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ABSTRACT 
This paper describes a new evolvable hardware 

organization and its learning algorithm to generate binary 
logic artificial neural networks based on mutual 
information and statistical analysis. First, thresholds to 
convert analog signals of the training data to digital 
signals are established. In order to extract feature function 
for multidimensional data classification, conditional 
entropy is calculated to obtain maximum information in 
each subspace. Next, dynamic shrinking and expansion 
rules are developed to build the feed forward neural 
networks. At last, hardware mapping of learning patterns 
and on-board testing are implemented on Xilinx FPGA 
board.  
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1. INTRODUCTION 
Artificial neural networks (ANN) have attracted the 

attention of many researchers in different areas, such as 
neuroscience, mathematics, physics, electrical and 
computer engineering, and psychology. Generally, such 
systems consist of a large number of simple neuron 
processing units performing computation by a dense mesh 
of nodes and connections. In addition, they have the very 
attractive properties of adaptiveness, self-organization, 
nonlinear network processing and parallel processing. A 
lot of efforts have been put on applications involving 
classification, association, decision-making and reasoning.  

Recently, evolutionary algorithms have been 
suggested by many researchers to find well performing 

architectures for artificial neural networks, which employ 
the evolutionary dynamics of reproduction, mutation, 
competition, and selection [1][2]. Evolutionary 
algorithms, like genetic algorithms, evolutionary 
programming, and evolution strategies are well suited to 
the task of evolving ANN architectures [3].  Much work 
has been done on combining the evolutionary computation 
techniques and neural network [4][5][6][7][8][9][10]. The 
most challenging part is how to determine the link 
between structure and functionality of ANN so that 
optimization of the composition of a network can be 
implemented using evolutionary methods.  Popular 
methods like genetic algorithms, which use parse trees to 
construct neural network, greatly depend on the qualities 
of their approaches to evolve the interconnection weight 
[11]. In this paper, an efficient method to construct 
dynamically evolvable artificial neural network is 
proposed. It is based on mutual information calculation to 
threshold the input data, organize logic blocks and their 
interconnections, and to select logic blocks, which are 
most informative about data distribution. In addition, 
expansion and shrinking algorithms are formulated to link 
the multiple layers of the binary feed forward neural 
network. 

With the rapid advance of VLSI microelectronics 
technology, large computational resources on a single chip 
become available. Reconfigurable computing and FPGA 
technology make fast massively parallel computations 
more affordable and neural networks with architecture 
adapted to a specific task can be easily designed. 

Since most of the signals in the real world are analog, 
many researchers have developed analog neural networks 
[12][13][14]. But in such systems, matching between the 
simulated analog neuron model and the hardware 



implementation is critical. Other problems like noise, 
crosstalk, temperature variation, and power supply 
instability also limit system performance. Moreover, the 
programmability is also hard to achieve for analog neural 
network design. As a result, many people turn to digital 
logic for an alternative solution. The flexibility, and 
accuracy plus mature commercial CAD tools for digital 
system design greatly save the time and effort of design 
engineers. Moreover, the recent fast development of FPGA 
technology has created a revolution in logic design. With 
the dramatic advances in device performance and density 
combined with development tools, programmable logic 
provides a completely new way of designing and 
developing systems. On the other hand, a hardware 
description language VHDL becomes more and more 
popular for logic design and uses the complete tools for 
VHDL code compiling, functional verification, synthesis, 
place and route, timing verification and bit file 
downloading. These greatly facilitate the FPGA logic 
system design and also make it possible to design artificial 
neural network on board. 

In our design, Matlab program generates logic 
structures based on the learning procedure. Then VHDL 
codes are written and simulated to map the evolved 
structures to programmable hardware. At last, the results 
of learning are implemented on the FPGA board. Highly 
parallel structure is developed to achieve the fast speed 
neural network for large data set classification. The class 
characteristic codes generated during learning procedure 
are saved on board, so that comparators can judge the 
success or failure of test data easily. Moreover, the finite 
state machine structure facilitates the selection and the 
display of different class test results. Real time testing of 
the implemented structures on Xilinx board is successful 
with high correct classification rate. 

In this paper, section 2 covers the theoretical 
justification and the major algorithm, which describes our 
algorithm and hardware mapping procedure of evolvable 
multiplayer neural network for data classification. A 
thresholding rule to construct digital representations for 
analog signal characteristics was developed based on 
mutual information, so that we can utilize the digital logic 
to build a binary logic artificial neural network.  Then 
FPGA structures are evolved using entropy measures, 
statistical analysis and dynamic interconnections between 
logic gates. One complete design example is demonstrated 
in section 3. This includes data generation, threshold 
establishment, dynamic neural network generation, and 
hardware implementation of evolvable binary neural 
network. At last, the conclusion and reference are put at 
the end of this paper. 

 

2. LEARNING STRATEGY 
Multidimensional data sets can represent many real 

world problems from astronomy, electrical, engineering, 
remote sensing or medicine. The classification and 
clustering of these data sets are meaningful. To test our 
approach, we generated random data class sets for the 
learning and training procedures to simulate the real 
world problems. Each real type data represents one analog 
signal. Then, we construct threshold surface to separate 
data sets in multidimensional space and also to obtain 
binary codes for all signals. The further division of space 
into subspaces to clarify the classification of these binary 
codes is a core of our developed learning algorithms. In 
order to keep maximum information at one subspace, the 
selection of input functions to a layer of perceptrons is 
performed dynamically based on conditional entropy 
analysis. At the same time, the structure of one layer obeys 
the expansion and shrinking rule. Many layers can then be 
cascaded, with outputs of one layer connected to the inputs 
of the next layer, to form a feed-forward type network. The 
decision of making division of each space can be 
represented in a table, and each row of the table 
corresponds to the feature code classifying each class data 
set. 

2.1 Data Preparation 
In order to simulate the real world signals, we 

generate multi-dimensional random variables, chosen 
from the normal distributions. The mean value and 
covariance matrix is different for each class data set. Half 
of the data sets in each class are selected for learning 
procedure, and another half are used for training. These 
data sets projected onto two dimensions can overlap. 
Moreover, each class can have different ellipse shape with 
major axis in different directions. 

2.2 Mutual Information and Thresholding 
We set up a threshold in each space so that the 

original analog signal values in this space, which are 
higher than the corresponding threshold, are treated as 
logic true, and others are logic false. In this way, a 
threshold plane roughly separates data sets in one-
dimensional space and binary data values are used to 
define learning functions.  

Let { }1,0=X  be a binary random variable with 

{ } pXP == 1 and { } pXP −== 10 ,   then 

( ) )1(log)1(log 22 pppppH −−−−=    (1) 

where H(p) is called Binary Entropy Function. 

For a class problem, the mutual information   I(X; Y) 
satisfies the following equations: 
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Where H(X) is called function entropy, H(Y) is called 
class entropy, and H(X,Y) is joint entropy. Since when we 
go from one layer to another layer of our neural network, 
the class distribution does not change, we only need to 
calculate the difference between the function entropy H(X) 
and the joint entropy H(X,Y) to measure how much 
mutual information we gain by dividing one space into 
subspaces. Furthermore, because H(X) is less than H(X,Y) 
in each space, the minimum difference of H(X,Y) and 
H(X) corresponds to the maximum mutual information 
I(X;Y). We call this procedure of obtaining logic signal 
from original data the thresholding rule. 

2.3 Expansion and Shrinking Rules 
Suppose in a multidimensional space, there are n 

logic variables nxxx L,, 21 . Each two Boolean variables 

from these variables can be combined to make four 
Boolean functions 

( ) ( ) ( ) ( )21212121 ,,,,,,, xxFxxFxxFxxF .  

In this way, for n logic variables, there are 

)4( 2
nC⋅ new combinational logic functions, and the 

original n logic variables can be considered as additional 

functions. Now we have totally )4( 2 nCn +⋅  logic 

functions. We call this procedure for generating new 
combinational logic functions the expansion rule. 

In order to get rid of the redundant parts in the 

expanded )4( 2 nCn +⋅  logic functions, in this paper, we 

choose n logic functions, which correspond to the n 
maximum mutual information values 

( ) ( )YXIYXI n ;~;1 . The calculation of mutual 

information is similar with what we described in part 2.2. 
But here we don't need to establish thresholds any more 
since the binary logic codes have been prepared. As a 
result, the learning rate is greatly improved with a good 
numerical performance. We call this procedure the 
shrinking rule. 

2.4 Layer Generation 
One major point of learning is to generate layer 

structures for the binary neural network. The following 
steps describe the layer generation procedure: 

Step 1. After we set up thresholds for n dimensional 
analog data sets, we obtain binary signals, which are the n 

input logic variables nxxx L,, 21 . Suppose we have m 

classes of data sets. We apply the expansion and shrinking 
rules until there is no more improvement of mutual 
information. As a result, the function that corresponds to 
the final maximum mutual information is the selected 

characteristic function 1f  for the first layer of our binary 

neural network. The logic vector selections made during 
the expansion and shrinking procedure correspond to the 
logic gates, which are the basic units in each layer 
structure. We use the following structure in the Matlab 
program to represent these logic gates: 

sub_stamp_order  =  

[ li     sub_num_layer       subi      subj 

  li     sub_num_layer       subi     -subj 

  li      sub_num_layer      -subi     subj 

  li      sub_num_layer      -subi    -subj ]                                                       

where njandni ≤≤≤≤ 11 , ‘li’ records the top 

layer number, the ‘sub_num_layer’ records the sub layers 
generated between the current top layer and the next top 
layer. Only when the neural network starts to evolve its 
next top layer, the new characteristic function will be 
generated, and the decision of dividing the new subspace 
will be made. ‘subi’, ‘subj’ record the branch order of 
previous sub layer, and negative sign corresponds to logic 
‘0’, otherwise logic ‘1’ is assumed for the function value 
in the generated subspace. Since the ‘sub_stamp_order’ 
structure is arranged in decreasing order, the selection 
made for each sub layer can be recorded in another 
variable called ‘sub_layer_orders’ and can easily facilitate 
tracing back the sub layer structures in the designed 
hardware. 

Step 2. Since further division is always bounded by 
the previous space partition, we should go through the 
following expansion procedure: 

First, start with the original n input variables 

nxxx L,, 21  at the beginning of new space division. 

Then pick up function 1f  and one of the logic variables 

ix , and generate the expansion functions:  

( ) ( ) ( ) ( )iiii xfFxfFxfFxfF ,,,,,,, 1111 , where 

ni ≤≤1 .  



So there are totally 4n new combinational logic 
functions plus n input variables. Next the new n logic 
variables should come up from 5n logic functions that 
correspond to the maximum mutual information sets 

( ) ( )YXIYXI n ;~;1 . If there is an improvement in the 

maximum mutual information, we will update the 
previous n logic variables with the new logic variables, 
and apply expansion and shrinking rule again to generate 
the new sub layers. Otherwise, we stop and start building 
the next layer and make decisions on how to divide the 

new subspace. As a result, function 2f  is generated, 

which corresponds to the maximum mutual information. 

Step 3. Repeat procedures described in step 2 

combining one of the logic variables ix  with all functions 

jfff L21  (j is the number of top layers) to make (j+1)-

tuple logic pairs to apply the expansion procedure. The 
layer generation will come to the end when m-1 division 
of subspace is made. At last, we will generate m-1 

function codes 121 −mfff L . 

2.5 Class Characteristic Code Table 
The division of the data space can be represented by a 

binary code. It starts with a binary value of the selected 

logic function 1f  and partitions the space into two parts. 

The decision on whether to divide subspace 1(0) or 
subspace 1(1) depends on the maximum mutual 
information calculation. In order to make quick selection, 
we decide that if we divide subspace 1(1) into another two 

parts according to logic value of 2f , we don’t care what is 

the logic value of 2f  in subspace 1(0). This decision of 

selective partition is represented in a table by logic 0, logic 
1, or –1  (do not care). Suppose that we have five class 
data sets. Four divisions of space can be summarized and 
shown in the class characteristic code table 1. 

Table 1 describes the subspace division structure. 
First, in the original space 1, the subspace corresponding 

to logic 1 of function 1f  is divided into two subspaces, 

which define space 2. Actually, now data space is divided 
into three parts, corresponding to 'do not care', logic 1, 

and logic 0 value of function 2f . 

 

 

 

 

 

 

Table 1. Class characteristic code table for space division 

Space1 Space2 Space3 Space4 

0 -1(do not care) 0 -1 

0 -1 1 -1 

1 0 -1 -1 

1 1 -1 1 

1 1 -1 0 

In the next step, we can see from the above table that 
'do not care' part of subspace 2 is further divided into two 

subspaces by logic values of function 3f  creating space 3. 

Similarly, the part of subspace, which corresponds to logic 

1 of function 1f , logic 1 of function 2f , and 'do not care’ 

of function 3f , is divided into two subspaces creating 

space 4. 

2.6  Learning Decision 
The final learning decision is based on comparing the 

logic function values in each row of class characteristic 

code table with class function values 121 −mfff L  for 

data from each class. Suppose the function codes of class 2 
has the maximum probability for the function values 
specified in the second row of Table 1, then (0 –1 1 –1) 
will be the characteristic code for class 2.  Actually, the 
learning decision is to relate each class with the 
corresponding row in the class characteristic code table.  

Since layer generation procedure builds up a binary neural 
network, and learning decision identifies each class with 
its characteristic class code, we have evolved a binary 
neural network for classification. 

Notice that no prior assumption was made regarding 
the organization of the neural network like the number of 
neurons, the number of layers or over the layer structure. 
All the computations necessary to evolve the organization 
of the neural network, type of logic elements used and 
interconnection made can be performed locally on a large 
number of the processing elements inside the 
programmable chip structure. Having finished the design 
of neural network, we are ready for the testing procedure. 

2.7 Testing 
Testing data should first be translated into binary 

codes by applying the same thresholds as those evolved in 
the learning procedure.  Then the binary testing codes are 
fed into the evolved binary neural network. They will 

generate a set of function codes '
1

'
2

'
1 −mfff L  for each 

class. At last, comparing these function codes with the 
characteristic code for each class, we can tell whether the 



test is successful or not. The success rate can tell us how 
well our design classifies data. 

2.8 Hardware Design Consideration 
Because each class logic data set will flow through the 

same neural network structure, the highly parallel 
structure can be built up in hardware to implement quick 
on board training.  The characteristic class code can be 
saved on board, so that comparators can judge the success 
or failure of testing data easily. Moreover, the finite state 
machine structure can facilitate the selection and display 
of different class results. On board testing is performed on 
generated test data applied to the final design 
implementation. We wrote VHDL codes and used Active 
VHDL tool to compile our source codes, and make 
functional verification. Finally, we use Xilinx foundation 
tools to do synthesis, place and route, timing verification 
and bit file generation. The bit file was downloaded to a 
Xilinx board with XL4010 chip. Both the evolved logic 
structures and test data were stored inside the FPGA chip 
for fast and reliable verification. 

3. DESIGN EXAMPLE 
We generated six dimensional data sets for six classes, 

and with ( )300300300300600300  

samples in the successive classes. Half of the data sets in 
each class are used for learning, and another half are used 
for testing. The distribution of learning and testing data is 
illustrated in the figure 2. Setting up the threshold values 
is based on the maximum mutual information calculation 
simplified to the minimum difference between joint 
entropy and function entropy. This is illustrated in figures 
3, and 4. 

 

-4 -2 0 2 4 6 8
-2

-1

0

1

2

3

4

5

6

7
Learning Data

2n
d 

di
m

en
si

on

1st dimension
 

Fig. 2. Learning data distribution in the 1st and 2nd  

dimension 
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Fig. 3. PART1-Testing data distribution in the 1st and 2nd  

dimension 
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Fig. 3. PART2- Joint entropy and function entropy distribution 
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            Fig. 4. Difference between joint entropy and function  

            entropy distribution for threshold set up 



The major learning results are represented in three 
tables: Binary neural network layer structure table (Table 
2), class characteristic code table(Table 3) and learning 
decision table(Table 4). 

Table 2.  Binary neural network layer structure table 

         Column a    à top layer no.   Column b à sub layer no. 

         Column c, dà branch 1 and 2 input of combinational 

                                  logic gate 

          Minus sign à inverted input 

a b c d  a b c d  a b c d 

1 1 1 0  3 1 -2 -6  4 1 -2 4 

1 1 4 0  3 1 4 -6  4 1 4 -5 

1 1 3 0  3 1 6 0  4 1 -4 -5 

1 1 2 0  3 1 1 6  4 1 4 0 

1 1 6 0  3 1 1 -6  4 1 -1 4 

1 1 5 0  3 1 -3 6  4 1 -1 -4 

2 1 -3 -5  3 2 -1 -2  4 2 1 2 

2 1 -2 -6  3 2 1 0  4 2 1 0 

2 1 2 5  3 2 1 -3  4 2 1 -3 

2 1 2 3  3 2 1 -4  4 2 1 4 

2 1 -5 6  3 2 1 5  4 2 1 5 

2 1 1 -5  3 2 1 -6  4 2 1 -6 

2 2 -3 -4       5 1 3 0 

2 2 -4 6       5 1 1 3 

2 2 -1 -2       5 1 1 -3 

2 2 -2 -4       5 1 2 3 

2 2 1 -2       5 1 2 -3 

2 2 1 0       5 1 -3 5 

 

             Table 3. Class characteristic code table 

0 -1 -1 0 -1 

0 -1 -1 1 -1 

1 0 -1 -1 0 

1 0 -1 -1 1 

1 1 0 -1 -1 

1 1 1 -1 -1 

 

Table 4.  Learning decision table 

Column a: class id.      Column b: row number of Table 3 

a b 

1 5 

2 6 

3 2 

4 4 

5 3 

6 1 

Table 3 not only represents the class characteristic 
code, it also describes how the space is divided into 
subspaces. Table 4 shows association of the class id 
number with the row number of Table 3. According to 
tables 2, 3 and 4, we can easily build up the binary neural 
network.  

The hardware implementation graphs are 
demonstrated in figures 5 and 6. Figure 6 gives the logic 
gates configuration inside the layer structures in figure 5. 
According to Table 2, each layer has its typical logic 
connections.  

The final training results are described in Table 5, 
where columns correspond to correct classification rate for 
different classes obtained with 100% declaration rate for 
test data. 

Table 5. Training success ratio measurement 

class no. 1 2 3 4 5 6 

success ratio 0.93 0.93 0.77 0.83 0.77 0.95 

 

4. CONCLUSION: 
We presented a new schema and self-organizing procedure 
for evolvable logic neural network for pattern 
classification. This procedure can be implemented in the 
programmable hardware allowing design of sophisticated 
neural networks without the computational burden of the 
off-line, supervised learning. Classification of the learning 
data results from this self-organizing structure. A 
demonstration project was implemented using Xilinx 
technology and was successfully tested on a set of 
randomly generated data. Further work in this area carry a 
fascinating promise of hardware design, which will 
organize itself depending on the type of problem that is 
supposed to solve. Although this approach is different 
from genetically motivated evolutionary algorithms, it 
achieves similar objectives within simple structures of 
logic components. The next stage of our research will be 
directed on designing unique programmable architectures 
with computing elements built to locally estimate quality 
of information produced by logic components. 
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