden neurons and keep adding hidden 
neurons until SNRF indicates overfitting. The estimation 
of SNRF will be first illustrated using a one-dimensional 
function approximation problem, followed by a general 
discussion of multi-dimensional problems. 
 
2.1. SNRF estimation for a one-dimensional function 
approximation 
 
Assume that in a one-dimensional function approximation 
problem, training data are uniformly sampled from the 
input space 1ℜ⊂X  with additive noise at an unknown 
level. An approximation F̂  is obtained using NN with a 
certain number of hidden neurons. The error signal e 
contains a noise component denoted by n, and an 
approximation error component, which is the useful signal 
left unlearned and therefore denoted by s.   

),...2,1(  Nimsnse iiiii =+=+= β ,         (1) 
where N represents the number of samples. Without 
losing generality, n can be modeled as a WGN process 
with standard deviation β, and m stands for a WGN 
process with unit standard deviation. The energy of the 
error signal e is also composed of the signal and noise 
components. 
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This energy can be approximated using the 
autocorrelation function: 
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where C represents the correlation calculation. Notice that 
a presumption is made that the target function needs to be 
continuous, and that the approximation F̂  is usually a 
continuous function. Practically, the useful signal left 
unlearned, s, is also a continuous function. We could 
further assume that, if treated as time signals, the target 
function and the approximated function both have 
relatively small bandwidth compared to the sampling rate 
or to the noise bandwidth. As a result, there is a high level 

of correlation between two neighboring samples of s.  
Consequently, 

),(),( 1 iiii ssCssC ≈− ,                         (4) 
where si-1 represents the circularly shifted version of the s. 
Due to the nature of WGN, noise of a sample is 
independent of noise on neighboring samples: 

0),(),( 11 == −− iiii mmCnnC ββ ,               (5) 
where ni-1 represents a circularly shifted replica of ni-1. 
Since the noise component is independent of the signal 
component, the correlation of ei with its shifted copy ei-1 
approximates the signal energy, as shown in (6). 

siiii EssCeeC ≈= −− ),(),( 11                  (6) 
The difference between the autocorrelation with no time 
shift in (3) and ),( 1−ii eeC in (6) gives the noise energy in 
the error signal.  
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The ratio of signal level to noise level, defined as the 
SNRF of the error signal, is obtained: 
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In order to detect the existence of useful signal in e, the 
SNRF of e has to be compared with SNRF of WGN 
estimated using the same number of samples. When there 
is no signal in e, the SNRF of WGN is calculated as, 
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It is observed that the SNRFWGN is in fact independent of 
the noise level β, which means that estimation on WGN 
with unit standard deviation can obtain the general 
characterization of SNRFWGN. SNRFWGN represents the 
signal to noise ratio estimated using a limited number of 
samples, which is a random value related to the number of 
samples N. Its average value )(_ NWGNSNRFµ can be 
obtained from, 
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Since ),(),( 1−>> iiii mmCmmC , 
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The standard deviation )(_ NWGNSNRFσ can be estimated 
using Monte-Carlo simulation.  In Fig. 1, )(_ NWGNSNRFσ  
from a 10000-run Monte-Carlo simulation is shown in the 
logarithmic scale. It can be approximated using a linear 
function of the number of samples N, also shown in Fig. 
1.  The linear fit is done to fit better for larger values of N, 
considering the sample numbers available in real-world 
training datasets. The linear fit is then converted back into 
the linear scale, and the )(_ NWGNSNRFσ  can be found using 

N
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Since the samples of SNRFWGN are statistically 
independent, by the central limit theorem, if N is large 
enough, the distributions of SNRFWGN are Gaussian with 
mean WGNSNRF_µ  and standard deviation WGNSNRF _σ .   
The stopping criterion can now be determined by testing 
the hypothesis that SNRFe and SNRFWGN are from the 
same population. The value of SNRFe at which the 
hypothesis is rejected constitutes a threshold below which 
one must stop increasing number of hidden neurons to 
avoid overfitting. 
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Fig. 1. Standard deviation of SNRF for WGN in one-

dimensional case 
 

It is obtained from statistical simulation that the p = 5% 
significance level [9] can be approximated by the average 
value plus 1.7 times standard deviations for an arbitrary 
N.  Hence, the stopping criterion can be defined as a 
SNRFe smaller than the threshold determined by (13):   

)(7.1)()( ___ NNNth WGNSNRFWGNSNRFWGNSNRF σµ += .  (13) 
Notice such threshold can achieve 5% significance level 
for Gaussian process, which proves that the distributions 
of SNRFWGN are Gaussian with mean WGNSNRF_µ and 

standard deviation WGNSNRF _σ . 
The above discussion have been developed based on the 
assumption that e could be treated as a signal with evenly-
spaced samples. In a general one-dimensional function 
approximation problem, the input samples may be 
unevenly spaced. Yet, nsE + , sE and nE can still be 
roughly approximated using (3), (6) and (7) respectively.  
Thus, the SNRFe can be estimated using (8) and the 
overfitting is determined by comparison of SNRFe with 
the threshold in (13). 
 
2.2. SNRF estimation for multi-dimensional function 
approximation 
 
In a multi-dimensional function approximation problem, 
the training data are usually randomly sampled from the 
input space MX ℜ⊂ . They are often not evenly spaced 
and the distances among samples are random. The method 
used to estimate SNRF in the one-dimensional case 

cannot be directly applied to the multi-dimensional 
problem. However, we could still assume that variation of 
s in each coordinate is slow compared to the average 
sampling distance. Thus the same principle of signal and 
noise level estimation using correlation may be used. 
The signal level at each sample ep (p=1, 2,…N) can be 
estimated through the correlation with its nearest 
neighbours. Since s changes slowly in all directions, the 
continuous function can be locally approximated around 
ep with an M-dimensional hyper-plane. Such a hyper-
plane can be uniquely determined using M+1 points, 
including ep and its M neighbors with the shortest 
Euclidean distances. Correlation of ep with these M points 
provides an estimate of the signal level at ep. If an error 
signal contains only the signal component, the points in 
the neighbourhood are expected to have correlated values.  
On the contrary, the values of points from WGN are 
uncorrelated. Therefore, by calculating the correlation, the 
signal and noise levels within the neighborhood of ep can 
be estimated. The signal level at ep is computed using a 
weighted combination of the products of ep values with 
each of its neighbors, epi (i=1, 2,...M).  The combination 
can be simplified by averaging the M products, if the 
distances between ep and epi (i=1, 2,...M) are equal. This, 
however, cannot be guaranteed in a multi-dimensional 
problem. Since the samples of ei are assumed to be 
spatially correlated, the distance between each two 
samples affects the level of correlation between them, and 
the distances can be used to calculate weight values. In an 
M-dimensional space, the weights are obtained based on 
the Euclidean distance to the power of M, and normalized, 
as given by (14), where dpi represents the Euclidean 
distance between ep and epi.   
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Thus, the signal level at ep is estimated by the normalized 
weighted sum as 
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and the overall signal level of e can be calculated as, 
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Again, as in (3), the autocorrelation of ei estimates signal 
plus noise level: 
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Then the noise level is estimated using 

∑∑∑
= ==

+ ⋅⋅−=−=
N

p

M

i
pippi

N

i
isnsn eeweEEE

1 11

2 .    (18) 

Finally, the SNRFe in an M-dimensional input space is 
computed as  
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Notice that when applied to one-dimensional cases 
(M=1), (19) is identical to (8), the SNRFe model 
particularly derived for the one-dimensional case. 
When there is no signal, SNRFWGN is estimated using (19) 
with e = n. In the calculation of Esp of WGN, pip ee ⋅  is an 
independent random process with respect to p or i. 
Although the values of piw  in (14) cannot be predicted 
for the general characterization of SNRFWGN, which makes 
it difficult to evaluate its standard deviation, the upper and 
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The lower bound is reached when the piw  have equal 
values (i.e., uniform sampling distance). It gets closer to 
the upper bound in problems with large dimensionality. 
For a dataset with large dimensionality and non-uniformly 
spaced samples, the lower bound would be hard to reach. 
Therefore, the detection threshold can be calculated using 
the upper bound, which tends to be more sensitive to the 
occurrence of overfitting, with a greater possibility of a 
premature stop. 
In the estimation of 
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considered that not all the pip ee ⋅  items are independent 
of each other with respect to p and i.  For instance, when 
points p1 and p2 are the closest neighbors to each others, 

pip ee ⋅  is calculated twice. The estimation of 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⋅∑∑

= =

N

p

M

i
pippi eew

1 1
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on the summation of independent random variables. In the 
worst case, all the terms in ∑∑
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 may appear 

twice, which can be used to estimate the upper bound of 
standard deviation for the numerator of (19): 
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from which we have, 
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Also, the average of SNRFWGN is estimated as, 
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Notice that the estimation of )(_ NWGNSNRFσ  and 

)(_ NWGNSNRFµ using (22) and (23) has been simplified 
and is no longer a function of the problem dimensionality. 
Such simplification makes it more convenient to construct 
a detection threshold universal to any number of 
dimensions. 
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Stardard deviation of SNRF for 3-dimensional WGN

 

 
SNRF estimated using (19)
upper bound in (21)
lower bound in (21)
sqrt(2)/sqrt(N)

 
Fig. 2. Standard deviation of SNRF of WGN in a three-

dimensional case 
 

)(_ NWGNSNRFσ for a three-dimensional WGN from a 1000-
run Monte-Carlo simulation is shown in the logarithmic 
scale in Fig. 2. The estimated )(_ NWGNSNRFσ  in (22) is 

consistent with an upper bound of 
N
2 , and the bounds 

developed in (20) are validated. Consider not all the 
samples are independent, central limit theorem does not 
apply and the distribution of SNRFWGN is not Gaussian. 
The threshold can be experimentally established as the 
average value plus 1.2 times the standard deviation, to 
achieve the 5% significance level, as in (24). 

)(2.1)()( ___ NNNth WGNSNRFWGNSNRFWGNSNRF σµ ⋅+=   (24) 
The threshold calculation defined in (24) also can be 
applied to the one-dimensional case and is very close to 
the approximation of one-dimensional functions modeled 
in Section 2.1. 
In summary, using SNRF, we can estimate the signal 
level and noise level for the error signal and then 
quantitatively determine the amount of useful signal 
information left unlearned. When there is no information 
left, the learning process with certain number of hidden 
neurons can be stopped, and the optimum approximation 
has been obtained without overfitting. Otherwise, more 
hidden neurons have to be used to improve the learning.  
Although we assumed that the approximated signal may 
be noisy, the method works equally well when there is no 
noise in the input data.  The noise characteristics simply 
serve as a reference for developing the stopping criterion. 
 
 
 



 

 

3. Simulation and discussion 
 
The proposed SNRF-based criterion on optimizing the 
number of hidden neurons was tested on a 4-layer MLP in 
the following simulations. The 4-layer MLP contains an 
input layer, 2 hidden layers (with equal number of hidden 
neurons) with nonlinear transfer functions, and an output 
layer with linear transfer functions. The training algorithm 
is the linear least-squares learning method [10] so that the 
number of iterations does not affect the learning 
performance. 
As the number of hidden neurons increases, the amount of 
signal information left in the error signal decreases, and 
the SNRFe is expected to decrease as well. When the 
SNRFe becomes lower than the threshold as more neurons 
are added, the error signal shows the characteristic of the 
WGN and overfitting starts to occur. At this point, one 
should stop increasing the size of the hidden layer, and 
the optimized approximation without overfitting using 
MLP is obtained. Meanwhile, the cross-validation method 
is applied to the same dataset, which utilizes the training 
error trainε and the testing error testε  measured in the 
normalized MSE [7]. It is expected that when the SNRF-
based criterion recognizes overfitting, either trainε  and 

testε  will start to diverge from each other, or testε  will 
reach a minimum. This minimum is employed in the 
cross-validation method as the “early-stopping” point [7]. 
As stated in Section 1, the recognition of overfitting by 

testε is not accurate because testε is only an approximation 
of the generalization error and has local minima as 
parameters of the network vary. Hence, the cross-
validation results helps to prove the effectiveness of the 
SNRF-based criterion, and the obtained error signals are 
shown to demonstrate the quality of fit. 
 
3.1. Mackey-glass dataset 
 
The Mackey-glass data is a time series data set obtained 
from a physiological system [11] with an unknown level 
of noise. In this test, MLP is used to predict each 8th 
sample based on every 7 samples, assuming that every 8th 
sample in the time series is a function of previous 7 
samples.  The target function and the error signal, e, are a 
continuous one-dimensional, time-domain functions.  
This allows us to use the one-dimensional SNRF and 
threshold measures to determine the optimum number of 
hidden neurons. 
It is discovered that SNRFe becomes lower than the 
threshold with the number of the hidden neurons larger 
than or equal to 4, as can be seen in Fig.3(a). Fig. 3(b) 
shows that testε  starts to increase and diverge from trainε  
after the number of hidden neurons exceeds 4, as expected. 
The approximated sequence, using 4 hidden neurons in 
the MLP, almost overlaps the desired target function.  The 
approximation error signal obtained shows the 
characteristic of WGN as shown in Fig.4. 
 

3.2. Puma robot arm dynamics dataset 
 
The dataset generated from a simulation of the dynamics 
of a Unimation Puma 560 robot arm [12] has 8 inputs 
include angular positions of 3 joints, angular velocities of 
3 joints and torques of 2 joints of the robot arm. The task 
in this problem is to predict the angular acceleration of the 
robot arm's links. The dataset is subject to an unknown 
level of noise. In order to find the optimum number of 
neurons, various numbers of neurons (from 1 to 100 with 
a step size of 3) are used in the MLP and the optimum 
number of hidden neurons is determined using SNRF-
based criterion. 
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(a) SNRF of the error signal and threshold 
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Fig. 3. Optimization of number of hidden neurons in 

Mackey-glass case 
 
Randomly choose 300 samples to use as the training set 
and another 200 samples to use as the testing set. The 
SNRFe is compared with threshold, as shown in Fig. 5(a) 
which indicates that overfitting starts to occur when the 
number of neurons is 40. Note that testε  has many local 
minima, as seen in Fig. 5(b), and using a local minimum 
of testε  as a stopping criterion would be ambiguous in 
this case.  Using a 6th order polynomial fit to testε , we can 
see that the testing error starts to diverge from training 



 

 

error at 40 neurons, which is very close to the prediction 
from SNRF based criterion. 
In summary, the proposed SNRF-based criterion is tested 
and verified on one-dimensional and multi-dimensional 
datasets. It proves that the SNRF is able to identify the 
overfitting from the training errors only. 
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Fig. 4. Performance and error signal obtained in  

Mackey-glass case 
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(a) SNRF of the error signal and threshold 
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(b) Training and testing error 

 
Fig. 5. Optimization of number of hidden neurons in 

Puma Robot case 
 

4. Conclusions 
 
In this paper, a method is proposed to optimize the 
number of hidden neurons in NN to avoid overfitting in 
function approximation. The method utilizes a 
quantitative criterion based on the SNRF to detect 
overfitting automatically using the training error only, and 
it does not require a separate validation or testing set. The 
criterion has been validated using benchmark datasets and 
compared with the common cross-validation method. The 
criterion is very easy to apply, consumes small amount of 
computations and is suitable for practical application. The 
same principle applies to the optimization of other 
parameters of neural networks, including the number of 
iterations in back propagation training to avoid 
overtraining or the number of hidden layers. It can be 
applied to parametric optimization or model selection for 
other function approximation problems as well.   
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