

EVOLVABLE BINARY ARTIFICIAL NEURAL
NETWORK FOR DATA CLASSIFICATION

Janusz Starzyk Jing Pang

School of Electrical and Computer Science
Ohio University

Athens, OH 45701, U. S. A.
(740) 593-1580

ABSTRACT
This paper describes a new evolvable hardware

organization and its learning algorithm to generate binary
logic artificial neural networks based on mutual
information and statistical analysis. First, thresholds to
convert analog signals of the training data to digital
signals are established. In order to extract feature function
for multidimensional data classification, conditional
entropy is calculated to obtain maximum information in
each subspace. Next, dynamic shrinking and expansion
rules are developed to build the feed forward neural
networks. At last, hardware mapping of learning patterns
and on-board testing are implemented on Xilinx FPGA
board.

KEYWORDS
Conditional entropy, binary logic artificial neural

network, dynamic function generation

1. INTRODUCTION
Artificial neural networks (ANN) have attracted the

attention of many researchers in different areas, such as
neuroscience, mathematics, physics, electrical and
computer engineering, and psychology. Generally, such
systems consist of a large number of simple neuron
processing units performing computation by a dense mesh
of nodes and connections. In addition, they have the very
attractive properties of adaptiveness, self-organization,
nonlinear network processing and parallel processing. A
lot of efforts have been put on applications involving
classification, association, decision-making and reasoning.

Recently, evolutionary algorithms have been
suggested by many researchers to find well performing

architectures for artificial neural networks, which employ
the evolutionary dynamics of reproduction, mutation,
competition, and selection [1][2]. Evolutionary
algorithms, like genetic algorithms, evolutionary
programming, and evolution strategies are well suited to
the task of evolving ANN architectures [3]. Much work
has been done on combining the evolutionary computation
techniques and neural network [4][5][6][7][8][9][10]. The
most challenging part is how to determine the link
between structure and functionality of ANN so that
optimization of the composition of a network can be
implemented using evolutionary methods. Popular
methods like genetic algorithms, which use parse trees to
construct neural network, greatly depend on the qualities
of their approaches to evolve the interconnection weight
[11]. In this paper, an efficient method to construct
dynamically evolvable artificial neural network is
proposed. It is based on mutual information calculation to
threshold the input data, organize logic blocks and their
interconnections, and to select logic blocks, which are
most informative about data distribution. In addition,
expansion and shrinking algorithms are formulated to link
the multiple layers of the binary feed forward neural
network.

With the rapid advance of VLSI microelectronics
technology, large computational resources on a single chip
become available. Reconfigurable computing and FPGA
technology make fast massively parallel computations
more affordable and neural networks with architecture
adapted to a specific task can be easily designed.

Since most of the signals in the real world are analog,
many researchers have developed analog neural networks
[12][13][14]. But in such systems, matching between the
simulated analog neuron model and the hardware

implementation is critical. Other problems like noise,
crosstalk, temperature variation, and power supply
instability also limit system performance. Moreover, the
programmability is also hard to achieve for analog neural
network design. As a result, many people turn to digital
logic for an alternative solution. The flexibility, and
accuracy plus mature commercial CAD tools for digital
system design greatly save the time and effort of design
engineers. Moreover, the recent fast development of FPGA
technology has created a revolution in logic design. With
the dramatic advances in device performance and density
combined with development tools, programmable logic
provides a completely new way of designing and
developing systems. On the other hand, a hardware
description language VHDL becomes more and more
popular for logic design and uses the complete tools for
VHDL code compiling, functional verification, synthesis,
place and route, timing verification and bit file
downloading. These greatly facilitate the FPGA logic
system design and also make it possible to design artificial
neural network on board.

In our design, Matlab program generates logic
structures based on the learning procedure. Then VHDL
codes are written and simulated to map the evolved
structures to programmable hardware. At last, the results
of learning are implemented on the FPGA board. Highly
parallel structure is developed to achieve the fast speed
neural network for large data set classification. The class
characteristic codes generated during learning procedure
are saved on board, so that comparators can judge the
success or failure of test data easily. Moreover, the finite
state machine structure facilitates the selection and the
display of different class test results. Real time testing of
the implemented structures on Xilinx board is successful
with high correct classification rate.

In this paper, section 2 covers the theoretical
justification and the major algorithm, which describes our
algorithm and hardware mapping procedure of evolvable
multiplayer neural network for data classification. A
thresholding rule to construct digital representations for
analog signal characteristics was developed based on
mutual information, so that we can utilize the digital logic
to build a binary logic artificial neural network. Then
FPGA structures are evolved using entropy measures,
statistical analysis and dynamic interconnections between
logic gates. One complete design example is demonstrated
in section 3. This includes data generation, threshold
establishment, dynamic neural network generation, and
hardware implementation of evolvable binary neural
network. At last, the conclusion and reference are put at
the end of this paper.

2. LEARNING STRATEGY
Multidimensional data sets can represent many real

world problems from astronomy, electrical, engineering,
remote sensing or medicine. The classification and
clustering of these data sets are meaningful. To test our
approach, we generated random data class sets for the
learning and training procedures to simulate the real
world problems. Each real type data represents one analog
signal. Then, we construct threshold surface to separate
data sets in multidimensional space and also to obtain
binary codes for all signals. The further division of space
into subspaces to clarify the classification of these binary
codes is a core of our developed learning algorithms. In
order to keep maximum information at one subspace, the
selection of input functions to a layer of perceptrons is
performed dynamically based on conditional entropy
analysis. At the same time, the structure of one layer obeys
the expansion and shrinking rule. Many layers can then be
cascaded, with outputs of one layer connected to the inputs
of the next layer, to form a feed-forward type network. The
decision of making division of each space can be
represented in a table, and each row of the table
corresponds to the feature code classifying each class data
set.

2.1 Data Preparation
In order to simulate the real world signals, we

generate multi-dimensional random variables, chosen
from the normal distributions. The mean value and
covariance matrix is different for each class data set. Half
of the data sets in each class are selected for learning
procedure, and another half are used for training. These
data sets projected onto two dimensions can overlap.
Moreover, each class can have different ellipse shape with
major axis in different directions.

2.2 Mutual Information and Thresholding
We set up a threshold in each space so that the

original analog signal values in this space, which are
higher than the corresponding threshold, are treated as
logic true, and others are logic false. In this way, a
threshold plane roughly separates data sets in one-
dimensional space and binary data values are used to
define learning functions.

Let { }1,0=X be a binary random variable with

{ } pXP == 1 and { } pXP −== 10 , then

())1(log)1(log 22 pppppH −−−−= (1)

where H(p) is called Binary Entropy Function.

For a class problem, the mutual information I(X; Y)
satisfies the following equations:

() () () ()YXHYHXHYXI ,; −+= (2)

() ∑
∈

−−−−=
functioni

iiii ppppXH)1(log)1(log 22

 (3)

() ∑
∈

−−−−=
classj

jjjj ppppYH)1(log)1(log 22

 (4)

() () ()

()[] ()[] },1log,1

,log,{,

2

2

yxpyxp

yxpyxpYXH
functionx classy

−−

+−= ∑ ∑
∈ ∈ (5)

Where H(X) is called function entropy, H(Y) is called
class entropy, and H(X,Y) is joint entropy. Since when we
go from one layer to another layer of our neural network,
the class distribution does not change, we only need to
calculate the difference between the function entropy H(X)
and the joint entropy H(X,Y) to measure how much
mutual information we gain by dividing one space into
subspaces. Furthermore, because H(X) is less than H(X,Y)
in each space, the minimum difference of H(X,Y) and
H(X) corresponds to the maximum mutual information
I(X;Y). We call this procedure of obtaining logic signal
from original data the thresholding rule.

2.3 Expansion and Shrinking Rules
Suppose in a multidimensional space, there are n

logic variables nxxx L,, 21 . Each two Boolean variables

from these variables can be combined to make four
Boolean functions

() () () ()21212121 ,,,,,,, xxFxxFxxFxxF .

In this way, for n logic variables, there are

)4(2
nC⋅ new combinational logic functions, and the

original n logic variables can be considered as additional

functions. Now we have totally)4(2 nCn +⋅ logic

functions. We call this procedure for generating new
combinational logic functions the expansion rule.

In order to get rid of the redundant parts in the

expanded)4(2 nCn +⋅ logic functions, in this paper, we

choose n logic functions, which correspond to the n
maximum mutual information values

() ()YXIYXI n ;~;1 . The calculation of mutual

information is similar with what we described in part 2.2.
But here we don't need to establish thresholds any more
since the binary logic codes have been prepared. As a
result, the learning rate is greatly improved with a good
numerical performance. We call this procedure the
shrinking rule.

2.4 Layer Generation
One major point of learning is to generate layer

structures for the binary neural network. The following
steps describe the layer generation procedure:

Step 1. After we set up thresholds for n dimensional
analog data sets, we obtain binary signals, which are the n

input logic variables nxxx L,, 21 . Suppose we have m

classes of data sets. We apply the expansion and shrinking
rules until there is no more improvement of mutual
information. As a result, the function that corresponds to
the final maximum mutual information is the selected

characteristic function 1f for the first layer of our binary

neural network. The logic vector selections made during
the expansion and shrinking procedure correspond to the
logic gates, which are the basic units in each layer
structure. We use the following structure in the Matlab
program to represent these logic gates:

sub_stamp_order =

[li sub_num_layer subi subj

 li sub_num_layer subi -subj

 li sub_num_layer -subi subj

 li sub_num_layer -subi -subj]

where njandni ≤≤≤≤ 11 , ‘li’ records the top

layer number, the ‘sub_num_layer’ records the sub layers
generated between the current top layer and the next top
layer. Only when the neural network starts to evolve its
next top layer, the new characteristic function will be
generated, and the decision of dividing the new subspace
will be made. ‘subi’, ‘subj’ record the branch order of
previous sub layer, and negative sign corresponds to logic
‘0’, otherwise logic ‘1’ is assumed for the function value
in the generated subspace. Since the ‘sub_stamp_order’
structure is arranged in decreasing order, the selection
made for each sub layer can be recorded in another
variable called ‘sub_layer_orders’ and can easily facilitate
tracing back the sub layer structures in the designed
hardware.

Step 2. Since further division is always bounded by
the previous space partition, we should go through the
following expansion procedure:

First, start with the original n input variables

nxxx L,, 21 at the beginning of new space division.

Then pick up function 1f and one of the logic variables

ix , and generate the expansion functions:

() () () ()iiii xfFxfFxfFxfF ,,,,,,, 1111 , where

ni ≤≤1 .

So there are totally 4n new combinational logic
functions plus n input variables. Next the new n logic
variables should come up from 5n logic functions that
correspond to the maximum mutual information sets

() ()YXIYXI n ;~;1 . If there is an improvement in the

maximum mutual information, we will update the
previous n logic variables with the new logic variables,
and apply expansion and shrinking rule again to generate
the new sub layers. Otherwise, we stop and start building
the next layer and make decisions on how to divide the

new subspace. As a result, function 2f is generated,

which corresponds to the maximum mutual information.

Step 3. Repeat procedures described in step 2

combining one of the logic variables ix with all functions

jfff L21 (j is the number of top layers) to make (j+1)-

tuple logic pairs to apply the expansion procedure. The
layer generation will come to the end when m-1 division
of subspace is made. At last, we will generate m-1

function codes 121 −mfff L .

2.5 Class Characteristic Code Table
The division of the data space can be represented by a

binary code. It starts with a binary value of the selected

logic function 1f and partitions the space into two parts.

The decision on whether to divide subspace 1(0) or
subspace 1(1) depends on the maximum mutual
information calculation. In order to make quick selection,
we decide that if we divide subspace 1(1) into another two

parts according to logic value of 2f , we don’t care what is

the logic value of 2f in subspace 1(0). This decision of

selective partition is represented in a table by logic 0, logic
1, or –1 (do not care). Suppose that we have five class
data sets. Four divisions of space can be summarized and
shown in the class characteristic code table 1.

Table 1 describes the subspace division structure.
First, in the original space 1, the subspace corresponding

to logic 1 of function 1f is divided into two subspaces,

which define space 2. Actually, now data space is divided
into three parts, corresponding to 'do not care', logic 1,

and logic 0 value of function 2f .

Table 1. Class characteristic code table for space division

Space1 Space2 Space3 Space4

0 -1(do not care) 0 -1

0 -1 1 -1

1 0 -1 -1

1 1 -1 1

1 1 -1 0

In the next step, we can see from the above table that
'do not care' part of subspace 2 is further divided into two

subspaces by logic values of function 3f creating space 3.

Similarly, the part of subspace, which corresponds to logic

1 of function 1f , logic 1 of function 2f , and 'do not care’

of function 3f , is divided into two subspaces creating

space 4.

2.6 Learning Decision
The final learning decision is based on comparing the

logic function values in each row of class characteristic

code table with class function values 121 −mfff L for

data from each class. Suppose the function codes of class 2
has the maximum probability for the function values
specified in the second row of Table 1, then (0 –1 1 –1)
will be the characteristic code for class 2. Actually, the
learning decision is to relate each class with the
corresponding row in the class characteristic code table.

Since layer generation procedure builds up a binary neural
network, and learning decision identifies each class with
its characteristic class code, we have evolved a binary
neural network for classification.

Notice that no prior assumption was made regarding
the organization of the neural network like the number of
neurons, the number of layers or over the layer structure.
All the computations necessary to evolve the organization
of the neural network, type of logic elements used and
interconnection made can be performed locally on a large
number of the processing elements inside the
programmable chip structure. Having finished the design
of neural network, we are ready for the testing procedure.

2.7 Testing
Testing data should first be translated into binary

codes by applying the same thresholds as those evolved in
the learning procedure. Then the binary testing codes are
fed into the evolved binary neural network. They will

generate a set of function codes '
1

'
2

'
1 −mfff L for each

class. At last, comparing these function codes with the
characteristic code for each class, we can tell whether the

test is successful or not. The success rate can tell us how
well our design classifies data.

2.8 Hardware Design Consideration
Because each class logic data set will flow through the

same neural network structure, the highly parallel
structure can be built up in hardware to implement quick
on board training. The characteristic class code can be
saved on board, so that comparators can judge the success
or failure of testing data easily. Moreover, the finite state
machine structure can facilitate the selection and display
of different class results. On board testing is performed on
generated test data applied to the final design
implementation. We wrote VHDL codes and used Active
VHDL tool to compile our source codes, and make
functional verification. Finally, we use Xilinx foundation
tools to do synthesis, place and route, timing verification
and bit file generation. The bit file was downloaded to a
Xilinx board with XL4010 chip. Both the evolved logic
structures and test data were stored inside the FPGA chip
for fast and reliable verification.

3. DESIGN EXAMPLE
We generated six dimensional data sets for six classes,

and with ()300300300300600300

samples in the successive classes. Half of the data sets in
each class are used for learning, and another half are used
for testing. The distribution of learning and testing data is
illustrated in the figure 2. Setting up the threshold values
is based on the maximum mutual information calculation
simplified to the minimum difference between joint
entropy and function entropy. This is illustrated in figures
3, and 4.

-4 -2 0 2 4 6 8
-2

-1

0

1

2

3

4

5

6

7
Learning Data

2n
d

di
m

en
si

on

1st dimension

Fig. 2. Learning data distribution in the 1st and 2nd

dimension

-2 -1 0 1 2 3 4 5 6 7
-1

0

1

2

3

4

5

6

7
Training Data

1st dimension

2n
d

di
m

en
si

on

Fig. 3. PART1-Testing data distribution in the 1st and 2nd

dimension

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Relative threshold

E
nt

ro
py

 V
al

ue

Joint Entropy and Function Entropy Distr ibution

Fig. 3. PART2- Joint entropy and function entropy distribution

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Relat ive threshold

Di f ference between Joint Entopy and Funct ion Entropy

 Fig. 4. Difference between joint entropy and function

 entropy distribution for threshold set up

The major learning results are represented in three
tables: Binary neural network layer structure table (Table
2), class characteristic code table(Table 3) and learning
decision table(Table 4).

Table 2. Binary neural network layer structure table

 Column a à top layer no. Column b à sub layer no.

 Column c, dà branch 1 and 2 input of combinational

 logic gate

 Minus sign à inverted input

a b c d a b c d a b c d

1 1 1 0 3 1 -2 -6 4 1 -2 4

1 1 4 0 3 1 4 -6 4 1 4 -5

1 1 3 0 3 1 6 0 4 1 -4 -5

1 1 2 0 3 1 1 6 4 1 4 0

1 1 6 0 3 1 1 -6 4 1 -1 4

1 1 5 0 3 1 -3 6 4 1 -1 -4

2 1 -3 -5 3 2 -1 -2 4 2 1 2

2 1 -2 -6 3 2 1 0 4 2 1 0

2 1 2 5 3 2 1 -3 4 2 1 -3

2 1 2 3 3 2 1 -4 4 2 1 4

2 1 -5 6 3 2 1 5 4 2 1 5

2 1 1 -5 3 2 1 -6 4 2 1 -6

2 2 -3 -4 5 1 3 0

2 2 -4 6 5 1 1 3

2 2 -1 -2 5 1 1 -3

2 2 -2 -4 5 1 2 3

2 2 1 -2 5 1 2 -3

2 2 1 0 5 1 -3 5

 Table 3. Class characteristic code table

0 -1 -1 0 -1

0 -1 -1 1 -1

1 0 -1 -1 0

1 0 -1 -1 1

1 1 0 -1 -1

1 1 1 -1 -1

Table 4. Learning decision table

Column a: class id. Column b: row number of Table 3

a b

1 5

2 6

3 2

4 4

5 3

6 1

Table 3 not only represents the class characteristic
code, it also describes how the space is divided into
subspaces. Table 4 shows association of the class id
number with the row number of Table 3. According to
tables 2, 3 and 4, we can easily build up the binary neural
network.

The hardware implementation graphs are
demonstrated in figures 5 and 6. Figure 6 gives the logic
gates configuration inside the layer structures in figure 5.
According to Table 2, each layer has its typical logic
connections.

The final training results are described in Table 5,
where columns correspond to correct classification rate for
different classes obtained with 100% declaration rate for
test data.

Table 5. Training success ratio measurement

class no. 1 2 3 4 5 6

success ratio 0.93 0.93 0.77 0.83 0.77 0.95

4. CONCLUSION:
We presented a new schema and self-organizing procedure
for evolvable logic neural network for pattern
classification. This procedure can be implemented in the
programmable hardware allowing design of sophisticated
neural networks without the computational burden of the
off-line, supervised learning. Classification of the learning
data results from this self-organizing structure. A
demonstration project was implemented using Xilinx
technology and was successfully tested on a set of
randomly generated data. Further work in this area carry a
fascinating promise of hardware design, which will
organize itself depending on the type of problem that is
supposed to solve. Although this approach is different
from genetically motivated evolutionary algorithms, it
achieves similar objectives within simple structures of
logic components. The next stage of our research will be
directed on designing unique programmable architectures
with computing elements built to locally estimate quality
of information produced by logic components.

References
[1]. Machine Learning: ECML-93, Proc. European Conf.
on Machine Learning, P.B. Brazil (ed), [ECML93]:
published by Springer, New York, NY, USA, 1993

 push buttons display

 Evolvable ANN layers
 Training Data Gi: class i characteristic code, i=1~6

 Generator F: comparator H: counter

Class 1

Class 6

F

 G1

H
Result
Display
Selector

 F

 G1

H

Fig. 5. Hardware block diagram of the implemented design

 Max_F1
 No.1 No.1 No.1 Max_F2
 No.2 No.2 No. 2
 No. 3
 No. 3 No.3
 No. 4
 No. 4 No.4
 No. 5 No.5 No. 5

 No. 6 No. 6 No. 6

 Layer1 Layer2_sub1 Layer2_sub2

 Max_F3

 Layer3_sub1 Layer3_sub2
 Max_F4
 Max_F5
 Max_F6

Fig. 6. Basic logic units in each layer

Input

Binary

Logic

Codes

[2]. Th. Bck and H. –P. Schwefel, “An overview of
evolutionary algorithms for parameter optimization”,
Evolutionary Computation, 1(1): pp. 1-23, 1993

[3]. V. W. Porto, D.B. Fogel, L.J. Fogel, “Alternative
neural network training methods”, IEEE expert 10, pp. 16-
22, 1995

[4]. L. Bull, “On model-based evolutionary computation”,
Soft Computing, Volume: 3, Issue: 2, September 23, 1999,
pp. 76-82

[5]. Collins R, Jefferson D., “An artificial neural network
representation for artificial organisms”, In: Schwefel HP,
Manner R(Eds). Parallel Problem Solving from Nature,
Springer, Berlin, pp 249-263, 1991

[6]. Whitley D, Dominic S. Das R., “Genetic
reinforcement learning with multiplayer neural networks”,
In: Belew BK., Booker LB(Eds). Proc 4th Int. Conf. on
Genetic Algorithms, Los Allos, CA: Morgan Kaufmann,
pp 562-569, 1991

[7]. Eberhart RC., “The role of generic algorithms in
neural network query-based learning and explanation
facilities”, In: Whitley LD, Schaffer JD(Eds). COGANN
’92: International Workshop on Combinations of Generic
Algorithms and Neural Networks, IEEE, pp 169-183, 1992

[8]. D.W. Opitz and J. W. Shavlik, “Actively searching for
an effective neural network ensemble”, Connection
Science, 8(3&4): 337-354, 1996

[9]. X. Yao and Y. Liu, “Making use of population
information in evolutionary artificial neural network”,

IEEE Tran. On Systems, Man and Cybernetics, 28B(2),
1998

[10]. C. M. Friedrich, “Ensembles of evolutionary created
artificial neural networks and nearest neighbor classifiers”,
Advances in Soft Computing, Proceedings of the 3rd On-
line Conference on Soft Computing in Engineering Design
and Manufacturing (WSC3), Springer , June 1998.

[11]. Pujol, João Carlos Figueira, Poli, Riccardo,
“Evolving the Topology and the Weights of Neural
Networks Using a Dual Representation”, Applied
Intelligence, Volume: 8, Issue: 1, January 1, 1998, pp. 73-
84

[12]. M. Valle, D.D. Caviglia, and G.M. Bisio, “An
experimental analog VLSI neural network with on-chip
back-propagation learning”, Analog Integrated Circuits &

Signals Processing, Kluwer Academic Publishers, Boston,
vol. 9, pp. 25-40, 1996.

[13]. M. Valle, H. Chiblé, D. Baratta, and D.D. Caviglia,
“Evaluation of synaptic multipliers behaviour in the back-
propagation analog hardware implementation”, In
Proceedings of ICANN'95 Fifth International Conference
on Artificial Neural Networks, vol. 2, pp 357-362, Paris 9-
13 October, 1995.

[14]. V.M Brea, D.L Vilariño and D. Cabello, “Active
Contours with Cellular Neural Networks: An Analog
CMOS Realization”, Signal Processing and
Communications, pp.419-422, (J. Ruiz-Alzola ed.),
IASTED/Acta Press, 1998.

