
 1

Dynamically Self-Reconfigurable Machine Learning Structure  
for FPGA Implementation 

 
Janusz Starzyk  and Yongtao Guo 

School of Electrical Engineering and Computer Science 
Ohio University, Athens, OH 45701, U.S.A. 

{starzyk, gyt}@bobcat.ent.ohiou.edu 
 

ABSTRACT 
 

In this paper, we describe organization of a machine 
learning system based on dynamically reconfigurable 
architecture and self-organization. This system learns 
typical neural network tasks using self-organizing 
learning array algorithm described elsewhere. To 
develop this system, we adopt hardware-software 
codesign approach based on combining an array of 
VIRTEX XCV1000 FPGAs with custom software – 
Matlab/C++. The prototype structure is divided into 
hardware architecture, software programs and their 
interface. Hardware architecture dynamically 
implements the neurons training and voting. Software 
programs implement control of database and system 
level management, and are interfaced with hardware via 
PCI bus using developed C++ dynamic libraries and 
interface logic. 
 
KEYWORDS 
Dynamic reconfiguration, self reconfiguration, 
hardware-software codesign, VHDL, FPGA. 
 

1 INTRODUCTION 
         
        Field programmable gate arrays (FPGAs) have the 
ability to be dynamically reconfigured either completely 
or partially (e.g. Xilinx XC6200 FPGA). However, this 
run-time reconfiguration is usually performed by 
software programs that decide when and how to 
reprogram the FPGAs [1].  Configuration data can be 
stored in a configuration memory and can be utilized to 
reconfigure the FPGAs within one or two clock cycles. 
Several case studies have proven the feasibility for these 
methods, especially in wireless communication 
application area [2]. However, both the software 
programs and the precompiled circuit configuration bits 
have limited abilities to handle machine learning because 
they use configuration from a limited, prepared ahead of 
time selections. 
        Self-organization is important in artificial neural 
networks (ANNs) and machine learning. It can help 
machine to display some intelligence and can be 
implemented using dynamical reconfiguration. A self-
organizing learning algorithm that combined neural 
networks and information theory was presented in [3]. 
The algorithm was simulated on standard benchmarks 
and proved to be advantageous [3][4] over many existing 

machine learning methods.  Based on this algorithm, we 
propose a self-organizing learning array (SOLAR) 
system which is different from classical ANNs in the 
way it is organized and how it learns.  SOLAR is a 
parallel processing hardware with dynamical 
reconfigurability derived from its self-organizing 
structure.  This structure comes with numerous 
processing components (neurons) and relatively sparse 
interconnections between them. While classical ANNs 
have cubic relationship between wiring area and the 
number of neurons, SOLAR’s interconnection area 
grows almost linearly with the number of neurons.  
Neurons have simple and identical structure which 
supports dynamical self-reconfiguration.   

To implement SOLAR, we adopt FPGA as the 
hardware platform since custom VLSI hardware requires 
significant non-recurring engineering cost.  Considering 
that SOLAR performs intensive data processing, we 
adopt hardware-software codesign approach [5] to 
develop its structures. The approach is based on 
combining off-the-shelf hardware components –
VIRTEX XCV1000 FPGAs with software – Matlab and 
C++.  

The rest of this paper is organized as follows. In 
Section 2, self-organizing learning array including its 
working principle and hardware architecture is 
introduced. Section 3 deals with the HW/SW codesign 
and co-simulation of SOLAR. A summary is given in 
Section 4. 

2 SELF-ORGANIZING LEARNING ARRAY 
 
Solar Principle 

Let ( ){ }cS ,ν=  be a training set of N vectors, 

where nv ℜ∈  is a feature vector and Ζ∈c is its class 
label from an index set Ζ . A classifier is a mapping 

Ζ→ℜnC : , which assigns a class label in Ζ  to each 
vector in nℜ . A training pair ( ) Sc ∈,ν  is misclassified 
if ( ) cC ≠ν . The performance measure of the classifier is 
the probability of error, i.e. the fraction of the training 
set that it misclassifies. Our goal is to minimize this 
misclassification probability and it is achieved through 
simple threshold searching based on maximum 
information index, which is calculated from estimated 
subspace probability and local class probabilities. In 
SOLAR structure, we estimate the probability 
distribution of the training data and calculate the system 
entropy. We use entropy based information index to 



 2

evolve the neural network structure in the learning 
phase. 

 SOLAR is implemented as a feed forward 
structure. It has a pre-wired organization that contains a 
number of identical processing neurons, which are 
pseudo-randomly connected to the input nodes and other 
neurons.  An entropy-based evaluator is utilized to select 
a proper operation from different neuron’s functions and 
chose input selection for each neuron. The set of training 
data is searched sequentially class by class to establish 
the optimum thresholds, which best separate the signals 
of various training classes. The quality of the partition is 
measured by entropy based information index defined 
by: 

max

1
E

EI ∆−=  

where      ∑∑∑ +−=∆
s

sssc
s c

sc PPPPE )log()log(  

and                        ∑−=
c

cc PPE )log(max
 

here, cP , sP , scP   represent the probabilities of each 
class, attribute probability, and joint probability, 
respectively.  The summation is performed with respect 
to all classes and subspaces.  

The information index should be maximized to 
provide an optimum separation of the input training data. 
The neuron learning is realized by maximizing 
information content of all the neurons. When the 
calculated value of the information index equals to 1, the 
problem at hand is solved completely, i.e. the training 
data is correctly classified by SOLAR.  If a neuron 
reaches specified information index threshold, the 
neuron becomes a voting neuron.  Several voting 
neurons are weighted together to solve a given problem.  
As reported in [3][4], SOLAR performed well in 
simulation comparing to many specialized machine 
learning algorithms and outperformed all ANNs.  
 
Solar Architecture 

In SOLAR, we adopted feed forward network 
structure for its stability and fast learning.  SOLAR 
architecutures, as shown in Fig. 1, are based on the 
proposed organization of dynamically reconfigurable 
architecure – DREAM [6].  It is implemented as an array 
of identical processing units (neurons) with switchable 
routing channels and programmable functionality.  They 
can be either self reconfigured or dynamically 
reconfigured by the configuration memory units (CMU) 
that serve four neurons per CMU.  This architecture 
follows organization of DREAM with this exception that 
dynamic reconfiguration, initialized by configuration 
control and defined outside the chip, may be replaced by 
dynamic self-reconfiguration which is data driven and is 
local to each neuron.  The neuron interconnection is 
implemented by  both unidirectional configurable switch 
units (CSUs) and bidirectional routing units (BRUs). 
CSU has a butterfly-like configurable switch structure 
and can implement pseudo-random input/output 

connections.  BRU is a bidirectional cross connection 
unit which can assist CSU to implement bidirectional 
signal transfer in the vertial direction.  By combining 
CSU and BRU, the signal can be passed to either a local 
neuron or any remote neuron in a forward layer.  There 
are two types of connections in every neuron - local 
connections with higher connection probabilities, and 
remote connections with smaller probilities. In SOLAR, 
initial connections are pseudo-randomly defined by 
control bits generated by a linear feedback shift register. 
This pseudo-random interconnection approach applies to 
both the neuron’s input signals as well as its control 
signal that defines the learning subspace for each neuron. 
Because of the identical neuron structure and rich and 
flexible routing resources, SOLAR architecuture 
expandable to improve its learning ability with numerous 
neurons. 
`  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3   HARDWARE-SOFTWARE CODESIGN 
 
Our ultimate objective is to design SOLAR 

architecture based on hundreds of high-end FPGA chips 
to form a 3D learning machine.  Currently, we are 
prototyping SOLAR onto an array of VIRTEX FPGA 
chips on the demo board [7] which supports up to four 
VIRTEX FPGAs to verify its hardware implementation 
in a real environment. Since SOLAR is based on a 
supervised training algorithm, the system contains two 
stages – training and voting.  After training, SOLAR 
system is dynamically reconfigured into a voting stage 
utilizing the trained results.  These two stages work at 
distinct time as shown in Fig. 2. Reconfiguration from 
training to voting is performed dynamically and is 
transparent to the system.  In final implementation, 
learning and voting will not be separated in time, and 
dynamic reconfiguration will be replaced by self-
reconfiguration. In both training and voting stages, we 
model software using Matlab and C++, we model  

Figure 1.  SOLAR organization structures 



 3

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

hardware using synthesizable VHDL building blocks, 
and we model HW/SW interface using dynamical link 
libraries plus PCI core and other interface logic.  So, we 
can decompose the prototyping system into three parts: 

 CPU and memory (software): System initialization, 
organization and management are implemented by 
Matlab programming. Time-critical loops and 
recursive applications are implemented in C++.   

 FPGA (hardware): Training and voting architectures 
are dynamically configured onto the chip at distinct 
times. Voting architecture depends on the learned 
results from training. This hardware prototype 
adopts system level organization of DREAM [6] 
with modification of the routing organization.  

 Interface: It contains PCI core and interface logic in 
the hardware part, and C++ dynamical link libraries 
called from Matlab console in the software part. 

 
Software Organization 

Software component is a significant part of the 
system prototyping.  It requires a significant effort to 
arrive at a usable, tightly integrated software solution for 
SOLAR, since it has to handle the system 
synchronization and data received from hardware.  Most 
of the software models are implemented in Matlab due to 
its programming simplicity compared to C++. However, 
Matlab is not very efficient in some time-hungry 
operations including loop and recursive function calls. 
Such functions are implemented by C++ and are called 
by Matlab through dynamical link libraries.  Many 
functions that define the system behavior are organized 
hierarchically as shown in Fig. 3.  The higher level 
functions encapsulate the functions described on the 
lower level.  The highest level software function 
implements the system organization and management.  
Training has more hierarchical levels than voting.  This 
hierarchical organization helps us to communicate with 
the appropriate level of hardware during both stages. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hardware Architecture 

Hardware is designed using synthesizable 
structural VHDL and models the SOLAR architecture as 
shown in Fig. 4. Data fed from the PCI interface 
represents the neurons’ learning space.  Main control 
module receives data via DMA transfer and stores them 
into memory “MEM1”. These memory modules are 
implemented by block memories in VIRTEX FPGA chip 
up to 32x2K bits for the prototype chip.  The storage 
space is sufficient for neurons learning data collected 
from a standard benchmark to verify the hardware 
implementation with software. Once the software 
triggers 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Two stages for SOLAR 

Figure 4.  Simple SOLAR architecture prototype 

Figure 3.  A hierarchical structure of system modelling 



 4

the execution for neurons’ training, the main control 
fetches data from memory 1 and sends them to the 
SOLAR architecture.  At the same time other 
information including searching step for EBE modules 
and current information index values representing the 
learned results, are sent.  Data pass through the SOLAR 
architecture above the main control module shown in 
Fig.4, and then current learned data in a new subspace is 
shifted out via shift register chain to memory 2.  If the 
information index corresponding to the current threshold 
is higher than its previous maximum, data in memory 2 
is send out to FIFO controlled by the main controller.  
The process is repeated until all thresholds are scanned.  
Finally, the optimal thresholds and corresponding 
information indexes are stored in dynamic configuration 
registers. These optimal parameters are read back 
through rapid DMA transfer requested by the system 
level functions (software) for storage and further 
processing. Both training and voting utilize similar 
prototyping structure based on the proposed SOLAR 
architecture for neuron’s organization. 
 
Hardware-software Interface 

In HW/SW interface, the PCI core is used and 
the code/decode logic and control finite state machine 
are developed to help communicate with other hardware 
modules. In software, instead of simply reading and 
writing hard-coded memory locations to access FPGAs, 
a dedicated set of routines including control and data I/O 
functions are developed in C++ DLL to facilitate these 
operations. The control functions contain 
opening/closing the chip, sending/receiving control 
signals, locking and synchronization the FPGA, etc. Data 
I/O functions contain fetching register data from the 
chip, DMA transferring, etc.  This interface links system 
organization and management (software) with neuron’s 
self-organizing learning architecture (hardware).  

 
Hardware-software co-verification 

Co-verification refers to the process of 
determining that a HW/SW design is correct.  Based on 
the correct simulations, we prototype SOLAR in a real 
hardware-software environment – software runs on PC 
and hardware is configured to the VIRTEX FPGA chip 
on the demo board [7] which supports up to four 
VIRTEX FPGA chips. Fig. 5 shows a learned result of 
one neuron in the array after the real-time verification. 
For this particular neuron, the selected input subspace 
contains the raw input data as shown in the upper part of 
Fig. 5 and one dimensional learned output subspace of 
the neuron is shown in the lower part of Fig. 5. Data 
from which the diagram is produced is obtained through 
the FPGA interface. The figure is generated by Matlab to 
utilize its strong plotting ability. Matlab simulation 
produces a very similar result with this real-time 
hardware/software verification, except minor differences 
in numerical values for threshold and information index. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4   SUMMARY 
 

Dynamically reconfigurable architectures can 
be quickly reconfigured by reading pre-stored 
configuration bits from memory. SOLAR architecture 
based on a simple and regular neuron array is similar to 
these structures. Its reconfiguration can be achieved 
either from outside chip using CMU presented in 
DREAM architecture [6] or internally by self-
reconfiguration. This way SOLAR is a new class of 
learning machines and at the same time a new type of 
reconfigurable hardware.  
 

5  REFERENCE 
[1] J. Hogg, “A dynamic hardware generation 
mechanism,” Int. Conf. Designing Correct Circuits, 
Springer Verlag, 1996. 
[2] R. W. Hartenstein, J. Becker et al. “A novel machine 
paradigm to accelerate scientific computing,” Special 
issue on Scientific Computing of Computer Science and 
Informatics Journal, Computer Society of India, 1996. 
[3] J. A. Starzyk and Z. Zhu, “Software simulation of a 
self-organizing learning array system”. The 6th IASTED 
Int. Conf. Artificial Intelligence & Soft Comp (ASC 
2002), Canada. 
[4] J. A. Starzyk and T-H. Liu, “Design of self-
organizing learning array,” IEEE Int. Symp. on Circuits 
and Systems (ISCAS), Bangkok, Thailand, May 2003. 
[5] Amer Baghdadi, “Combining a performance 
estimation methodology with a hardware/software 
codesign flow supporting multiprocessor systems,” IEEE 
Trans. Software Engineering, Vol. 28, No. 9, pp 822-831. 
[6] J. Becker, A. Alsolaim, M. Glesner, and J. Starzyk, 
“A parallel dynamically reconfigurable architecture for 
flexible aplication-tailored hardware/software systems in 
future mobile communication,” The Journal of 
Supercomputing, Erratum Vol. 23, 132, 2002. 
[7] Nallatech Ltd, “Ballynuey 2 VIRTEX PCI card user 
guide,” 1993-1999. 

Figure 5. Training data & one neuron’s learned subspace 


