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ABSTRACT 
 
Rough Set Theory (RST) is a recent development in the 
area of data mining and knowledge discovery.  RST is an 
emerging Automatic Target Recognition (ATR) 
methodology for determining features and then classifiers 
from a training data set.  RST guarantees that once the 
training data has been labeled all possible classifiers 
(based on that labeling) will be generated.  The primary 
limitation is that the operation of finding all the 
classifiers (reducts) has been shown to be N-P hard.  This 
means that for any realistically sized problem the 
computational time for finding the classifiers will be 
prohibitive.  In this paper we extend RST by defining 
new terms: a focused information system, a focused 
reduct, and a power information system.  Using these 
concepts we develop a means to create a classifier 
capable of acceptable performance on a six target class 
HRR problem.  Our method, in addition to making a 
robust classifier, creates a method which can extract 
useful knowledge from incomplete or corrupted data.  
This is accomplished through the partitioning of the data.  
Each partition will have multiple classifiers.  We then 
introduce a method to fuse all these classifiers to yield a 
robust classifier with a probability of correct 
classification of 92% and a probability of declaration of 
99%.  
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1. INTRODUCTION 
 
     Classification of High Range Resolution (HRR) radar 
signals is difficult.  A typical HRR signal contains 128 
range bins with values between 0-255 representing the 
signal strength.  A 3-D object is now being represented 
by a 1-D signal. This dimensionality reduction introduces 
ambiguities.  In addition, extreme signal variability 

makes the problem more difficult.  Because there is no 
comparable signal that a human has experience 
classifying, human intuition is of a little help.  Therefore, 
a computerized machine learning system is required. 
     Rough set theory is the mathematical foundation for 
developing a classifier [1-3].  Each HRR range bin is 
called an attribute in rough set theory (a feature in pattern 
recognition theory) and the target class associated with 
that signal is called the decision attribute.  Rough sets 
provide the mechanism to find the minimal set of 
attributes required to classify all the training signals.  
This minimal set of attributes is called a reduct and 
contains the same knowledge (ability to classify all the 
training signals correctly) as the original set of attributes 
in a given information system.  Therefore reducts can be 
used to obtained different classifiers.  Rough sets require 
the data in the range bins to be labeled.  Once this 
labeling has occurred rough set theory guarantees that all 
possible classifiers will be found!  We chose to use a 
binary labeling based on entropy. This scheme reduces 
sensitivity to noise and signal registration.  Information 
entropy is used to select the range bins that are most 
useful in classification and reduce computational time for 
determining reducts. 
     Until recently, rough set theory has not been applied 
to many classification problems because real-world 
problems are too large [4-5].  The determination of 
minimal reducts (minimal classifiers) has been proven to 
be N-P hard.  We have developed a method of reducing 
the time for finding sub-optimum reducts to O(n2) 
making it a useful process for finding classifiers in real-
world problems.   In addition, we have developed a way 
to fuse results from all reducts to improve classifier 
performance. 
     Fusing the results of the reducts for each partition and 
fusing the reducts for all the partitions improves classifier 
performance as it was demonstrated on high range 
resolution radar signal classification problem.  On the 
training set using one partition the probability of correct 



classification (Pcc) was 89% and the probability of 
declaration (Pdec) was 93%.  Fusing reducts from all 
partitions the Pcc was 100% and Pdec was 100%.  On the 
training set one would expect 100% performance on both 
of these parameters.  On the test set the best Pcc for one 
partition was 79% and Pdec was 90%.  When all reducts 
were fused, Pcc was 92% and Pdec was 99%! 
 

2. ROUGH SET THEORY 
 
     It is not the purpose of this paper to be a tutorial of 
rough set theory.  An introduction to rough set theory 
may be found in [3].  However, some basic concepts need 
to be introduced.  With the binary labeling used the set of 
all labeled training signals forms a decision table 
consisting of 1s and 0s.  Each row corresponds to a given 
target type.  In many cases it is possible to use a subset of 
the entire signal to distinguish among different target 
classes.  For example, it may be possible to use range 
bins 1 through 20 and be able to uniquely classify each 
signal in the training set.  If this subset of range bins 
cannot be further reduced without loosing its ability to 
classify the training set, then it is called a reduct.  This 
term comes from the idea that we have reduced the size 
of the table without reducing the information contained in 
it (i.e.; the ability to uniquely classify all the signals).  
There may be no reducts (we must use all the range bins) 
or there may be many reducts.  It should be noted that a 
reduct may not contain another reduct.  That is, it must be 
minimal. 
     With this preface we now introduce the mathematical 
formalism. We review basic definitions of rough set 
theory related to selection of the set of attributes for the 
purpose of classifying a given set of objects.  The 
discernibility function is formally defined and an 
alternative characterization of reducts is given which is 
easier to manipulate for algorithmic purposes.  For a full 
development of this area see [5]. 
     Consider the information system ),( AU , where 

},...,{ 1 nxxU =  is a nonempty finite set called the 
universe, and },...,{ 1 maaA =  is a nonempty set.  The 
elements of A, called attributes (in our case range bins), 
are functions 

ii VUa →:  
where iV  is called the value set of ia .  In a practical 
rough set system Vi is a discrete and finite set of values.  
In the case of a binary labeling used in this work Vi ={0, 
1} .  The discernibility matrix of A is the nn ×  matrix 
with th, ji  entry 

)}()(:{ jiij xaxaAac ≠∈= . 
So an element cij of a discernibility matrix contains all 
attributes that differentiate between two given objects xi 
and xj. Let AB ⊆ , and let )(AP  be the power set of A.  
The  Boolean-valued function Bχ  is 
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The associativity property 
)()( DCBDCB χχχχχχ ∧∧=∧∧  

allows us to drop the parenthesis without any possibility 
of confusion; moreover we can now define ∧  for any 
finite collection of functions { } p

iiB 1=
χ  by recursion 
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The discernibility function of the information system is 
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where “ 0 ” is the constant function 

0:  
}1,0{)(:0

aC
AP →  

If Af  is an empty conjunction we define Af  to be the 
constant zero function.  This is an uninteresting case and 
we assume throughout that Af  is not an empty 
conjunction. 
     The condition 0≠

ijcχ  used in the definition of the 
discernibility function is equivalent to the condition that 

∅≠ijc  since 
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     Using the fact the discernibility matrix is symmetric 
and that ∅=iic  it follows the discernibility function 
simplifies to 
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.  We also know [5] 
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Let AB ⊆ .  The B-indiscerniability relation is 
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The B-discernibility relation is the complement of 

)(BInd  in UU × , 
)()( BIndUUBDis −×= . 

The following lemma is an immediate consequence of the 
definition. 
Lemma.  Let AB ⊆  .  Then 
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Consequently, if Bba ∈,  and })({})({ bDisaDis =  then  
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Essential for the information system are the reducts that 
describe knowledge represented in this system.  A set 

AB ⊆  is a discern in A if )()( AIndBInd = .  A discern 
is called a reduct if )(}){(  )( BIndaBIndBa ⊃−∈∀ , 
where “⊃” denotes a proper subset relation.  The set of 
all reducts of A is denoted )(ARed .  The reduct 
generation procedure developed in [6] is based on the 
expansion of the discernibility function into a disjunction 
of its prime implicants by applying the absorption or 
multiplication laws.  This procedure is not sufficiently 
efficient to allow us to use it with real-world size 
problems.  The core of the information system is defined 
as a set P A⊆  such that 

P B
B d A

=
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and a set S is a shell if 
∃ ∈ ⊂ ⊂B d A P S BRe ( )  

     Let AB ⊂ . 
 

3. EXTENSIONS TO ROUGH SET THEORY 
 
Since we are introducing a way to partition the training 
data, we must introduce some new terminology to 
connect this approach with RST.  The partitioning of the 
data results in a new information system.  Thus, we 
define a focused information system ),( BU that 
represents local properties of the information system.  A 
focused reduct F is a reduct of the focused information 
system, so we have Ind(F) = Ind(B).  A focused reduct in 
general is not a reduct of the original system as it may not 
differentiate all objects and in general we have 
Ind A Ind B( ) ( )⊆ .  The power information system is 
defined as a set of all focused information systems.   

}2:),{(),( ABBUAUP ∈=  
In other words the power information system of a given 
information system (U, A) is a set of information systems 
defined on the power set of A.  The power information 
system is more robust than the original information 
system and can extract useful knowledge from 
incomplete or corrupted data.  We define a covered 
information system as 
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     In order to reduce computational cost, focused reducts 
will be chosen from a covered information system.  In 
general, a covered information system is redundant, 
which means that ∑<

i
iAcardAcard )()( .  This 

redundancy is what creates the more robust classifier.  
However, a means must be developed to properly 
amalgamate or fuse this data into a classifier. (Section V) 
 
     Conjecture. A covered information system yields a 
combined classification performance of focused reducts 

exceeding performance of the reducts of the original 
information system.  In addition, the obtained 
classification is more robust to signal distortion and can 
work with partially determined signals.                          � 
 

4. PARTITIONING OF A SIGNAL 
 
In our HRR classification system we have found that 
using a Haar wavelet transform on the original signal 
yields a more powerful feature set from which to build a 
classifier.  The disadvantage is that we now must find 
reducts from a possible 1024 range bins.  This is not 
possible to do in a reasonable time.  Therefore we use an 
entropy measure to select the range bins that have the 
most information theoretic value in classifying the 
training signals.  Using our algorithms, 50 range bins are 
a practical limit for an 800 MHz desktop computer. 
     If we use the entire original signal and its wavelet 
coefficients we are able to consider only 50 out of 1024 
range bins or less than 5% of the range bins.  Table I 
shows the lackluster performance of a classifier built this 
way.  If we partition the signal in two pieces, build a 
classifier for each partition and fuse the results, our 
classifier is now based on twice as many range bins.   
Continuing this reasoning, if we make eight classifiers 
and fuse their results we will be using 400 range bins and 
fusing the results of each of these classifiers.  We are thus 
considering more range bins with potentially more 
information for our classifier. 
     The next question is how to partition the signal.  The 
first method that comes to mind is to use a block 
partitioning as illustrated in Fig. 1.  This method looks at 
each portion of the signal in isolation.  Normally the ends 
of a signal contain noise and are not useful.  The 
classifiers based on theses areas tend not to have good 
performance.  However, the fusion equation takes this 
into account.  This partitioning method allows classifiers 
to be generated that can focus on the more important 
aspects of the signal.  Another advantage of this method 
is that should a portion of the signal be obscured for any 
reason, there are still multiple classifier that do no depend 
on that portion of the signal thus still allowing 
classification.   
     Another possible method would be to use an 
interleaved selection illustrated in Fig 2.   The easiest 
way to explain this method is to describe dividing the 
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Fig. 1.  Block Partitioning 



signal into two parts.  The first partition would consist of 
all the odd numbered range bins and the other partition 
would consist of all the even numbered range bins.   This 
concept is easily extended to four and eight partitions.  
This partitioning scheme reduces the effects of 
registration of the signals.  That is, if the first range bin of 
a test signal does not match the first range bin of the 
training signal we might not get classification at all.  
However, with interleaved partitioning there would be a 
classifier that would classify.  Theoretically this method 
would allow a misregistration of up to eight range bins. 
     The conjectures put forth regarding misregistration 
and obscuration have not been tested as of this writing. 

 
5.  FUSION OF MULTIPLE CLASSIFIERS 

 
     Having many advisors is valuable in the world 
(especially if you have a measure of how reliable they 
are).  Therefore, we theorized that by fusing multiple 
classifiers from multiply partition signals we would 
produce a better and more robust classifier. 
     In is not the purpose of this paper to completely 
describe the fusion process.  However, to help you 
understand the results the fusion equation is presented 
here.  Each classifier votes as to which target it believes 
the signal belongs to (Pcci).  All votes for each class are 
fused and given a score (Wt).  The class with the highest 
weight is the class selected.  If no weight is greater than a 
user set threshold (0.50) then the signal is unclassified.  
The unclassified signals affect the probability of 
declaration (Pdec). 
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This equation guarantees the Wt will be at least as large as 
the greatest Pcc, (Pccmax).  Further Wt is limited to the range 
of 0 to 1. 
 

6.  RESULTS 
 
Table I shows the test classification results from each 
partition type and the fusion of differing levels of 
partitioned classifiers.  The column titled Sel. Indicated 

what partitioning method and which partition is being 
evaluated..  Entries followed by st, nd, or th indicated that 
block partitioning was used and that it is the first, second, 
etc block.  Entries where there is no suffix indicated that 
interleaved partitioning was used.  In this cast the entry 
would mean that the first, second, third, etc element of 
each block was combined to make a partition.  Previously 
it was mentioned that the first part of a signal and the last 
part may contain noise an therefore would not be able to 
perform well.  This is confirmed by the zeros in 8-1st, 8-
2nd, 8-7th, and 8-8th.  Other partitions perform very well 
(2-1st).  The final results support the conjecture that 
properly fusing many classifiers will result in a better, 
more robust classifier.  The robustness improvement is 
indicated by the Probability of Declaration being almost 
1.  This indicates there are very few signals unclassified.  
Even with this high classification rate, the classifier is 
still very accurate. 
 

 TABLE I.  TEST CLASSIFICATION RESULTS 
Div. Sel. Pcc Pdec Pcc Pdec Pcc Pdec Pcc Pdec

1 1 0.79220.90381   

2 1 0.790950.79726   
2 2 0.793810.75705 0.81229 0.94424  

2 1st 0.917040.73964   

2 2nd 0.43967 0.7954 0.79694 0.94942 0.88116 0.992

4 1 0.723690.80949   
4 2 0.742610.85531   

4 3 0.75740.83313   

4 4 0.636390.75311 0.82266 0.9971  

4 1st 0 0   

4 2nd 0.880510.80846   

4 3rd 0.652410.76575   

4 4th 0 0 0.83239 0.94983 0.882 0.999

8 1 0.637220.81882   
8 2 0.589470.78317   

8 3 0.599950.75808   

8 4 0.517470.65858   

8 5 0.498590.80618   

8 6 0.506730.72367   

8 7 0.51172 0.7073   

8 8 0.536310.64511 0.77047 0.99979  

8 1st 0 0   

8 2nd 0 0   

8 3rd 0.664440.68138   

8 4th 0.818290.51451   

8 5th 0.704850.41439   

8 6th 0.374940.82546   

8 7th 0 0   

8 8th 0 0 0.75351 0.97388 0.84906 0.999 0.9230.999

    We are currently exploring ways to tradeoff the 
probability of declaration to achieve a higher probability 
of correct classification.  Additional experiments will be 
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Fig. 2. Interleave Partitioning 



performed to verify the conjectures regarding limited 
sensitivity to registration and obscuration.  Because of the 
binary labeling scheme, we also believe that this 
classifier may be resistant to signal noise as well. 
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