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Abstract    In this paper, a neural network model with 
entropy-based evaluator called EBE is proposed.  An 
FPGA based design that implements the EBE model is 
presented. The PCI bus interface including DMA 
transfer is embedded into the design. 8-bit test data is 
fed into the design to verify the correctness of the 
algorithm and its FPGA implementation. 
 
 

I.  INTRODUCTION 
 
 
        Artificial neural networks (ANNs) are systems based 
on mathematical algorithms, which are derived from the 
field of neuroscience and are characterized by intensive 
arithmetic operations [1]. These networks display 
interesting features such as parallelism, classification, 
optimization, adaptation, generalization and associative 
memories [2,3]. ANNs can solve difficult problems in 
areas such as pattern recognition, image processing and so 
on. ANNs have two phases of operations, the learning 
phase and the retrieve phase. During the learning phase, a 
flexible and space-efficient digital multilayer neural 
network architecture is constructed and the processing 
functions evolve from connecting a number of modules in 
every layer. During this phase, a hardware of self 
organizing neural classifiers is built from the elementary 
modules. Using the training data, the structure defining 
decisions is obtained by the evaluator circuit using entropy-
based algorithm [4].  
        Relative entropy represents the information we can 
extract from the training data. The algorithm within the 
evaluator circuit evaluates the training data and defines a 
self-adapting learning architecture mapping it to specific 
functional units. A hardware unit which computes the 
entropy based information  is called Entropy-based 
Evaluator (EBE) which searches for the maximum mutual 
information using one-dimensional searching space. The 
learning algorithm searches the sample space in parallel 
and finds the locally optimal arithmetic and logic operation 
threshold for the input signal values. This learning process 
results in fewer connections and can provide a very high-
speed classifier for many real-time image recognition and 
other machine learning-based applications.  
        The algorithm is first verified in Matlab at system 
level simulation. Then the Matlab bit level simulation 

results give us a realistic reference to hardware 
implementation at RTL (Register Transfer Level).  First, a 
behavioral model of the EBE algorithm is implemented by 
using VHDL. VHDL is the name of the IEEE 1076 
Hardware Description Language standard for very high-
speed integrated circuits design [5].  Then the neural 
network organization and the learning algorithm are 
modified for easy implementation in Field Programmable 
Gate Arrays (FPGA).  
        FPGAs provide effective programmable resources for 
implementing self-organizing digital ANNs. They are low 
cost, readily available and  reconfigurable– all important 
advantages for ANNs applications. However FPGAs 
currently lack the circuit density necessary to implement 
large parallel ANNs. Here we present an architecture that 
makes it feasible to implement the EBE algorithm within 
the limited resources but without losing its ability to select 
locally optimized hardware organization.  
        The 8-bit length stochastic input signals are serially 
read into the input buffer via PCI bus by control module 
implemented with finite state machine. Counter and 
comparator are implemented with simple accumulator and 
shift register. Complex Logarithm-based entropy 
computing is obtained by a fully exploited look-up-based 
architecture of many FPGAs. The Look-up-table (LUT) 
input pointer is combined with a simple shift-add-based 
structure to obtain the entropy information with probability 
scaling. Different modules are connected using 8-bit data 
bus and synchronously operated under 32MHz PCI clock 
extracted by the control unit.  
        The hardware organization using FPGA has been 
modeled and simulated in VHDL. Leanardo, an RTL/logic 
synthesis tool from Mentor Graphics Corp., has been used 
to generate the gate level of the proposed structure. The 
Xilinx family (XCV800 Virtex FPGAs) is chosen as target 
technology [6]. The FPGA implementation performance 
results have been verified by efficient and fast 
classification of two experimental classes. Each class has 
three dimensions with 1000 normally distributed samples 
in each dimension with different mean values and 
variances.  
        In section II, the EBE algorithm is introduced. Section 
III deals with the design methodology followed by an 
FPGA-based architecture for the algorithm. Section IV 
talks about the synthesis and implementation results and 
finally, a discussion is given in Section V. 
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II.  ENTROPY-BASED EVALUATOR 
 
        An artificial neural network is a computing system 
that combines a network of highly interconnected 
processing elements (PEs) or neurons. Inspired by the 
physiology of the human brain, these PEs perform 
information processing by linking their state response to 
stimuli. These mathematical algorithms adopt different 
destination rules, for instance LMS (Least Mean Square ), 
Hebb rule, etc. To some degree, EBE is one of these 
functions which organize information processing  in 
response to the training data sets.  
        Entropy is a nonlinear function to represent 
information we can learn from unknown data. In the 
learning process, we learn some constraints on the 
probability distribution of the training data from their 
entropy. So we can choose a probability model that is 
optimum in some sense given this prior knowledge about 
the training data. Here we choose the entropy based 
information index to built the neural network structure in 
the learning process. 
 
A.    Information Index 

 
        In the learning process, the training set of signals is 
searched sequentially class by class to establish the 
optimum point (threshold) which best separates signals of 
the various training classes. The quality of the partition is 
measured by the entropy based information index defined 
as follows: 
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cn  represents the number of classes in the training set, t is 
the logic function of the signal and is equal to 1 if the value 
exceeds the threshold  and 0 otherwise, cP , tP , ctP  are 
probabilities of each class, attribute probability and joint 
probability respectively.  
        Our training objective is to find the vector 
configuration and threshold value which maximizes 
normalized information index I. The learning process is 
used to maximize classifying information for each class. 
Logarithm function used in entropy evaluation can be 
implemented in analog circuits owing to the nonlinear 
characteristics inherent in CMOS devices. In digital 
implementation, the entropy function  can be approximated 
either by a lookup table (LUT) or by a direct calculation. 

The latter asks for many logic resources and a long delay 
time. In the former, the lookup table approach, the Plog(P) 
function-value associated with each probability-value is 
stored in the memory and P is used as an address to the 
lookup table. Many EBE hardware unit will be used to 
support the organization and local optimization of evolved  
learning structure. Therefore, each of them should be 
simple and use small design area. 
 
B.   EBE Analysis and  Simulation Results 
 
        In order to simplify hardware used for EBE, an effect 
of round off errors on the accuracy of the resulting 
information index is considered. The first test performed is 
to determine the dependence of the information index error 
on the number of units used to represent them. For simple 
verification, we use two classes training data with three 
dimensions per class. In every dimension, there are one-
thousand normally distributed random values with different 
mean value and variance.  
        The EBE algorithm is first verified by Matlab 
simulation in both behavioral and structural level. The 
simulation results obtained in both behavioral and 
structural levels are  shown in Fig. 1 & 2 respectively. In 
this example, two one thousand, one-dimensional and 
normally-distributed points  with different mean values and 
variances are taken  as training data. In the behavioral 
simulation, we use 8-bit widths to represent the input 
analog data and set threshold searching step to be 
maximum quantification  noise. 
        Using the results obtained in behavioral simulation, 
approximation error effects were analyzed and generalized 
structural model was developed. In the structural level 
simulation, we utilize 5-bit width input pointer to address 
the Plog(P) lookup table (LUT) and to cope with the 
induced noise in the quantification process of the training 
data. As seen in Fig.2, these hardware simplification  and 
approximation in the process of entropy calculation do not 
sacrifice the necessary classification information compared 
to the behavioral simulation results. 
 

III. HARDWARE IMPLEMENTATION 
 

A. Design Methodology 
 
        A top-down design methodology was adopted. A 
high-level VHDL model [7] for the circuits was generated. 
The logic was partitioned. Each part was re-described in a  
lower level  description (RTL) required for the circuit 
synthesis, optimization and mapping to the specific 
technology by assigning current FPGA family and device. 
The resulting optimized circuit description was verified 
through extensive simulation after which the layout was 
created (Layout synthesis) and finally, on chip verification 
was executed by using C++ programming to connect PCI 
bus to the design ports and to test the design.  
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Fig.1 Behavioral simulation 
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Fig.2  Structural simulation 
 
 
B.    FPGA-based Architecture 
 
        The Xilinx Virtex XCV800 was adopted in our study 
as the Virtex series offers the improved architecture, high 
gate density and connecting line density. The density of 
XCV800 is 888,439 equivalent gates and it consists of a 56 
x 84 grid of configurable logic blocks.  Global Routing 
resources distribute clocks and other signals with very high 
fanout throughout the device. Some classes of signal 
require dedicated routing resources referred to as primary 
global and secondary local clock routing resources. In the 

speed grad-6 XCV800, Global Clock input to output 
maximum delay is 4.9 ns. Interconnection delay increases 
with increasing fanout and routing distance. The Virtex 
CLBs structure combines two LUTs and referring to LUT 
is useful for EBE with the LUT’s  flexible function 
implementation ability.  It also has a fast propagating adder 
feature with dedicated circuitry for the computation and 
interconnection of carries. The fast propagate feature 
provides an implementation with the least delay and small 
design area. In our design, we embed PCI bus interface 
module including DMA for fast data IO and easy 
debugging with software. The system architecture is shown 
in  Fig.3. In particular, Fig.3 illustrates the EBE hardware 
model which is mainly based on a: 
• Memory circuit unit (LUT) which implements the 

Plog(P) function. 
• Comparator unit using a fast propagating carry feature 

to compare the current maximum entropy index with 
the calculated entropy from the entropy calculating 
unit (ECU). 

• Two registers that are used to store the maximum 
entropy index and its corresponding threshold in the 
process. 

• ECU which can produce the 5-bit access pointer for 
data acquirement from LUT, calculate the current 
information entropy and send the current entropy and 
threshold to  the comparator unit.  

 
In the four units which comprise the EBE module, ECU is 
the main block organized as shown in Fig.4. Other 
components are used for control, interface, monitor and so 
on. 
• Control unit produces the control signals for the whole 

EBE including system clock,  state transfer signals, 
handshake signals and so on. 

• MUX and DMUX are used for parallel process of the 
multi-dimensional data in the input classes. 

• Display unit implements the online monitor for  the   
data transfer. 

• EBE interface is used as interface between FIFO control 
unit, PCI bus and EBE for rapid data transfer and easy 
online system debugging. 

• PCI interface core and FIFO unit satisfy PCI 2.0 
specification. 
 

C. VHDL Design and Simulation 
 
        We use VHDL to describe a digital system at the 
behavioral level so that we can simulate the system to check 
out the algorithm used and to make sure that the sequences of 
operations are correct. After verification the correctness of 
the algorithm and adaptability of the hardware 
implementation (Shown in Fig. 5), we add the PCI bus 
interface modules into the design and organize them as a  
hierarchical  structure.   The first level in hierarchy is the PCI 
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interface includes DMA, FIFO etc. The second level is the 
EBE supporting module group and includes controller, MUX, 
DMUX and interface to PCI and calculating module. The last 
level is the core EBE module which is divided into 
calculating unit, LUT, comparator and  registers. In the 
VHDL description in RTL level, we divide the module 
according to its hardware function division as seen in Fig.3. 

The searching threshold step, maximum threshold and data 
width are generic and can be configured easily.  
        The Plog(P) function is  implemented by the ROM LUT 
with 5-bit width address. Other units adopt 8-bit data flow. 
The outer modules like PCI interface, FIFO and so on are 
linked to EBE module by 32-bit data bus. In the process of 
simulation, we use the lowest 10 bits as the data channel I 
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from Class I  and the upper 10 bits as the data channel II from 
Class II. From the simulation results, we can see that the data 
are transferred and controlled by the signals-Request, Start, 
Done, OE and current state. 
        As seen in Fig.3, these interface and control signals are 
transferred between EBE interface and PCI and between 
Control unit and other modules. After the current threshold 
reaches the maximum threshold set by the generic parameter, 
the Done signal will be set to High and the simulation 
process will be over.   The  last  output threshold will be the 
classification threshold for the current dimension of the 
classes. In the EBE calculating process, the input data will be 
resended once the threshold is updated by the generic 
threshold step parameter while the signal Request to the 
interface model will be set to low. The  Request, Done, Start,  
OE are also used as the handshake signal groups for the 
synchronized work of the whole hardware module. The 
simulation results are obtained by using Aldec-HDL 
simulator [8]. 
 

IV. SYNTHESIS AND PERFORMANCE 
 

        After verifying the functionality correctness, most of 
units including PCI bus interface are synthesized together 
with logic synthesis tool, Leanardo in order to reach the 
gate level structure of the full EBE model. The logic 
synthesis tool starts with two kinds of information: a RTL 
specification given in VHDL and a functional unit library, 
which can include complex functional units. The RTL 
description accesses these functional blocks through 
VHDL procedure calls. For each procedure or function 
used, the library must induce at least one functional unit 
able to execute the corresponding operation. The 
synthesized results are tested using  commercially-
available FPGA board (Nallatech Ballynuey board) 
provided by Nallatech Inc. UK. The Ballynuey board is an 
PCI compatible expansion board that can be used via a 
PCI-compatible PC. The host PC stores all configuration 
information and collected data. We use VC++ as the 
software debugging tool to test the circuits. 
 

V. SUMMARY AND CONCLUSION 
 
        Through the paper, we have presented an algorithm 
for digital implementation of ANNs based on system 
entropy. The developed models have been verified by 
VHDL simulation results. We use behavioral level to 
validate if the selected bit widths for internal and external 
signals are sufficient for achieving a required computation 
precision. In classification area, the necessary  calculation 
accuracy varies by application. The low precision can 
simplify the hardware implementation complexity and 
speedup the performance. The EBE module, consisting of 
calculating unit, a memory unit  and a few   digital 
components, has been modeled and simulated in VHDL. 
Experimental results show that the obtained classification 

of the training data obtained by behavioral VHDL model 
matches closely  with that anticipated from the analysis 
results. Our next objective is to use more parallel 
computing technology to enrich and enhance the process 
performance, verify hardware training phase and test the 
approach in the real world applications.  
        Another important development we are searching for 
is to use analog circuits to implement the algorithm. The 
Logarithm-based non-linear function can be easily 
implemented by the non-linear characteristics of  analog 
circuit in a small design area [9]. Higher speed, smaller 
area and power dissipation of analog  circuits  constitute a 
potentially powerful improvement over digital circuits. 
This will be stated in the next phase of our research. 
 
 
References 
 
[1] S.Titri, H.Boumeridja, D.Lazib, N.Izeboudjen. “A 
Reuse Oriented Design Methodology for Artificial Neural 
Networks Implementation”.  IEEE,1999. 
[2]  Martin T. Hagan, Howard B. Demuth, Mark Beale. 
“Neural Network Design”. PWS Publishing Company. 
1995. 
[3]    S. Y. Kung. “Digital Neural Networks”. PTR Prentice 
Hall. 1993. 
[4]  J. A.  Starzyk  and  J.  Pang , “Evolvable binary 
artificial neural network for data classification.”, The 2000 
Int. Conf. on Parallel and Distributed Processing 
Techniques and Applications, (Las Vegas, NV, June 2000). 
[5] K.C.Chang, “Digital Design and Modeling with  VHDL  
and Synthesis”, IEEE Computer Society Press,1997. 
[6]  Xilinx, “The Programmable Logic Data Book”, San 
Jose, 1993. 
[7]  S.S.Erdongan, Abdul Wahab, T. H. Hong. “VHDL 
Modeling and Simulation of the Back-Propagation 
Algorithm and its Mapping to the PM”. IEEE 1993 Custom 
Integrated Circuits conference. 
[8]  Aldec, “Aldec-HDLTM Series User Guide Version 
4.1”, August 2000.  
[9] Carver Mead “Analog VLSI AND NEURAL 
SYSTEMS”. ADDISON-WESLEY Publishing Company, 
1989. 


