
Fusing Marginal Reducts for HRR Target Identification 
 

Dale E. Nelson 
Sensors Directorate, Air Force Research Laboratory 
Wright Patterson Air Force Base, Ohio 45324, USA 

 
Janusz A. Starzyk 

Department of Computer and Electrical Engineering, Ohio University 
Athens, Ohio  45701, USA 

 
ABSTRACT 

 
Rough set theory has not been applied to automatic 
target recognition (ATR) problems because the problems 
of interest were too large.  The determination of reducts 
(classifiers) was a problem whose solution grew in 
exponential time with the number of range bins.  This 
paper introduces a method which allows the 
determination of reducts in quadratic time and a method 
of partitioning the problem (reducing the number of 
range bins being considered) so that ATR problems can 
be solved in a reasonable time.  A method of fusing the 
individual classifier results, even though they may not 
have performed well on the training set (marginal reduct) 
is introduced.  This fusion of marginal reducts yields a 
synergistic result that produces a well performing 
classifier. 
 
Keywords: Rough Sets, Automatic Target Recognition, 
High Range Resolution Radar, Fusion, Reduct. 

 
1.  PROBLEM 

 
This paper uses High Range Resolution (HRR) radar 
signals for target classification.  A HRR signal is an n-
dimensional vector ),,,( 21 nyyys K= , and 

255},1,{0, K∈iy .  The HRR radar provides a 1-D 
picture of what the sensor is looking at.  HRR signals are 
particularly hard to use for target recognition, partly 
because the 3-D world is projected onto just one 
dimension.  When this is done, there are many 
ambiguities created which must be resolved 
 
A further complication to target identification using 
HRR is that the signals change considerably with only 
small changes in azimuth and elevation.  This is 
illustrated in Figure 1 [1]. 
 
The signals shown in Figure 1 are from two different 
targets.  The signals shown for each target were taken at 

200 msec intervals.  The significant variations in a short 
time span illustrate how difficult it would be to construct 
a target identification system based on these signals. 
 
Target identification systems are normally specified in 
terms of goals for performance.  Two of the goals used 
are probability of correct classification (Pcc) and 
probability of declaration (Pdec).  The automatic target 
recognition (ATR) system may chose to declare or not 
declare a HRR return as a target.  If the ATR system 
declares on every target, Pcc will be low while Pdec will 
be high.  Conversely if the system only declares when it 
is absolutely sure, Pcc will be high and Pdec will be low.  

The goal for this research effort is a Pcc  > 95% and a 
Pdec > 85%.  However we would be willing to sacrifice 
a small amount of Pcc for a large increases in Pdec. 
 

Figure 1.  A comparison of two HRR target signals. 
 

2.  DATA 
 
The data set used in this research consists of synthetic 
HRR returns on six targets.  For each target there are 1071 
range profiles consisting of 128 range bins.  The value of 
each range bin is an integer between 0 and 255.  The pose 
of the target is head-on with an azimuth range of ±25o and 
elevations of -20 o to 0 o in one-degree increments as 
illustrated in Figure 2. 
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This data is divided into two sets, one for training, and 
the other one for testing.  The training set consists of 
25% of the data, randomly selected, and the test set 75% 
of the data (the remaining data).  The small training set 
permits faster training, facilitating algorithm 
development and debugging.  The training set was 
constructed by using a random number generator to 
select 25% of the azimuth and elevation angles and then 
by selecting signals from each target class with these 
values.  All remaining signals were placed into the test 
set. 
 
Multiple Data Partitions 
One of the problems with rough set classification is that 
the determination of all the reducts (this is described in a 
later section) is an NP-hard problem [4].  Even using 
methods described in [5] the HRR ATR problem is too 
large.  Therefore, it is necessary to only use a small 
subset of the available range bins.  We hypothesized that 
this may also be advantageous to the classification 
process, as the smaller data sets would force the rough 
set classifier to focus on either local or more global 
features depending on how the data is partitioned.  We 
selected the range bins to be used in a number of 
different ways.  A signal was divided into partitions 
consisting of all the data, one-half of the data, one-
quarter of the data, and one-eighth of the data.  There 
were two ways of selecting data from each partition size.  
On the partition using one-half of the data, the first 
selection consisted of two sets, the first 64 range bins, 
and the last 64 range bins.  The second selection 
consisted of two sets, the even numbered range bins, and 
the odd numbered range bins.  For the partitions where 
the data is in fourths, we selected range bins 1-32, 33-64, 
65-96, 97-128.  The second selection consisted of range 
bins {1, 5, 9, 13, …, 125}, {2, 6, 10, 14, …, 126}, {3, 7, 
11, 15, …, 127}, {4, 8, 12, 16, …, 128}. Similar 
procedures were used for the other partition size. 
 
Wavelet Transformation 
Wavelets are a well-described method for data analysis 
and identification [6].  Our previous research [2] 
revealed that using a wavelet transform’s coefficients as 
pseudo range bins (henceforth also called range bins) 
yielded features that would improve classifier 
performance.  We also found that it did not matter which 
wavelet was chosen as the choice did not have a 
statistically significant different classification 
performance.  Therefore, once the data was divided into 

multiple partitions and multiple selections, the signal 
values were normalized.  This was accomplished by 
dividing each signal value by the 2 norm across the 
signal’s range bins.  The 2 norm is defined as: 
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After the normalization, each of these data sets was 
transformed using a multi-level wavelet transform using 
the Haar wavelet [6].  This resulted in the original signal 
with 128 range bins becoming a signal with 1024 pseudo 
range bins.  A signal with 64 range bins (signal divided 
in two partitions) becomes a signal with 448 pseudo 
range bins.  The signals with 32 range bins (signal 
divided into four partitions) becomes signals with 192 
pseudo range bins.  Finally, signals with 16 range bins 
(signal divided into eight partitions) become signals with 
80 pseudo range bins. 
 
Binary Entropy Labeling 
Rough sets are different than fuzzy sets.  Where fuzzy 
sets may be characterized as being concerned with how 
gray a pixel is, rough sets are concerned with how large 
a pixel is [3].  This concept of size translates into 
labeling for the HRR problem.  Therefore, we must 
choose a scheme to label the data.  The greater the 
number of labels the finer the division of the 
classification space and presumably better performance.  
For this effort we chose to use a binary labeling based on 
multi-class information entropy.  Assume a range bin 
across all training signals is defined as: 

Let 

 
Rather than forcing an assumed distribution on the data 
we can use an approximation to the probability density 
function to obtain the probabilities.  Thus we can define 
the probability at each point x as the quotient of 
cardinalities: 

 
And two more probabilities as: 
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Figure 2.  Azimuth and Elevation Ranges 
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Where the index i is defined as : 

 
Now we define the multi-class entropy for our six class 
problem as: 

 
The point at which the relative entropy is minimum for 
the range bin is the division point that will provide the 
maximum amount of information for separating the 
target classes.  Since the training signals have been 
labeled, we may find identical signals that are of the 
same target class (duplicates).  We remove these for 
computational efficiency, as these are redundant.  We 
may also find signals representing different target classes 
that are identical (ambiguous).  We remove these, as 
they are confusing when constructing a target classifier.  
What remains are signals which are unique to each target 
class.  These signals are the basis for the decision table 
used in rough set classification. 
 
Test set signals are labeled somewhat differently than the 
training signals.  The division point for each range bin in 
the test signal must be the same as for that range bin in 
the training signal.  Using this would provide for a sharp 
labeling of the data.  Values close to this division point 
could possibly be “mislabeled” due to noise.  Therefore 
we have added a provision in the classifier to provide a 
buffer zone around the division point. This buffer zone is 
defined: 

))max(),min(min(* diid xxxxbd −−=  

where d is the distance from the division point, b is the 
amount of the smallest distance to be used, dx  is the 

division point, and ix  are the range bin values.  The 

buffer zone is then defined as the distance dxd ± .  
Any value in the buffer zone is treated as “don’t care”; 
that range bin will not be considered in the classification 
process for that signal. 
 
Range Bin Selection 
If possible, the perfect solution would be to use all of the 
range bins.  However even with the partitioning of the 
data, the number of range bins was greater than could be 
handled in a reasonable time.  In our research we 
determined that a practical number of range bins, 
considering the computer time required, was 50.  We 
used the value of the minimum relative entropy for each 
range bin to select the 50 best (largest maximum mutual 

information) range bins to be used for building the 
classifier.  This means that when we use the transformed 
original signal we will use 50 range bins.  When we use 
two data partitions we will have 100 range bins.  When 
four partitions are used there will be 200 range bins 
used.  Finally when there are eight partitions there will 
be 400 range bins used.  Even in quadratic time, 400 
range bins would require too much time if they were 
used all at one time.  With the partitioning method, 
however, this many range bins can be used. 
 

3.  ROUGH SET CLASSIFICATION 
 
It is not the purpose of this paper to be a tutorial of rough 
set theory.  An introduction to rough set theory may be 
found in [3].  However, some basic concepts need to be 
introduced in order to understand the contribution of this 
research.  The set of all labeled training signals forms a 
table consisting of 1s and 0s.  Each row corresponds to a 
given target type.  In many cases it is possible to use a 
subset of the entire signal to distinguish among the 
different target classes.  For example, it may be possible 
to use range bins 1 through 20 and be able to uniquely 
classify each signal in the training set.  This is called a 
reduct.  This term comes from the idea that we have 
reduced the size of the table without reducing the 
information contained in it (i.e.; the ability to uniquely 
classify all the signals).  There may be no reducts or 
there be many reducts.  It should be noted that a reduct 
may not contain another reduct.  The range bins common 
to all reducts are called the core.  The procedure to 
determine reducts and the core may be found in [3] and 
[5]. 
 
Multiple Classifiers 
One of the major problems in applying rough set theory 
to classification is that determination of all the reducts 
has been shown to be NP-hard [4].  Because it is easier 
to match a few range bins rather than many, we believe 
that better classification performance is achieved through 
using minimal reducts, that is, reducts that use the 
fewest range bins.  The problem is how to achieve 
adequate performance of the classifier with the 
partitioned data.  We anticipate that training goals can be 
easily met, or exceeded, on the training data and yet still 
not be met on the test set.. 
 
Merging of Marginal Reducts 
Once all the minimal reducts have been determined each 
one is tested against the full training set (all ambiguities 
and duplicates included) and the performance 
(probability of correct classification, Pcc, and probability 
of declaration, Pdec) determined.  In some cases a reduct 
based on a data partition which contains mostly noise 
will have a low Pcc and a high Pdec.  This is called a 
marginal reduct.  Even though the performance is low, 
this reduct may be able to be used to improve classifier 
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performance if it is combined in the right way with other 
reducts. 
 
The rough set classifier will generate a set of classifiers 
(reducts) for each of the training files.  Some of these 
classifiers will yield a high probability of correct 
classification (Pcc) while others will yield a low Pcc.  
What is desired is to have a scoring function that will 
weight the votes of each of the classifiers for each target 
class.  This function provides a score for each target 
class based upon the performance of each reduct voting 
for that target class.  Some of the properties that are 
desired of this function are: 

1. If all the Pcc(s) are zero the weight should be 
zero. 

2. If all the Pcc(s) are one the weight should be one 
3. If there are several “votes” of low confidence for 

a given target class the weight should be higher than any 
of the low confidence votes. 

4. If there is one high confidence vote and several 
low confidence votes, the weight should be higher than 
the highest score. 
 
The total weighting function far a given target class is 
given as : 
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Where: 
 Pmax = Maximum Pcc of all reducts “voting” for target 
class t 
       Pi = Pcc of each “vote” for target class t 
        n  = number of “votes” for target class t 
      ε  = small number preventing division by zero. 
 
Using some contrived Pcc values Table 1 illustrates the 
weight generated for a target class based on the “votes” 
and their Pcc.  As can be seen from the table all the 
desirable features of the function are achieved.  The 
maximum value (1) and the minimum value (0) are 
achieved.  Further, when there are several small values 
the Wt value is higher than any of the small values.  The 
Wt is also larger than the largest of the Pcc values. 
 

Pcc(1) Pcc(2) Pcc(3) Pcc(4) Pcc(5) Wt 

0.00 0.00 0.00 0.00 0.00 0.00 
1.00 1.00 1.00 1.00 1.00 1.00 
0.10 0.10 0.00 0.00 0.00 0.15 
0.80 0.10 0.30 0.00 0.00 0.84 
0.80 0.20 0.00 0.00 0.00 0.83 
0.80 0.10 0.10 0.00 0.00 0.83 

Table 1.  Results of Weighting Formula 

 
4.  CLASSIFICATION RESULTS 

 
The results of classification based on fusing marginal 
reducts with the weighting formula can be seen in Table 
2 and Table 3.  The first column indicates the number of 
data divisions the original signal was divided into.  The 
second column indicates how the data was selected.  If 
the second column is only a number, it indicates the use 
of an interleave scheme.  For example, if there are two 
data divisions 1 means the odd range bins and 2 means 
the even ones.  If the value in the second column is 
followed by “st” or “nd” it means that the range bins are 
from the first block, second block, etc.  For example, if 
the number of data divisions are two, 1st means range 
bins 1-64 and 2nd means range bins 65-128. 
 

Div. Sel. Pcc Pdec Pcc Pdec Pcc Pdec Pcc Pdec

1 1 0.89207 0.93695       

2 1 0.94536 0.83396       

2 2 0.9691 0.82834 0.96991 0.97503     

2 1st 0.99875 0.9975       

2 2nd 0.5505 0.68602 0.9975 0.99938 0.99875 1   

4 1 0.96208 0.83958       

4 2 0.9598 0.88514       

4 3 0.8877 0.87828       

4 4 0.95036 0.69164 0.96998 0.99813     

4 1st 0.79693 0.32584       

4 2nd 0.99938 1       

4 3rd 0.88203 0.78839       

4 4th 0.54545 0.29526 0.99938 1 0.98065 1   

8 1 0.90902 0.75468       

8 2 0.92612 0.70974       

8 3 0.94781 0.66979       

8 4 0.96107 0.7216       

8 5 0.95 0.64919       

8 6 0.95584 0.79151       

8 7 0.90096 0.71848       

8 8 0.97834 0.49001 0.99001 1     

8 1st 0.22995 0.23346       

8 2nd 0.42586 0.36205       

8 3rd 0.98691 0.8583       

8 4th 0.99875 0.99563       

8 5th 0.99012 0.94757       

8 6th 0.7984 0.8608       

8 7th 0.46296 0.23596       

8 8th 0.30547 0.19413 0.99813 1 1 1 1 1 

Table 2.  Fusing Training Partitions. 
 
Table 2 shows a dramatic improvement achieved by 
fusing the results of the various classifiers as compared 
to direct classification results (row number 1 in the Table 
1).  In the case of eight data divisions a perfect score is 



achieved on both Pcc and Pdec.  Intuitively one might 
expect this.  However, remember that both duplicates 
and ambiguities were removed from the training set to 
develop the classifier.  These results were on the entire 
training set.  When all the partitions are combined 
together both Pcc and Pdec achieve perfect scores.  The 
only way to truly assess the performance is to test the 
classifier on the test data set.  When comparing eight 
data divisions to one data division remember that we are 
comparing target recognition results based on 400 range 
bins against performance based on 50 range bins. 
 

Div. Sel. Pcc Pdec Pcc Pdec Pcc Pdec Pcc Pdec

1 1 0.1667 0.99979

2 1 0.79095 0.79726

2 2 0.79381 0.75705 0.81229 0.94424

2 1st 0.91704 0.73964

2 2nd 0.43967 0.7954 0.79694 0.94942 0.88116 0.992

4 1 0.72369 0.80949

4 2 0.74261 0.85531

4 3 0.7574 0.83313

4 4 0.63639 0.75311 0.82266 0.9971

4 1st 0 0

4 2nd 0.88051 0.80846

4 3rd 0.65241 0.76575

4 4th 0 0 0.83239 0.94983 0.882 0.999

8 1 0.63722 0.81882

8 2 0.58947 0.78317

8 3 0.59995 0.75808

8 4 0.51747 0.65858

8 5 0.49859 0.80618

8 6 0.50673 0.72367

8 7 0.51172 0.7073

8 8 0.53631 0.64511 0.77047 0.99979

8 1st 0 0

8 2nd 0 0

8 3rd 0.66444 0.68138

8 4th 0.81829 0.51451

8 5th 0.70485 0.41439

8 6th 0.37494 0.82546

8 7th 0 0

8 8th 0 0 0.75351 0.97388 0.84906 0.999 0.923 0.999

Table 3.  Fusing Testing Partitions 
 
Although the test scores are not expected to be as good 
as for the training set we expect a similar improvement 
when the results of the classifiers based on the marginal 
reducts are fused.  The results from the test set are shown 
in Table 3.  We see that as the various partitions are 
combined, the Pcc is not always greater than the greatest 
Pcc of the individual partitions.  This is due to the use of 
the probabilities from the training set in weighting.  In a 
real world problem there is no way to assess the 

performance on an unknown signal thus requiring the 
use of the performance from the training set.  
Nevertheless we find that the performance increases to 
an acceptable level as we combine more and more 
partitions. 
 
We see that the final result of 92% Pcc is below the 
desired value of 95%.  However, Pdec is very close to 
100%.  We can either accept this result or through minor 
adjustments of some of the tolerances in the system, we 
can trade some Pdec for an increase in Pcc.  We are 
willing to accept the small decrease in Pcc for almost 
100% Pdec.  In the real world this decision would be 
made under the rules of engagement. 
 

 
5.  SUMMARY 

 
We have shown that a multi-partitioned data set may be 
used so that rough set theory can be applied to construct 
a classifier.  In order to meet performance goals it is 
necessary to fuse the results of all the minimal reducts.  
We have introduced a fusion formula that performs this 
operation yielding a classifier that has acceptable 
performance.  Test results confirmed our claim of 
superior performance over direct classification based on 
fusing all data partitions. 

 
6.  REFERENCES 

 
[1]  R. Mitchell,, J. Westerkamp, “Robust statistical 
feature based aircraft identification”, IEEE Transactions 
on Aerospace and Electronic Systems, Vol 35, No. 3, 
1999. 
[2]  D. Nelson, J. Starzyk, “Iterative Wavelet 
Transformation and Signal Discrimination for HRR 
Radar Target Recognition”, IEEE Systems, Man, and 
Cybernetics, in review. 
 [3]  Z. Pawlak, Rough Sets Theoretical Aspects of 
Reasoning about Data, Kluwer Academic Publishers 
1991. 
[4]  A. Skowron, J. Stepaniuk, “Towards an 
approximation theory of discrete problems: Part I., 
Fundamenta Informaticae Vol. 15, No. 2, 1991, pp. 331-
362 
[5]  J. Starzyk, D. Nelson, K. Sturtz, “A Mathematical 
Foundation for Improved Reduct Generation in 
Information Systems, Knowledge and Information 
Systems, Vol. 2, No. 2, May 2000. 
[6]  G. Strang, T. Nguyen, Wavelets and Filter Banks, 
Wellesley-Cambridge Press, 1996 
 



 


